WO2022062692A1 - 无取向硅钢的生产方法以及无取向硅钢 - Google Patents

无取向硅钢的生产方法以及无取向硅钢 Download PDF

Info

Publication number
WO2022062692A1
WO2022062692A1 PCT/CN2021/110562 CN2021110562W WO2022062692A1 WO 2022062692 A1 WO2022062692 A1 WO 2022062692A1 CN 2021110562 W CN2021110562 W CN 2021110562W WO 2022062692 A1 WO2022062692 A1 WO 2022062692A1
Authority
WO
WIPO (PCT)
Prior art keywords
refining
steel
oriented silicon
silicon steel
chemical composition
Prior art date
Application number
PCT/CN2021/110562
Other languages
English (en)
French (fr)
Inventor
岳重祥
陆佳栋
周彦召
李化龙
Original Assignee
江苏省沙钢钢铁研究院有限公司
张家港扬子江冷轧板有限公司
江苏沙钢集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏省沙钢钢铁研究院有限公司, 张家港扬子江冷轧板有限公司, 江苏沙钢集团有限公司 filed Critical 江苏省沙钢钢铁研究院有限公司
Priority to KR1020237008905A priority Critical patent/KR20230056709A/ko
Priority to BR112023005470A priority patent/BR112023005470A2/pt
Priority to EP21871069.7A priority patent/EP4206352A4/en
Priority to US18/245,885 priority patent/US20240011121A1/en
Priority to JP2023519304A priority patent/JP2023543811A/ja
Priority to MX2023003517A priority patent/MX2023003517A/es
Publication of WO2022062692A1 publication Critical patent/WO2022062692A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • C21C7/0645Agents used for dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/84Controlled slow cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the technical field of iron and steel material preparation, relates to a production method of non-oriented silicon steel, and also relates to a non-oriented silicon steel prepared by the production method.
  • Non-oriented silicon steel is the iron core material of the rotors of motors and generators that work in rotating magnetic fields, requiring good magnetic properties.
  • the control of chemical composition is very strict.
  • the S element will be dissolved and precipitated in the steel in the form of MnS, which hinders the grain growth during annealing, and then affects the magnetic properties of the finished product, which is embodied in the reduction of magnetic induction and Increase iron loss. Therefore, in the prior art, in the chemical composition design and production process of non-oriented silicon steel, the pursuit of ultra-low S control is generally the task goal.
  • a desulfurizing agent needs to be used to desulfurize molten steel.
  • the desulfurizing agent will contact the dip tube of the RH refining furnace with the circulation of the molten steel. After the reaction of Al 2 O 3 , a low melting point substance 11CaO ⁇ 7Al 2 O 3 ⁇ CaF 2 is formed. Under the action of molten steel, the product peels off into molten steel, that is, the desulfurization treatment in the RH refining process will lead to serious erosion of the dip tube of the RH refining furnace, resulting in an increase in production costs, and it is very unfavorable for the working conditions.
  • the purpose of the present invention is to provide a production method of non-oriented silicon steel, and also relates to a kind of production method prepared by adopting the production method.
  • the finished non-oriented silicon steel is to provide a production method of non-oriented silicon steel, and also relates to a kind of production method prepared by adopting the production method.
  • an embodiment of the present invention provides a method for producing non-oriented silicon steel, which adopts molten iron desulfurization, converter smelting, RH refining, continuous casting, hot rolling, acid continuous rolling, annealing, coating and finishing.
  • the process of preparing obtains the finished product of non-oriented silicon steel that satisfies the following chemical composition design scheme;
  • the chemical composition design scheme is calculated as:
  • the thickness of the non-oriented silicon steel product is 0.500 ⁇ 0.005mm, the iron loss P 1.5/50 ⁇ 5.5W/kg, and the magnetic induction intensity B 5000 ⁇ 1.75.
  • the slag removal rate of the molten iron after desulfurization is controlled to be ⁇ 98%;
  • the amount of scrap steel added accounts for 20-25% of the total of scrap steel and molten iron, and lime is added first in the tapping process, and then tin ingots are added.
  • the continuous casting slab is heated successively through the continuous casting slab, rolling the intermediate slab, finishing rolling, and coiling to prepare the hot coil, wherein the heating temperature of the continuous casting slab is 1130-1160° C. and the holding time is ⁇ 180min, the thickness of the intermediate billet is 35 ⁇ 40mm, the final rolling temperature is 865 ⁇ 15°C, the coiling temperature is 680°C ⁇ 20°C, and the thickness of the hot coil is 2.70 ⁇ 0.1mm.
  • the continuous acid rolling process pickling the hot coil obtained by hot rolling with HCl, rinsing and drying, and then performing cold rolling to obtain a hard rolled coil; wherein, the cold rolling reduction ratio is 80-83% , the rolling thickness is 0.501 ⁇ 0.005mm.
  • HCl is used for three-stage pickling, wherein the concentration of the first-stage acid solution is 50-80g/L and the Fe 2+ concentration in the acid solution is ⁇ 130g/L, and the concentration of the second-stage acid solution is 90-120g/L And the Fe 2+ concentration in the acid solution is ⁇ 90g/L, the third-level acid solution concentration is 140-160g/L and the Fe 2+ concentration in the acid solution is ⁇ 50g/L;
  • the temperature of the acid solution is 75-85°C, and a silicon steel pickling accelerator is added to the acid solution, and the weight percentage of the silicon steel pickling accelerator in the acid solution is 0.05-0.10%;
  • the rinsing water temperature is 45-55°C, and the pickling and rinsing speeds are controlled at 100-180 mpm.
  • annealing temperature is 850 ⁇ 5°C
  • the annealing time is 60 ⁇ 5 seconds
  • three-stage cooling is used to The annealed strip is cooled, wherein:
  • the first stage of cooling is slow cooling in the high temperature section, and the steel strip is cooled from the annealing temperature to 800 °C at a cooling rate of ⁇ 5 °C/s;
  • the second stage of cooling is controlled cooling by circulating gas injection, and the steel strip continues to cool to below 300°C at a cooling rate of ⁇ 15°C/s;
  • the third stage of cooling is circulating water jet cooling, and the steel strip continues to cool to below 100°C.
  • the steel strip cooled to below 100°C during annealing is coated and finished to obtain a finished product of non-oriented silicon steel with a thickness of 0.500 ⁇ 0.005mm.
  • An embodiment also provides a non-oriented silicon steel, which is prepared by the processes of molten iron desulfurization, converter smelting, RH refining, continuous casting, hot rolling, acid continuous rolling, annealing, coating and finishing, the non-oriented silicon steel is The chemical composition of silicon steel is calculated as:
  • an embodiment of the present invention provides a non-oriented silicon steel and a production method of the non-oriented silicon steel, the production method adopts molten iron desulfurization, converter smelting, RH refining, continuous casting, hot rolling, acid
  • the process of continuous rolling, annealing, coating and finishing produces a non-oriented silicon steel product with a thickness of 0.5 ⁇ 0.005mm.
  • the iron loss of the non-oriented silicon steel product is P 1.5/50 ⁇ 5.5W/kg, and the magnetic induction intensity B 5000 ⁇ 1.75 ;in,
  • the desulfurized molten iron mixed scrap is smelted in the converter.
  • a sufficient amount of tin ingots are added to the tapping molten steel according to the basic chemical composition scheme; after the tapping is completed, a slag surface deoxidizer is added to the molten steel.
  • the basic scheme of chemical composition is calculated as: C ⁇ 0.003%, S ⁇ 0.008%, Si: 0.35%, Mn: 0.15 ⁇ 0.25%, P: 0.04 ⁇ 0.06%, Sn: 0.015%, Nb ⁇ 0.004%, V ⁇ 0.004%, Ti ⁇ 0.005%, Mo ⁇ 0.004%, Cr ⁇ 0.03%, Ni ⁇ 0.03%, Cu ⁇ 0.03%, N ⁇ 0.003%, others are Fe and inevitable inclusions;
  • the molten steel is decarburized
  • alloying treatment is carried out according to the mass percentage of S contained in the molten steel when it reaches RH refining, wherein: if S ⁇ 0.0030% when the molten steel reaches RH refining, then add ultra-low temperature to the molten steel according to the basic chemical composition scheme Titanium ferrosilicon, low titanium ferrophosphorus and metal manganese; if the molten steel reaches 0.0030% ⁇ S ⁇ 0.0045% when refining at RH, then adjust the Si and Sn in the basic chemical composition scheme to Si: 0.40% and Sn: 0.020%, if the molten steel reaches RH refining 0.0045% ⁇ S ⁇ 0.060%, then adjust the Si and Sn in the basic chemical composition scheme to Si: 0.50% and Sn: 0.025% respectively, if the molten steel reaches RH refining When 0.0060% ⁇ S ⁇ 0.0075%, adjust the Si and Sn in the basic chemical composition scheme to Si: 0.60% and Sn: 0.035% respectively, and add
  • Non-oriented silicon steel products with a thickness of 0.500 ⁇ 0.005mm prepared by the production method, iron loss P 1.5/50 ⁇ 5.5W/kg, magnetic induction intensity B 5000 ⁇ 1.75, excellent magnetic properties, can meet the needs of small and medium-sized
  • Fig. 1 is the metallographic microstructure photo of the finished sample of non-oriented silicon steel in Example 1 of the present invention
  • Fig. 2 is the metallographic microstructure photo of the finished sample of non-oriented silicon steel in Example 2 of the present invention
  • Fig. 3 is the metallographic microstructure photo of the finished sample of non-oriented silicon steel in Example 3 of the present invention.
  • Fig. 4 is the metallographic microstructure photo of the finished sample of non-oriented silicon steel in Example 4 of the present invention.
  • a method for producing non-oriented silicon steel includes performing the following steps in sequence: molten iron desulfurization, converter smelting, RH refining, continuous casting, hot rolling, acid rolling, annealing, coating Layers and finishing.
  • This embodiment also provides a non-oriented silicon steel prepared by using the production method, that is, the non-oriented silicon steel adopts molten iron desulfurization, converter smelting, RH refining, continuous casting, hot rolling, acid continuous rolling, annealing, coating and finishing process.
  • the chemical composition design scheme of the non-oriented silicon steel is as follows, in terms of mass percentage: C ⁇ 0.003%, S ⁇ 0.008%, Si: 0.35%+ ⁇ 1, Mn: 0.15-0.25%, P: 0.04-0.06% , Sn: 0.015%+ ⁇ 2, Nb ⁇ 0.004%, V ⁇ 0.004%, Ti ⁇ 0.005%, Mo ⁇ 0.004%, Cr ⁇ 0.03%, Ni ⁇ 0.03%, Cu ⁇ 0.03%, N ⁇ 0.003%, others are Fe and inevitable inclusions;
  • the production method is used to prepare a non-oriented silicon steel product with a thickness of 0.500 ⁇ 0.005mm. After testing, the iron loss of the non-oriented silicon steel product is P 1.5/50 ⁇ 5.5W/kg, the magnetic induction intensity B 5000 ⁇ 1.75, and the magnetic properties are excellent , can meet the needs of small and medium-sized motors for low-grade non-oriented silicon steel, and the production cost is low, which promotes the smooth running of working conditions.
  • C, Nb, V, Ti, Mo, Cr, Ni, Cu, N the more these elements are, the more unfavorable the grain growth during the annealing process, and then deteriorate the magnetic properties of non-oriented silicon steel, resulting in increased iron loss and magnetic induction
  • the strength decreases, so the lower the content within the controllable range, the better, for example, C ⁇ 0.003%, Nb ⁇ 0.004%, V ⁇ 0.004%, Ti ⁇ 0.005%, Mo ⁇ 0.004%, Cr ⁇ 0.03%, Ni ⁇ 0.03 %, Cu ⁇ 0.03%, N ⁇ 0.003%.
  • Si controlled at 0.35-0.60%, its content increases, which can improve the resistivity and effectively reduce the iron loss
  • Sn controlled at 0.015-0.035%, it is a grain boundary segregation element.
  • the increase of Sn in the non-oriented silicon steel of the present invention can significantly reduce the proportion of unfavorable ⁇ 111 ⁇ texture and improve the magnetic induction intensity of the finished product;
  • Mn controlled at 0.15-0.25%, while ensuring the magnetic properties, suppressing the hot brittleness caused by S;
  • the chemical composition design scheme of the present invention by controlling the content of elements such as C, Nb, V, Ti, Mo, Cr, Ni, Cu, N, etc., and at the same time, by designing elements such as Si, Sn, Mn and P, etc. It breaks the traditional technology and relaxes the upper limit of S content to 0.0080%, which not only ensures the magnetic properties, strength and welding performance of non-oriented silicon steel, but also solves the problems caused by the strict control of ultra-low S in the existing practice.
  • the problems of high production cost and poor working conditions reduce the production cost and promote the smooth running of working conditions.
  • the molten iron is desulfurized by KR desulfurization technology.
  • the temperature of molten iron before desulfurization is controlled to be ⁇ 1350°C, and the chemical composition of molten iron before desulfurization satisfies Si: 0.20-0.70%, S ⁇ 0.05%, Nb ⁇ 0.005%, V ⁇ 0.04%, Ti ⁇ 0.06% in terms of mass percentage , Mo ⁇ 0.001%, Cr ⁇ 0.03%, Ni ⁇ 0.03% and Cu ⁇ 0.03%.
  • the temperature of molten iron after desulfurization is controlled to be greater than or equal to 1320°C and the content of S is less than or equal to 0.0015% in terms of mass percentage. That is, through the molten iron desulfurization process, the content of S in the molten iron is less than or equal to 0.0015% in mass percentage.
  • the slag removal rate of molten iron after desulfurization is controlled to be ⁇ 98%.
  • the tapping that is, the molten iron after desulfurization
  • the tapping is transferred into a converter, and scrap steel is mixed in the converter, and the desulfurized molten iron and scrap steel are smelted into molten steel in the converter together.
  • clean scrap can be used for scrap, and the amount of scrap added accounts for 20-25% of the total of scrap and molten iron.
  • the basic chemical composition plan temporarily calculate the weight of the tin ingot to be added based on Sn: 0.015% in the final non-oriented silicon steel product, and add a sufficient amount to the molten steel.
  • the weights of ultra-low titanium ferrosilicon, low titanium ferrophosphorus and metal manganese need to be added as M3, M4 and M5, then (M1+M2+M3+M4+M5) is used as the steel
  • the total amount of molten steel, the mass percentage of Sn in the total molten steel is 0.015% to calculate the weight M2 of the tin ingot, and the mass percentage of Si in the total molten steel is 0.35% to calculate the weight M3 of ultra-low titanium ferrosilicon , Calculate the weight M4 of low titanium ferrophosphorus with P: 0.04 ⁇ 0.06% in the total molten steel, and
  • lime is added first during the tapping process, and then a sufficient amount of tin ingot is added, that is, lime is added before the tin ingot is added.
  • This step is implemented in the RH refining furnace, and the decarburization treatment mode is adopted, and the treatment is carried out in the order of pre-evacuation, decarburization, alloying, net circulation, and vacuum breaking.
  • the mass percentage of S contained in the molten steel when it reaches RH refining is detected, and the values of ⁇ 1 and ⁇ 2 in the chemical composition design scheme are determined to obtain the final chemical composition scheme, so as to facilitate the adjustment of the corresponding alloy addition amount in the alloying. control.
  • the first design scheme, the second design scheme and the third design scheme here are all final chemical compositions obtained after adjusting Si and Sn in the basic chemical composition scheme, that is, the final chemical composition of the molten steel.
  • the cast slab and the final non-oriented silicon steel finished product meet the chemical composition final scheme.
  • the molten steel is decarburized to control the mass percentage of C contained.
  • the molten steel is alloyed according to the final chemical composition plan. Specifically: if S ⁇ 0.0030% when the molten steel reaches RH refining, add ultra-low titanium ferrosilicon, low titanium ferrophosphorus and metal manganese to the molten steel according to the basic chemical composition scheme, that is, the calculation in the aforementioned converter smelting step The obtained M3, M4 and M5; if the molten steel reaches RH refining 0.0030% ⁇ S ⁇ 0.0045%, then according to the first design scheme after adjustment, add ultra-low titanium ferrosilicon, tin ingot, Low titanium ferrophosphorus and metal manganese; if the molten steel reaches RH refining 0.0045% ⁇ S ⁇ 0.060%, then according to the adjusted second design scheme, add ultra-low titanium ferrosilicon, tin ingot, Low titanium ferrophosphorus and metal manganese; if the mass percentage of S contained in the molten steel when it reaches RH refining, the molten steel
  • the aforementioned first design scheme, second design scheme, and third design scheme are all to further increase the addition amount of ultra-low titanium ferrosilicon and add tin ingots under the condition of the basic chemical composition scheme.
  • the first design scheme is used as an example to illustrate the following.
  • the total amount of molten steel in the converter smelting step is M1, and the tin ingot weight M2 has been added in the converter smelting process. Further, in the RH refining process, according to the first design scheme, it is also necessary to add If the weights of ultra-low titanium ferrosilicon, tin ingot, low titanium ferrophosphorus and metal manganese are set as M3', M2', M4' and M5' respectively, then (M1+M2+M3'+M2'+M4'+M5 ') as the total amount of molten steel, the mass percentage of Sn in the total amount of molten steel is 0.020% (that is, Sn in the finished non-oriented silicon steel: 0.020%) to calculate the weight M2' of the tin ingot that needs to be added at this time, The mass percentage of Si in the total amount of molten steel is 0.40% (that is, Si: 0.40% in the finished non-oriented silicon steel
  • the present invention adopts the design of chemical components and combines the advantages of the production method. Improvement, breaking the traditional technology and relaxing the upper limit of S content to 0.0080%, not only ensures the magnetic properties, strength and welding performance of non-oriented silicon steel, but also reduces the difficulty of S control in hot metal desulfurization, converter smelting, RH refining and other processes.
  • the RH refining process does not require desulfurization treatment, which solves the erosion of the RH refining furnace dip tube by the desulfurizing agent in the prior art, improves the service life of the RH refining furnace dip tube, reduces the production cost, and avoids equipment damage. order.
  • the tapping of the RH refining process (that is, the final obtained molten steel after steel smelting) is prepared into a continuous casting billet by using continuous casting equipment. More elaboration.
  • the hot coil is prepared by successively heating the continuous casting billet, rolling the intermediate billet, finishing rolling and coiling.
  • the heating temperature of the continuous casting billet is 1130-1160°C
  • the holding time is ⁇ 180min
  • the thickness of the intermediate billet is 35-40mm. While the efficiency is reduced and the production cost is increased, the low temperature rolling prevents the solid solution of MnS and other precipitates in the steel during the heating process, thereby further ensuring the magnetic properties of the finished non-oriented silicon steel.
  • the finish rolling temperature was 865 ⁇ 15°C.
  • the Si content is less than 1.7%, there is austenite-ferrite transformation during hot rolling.
  • the transformation temperature is 880-910 °C, and as the Si content increases, the transformation occurs.
  • the final rolling temperature is generally controlled between 800 and 920 °C, and for high silicon steel, due to the high transformation temperature, the final rolling is between 800 and 920 °C. They are all rolled in the ferrite region, so in order to obtain coarse grains, the higher the finishing rolling temperature, the better.
  • the final rolling temperature is controlled at 865 ⁇ 15°C, which can avoid the final rolling pass being in the austenite region, thereby avoiding the deterioration of the magnetic properties through transformation to fine grains after rolling. , which can ensure that the final rolling pass is rolled in the two-phase region or ferrite region, so as to ensure the formation of coarse grains and optimize the magnetic properties.
  • the coiling temperature is 680°C ⁇ 20°C, which is conducive to the growth of grains during the coiling process, improving the magnetic properties, and avoiding the formation of iron oxide scales that are difficult to pickle.
  • the thickness of the hot coil is 2.70 ⁇ 0.1mm, and the thickness of hot rolling affects the deformation of cold rolling. The thinner the thickness of hot rolling, the smaller the deformation of cold rolling, and the larger the obtained grains.
  • the hot coil obtained by hot rolling is pickled with HCl, rinsed and dried, and then cold rolled to obtain a hard rolled coil; wherein, the cold rolling reduction ratio is 80-83%, and the hard rolling thickness is 0.501 ⁇ 0.005mm .
  • HCl is used for three-stage pickling, wherein the concentration of the first-stage acid solution is 50-80g/L and the Fe 2+ concentration in the acid solution is ⁇ 130g/L, and the concentration of the second-stage acid solution is 90-120g/L And the Fe 2+ concentration in the acid solution is ⁇ 90g/L, the third-level acid solution concentration is 140-160g/L and the Fe 2+ concentration in the acid solution is ⁇ 50g/L;
  • the temperature of the acid solution is 75-85°C, and a silicon steel pickling accelerator is added to the acid solution, and the weight percentage of the silicon steel pickling accelerator in the acid solution is 0.05-0.10%;
  • the rinsing water temperature is 45-55°C, and the pickling and rinsing speeds are controlled at 100-180 mpm.
  • the cold-hard coiled steel strip is annealed in a mixed atmosphere of H 2 and N 2 in a continuous annealing furnace, the annealing temperature is 850 ⁇ 5 °C, and the annealing time is 60 ⁇ 5 seconds, and the annealed steel strip is cooled by three-stage cooling.
  • the first stage of cooling is the slow cooling of the high-temperature section, and the steel strip is cooled from the annealing temperature to 800 °C at a cooling rate of ⁇ 5 °C/s;
  • the steel strip after cooling is continued to be cooled to below 300°C at a cooling rate of ⁇ 15°C/s;
  • the third stage of cooling is circulating water jet cooling, and the steel strip after the second stage of cooling is continued to be cooled to below 100°C.
  • Controlling according to the three-stage cooling method described above can effectively control the residual steel plate at a low cost.
  • the stress is less than or equal to 50MPa, which is beneficial to the control of the shape of the plate.
  • Coating and finishing the steel strip cooled to below 100°C during annealing The specific operation can be achieved by using the existing feasible coating and finishing technology, which will not be repeated, and the final thickness is 0.500 ⁇ 0.005mm. non-oriented silicon steel products. Among them, the stability of the magnetic properties is improved through precise control of the thickness of the hot coil, the thickness of hard rolling (that is, the thickness after acid continuous rolling) and the thickness of the finished product.
  • Non-oriented silicon steel products with a thickness of 0.500 ⁇ 0.005mm prepared by the production method, iron loss P 1.5/50 ⁇ 5.5W/kg, magnetic induction intensity B 5000 ⁇ 1.75, excellent magnetic properties, can meet the needs of small and medium-sized
  • the 4 embodiments and 1 comparative example all provide a kind of non-oriented silicon steel, and the production method includes the following steps in sequence: molten iron desulfurization, converter smelting, RH refining, continuous casting, hot rolling, acid continuous rolling , annealing, coating and finishing.
  • the respective chemical compositions of the non-oriented silicon steels in the 4 examples and 1 comparative example are measured in mass percentages as shown in Table 1.
  • the mass percentage of S contained in the molten steel when it reaches RH refining is also shown in Table 1.
  • Examples 1-4 and Comparative Example 1 the finished product thickness, iron loss and magnetic induction intensity of the prepared non-oriented silicon steel are respectively shown in Table 2, and the metallographic microstructure photos of the non-oriented silicon steel are respectively shown in Figure 1 to Figure 5.
  • the chemical composition is designed according to the S content when the molten steel reaches RH refining, and it is added during the alloying of RH refining.
  • the obtained non-oriented silicon steel has relatively coarse grains in the metallographic structure, and the same iron loss P 1.5/50 ⁇ 5.5W/kg, magnetic induction intensity B 5000 when the thickness is 0.5mm ⁇ 1.75, which is better than the magnetic properties of Comparative Document 1.
  • the molten iron desulfurization steps are: control the temperature of the molten iron before desulfurization ⁇ 1350 ° C, and the chemical composition of the molten iron before desulfurization satisfies Si: 0.20-0.70%, S ⁇ 0.05% in terms of mass percentage , Nb ⁇ 0.005%, V ⁇ 0.04%, Ti ⁇ 0.06%, Mo ⁇ 0.001%, Cr ⁇ 0.03%, Ni ⁇ 0.03% and Cu ⁇ 0.03%; control the temperature of molten iron after desulfurization ⁇ 1320°C and calculated by mass percentage The contained S ⁇ 0.0015%, and the slag removal rate is controlled to be ⁇ 98%.
  • the converter smelting steps are: the tapping in the aforementioned molten iron desulfurization step (that is, the molten iron after desulfurization) is moved into the converter, and the clean scrap is mixed in the converter, and the addition of the scrap accounts for 30%. 20-25% of the sum of scrap steel and molten iron, the molten iron and scrap steel after desulfurization are smelted into molten steel together in the converter; during the tapping process, lime is added first, and then the final non-oriented silicon steel product contains Sn: 0.015% to tap the steel. Add enough tin ingots to the molten steel; after tapping, add a slag surface deoxidizer to the molten steel.
  • the RH refining process are: adopt the decarburization treatment mode, and process in the order of pre-evacuation, decarburization, alloying, net circulation, and vacuum breaking, after alloying, net circulation More than 7 minutes, and then tapping; and, in this RH refining process, no desulfurization agent is added, that is, no desulfurization treatment is performed.
  • Example 1 As shown in Table 1, when the molten steel reaches RH refining, S ⁇ 0.0030%, according to the final non-oriented silicon steel product Si: 0.35%, P: 0.04-0.06%, Mn: 0.15-0.25% to the molten steel Add ultra-low titanium ferrosilicon, low titanium ferrophosphorus and metal manganese, and the mass percentage of the actual chemical composition of the RH refined steel is shown in Table 1;
  • Example 2 as shown in Table 1, when the molten steel reaches RH refining, 0.0030% ⁇ S ⁇ 0.0045%, according to the final non-oriented silicon steel product Si: 0.40%, Sn: 0.020%, P: 0.04 ⁇ 0.06%, Mn Add ultra-low titanium ferrosilicon, tin ingot, low titanium ferrophosphorus and metal manganese to molten steel at 0.15-0.25%, and the mass percentage of the actual chemical composition of the RH refining tapped steel is shown in Table 1;
  • Example 3 as shown in Table 1, when the molten steel reaches RH refining, 0.0045% ⁇ S ⁇ 0.060%, according to the final non-oriented silicon steel product Si: 0.50%, Sn: 0.025%, P: 0.04 ⁇ 0.06%, Mn Add ultra-low titanium ferrosilicon, tin ingot, low titanium ferrophosphorus and metal manganese to molten steel at 0.15-0.25%, and the mass percentage of the actual chemical composition of the RH refining tapped steel is shown in Table 1;
  • Example 4 when the molten steel reaches RH for refining, 0.0060% ⁇ S ⁇ 0.0075%, according to the directions of Si: 0.60%, Sn: 0.035%, P: 0.04-0.06%, Mn: 0.15-0.25% in the final non-oriented silicon steel product Ultra-low titanium ferrosilicon, tin ingot, low titanium ferrophosphorus and metal manganese are added to the molten steel, and the mass percentage of the actual chemical composition of the RH refined steel is shown in Table 1;
  • Comparative Example 1 Although 0.0060% ⁇ S ⁇ 0.0075% when the molten steel reaches RH refining, it is still based on Si: 0.35%, P: 0.04-0.06%, Mn: 0.15-0.25% in the final non-oriented silicon steel product.
  • the continuous casting process is as follows: the tapping of the RH refining process is prepared into a continuous casting billet by using continuous casting equipment.
  • the hot rolling process is as follows: the continuous casting slab is successively heated by the continuous casting slab, rolling the intermediate slab, finishing rolling, and coiling to prepare the hot coil.
  • the hot coil obtained by hot rolling is subjected to three-stage pickling with HCl, wherein the concentration of the first-stage acid solution is 50-80g/L and the Fe 2+ concentration in the acid solution is less than or equal to 130g/L, and the concentration of the second-stage acid solution is 90 g/L. ⁇ 120g/L and the concentration of Fe 2+ in the acid solution is ⁇ 90g/L, the concentration of the third-stage acid solution is 140 ⁇ 160g/L and the concentration of Fe 2+ in the acid solution is ⁇ 50g/L;
  • the temperature of the liquid is 75-85°C, and a silicon steel pickling accelerator is added to the acid solution, and the weight percentage of the silicon steel pickling accelerator in the acid solution is 0.05-0.10%;
  • the annealing process is: annealing the steel strip of the chilled coil in the mixed atmosphere of H 2 and N 2 in a continuous annealing furnace, and the annealing temperature and annealing time are shown in Table 3 respectively.
  • the annealed steel strip is cooled by three-stage cooling, in which: the first stage cooling is slow cooling in the high temperature section, and the steel strip is cooled from the annealing temperature to 800 °C at a cooling rate of ⁇ 5 °C/s; the second section is cooled.
  • the cooling is controlled by circulating gas injection, and the steel strip after cooling in the first stage is continuously cooled to below 300 °C at a cooling rate of ⁇ 15 °C/s;
  • the tape continues to cool to below 100°C.
  • Examples 1-4 and Comparative Example 1 the coating and finishing procedures are: coating and finishing the steel strip cooled to below 100 °C in the annealing, and finally obtain the thickness of the non-oriented silicon steel product as shown in Table 2. Show.
  • the non-oriented silicon steel product with a thickness of 0.500 ⁇ 0.005mm prepared by the production method of this embodiment has an iron loss of P 1.5/50 ⁇ 5.5W/kg, magnetic induction intensity B 5000 ⁇ 1.75, excellent magnetic properties;
  • RH refining process does not require desulfurization treatment, which solves the erosion of the RH refining furnace dip tube by the desulfurizer in the prior art, and improves the use of the RH refining furnace dip tube Longevity, reducing production costs, avoiding equipment damage and affecting the order of working conditions.
  • this experimental example 1-4 is only an example in this embodiment, and this embodiment is not limited to be implemented according to this experimental example 1-4, without departing from the technical spirit of this embodiment , other implementations different from this experimental example should be included within the protection scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Soft Magnetic Materials (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

本发明揭示了一种无取向硅钢及其生产方法。所述无取向硅钢采用铁水脱硫、转炉冶炼、RH精炼、连铸、热轧、酸连轧、退火、涂层及精整制备得到,其化学成分以质量百分比计为:C≤0.003%,S≤0.008%,Si:0.35%+Δ1,Mn:0.15~0.25%,P:0.04~0.06%,Sn:0.015%+Δ2,Nb≤0.004%,V≤0.004%,Ti≤0.005%,Mo≤0.004%,Cr≤0.03%,Ni≤0.03%,Cu≤0.03%,N≤0.003%,其它为Fe及不可避免的夹杂。无取向硅钢厚度0.5mm时P 1.5/50≤5.5W/kg,B 5000≥1.75,RH精炼无需脱硫处理。

Description

无取向硅钢的生产方法以及无取向硅钢
本申请要求了申请日为2020年09月27日,申请号为202011031589.3,发明名称为“无取向硅钢的生产方法以及无取向硅钢”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于钢铁材料制备技术领域,涉及一种无取向硅钢的生产方法,还涉及一种采用该生产方法制备而成的无取向硅钢。
背景技术
无取向硅钢是在旋转磁场中工作的电动机和发电机转子的铁芯材料,要求良好的磁性能。通常为了保证无取向硅钢的磁性能,对化学成分的控制非常严格。其中,在生产制备无取向硅钢时,S元素在钢中会以MnS形式发生固溶和析出,阻碍退火时的晶粒长大,进而影响制得成品的磁性能,具体体现为降低磁感应强度及提高铁损。因此,在现有技术中,无取向硅钢的化学成分设计以及生产过程中,普遍以追求超低S控制为任务目标。
进一步地,针对无取向硅钢的超低S的化学成分设计,相应的需要在生产过程中铁水脱硫、转炉冶炼、RH精炼等步骤中均进行严格控制,导致生产成本高居不下,甚至会影响工况顺行。
例如,RH精炼步骤中需要采用脱硫剂对钢水脱硫,脱硫剂会随着钢液的循环与RH精炼炉的浸渍管接触,脱硫剂中CaF 2会与浸渍管管内衬浇注料中的CaO和Al 2O 3反应后生成低熔点物质11CaO·7Al 2O 3·CaF 2。该产物在钢水冲刷作用下,剥落进入钢水中,也即RH精炼过程中的脱硫处理会导致RH精炼炉浸渍管的侵蚀严重,造成生产成本的增加,且对工况顺行十分不利。
因此,开发一种无取向硅钢的化学成分设计方案,在可以放宽对S含量要求的情况下,同时满足低牌号产品的磁性能,是无取向硅钢的工业化生产中非常有价值的。
发明内容
为解决现有技术中无取向硅钢的超低S化学成分设计方案导致生产成本高的技术问题,本发明的目的在于提供一种无取向硅钢的生产方法,还涉及一种采用该生产方法制备而成的无取向硅钢。
为实现上述发明目的,本发明一实施方式提供了一种无取向硅钢的生产方法,其采用铁水脱硫、转炉冶炼、RH精炼、连铸、热轧、酸连轧、退火、涂层及精整的工序制备得到满足如下化学成分设计方案的无取向硅钢成品;
所述化学成分设计方案以质量百分比计为:
C≤0.003%,S≤0.008%,Si:0.35%+Δ1,Mn:0.15~0.25%,P:0.04~0.06%,Sn:0.015%+Δ2,Nb≤0.004%,V≤0.004%,Ti≤0.005%,Mo≤0.004%,Cr≤0.03%,Ni≤0.03%,Cu≤0.03%,N≤0.003%,其它为Fe及不可避免的夹杂;
其中,当钢液到达RH精炼时S≤0.0030%,则Δ1=Δ2=0;
当钢液到达RH精炼时0.0030%<S≤0.0045%,则Δ1=0.05%且Δ2=0.005%;
当钢液到达RH精炼时0.0045%<S≤0.060%,则Δ1=0.15%且Δ2=0.010%;
当钢液到达RH精炼时0.0060%<S≤0.0075%,则Δ1=0.25%且Δ2=0.020%。
优选地,所述无取向硅钢成品的厚度为0.500±0.005mm,其铁损P 1.5/50≤5.5W/kg,磁感应强度B 5000≥1.75。
优选地,铁水脱硫工序时:
控制脱硫前铁水的温度≥1350℃且化学成分以质量百分比计满足Si:0.20~0.70%、S≤0.05%、Nb≤0.005%、V≤0.04%、Ti≤0.06%,Mo≤0.001%、Cr≤0.03%、Ni≤0.03%以及Cu≤0.03%,将该脱硫前铁水进行脱硫,以控制脱硫后铁水的温度≥1320℃且以质量百分比计所含S≤0.0015%;
转炉冶炼工序时:
将脱硫后铁水混合废钢在转炉中进行冶炼,出钢过程中,按照所述化学成分设计方案中Δ1=Δ2=0的化学成分基础方案向出钢钢液中加入足量锡锭;出钢结束后,向钢液中加入渣面脱氧剂;
RH精炼工序中:
检测钢液到达RH精炼时所含S的质量百分比,并确定所述化学成分设计方案中的Δ1和Δ2的取值,以得到化学成分最终方案,在预抽真空的RH精炼炉中,对钢液进行脱碳处理,之后按照所述化学成分最终方案,向钢液中加入超低钛硅铁、锡锭、低钛磷铁和金属锰,净循环7分钟以上后出钢;在RH精炼工序中不添加脱硫剂。
优选地,铁水脱硫工序时,脱硫后铁水的扒渣率控制为≥98%;
优选地,转炉冶炼工序时,废钢的加入量占废钢与铁水总和的20~25%,出钢过 程中先加入石灰,再加入锡锭。
优选地,热轧工序时:将连铸坯依次经过连铸坯加热、轧制中间坯、精轧、卷取制备得到热卷,其中,连铸坯的加热温度为1130~1160℃且保温时间≥180min,中间坯厚度35~40mm,终轧温度为865±15℃,卷取温度为680℃±20℃,热卷厚度为2.70±0.1mm。
优选地,酸连轧工序时:将热轧所得的热卷采用HCl进行酸洗,漂洗并烘干后,进行冷轧以制得轧硬卷;其中,冷轧压下率为80~83%,轧硬厚度为0.501±0.005mm。
优选地,采用HCl进行三级酸洗,其中,第一级酸液浓度为50~80g/L且酸液中Fe 2+浓度≤130g/L,第二级酸液浓度为90~120g/L且酸液中Fe 2+浓度≤90g/L,第三级酸液浓度为140~160g/L且酸液中Fe 2+浓度≤50g/L;
每一级酸洗时,酸液温度75~85℃,在酸液中加入硅钢酸洗促进剂,硅钢酸洗促进剂占酸液的重量百分比为0.05~0.10%;
漂洗水温度45~55℃,酸洗和漂洗速度控制在100~180mpm。
优选地,退火工序时:将冷硬卷的钢带在连续退火炉的H 2和N 2混合气氛中进行退火,退火温度850±5℃,退火时间60±5秒,采用三段式冷却对退火后的钢带进行冷却,其中:
第一段冷却为高温段缓慢冷却,钢带从退火温度以冷速≤5℃/s进行冷却到800℃;
第二段冷却为循环气体喷射控制冷却,钢带以冷速≤15℃/s继续冷却到300℃以下;
第三段冷却为循环水喷射冷却,钢带继续冷却到100℃以下。
优选地,涂层及精整工序时,将退火中冷却至100℃以下的钢带进行涂层及精整,得到厚度为0.500±0.005mm的无取向硅钢成品。
一实施方式还提供了一种无取向硅钢,其采用铁水脱硫、转炉冶炼、RH精炼、连铸、热轧、酸连轧、退火、涂层及精整的工序制备而成,所述无取向硅钢的化学成分以质量百分比计为:
C≤0.003%,S≤0.008%,Si:0.35%+Δ1,Mn:0.15~0.25%,P:0.04~0.06%,Sn:0.015%+Δ2,Nb≤0.004%,V≤0.004%,Ti≤0.005%,Mo≤0.004%,Cr≤0.03%,Ni≤0.03%,Cu≤0.03%,N≤0.003%,其它为Fe及不可避免的夹杂;
其中,当钢液到达RH精炼时S≤0.0030%,则Δ1=Δ2=0;
当钢液到达RH精炼时0.0030%<S≤0.0045%,则Δ1=0.05%且Δ2=0.005%;
当钢液到达RH精炼时0.0045%<S≤0.060%,则Δ1=0.15%且Δ2=0.010%;
当钢液到达RH精炼时0.0060%<S≤0.0075%,则Δ1=0.25%且Δ2=0.020%。
为实现上述发明目的,本发明一实施方式提供了一种无取向硅钢以及提供了该无取向硅钢的生产方法,所述生产方法采用铁水脱硫、转炉冶炼、RH精炼、连铸、热轧、酸连轧、退火、涂层及精整的工序制备得到厚度为0.5±0.005mm的无取向硅钢产品,该无取向硅钢产品的铁损P 1.5/50≤5.5W/kg、磁感应强度B 5000≥1.75;其中,
铁水脱硫工序中:
控制脱硫前铁水的温度≥1350℃且化学成分以质量百分比计满足Si:0.20~0.70%、S≤0.05%、Nb≤0.005%、V≤0.04%、Ti≤0.06%,Mo≤0.001%、Cr≤0.03%、Ni≤0.03%以及Cu≤0.03%,将该脱硫前铁水进行脱硫,以控制脱硫后铁水的温度≥1320℃且以质量百分比计所含S≤0.0015%;
转炉冶炼工序中:
将脱硫后铁水混合废钢在转炉中进行冶炼,在出钢过程中,按照化学成分基础方案向出钢钢液中加入足量锡锭;在出钢结束后,向钢液中加入渣面脱氧剂;其中,所述化学成分基础方案以质量百分比计为:C≤0.003%,S≤0.008%,Si:0.35%,Mn:0.15~0.25%,P:0.04~0.06%,Sn:0.015%,Nb≤0.004%,V≤0.004%,Ti≤0.005%,Mo≤0.004%,Cr≤0.03%,Ni≤0.03%,Cu≤0.03%,N≤0.003%,其它为Fe及不可避免的夹杂;
RH精炼工序中:
在预抽真空的RH精炼炉中,对钢液进行脱碳处理;
之后,根据钢液到达RH精炼时所含S的质量百分比,进行合金化处理,其中:若钢液到达RH精炼时S≤0.0030%,则按照所述化学成分基础方案向钢液中加入超低钛硅铁、低钛磷铁和金属锰;若钢液到达RH精炼时0.0030%<S≤0.0045%,则将所述化学成分基础方案中的Si和Sn分别调整为Si:0.40%和Sn:0.020%,若钢液到达RH精炼时0.0045%<S≤0.060%,则将所述化学成分基础方案中的Si和Sn分别调整为Si:0.50%和Sn:0.025%,若钢液到达RH精炼时0.0060%<S≤0.0075%,则将所述化学成分基础方案中的Si和Sn分别调整为Si:0.60%和Sn:0.035%,并按调整后的化学成分方案向钢液中加入超低钛硅铁、锡锭、低钛磷铁和金属锰;
而后净循环7分钟以上后出钢;在RH精炼工序中不添加脱硫剂。
与现有技术相比,本发明的有益效果为:
(1)采用所述生产方法制备得到的厚度为0.500±0.005mm的无取向硅钢成品,铁损P 1.5/50≤5.5W/kg,磁感应强度B 5000≥1.75,磁性能优异,能够满足中小型电机对低牌号无取向硅钢的需求,并且生产成本低,促进了工况顺行;
(2)通过控制C、Nb、V、Ti、Mo、Cr、Ni、Cu、N等元素的含量,同时,通过优化Si、Sn的含量和S的对应关系,S的含量上限可以放宽至0.0080%,也即控制满足S≤0.008%即可,在S≤0.008%的基础上,还可以允许S>0.0050%甚至≥0.0060%,保证了无取向硅钢的磁性能的稳定,不会因S含量的增加而导致磁性能不稳定,实现良率的稳定;
(3)在保证磁性能的同时,还通过对应设计Mn和P等元素的含量,兼顾了无取向硅钢的强度和焊接性能;
(4)所述生产方法中,降低了对S含量的要求难度,相应在铁水脱硫、转炉冶炼、RH精炼等工序的S控制难度降低,转炉冶炼中废钢的要求降低、成本降低,RH精炼工序无需脱硫处理,解决了现有技术中脱硫剂对RH精炼炉浸渍管的侵蚀,提升了RH精炼炉浸渍管的使用寿命,降低了生产成本,避免因设备损坏还影响工况顺序。
附图说明
图1为本发明实施例1中无取向硅钢成品样板的金相显微组织照片;
图2为本发明实施例2中无取向硅钢成品样板的金相显微组织照片;
图3为本发明实施例3中无取向硅钢成品样板的金相显微组织照片;
图4为本发明实施例4中无取向硅钢成品样板的金相显微组织照片;
图5为本发明对比例1中无取向硅钢成品样板的金相显微组织照片。
具体实施方式
在本发明一实施方式提供了一种无取向硅钢的生产方法,所述生产方法包括依序进行如下工序:铁水脱硫、转炉冶炼、RH精炼、连铸、热轧、酸连轧、退火、涂层及精整。本实施方式还提供了采用该生产方法制备而成的无取向硅钢,也即,所述无取向硅钢采用铁水脱硫、转炉冶炼、RH精炼、连铸、热轧、酸连轧、退火、涂层及精整的工序制备而成。
其中,所述无取向硅钢的化学成分设计方案如下,以质量百分比计为:C≤0.003%,S≤0.008%,Si:0.35%+Δ1,Mn:0.15~0.25%,P:0.04~0.06%,Sn:0.015%+Δ2, Nb≤0.004%,V≤0.004%,Ti≤0.005%,Mo≤0.004%,Cr≤0.03%,Ni≤0.03%,Cu≤0.03%,N≤0.003%,其它为Fe及不可避免的夹杂;
其中,当钢液到达RH精炼时S≤0.0030%,则Δ1=Δ2=0;当钢液到达RH精炼时0.0030%<S≤0.0045%,则Δ1=0.05%且Δ2=0.005%;当钢液到达RH精炼时0.0045%<S≤0.060%,则Δ1=0.15%且Δ2=0.010%;当钢液到达RH精炼时0.0060%<S≤0.0075%,则Δ1=0.25%且Δ2=0.020%。
也即,在本发明的所述生产方法中,在自铁水脱硫工序开始、经过转炉冶炼工序和RH精炼工序之后,直至进行连铸工序之前的整个炼钢过程中,按照如上化学成分设计方案对各个元素含量进行控制,进而制备得到满足如上化学成分设计方案的连铸坯以及无取向硅钢。
其中,根据钢液到达RH精炼时(也即RH精炼到站时,即钢液进入RH精炼炉之初且尚未开始进行RH精炼工序时)所含S的质量百分比,按照Δ1、Δ2与钢液中S含量的对应关系,调整化学成分设计方案中的Si和Sn的质量百分比,进而对各个元素含量进行精确控制。
采用所述生产方法制备得到厚度为0.500±0.005mm的无取向硅钢成品,经检测,该无取向硅钢成品的铁损P 1.5/50≤5.5W/kg,磁感应强度B 5000≥1.75,磁性能优异,能够满足中小型电机对低牌号无取向硅钢的需求,并且生产成本低,促进了工况顺行。
对化学成分设计方案中各个元素的说明如下。
C、Nb、V、Ti、Mo、Cr、Ni、Cu、N:这些元素越多,会不利于退火过程中晶粒的长大,进而恶化无取向硅钢的磁性能,导致铁损增大和磁感应强度降低,因此在可控范围内含量越低越好,例如,C≤0.003%,Nb≤0.004%,V≤0.004%,Ti≤0.005%,Mo≤0.004%,Cr≤0.03%,Ni≤0.03%,Cu≤0.03%,N≤0.003%。
S:如背景技术所提,在钢中以MnS形式发生固溶和析出,阻碍退火时的晶粒长大,进而影响制得成品的磁性能,现有技术中普通以超低S控制为目标,例如0.0050%以下;而本发明通过优化Si、Sn的含量和S的对应关系,S的含量上限可以放宽至0.0080%,也即控制满足S≤0.008%即可,在S≤0.008%的基础上,如后文实施例3、4所示,还可以允许S>0.0050%甚至≥0.0060%;
Si:控制在0.35~0.60%,其含量增大,可以提高电阻率、有效降低铁损;
Sn:控制在0.015~0.035%,其为晶界偏聚元素,在本发明无取向硅钢中Sn的增大可以显著减少不利的{111}织构的比例,提高成品的磁感应强度;
Mn:控制在0.15~0.25%,在保证磁性能的同时,抑制S引起的热脆性;
P:控制在0.04~0.06%,可有效提高无取向硅钢的强度,提升冲片性,同时还保证了焊接性能较佳,特别是对本发明的中低牌号无取向硅钢来说,Si含量相对较低,P的强化作用保证了足够的强度。
总得来讲,本发明在化学成分设计方案上,通过控制C、Nb、V、Ti、Mo、Cr、Ni、Cu、N等元素的含量,同时,通过设计Si、Sn、Mn和P等元素的含量,相应打破传统技术将S的含量上限要求放宽至0.0080%,不仅保证了无取向硅钢的磁性能、强度和焊接性能,而且还可以解决现有做法中因超低S的严格控制而导致的生产成本高、工况顺行差的问题,降低了生产成本,促进了工况顺行。
具体地,下面对一实施方式的所述生产方法的各个工序进行详细介绍。
(1)铁水脱硫工序
通过KR脱硫技术,对铁水进行脱硫处理。
其中,控制脱硫前铁水的温度≥1350℃,且脱硫前铁水的化学成分以质量百分比计满足Si:0.20~0.70%、S≤0.05%、Nb≤0.005%、V≤0.04%、Ti≤0.06%,Mo≤0.001%、Cr≤0.03%、Ni≤0.03%以及Cu≤0.03%。
控制脱硫后铁水的温度≥1320℃且以质量百分比计所含S≤0.0015%。也即,经该铁水脱硫工序,使得铁水中以质量百分比计S含量≤0.0015%。
优选地,脱硫后铁水的扒渣率控制为≥98%。
(2)转炉冶炼工序
将前述铁水脱硫工序中的出钢(也即脱硫后铁水)移入转炉中,并在转炉中混合废钢,该脱硫后铁水和废钢一并在转炉中进行冶炼成钢水。其中优选地,废钢可以采用洁净废钢,废钢的加入量占废钢与铁水总和的20~25%。
出钢过程中,按照所述化学成分设计方案中Δ1=Δ2=0的化学成分基础方案向出钢钢液中加入足量锡锭。具体来讲,将所述化学成分设计方案中的Δ1=Δ2=0时的化学成分可看作是一个化学成分基础方案,其具体也就是以质量百分比计:C≤0.003%,S≤0.008%,Si:0.35%,Mn:0.15~0.25%,P:0.04~0.06%,Sn:0.015%,Nb≤0.004%,V≤0.004%,Ti≤0.005%,Mo≤0.004%,Cr≤0.03%,Ni≤0.03%,Cu≤0.03%,N≤0.003%,其它为Fe及不可避免的夹杂。按照该化学成分基础方案,暂时以最终无取向硅钢成品中Sn:0.015%计算需要加入的锡锭重量并足量全部加入钢液中。
对此处锡锭重量的确定方式进行举例说明,假定转炉冶炼工序中钢液的总量为 M1,该转炉冶炼工序中需要加入锡锭的重量设为M2,按照Δ1=Δ2=0的基础设计方案,接下来的RH精炼工序中还需要加入超低钛硅铁、低钛磷铁和金属锰的重量设为M3、M4和M5,则以(M1+M2+M3+M4+M5)作为钢液总量、以该钢液总量中Sn的质量百分比为0.015%来计算锡锭的重量M2、以该钢液总量中Si的质量百分比为0.35%来计算超低钛硅铁的重量M3、以该钢液总量中P:0.04~0.06%来计算低钛磷铁的重量M4、以该钢液总量中Mn:0.15~0.25%来计算超低钛硅铁的重量M5,可以理解的,该计算过程中,其中M3、M4和M5同样依照所述基础设计方案予以粗略计算,其仅为用于辅助确定M2的临时数据,而一定条件下(如后续RH精炼到站S>0.0030%时)并非接下来RH精炼工序中的实际加入量。
优选地,在出钢过程中先加入石灰,再加入足量锡锭,也即在加入锡锭之前先加石灰。
在出钢结束后,向钢液中加入渣面脱氧剂。
(3)RH精炼工序
该步骤在RH精炼炉内实施,采用脱碳处理模式,按照预抽真空、脱碳、合金化、净循环、破真空的顺序进行处理。
其中,检测钢液到达RH精炼时所含S的质量百分比,确定所述化学成分设计方案中的Δ1和Δ2的取值,以得到化学成分最终方案,以便于合金化中进行相应合金加入量的控制。
具体地,钢液到达RH精炼时S≤0.0075%,并且,如前文所述,当钢液到达RH精炼时S≤0.0030%,则Δ1=Δ2=0,此时即对应于所述化学成分基础方案,也即钢液最终所铸的连铸坯以及最终无取向硅钢成品满足所述化学成分基础方案;
当钢液到达RH精炼时0.0030%<S≤0.0045%,则Δ1=0.05%且Δ2=0.005%,此时即对应于调整后的第一种设计方案:Si:0.40%,Sn:0.020%;当钢液到达RH精炼时0.0045%<S≤0.060%,则Δ1=0.15%且Δ2=0.010%,此时即对应于调整后的第二种设计方案:Si:0.50%,Sn:0.025%;当钢液到达RH精炼时0.0060%<S≤0.0075%,则Δ1=0.25%且Δ2=0.020%,此时即对应于调整后的第三种设计方案:Si:0.60%,Sn:0.035%。此处的第一种设计方案、第二种设计方案和第三种设计方案均为对所述化学成分基础方案中Si和Sn进行调整之后所得的化学成分最终方案,也即,钢液最终所铸的连铸坯以及最终无取向硅钢成品满足所述化学成分最终方案。
在预抽真空的RH精炼炉中,对钢液进行脱碳处理,以控制所含C的质量百分 比。
之后,根据钢液到达RH精炼时所含S的质量百分比,按照所述化学成分最终方案对钢液进行合金化。具体地:若钢液到达RH精炼时S≤0.0030%,则按照所述化学成分基础方案向钢液中加入超低钛硅铁、低钛磷铁和金属锰,也即前述转炉冶炼步骤中计算得到的M3、M4和M5;若钢液到达RH精炼时0.0030%<S≤0.0045%,则按照调整后的所述第一种设计方案,向钢液中加入超低钛硅铁、锡锭、低钛磷铁和金属锰;若钢液到达RH精炼时0.0045%<S≤0.060%,则按照调整后的所述第二种设计方案,向钢液中加入超低钛硅铁、锡锭、低钛磷铁和金属锰;若钢液到达RH精炼时0.0060%<S≤0.0075%,则按照调整后的所述第三种设计方案,向钢液中加入超低钛硅铁、锡锭、低钛磷铁和金属锰。
前述第一种设计方案、第二种设计方案、第三种设计方案均是在所述化学成分基础方案的情况下进一步增大超低钛硅铁的加入量以及补加锡锭。关于该三种设计方案下超低钛硅铁、锡锭、低钛磷铁和金属锰的加入量的确定方式,在此以第一种设计方案为例予以举例说明如下。
如前所述,假定转炉冶炼步骤中钢液的总量为M1,并且通过转炉冶炼工序中已经加入锡锭重量M2,进而,在该RH精炼工序中,按照第一种设计方案,还需要加入超低钛硅铁、锡锭、低钛磷铁和金属锰的重量分别设为M3’、M2’、M4’和M5’,则以(M1+M2+M3’+M2’+M4’+M5’)作为钢液总量、以该钢液总量中Sn的质量百分比为0.020%(也即无取向硅钢成品中Sn:0.020%)来计算此时需要补加的锡锭的重量M2’、以该钢液总量中Si的质量百分比为0.40%(也即无取向硅钢成品中Si:0.40%)来计算超低钛硅铁的重量M3’、以该钢液总量中P:0.04~0.06%(也即无取向硅钢成品中P:0.04~0.06%)来计算低钛磷铁的重量M4’、以该钢液总量中Mn:0.15~0.25%(也即无取向硅钢成品中Mn:0.15~0.25%)来计算超低钛硅铁的重量M5’;之后,按照计算结果,向钢液中分别加入足量的超低钛硅铁、锡锭、低钛磷铁和金属锰。
合金化之后,净循环7分钟以上,而后出钢。
在本发明中,RH精炼工序中不添加脱硫剂,也即取消了现有技术中的RH精炼工序中的脱硫处理,由此可以看出,本发明通过化学成分的设计,并结合生产方法的改进,打破传统技术将S的含量上限要求放宽至0.0080%,不仅保证了无取向硅钢的磁性能、强度和焊接性能,而且使得在铁水脱硫、转炉冶炼、RH精炼等工序的 S控制难度降低,尤其是RH精炼工序无需脱硫处理,解决了现有技术中脱硫剂对RH精炼炉浸渍管的侵蚀,提升了RH精炼炉浸渍管的使用寿命,降低了生产成本,避免因设备损坏还影响工况顺序。
(4)连铸工序
将RH精炼工序的出钢(即冶钢完成的最终所得钢液)采用连铸设备制备成连铸坯,该连铸工序的具体操作可采用现有的可行连铸技术均可以实现,不再多加赘述。
(5)热轧工序
将连铸坯依次经过连铸坯加热、轧制中间坯、精轧、卷取制备得到热卷。
其中,连铸坯的加热温度为1130~1160℃且保温时间≥180min,中间坯厚度35~40mm,这样,在避免因低温轧制导致加热时间延长、轧制力增加、生产难度增大、生产效率降低、生产成本增大的同时,通过低温轧制,防止钢中MnS等析出物在加热过程的固溶,从而进一步保证无取向硅钢成品的磁性能。
终轧温度为865±15℃。当Si含量小于1.7%时,热轧过程存在奥氏体-铁素体的相变,通常的,Si含量为0.35%时,相变温度880~910℃,并随着Si含量增加,相变温度升高,由于轧制过程中的热量损失,终轧温度一般控制在800~920℃之间,并且,对高硅钢来说,由于相变温度高,在800~920℃之间终轧,均为铁素体区轧制,故为了得到粗大晶粒,终轧温度通常越高越好。然而,对于本发明无取向硅钢来说,终轧温度控制在865±15℃,却是可以避免终轧道次处于奥氏体区,进而避免轧后通过相变得到细晶粒而恶化磁性能,能够确保终轧道次处于两相区或铁素体区轧制,以保证粗大晶粒的形成而优化磁性能。
卷取温度为680℃±20℃,,利于卷取过程晶粒的长大,提升磁性能,同时避免形成难酸洗的氧化铁皮。
热卷厚度为2.70±0.1mm,热轧厚度影响冷轧变形量,热轧厚度越薄冷轧变形量越小,得到的晶粒越大。
(6)酸连轧工序
将热轧所得的热卷采用HCl进行酸洗,漂洗并烘干后,进行冷轧以制得轧硬卷;其中,冷轧压下率为80~83%,轧硬厚度为0.501±0.005mm。
优选地,采用HCl进行三级酸洗,其中,第一级酸液浓度为50~80g/L且酸液中Fe 2+浓度≤130g/L,第二级酸液浓度为90~120g/L且酸液中Fe 2+浓度≤90g/L,第三级 酸液浓度为140~160g/L且酸液中Fe 2+浓度≤50g/L;
每一级酸洗时,酸液温度75~85℃,在酸液中加入硅钢酸洗促进剂,硅钢酸洗促进剂占酸液的重量百分比为0.05~0.10%;
漂洗水温度45~55℃,酸洗和漂洗速度控制在100~180mpm。
(7)退火工序
将冷硬卷的钢带在连续退火炉的H 2和N 2混合气氛中进行退火,退火温度850±5℃,退火时间60±5秒,采用三段式冷却对退火后的钢带进行冷却,其中:第一段冷却为高温段缓慢冷却,将钢带从退火温度以冷速≤5℃/s进行冷却到800℃;第二段冷却为循环气体喷射控制冷却,将第一段冷却后的钢带以冷速≤15℃/s继续冷却到300℃以下;第三段冷却为循环水喷射冷却,将第二段冷却后的钢带继续冷却到100℃以下。
钢带冷却速度越慢越有利于降低钢板的冷却内应力,但冷却段过长会大幅度提高生产成本,按以上所述的三段式冷却方式进行控制,可低成本的有效控制钢板的残余应力≤50MPa,有利于板形的控制。
(8)涂层及精整工序
将退火中冷却至100℃以下的钢带进行涂层及精整,其具体操作可采用现有的可行涂层及精整技术均可以实现,不再多加赘述,最终得到厚度为0.500±0.005mm的无取向硅钢成品。其中,通过对热卷厚度、轧硬厚度(即酸连轧后厚度)、成品厚度的精确控制,提升磁性能的稳定性。
与现有技术相比,本发明的有益效果在于:
(1)采用所述生产方法制备得到的厚度为0.500±0.005mm的无取向硅钢成品,铁损P 1.5/50≤5.5W/kg,磁感应强度B 5000≥1.75,磁性能优异,能够满足中小型电机对低牌号无取向硅钢的需求,并且生产成本低,促进了工况顺行;
(2)通过控制C、Nb、V、Ti、Mo、Cr、Ni、Cu、N等元素的含量,同时,通过优化Si、Sn的含量和S的对应关系,S的含量上限可以放宽至0.0080%,也即控制满足S≤0.008%即可,在S≤0.008%的基础上,如后文实施例3、4所示,还可以允许S>0.0050%甚至≥0.0060%,保证了无取向硅钢的磁性能的稳定,不会因S含量的增加而导致磁性能不稳定,实现良率的稳定;
(3)在保证磁性能的同时,还通过对应设计Mn和P等元素的含量,兼顾了无取向硅钢的强度和焊接性能;
(4)所述生产方法中,降低了对S含量的要求难度,相应在铁水脱硫、转炉冶炼、RH精炼等工序的S控制难度降低,转炉冶炼中废钢的要求降低、成本降低,RH精炼工序无需脱硫处理,解决了现有技术中脱硫剂对RH精炼炉浸渍管的侵蚀,提升了RH精炼炉浸渍管的使用寿命,降低了生产成本,避免因设备损坏还影响工况顺序。
上文所列出的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。
下面选取依照本实施方式的4个实施例及未依照本实施方式的1个对比例,来进一步说明本实施方式的卓越进步,当然,这4个实施例仅为本实施方式所含众多变化实施例中的一部分,而非全部。
具体地,4个实施例和1个对比例均提供了一种无取向硅钢,其生产方法均包括依序进行如下工序:铁水脱硫、转炉冶炼、RH精炼、连铸、热轧、酸连轧、退火、涂层及精整。
其中,4个实施例和1个对比例中无取向硅钢的各自化学成分(也即RH精炼出钢钢液的化学成分/连铸坯的化学成分)以质量百分比计经取样检测结果如表1所示,并且,4个实施例和1个对比例的生产过程中,钢液到达RH精炼时所含S的质量百分比也参表1。
[表1]
Figure PCTCN2021110562-appb-000001
进一步地,实施例1-4和对比例1中,制备得到的无取向硅钢的成品厚度、铁损、磁感应强度分别如表2所示,并且,无取向硅钢的金相显微组织照片分别参看图1至图5。
[表2]
Figure PCTCN2021110562-appb-000002
Figure PCTCN2021110562-appb-000003
将实施例1~4与对比例1进行比较,可以看出,本发明一实施方式中,根据钢液到达RH精炼时S含量,进行化学成分的设计,并在RH精炼的合金化时补加超低钛硅铁和锡锭,所得到的无取向硅钢的金相组织中晶粒相对粗大,且同样在厚度为0.5mm时的铁损P 1.5/50≤5.5W/kg、磁感应强度B 5000≥1.75,优于对比文件1的磁性能。
具体地,实施例1~4与对比例1的生产过程如下:
(1)铁水脱硫工序
实施例1-4和对比例1,该铁水脱硫步骤均为:控制脱硫前铁水的温度≥1350℃,且脱硫前铁水的化学成分以质量百分比计满足Si:0.20~0.70%、S≤0.05%、Nb≤0.005%、V≤0.04%、Ti≤0.06%,Mo≤0.001%、Cr≤0.03%、Ni≤0.03%以及Cu≤0.03%;控制脱硫后铁水的温度≥1320℃且以质量百分比计所含S≤0.0015%,扒渣率控制为≥98%。
(2)转炉冶炼工序
实施例1-4和对比例1,该转炉冶炼步骤均为:将前述铁水脱硫步骤中的出钢(也即脱硫后铁水)移入转炉中,并在转炉中混合洁净废钢,废钢的加入量占废钢与铁水总和的20~25%,该脱硫后铁水和废钢一并在转炉中进行冶炼成钢水;出钢过程中,先加入石灰,再按照最终无取向硅钢成品含Sn:0.015%向出钢钢液中加入足量锡锭;在出钢结束后,向钢液中加入渣面脱氧剂。
(3)RH精炼工序
实施例1-4和对比例1,该RH精炼工序均为:采用脱碳处理模式,按照预抽真空、脱碳、合金化、净循环、破真空的顺序进行处理,合金化之后,净循环7分钟以上,而后出钢;并且,该RH精炼工序中不添加脱硫剂,也即不进行脱硫处理。
其中,实施例1-4和对比例1,在该转炉冶炼工序中的不同仅在于:
实施例1中,如表1所示,钢液到达RH精炼时S≤0.0030%,按照最终无取向硅钢成品中Si:0.35%、P:0.04~0.06%、Mn:0.15~0.25%向钢液中加入超低钛硅铁、低钛磷铁和金属锰,其RH精炼出钢的实际化学成分的质量百分比参表1;
实施例2中,如表1所示,钢液到达RH精炼时0.0030%<S≤0.0045%,按照最 终无取向硅钢成品中Si:0.40%,Sn:0.020%、P:0.04~0.06%、Mn:0.15~0.25%向钢液中加入超低钛硅铁、锡锭、低钛磷铁和金属锰,其RH精炼出钢的实际化学成分的质量百分比参表1;
实施例3中,如表1所示,钢液到达RH精炼时0.0045%<S≤0.060%,按照最终无取向硅钢成品中Si:0.50%,Sn:0.025%、P:0.04~0.06%、Mn:0.15~0.25%向钢液中加入超低钛硅铁、锡锭、低钛磷铁和金属锰,其RH精炼出钢的实际化学成分的质量百分比参表1;
实施例4中,钢液到达RH精炼时0.0060%<S≤0.0075%,按照最终无取向硅钢成品中Si:0.60%,Sn:0.035%、P:0.04~0.06%、Mn:0.15~0.25%向钢液中加入超低钛硅铁、锡锭、低钛磷铁和金属锰,其RH精炼出钢的实际化学成分的质量百分比参表1;
而对比例1中,尽管钢液到达RH精炼时0.0060%<S≤0.0075%,但依然按照最终无取向硅钢成品中Si:0.35%、P:0.04~0.06%、Mn:0.15~0.25%向钢液中加入超低钛硅铁、低钛磷铁和金属锰,其RH精炼出钢的实际化学成分的质量百分比参表1。
(4)连铸工序
实施例1-4和对比例1,该连铸工序均为:将RH精炼工序的出钢采用连铸设备制备成连铸坯。
(5)热轧工序
实施例1-4和对比例1,该热轧工序均为:将连铸坯依次经过连铸坯加热、轧制中间坯、精轧、卷取制备得到热卷。
其中,实施例1-4和对比例1的各自连铸坯的加热温度、保温时间、中间坯厚度、终轧温度、卷取温度、热卷厚度等具体值参表3所示。
(6)酸连轧工序
实施例1-4和对比例1,该酸连轧工序均为:
将热轧所得的热卷采用HCl进行三级酸洗,其中,第一级酸液浓度为50~80g/L且酸液中Fe 2+浓度≤130g/L,第二级酸液浓度为90~120g/L且酸液中Fe 2+浓度≤90g/L,第三级酸液浓度为140~160g/L且酸液中Fe 2+浓度≤50g/L;每一级酸洗时,酸液温度75~85℃,在酸液中加入硅钢酸洗促进剂,硅钢酸洗促进剂占酸液的重量百分比为0.05~0.10%;
漂洗并烘干后,进行冷轧以制得轧硬卷;其中,漂洗水温度45~55℃,酸洗和漂 洗速度控制在100~180mpm,实施例1-4和对比例1的冷轧压下率和轧硬厚度分别参表3所示。
(7)退火工序
实施例1-4和对比例1,该退火工序均为:将冷硬卷的钢带在连续退火炉的H 2和N 2混合气氛中进行退火,退火温度和退火时间分别参表3所示,采用三段式冷却对退火后的钢带进行冷却,其中:第一段冷却为高温段缓慢冷却,将钢带从退火温度以冷速≤5℃/s进行冷却到800℃;第二段冷却为循环气体喷射控制冷却,将第一段冷却后的钢带以冷速≤15℃/s继续冷却到300℃以下;第三段冷却为循环水喷射冷却,将第二段冷却后的钢带继续冷却到100℃以下。
[表3]
Figure PCTCN2021110562-appb-000004
(8)涂层及精整工序
实施例1-4和对比例1,该涂层及精整工序均为:将退火中冷却至100℃以下的钢带进行涂层及精整,最终得到无取向硅钢成品的厚度参表2所示。
综上可以看出,经实施例1-4和对比例1的比对,采用本实施方式的所述生产方法制备得到的厚度为0.500±0.005mm的无取向硅钢成品,铁损P 1.5/50≤5.5W/kg,磁感应强度B 5000≥1.75,磁性能优异;RH精炼工序无需脱硫处理,解决了现有技术中脱硫剂对RH精炼炉浸渍管的侵蚀,提升了RH精炼炉浸渍管的使用寿命,降低了生产成本,避免因设备损坏还影响工况顺序。
需要说明的是,该实验例1-4仅为本实施方式中的一个示例,本实施方式并不限定于必要依照该实验例1-4予以实施,在未脱离本实施方式的技艺宗旨之下,其它不 同于该实验例的实施均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种无取向硅钢的生产方法,其特征在于,采用铁水脱硫、转炉冶炼、RH精炼、连铸、热轧、酸连轧、退火、涂层及精整的工序制备得到满足如下化学成分设计方案的无取向硅钢成品;
    所述化学成分设计方案以质量百分比计为:
    C≤0.003%,S≤0.008%,Si:0.35%+Δ1,Mn:0.15~0.25%,P:0.04~0.06%,Sn:0.015%+Δ2,Nb≤0.004%,V≤0.004%,Ti≤0.005%,Mo≤0.004%,Cr≤0.03%,Ni≤0.03%,Cu≤0.03%,N≤0.003%,其它为Fe及不可避免的夹杂;
    其中,当钢液到达RH精炼时S≤0.0030%,则Δ1=Δ2=0;
    当钢液到达RH精炼时0.0030%<S≤0.0045%,则Δ1=0.05%且Δ2=0.005%;
    当钢液到达RH精炼时0.0045%<S≤0.060%,则Δ1=0.15%且Δ2=0.010%;
    当钢液到达RH精炼时0.0060%<S≤0.0075%,则Δ1=0.25%且Δ2=0.020%。
  2. 根据权利要求1所述的无取向硅钢的生产方法,其特征在于,所述无取向硅钢成品的厚度为0.500±0.005mm,其铁损P 1.5/50≤5.5W/kg,磁感应强度B 5000≥1.75。
  3. 根据权利要求1所述的无取向硅钢的生产方法,其特征在于,
    铁水脱硫工序时:
    控制脱硫前铁水的温度≥1350℃且化学成分以质量百分比计满足Si:0.20~0.70%、S≤0.05%、Nb≤0.005%、V≤0.04%、Ti≤0.06%,Mo≤0.001%、Cr≤0.03%、Ni≤0.03%以及Cu≤0.03%,将该脱硫前铁水进行脱硫,以控制脱硫后铁水的温度≥1320℃且以质量百分比计所含S≤0.0015%;
    转炉冶炼工序时:
    将脱硫后铁水混合废钢在转炉中进行冶炼,出钢过程中,按照所述化学成分设计方案中Δ1=Δ2=0的化学成分基础方案向出钢钢液中加入足量锡锭;出钢结束后,向钢液中加入渣面脱氧剂;
    RH精炼工序中:
    检测钢液到达RH精炼时所含S的质量百分比,并确定所述化学成分设计方案中的Δ1和Δ2的取值,以得到化学成分最终方案,在预抽真空的RH精炼炉中,对钢液进行脱碳处理,之后按照所述化学成分最终方案,向钢液中加入超低钛硅铁、锡锭、低钛磷铁和金属锰,净循环7分钟以上后出钢;在RH精炼工序中不添加脱硫剂。
  4. 根据权利要求3所述的无取向硅钢的生产方法,其特征在于,铁水脱硫工序时,脱硫后铁水的扒渣率控制为≥98%;
  5. 根据权利要求3所述的无取向硅钢的生产方法,其特征在于,转炉冶炼工序时,废钢的加入量占废钢与铁水总和的20~25%,出钢过程中先加入石灰,再加入锡锭。
  6. 根据权利要求1所述的无取向硅钢的生产方法,其特征在于,热轧工序时:将连铸坯依次经过连铸坯加热、轧制中间坯、精轧、卷取制备得到热卷,其中,连铸坯的加热温度为1130~1160℃且保温时间≥180min,中间坯厚度35~40mm,终轧温度为865±15℃,卷取温度为680℃±20℃,热卷厚度为2.70±0.1mm。
  7. 根据权利要求1所述的无取向硅钢的生产方法,其特征在于,酸连轧工序时:将热轧所得的热卷采用HCl进行酸洗,漂洗并烘干后,进行冷轧以制得轧硬卷;其中,冷轧压下率为80~83%,轧硬厚度为0.501±0.005mm。
  8. 根据权利要求7所述的无取向硅钢的生产方法,其特征在于,采用HCl进行三级酸洗,其中,第一级酸液浓度为50~80g/L且酸液中Fe 2+浓度≤130g/L,第二级酸液浓度为90~120g/L且酸液中Fe 2+浓度≤90g/L,第三级酸液浓度为140~160g/L且酸液中Fe 2+浓度≤50g/L;
    每一级酸洗时,酸液温度75~85℃,在酸液中加入硅钢酸洗促进剂,硅钢酸洗促进剂占酸液的重量百分比为0.05~0.10%;
    漂洗水温度45~55℃,酸洗和漂洗速度控制在100~180mpm。
  9. 根据权利要求1所述的无取向硅钢的生产方法,其特征在于,退火工序时:将冷硬卷的钢带在连续退火炉的H 2和N 2混合气氛中进行退火,退火温度850±5℃,退火时间60±5秒,采用三段式冷却对退火后的钢带进行冷却,其中:
    第一段冷却为高温段缓慢冷却,钢带从退火温度以冷速≤5℃/s进行冷却到800℃;
    第二段冷却为循环气体喷射控制冷却,钢带以冷速≤15℃/s继续冷却到300℃以下;
    第三段冷却为循环水喷射冷却,钢带继续冷却到100℃以下。
  10. 根据权利要求1所述的无取向硅钢的生产方法,其特征在于,涂层及精整工序时,将退火中冷却至100℃以下的钢带进行涂层及精整,得到厚度为0.500±0.005mm的无取向硅钢成品。
  11. 一种无取向硅钢,其特征在于,其采用权利要求1所述的生产方法制备而成。
  12. 一种无取向硅钢的生产方法,其特征在于,采用铁水脱硫、转炉冶炼、RH精炼、连铸、热轧、酸连轧、退火、涂层及精整的工序制备得到厚度为0.5±0.005mm的无取向硅钢产品,该无取向硅钢产品的铁损P 1.5/50≤5.5W/kg、磁感应强度B 5000≥1.75;其中,
    铁水脱硫工序中:
    控制脱硫前铁水的温度≥1350℃且化学成分以质量百分比计满足Si:0.20~0.70%、S≤0.05%、Nb≤0.005%、V≤0.04%、Ti≤0.06%,Mo≤0.001%、Cr≤0.03%、Ni≤0.03%以及Cu≤0.03%,将该脱硫前铁水进行脱硫,以控制脱硫后铁水的温度≥1320℃且以质量百分比计所含S≤0.0015%;
    转炉冶炼工序中:
    将脱硫后铁水混合废钢在转炉中进行冶炼,在出钢过程中,按照化学成分基础方案向出钢钢液中加入足量锡锭;在出钢结束后,向钢液中加入渣面脱氧剂;其中,所述化学成分基础方案以质量百分比计为:C≤0.003%,S≤0.008%,Si:0.35%,Mn:0.15~0.25%,P:0.04~0.06%,Sn:0.015%,Nb≤0.004%,V≤0.004%,Ti≤0.005%,Mo≤0.004%,Cr≤0.03%,Ni≤0.03%,Cu≤0.03%,N≤0.003%,其它为Fe及不可避免的夹杂;
    RH精炼工序中:
    在预抽真空的RH精炼炉中,对钢液进行脱碳处理;
    之后,根据钢液到达RH精炼时所含S的质量百分比,进行合金化处理,其中:若钢液到达RH精炼时S≤0.0030%,则按照所述化学成分基础方案向钢液中加入超低钛硅铁、低钛磷铁和金属锰;若钢液到达RH精炼时0.0030%<S≤0.0045%,则将所述化学成分基础方案中的Si和Sn分别调整为Si:0.40%和Sn:0.020%,若钢液到达RH精炼时0.0045%<S≤0.060%,则将所述化学成分基础方案中的Si和Sn分别调整为Si:0.50%和Sn:0.025%,若钢液到达RH精炼时0.0060%<S≤0.0075%,则将所述化学成分基础方案中的Si和Sn分别调整为Si:0.60%和Sn:0.035%,并按调整后的化学成分方案向钢液中加入超低钛硅铁、锡锭、低钛磷铁和金属锰;
    而后净循环7分钟以上后出钢;在RH精炼工序中不添加脱硫剂。
  13. 一种无取向硅钢,其特征在于,其采用权利要求12所述的生产方法制备而成。
PCT/CN2021/110562 2020-09-27 2021-08-04 无取向硅钢的生产方法以及无取向硅钢 WO2022062692A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020237008905A KR20230056709A (ko) 2020-09-27 2021-08-04 무방향성 규소강의 생산 방법 및 무방향성 규소강
BR112023005470A BR112023005470A2 (pt) 2020-09-27 2021-08-04 Método de produção de aço silício não orientado e aço silício não orientado
EP21871069.7A EP4206352A4 (en) 2020-09-27 2021-08-04 PROCESS FOR PRODUCING NON-ORIENTED SILICON STEEL AND NON-ORIENTED SILICON STEEL
US18/245,885 US20240011121A1 (en) 2020-09-27 2021-08-04 Production method for non-oriented silicon steel and non-oriented silicon steel
JP2023519304A JP2023543811A (ja) 2020-09-27 2021-08-04 無方向性ケイ素鋼の生産方法及び無方向性ケイ素鋼
MX2023003517A MX2023003517A (es) 2020-09-27 2021-08-04 Metodo de produccion para acero al silicio no orientado y acero al silicio no orientado.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011031589.3 2020-09-27
CN202011031589.3A CN112143974B (zh) 2020-09-27 2020-09-27 无取向硅钢的生产方法以及无取向硅钢

Publications (1)

Publication Number Publication Date
WO2022062692A1 true WO2022062692A1 (zh) 2022-03-31

Family

ID=73894837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110562 WO2022062692A1 (zh) 2020-09-27 2021-08-04 无取向硅钢的生产方法以及无取向硅钢

Country Status (8)

Country Link
US (1) US20240011121A1 (zh)
EP (1) EP4206352A4 (zh)
JP (1) JP2023543811A (zh)
KR (1) KR20230056709A (zh)
CN (1) CN112143974B (zh)
BR (1) BR112023005470A2 (zh)
MX (1) MX2023003517A (zh)
WO (1) WO2022062692A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114672718A (zh) * 2022-04-13 2022-06-28 张家港扬子江冷轧板有限公司 高牌号硅钢的冶炼方法
CN115058637A (zh) * 2022-06-28 2022-09-16 日照钢铁控股集团有限公司 一种基于薄板坯连铸连轧超低钛钢水的生产方法
CN115652190A (zh) * 2022-09-20 2023-01-31 包头钢铁(集团)有限责任公司 一种Nb-Ti-Mo成分系L415M-RW热煨弯管用热轧钢带生产方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112143974B (zh) * 2020-09-27 2021-10-22 江苏省沙钢钢铁研究院有限公司 无取向硅钢的生产方法以及无取向硅钢
CN112921148B (zh) * 2021-01-21 2022-04-19 江苏省沙钢钢铁研究院有限公司 一种超低硫硅钢冶炼工艺方法
CN113025868B (zh) * 2021-02-23 2022-03-29 江苏省沙钢钢铁研究院有限公司 一种含铝无取向硅钢中残余元素的控制方法
CN116162844A (zh) * 2022-12-30 2023-05-26 江苏省沙钢钢铁研究院有限公司 无取向硅钢及其高洁净生产方法
CN117701835B (zh) * 2024-02-06 2024-06-04 包头威丰新材料有限公司 一种取向硅钢的高温退火冷却工艺及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0463228A (ja) * 1990-07-02 1992-02-28 Nippon Steel Corp 磁性焼鈍前後の磁気特性の優れた無方向性電磁鋼板の製造方法
CN1190241A (zh) * 1996-12-09 1998-08-12 浦项综合制铁株式会社 磁性能优良的无取向电工钢板及其制造方法
JP2003096548A (ja) * 2001-09-21 2003-04-03 Sumitomo Metal Ind Ltd 無方向性電磁鋼板とその製造方法
CN102676916A (zh) * 2012-05-09 2012-09-19 首钢总公司 一种高磁感变频压缩机用无取向硅钢及其制备方法
CN104195427A (zh) * 2014-09-11 2014-12-10 江苏省沙钢钢铁研究院有限公司 一种低铁损高磁感无取向硅钢及生产方法
CN105256227A (zh) * 2015-11-27 2016-01-20 武汉钢铁(集团)公司 一种盘绕式铁芯用无取向硅钢及生产方法
JP2016222990A (ja) * 2015-06-02 2016-12-28 新日鐵住金株式会社 高炭素鋼板及びその製造方法
CN112143974A (zh) * 2020-09-27 2020-12-29 江苏省沙钢钢铁研究院有限公司 无取向硅钢的生产方法以及无取向硅钢

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100567545C (zh) * 2007-06-25 2009-12-09 宝山钢铁股份有限公司 一种高牌号无取向硅钢及其制造方法
CN101082108A (zh) * 2007-06-29 2007-12-05 武汉钢铁(集团)公司 一种用于制作海底管线的钢板及其轧制方法
CN103014503B (zh) * 2012-11-30 2014-09-17 武汉钢铁(集团)公司 无需常化的高磁感低铁损耐酸蚀无取向硅钢及生产方法
KR20140084894A (ko) * 2012-12-27 2014-07-07 주식회사 포스코 무방향성 전기강판 및 그 제조방법
CN104762551B (zh) * 2015-04-15 2017-09-01 江苏沙钢集团有限公司 一种薄带连铸高磁感无取向硅钢的制造方法
WO2017115657A1 (ja) * 2015-12-28 2017-07-06 Jfeスチール株式会社 無方向性電磁鋼板および無方向性電磁鋼板の製造方法
CN108286021B (zh) * 2018-03-27 2020-01-21 东北大学 一种高磁感无取向硅钢板的制备方法
CN108504932A (zh) * 2018-05-10 2018-09-07 东北大学 一种基于薄带连铸制备无取向硅钢极薄带的方法
CN108660294B (zh) * 2018-05-31 2019-12-10 江苏省沙钢钢铁研究院有限公司 一种硅锰镇静无取向硅钢夹杂物控制方法
CN109252101B (zh) * 2018-11-02 2020-04-28 东北大学 一种提高无取向硅钢磁性能的方法
CN111057821B (zh) * 2019-12-27 2021-06-29 首钢智新迁安电磁材料有限公司 一种无取向电工钢及其制备方法、应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0463228A (ja) * 1990-07-02 1992-02-28 Nippon Steel Corp 磁性焼鈍前後の磁気特性の優れた無方向性電磁鋼板の製造方法
CN1190241A (zh) * 1996-12-09 1998-08-12 浦项综合制铁株式会社 磁性能优良的无取向电工钢板及其制造方法
JP2003096548A (ja) * 2001-09-21 2003-04-03 Sumitomo Metal Ind Ltd 無方向性電磁鋼板とその製造方法
CN102676916A (zh) * 2012-05-09 2012-09-19 首钢总公司 一种高磁感变频压缩机用无取向硅钢及其制备方法
CN104195427A (zh) * 2014-09-11 2014-12-10 江苏省沙钢钢铁研究院有限公司 一种低铁损高磁感无取向硅钢及生产方法
JP2016222990A (ja) * 2015-06-02 2016-12-28 新日鐵住金株式会社 高炭素鋼板及びその製造方法
CN105256227A (zh) * 2015-11-27 2016-01-20 武汉钢铁(集团)公司 一种盘绕式铁芯用无取向硅钢及生产方法
CN112143974A (zh) * 2020-09-27 2020-12-29 江苏省沙钢钢铁研究院有限公司 无取向硅钢的生产方法以及无取向硅钢

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GAO, CHAO: "Influence of Micro-alloy Elements Sn, Nb, Re on Properties of Non-Oriented Silicon Steel", JOURNAL OF HEBEI UNITED UNIVERSITY (NATURAL SCIENCE EDITION, vol. 35, no. 3, 1 July 2013 (2013-07-01), pages 1 - 4, XP055914859 *
See also references of EP4206352A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114672718A (zh) * 2022-04-13 2022-06-28 张家港扬子江冷轧板有限公司 高牌号硅钢的冶炼方法
CN114672718B (zh) * 2022-04-13 2023-07-07 张家港扬子江冷轧板有限公司 高牌号硅钢的冶炼方法
CN115058637A (zh) * 2022-06-28 2022-09-16 日照钢铁控股集团有限公司 一种基于薄板坯连铸连轧超低钛钢水的生产方法
CN115652190A (zh) * 2022-09-20 2023-01-31 包头钢铁(集团)有限责任公司 一种Nb-Ti-Mo成分系L415M-RW热煨弯管用热轧钢带生产方法
CN115652190B (zh) * 2022-09-20 2023-11-28 包头钢铁(集团)有限责任公司 一种Nb-Ti-Mo成分系L415M-RW热煨弯管用热轧钢带生产方法

Also Published As

Publication number Publication date
EP4206352A1 (en) 2023-07-05
CN112143974A (zh) 2020-12-29
US20240011121A1 (en) 2024-01-11
MX2023003517A (es) 2023-04-19
EP4206352A4 (en) 2023-11-29
CN112143974B (zh) 2021-10-22
JP2023543811A (ja) 2023-10-18
KR20230056709A (ko) 2023-04-27
BR112023005470A2 (pt) 2023-05-09

Similar Documents

Publication Publication Date Title
WO2022062692A1 (zh) 无取向硅钢的生产方法以及无取向硅钢
EP4206353A1 (en) High-grade non-oriented silicon steel and production method therefor
CN109468530B (zh) 2000MPa级以上大桥缆索镀锌钢丝用热轧盘条及生产方法
JP7159311B2 (ja) 磁気特性に優れる無方向性電磁鋼板およびその製造方法
CN107326276B (zh) 一种抗拉强度500~600MPa级热轧高强轻质双相钢及其制造方法
CN115181911B (zh) 特厚Q500qE桥梁钢板及其生产方法
CA3146888A1 (en) 600mpa grade non-oriented electrical steel sheet and manufacturing method thereof
CN113789467B (zh) 一种含磷无铝高效无取向硅钢生产方法
WO2021037064A1 (zh) 一种含Cu无取向电工钢板及其制造方法
CN113755750A (zh) 一种含磷高磁感无取向硅钢的生产方法
CN110640104B (zh) 一种磁性能优良的无取向电工钢板及其制造方法
CN115261746B (zh) 特厚Q420qE桥梁钢板及其生产方法
CN115198199A (zh) 高强度无取向硅钢生产方法、高强度无取向硅钢及应用
CN110643891A (zh) 一种磁性能优良的无取向电工钢板及其制造方法
CN101463447B (zh) 一种低温板坯加热生产取向硅钢的方法
CN115058660B (zh) 一种大型水轮发电机组用低温磁轭钢及生产方法
CN115369225B (zh) 新能源驱动电机用无取向硅钢及其生产方法与应用
TWI718670B (zh) 無方向性電磁鋼板及作為其原料之板坯鑄片的製造方法
WO2022213853A1 (zh) 一种无取向电工钢板及其制造方法
CN115704073A (zh) 一种表面状态良好的无取向电工钢板及其制造方法
CN117385288A (zh) 一种中频磁性能优良的高强度无取向电工钢及其制造方法
CN116397165A (zh) 一种抗拉强度600~1100MPa的冷轧高强钢及其一钢多级生产制造方法
CN116445806A (zh) 一种磁性能优良的无取向电工钢板及其制造方法
CN111961980A (zh) 一种csp流程无常化工艺生产薄规格中高牌号无取向硅钢的方法
JPH09209082A (ja) 欠陥が少なく焼付硬化性に優れた缶用鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871069

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237008905

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18245885

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2023519304

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021871069

Country of ref document: EP

Effective date: 20230327

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023005470

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023005470

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230323