WO2022062656A1 - 潜望式摄像模组、透镜组及移动终端 - Google Patents
潜望式摄像模组、透镜组及移动终端 Download PDFInfo
- Publication number
- WO2022062656A1 WO2022062656A1 PCT/CN2021/109779 CN2021109779W WO2022062656A1 WO 2022062656 A1 WO2022062656 A1 WO 2022062656A1 CN 2021109779 W CN2021109779 W CN 2021109779W WO 2022062656 A1 WO2022062656 A1 WO 2022062656A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rectangular
- lens
- camera module
- light
- lenses
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B17/00—Details of cameras or camera bodies; Accessories therefor
- G03B17/02—Bodies
- G03B17/17—Bodies with reflectors arranged in beam forming the photographic image, e.g. for reducing dimensions of camera
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/021—Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B17/00—Details of cameras or camera bodies; Accessories therefor
- G03B17/02—Bodies
- G03B17/12—Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
- H04N23/55—Optical parts specially adapted for electronic image sensors; Mounting thereof
Definitions
- the present application belongs to the field of camera technology, and more particularly, relates to a periscope camera module, a lens group and a mobile terminal.
- a periscope camera module is often installed in the mobile terminal.
- the volume of the corresponding camera module of the mobile terminal also needs to be made smaller and smaller.
- the current lenses are made of circular lenses and circular lens barrels, while the prisms in periscope camera modules often need to be made smaller, and the reflected area is often a rectangular area, and the corresponding reflected light field is also a rectangular light field. field.
- the embodiments of the present application provide a periscope camera module, a lens group, and a mobile terminal, wherein the periscope camera module provided by the embodiments of the present application can solve the problem of the periscope camera module existing in the related art.
- the use area of the periscope lens is smaller, and the size of the circular lens is larger, which leads to the problem of a larger volume of the periscope camera module.
- an embodiment of the present application provides a periscope camera module, including a casing and an optical system disposed in the casing, the optical system having a first optical axis and a direction perpendicular to the first optical axis
- the second optical axis of the axis, the optical system includes a prism, a lens group and an image sensor, the prism has a light incident surface, a light exit surface perpendicular to the light incident surface, and a light incident surface inclined to the light incident surface and the light exit surface.
- the first optical axis is perpendicular to the light incident surface
- the second optical axis is perpendicular to the light exit surface
- the lens group and the image sensor are arranged along the second optical axis
- the image sensor is located on the side of the lens group away from the prism
- the casing is provided with a rectangular window adapted to the reflective slope
- the rectangular window is along the first optical axis
- the lens group includes a plurality of rectangular lenses adapted to the reflected light field of the reflective slope, and the plurality of rectangular lenses are arranged along the second optical axis.
- a positioning plate extends outward from the periphery of each of the rectangular lenses; among two adjacent rectangular lenses: the positioning plate on at least one of the rectangular lenses is provided with a supporting plate on the other side.
- two adjacent rectangular lenses are connected by laser welding.
- a light absorbing layer is provided on the peripheral side surface of each positioning plate and the peripheral side surface of the support frame.
- the lens group further includes a lens barrel supporting a plurality of the rectangular lenses, and the lens barrel is installed in the casing.
- the optical system further includes a focus driver that drives the lens group or the image sensor to move along the second optical axis.
- a rectangular reflection area for total reflection of light is provided on the reflection slope.
- the reflective slope has a light absorbing area, and the light absorbing area is arranged around the rectangular reflective area.
- the light absorbing region is provided with a light absorbing coating.
- the rectangular reflective area is provided with a reflective coating.
- the optical system further includes a field lens for adjusting the light entering from the rectangular window to fit the rectangular reflection area, and the field lens is disposed along the first optical axis at between the rectangular opening and the light incident surface.
- the cross-sectional area of the field lens along the perpendicular to the first optical axis is larger than the area of the rectangular opening.
- the side edges of the field lens are in the shape of an arc with a central portion protruding outward.
- the optical system further includes a rectangular lens disposed between the field lens and the prism.
- the optical system further includes a rectangular lens disposed between the rectangular opening and the light incident surface along the first optical axis.
- an embodiment of the present application provides a mobile terminal, including a body on which the periscope camera module described in any of the above embodiments is installed.
- an embodiment of the present application provides a lens group, including a plurality of lenses, the plurality of lenses are arranged along the optical axis of the lens group, and a positioning plate extends outward from the periphery of each lens;
- the positioning plate on at least one of the lenses is provided with a support frame supported on the positioning plate on the other lens.
- each of the lenses is a rectangular lens or a circular lens.
- two adjacent lenses are connected by laser welding.
- a light absorbing layer is provided on the peripheral side surface of each positioning plate and the peripheral side surface of the support frame.
- FIG. 1 is a schematic structural diagram of a first periscope camera module provided by an embodiment of the present application.
- FIG. 2 is a schematic structural diagram of a second periscope camera module provided by an embodiment of the present application.
- FIG. 3 is a schematic structural diagram of a lens group provided by an embodiment of the present application.
- FIG. 4 is a schematic structural diagram of a third periscope camera module provided by an embodiment of the present application.
- FIG. 5 is a schematic structural diagram of a fourth periscope camera module provided by an embodiment of the present application.
- FIG. 6 is a schematic structural diagram of a fifth periscope camera module provided by an embodiment of the present application.
- FIG. 7 is a schematic structural diagram of a sixth periscope camera module provided by an embodiment of the present application.
- FIG. 8 is a schematic structural diagram of a seventh periscope camera module provided by an embodiment of the present application.
- FIG. 9 is a schematic structural diagram of an eighth periscope camera module provided by an embodiment of the present application.
- FIG. 10 is a schematic structural diagram of a mobile terminal provided by an embodiment of the present application.
- 11-chassis 110-rectangular window; 111-first section; 112-second section;
- 12-optical system 121-first optical axis; 122-second optical axis; 123-prism; 1231-light incident surface; 1232-light exit surface; 1233-reflection slope; 12331-rectangular reflection area; 1234-reflective coating; 1235-light-absorbing coating; 124-lens group; 1241-rectangular lens; 1242-positioning plate; 1243-support frame; 1244-light-absorbing layer; 1245-lens barrel; 125-image sensor; Mirror; 127-rectangular lens; 128-focusing driver;
- first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature. Also, “plurality” means two or more unless expressly specifically defined otherwise. “Several” means one or more than one, unless expressly specifically defined otherwise.
- a periscope camera module is often installed in the mobile terminal.
- the volume of the corresponding camera module of the mobile terminal also needs to be made smaller and smaller.
- the current lenses are made of circular lenses and circular lens barrels, while the prisms in periscope camera modules often need to be made smaller, and the reflected area is often a rectangular area, and the corresponding reflected light field is also a rectangular light field. .
- the circular lens has a larger area outside the light field, so that the area used by the circular lens is smaller.
- the size of the corresponding circular lens needs to be larger, resulting in a larger volume of the periscope camera module.
- the periscope camera module 10 includes a casing 11 and an optical system 12 .
- the optical system 12 is installed in the casing 11 , and the optical system 12 is supported and protected by the casing 11 .
- the optical system 12 has a first optical axis 121 and a second optical axis 122 , and the second optical axis 122 is perpendicular to the first optical axis 121 .
- the optical system 12 includes a prism 123 , a lens group 124 and an image sensor 125 , wherein the image sensor 125 is used for receiving and sensing light to obtain a captured image.
- the prism 123 has a light incident surface 1231, a light exit surface 1232 and a reflection slope 1233.
- the light exit surface 1232 is perpendicular to the light entrance surface 1231.
- the reflection slope 1233 is inclined to the light entrance surface 1231 and the light exit surface 1232.
- the reflection slope 1233 injects the light entrance surface 1231 into the prism 123.
- the light reflected by the light beam is emitted through the light emitting surface 1232 , and the light incident along the first optical axis 121 is reflected by the reflective slope 1233 of the prism 123 and then emitted along the second optical axis 122 .
- the lens group 124 and the image sensor 125 are arranged along the second optical axis 122 , the casing 11 is provided with a rectangular window 110 , and the rectangular window 110 is arranged along the first optical axis 121 on the side of the prism 123 close to the object image, so that from the rectangular
- the object image light entering the prism 123 through the window 110 is reflected by the reflective slope 1233 , enters the lens group 124 for focus adjustment, and then reaches the image sensor 125 .
- the rectangular window 110 is adapted to the reflective slope 1233, so that the light field incident on the reflective slope 1233 by the rectangular window 110 matches the reflective slope 1233, so as to reduce the stray light entering the prism 123 and improve the imaging quality.
- the lens group 124 includes a plurality of rectangular lenses 1241, and the plurality of rectangular lenses 1241 are arranged along the second optical axis 122 to perform focusing and ensure imaging quality.
- the rectangular lens 1241 refers to a lens whose outer corridor is rectangular when viewed from one side. As viewed along the direction of the second optical axis 122 in the present application, the outer corridor of the rectangular lens 1241 is rectangular.
- the rectangular lens 1241 is used, and the rectangular lens 1241 is adapted to the reflected light field of the reflective slope 1233.
- the rectangular lens 1241 and the reflected light field Adaptation so that more areas on the rectangular lens 1241 can participate in the adjustment of the light, increase the ratio of the area of the rectangular lens 1241 participating in the adjustment of the light to the area of the rectangular lens 1241, and reduce the redundant area;
- the rectangular lens 1241 can be made smaller than the circular lens, and the volume of the periscope camera module 10 can be made smaller.
- the periscope camera module 10 of the present application can reduce the cost of the periscope camera module 10 by arranging the rectangular opening 110 on the casing 11 that is adapted to the prism 123 .
- the stray light entering the prism 123 from the rectangular window 110 can avoid affecting the imaging quality;
- the lens group 124 is formed by using the rectangular lens 1241, and the rectangular lens 1241 is adapted to the reflected light field of the prism 123, which can improve the effective utilization of the rectangular lens 1241 Therefore, in the case of transmitting the same reflected light field, the rectangular lens 1241 can be made smaller than the circular lens, and the volume of the periscope camera module 10 can be made smaller.
- the lens group 124 further includes a lens barrel 1245 , the lens barrel 1245 is installed in the casing 11 , a plurality of rectangular lenses 1241 are installed in the lens barrel 1245 , and the lens barrel 1245 supports a plurality of The rectangular lenses 1241 are used to facilitate the installation and fixation of the rectangular lenses 1241 , so as to facilitate the mounting of the lens group 124 in the casing 11 and facilitate assembly.
- the rectangular lens 1241 can also be directly fixed in the casing 11 .
- the reflective slope 1233 of the prism 123 is provided with a rectangular reflective area 12331, and the rectangular reflective area 12331 is used for total reflection of light, so that the light entering from the rectangular window 110 can be completely reflected out, improving the Light utilization, thereby improving image quality.
- the rectangular lenses 1241 of the lens group 124 are connected by laser welding, so that the use of the lens barrel 1245 can be reduced, and the edges of the rectangular lenses 1241 do not need to be cambered, which can reduce the The volume of the rectangular lens 1241 can further make the periscope camera module 10 smaller.
- the lens group 124 may include two, three, four, five and other rectangular lenses 1241 , which may be set according to requirements.
- a positioning plate 1242 extends outward from the periphery of each rectangular lens 1241 , and a positioning plate 1242 is provided around each rectangular lens 1241 to facilitate positioning and supporting the rectangular lens 1241 and facilitate processing and manufacturing , it is also convenient to control the installation accuracy of the rectangular lens 1241 .
- the positioning plate 1242 on at least one rectangular lens 1241 is provided with a supporting frame 1243 supported on the positioning plate 1242 on the other rectangular lens 1241, that is to say, a plurality of rectangular lenses 1241
- a supporting frame 1243 supported on the positioning plate 1242 on the other rectangular lens 1241
- the support frame 1243 is supported on the other positioning plate 1242, thereby realizing two adjacent rectangular lenses
- the assembly of 1241 is not only convenient for assembly, but also easy to control the assembly accuracy.
- the rectangular lens 1241a and the rectangular lens 1241b are arranged adjacent to each other, a positioning plate 1242a is arranged around the rectangular lens 1241a, and a positioning plate 1242b is arranged around the rectangular lens 1241b.
- a support frame 1243 is provided, and the support frame 1243 is supported on the positioning plate 1242b to support the rectangular lens 1241a on the rectangular lens 1241b, so as to realize the assembly and connection of the rectangular lens 1241a and the rectangular lens 1241b, and the assembly is convenient.
- the positioning flat plates 1242b are all flat plates, which can be easily processed and manufactured, and is also convenient to control the precision of the positioning flat plates 1242a and the positioning flat plates 1242b.
- the support frame 1243 is supported on the positioning plate 1242b, and the side of the support frame 1243 close to the positioning plate 1242b is also flat, which can facilitate the processing of the support frame 1243 and control the accuracy of the support frame 1243.
- two adjacent rectangular lenses 1241 are connected by laser welding, for example, the support frame 1243 and the adjacent positioning plate 1242 can be connected by laser welding, the connection is firm, the deformation is small, and the two adjacent rectangular lenses can be well controlled 1241 combine to form the precision of lens group 124.
- two adjacent rectangular lenses 1241 can also be fixed by adhesive.
- a light absorbing layer 1244 is provided on the peripheral side surface of each positioning plate 1242 and the peripheral side surface of the supporting frame 1243 , so that external light can be prevented from entering the lens group 124 , thereby preventing external stray light from entering the lens group 124 . to improve image quality.
- the optical system 12 further includes a field lens 126 , the field lens 126 is disposed between the rectangular opening 110 and the light incident surface 1231 along the first optical axis 121 , and the field lens 126 is used to adjust the
- the light entering the rectangular window 110 is adapted to the rectangular reflection area 12331 on the prism 123 , so that the incident light of the rectangular window 110 can be adjusted by the field lens 126 to better reduce stray light, and can also be adjusted by the field lens 126 focus to improve image quality.
- the cross-sectional area of the field lens 126 along the vertical first optical axis 121 is larger than the area of the rectangular opening 110 , that is, along the direction vertical to the first optical axis 121 , the cross-sectional area of the field lens 126 The area is larger than the area of the rectangular opening 110 , thereby ensuring that the light incident on the rectangular opening 110 can be adjusted by the field lens 126 to better reduce the interference of stray light.
- the side of the field lens 126 is in the shape of an arc with the middle part protruding outward to reduce the influence of diffraction, so as to better adjust the light incident on the rectangular window 110 , and Reduce stray light and improve image quality.
- the rectangular reflective area 12331 of the prism 123 is provided with a reflective coating 1234, so that the rectangular reflective area 12331 can better reflect light, reduce the transmission and diffusion of light, improve light utilization, and improve imaging quality .
- the reflective slope 1233 has a light absorption area 12332, and the light absorption area 12332 is arranged around the rectangular reflective area 12331, so that the light incident on the reflective slope 1233 of the prism 123, when the light is in the rectangular reflective area 12331
- the light irradiated outside the rectangular reflection area 12331 is absorbed by the light absorption area 12332, thereby reducing the stray light entering the lens group 124, avoiding the influence of stray light on the imaging quality, and improving the imaging quality.
- a light-absorbing coating 1235 is provided on the light-absorbing area 12332 on the reflective slope 1233 of the prism 123 to improve the light-absorbing ability of the light-absorbing area 12332 and better reduce stray light to improve image quality .
- the optical system 12 further includes a voice coil motor 1281 .
- the voice coil motor 1281 can be used as a focusing driver 128
- the lens group 124 is installed in the voice coil motor 1281 to be driven by the voice coil motor 1281 .
- the lens group 124 moves along the second optical axis 122 to realize automatic focusing.
- the optical system 12 further includes a voice coil motor 1282 .
- the voice coil motor 1282 can be used as a focusing driver 128
- the image sensor 125 is mounted on the voice coil motor 1282 to be driven by the voice coil motor 1282
- the image sensor 125 moves along the second optical axis 122 so as to realize automatic focusing.
- the focus driver 128 may also be an electrical actuator or the like.
- the optical system 12 further includes a rectangular lens 127 , the rectangular lens 127 is disposed between the rectangular opening 110 and the light incident surface 1231 along the first optical axis 121 , and the rectangular lens 127 is used for adjusting from The light entering the rectangular opening 110 is used for focusing, so that it can cooperate with the lens group 124 to improve the imaging quality.
- this structure can make the periscope camera module 10 smaller.
- the use of the rectangular lens 127 can better match the rectangular window 110, so as to increase the ratio of the effective use area of the rectangular lens 127 to the rectangular lens 127, so that the rectangular lens 127 can be made smaller, and the The periscope camera module 10 is made smaller in volume.
- the number of rectangular lenses 127 can be one, or two, three, four, and so on.
- the optical system 12 includes a rectangular lens 127 and a field lens 126 , and the rectangular lens 127 is located between the field lens 126 and the prism 123 , so that the field lens 126 can adjust the entry of the rectangular window 110
- the incident light is adjusted by the rectangular lens 127, and then adjusted in coordination with the lens group 124, so as to improve the imaging quality.
- the casing 11 is L-shaped, the casing 11 includes a first segment 111 arranged along the first optical axis 121 and a second segment 112 arranged along the second optical axis 122 , a prism 123 Located at the intersection of the first section 111 and the second section 112 to change the light path, the rectangular opening 110 is arranged on the first section 111, and the lens group 124 and the image sensor 125 are arranged in the second section 112.
- This structure can make the machine
- the casing 11 is better adapted to the optical system 12 to make the periscope camera module 10 smaller, and when the periscope camera module 10 is installed on the mobile terminal, the first part of the casing 11 can be installed.
- a section 111 extends into the lens opening of the mobile terminal, so as to reduce the space occupied by the periscope camera module 10 in the mobile terminal.
- the casing 11 can also be configured as a rectangular parallelepiped.
- the periscope camera module 10 of the embodiment of the present application can be applied to devices that need to use cameras, such as smart phones, tablet computers, and notebook computers.
- an embodiment of the present application further discloses a mobile terminal 100 , which includes a body 21 , and the body 21 is installed with the periscope camera module 10 described in any of the above embodiments.
- the periscope camera module 10 of the above-mentioned embodiment while ensuring the imaging quality, the periscope camera module 10 can be made smaller, occupying less space in the body 21 of the mobile terminal 100 , and then the mobile terminal 100 can be made smaller.
- the thickness of the terminal 100 is made thinner.
- an embodiment of the present application further discloses a lens group 124 .
- the lens group 124 includes a plurality of lenses, and the plurality of lenses are arranged along an optical axis of the lens group 124 .
- each lens is a rectangular lens 1241, that is, the outer corridor of the lens is rectangular.
- each lens in the lens group 124 may also be a circular lens, that is, the outer corridor of the lens is circular.
- each lens in the lens group 124 may also be a lens with a special-shaped structure such as an ellipse, that is, the outer corridor of the lens is a special-shaped lens such as an ellipse.
- each rectangular lens 1241 is used for specific description. It can be understood that, in the following embodiments, in the lens group 124, each rectangular lens 1241 can also be replaced by a lens with a special-shaped structure such as a circular lens and an elliptical lens.
- the lens group 124 may include two, three, four, five and other rectangular lenses 1241 , which may be set according to requirements.
- a positioning plate 1242 extends outward from the periphery of each rectangular lens 1241 , and a positioning plate 1242 is provided around each rectangular lens 1241 to facilitate positioning and supporting the rectangular lens 1241 and facilitate processing and manufacturing , it is also convenient to control the installation accuracy of the rectangular lens 1241 .
- the positioning plate 1242 on at least one rectangular lens 1241 is provided with a supporting frame 1243 supported on the positioning plate 1242 on the other rectangular lens 1241, that is to say, a plurality of rectangular lenses 1241
- a supporting frame 1243 supported on the positioning plate 1242 on the other rectangular lens 1241
- the support frame 1243 is supported on the other positioning plate 1242, thereby realizing two adjacent rectangular lenses
- the assembly of the 1241 is not only convenient for assembly, but also easy to control the assembly accuracy, and there is no need to set a squat position on the periphery of the rectangular lens 1241, so that the volume of the lens group 124 can be made smaller, and the camera using the lens group 124 can also be made. smaller.
- the rectangular lens 1241a and the rectangular lens 1241b are arranged adjacent to each other, a positioning plate 1242a is provided around the rectangular lens 1241a, and a positioning plate 1242b is arranged at the periphery of the rectangular lens 1241b.
- a support frame 1243 is provided, and the support frame 1243 is supported on the positioning plate 1242b to support the rectangular lens 1241a on the rectangular lens 1241b, so as to realize the assembly and connection of the rectangular lens 1241a and the rectangular lens 1241b, and the assembly is convenient, because the positioning plate 1242a and the The positioning flat plates 1242b are all flat plates, which can be easily processed and manufactured, and is also convenient to control the precision of the positioning flat plates 1242a and the positioning flat plates 1242b.
- the support frame 1243 is supported on the positioning plate 1242b, and the side of the support frame 1243 close to the positioning plate 1242b is also flat, which can facilitate the processing of the support frame 1243 and control the accuracy of the support frame 1243.
- the rectangular lenses 1241 of the lens group 124 are connected by laser welding, so that the use of the lens barrel 1245 can be reduced, and the volume of the rectangular lenses 1241 can be reduced, so that the lens group 124 can be made smaller.
- two adjacent rectangular lenses 1241 are connected by laser welding, for example, the support frame 1243 and the adjacent positioning plate 1242 can be connected by laser welding, the connection is firm, the deformation is small, and the two adjacent rectangular lenses can be well controlled 1241 combine to form the precision of lens group 124.
- two adjacent rectangular lenses 1241 can also be fixed by adhesive.
- a light absorbing layer 1244 is provided on the peripheral side surface of each positioning plate 1242 and the peripheral side surface of the supporting frame 1243 , so that external light can be prevented from entering the lens group 124 , thereby preventing external stray light from entering the lens group 124 . to improve image quality.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Microscoopes, Condenser (AREA)
- Lens Barrels (AREA)
Abstract
一种潜望式摄像模组、透镜组及移动终端,潜望式摄像模组(10)包括机壳(11)和光学系统(12),光学系统(12)具有第一光轴(121)和第二光轴(122),光学系统(12)包括棱镜(123)、透镜组(124)和图像传感器(125),棱镜(123)具有入光面(1231)、出光面(1232)和反射斜面(1233),机壳(11)上设有与反射斜面(1233)相适配的矩形开窗(110),透镜组(124)包括与反射斜面(1233)的反射光场相适配的多个矩形透镜(1241)。
Description
本申请要求于2020年9月24日提交中国专利局、申请号为202011018942.4、申请名称为“潜望式摄像模组、透镜组及移动终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请属于摄像技术领域,更具体地说,是涉及一种潜望式摄像模组、透镜组及移动终端。
为了提升平板电脑、智能手机等移动终端的摄像效果,往往会在移动终端中安装潜望式摄像模组。另外,随着移动终端制作越来越薄,相应的移动终端的摄像模组的体积也需要制作越来越小。当前的镜头中均使用圆形镜片搭配圆形镜筒制作,而潜望式摄像模组中棱镜往往需要制作较小,其反射的区域往往为矩形区域,相应的反射的光场也为矩形光场。
发明内容
本申请实施例提供一种潜望式摄像模组、透镜组及移动终端,其中,本申请实施例提供的潜望式摄像模组,可以解决相关技术中存在的潜望式摄像模组的圆形镜片利用区域较小,且圆形镜片尺寸较大,导致潜望式摄像模组体积较大的问题。
第一方面,本申请实施例提供一种潜望式摄像模组,包括机壳和设于所述机壳中的光学系统,所述光学系统具有第一光轴和垂直于所述第一光轴的第二光轴,所述光学系统包括棱镜、透镜组和图像传感器,所述棱镜具有入光面、垂直于所述入光面的出光面和倾斜于所述入光面与所述出光面设置的反射斜面,所述第一光轴垂直于所述入光面,所述第二光轴垂直于所述出光面,所述透镜组和所述图像传感器沿所述第二光轴设置,所述图像传感器位于所述透镜组远离所述棱镜的一侧,所述机壳上设有与所述反射斜面相适配的矩形开窗,所述矩形开窗沿所述第一光轴设于所述棱镜靠近物像的一侧,所述透镜组包括与所述反射斜面的反射光场相适配的多个矩形透镜,多个所述矩形透镜沿所述 第二光轴设置。
在一个可选实施例中,各所述矩形透镜的周边向外延伸有定位平板;相邻两个所述矩形透镜中:至少一个所述矩形透镜上的所述定位平板上设有支撑于另一个所述矩形透镜上的定位平板上的支撑框。
在一个可选实施例中,相邻两个所述矩形透镜激光焊接相连。
在一个可选实施例中,各所述定位平板的周侧面及所述支撑框的周侧面上均设有吸光层。
在一个可选实施例中,所述透镜组还包括支撑多个所述矩形透镜的镜筒,所述镜筒安装于所述机壳中。
在一个可选实施例中,所述光学系统还包括驱动所述透镜组或所述图像传感器沿所述第二光轴移动的调焦驱动器。
在一个可选实施例中,所述反射斜面上设有用于全反射光线的矩形反射区。
在一个可选实施例中,所述反射斜面具有吸光区,所述吸光区围绕所述矩形反射区设置。
在一个可选实施例中,所述吸光区设有吸光涂层。
在一个可选实施例中,所述矩形反射区设有反光涂层。
在一个可选实施例中,所述光学系统还包括用于调整从所述矩形开窗进入的光线适配所述矩形反射区的场镜,所述场镜沿所述第一光轴设于所述矩形开窗与所述入光面之间。
在一个可选实施例中,所述场镜沿垂直所述第一光轴的横截面面积大于所述矩形开窗的面积。
在一个可选实施例中,所述场镜的侧边呈中部向外凸出的弧形。
在一个可选实施例中,所述光学系统还包括设于所述场镜和所述棱镜之间的矩形镜片。
在一个可选实施例中,所述光学系统还包括沿所述第一光轴设于所述矩形开窗与所述入光面之间的矩形镜片。
第二方面,本申请实施例提供一种移动终端,包括机体,所述机体上安装有如上任一实施例所述的潜望式摄像模组。
第三方面,本申请实施例提供一种透镜组,包括多个透镜,多个所述透镜沿所述透镜组的光轴设置,各所述透镜的周边向外延伸有定位平板;相邻两个所述透镜中:至少一个所述透镜上的所述定位平板上设有支撑于另一个所述透镜上的定位平板上的支撑框。
在一个可选实施例中,各所述透镜为矩形透镜或圆形透镜。
在一个可选实施例中,相邻两个所述透镜激光焊接相连。
在一个可选实施例中,各所述定位平板的周侧面及所述支撑框的周侧面上均设有吸光层。
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的第一种潜望式摄像模组的结构示意图;
图2为本申请实施例提供的第二种潜望式摄像模组的结构示意图;
图3为本申请实施例提供的透镜组的结构示意图;
图4为本申请实施例提供的第三种潜望式摄像模组的结构示意图;
图5为本申请实施例提供的第四种潜望式摄像模组的结构示意图;
图6为本申请实施例提供的第五种潜望式摄像模组的结构示意图;
图7为本申请实施例提供的第六种潜望式摄像模组的结构示意图;
图8为本申请实施例提供的第七种潜望式摄像模组的结构示意图;
图9为本申请实施例提供的第八种潜望式摄像模组的结构示意图;
图10为本申请实施例提供的移动终端的结构示意图。
其中,图中各附图主要标记:
100-移动终端;
10-潜望式摄像模组;
11-机壳;110-矩形开窗;111-第一段;112-第二段;
12-光学系统;121-第一光轴;122-第二光轴;123-棱镜;1231-入光面; 1232-出光面;1233-反射斜面;12331-矩形反射区;12332-吸光区;1234-反光涂层;1235-吸光涂层;124-透镜组;1241-矩形透镜;1242-定位平板;1243-支撑框;1244-吸光层;1245-镜筒;125-图像传感器;126-场镜;127-矩形镜片;128-调焦驱动器;
21-机体。
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在本申请的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。另外,“多个”的含义是两个或两个以上,除非另有明确具体的限定。“若干”的含义是一个或一个以上,除非另有明确具体的限定。
在本申请说明书中描述的参考“一个实施例”、“一些实施例”或“实施例”意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。此外,在一个或多个实施例中,可以以任何合适的方式组合特定的特征、结构或特性。
为了提升平板电脑、智能手机等移动终端的摄像效果,往往会在移动终端中安装潜望式摄像模组。另外,随着移动终端制作越来越薄,相应的移动终端的摄像模组的体积也需要制作越来越小。当前的镜头中均使用圆形镜片搭配圆形镜筒制作,而潜望式摄像模组中棱镜往往需要制作较小,其反射的区域往往为矩形区域,相应的反射的光场也矩形光场。当棱镜反射的光场经过圆形镜片组时,往往仅利用各圆形镜片中间的部分区域,则圆形镜片于光场之外存在较大的区域,使得圆形镜片利用的区域较小,而且相应圆形镜片尺寸需要制作较大,导致潜望式摄像模组体积较大。
请参阅图1,现对本申请提供的潜望式摄像模组10进行说明。所述潜望式摄像模组10,包括机壳11和光学系统12,光学系统12安装在机壳11中,通过机壳11来支撑与保护光学系统12。光学系统12具有第一光轴121和第二光轴122,第二光轴122垂直于第一光轴121。光学系统12包括棱镜123、透镜组124和图像传感器125,其中图像传感器125用于接收并感应光线,进而得到拍摄图像。棱镜123具有入光面1231、出光面1232和反射斜面1233,出光面1232垂直于入光面1231,反射斜面1233倾斜于入光面1231和出光面1232,反射斜面1233将入光面1231射入的光线反射,经出光面1232射出,则沿第一光轴121射入的光线,经棱镜123的反射斜面1233反射后,沿第二光轴122射出。透镜组124和图像传感器125沿第二光轴122设置,机壳11上设有矩形开窗110,矩形开窗110沿第一光轴121设于棱镜123靠近物像的一侧,这样从矩形开窗110进入到棱镜123的物像光线,经反射斜面1233反射后,进入透镜组124对焦调整后,到达图像传感器125。矩形开窗110与反射斜面1233相适配,以使矩形开窗110射入到反射斜面1233的光场与反射斜面1233相匹配,以减少进入棱镜123的杂光,以提升成像质量。透镜组124包括多个矩形透镜1241,多个矩形透镜1241沿第二光轴122设置,以进行调焦,保证成像质量。矩形透镜1241指从一面看,外廊呈矩形的透镜,如本申请中沿第二光轴122的方向看,矩形透镜1241的外廊呈矩形。使用矩形透镜1241,并使矩形透镜1241与反射斜面1233的反射光场相适配,由于棱镜123的反射斜面1233反射的光场(即反射光场)呈矩形,而矩形透镜1241与反射光场适配,这样可以使矩形透镜1241上的更多区域参与光线的调节,提升矩形透镜1241上参与光线调节区域的面积占该矩形透镜1241面积的比例,减小冗余面积;则在透射相同的反射光场的情况下,相比于圆形镜片可以将矩形透镜1241制作更小,进而可以将该潜望式摄像模组10体积制作更小。
本申请提供的潜望式摄像模组10,与现有技术相比,本申请潜望式摄像模组10,通过在机壳11上设置与棱镜123相适配的矩形开窗110,可以减少从矩形开窗110进入棱镜123的杂光,以避免影响成像质量;使用矩形透镜1241形成透镜组124,将矩形透镜1241与棱镜123的反射光场相适配,可以提升矩形透镜1241的有效利用面积,从而在透射相同的反射光场的情况下,相比于圆形镜片可以将矩形透镜1241制作更小,进而可以将该潜望式摄像模 组10体积制作更小。
在一个实施例中,请参阅图1,透镜组124还包括镜筒1245,镜筒1245安装于机壳11中,多个矩形透镜1241安装在镜筒1245中,通过镜筒1245来支撑多个矩形透镜1241,以方便安装固定各矩形透镜1241,进而方便将透镜组124安装在机壳11中,便于组装。当然,在一些实施例中,也可以将矩形透镜1241直接固定在机壳11中。
在一个实施例中,请参阅图1,棱镜123的反射斜面1233上设有矩形反射区12331,矩形反射区12331用于全反射光线,以便从矩形开窗110进入的光线可以完全反射出,提升光线利用率,进而提升成像质量。
在一个实施例中,请参阅图2,透镜组124的各矩形透镜1241采用激光焊接相连,这样可以减少镜筒1245的使用,并且各矩形透镜1241的边缘无需制作坎合位,进而可以减小矩形透镜1241的体积,进而可以将该潜望式摄像模组10制作更小。
在一个实施例中,请参阅图3,透镜组124可以包括两个、三个、四个、五个等数量的矩形透镜1241,具体可以根据需求进行设置。
在一个实施例中,请参阅图3,各矩形透镜1241的周边向外延伸有定位平板1242,在各矩形透镜1241的周边设置定位平板1242,以方便定位支撑该矩形透镜1241,并且方便加工制作,也方便控制矩形透镜1241的安装精度。相邻两个矩形透镜1241中:至少一个矩形透镜1241上的定位平板1242上设有支撑于另一个矩形透镜1241上的定位平板1242上的支撑框1243,也就说,将多个矩形透镜1241组合形成透镜组124时,相邻两个定位平板1242中的至少一个定位平板1242上设有支撑框1243,而该支撑框1243支撑在另一个定位平板1242上,进而实现相邻两个矩形透镜1241的组装,既方便组装,又便于控制组装精度。
请参阅图3,以两个矩形透镜1241为例:矩形透镜1241a和矩形透镜1241b邻近设置,矩形透镜1241a的周边设有定位平板1242a,矩形透镜1241b的周边设有定位平板1242b,定位平板1242a上设有支撑框1243,将支撑框1243支撑在定位平板1242b上,以将矩形透镜1241a支撑在矩形透镜1241b上,以实现矩形透镜1241a与矩形透镜1241b的组装连接,组装方便,由于定位平板1242a和定位平板1242b均为平板,可以方便加工制作,也便于控制定位平板 1242a和定位平板1242b的精度。另外,而支撑框1243是支撑在定位平板1242b上,支撑框1243靠近定位平板1242b的一面也为平面,可以方便加工支撑框1243,也便于控制支撑框1243的精度。
在一个实施例中,相邻两个矩形透镜1241激光焊接相连,如可以将支撑框1243与邻近的定位平板1242采用激光焊接相连,连接牢固,变形小,可以良好的控制相邻两个矩形透镜1241组合形成透镜组124的精度。当然,在一些实施例中,相邻两个矩形透镜1241也可以粘接固定。
在一个实施例中,请参阅图3,各定位平板1242的周侧面及支撑框1243的周侧面上均设有吸光层1244,从而可以避免外部光线进入透镜组124,进而可以避免外部杂光的影响,以提升成像质量。
在一个实施例中,请参阅图4,光学系统12还包括场镜126,场镜126沿第一光轴121设于矩形开窗110与入光面1231之间,场镜126用于调整从矩形开窗110进入的光线,以适配棱镜123上的矩形反射区12331,从而通过场镜126调节矩形开窗110的入射光线,以更好的减少杂光,并且也可以通过场镜126调焦,以提升成像质量。
在一个实施例中,请参阅图4,场镜126沿垂直第一光轴121的横截面面积大于矩形开窗110的面积,既沿垂直第一光轴121的方向,场镜126的横截面面积大于矩形开窗110的面积,从而保证矩形开窗110入射的光线,均可以被场镜126调节,以更好的减少杂光干扰。
在一个实施例中,请参阅图4,场镜126的侧边呈中部向外凸出的弧形,以减小衍射影响,以更好的对矩形开窗110入射的光线,进行调节,并减少杂光,提升成像质量。
在一个实施例中,请参阅图4,棱镜123的矩形反射区12331设有反光涂层1234,以便矩形反射区12331更好的反射光线,减少光线的透射扩散,提升光线利用率,提升成像质量。
在一个实施例中,请参阅图5,反射斜面1233具有吸光区12332,吸光区12332围绕矩形反射区12331设置,从而射入到棱镜123的反射斜面1233上的光线,当光线处于矩形反射区12331时,被矩形反射区12331反射,而照射到矩形反射区12331之外的光线,被吸光区12332吸收,以进而减少杂光进入透镜组124,以避免杂光对成像质量的影响,进而提升成像质量。
在一个实施例中,请参阅图5,棱镜123的反射斜面1233上的吸光区12332上设有吸光涂层1235,以提升吸光区12332的吸光能力,更好的减少杂光,以提升成像质量。
在一个实施例中,请参阅图6,光学系统12还包括音圈马达1281,音圈马达1281可以作为调焦驱动器128,透镜组124安装在音圈马达1281中,以通过音圈马达1281带动透镜组124沿第二光轴122移动,进而实现自动对焦。
在一个实施例中,请参阅图7,光学系统12还包括音圈电机1282,音圈电机1282可以作为调焦驱动器128,图像传感器125安装在音圈电机1282上,以通过音圈电机1282带动图像传感器125沿第二光轴122移动,进而实现自动对焦。
在一些实施例中,调焦驱动器128也可以为电致动器等。
在一个实施例中,请参阅图8,光学系统12还包括矩形镜片127,矩形镜片127沿第一光轴121设于矩形开窗110与入光面1231之间,矩形镜片127用于调整从矩形开窗110进入的光线,以进行对焦,从而可以与透镜组124配合,以提升成像质量。另外,该结构可以将潜望式摄像模组10制作更小。并且使用矩形镜片127,可以更好的与矩形开窗110适配,以提升矩形镜片127的有效利用区域所占该矩形镜片127的比例,从而可以将矩形镜片127制作更小,进而可以将该潜望式摄像模组10体积制作更小。
在一个实施例中,矩形镜片127可以为一个,也可以为两个、三个、四个等数量。
在一个实施例中,请参阅图9,光学系统12包括矩形镜片127和场镜126,矩形镜片127位于场镜126和棱镜123之间,从而可以通过场镜126来调节矩形开窗110进入的入射光线,及通过矩形镜片127调焦,再与透镜组124配合调节,以提升成像质量。
在一个实施例中,请参阅图9,机壳11呈L型,机壳11包括沿第一光轴121设置的第一段111和沿第二光轴122设置的第二段112,棱镜123位于第一段111与第二段112的相交处,以改变光路,矩形开窗110设于第一段111上,透镜组124和图像传感器125设于第二段112中,该结构可以使机壳11更好的适配光学系统12,以将该潜望式摄像模组10制作更小,并且在将该潜望式摄像模组10安装在移动终端上时,可以将机壳11的第一段111伸入至移 动终端的镜头开口处,以减小潜望式摄像模组10占用移动终端中的空间。在其他一些实施例中,机壳11也可以设置呈长方体。
本申请实施例的潜望式摄像模组10可以应用在智能手机、平板电脑、笔记本电脑等需要应用摄像头的设备中。
请参阅图10,本申请实施例还公开了一种移动终端100,包括机体21,机体21中安装有如上任一实施例所述的潜望式摄像模组10。通过使用上述实施例的潜望式摄像模组10,在保证成像质量的同时,可以将潜望式摄像模组10制作更小,占用移动终端100的机体21中空间更小,进而可以将移动终端100厚度制作更薄。
请参阅图3,本申请实施例还公开了一种透镜组124,该透镜组124包括多个透镜,并且多个透镜沿该透镜组124的光轴设置。本实施例中,各透镜为矩形透镜1241,即该透镜的外廊呈矩形。在另一些实施例中,透镜组124中各透镜也可以为圆形透镜,即该透镜的外廊呈圆形。当然,还有一些实施例中,透镜组124中各透镜也可以为椭圆形等异形结构透镜,即该透镜的外廊呈椭圆形等异形。以下实施例中通过矩形透镜1241进行具体说明。可以理解地,以下实施例中,在该透镜组124中,各矩形透镜1241也可以使用圆形透镜、椭圆形透镜等异形结构透镜来代替。
在一个实施例中,请参阅图3,透镜组124可以包括两个、三个、四个、五个等数量的矩形透镜1241,具体可以根据需求进行设置。
在一个实施例中,请参阅图3,各矩形透镜1241的周边向外延伸有定位平板1242,在各矩形透镜1241的周边设置定位平板1242,以方便定位支撑该矩形透镜1241,并且方便加工制作,也方便控制矩形透镜1241的安装精度。相邻两个矩形透镜1241中:至少一个矩形透镜1241上的定位平板1242上设有支撑于另一个矩形透镜1241上的定位平板1242上的支撑框1243,也就说,将多个矩形透镜1241组合形成透镜组124时,相邻两个定位平板1242中的至少一个定位平板1242上设有支撑框1243,而该支撑框1243支撑在另一个定位平板1242上,进而实现相邻两个矩形透镜1241的组装,既方便组装,又便于控制组装精度,并且无需在矩形透镜1241的周边设置坎合位,从而可以将透镜组124的体积制作更小,进而应用该透镜组124的摄像头也可以制作更小。
请参阅图3,以两个矩形透镜1241为例:矩形透镜1241a和矩形透镜1241b 邻近设置,矩形透镜1241a的周边设有定位平板1242a,矩形透镜1241b的周边设有定位平板1242b,定位平板1242a上设有支撑框1243,将支撑框1243支撑在定位平板1242b上,以将矩形透镜1241a支撑在矩形透镜1241b上,以实现矩形透镜1241a与矩形透镜1241b的组装连接,组装方便,由于定位平板1242a和定位平板1242b均为平板,可以方便加工制作,也便于控制定位平板1242a和定位平板1242b的精度。另外,而支撑框1243是支撑在定位平板1242b上,支撑框1243靠近定位平板1242b的一面也为平面,可以方便加工支撑框1243,也便于控制支撑框1243的精度。
在一个实施例中,透镜组124的各矩形透镜1241采用激光焊接相连,这样可以减少镜筒1245的使用,并可以减小矩形透镜1241的体积,进而可以将该透镜组124制作更小。
在一个实施例中,相邻两个矩形透镜1241激光焊接相连,如可以将支撑框1243与邻近的定位平板1242采用激光焊接相连,连接牢固,变形小,可以良好的控制相邻两个矩形透镜1241组合形成透镜组124的精度。当然,在一些实施例中,相邻两个矩形透镜1241也可以粘接固定。
在一个实施例中,请参阅图3,各定位平板1242的周侧面及支撑框1243的周侧面上均设有吸光层1244,从而可以避免外部光线进入透镜组124,进而可以避免外部杂光的影响,以提升成像质量。
以上所述仅为本申请的可选实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。
Claims (20)
- 潜望式摄像模组,包括机壳和设于所述机壳中的光学系统,所述光学系统具有第一光轴和垂直于所述第一光轴的第二光轴,所述光学系统包括棱镜、透镜组和图像传感器,所述棱镜具有入光面、垂直于所述入光面的出光面和倾斜于所述入光面与所述出光面设置的反射斜面,所述第一光轴垂直于所述入光面,所述第二光轴垂直于所述出光面,所述透镜组和所述图像传感器沿所述第二光轴设置,所述图像传感器位于所述透镜组远离所述棱镜的一侧,其中,所述机壳上设有与所述反射斜面相适配的矩形开窗,所述矩形开窗沿所述第一光轴设于所述棱镜靠近物像的一侧,所述透镜组包括与所述反射斜面的反射光场相适配的多个矩形透镜,多个所述矩形透镜沿所述第二光轴设置。
- 如权利要求1所述的潜望式摄像模组,其中,各所述矩形透镜的周边向外延伸有定位平板;相邻两个所述矩形透镜中:至少一个所述矩形透镜上的所述定位平板上设有支撑于另一个所述矩形透镜上的定位平板上的支撑框。
- 如权利要求2所述的潜望式摄像模组,其中,相邻两个所述矩形透镜激光焊接相连。
- 如权利要求2所述的潜望式摄像模组,其中,各所述定位平板的周侧面及所述支撑框的周侧面上均设有吸光层。
- 如权利要求1-4任一项所述的潜望式摄像模组,其中,所述透镜组还包括支撑多个所述矩形透镜的镜筒,所述镜筒安装于所述机壳中。
- 如权利要求1-4任一项所述的潜望式摄像模组,其中,所述光学系统还包括驱动所述透镜组或所述图像传感器沿所述第二光轴移动的调焦驱动器。
- 如权利要求1-4任一项所述的潜望式摄像模组,其中,所述反射斜面上设有用于全反射光线的矩形反射区。
- 如权利要求7所述的潜望式摄像模组,其中,所述反射斜面具有吸光区,所述吸光区围绕所述矩形反射区设置。
- 如权利要求8所述的潜望式摄像模组,其中,所述吸光区设有吸光涂层。
- 如权利要求7所述的潜望式摄像模组,其中,所述矩形反射区设有反光涂层。
- 如权利要求7所述的潜望式摄像模组,其中,所述光学系统还包括用于调整从所述矩形开窗进入的光线适配所述矩形反射区的场镜,所述场镜沿所述第一光轴设于所述矩形开窗与所述入光面之间。
- 如权利要求11所述的潜望式摄像模组,其中,所述场镜沿垂直所述第一光轴的横截面面积大于所述矩形开窗的面积。
- 如权利要求11所述的潜望式摄像模组,其中,所述场镜的侧边呈中部向外凸出的弧形。
- 如权利要求11所述的潜望式摄像模组,其中,所述光学系统还包括设于所述场镜和所述棱镜之间的矩形镜片。
- 如权利要求1-4任一项所述的潜望式摄像模组,其中,所述光学系统还包括沿所述第一光轴设于所述矩形开窗与所述入光面之间的矩形镜片。
- 移动终端,机体,其中,所述机体中安装有如权利要求1-15任一项所述的潜望式摄像模组。
- 透镜组,包括多个透镜,多个所述透镜沿所述透镜组的光轴设置,其中,各所述透镜的周边向外延伸有定位平板;相邻两个所述透镜中:至少一个所述透镜上的所述定位平板上设有支撑于另一个所述透镜上的定位平板上的支撑框。
- 如权利要求17所述的透镜组,其中,各所述透镜为矩形透镜或圆形透镜。
- 如权利要求17所述的透镜组,其中,相邻两个所述透镜激光焊接相连。
- 如权利要求17所述的透镜组,其中,各所述定位平板的周侧面及所述支撑框的周侧面上均设有吸光层。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011018942.4 | 2020-09-24 | ||
CN202011018942.4A CN112099291A (zh) | 2020-09-24 | 2020-09-24 | 潜望式摄像模组、透镜组及移动终端 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022062656A1 true WO2022062656A1 (zh) | 2022-03-31 |
Family
ID=73756125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/109779 WO2022062656A1 (zh) | 2020-09-24 | 2021-07-30 | 潜望式摄像模组、透镜组及移动终端 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112099291A (zh) |
WO (1) | WO2022062656A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112099291A (zh) * | 2020-09-24 | 2020-12-18 | Oppo(重庆)智能科技有限公司 | 潜望式摄像模组、透镜组及移动终端 |
US20220326480A1 (en) * | 2021-04-06 | 2022-10-13 | Samsung Electro-Mechanics Co., Ltd. | Optical imaging system |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060092524A1 (en) * | 2004-10-29 | 2006-05-04 | Konica Minolta Opto, Inc. | Zoom optical system, imaging lens device, and digital apparatus |
CN101551498A (zh) * | 2008-04-02 | 2009-10-07 | 鸿富锦精密工业(深圳)有限公司 | 镜片组及镜头模组 |
JP2012098506A (ja) * | 2010-11-02 | 2012-05-24 | Seiko Epson Corp | プロジェクター |
CN104635404A (zh) * | 2015-01-22 | 2015-05-20 | 广东欧珀移动通信有限公司 | 光学变焦摄像模组及具有所述光学变焦摄像模组的移动终端 |
CN105319663A (zh) * | 2014-10-29 | 2016-02-10 | 新思考电机有限公司 | 透镜驱动装置、摄像头装置和电子设备 |
CN108449540A (zh) * | 2018-06-15 | 2018-08-24 | Oppo广东移动通信有限公司 | 摄像头模组、摄像头组件和电子装置 |
CN110062071A (zh) * | 2019-04-09 | 2019-07-26 | Oppo广东移动通信有限公司 | 潜望式镜头、成像模组、摄像头组件及电子装置 |
CN210090783U (zh) * | 2018-12-29 | 2020-02-18 | 瑞声科技(新加坡)有限公司 | 镜头模组及电子设备 |
CN112099291A (zh) * | 2020-09-24 | 2020-12-18 | Oppo(重庆)智能科技有限公司 | 潜望式摄像模组、透镜组及移动终端 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201854350U (zh) * | 2009-10-23 | 2011-06-01 | 东莞光阵显示器制品有限公司 | 一种满足小尺寸大视角成像的新型摄像装置 |
CN102135706A (zh) * | 2010-01-21 | 2011-07-27 | 佳能企业股份有限公司 | 摄影与投影装置 |
CN102277520B (zh) * | 2010-06-08 | 2012-12-19 | 西安康博新材料科技有限公司 | 铝基材料反射镜及其制备方法 |
CN102279453A (zh) * | 2010-06-11 | 2011-12-14 | 鸿富锦精密工业(深圳)有限公司 | 镜头模组及相机装置 |
KR101228636B1 (ko) * | 2011-01-18 | 2013-01-31 | 삼성전기주식회사 | 렌즈 모듈 및 이의 제조방법 |
CN107517285A (zh) * | 2016-06-17 | 2017-12-26 | 宁波舜宇光电信息有限公司 | 分体式潜望模组及其组装方法和应用 |
CN107302653A (zh) * | 2017-08-23 | 2017-10-27 | 信利光电股份有限公司 | 一种手机及镜头 |
CN207473267U (zh) * | 2017-11-16 | 2018-06-08 | 北京松果电子有限公司 | 潜望式镜头及电子设备 |
CN207799205U (zh) * | 2017-12-27 | 2018-08-31 | 南昌欧菲光电技术有限公司 | 摄像模组及其镜头 |
CN208386734U (zh) * | 2018-06-14 | 2019-01-15 | Oppo广东移动通信有限公司 | 摄像头模组和电子装置 |
CN108989641A (zh) * | 2018-08-03 | 2018-12-11 | Oppo广东移动通信有限公司 | 成像模组和电子装置 |
CN111385544A (zh) * | 2018-12-27 | 2020-07-07 | 青岛海信激光显示股份有限公司 | 一种光学引擎及投影设备 |
CN211429404U (zh) * | 2020-03-19 | 2020-09-04 | 青岛鳍源创新科技有限公司 | 一种相机及水下机器人 |
-
2020
- 2020-09-24 CN CN202011018942.4A patent/CN112099291A/zh active Pending
-
2021
- 2021-07-30 WO PCT/CN2021/109779 patent/WO2022062656A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060092524A1 (en) * | 2004-10-29 | 2006-05-04 | Konica Minolta Opto, Inc. | Zoom optical system, imaging lens device, and digital apparatus |
CN101551498A (zh) * | 2008-04-02 | 2009-10-07 | 鸿富锦精密工业(深圳)有限公司 | 镜片组及镜头模组 |
JP2012098506A (ja) * | 2010-11-02 | 2012-05-24 | Seiko Epson Corp | プロジェクター |
CN105319663A (zh) * | 2014-10-29 | 2016-02-10 | 新思考电机有限公司 | 透镜驱动装置、摄像头装置和电子设备 |
CN104635404A (zh) * | 2015-01-22 | 2015-05-20 | 广东欧珀移动通信有限公司 | 光学变焦摄像模组及具有所述光学变焦摄像模组的移动终端 |
CN108449540A (zh) * | 2018-06-15 | 2018-08-24 | Oppo广东移动通信有限公司 | 摄像头模组、摄像头组件和电子装置 |
CN210090783U (zh) * | 2018-12-29 | 2020-02-18 | 瑞声科技(新加坡)有限公司 | 镜头模组及电子设备 |
CN110062071A (zh) * | 2019-04-09 | 2019-07-26 | Oppo广东移动通信有限公司 | 潜望式镜头、成像模组、摄像头组件及电子装置 |
CN112099291A (zh) * | 2020-09-24 | 2020-12-18 | Oppo(重庆)智能科技有限公司 | 潜望式摄像模组、透镜组及移动终端 |
Also Published As
Publication number | Publication date |
---|---|
CN112099291A (zh) | 2020-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5579555B2 (ja) | 撮影光学系、及び撮影装置 | |
WO2022062656A1 (zh) | 潜望式摄像模组、透镜组及移动终端 | |
KR100702736B1 (ko) | 투사 디스플레이용 광학 시스템 | |
US12032144B2 (en) | Internal-reflective telecentric lens system | |
US10133043B1 (en) | Compact telephoto lens camera suitable for use in smart phones and similar devices, and methods of using same | |
US20230384557A1 (en) | Camera module and electronic device | |
CN115327743A (zh) | 一种光学成像系统、摄像模组及电子设备 | |
WO2021213218A1 (zh) | 潜望式摄像模组、多摄摄像模组和电子设备 | |
JP2021012367A (ja) | レンズモジュール | |
US20200249379A1 (en) | Lens | |
JP2024504436A (ja) | カメラモジュール及び電子機器 | |
JP2020027288A (ja) | レンズモジュール | |
US11187961B2 (en) | Liquid crystal lens and imaging device using the same | |
WO2024104120A1 (zh) | 摄像头模组及电子设备 | |
CN211236427U (zh) | 一种折叠式手机镜头及电子产品 | |
CN115623306A (zh) | 摄像模组及镜头组件 | |
WO2022016422A1 (zh) | 长焦模组、双摄模组及电子设备 | |
CN111885292A (zh) | 摄像机构及电子设备 | |
KR101268983B1 (ko) | 경통 모듈 | |
US20230176340A1 (en) | Camera module and terminal device | |
CN118244483B (zh) | 光学系统、摄像模组以及电子设备 | |
US20240176402A1 (en) | Electronic apparatus and exterior member | |
CN210469509U (zh) | 一种具有长焦模式的摄像模组及电子设备 | |
WO2024109683A1 (zh) | 一种摄像模组 | |
CN116224538A (zh) | 摄像模组 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21871034 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21871034 Country of ref document: EP Kind code of ref document: A1 |