WO2024109683A1 - 一种摄像模组 - Google Patents

一种摄像模组 Download PDF

Info

Publication number
WO2024109683A1
WO2024109683A1 PCT/CN2023/132585 CN2023132585W WO2024109683A1 WO 2024109683 A1 WO2024109683 A1 WO 2024109683A1 CN 2023132585 W CN2023132585 W CN 2023132585W WO 2024109683 A1 WO2024109683 A1 WO 2024109683A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
prism
deflection element
camera module
lens
Prior art date
Application number
PCT/CN2023/132585
Other languages
English (en)
French (fr)
Inventor
王明珠
姚立锋
周凯伦
郭美杉
袁栋立
戎琦
田中武彦
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Publication of WO2024109683A1 publication Critical patent/WO2024109683A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/17Bodies with reflectors arranged in beam forming the photographic image, e.g. for reducing dimensions of camera
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles

Definitions

  • the present application relates to the technical field of camera modules, and in particular to a telephoto camera module.
  • Telephoto camera modules usually have a longer focal length and can obtain clear images of subjects at a longer distance.
  • small mobile devices such as mobile phones and tablets have a small space, and the size of telephoto camera modules is designed to be too large to be assembled into small mobile devices.
  • One purpose of the present application is to provide a camera module that overcomes the shortcomings of the prior art and is capable of folding the optical path of the camera module to miniaturize the camera module.
  • a camera module including:
  • a camera module characterized by comprising:
  • optical lens wherein the optical lens comprises at least one optical lens
  • a light deflection element wherein the light deflection element comprises a plurality of reflective surfaces, and the light incident from the optical lens is reflected multiple times on the plurality of reflective surfaces of the light deflection element;
  • a photosensitive component wherein the light is emitted from the light deflection element and reaches the photosensitive component, wherein the optical lens and the photosensitive component are arranged on the same side of the light deflection element.
  • the light deflecting element comprises a trapezoidal prism
  • the light deflecting element comprises at least four surfaces
  • the light is reflected on four of the surfaces of the light deflecting element.
  • the four surfaces where reflection occurs include a first surface, a second surface, a third surface, and a fourth surface, the plane where the first surface is located is parallel to the plane where the third surface is located, and the length of the third surface is less than The length of the first surface, the plane where the second surface is located intersects with the plane where the fourth surface is located.
  • the light turning element is an isosceles trapezoidal prism
  • the length of the second surface is equal to the length of the fourth surface
  • the angle between the second surface and the first surface is equal to the angle between the fourth surface and the first surface
  • the angle between the second surface and the third surface is equal to the angle between the fourth surface and the third surface.
  • the first surface includes a light entrance area, a light exit area, and a reflection area disposed between the light entrance area and the light exit area, and light passes through the light entrance area of the first surface into the light turning element; at least some of the light passing through the light entrance area of the first surface is reflected at the second surface; at least some of the light reflected from the second surface is reflected at the reflection area of the first surface; at least some of the light reflected from the reflection area of the first surface is reflected at the third surface; at least some of the light reflected from the third surface is reflected at the light exit area of the first surface; and at least some of the light reflected from the light exit area of the first surface is reflected at the fourth surface, so that the light passes through the light exit area of the first surface to reach the photosensitive component.
  • the light deflecting element further includes a shading film, which is disposed inside the light deflecting element and/or on the surface of the light deflecting element, and the shading film includes a first shading film and a second shading film, and the first shading film and the second shading film are relatively disposed inside the light deflecting element.
  • the first light shielding film and the second light shielding film are in a "U"-shaped structure with an opening, and the opening of the first light shielding film is in the same direction as or opposite to the opening of the second light shielding film.
  • the light deflecting element includes four vertical cuts and two transverse cuts, and material is coated on one or more inner surfaces of the four vertical cuts and the two transverse cuts of the light deflecting element to generate the first light-shielding film and the second light-shielding film.
  • the light deflection element includes a first prism, a second prism and a third prism
  • the first prism is a right-angled trapezoidal prism
  • the second prism is a rectangular prism
  • the third prism is a right-angled trapezoidal prism
  • the second prism is arranged between the first prism and the third prism
  • the first prism, the second prism and the third prism are joined together to form the light deflection element.
  • the light deflection element includes a shading film
  • the shading film includes a first shading film and a second shading film.
  • the first shading film and the second shading film are arranged on the surface where the second prism is joined to the first prism and the third prism.
  • FIG1 is a schematic diagram of the three-dimensional structure of a camera module according to an embodiment of the present application.
  • FIG. 2 is an exploded schematic diagram of a camera module according to an embodiment of the present application.
  • FIG3 is a cross-sectional schematic diagram of a camera module according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an optical system of a camera module according to an embodiment of the present application.
  • FIG. 5A is a perspective schematic diagram of one example of a light turning element according to an embodiment of the present application.
  • FIG. 5B is a schematic cross-sectional view of one example of a light turning element according to an embodiment of the present application.
  • FIG. 5C is a schematic three-dimensional diagram of another example of a light deflection element according to an embodiment of the present application.
  • FIG. 6A is a schematic three-dimensional view of an example of a split prism according to an embodiment of the present application.
  • FIG. 6B is a schematic three-dimensional diagram of another example of a split prism according to an embodiment of the present application.
  • FIG. 7A is a schematic structural diagram of one embodiment of a camera module with a driving device according to an embodiment of the present application.
  • FIG7B is a schematic structural diagram of another embodiment of a camera module with a driving device according to an implementation manner of the present application.
  • FIG. 8 is a schematic structural diagram of a chip driving component according to an embodiment of the present application.
  • the terms “set”, “install”, “connect”, and “connect” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, a contact connection, or an indirect connection through an intermediate medium, and it can be the internal connection of two elements.
  • the specific meanings of the above terms in this application can be understood according to specific circumstances.
  • Configured to various units, circuits, or other components may be described or recited as “configured to” perform one or more tasks.
  • “configured to” is used to imply a structure (e.g., circuitry) by indicating that the unit/circuit/component includes the structure that performs the one or more tasks during operation.
  • “configured to” may include general structures (e.g., general circuitry) manipulated by software and/or firmware to operate in a manner that is capable of performing the one or more tasks to be solved.
  • Configured to may also include adjusting a manufacturing process (e.g., a semiconductor fabrication facility) to manufacture a device (e.g., an integrated circuit) suitable for implementing or performing one or more tasks.
  • the term “if” may be interpreted to mean “when” or “upon” or “in response to determining” or “in response to detecting,” depending on the context.
  • the phrase “if it is determined that” or “if” “upon detecting [stated condition or event]” may be interpreted to mean “upon determining that...” or “in response to determining that...” or “upon detecting [stated condition or event]” or “in response to detecting [stated condition or event]”.
  • a telephoto camera module refers to a camera module with a long focal length (e.g., 60 mm or longer), which can clearly capture a subject at a long distance.
  • the telephoto camera module requires a long total optical lens length (TTL), which makes the size of the telephoto camera module relatively large, making it unsuitable for assembly in a small mobile device.
  • TTL total optical lens length
  • the present application provides a solution to the above problem, miniaturizing the camera module so that the camera module is suitable for being installed in a small mobile device.
  • FIG. 1 to FIG. 8 show a camera module 1 according to some embodiments of the present application, wherein the camera module 1 includes an optical lens 10, a light deflection element 30, and a photosensitive component 40.
  • the light deflection element 30 is disposed between the optical lens 10 and the photosensitive component 40, so that the light incident from the optical lens 10 reaches the photosensitive component 40 after multiple reflections in the light deflection element 30, and the light deflection element 30 folds the light emitted from the optical lens 10 and guides it to the photosensitive component 40, thereby imaging through the photosensitive component 40 to obtain image information.
  • the light deflection element 30 is in the shape of a long strip, so that the light can be reflected multiple times in the light deflection element 30, thereby folding the light path multiple times.
  • the photosensitive component 40 and the optical lens 10 are arranged on the same side of the light deflection element 30, so that the height dimension of the camera module 1 only needs to consider the sum of the height dimension of one of the photosensitive component 40 and the optical lens 10 and the height dimension of the light deflection element 30, without having to simultaneously superimpose the heights of the optical lens 10, the light deflection element 30 and the photosensitive component 40, so that the height dimension of the camera module 1 can be reduced.
  • the optical lens 10 and the light deflection element 30 form an "L"-shaped structure
  • the photosensitive component 40 is arranged in the corner space formed by the optical lens 10 and the light deflection element 30, the height dimension of the optical lens 10 is greater than the height dimension of the photosensitive component 40, and the top surface of the optical lens 10 is higher than the top surface of the photosensitive component 40, so that the photosensitive component 40 does not affect the height of the camera module 1, wherein the top surface of the optical lens 10 and the top surface of the photosensitive component 40 refer to the side thereof away from the light deflection element 30, respectively.
  • the optical lens 10 includes a lens barrel 12 and at least one optical lens 11 accommodated in the lens barrel 12.
  • the optical lens 10 collects light from the subject and transmits it to the light deflection element 30.
  • the optical lens 10 has an optical axis, and the optical axis of the optical lens 10 is perpendicular to the light deflection element 30.
  • the optical lens 10 includes three optical lenses 11, namely, a first lens L1, a second lens L2, and a third lens L3, arranged along the incident direction of the light.
  • the first lens L1, the second lens L2, and the third lens L3 are fixed to the lens barrel 12, so that the distance between the three optical lenses 11 is maintained by the lens barrel 12.
  • the first lens L1, the second lens L2, and the third lens L3 may separately include at least a light incident surface facing the light from the outside and a light exit surface opposite to the light incident surface.
  • the light incident surface L1S1 of the first lens L1 is a convex surface
  • the light exit surface L1S2 of the first lens L1 is a plane
  • the light incident surface L2S1 and the light exit surface L2S2 of the second lens L2 are both convex surfaces
  • the light incident surface L3S1 and the light exit surface L3S2 of the third lens L3 are both convex surfaces.
  • a convex surface refers to a curved surface that is curved toward the side where light is incident
  • a convex surface refers to a curved surface that is curved toward the side where the object is photographed. Surface.
  • the optical lens 11 may use a spherical lens, or, in another embodiment of the present application, the optical lens 11 may include a combination of an aspherical lens and a spherical lens.
  • a spherical lens may refer to a lens having the same curve similar to a spherical shape across at least one surface
  • an aspherical lens may refer to a lens having a surface whose curvature gradually changes from the center of the lens to the edge.
  • the photosensitive component 40 includes a circuit board 42, a photosensitive chip 41 electrically connected to the circuit board 42, and at least one electronic component, wherein the photosensitive surface of the photosensitive chip 41 faces the light deflection element 30 to receive the light emitted from the light deflection element 30.
  • the photosensitive chip 41 is fixed to the side of the circuit board 42 facing the light deflection element 30.
  • the at least one electronic component can be implemented as a passive electronic device such as a capacitor or a resistor or an active electronic device such as a diode or a memory chip, and the at least one electronic component can be arranged on the side of the circuit board 42 facing the light deflection element 30 or on the other side away from the light deflection element 30.
  • the camera module 1 further includes a shell 70, the shell 70 has a accommodating cavity, and the light deflection element 30 is disposed in the shell 70, so that the light deflection element 30 is supported by the shell 70 and the interference of stray light on imaging is reduced.
  • the light deflection element 30 is fixed in the shell 70 to prevent the light deflection element 30 from moving relative to the shell 70, thereby causing the optical path of the camera module 1 to shift, so that the imaging effect of the camera module 1 is reduced.
  • the light deflection element 30 is movably supported in the shell 70, and the light deflection element 30 is movable relative to the shell 70, so that the camera module 1 can adjust the optical performance by moving the light deflection element 30, for example, one or more functions such as focus, zoom or anti-shake can be realized.
  • the light deflection element 30 has a plurality of reflective surfaces so that the light entering the light deflection element 30 can be reflected multiple times, which can effectively increase the optical TTL, making the camera module 1 suitable for capturing objects at a long distance and providing high-quality images of the objects at a long distance.
  • TTL refers to the distance on the optical axis between the front vertex of the light incident side (facing the object) of the optical lens 10 of the camera module 1 and the image plane at the photosensitive component 40.
  • the length of the light deflection element 30 extending in the horizontal direction is greater than its height extending in the height direction, so as to reduce the height of the camera module 1 while maintaining an effective TTL, thereby meeting the demand for miniaturization of the camera module 1.
  • the light deflecting element 30 includes at least four surfaces, and light is reflected on four of the surfaces of the light deflecting element 30.
  • the light deflecting element 30 includes a trapezoidal prism, that is, the light deflecting element 30 includes four surfaces, and the four surfaces form a trapezoidal cross-section of the light deflecting element 30.
  • the light deflecting element 30 may include other shapes, such as a triangle, a pentagon, a hexagon, etc., and still provide the above-mentioned light deflection function and design benefits, and the present application does not limit this.
  • the light deflection element 30 is a trapezoidal prism.
  • 30 includes four surfaces with a reflective function, for example: a first surface 31, a second surface 32, a third surface 33 and a fourth surface 34.
  • the plane where the first surface 31 is located is parallel to the plane where the third surface 33 is located, the length of the third surface 33 is less than the length of the first surface 31, and the plane where the second surface 32 is located intersects with the plane where the fourth surface 34 is located.
  • the angle at which the second surface 32 intersects the first surface 31 is an acute angle ⁇
  • the angle at which the fourth surface 34 intersects the first surface 31 is an acute angle ⁇
  • the angle at which the second surface 32 intersects the third surface 33 is an obtuse angle ⁇
  • the angle at which the fourth surface 34 intersects the third surface 33 is an obtuse angle ⁇ .
  • may be in the range of 25 degrees and 35 degrees (for example, 25° ⁇ 35°)
  • may be in the range of 25 degrees and 35 degrees (for example, 25° ⁇ 35°). It should be understood that the angles between the various surfaces of the light deflection element 30 can control the reflection angle of light when it is reflected in the light deflection element 30, so as to realize the function of the light deflection element 30 to reflect light multiple times.
  • the light deflection element 30 is an isosceles trapezoidal prism, that is, as shown in the cross-sectional view of the trapezoidal prism, the lengths of the second surface 32 and the fourth surface 34 are equal, and the second surface 32 and the fourth surface 34 are axially symmetrical.
  • the angle ⁇ between the second surface 32 and the first surface 31 and the angle ⁇ between the fourth surface 34 and the first surface 31 are equal
  • the angle ⁇ between the second surface 32 and the third surface 33 and the angle ⁇ between the fourth surface 34 and the third surface 33 are equal.
  • the incident light can be emitted from the light deflection element 30 as much as possible after multiple reflections to reach the photosensitive component 40, thereby avoiding the loss of light.
  • the optical axis of the incident light is axially symmetrical in the optical path of the light deflection element 30.
  • the second surface 32, the third surface 33 and the fourth surface 34 of the light deflection element 30 may be provided with a reflective coating, or a reflector may be provided, so that light can be reflected on the second surface 32, the third surface 33 and the fourth surface 34.
  • the reflective coating may include a mirror coating based on a thin metal layer, a film with a white inner surface, etc. At least a portion of the first surface 31 of the light deflection element 30 is provided with the reflective coating, and at least a portion of the first surface 31 is not provided with the reflective coating, so that the first surface 31 can project light or allow light to pass through the first surface 31. Further, the first surface 31 can also reflect light under the phenomenon of total internal reflection.
  • the critical angle refers to the angle between the light incident on the surface and the line perpendicular to the surface at the incident point (called the normal line). Therefore, when the incident angle of the light is less than the critical angle, the first surface 31 of the light deflection element 30 allows the light to pass through; when the incident angle of the light is close to or greater than the critical angle, the first surface 31 of the light deflection element 30 may reflect the light at the corresponding surface.
  • the first surface 31 includes a light incident area 311, a light exit area 312, and a reflective area 313 disposed between the light incident area 311 and the light exit area 312, wherein the light incident area 311 and the light exit area 312 are not provided with a reflective area.
  • the coating allows light to enter the light deflection element 30 from the light entrance area 311 and exit the light deflection element 30 from the light exit area 312.
  • the reflective coating is provided in the reflection area 313 so that light is reflected when passing through the reflection area 313.
  • the size of the light-entering area 311 is equal to the size of the light-exiting area 312, and the size of the reflection area 313 is not less than the size of the light-entering area 311 or the light-exiting area 312, so that the light entering the light-deflecting element 30 from the light-entering area 311 can be reflected and then emitted from the light-exiting area 312 to reach the photosensitive component 40, thereby avoiding the loss of light and reducing the generation of stray light.
  • the size of the light-entering area 311 is equal to the size of the reflection area 313, and the size of the light-exiting area 312 is equal to the size of the light-deflecting element 30, so that the multiple reflections of the light-deflecting element 30 have a better effect, thereby avoiding the loss of light and reducing the generation of stray light.
  • the light entrance area 311 and the light exit area 312 are both arranged on the first surface 31, that is, the light incident and light exit of the camera module 1 are both located on the same side of the light deflection element 30.
  • the technical solution of the present application enables the optical lens 10 and the photosensitive component 40 to be concentrated on the same side of the light deflection element 30, so that the height of the camera module 1 is only determined by the sum of the height of the optical lens 10 or the photosensitive component 40 and the height of the light deflection element 30, which is conducive to reducing the height of the camera module 1.
  • the light deflecting element 30 can reflect the light in the light deflecting element 30 for multiple times, so as to guide the light from the optical lens 10 to pass through the light deflecting element 30 and reach the photosensitive component 40.
  • the light passes through the light entrance area 311 of the first surface 31 and enters the light deflecting element 30; at least some of the light passing through the light entrance area 311 of the first surface 31 is reflected at the second surface 32; at least some of the light reflected from the second surface 32 is reflected at the reflection area 313 of the first surface 31; at least some of the light reflected from the reflection area 313 of the first surface 31 is reflected at the third surface 33; at least some of the light reflected from the third surface 33 is reflected at the light exit area 312 of the first surface 31; and at least some of the light reflected from the light exit area 312 of the first surface 31 is reflected at the fourth surface 34, so that the light passes through the light exit area 312 of the first surface 31 and reaches the photosensitive component 40.
  • light from the optical lens 10 may pass through the light entrance area 311 of the first surface 31 and enter the light deflection element 30. At least some of the light may reach the second surface 32 and then be reflected at the second surface 32, and at least some of the light reflected from the second surface 32 may reach the reflection area 313 or the light entrance area 311 of the first surface 31.
  • the light When the light reaches the reflection area 313 of the first surface 31, it is reflected at the reflection area 313 of the first surface 31, and at least some of the light reflected from the reflection area 313 of the first surface 31 may reach the third surface 33 and be reflected at the third surface 33; when the light reaches the light entrance area 311 of the first surface 31, when the incident angle of the light is close to or greater than the critical angle of the light deflection element 30, the light may be reflected at the light entrance area 311 of the first surface 31 under total internal reflection, and at least some of the light reflected from the light entrance area 311 of the first surface 31 may reach the third surface 33 and be reflected at the third surface 33.
  • the light reflected from the third surface 33 can reach the light exit area 312 of the first surface 31.
  • the incident angle of the light is close to or greater than the critical angle of the light turning element 30, the light can be reflected at the light exit area 312 of the first surface 31 under total internal reflection.
  • At least some of the light reflected from the light exit area 312 of the first surface 31 can reach the fourth surface 34 and finally be reflected at the fourth surface 34.
  • the light is reflected five times in the light deflection element 30, leaving the light deflection element 30 to reach the photosensitive component 40.
  • the light is reflected five times in the light deflection element 30, which can effectively increase the focal length between the optical lens 10 and the photosensitive component 40, that is, the optical TTL of the camera module 1 can be effectively increased, so that the camera module 1 is suitable for capturing objects at a long distance and providing high-quality images of the distant objects.
  • the light deflection element 30 extends in the horizontal direction, that is, the length of the light deflection element 30 in the horizontal direction is greater than its height or thickness in the height direction.
  • the light deflection element 30 can maintain a relatively low height or thickness, thereby avoiding an increase in the height of the camera module 1.
  • the height or thickness of the light deflection element 30 ranges from 2.0 mm to 4.0 mm
  • the length of the light deflection element 30 ranges from 20 mm to 22.5 mm
  • the height of the camera module 1 ranges from 8.1 mm to 9.8 mm
  • the length of the camera module 1 ranges from 21 mm to 23 mm
  • the effective focal path of the camera module 1 can reach a range of 17 mm to 27.5 mm.
  • the height of the light deflection element 30 will not only affect the height of the camera module 1, but also affect the length of the light deflection element 30, and further affect the length of the camera module 1.
  • the height of the light deflection element 30 is relatively low, such as when the height of the light deflection element 30 is 2.0 mm to 2.5 mm, the propagation path of the light after a single reflection between the first surface 31 and the third surface 33 of the light deflection element 30 becomes shorter, and further the number of times the light is reflected between the first surface 31 and the third surface 33 of the light deflection element 30 increases.
  • the length of the light deflection element 30 can be reduced while the optical TTL of the camera module 1 is effectively increased, and further the length of the camera module 1 can be reduced, which is conducive to meeting the requirements of miniaturization of the camera module 1.
  • the light deflection element 30 may include an integrated prism 35, for example, the integrated prism 35 is a trapezoidal prism.
  • the light deflection element 30 may also include a split prism 36, that is, the light deflection element 30 may be a light deflection element 30 formed by combining multiple prisms.
  • the split prism 36 includes a first prism 361, a second prism 362, and a third prism 363, wherein, in a specific example of the present application, the first prism 361 is a right-angled trapezoidal prism, the second prism 362 is a rectangular prism, and the third prism 363 is a right-angled trapezoidal prism.
  • the first prism 361, the second prism 362, and the third prism 363 are joined together by optically transparent adhesives or snaps to form the light deflection element 30. In this way, when the light deflection element 30 is manufactured by a paneling method, the manufacturing process can be simplified and the utilization rate of raw materials can be improved.
  • the first prism 361 and the third prism 363 are triangular prisms, and the second prism 362 is a quadrilateral prism.
  • the first prism 361 and the third prism 363 are right-angled triangular prisms, and the second prism 362 is a rectangular prism; or, the first prism 361 and the third prism 363 are triangular prisms, and the second prism 362 is a parallelogram prism.
  • the first prism 361, the second prism 362 and the third prism 363 are joined together by optically transparent adhesives or snaps to form a light turning element 30.
  • the second prism 362 is disposed between the first prism 361 and the third prism 363.
  • the light passes through the light entrance area 311 of the first prism 361 and enters the first prism 361, at least some of the light undergoes at least one The light reaches the second prism 362 after being reflected for the first time, and then at least some of the light reaching the second prism 362 is reflected at least once in the second prism 362 to reach the third prism 363.
  • at least some of the light reaching the third prism 363 is reflected at least once in the third prism 363 to reach the light exit area 312 of the third prism 363, and is emitted from the third prism 363 to reach the photosensitive component 40.
  • the light entrance area 311 of the first prism 361 and the light exit area 312 of the third prism 363 are both arranged on the same side of the light deflection element 30 so that light can enter and exit from the same side of the light deflection element 30.
  • the optical lens 10 and the photosensitive component 40 can be concentrated on the same side of the light deflection element 30 to reduce the height of the camera module 1.
  • the split prism 36 may also include a first prism 361, a second prism 362, a third prism 363 and a fourth prism, wherein the first prism 361, the second prism 362, the third prism 363 and the fourth prism are all triangular prisms, and the first prism 361, the second prism 362, the third prism 363 and the fourth prism are joined together by optically transparent adhesives or snaps to form the light deflection element 30.
  • the split prism 36 may also include other numbers of prisms, such as five prisms or six prisms, and the present application does not limit this.
  • the light deflection element 30 may also include a plurality of reflectors, and the plurality of reflectors are arranged at positions where light needs to be reflected to form the light deflection element 30.
  • the light deflection element 30 can be a light-transmitting material, for example, one or more glass prisms, one or more plastic prisms, or a combination of one or more glass prisms and plastic prisms.
  • the light deflection element 30 uses a material with a high Abbe number Vd, for example, Vd>60, to reduce chromatic aberration.
  • the light deflection element 30 uses a material with a high Abbe number Vd, for example, Vd>45, to reduce chromatic aberration.
  • the refractive index of the light redirecting element 30 is greater than or equal to 1.75 to ensure that sufficient light enters the light redirecting element 30 .
  • the light deflection element 30 includes six channels, notches or through holes cut into the surface of the light deflection element 30, for example, including four vertical cuts 302 and two transverse cuts 301.
  • the two vertical cuts 302 and one transverse cut 301 are combined to form a "U"-shaped structure with an opening.
  • the first surface 31 and/or the third surface 33 of the light deflection element 30 are recessed along the height direction to form four vertical cuts 302 and two transverse cuts 301.
  • the multiple cuts can be set using any suitable method, such as grinding and polishing, laser cutting, laser etching, blade dicing, dicing saw, CNC processing, wire cutting, sandblasting and/or trimming, any of various commonly used methods for processing glass substrates, or a combination of several different methods can be used, and the present application does not limit this.
  • the light deflection element 30 further includes a light shielding film 37, which is arranged inside the light deflection element 30 and/or on the surface of the light deflection element 30 to reduce the stray light entering the light deflection element 30 and reduce the generation of glare.
  • the cutout on the surface of the light deflection element 30 and/or one or more inner surfaces of the cutout are coated with a material to generate the light shielding film 37.
  • the light shielding film 37 includes a first light shielding film 371 and a second light shielding film 372, which are arranged opposite to each other in the light deflection element 30 to reduce the influence of stray light from two opposite sides of the light deflection element 30, for example, the second surface 32 and the fourth surface 34.
  • the first light shielding film 371 and the second light shielding film 372 can be designed into various shapes and/or sizes so that the first light shielding film 371 and the second light shielding film 372 can cover the area of stray light, so as to intercept and absorb the stray light through the first light shielding film 371 and the second light shielding film.
  • the first light shielding film 371 and the second light shielding film 372 can be produced by coating a material on a cutout on the surface of the light deflection element 30 and/or one or more inner surfaces of the cutout. Therefore, in this embodiment, the light deflection element 30 with the light shielding film 37 can be an integrated prism. Of course, in another embodiment of the present application, the light deflection element 30 with the light shielding film 37 can also be formed by bonding a plurality of prisms together.
  • the first light shielding film 371 and the second light shielding film 372 can be provided with a light shielding coating, a dark paint, such as black, etc. at the cutout to achieve the effect of absorbing stray light.
  • multiple cuts can be formed by being recessed inwardly along the height direction from the endpoints of the first surface 31 and/or the third surface 33, or multiple cuts can be formed by being recessed inwardly along the height direction from the first surface 31 and/or the third surface 33 near the endpoints and at a certain distance from the endpoints.
  • the first light shielding film 371 and the second light shielding film 372 are disposed between the first surface 31 and the third surface 33 of the light deflection element 30.
  • the first light shielding film 371 is disposed at one end of the third surface 33 and extends toward the first surface 31 along the height direction
  • the second light shielding film 372 is disposed at the other end of the third surface 33 and extends toward the first surface 31 along the height direction.
  • the first light shielding film 371 and the second light shielding film 372 are disposed relatively parallel to each other, so that the first light shielding film 371 and the second light shielding film 372 can absorb stray light from the second surface 32 and the fourth surface 34, thereby reducing the generation of glare and thus avoiding affecting the imaging effect.
  • the first light shielding film 371 and the second light shielding film 372 are arranged between the first surface 31 and the third surface 33 of the light deflection member.
  • the first light shielding film 371 is arranged at a position close to one end of the third surface 33 and extends toward the first surface 31 along the height direction
  • the second light shielding film 372 is arranged at a position close to the other end of the third surface 33 and extends toward the first surface 31 along the height direction. That is, there is a certain distance between the positions of the first light shielding film 371 and the second light shielding film 372 on the third surface 33 and the two end points of the third surface 33.
  • the light shielding film 371 and the second light shielding film 372 are arranged relatively parallel to each other, so that the first light shielding film 371 and the second light shielding film 372 can absorb stray light from the second surface 32 and the fourth surface 34, thereby reducing the generation of glare and avoiding affecting the imaging effect.
  • the first light shielding film 371 and the second light shielding film 372 also present a "U"-shaped structure with an opening.
  • the opening direction of the first light shielding film 371 is opposite to the opening direction of the second light shielding film 372, for example, the opening of the first light shielding film 371 faces the third surface 33, and the opening of the second light shielding film 372 faces the first surface 31.
  • the opening direction of the first light shielding film 371 is the same as the opening direction of the second light shielding film 372, for example, the opening of the first light shielding film 371 faces the third surface 33, and the opening of the second light shielding film 372 faces the third surface 33; or, the opening of the first light shielding film 371 faces the first surface 31, and the opening of the second light shielding film 372 faces the first surface 31 so as to block and absorb stray light without affecting the propagation of normal light.
  • a light shielding film 37 may be provided on the surface of at least one prism among the plurality of prisms, and then the plurality of prisms may be combined into one body to form the light deflection element 30, so that the light deflection element 30 has the light shielding film 37.
  • the light deflection element 30 may be in a trapezoidal shape, and thus a light deflection element 30 may be formed using a rectangular prism and two right-angle trapezoidal prisms.
  • the first light shielding film 371 and the second light shielding film 372 may be firstly provided at the corresponding surfaces of the second prism 362 in the shape of a rectangular prism, for example, the first light shielding film 371 and the second light shielding film 372 may be provided on two opposite parallel surfaces of the second prism 362.
  • the second prism 362 provided with the first light shielding film 371 and the second light shielding film 372 is combined with the first prism 361 and the third prism 363 in the shape of a right-angle trapezoidal prism, so that the first light shielding film 371 and the second light shielding film 372 are provided at the surfaces where the second prism 362 and the first prism 361 and the third prism 363 are joined to each other.
  • the camera module 1 further includes a filter assembly 50, which is disposed on the optical path of the light, and the camera module 1 can filter out unnecessary stray light (such as infrared light) through the filter assembly 50.
  • the filter assembly 50 is disposed between the light deflection element 30 and the photosensitive assembly 40.
  • the filter assembly 50 includes a filter element 51 and a filter element bracket 52 for supporting the filter element 51.
  • the filter element 51 is supported on the filter element bracket 52 by, for example, gluing.
  • the two sides of the filter element bracket 52 are respectively fixed to the photosensitive assembly 40 and the housing 70, so that the filter assembly 50 is disposed between the light deflection element 30 and the photosensitive assembly 40.
  • the filter assembly 50 is disposed between the optical lens 10 and the light deflection element 30.
  • the filter assembly 50 includes a filter element 51 and a filter element bracket 52 for supporting the filter element 51.
  • the filter element bracket 52 has a light through hole, through which light is incident on the photosensitive chip 41.
  • the filter element 51 can be supported on the filter element bracket 52 by, for example, gluing, by being attached positively or invertedly.
  • the two sides of the filter element bracket 52 are respectively fixed to the optical lens 10 and the housing 70, so that the filter assembly 50 is disposed between the light deflection element 30 and the photosensitive assembly 40.
  • the filter assembly 50 is disposed in the light deflection element 30.
  • the filter component 50 can be implemented as a layer of filter film, which is attached to a surface of the light deflection element 30 to achieve the function of filtering out infrared light.
  • the camera module 1 further includes a compensation lens group 20, the compensation lens group 20 includes at least one compensation lens 21, and the compensation lens group 20 is disposed between the light deflection element 30 and the photosensitive component 40, and the compensation lens group 20 can further modulate the light emitted from the light deflection element 30.
  • the compensation lens group 20 can further converge the light emitted from the light deflection element 30 to reduce the back focus, thereby achieving the purpose of reducing the size of the camera module 1.
  • the compensation lens group 20 includes a first compensation lens L4, with a side of the first compensation lens L4 incident on light being a light incident surface L4S1, that is, a side of the first compensation lens L4 close to the light turning element 30 being the light incident surface L4S1, and a side of the first compensation lens L4 exiting light being a light exiting surface L4S2, that is, a side of the first compensation lens L4 away from the light turning element 30 being the light exiting surface L4S2.
  • the light incident surface L4S1 of the first compensation lens can be a plane
  • the light exiting surface L4S2 of the first compensation lens can be a convex surface protruding toward the light exiting side, so that the light incident surface L4S1 of the first compensation lens L4 can be fixed to the light exiting area 312 of the light turning element 30, so that the compensation lens group 20 is fixed to the light exiting area 312 of the light turning element 30, and the compensation lens group 20 can directly receive the light emitted by the light turning element 30.
  • the compensation lens group 20 includes at least one compensation lens and a compensation lens barrel 12, at least one compensation lens is fixed in the compensation lens barrel 12, and the compensation lens group 20 is fixed to the side of the light deflection element 30 facing the photosensitive component 40 through the compensation lens 21, so that the compensation lens group 20 is arranged between the light deflection element 30 and the photosensitive component 40.
  • the position of the optical lens 10, the compensation lens group 20 or the photosensitive component 40 relative to the light deflection element 30 is fixed.
  • the optical lens 10, the compensation lens group 20 or the photosensitive component 40 is directly or indirectly fixed on one side of the light deflection element 30, so that the height of the camera module 1 can be reduced as much as possible.
  • the position of one or more components in the optical lens 10, the compensation lens group 20 or the photosensitive component 40 relative to the light deflection element 30 can be adjusted.
  • the camera module 1 further includes a driving device 60, which can drive one or more of the optical lens 10, the compensation lens group 20 or the photosensitive component 40 to move, so as to realize more functions of the camera module 1.
  • the first compensation lens L4 can be a Fresnel lens, so that the thickness of the first compensation lens L4 can be reduced so that the height of the photosensitive component 40 will not be too high.
  • the driving device 60 includes a lens driving assembly 61, which includes a lens fixing portion 611, a lens movable portion 612, and a lens driving element 613.
  • the optical lens 10 is installed in the lens movable portion 612, and the lens movable portion 612 is movably disposed in the lens fixing portion 611.
  • the lens fixing portion 611 has There is a housing cavity for accommodating the movable lens part 612.
  • the lens driving element 613 is disposed between the movable lens part 612 and the fixed lens part 611.
  • the lens driving element 613 drives the movable lens part 612 to move along the optical axis relative to the fixed lens part 611, so that the optical lens 10 moves along the optical axis to achieve the focusing function.
  • the fixed lens part 611 is fixed to the housing 70, so that the optical lens 10 is supported on the housing 70, so that the light emitted by the optical lens 10 is incident on the light deflection element 30.
  • the lens driving unit may be at least one coil-magnet pair, wherein the coil and the magnet are respectively fixed to the lens fixing part 611 and the lens movable part 612, the coil and the magnet are arranged opposite to each other, and the coil generates a magnetic field to drive the magnet to move after being energized.
  • the coil is fixed to the lens fixing part 611, and the magnet is fixed to the lens movable part 612.
  • the magnet is fixed to the lens fixing part 611, and the coil is fixed to the lens movable part 612.
  • the lens driving element 613 may also be other drivers, for example, it may be an SMA wire extending between the lens fixing part 611 and the lens movable part 612, or it may be a piezoelectric motor that drives the lens movable part 612 to move relative to the lens fixing part 611 through friction.
  • the lens driving assembly 61 further includes a lens suspension element 614, which is disposed between the lens movable portion 612 and the lens fixed portion 611.
  • the lens suspension element 614 connects the lens movable portion 612 and the lens movable portion 612, so that the lens movable portion 612 is suspended in the lens fixed portion 611.
  • the lens suspension element 614 can be implemented as an elastic element such as a spring, or as a ball.
  • the movable lens portion 612 of the lens driving assembly 61 can also be fixed to only one of the optical lenses 11 in the optical lens 10, and the lens driving assembly 61 is fixed to the housing 70.
  • At least one optical lens 11 in the optical lens 10 is fixed to the movable lens portion 612, and the lens barrel 12 of the optical lens 10 is fixed to the lens fixing portion 611, so that the movable lens portion 612 is driven to move relative to the lens fixing portion 611 by the lens driving element 613, and at least one optical lens 11 in the optical lens 10 can be driven to move relative to other optical lenses 11 along the optical axis, thereby realizing the internal focusing function of the camera module 1 and achieving clear imaging of the camera module 1.
  • the at least one optical lens 11 fixed to the movable lens portion 612 is not the first optical lens 11 of the optical lens 10 along the incident direction of light.
  • the at least one optical lens 11 fixed to the movable lens portion 612 is not the first lens L1 of the optical lens 10. In this way, the top surface of the optical lens 10 will not move due to the internal focusing process of the camera module 1.
  • the camera module 1 is installed in an electronic device, there is no need to reserve space for the movement of the optical lens 10, so that the electronic device can be made thinner.
  • the at least one optical lens 11 fixed to the movable lens portion 612 is the second lens L2, so that the lens driving assembly 61 drives the second lens L2 to move along the optical axis relative to the first lens L1 and the third lens L3 via the lens driving element 613.
  • the at least one optical lens 11 fixed to the movable lens portion 612 may also be the third lens L3.
  • the driving device 60 may only include a device for driving the optical lens 10 or the optical lens 10.
  • the lens driving assembly 61 moves one of the optical lenses 11 of the head 10 along its optical axis, so that the camera module 1 can achieve the focusing or internal focusing function.
  • the driving device 60 may also include a chip driving assembly 62 for driving the photosensitive chip 41 to move to achieve the image stabilization (anti-shake) function.
  • the chip driving assembly 62 can drive the photosensitive chip 41 to move in a direction perpendicular to the optical axis to achieve chip translation anti-shake.
  • the chip driving component 62 includes a chip fixing portion 621, a chip movable portion 622 and a chip driving element 623.
  • the chip movable portion 622 is movably arranged in the chip fixing portion 621, and the chip fixing portion 621 has a receiving cavity to accommodate the chip movable portion 622.
  • the chip fixing portion 621 is directly or indirectly fixed to the housing 70, and the photosensitive component 40 is fixed to the chip movable portion 622.
  • the chip driving element 623 is arranged between the chip movable portion 622 and the chip fixing portion 621, so that the chip driving element 623 drives the chip movable portion 622 to move relative to the chip fixing portion 621 along the optical axis, thereby driving the photosensitive chip 41 of the photosensitive component 40 to move in a direction perpendicular to the optical axis to achieve an anti-shake function.
  • the chip driving unit may be at least one coil-magnet pair, wherein the coil and the magnet are respectively fixed to the chip fixing part 621 and the chip movable part 622, the coil and the magnet are arranged opposite to each other, and the coil generates a magnetic field to drive the magnet to move after being energized.
  • the coil is fixed to the chip fixing part 621, and the magnet is fixed to the chip movable part 622.
  • the magnet is fixed to the chip fixing part 621, and the coil is fixed to the chip movable part 622.
  • the chip driving element 623 may also be other drivers, such as an SMA wire extending between the chip fixing part 621 and the chip movable part 622, or a piezoelectric motor that drives the chip movable part 622 to move relative to the chip fixing part 621 by friction.
  • other drivers such as an SMA wire extending between the chip fixing part 621 and the chip movable part 622, or a piezoelectric motor that drives the chip movable part 622 to move relative to the chip fixing part 621 by friction.
  • the chip driving component 62 further includes a chip suspension element 624, which is disposed between the chip movable portion 622 and the chip fixed portion 621.
  • the chip suspension element 624 connects the chip movable portion 622 and the chip movable portion 622, so that the chip movable portion 622 is suspended in the chip fixed portion 621.
  • the chip suspension element 624 can be implemented as an elastic element such as a spring, or as a ball.
  • the optical lens 10 is driven to move along the optical axis by the lens driving component 61 to achieve focus, and the photosensitive chip 41 is driven to move along the direction perpendicular to the optical axis by the chip driving component 62 to achieve anti-shake, so that the focusing and anti-shake functions of the camera module 1 can be achieved.
  • the optical lens 10 is not driven to move to achieve the anti-shake function, which avoids the large deviation of the light of the incident light deflection element 30 caused by the movement of the optical lens 10, so that the reflection of the light in the light deflection element 30 deviates greatly from the preset path, and finally leads to the problem of reduced imaging quality.
  • the chip driving component 62 can also be used to simultaneously realize the focusing and anti-shake functions, so that the optical lens 10 does not need to be driven to move.
  • the chip driving component 62 can drive the photosensitive component 40 to move horizontally and along Move in height direction to realize chip focusing and chip anti-shake functions.
  • the chip driving component 62 includes a chip fixing part 621, a chip movable part 622 and a chip driving element 623, the chip movable part 622 is movably arranged in the chip fixing part 621, the chip fixing part 621 has a accommodating cavity to accommodate the chip movable part 622, the chip fixing part 621 is directly or indirectly fixed to the housing 70, the photosensitive component 40 is fixed to the chip movable part 622, and the chip driving element 623 is arranged between the chip movable part 622 and the chip fixing part 621, so that the chip driving element 623 drives the chip movable part 622 to move.
  • the chip movable part 622 includes a first movable part 6221 and a second movable part 6222.
  • the first movable part 6221 is movably disposed in the second movable part 6222.
  • the second movable part 6222 is movably disposed in the chip fixed part 621.
  • the photosensitive component 40 is fixed to the first movable part 6221.
  • the chip driving element 623 includes a focusing driving unit 6231 and an anti-shake driving unit 6232.
  • the focusing driving unit 6231 is arranged between the first movable unit 6221 and the second movable unit 6222.
  • the focusing driving unit 6231 drives the first movable unit 6221 and the photosensitive component 40 fixed to the first movable unit 6221 to move relative to the second movable unit 6222 along the optical axis direction to realize the chip focusing function;
  • the anti-shake driving unit 6232 is arranged between the second movable unit 6222 and the chip fixing unit 621.
  • the anti-shake driving unit 6232 drives the second movable unit 6222, the first movable unit 6221, the focusing driving unit 6231 and the photosensitive component 40 to move relative to the chip fixing unit 621 along the direction perpendicular to the optical axis to realize the chip anti-shake function.
  • the anti-shake drive unit 6232 is arranged between the first movable part 6221 and the second movable part 6222, and the anti-shake drive unit 6232 drives the first movable part 6221 and the photosensitive component 40 fixed to the first movable part 6221 to move relative to the second movable part 6222 along the direction perpendicular to the optical axis to realize the chip anti-shake function;
  • the focus drive unit 6231 is arranged between the second movable part 6222 and the chip fixing part 621, and the focus drive unit 6231 drives the second movable part 6222, the first movable part 6221, the anti-shake drive unit 6232 and the photosensitive component 40 to move relative to the chip fixing part 621 along the optical axis to realize the chip focusing function.
  • the focus driving unit 6231 of the chip driving component 62 can be arranged on the inner side of the anti-shake driving unit 6232 , and the focus driving unit 6231 can also be arranged on the outer side of the anti-shake driving unit 6232 .
  • the chip driving component 62 also includes a chip suspension element 624
  • the chip suspension element 624 includes a first suspension element 6241 and a second suspension element 6242, wherein the first suspension element 6241 is arranged between the first movable part 6221 and the second movable part 6222, so that the first movable part 6221 is suspended in the second movable part 6222, and the second suspension element 6242 is arranged between the second movable part 6222 and the chip fixing part 621, so that the second movable part 6222 is suspended in the chip fixing part 621.
  • the first suspension element 6241 and the second suspension element 6242 can They are respectively configured as structures such as balls, springs, and suspension wires, and this application does not impose any restrictions on this.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Studio Devices (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种摄像模组(1),其包括:光学镜头(10),光学镜头(10)包括至少一光学透镜(11);光转折元件(30),光转折元件(30)包括多个反射面,从光学镜头(10)入射的光线在光转折元件(30)的多个反射面上发生多次反射;以及,感光组件(40),光线由光转折元件(30)出射后到达感光组件(40),其中,光学镜头(10)和感光组件(40)被设置于光转折元件(30)的同一侧。通过这样的方式,折叠摄像模组(1)的光路,以使摄像模组(1)小型化。

Description

一种摄像模组 技术领域
本申请涉及摄像模组技术领域,尤其涉及一种长焦摄像模组。
背景技术
随着生活水平的提升,消费者对于远距拍摄的需求越来越大。
长焦摄像模组通常具有较长的焦距,能够获取较远距离的被摄体的清晰影响。然而,例如手机、平板等小型移动设备内空间较小,长焦摄像模组的尺寸被设计的过大时难以组装进小型移动设备中。
目前市场上出现了一种在长焦摄像模组中的长焦镜头前设置一反射棱镜以转折光路,使得长焦镜头被横置在电子设备中,从而降低了长焦摄像模组的高度。但是上述方式也会使得长焦摄像模组的光圈难以提升。因此,希望提出一种新的长焦摄像模组的光路折叠方式。
发明内容
本申请的一个目的在于提供一种摄像模组,其克服现有技术的不足,能够折叠摄像模组的光路,以使摄像模组小型化。
根据本申请的一个方面,提供一种摄像模组,包括:
一种摄像模组,其特征在于,包括:
光学镜头,所述光学镜头包括至少一光学透镜;
光转折元件,所述光转折元件包括多个反射面,从所述光学镜头入射的光线在所述光转折元件的多个反射面上发生多次反射;以及
感光组件,光线由所述光转折元件出射后到达所述感光组件,其中,所述光学镜头和所述感光组件被设置于所述光转折元件的同一侧。
在一些实施例中,所述光转折元件包括梯形棱镜,所述光转折元件包括至少四个表面,光线在所述光转折元件的其中四个表面上发生反射。
在一些实施例中,发生反射的所述四个表面包括第一表面、第二表面、第三表面和第四表面,所述第一表面所在平面与所述第三表面所在平面互相平行,所述第三表面的长度小于 所述第一表面的长度,所述第二表面所在平面与所述第四表面所在平面相交。
在一些实施例中,所述光转折元件为等腰梯形棱镜,所述第二表面的长度与所述第四表面的长度相等,所述第二表面与所述第一表面的夹角和所述第四表面与所述第一表面的夹角相等,所述第二表面与所述第三表面的夹角和所述第四表面与所述第三表面相等。
在一些实施例中,所述第一表面包括入光区、出光区、以及被设置于所述入光区和所述出光区之间的反射区,光线穿过所述第一表面的入光区进入所述光转折元件内;在所述第二表面处反射穿过所述第一表面的入光区的光线中的至少一些光;在所述第一表面的反射区处反射从所述第二表面反射的光线中的至少一些光;在所述第三表面处反射所述第一表面的反射区反射的光线中的至少一些光;在所述第一表面的出光区反射所述第三表面反射的光线中的至少一些光;以及,在所述第四表面反射所述第一表面出光区反射的光线中的至少一些光,以使得光线穿过所述第一表面的出光区到达所述感光组件。
在一些实施例中,所述光转折元件进一步包括遮光膜,所述遮光膜被设置于所述光转折元件的内部和/或所述光转折元件的表面,所述遮光膜包括第一遮光膜和第二遮光膜,所述第一遮光膜和所述第二遮光膜在所述光转折元件内被相对地设置。
在一些实施例中,所述第一遮光膜和所述第二遮光膜呈具有开口的“U”型结构,所述第一遮光膜的开口与所述第二遮光膜的开口方向相同或相反。
在一些实施例中,所述光转折元件包括四个竖向切口和两个横向切口,在所述光转折元件的所述四个竖向切口和所述两个横向切口的一个或多个内表面涂覆材料以生成所述第一遮光膜和所述第二遮光膜。
在一些实施例中,所述光转折元件包括第一棱镜、第二棱镜和第三棱镜,所述第一棱镜为直角梯形棱镜,所述第二棱镜为矩形棱镜,所述第三棱镜为直角梯形棱镜,所述第二棱镜被设置于所述第一棱镜和所述第三棱镜之间,所述第一棱镜、所述第二棱镜和所述第三棱镜接合在一起形成所述光转折元件。
在一些实施例中,所述光转折元件包括遮光膜,所述遮光膜包括第一遮光膜和第二遮光膜,所述第一遮光膜和所述第二遮光膜被设置于所述第二棱镜与所述第一棱镜、所述第三棱镜接合的表面上。
在以下描述中部分地阐述了另外的实施方案和特征,并且本领域技术人员在审阅说明书之后将明白或者通过所公开的主题的实践来学习这些实施方案和特征。可通过参考构成本申 请的一部分的说明书和附图的其余部分来实现本公开的特点和优点的进一步理解。
附图说明
图1是根据本申请实施方式的摄像模组的立体结构示意图。
图2是根据本申请实施方式的摄像模组的爆炸示意图。
图3是根据本申请实施方式的摄像模组的截面示意图。
图4是根据本申请实施方式的摄像模组的光学系统的示意图。
图5A是根据本申请实施方式的光转折元件的其中一个实施例的立体示意图。
图5B是根据本申请实施方式的光转折元件的其中一个实施例的截面示意图。
图5C是根据本申请实施方式的光转折元件的另一个实施例的立体示意图。
图6A是根据本申请实施方式的分体式棱镜的其中一个实施例的立体示意图。
图6B是根据本申请实施方式的分体式棱镜的另一个实施例的立体示意图。
图7A是根据本申请实施方式的带有驱动装置的摄像模组的其中一个实施例的结构示意图。
图7B是根据本申请实施方式的带有驱动装置的摄像模组的另一个实施例的结构示意图。
图8是根据本申请实施方式的芯片驱动组件的结构示意图。
具体实施方式
下面,结合具体实施方式,对本申请做进一步描述,需要说明的是,在不相冲突的前提下,以下描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例。
“包括”,该术语是开放式的。如在所附权利要求书中所使用的,该术语不排除附加结构或步骤。
在本申请的描述中,需要说明的是,对于方位词,如有术语“中心”、“横向”、“纵向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示方位和位置关系为基于附图所示的方位或位置关系,仅是为了便于叙述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方 位、以特定方位构造和操作,不能理解为限制本申请的具体保护范围。
需要说明的是,本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请的说明书和权利要求书中的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
需要说明的是,如在本申请中使用的,用语“基本上”、“大约”以及类似的用语用作表近似的用语,而不用作表程度的用语,并且旨在说明将由本领域普通技术人员认识到的、测量值或计算值中的固有偏差。
在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以是接触连接或通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
“被配置为”,各种单元、电路或其他部件可被描述为或叙述为“被配置为”执行一项或多项任务。在此类上下文中,“被配置为”用于通过指示单元/电路/部件包括在操作期间执行这一项或多项任务的结构(例如,电路)来暗指该结构。此外,“被配置为”可包括由软件和/或固件操纵的通用结构(例如,通用电路)以能够执行待解决的一项或多项任务的方式操作。“被配置为”还可包括调整制造过程(例如,半导体制作设施),以制造适用于实现或执行一项或多项任务的设备(例如,集成电路)。
在本文描述中所使用的术语只是为了描述特定实施方案,而并非旨在进行限制。如说明书和所附权利要求中所使用的那样,单数形式的“一个”、“一种”和“该”旨在也涵盖复数形式,除非上下文以其他方式明确地指示。还将理解的是,本文中所使用的术语“和/或”是指并且涵盖相关联地列出的项目中的一个或多个项目的任何和全部可能的组合。还将理解的是,术语“包括”和/或“包含”在本说明书中使用时是指定存在所陈述的特征、整数、步骤、操作、元件和/或部件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、部件和/或其分组。
如本文中所用,根据上下文,术语“如果”可以被解释为意思是“当...时”或“在...时”或“响应于确定”或“响应于检测到”。类似地,根据上下文,短语“如果确定...”或“如 果检测到[所陈述的条件或事件]”可被解释为是指“在确定...时”或“响应于确定...”或“在检测到[所陈述的条件或事件]时”或“响应于检测到[所陈述的条件或事件]”。
长焦摄像模组是指具有长焦距(例如,60毫米或更长)的摄像模组,其能够清晰地获取较远距离的被摄体。然而,由于其焦距相对较长,长焦摄像模组需要长光学镜头总长(TTL),使得长焦摄像模组的尺寸相对较大,从而使其不适合被组装在小型的移动设备中。本申请提供一种解决上述问题的方案,使摄像模组小型化,使摄像模组适于被装进小型的移动设备中。
图1至图8示出了根据本申请一些实施方案的摄像模组1,摄像模组1包括光学镜头10、光转折元件30以及感光组件40。其中,该光转折元件30被设置于光学镜头10与感光组件40之间,以使得从光学镜头10入射的光线在光转折元件30内发生多次反射后到达感光组件40,光转折元件30将从光学镜头10出射的光线折叠后引导至感光组件40,从而通过感光组件40进行成像以获取图像信息。值得一提的是,光转折元件30为长条状,这样,光线可以在光转折元件30中实现多次反射,进而多次折叠光路。
如图1至图2所示,该感光组件40和该光学镜头10被设置于该光转折元件30的同侧,从而在摄像模组1的高度尺寸仅需考虑感光组件40和光学镜头10中的一个的高度尺寸和光转折元件30的高度尺寸之和,而不必同时叠加光学镜头10、光转折元件30和感光组件40的高度,这样,摄像模组1的高度尺寸可以被降低。在一个具体示例中,光学镜头10和光转折元件30形成了“L”形的结构,感光组件40被设置在光学镜头10和光转折元件30所形成的转角空间中,光学镜头10的高度尺寸大于感光组件40的高度尺寸,光学镜头10的顶面高于感光组件40的顶面,这样,感光组件40不影响摄像模组1的高度,其中,光学镜头10的顶面和感光组件40的顶面分别指其远离光转折元件30的一面。
参照图3所示,光学镜头10包括一镜筒12和被容置于镜筒12中的至少一光学透镜11,光学镜头10收集来自被摄体的光线并传递给光转折元件30,该光学镜头10具有一光轴,该光学镜头10的光轴垂直于光转折元件30。在一个具体示例中,光学镜头10包括沿光线入射方向布设的第一透镜L1、第二透镜L2和第三透镜L3三个光学透镜11。第一透镜L1、第二透镜L2和第三透镜L3被固定于镜筒12,从而通过镜筒12保持三个光学透镜11相互之间的间距。其中,第一透镜L1、第二透镜L2和第三透镜L3可单独包括至少面向来自外界的光的入光面和与该入光面相对的出光面。例如,第一透镜L1的入光面L1S1和出光面L1S2,第二透镜L2的入光面L2S1和出光面L2S2,第三透镜L3的入光面L3S1和出光面L3S2。其中,第一透镜L1的入光面L1S1为凸面,第一透镜L1的出光面L1S2为平面,第二透镜L2的入光面L2S1和出光面L2S2均为凸面,第三透镜L3的入光面L3S1和出光面L3S2均为凸面。在本申请中,凸面指朝向光线入射的一侧弯曲的曲面,或者,凸面指朝向被摄物体的一侧弯曲 的曲面。
在本申请的一个实施例中,光学透镜11均可使用球面透镜,或者,在本申请的另一个实施例中,光学透镜11可包括非球面透镜和球面透镜的组合。应可以理解,球面透镜可指跨在至少一个表面上具有类似球形形状的相同曲线的透镜,而非球面透镜可指具有从透镜中心向外到边缘其曲率逐渐变化的表面的透镜。
感光组件40包括一线路板42和与该线路板42电连接的一感光芯片41和至少一电子元件,其中,感光芯片41的感光面朝向光转折元件30以接收从光转折元件30出射的光线。在一个具体示例中,感光芯片41被固定于线路板42面向光转折元件30的一面。至少一电子元件可以被实施为电容、电阻等无源电子器件或者二极管、存储芯片等有源电子器件,至少一电子元件可以被设置于线路板42面向光转折元件30的一面或者远离光转折元件30的另一面。
在一些实施方式中,摄像模组1还包括一壳体70,壳体70具有一容纳腔,该光转折元件30被设置于该壳体70中,从而通过壳体70支撑该光转折元件30,且减少杂光对成像的干扰。在本申请的一个具体示例中,光转折元件30被固定于壳体70中,以防止光转折元件30相对壳体70移动,进而造成摄像模组1的光路偏移,使得摄像模组1的成像效果降低。在本申请的另一个具体示例中,光转折元件30被可活动的支撑在壳体70中,光转折元件30相对壳体70可动,使得摄像模组1可以通过光转折元件30的移动实现光学性能的调整,例如可以实现对焦、变焦或者防抖等功能中的一个或者多个。
在本申请中,如图2至图8所示,光转折元件30具有多个反射面,以使得进入光转折元件30内的光线可以发生多次反射,这样可以有效地增加光学TTL,使得摄像模组1适合用于捕获远距离处的对象并提供该远处对象的高质量图像。TTL是指摄像模组1的光学镜头10的入光侧(面向被摄物体)的前顶点与感光组件40处的图像平面之间的光轴上的距离。
在通常情况下,TTL的增加会增加摄像模组1的尺寸,从而使其不适合集成在小型移动设备中。本申请中,光转折元件30沿水平方向延伸的长度大于其沿高度方向延伸的高度,以在保持有效的TTL情况下减小摄像模组1的高度,进而满足摄像模组1小型化的需求。
在本申请的一个实施例中,如图3至图4所示,该光转折元件30包括至少四个表面,光线在所述光转折元件30的其中四个表面上发生反射。例如,所述光转折元件30包括梯形棱镜,即光转折元件30包括四个表面,该四个表面形成该光转折元件30梯形的截面。当然,在本申请的其他实施例中,该光转折元件30可以包括其他形状,例如三边形、五边形、六边形等,并且仍然提供上述光转折功能和设计益处,本申请对此不做限制。
具体地,在本申请的一个实施例中,该光转折元件30为梯形棱镜,此时光转折元件 30包括四个具有反射功能的表面,例如:第一表面31、第二表面32、第三表面33和第四表面34。如梯形棱镜的截面图中所示,第一表面31所在平面与第三表面33所在平面互相平行,第三表面33的长度小于第一表面31的长度,第二表面32所在平面与第四表面34所在平面相交。
在本申请一个具体示例中,第二表面32与第一表面31相交的夹角为锐角α,第四表面34与第一表面31相交的夹角为锐角β,第二表面32与第三表面33相交的夹角为钝角γ,第四表面34与第三表面33相交的夹角为钝角θ。其中,α可在25度和35度的范围内(例如,25°<θ<35°),β可在25度和35度的范围内(例如,25°<β<35°)。应可以理解,光转折元件30的各个表面之间的角度可以控制光线在光转折元件30内发生反射时的反射角度,以实现光转折元件30对光线进行多次反射的功能。
进一步地,在本申请的一个实施例中,该光转折元件30为等腰梯形棱镜,即如梯形棱镜的截面图中所示,第二表面32与第四表面34的长度相等,且第二表面32与第四表面34呈轴对称结构。其中,第二表面32与第一表面31的夹角α和第四表面34与第一表面31的夹角β相等,第二表面32与第三表面33的夹角γ和第四表面34与第三表面33θ相等。应可以理解,由于光线在光转折元件30内会发生多次反射,因此第二表面32和第四表面34的角度变化一点点都会影响光线的反射情况。当第二表面32和第四表面34对称设置时,可以使得入射的光线经过多次反射后尽可能多的射出光转折元件30到达感光组件40,避免光线的损失。在本申请的一个具体示例中,入射光的光轴在光转折元件30中的光路呈轴对称。
如图4所示,在本申请的一个实施例中,该光转折元件30的第二表面32、第三表面33和第四表面34可以被设置反射涂层,或设置反射器,以使得光线可以在第二表面32、第三表面33和第四表面34上发生反射。例如,在本申请一具体示例中,反射涂层可包括基于薄金属层的镜面涂层、具有白色内表面的膜等。该光转折元件30的第一表面31的至少一部分被设置该反射涂层,第一表面31的至少一部分不设置反射涂层,以使得第一表面31可投射光线或使得光线穿过第一表面31,进一步的,第一表面31也可以在全内反射的现象下反射光线。
应可以理解,当光线的入射角接近或大于某一限制角(称为临界角)时,可发生全内反射。其中,入射角是指入射在表面上的光和在入射点处垂直于该表面的线(称为法线)之间的角度。因此,当光线的入射角小于临界角时,光转折元件30的第一表面31可使光穿过;当光线的入射角接近或大于临界角时,光转折元件30的第一表面31可在相应表面处反射光线。
具体地,在本申请的一个实施例中,第一表面31包括入光区311、出光区312和被设置于入光区311和出光区312之间的反射区313,其中,入光区311和出光区312不设置反射 涂层,以使得光线可以从入光区311进入光转折元件30,从出光区312射出光转折元件30。反射区313设置反射涂层,以使得光线经过反射区313时发生反射。
其中,入光区311的尺寸等于出光区312的尺寸,反射区313的尺寸不小于入光区311或出光区312的尺寸,以使得由入光区311进入光转折元件30的光线都可以被反射后由出光区312射出到达感光组件40,避免了光量的损失,也可以减少杂散光的产生。在本申请一具体示例中,入光区311的尺寸等于反射区313的尺寸等于出光区312的尺寸,以使得光转折元件30的多次反射的效果更好,可以避免光量的损失,也可以减少杂散光的产生。
进一步的,入光区311和出光区312均被设置于第一表面31,也就是说,摄像模组1的光线入射和出射均位于光转折元件30的同一侧。相对于现有技术中将光线入射和光线出射设置于光转折元件30的相对的两侧,本申请的技术方案使得光学镜头10和感光组件40被集中于光转折元件30的同一侧,这样摄像模组1的高度仅由光学镜头10或感光组件40的高度与光转折元件30的高度之和确定,有利于减小摄像模组1的高度。
在本申请中,光转折元件30可多次反射光转折元件30内的光线,以引导来自光学镜头10的光线穿过光转折元件30到达感光组件40。光线穿过所述第一表面31的入光区311进入所述光转折元件30内;在所述第二表面32处反射穿过所述第一表面31的入光区311的光线中的至少一些光;在所述第一表面31的反射区313处反射从所述第二表面32反射的光线中的至少一些光;在所述第三表面33处反射所述第一表面31的反射区313反射的光线中的至少一些光;在所述第一表面31的出光区312反射所述第三表面33反射的光线中的至少一些光;以及,在所述第四表面34反射所述第一表面31出光区312反射的光线中的至少一些光,以使得光线穿过所述第一表面31的出光区312到达所述感光组件40。
具体地,如图4所示,来自光学镜头10的光线可穿过第一表面31的入光区311进入光转折元件30内。光线中的至少一些光可到达第二表面32,然后在第二表面32处被反射,从第二表面32反射的光线中的至少一些光可到达第一表面31的反射区313或入光区311。当光线到达第一表面31的反射区313时,在第一表面31的反射区313被反射,从第一表面31的反射区313反射的光线中的至少一些光可到达第三表面33并在第三表面33处被反射;当光线到达第一表面31的入光区311时,当光线的入射角接近或大于光转折元件30的临界角时,光可在全内反射下在第一表面31的入光区311处被反射,从第一表面31的入光区311反射的光线中的至少一些光可到达第三表面33并在第三表面33处被反射。接着,从第三表面33反射的光中的至少一些光可到达第一表面31的出光区312,当光线的入射角接近或大于光转折元件30的临界角时,光可在全内反射下在第一表面31的出光区312处被反射,从第一表面31的出光区312反射的光线中的至少一些光可到达第四表面34,并最后在第四表面34处被反 射,离开光转折元件30以到达感光组件40。在该实施例中,光线在光转折元件30中发生了五次反射,这样可以有效地增加光学镜头10和感光组件40之间的焦距,也就是,可有效地增加摄像模组1的光学TTL,使得摄像模组1适合用于捕获远距离处的对象并提供该远处对象的高质量图像。
在本申请的一个实施例中,该光转折元件30沿水平方向延伸,即光转折元件30沿水平方向的长度大于其沿高度方向的高度或厚度,光线在光转折元件30内发生多次反射时光转折元件30可以保持较低的高度或厚度,进而避免摄像模组1的高度增加。例如,在本申请一具体示例中,光转折元件30的高度或厚度的范围为:2.0mm至4.0mm,光转折元件30的长度的范围为:20mm至22.5mm,摄像模组1的高度范围为:8.1mm至9.8mm之间,摄像模组1的长度范围为:21mm至23mm之间,摄像模组1的有效焦点路径可达到17mm至27.5mm的范围。
应可以理解,光转折元件30的高度不仅会影响摄像模组1的高度,还会影响光转折元件30的长度,进而影响摄像模组1的长度。例如,当光转折元件30的高度较低,例如光转折元件30的高度为:2.0mm-2.5mm时,光线在光转折元件30的第一表面31和第三表面33之间被单次反射后的传播路径变短,进而光线在光转折元件30的第一表面31和第三表面33之间被反射的次数增多。这样,可以有效地增加摄像模组1的光学TTL时减小光转折元件30的长度,进而减小摄像模组1的长度,有利于满足摄像模组1小型化的需求。
在本申请的一个实施例中,光转折元件30可以包括一体式棱镜35,例如,该一体式棱镜35为梯形棱镜。在本申请的另一个实施例中,光转折元件30还可以包括分体式棱镜36,即该光转折元件30可以是由多个棱镜组合起来形成的光转折元件30。例如,如图6A至图6B所示,该分体式棱镜36包括第一棱镜361、第二棱镜362和第三棱镜363,其中,在本申请一具体示例中,第一棱镜361为直角梯形棱镜、第二棱镜362为矩形棱镜、第三棱镜363为直角梯形棱镜,第一棱镜361、第二棱镜362和第三棱镜363通过光学透明粘合剂或卡扣等方式接合在一起形成光转折元件30,这样,在通过拼板方式制造光转折元件30时,可以简化制造流程,提升原料的利用率。在本申请另一具体示例中,第一棱镜361和第三棱镜363为三棱镜,第二棱镜362为四边形棱镜,例如,第一棱镜361、第三棱镜363为直角三角形棱镜,第二棱镜362为矩形棱镜;或者,第一棱镜361、第三棱镜363为三角形棱镜,第二棱镜362为平行四边形棱镜,第一棱镜361、第二棱镜362和第三棱镜363通过光学透明粘合剂或卡扣等方式接合在一起形成光转折元件30。
其中,第二棱镜362被设置于第一棱镜361与第三棱镜363之间,当光线穿过第一棱镜361的入光区311进入第一棱镜361内,光线中的至少一些光在第一棱镜361内发生至少一 次反射到达第二棱镜362,然后到达第二棱镜362的光线中的至少一些光在第二棱镜362内发生至少一次反射到达第三棱镜363,最后到达第三棱镜363的光线中的至少一些光在第三棱镜363内发生至少一次反射到达第三棱镜363的出光区312,并从第三棱镜363射出到达感光组件40。
应可以理解,在本申请中,第一棱镜361的入光区311和第三棱镜363的出光区312均被设置于光转折元件30的同一侧,以使得光线可以从光转折元件30的同一侧射入和射出,这样可以将光学镜头10和感光组件40被集中于光转折元件30的同一侧,以减小摄像模组1的高度。
进一步地,在该实施例中,分体式棱镜36还可以包括第一棱镜361、第二棱镜362、第三棱镜363和第四棱镜,其中,第一棱镜361、第二棱镜362、第三棱镜363和第四棱镜均为三棱镜,第一棱镜361、第二棱镜362、第三棱镜363和第四棱镜通过光学透明粘合剂或卡扣等方式接合在一起形成光转折元件30。当然,该分体式棱镜36还可以包括其他数量的棱镜,如五个棱镜、六个棱镜,本申请对此不做限制。当然,在本申请的其他实施例中,该光转折元件30也可以包括多个反射镜,多个反射镜被设置于光线需要进行反射的位置处,以形成该光转折元件30。
在本申请的技术方案中,该光转折元件30可以是透光材料,例如,一个或多个玻璃棱镜、一个或多个塑料棱镜、或者,一个或多个玻璃棱镜和塑料棱镜的组合。其中,在本申请的一个实施例中,光转折元件30使用具有高阿贝数Vd,例如Vd>60的材料,以减小色差。进一步的,在本申请的另一个实施例中,光转折元件30使用具有高阿贝数Vd,例如Vd>45的材料,以减小色差。
在本申请的一个实施例中,光转折元件30的折射率大于等于1.75,以保证足够的光线进入光转折元件30内。
如图5A至图5B所示,在本申请的一个实施例中,光转折元件30包括切入光转折元件30表面的六个通道、槽口或通孔,例如,包括四个竖向切口302和两个横向切口301。其中,两个竖向切口302和一个横向切口301组合形成一具有开口的“U”型结构。在本申请一具体示例中,光转折元件30的第一表面31和/或第三表面33沿高度方向凹陷形成四个竖向切口302和两个横向切口301。应可以理解,在本申请中,该多个切口可以使用任何一种合适的方法设置,例如研磨抛光、激光切割、激光蚀刻、刀片划片、划片锯、CNC加工、线切割、喷砂和/或修整、加工玻璃基板的各种常用方法中的任何一种,或者可以使用多种不同的方法中的几种组合,本申请对此不做限制。
应可以理解,对于光学系统来说,当外界的杂散光进入光学系统时,会引起眩光,影响成像效果。因此,为解决上述问题,在本申请中,光转折元件30进一步包括遮光膜37,该遮光膜37被设置于光转折元件30的内部和/或光转折元件30的表面,以减小杂散光进入光转折元件30,减少眩光的产生。也就是说,在所述光转折元件30表面的所述切口和/或所述切口的一个或多个内表面涂覆材料以生成遮光膜37。
如图5A和图5C所示,在本申请的一个实施例中,遮光膜37包括第一遮光膜371和第二遮光膜372,第一遮光膜371和第二遮光膜372在光转折元件30内被相对地设置,以减小由来自光转折元件30的相对两侧面,例如,第二表面32和第四表面34的杂散光的影响。进一步地,第一遮光膜371和第二遮光膜372可被设计成各种形状和/或尺寸,以使得第一遮光膜371和第二遮光膜372可以覆盖杂散光的区域,以通过第一遮光膜371和第二遮光拦截并吸收杂散光。
在本申请中,第一遮光膜371和第二遮光膜372可以通过在光转折元件30表面的切口和/或切口的一个或多个内表面涂覆材料来产生。因此,在该实施例中,具有遮光膜37的光转折元件30可以是一个一体式棱镜,当然,在本申请的另一个实施例中,具有遮光膜37的光转折元件30也可以是多个棱镜接合在一起形成的。例如,第一遮光膜371和第二遮光膜372可以在切口处设置遮光涂层、暗色的凃漆,例如黑色等,以实现吸收杂散光的效果。
应可以理解,如光转折元件30的截面图可知,多个切口可以自第一表面31和/或第三表面33的端点处沿高度方向向内凹陷形成,或者,多个切口也可以自第一表面31和/或第三表面33靠近端点并与端点之间存在一定距离处沿高度方向向内凹陷形成。
与之对应的,在本申请的一个实施例中,第一遮光膜371和第二遮光膜372被设置于光转折元件30的第一表面31和第三表面33之间。其中,第一遮光膜371被设置于第三表面33的一端并沿高度方向朝向第一表面31延伸,第二遮光膜372被设置于第三表面33的另一端并沿高度方向朝向第一表面31延伸。在本申请一具体示例中,第一遮光膜371与第二遮光膜372相对平行地设置,以使得第一遮光膜371和第二遮光膜372可以吸收第二表面32和第四表面34的杂散光,从而减少眩光的产生,进而避免影响成像效果。
在本申请的另一个实施例中,第一遮光膜371和第二遮光膜372被设置于光转折件的第一表面31和第三表面33之间。其中,第一遮光膜371被设置在靠近于第三表面33的一端的位置处并沿高度方向朝向第一表面31延伸,第二遮光膜372被设置在靠近于第三表面33的另一端的位置处并沿高度方向朝向第一表面31延伸。也就是说,第一遮光膜371和第二遮光膜372在第三表面33上的位置与第三表面33的两个端点之间具有一定距离。其中,第一遮 光膜371与第二遮光膜372相对平行地设置,以使得第一遮光膜371和第二遮光膜372可以吸收第二表面32和第四表面34的杂散光,从而减少眩光的产生,进而避免影响成像效果。
应可以理解,在本申请中,与切口的结构相对应,第一遮光膜371和第二遮光膜372也呈具有开口的“U”型结构。其中,在本申请一具体示例中,第一遮光膜371的开口方向与第二遮光膜372的开口方向相反,例如,第一遮光膜371的开口朝向第三表面33,第二遮光膜372的开口朝向第一表面31。在本申请另一具体示例中,第一遮光膜371的开口方向与第二遮光膜372的开口方向相同,例如,第一遮光膜371的开口朝向第三表面33,第二遮光膜372的开口朝向第三表面33;或者,第一遮光膜371的开口朝向第一表面31,第二遮光膜372的开口朝向第一表面31以能够实现遮挡和吸收杂散光而不影响正常光线的传播。
进一步地,如图6A至图6B所示,在本申请的另一个实施例中,也可以通过在多个棱镜中的至少一个棱镜的表面设置遮光膜37,然后将多个棱镜组合成一体形成光转折元件30的方式,使得光转折元件30具有遮光膜37。在该示例中,光转折元件30可呈梯形形状,因此可使用一个矩形棱镜和两个直角梯形棱镜来形成一光转折元件30。
例如,本申请一具体示例中,可以先在形状为矩形棱镜的第二棱镜362的相应表面处设置第一遮光膜371和第二遮光膜372,例如,在第二棱镜362的两个相对的平行表面上设置第一遮光膜371和第二遮光膜372。然后,将设置有第一遮光膜371和第二遮光膜372的第二棱镜362与形状为直角梯形棱镜的第一棱镜361和第三棱镜363组合,使得第一遮光膜371和第二遮光膜372被设置于第二棱镜362与第一棱镜361、第三棱镜363之间相互接合的表面处。
在一些实施方式中,摄像模组1还包括一滤光组件50,该滤光组件50被设置于光线的光路上,进而摄像模组1可以通过滤光组件50滤除不必要的杂光(例如红外线)。在本申请的一个实施方式中,该滤光组件50被设置于光转折元件30和感光组件40之间,例如,在一个具体示例中,滤光组件50包括滤光元件51和用于支撑滤光元件51的滤光元件支架52,滤光元件51通过例如胶水粘接的方式被支撑于滤光元件支架52,滤光元件支架52的两侧被分别固定于感光组件40和壳体70,从而滤光组件50被设置于光转折元件30和感光组件40之间。在本申请的另一个实施方式中,该滤光组件50被设置于光学镜头10和光转折元件30之间,例如,在一个具体示例中,滤光组件50包括滤光元件51和用于支撑滤光元件51的滤光元件支架52,滤光元件支架52具有一通光孔,光线通过该通光孔入射至感光芯片41,滤光元件51可以通过例如胶水粘接的方式被正贴或者倒贴地支撑于滤光元件支架52,滤光元件支架52的两侧被分别固定于光学镜头10和壳体70,从而滤光组件50被设置于光转折元件30和感光组件40之间。在本申请的再一个实施方式中,滤光组件50被设置在光转折元件30中, 例如,滤光组件50可以被实施为一层滤光膜,滤光膜被贴附于光转折元件30的一个表面上,从而实现滤除红外光线的功能。
在一些实施方式中,如图3、图7A及图7B所示,摄像模组1还包括一补偿透镜组20,补偿透镜组20包括至少一补偿透镜21,该补偿透镜组20被设置于光转折元件30和感光组件40之间,补偿透镜组20可以进一步调制从光转折元件30出射的光线。例如,可以通过补偿透镜组20进一步汇聚从光转折元件30出射的光线,以使后焦减小,从而达到缩小摄像模组1尺寸的目的。
在本申请的一个具体示例中,补偿透镜组20包括一第一补偿透镜L4,以光线入射第一补偿透镜L4的一面为入光面L4S1,即第一补偿透镜L4靠近光转折元件30的一面为入光面L4S1,以光线出射第一补偿透镜L4的一面为出光面L4S2,即第一补偿透镜L4远离光转折元件30的一面为出光面L4S2。在该示例中,第一补偿透镜的入光面L4S1可以为平面,第一补偿透镜的出光面L4S2为向出光侧凸出的凸面,这样,第一补偿透镜L4的入光面L4S1可以被固定于光转折元件30的出光区312,从而补偿透镜组20被固定于光转折元件30的出光区312,补偿透镜组20可以直接接收光转折元件30出射的光线。
在本申请的另一个具体示例中,补偿透镜组20包括至少一补偿透镜和一补偿镜筒12,至少一补偿透镜被固定于补偿镜筒12中,补偿透镜组20通过补偿透镜21被固定于光转折元件30面向感光组件40的一侧,从而补偿透镜组20被设置于光转折元件30和感光组件40之间。
在本申请的一些实施例中,光学镜头10、补偿透镜组20或者感光组件40相对光转折元件30的位置被固定,换言之,光学镜头10、补偿透镜组20或者感光组件40被直接或者间接地固定在光转折元件30的一侧,这样,摄像模组1的高度可以被尽可能降低。
在本申请的一些实施例中,光学镜头10、补偿透镜组20或者感光组件40中的一个部件或者多个部件相对光转折元件30的位置是可以被调整的。具体地,在本申请的一个实施例中,摄像模组1还包括一驱动装置60,该驱动装置60可以驱动上述的光学镜头10、补偿透镜组20或者感光组件40中的一个或者多个移动,以实现摄像模组1更多的功能。
在本申请中第一补偿透镜L4可以为菲涅尔透镜,这样,第一补偿透镜L4的厚度可以被降低,使得感光组件40的高度不会过高。
如图7A所示,该驱动装置60包括一镜头驱动组件61,该镜头驱动组件61包括一镜头固定部611、一镜头可动部612以及一镜头驱动元件613。该光学镜头10被安装于该镜头可动部612中,该镜头可动部612被可活动的设置于该镜头固定部611中,该镜头固定部611具 有一容纳腔以容纳该镜头可动部612,该镜头驱动元件613被设置于镜头可动部612和镜头固定部611之间,从而镜头驱动元件613驱动该镜头可动部612相对镜头固定部611沿光轴移动,以使光学镜头10沿光轴移动,实现对焦功能。该镜头固定部611被固定于壳体70,从而该光学镜头10被支撑于壳体70上,以使光学镜头10出射的光线入射至光转折元件30。
在一个示例中,该镜头驱动单元可以为至少一线圈-磁石对,其中,线圈和磁石被分别固定于镜头固定部611和镜头可动部612,线圈和磁石相对设置,线圈通电后产生磁场以驱动磁石移动,在一个具体示例中,线圈被固定于镜头固定部611,磁石被固定于镜头可动部612,在另一个具体示例中,磁石被固定于镜头固定部611,线圈被固定于镜头可动部612。在本申请的其他示例中,镜头驱动元件613还可以是其他驱动器,例如可以为延伸于镜头固定部611和镜头可动部612之间的SMA线,或者,可以为通过摩擦力驱动镜头可动部612相对镜头固定部611移动的压电马达。
镜头驱动组件61还包括一镜头悬持元件614,该镜头悬持元件614被设置于该镜头可动部612和该镜头固定部611之间,镜头悬持元件614连接镜头可动部612和镜头可动部612,以使镜头可动部612被悬持于镜头固定部611中。其中,镜头悬持元件614可以被实施为弹片等弹性元件,镜头悬持元件614也可以被实施为滚珠。
如图7B所示,在本申请的一个示例中,镜头驱动组件61的镜头可动部612还可以仅与光学镜头10中的其中一光学透镜11相固定,镜头驱动组件61被固定于壳体70。光学镜头10中的至少一光学透镜11被固定于镜头可动部612,光学镜头10的镜筒12被固定于镜头固定部611,从而通过镜头驱动元件613驱动镜头可动部612相对镜头固定部611移动可以驱动光学镜头10中的至少一光学透镜11相对其他光学透镜11沿光轴移动,从而实现摄像模组1的内对焦功能,实现摄像模组1的清晰摄像。在一个具体示例中,该被固定于镜头可动部612的至少一光学透镜11不是该光学镜头10沿光线入射方向的第一片光学透镜11,换言之,该被固定于镜头可动部612的至少一光学透镜11不是该光学镜头10的第一透镜L1,这样,该光学镜头10的顶面不会因摄像模组1的内对焦过程而发生移动,在摄像模组1安装到电子设备中时,不需要为光学镜头10的移动而预留空间,使得电子设备可以被做的更薄。
具体地,继续参照图7B,被固定于镜头可动部612的至少一光学透镜11为第二透镜L2,这样,镜头驱动组件61通过镜头驱动元件613驱动第二透镜L2相对第一透镜L1和第三透镜L3沿光轴移动。当然,在本申请的其他示例中,该被固定于镜头可动部612的至少一光学透镜11也可以为第三透镜L3。
在本申请的一些实施例中,驱动装置60可以仅包括用于驱动光学镜头10或者光学镜 头10的其中一光学透镜11沿其光轴移动的镜头驱动组件61,这样,摄像模组1可以实现对焦或者内对焦功能。在本申请的另一些实施例中,驱动装置60还可以包括一用于驱动感光芯片41移动以实现图像稳定(防抖)功能的芯片驱动组件62,例如,该芯片驱动组件62可以驱动感光芯片41沿垂直光轴的方向移动以实现芯片平移防抖。
继续参照图7A和图7B,该芯片驱动组件62包括一芯片固定部621、一芯片可动部622以及一芯片驱动元件623。该芯片可动部622被可活动的设置于该芯片固定部621中,该芯片固定部621具有一容纳腔以容纳该芯片可动部622,该芯片固定部621被直接或者间接地固定于壳体70,该感光组件40被固定于该芯片可动部622,该芯片驱动元件623被设置于芯片可动部622和芯片固定部621之间,从而芯片驱动元件623驱动该芯片可动部622相对芯片固定部621沿光轴移动,从而驱动该感光组件40的感光芯片41沿垂直光轴的方向移动,实现防抖功能。
在一个示例中,该芯片驱动单元可以为至少一线圈-磁石对,其中,线圈和磁石被分别固定于芯片固定部621和芯片可动部622,线圈和磁石相对设置,线圈通电后产生磁场以驱动磁石移动,在一个具体示例中,线圈被固定于芯片固定部621,磁石被固定于芯片可动部622,在另一个具体示例中,磁石被固定于芯片固定部621,线圈被固定于芯片可动部622。在本申请的其他示例中,芯片驱动元件623还可以是其他驱动器,例如可以为延伸于芯片固定部621和芯片可动部622之间的SMA线,或者,可以为通过摩擦力驱动芯片可动部622相对芯片固定部621移动的压电马达。
芯片驱动组件62还包括一芯片悬持元件624,该芯片悬持元件624被设置于该芯片可动部622和该芯片固定部621之间,芯片悬持元件624连接芯片可动部622和芯片可动部622,以使芯片可动部622被悬持于芯片固定部621中。其中,芯片悬持元件624可以被实施为弹片等弹性元件,芯片悬持元件624也可以被实施为滚珠。
如前所述,在本申请的一些实施例中,通过镜头驱动组件61驱动光学镜头10沿光轴移动以实现对焦,通过芯片驱动组件62驱动感光芯片41沿垂直光轴的方向移动以实现防抖,可以实现摄像模组1的对焦和防抖功能。值得一提的是,在该实施例中,没有采用驱动光学镜头10移动以实现防抖功能,避免了由于光学镜头10的移动而造成入射光转折元件30的光线发生大幅度偏移,使得光线在光转折元件30中的反射与预设的路径发生较大的偏差,最终导致成像质量下降的问题。
在本申请的另一个实施例中,还可以使用芯片驱动组件62同时实现对焦和防抖功能,从而不必驱动光学镜头10移动。芯片驱动组件62可以驱动感光组件40沿水平方向移动和沿 高度方向移动,以实现芯片对焦功能和芯片防抖功能。
具体地,如图8所示,在本申请实施例中,芯片驱动组件62包括一芯片固定部621,一芯片可动部622和一芯片驱动元件623,该芯片可动部622被可活动的设置于该芯片固定部621中,该芯片固定部621具有一容纳腔以容纳该芯片可动部622,该芯片固定部621被直接或者间接地固定于壳体70,该感光组件40被固定于该芯片可动部622,该芯片驱动元件623被设置于芯片可动部622和芯片固定部621之间,从而芯片驱动元件623驱动该芯片可动部622移动。
该芯片可动部622包括一第一可动部6221和一第二可动部6222,该第一可动部6221被可活动的设置于该第二可动部6222内,该第二可动部6222被可活动的设置于该芯片固定部621内,该感光组件40被固定于该第一可动部6221。该芯片驱动元件623包括一对焦驱动部6231和一防抖驱动部6232,该对焦驱动部6231被设置于第一可动部6221与第二可动部6222之间,该对焦驱动部6231驱动该第一可动部6221和被固定于第一可动部6221的感光组件40相对第二可动部6222沿光轴方向移动,以实现芯片对焦功能;该防抖驱动部6232被设置于第二可动部6222和芯片固定部621之间,该防抖驱动部6232驱动该第二可动部6222、第一可动部6221、对焦驱动部6231和感光组件40相对芯片固定部621沿垂直光轴方向移动,以实现芯片防抖功能。
在本申请的另一个实施例中,该防抖驱动部6232被设置于第一可动部6221与第二可动部6222之间,该防抖驱动部6232驱动该第一可动部6221和被固定于第一可动部6221的感光组件40相对第二可动部6222沿垂直光轴方向移动,以实现芯片防抖功能;该对焦驱动部6231被设置于第二可动部6222和芯片固定部621之间,该对焦驱动部6231驱动该第二可动部6222、第一可动部6221、防抖驱动部6232和感光组件40相对芯片固定部621沿光轴方向移动,以实现芯片对焦功能。
换言之,芯片驱动组件62的对焦驱动部6231可以被设置于防抖驱动部6232的内侧,对焦驱动部6231也可以被设置于防抖驱动部6232的外侧。
应可以理解,芯片驱动组件62还包括芯片悬持元件624,该芯片悬持元件624包括第一悬持元件6241和第二悬持元件6242,其中,该第一悬持元件6241被设置于该第一可动部6221和该第二可动部6222之间,以使该第一可动部6221被悬持于该第二可动部6222中,该第二悬持元件6242被设置于该第二可动部6222和该芯片固定部621之间,以使该第二可动部6222被悬持于该芯片固定部621中,通过芯片悬持元件624的设置,可以减小第一可动部6221和第二可动部6222移动过程中产生的摩擦力。第一悬持元件6241和第二悬持元件6242可以 被分别设置为滚珠、弹片、悬丝等结构,本申请对此不做限制。
以上描述了本申请的基本原理、主要特征和本申请的优点。本行业的技术人员应该了解,本申请不受上述实施例的限制,上述实施例和说明书中描述的只是本申请的原理,在不脱离本申请精神和范围的前提下本申请还会有各种变化和改进,这些变化和改进都落入要求保护的本申请的范围内。本申请要求的保护范围由所附的权利要求书及其等同物界定。

Claims (10)

  1. 一种摄像模组,其特征在于,包括:
    光学镜头,所述光学镜头包括至少一光学透镜;
    光转折元件,所述光转折元件包括多个反射面,从所述光学镜头入射的光线在所述光转折元件的多个反射面上发生多次反射;以及
    感光组件,光线由所述光转折元件出射后到达所述感光组件,其中,所述光学镜头和所述感光组件被设置于所述光转折元件的同一侧。
  2. 根据权利要求1所述的摄像模组,其中,所述光转折元件包括梯形棱镜,所述光转折元件包括至少四个表面,光线在所述光转折元件的其中四个表面上发生反射。
  3. 根据权利要求2所述的摄像模组,其中,发生反射的所述四个表面包括第一表面、第二表面、第三表面和第四表面,所述第一表面所在平面与所述第三表面所在平面互相平行,所述第三表面的长度小于所述第一表面的长度,所述第二表面所在平面与所述第四表面所在平面相交。
  4. 根据权利要求3所述的摄像模组,其中,所述光转折元件为等腰梯形棱镜,所述第二表面的长度与所述第四表面的长度相等,所述第二表面与所述第一表面的夹角和所述第四表面与所述第一表面的夹角相等,所述第二表面与所述第三表面的夹角和所述第四表面与所述第三表面相等。
  5. 根据权利要求3所述的摄像模组,其中,所述第一表面包括入光区、出光区、以及被设置于所述入光区和所述出光区之间的反射区,光线穿过所述第一表面的入光区进入所述光转折元件内;在所述第二表面处反射穿过所述第一表面的入光区的光线中的至少一些光;在所述第一表面的反射区处反射从所述第二表面反射的光线中的至少一些光;在所述第三表面处反射所述第一表面的反射区反射的光线中的至少一些光;在所述第一表面的出光区反射所述第三表面反射的光线中的至少一些光;以及,在所述第四表面反射所述第一表面出光区反射的光线中的至少一些光,以使得光线穿过所述第一表面的出光区到达所述感光组件。
  6. 根据权利要求5所述的摄像模组,其中,所述光转折元件进一步包括遮光膜,所述遮光膜被设置于所述光转折元件的内部和/或所述光转折元件的表面,所述遮光膜包括第一遮光膜和第二遮光膜,所述第一遮光膜和所述第二遮光膜在所述光转折元件内被相对地设置。
  7. 根据权利要求6所述的摄像模组,其中,所述第一遮光膜和所述第二遮光膜呈具有开口的“U”型结构,所述第一遮光膜的开口与所述第二遮光膜的开口方向相同或相反。
  8. 根据权利要求7所述的摄像模组,其中,所述光转折元件包括四个竖向切口和两个横向切口,在所述光转折元件的所述四个竖向切口和所述两个横向切口的一个或多个内表面涂覆材料以生成所述第一遮光膜和所述第二遮光膜。
  9. 根据权利要求2所述的摄像模组,其中,所述光转折元件包括第一棱镜、第二棱镜和第三棱镜,所述第一棱镜为直角梯形棱镜,所述第二棱镜为矩形棱镜,所述第三棱镜为直角梯形棱镜,所述第二棱镜被设置于所述第一棱镜和所述第三棱镜之间,所述第一棱镜、所述第二棱镜和所述第三棱镜接合在一起形成所述光转折元件。
  10. 根据权利要求9所述的摄像模组,其中,所述光转折元件包括遮光膜,所述遮光膜包括第一遮光膜和第二遮光膜,所述第一遮光膜和所述第二遮光膜被设置于所述第二棱镜与所述第一棱镜、所述第三棱镜接合的表面上。
PCT/CN2023/132585 2022-11-22 2023-11-20 一种摄像模组 WO2024109683A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211463757.5A CN118092052A (zh) 2022-11-22 2022-11-22 一种摄像模组
CN202211463757.5 2022-11-22

Publications (1)

Publication Number Publication Date
WO2024109683A1 true WO2024109683A1 (zh) 2024-05-30

Family

ID=91155459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/132585 WO2024109683A1 (zh) 2022-11-22 2023-11-20 一种摄像模组

Country Status (2)

Country Link
CN (1) CN118092052A (zh)
WO (1) WO2024109683A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2636265Y (zh) * 2003-07-19 2004-08-25 鸿富锦精密工业(深圳)有限公司 数码相机模组
JP2007133096A (ja) * 2005-11-09 2007-05-31 Konica Minolta Opto Inc 撮像光学系、撮像レンズ装置及びデジタル機器
JP2010164841A (ja) * 2009-01-16 2010-07-29 Sharp Corp 撮像モジュール、撮像装置及び光学機器
CN112532815A (zh) * 2019-09-18 2021-03-19 宁波舜宇光电信息有限公司 潜望式摄像模组及电子设备
CN213718058U (zh) * 2020-12-03 2021-07-16 江西晶浩光学有限公司 摄像头模组和电子设备
WO2022016422A1 (zh) * 2020-07-22 2022-01-27 欧菲光集团股份有限公司 长焦模组、双摄模组及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2636265Y (zh) * 2003-07-19 2004-08-25 鸿富锦精密工业(深圳)有限公司 数码相机模组
JP2007133096A (ja) * 2005-11-09 2007-05-31 Konica Minolta Opto Inc 撮像光学系、撮像レンズ装置及びデジタル機器
JP2010164841A (ja) * 2009-01-16 2010-07-29 Sharp Corp 撮像モジュール、撮像装置及び光学機器
CN112532815A (zh) * 2019-09-18 2021-03-19 宁波舜宇光电信息有限公司 潜望式摄像模组及电子设备
WO2022016422A1 (zh) * 2020-07-22 2022-01-27 欧菲光集团股份有限公司 长焦模组、双摄模组及电子设备
CN213718058U (zh) * 2020-12-03 2021-07-16 江西晶浩光学有限公司 摄像头模组和电子设备

Also Published As

Publication number Publication date
CN118092052A (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
KR101349589B1 (ko) 카메라 모듈
CN111866328B (zh) 一种摄像头模组及移动终端
CN115327743A (zh) 一种光学成像系统、摄像模组及电子设备
KR102381619B1 (ko) 카메라 모듈
WO2021213216A1 (zh) 潜望式摄像模组、多摄摄像模组和摄像模组的组装方法
KR102505442B1 (ko) 카메라 모듈
WO2024109683A1 (zh) 一种摄像模组
WO2021213218A1 (zh) 潜望式摄像模组、多摄摄像模组和电子设备
US20220279099A1 (en) Reflection module and camera module including reflection module
CN213718058U (zh) 摄像头模组和电子设备
KR102345118B1 (ko) 카메라 모듈 및 이를 포함하는 휴대 단말기
JP2024504797A (ja) 光学系及びこれを含むカメラモジュール
CN114079710A (zh) 潜望式连续光变摄像模组及相应的电子设备
KR100736610B1 (ko) 카메라 렌즈 모듈
KR20210027170A (ko) 촬상 광학계용 프리즘
KR101268983B1 (ko) 경통 모듈
CN220381363U (zh) 光学影像撷取装置
WO2024104120A1 (zh) 摄像头模组及电子设备
KR102425752B1 (ko) 카메라 모듈
KR102426207B1 (ko) 카메라 모듈
CN111953895B (zh) 可对焦成像装置
KR102574418B1 (ko) 카메라 모듈
EP4270080A1 (en) Optical system
KR20220132961A (ko) 광학계 및 이를 포함하는 카메라 모듈
CN117031686A (zh) 光学影像撷取装置