WO2022062583A1 - 晶圆样品分析方法和装置 - Google Patents

晶圆样品分析方法和装置 Download PDF

Info

Publication number
WO2022062583A1
WO2022062583A1 PCT/CN2021/106119 CN2021106119W WO2022062583A1 WO 2022062583 A1 WO2022062583 A1 WO 2022062583A1 CN 2021106119 W CN2021106119 W CN 2021106119W WO 2022062583 A1 WO2022062583 A1 WO 2022062583A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective layer
wafer sample
image
doping
bevel
Prior art date
Application number
PCT/CN2021/106119
Other languages
English (en)
French (fr)
Inventor
徐高峰
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Priority to US17/597,614 priority Critical patent/US12033313B2/en
Publication of WO2022062583A1 publication Critical patent/WO2022062583A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/0006Industrial image inspection using a design-rule based approach
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/14Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers
    • H01J49/142Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers using a solid target which is not previously vapourised
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer

Definitions

  • the present application relates to semiconductor inspection technology, and more particularly, to a method and device for analyzing wafer samples.
  • Wafer refers to the silicon wafer used in the manufacture of silicon semiconductor integrated circuits. Because of its circular shape, it is called a wafer.
  • Various circuit component structures can be processed and fabricated on the wafer to form semiconductor components with specific electrical functions.
  • the doping of group III and V elements in the wafer has a decisive effect on the adjustment of the electrical properties of semiconductor components, so in the semiconductor industry, it is necessary to detect the type and quantity of group III and group V elements in the wafer. and distribution.
  • secondary ion mass spectrometer (Secondary-ion-mass spectroscope, Sims for short) is generally used in the industry to detect the type, quantity and distribution of group III elements and group V elements in wafers.
  • the secondary ion mass spectrometer bombards the sample surface with a high-energy primary ion beam, so that the atoms or atomic groups on the sample surface absorb energy and sputter from the surface to generate secondary ions. These charged ions can be obtained after passing through the mass analyzer. A map of sample surface information.
  • ion beam bombardment is performed directly on the surface of the wafer sample. Since the surface of the sample is exposed to air before Sims analysis, it will cause surface contamination.
  • the surface effect will affect the acquisition of surface signals.
  • the sidewall effect will gradually increase with the increase of the depth of the ion beam, that is, the ions on the sidewall of the ion beam bombardment site will mix with the ions that have been generated before, resulting in mixed ions.
  • the analysis of element doping depth has a great influence. , therefore, the existing methods for analyzing elements in wafer samples have the problem of inaccurate analysis results.
  • the present application provides a wafer sample analysis method, which is applied to a secondary ion mass spectrometer, including:
  • a wafer sample is provided, the wafer sample includes at least one slope for exposing the substrate, the first protective layer and the first doped layer on the same side, wherein the first protective layer is formed on the on the substrate, the first doped layer is formed on the first protective layer;
  • a bevel image of the bevel is acquired and the bevel image is analyzed to obtain the doping depth and doping concentration of elements in the wafer sample in the bevel image.
  • FIG. 1 is a schematic diagram of the application of the secondary electron mass spectrometer provided in this application.
  • FIG. 2 is a schematic flowchart of a wafer sample analysis method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a wafer sample provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a wafer sample analysis method provided by another embodiment of the present application.
  • FIG. 5 is a schematic diagram of an analysis result graph provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a wafer sample provided by yet another embodiment of the present application.
  • FIG. 7 is a schematic diagram of a wafer sample analysis device according to an embodiment of the present application.
  • the existing SIMS method for analyzing dopant elements in wafer samples has the problem of inaccurate analysis results.
  • the present application provides a wafer sample analysis method, which is applied to a secondary ion mass spectrometer.
  • the wafer sample analysis method provides a wafer sample including an inclined plane. Secondary ions are generated by acquiring an image of the inclined plane of the wafer sample and analyzing the image of the inclined plane by means of ion beam bombardment, and the wafer is obtained by analyzing the secondary ions.
  • the elemental doping depth of the sample and the map of the elemental doping concentration corresponding to different depths. Because the bevel image includes cross-sectional images of multiple layers in the wafer sample.
  • the doping depth of the elements in the wafer sample and the corresponding doping concentration of the elements can be determined without bombarding the wafer sample with the ion beam to continuously deepen the bombardment depth.
  • the results of the analysis of the elements are also more accurate.
  • the wafer sample analysis method provided by the present application also forms a first protective layer and a first doped layer on the substrate of the wafer sample, and the protective layer can effectively prevent the surface contamination of the wafer sample, so that the The analysis results of elements in wafer samples are more accurate.
  • the analysis of elements in wafer samples includes doping type analysis, doping depth analysis and doping concentration analysis of the elements.
  • the wafer sample analysis method provided in the present application is applied to a secondary ion mass spectrometer, and the secondary ion mass spectrometer includes an ion source and a secondary electron imaging system.
  • the ion source generates primary ions, and the primary ions bombard the inclined surface of the wafer sample to generate secondary ions.
  • the secondary electron imaging system is used to generate a secondary electron image of the secondary ions, that is, the inclined surface image of the wafer sample.
  • the elemental analysis system in the secondary ion mass spectrometer determines the doping depth and doping concentration of elements in the wafer sample after reanalyzing the inclined plane image.
  • the present application provides a wafer sample analysis method, which is applied to a secondary ion mass spectrometer, including:
  • the bevel can be obtained by grinding and polishing the wafer sample, and the bevel is used to expose the substrate, the first protective layer and the first doped layer of the wafer sample on the same side.
  • the first protective layer is formed on the substrate, the first doped layer is formed on the first protective layer, the first protective layer is to prevent the surface of the wafer sample from being polluted, the first doped layer In order to mark the location of the surface of the first protective layer.
  • the thicknesses of the first protective layer and the first doped layer can be selected according to actual needs, which are not limited in this application.
  • the first protective layer may be a film formed of a compound which may be silicon.
  • the bevel topography of the wafer sample obtained after grinding and polishing should meet the sample specifications of the secondary ion mass spectrometer.
  • the angle between the inclined plane and the plane where the substrate is located can be selected according to actual needs, which is not limited in this application.
  • a secondary electron imaging system is set up in the secondary ion mass spectrometer, and the inclined plane image is obtained by analyzing the secondary ions sputtered on the inclined plane by the secondary electron imaging system.
  • the image of the inclined plane may be an image of the entire inclined plane, or an image of the bombarded area selected by the staff according to actual needs. For example, the staff first selects the area on the slope to be bombarded by the ion beam, and then selects the image collected in the preset area of the slope after the ion beam bombardment as the slope image.
  • the elemental analysis system in the secondary ion mass spectrometer determines the doping depth of elements in the wafer sample and the doping concentration corresponding to different doping depths through the inclined plane image.
  • the element doping refers to the doping of group III elements and group V elements in the wafer sample. If the image of the inclined plane is the whole image of the inclined plane, the final determined doping depth and doping concentration are the doping depth and doping concentration of all elements within the inclined plane range after the inclined plane is bombarded by the ion beam. If the image of the inclined plane is only the image of the region bombarded by the ion beam selected by the staff on the inclined plane, the final doping depth and the doping concentration are the element doping depth and doping of the image of the region selected by the staff concentration.
  • the wafer sample analysis method provided in this embodiment is to analyze the crystal to be analyzed.
  • the round sample is prepared with at least one bevel for exposing the substrate, the first protective layer and the first doped layer of the wafer sample.
  • an analysis result diagram of the doping depth and doping concentration of elements in the wafer sample is obtained. Since the inclined plane image is obtained after the secondary ion mass spectrometer directly bombards the inclined plane of the wafer sample with an ion beam, the inclined plane image includes the element distribution information of all layers of the wafer sample.
  • the inclined plane image obtained in the present application does not have the problem of element mixing interference.
  • the elemental analysis results obtained by the inclined plane image analysis that is, the element doping depth and the element doping concentration are more accurate.
  • the first protective layer and the first doped layer provided in the present application can also solve the problem of inaccurate elemental analysis results caused by surface contamination of the wafer sample.
  • the substrate includes a first portion and a second portion, wherein the first portion is single crystal silicon, and the second portion is doped single crystal silicon.
  • the first protective layer is formed on the doped single crystal silicon. After acquiring the inclined plane image, the doping depth and doping concentration of the elements doped in the second part are mainly analyzed.
  • step S202 includes:
  • the extending direction of the line where the slope intersects the sidewall of the wafer sample is the slope direction, and the plane where the sidewall is located is perpendicular to the plane where the substrate and the first protective layer are located.
  • the first length is L1 shown in FIG. 3 .
  • This second length is L2 shown in FIG. 3 . Both the first length and the second length can be measured by a secondary ion mass spectrometer through the slope image.
  • the thickness of the first protective layer can be measured by a worker.
  • the secondary ion mass spectrometer is provided with a calculation program, and the staff can input the thickness of the first protective layer into the calculation program.
  • the computational program in the secondary ion mass spectrometer can determine the doping depth of elements in the wafer sample.
  • the inclined plane image is a secondary electron image
  • the secondary ion mass spectrometer can determine the doping concentration data corresponding to each depth data in the doping depth according to the secondary electron image.
  • the secondary ion mass spectrometer can draw the analysis result diagram according to the determined doping depth of elements in the wafer sample and the doping concentration corresponding to different doping depths through analysis software.
  • the analysis software such as Win Image and Win Curve data processing software.
  • the abscissa of the analysis result graph may be the doping concentration of the element, and the ordinate of the analysis result graph may be the doping depth of the element.
  • the analysis result graph displays a plurality of data of the doping depth, and a plurality of data of the doping depth, and a plurality of data of the doping depth and a plurality of data of the doping concentration in the form of a curve Correspondence.
  • the doping depth corresponding to the maximum doping concentration of the element in the wafer sample can also be known from the analysis result graph. If the image of the inclined plane is an image of a partial area on the inclined plane selected by the staff, the image of the partial area is defined as a preset area image, and the preset area image corresponds to a preset depth area, and the staff can The analysis result graph determines the doping concentration area of the element corresponding to the preset depth area, that is, after selecting the preset depth area on the ordinate of the analysis result graph, the element corresponding to the preset depth area can be determined accordingly doping concentration region.
  • the analysis result graph can also be replaced with an analysis result table or other data display forms, as long as the doping depth and corresponding doping concentration of elements in the wafer sample can be displayed.
  • the wafer sample further includes a second protective layer, and the second protective layer is formed on the first doped layer.
  • the elemental composition of the second protective layer and the first protective layer may be the same.
  • the first protective layer and the second protective layer may be composed of silicon compounds.
  • the thickness of the second protective layer can be selected according to actual needs, which is not limited in this application. This second protective layer can ensure more accurate analysis results.
  • the first doped layer is formed on the first protective layer by a low pressure chemical vapor deposition method, and the first doped layer includes boron element.
  • the first doped layer is used to mark the position of the surface of the first protective layer.
  • the analysis result graph can display the position of the surface of the first protective layer marked by the first doped layer by marking lines showing the element depth and concentration of the first doped layer.
  • the first doping layer can also prevent the surface of the first protective layer from being polluted, thereby improving the accuracy of the analysis results of the doping depth of elements and the corresponding doping concentration in the wafer sample.
  • the boron element in the first doped layer can also be replaced with other elements, as long as the function of marking the surface position of the first protective layer can be achieved.
  • the neutralized doping concentration of the wafer sample is generated by bombardment of an ion beam with a predetermined energy.
  • the preset energy can be set by the staff, and the principle of setting is to improve the spatial resolution of the inclined plane image.
  • the angle between the inclined plane and the plane where the substrate is located is less than or equal to 10°. As shown in FIG. 6, the degree of angle a is less than or equal to 10°.
  • the present application provides a wafer sample analysis device 10, including:
  • the processing module 11 is used for acquiring the bevel image of the bevel and analyzing the bevel image to obtain the doping depth and doping concentration of the elements in the wafer sample in the bevel image;
  • the wafer sample includes at least one of the inclined planes for exposing the substrate, the first protective layer and the first doping layer on the same side, wherein the first protective layer is formed on the substrate, and the first doping layer is formed on the same surface.
  • the impurity layer is formed on the first protective layer.
  • the substrate includes a first part and a second part, wherein the first part is single crystal silicon, the second part is doped single crystal silicon; the first protective layer is formed on the doped single crystal silicon.
  • the wafer sample also includes a second protective layer formed on the first doped layer.
  • the first protective layer and the second protective layer are composed of compounds of silicon.
  • the first doped layer is formed on the first protective layer by a low pressure chemical vapor deposition method, and the first doped layer includes boron element.
  • the dopant concentration in the wafer sample is generated by bombardment with a preset energy ion beam.
  • the angle between the inclined plane and the plane of the substrate is less than or equal to 10°.
  • This processing module is specifically used for:
  • the analysis result graph is drawn according to the doping depth and the doping concentration corresponding to the doping depth.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Plasma & Fusion (AREA)
  • Theoretical Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Quality & Reliability (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Geometry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本申请提供一种晶圆样品分析方法和装置。该方法应用于二次离子质谱仪,包括:提供晶圆样品,所述晶圆样品至少包括一斜面,所述斜面用于在同一面上暴露衬底、第一保护层和第一掺杂层,其中所述第一保护层形成在所述衬底上,所述第一掺杂层形成在所述第一保护层上;获取所述斜面的斜面图像并分析所述斜面图像,得到所述斜面图像内所述晶圆样品中元素的掺杂深度和掺杂浓度。

Description

晶圆样品分析方法和装置
本申请要求于2020年9月28日提交中国专利局、申请号为202011044823.6、申请名称为“晶圆样品分析方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及半导体检测技术,更为具体地,涉及一种晶圆样品分析方法和装置。
背景技术
晶圆是指硅半导体集成电路制作所用的硅晶片,由于其形状为圆形,故称为晶圆。在晶圆上可以加工制作成各种电路元件结构,形成有特定电性功能的半导体元器件。但是晶圆中Ⅲ族元素和Ⅴ族元素的掺杂对半导体元器件的电性的调节有着决定性的作用,所以在半导体行业中需要检测Ⅲ族元素和Ⅴ族元素在晶圆中的种类、数量和分布等状况。
目前,业内一般是使用二次离子质谱仪(Secondary-ion-mass spectroscope,简称Sims)检测晶圆中Ⅲ族元素和Ⅴ族元素的种类、数量和分布等状况。二次离子质谱仪是是通过高能量的一次离子束轰击样品表面,使样品表面的原子或原子团吸收能量而从表面发生溅射产生二次离子,这些带电离子经过质量分析器后就可以得到关于样品表面信息的图谱。然而,Sims分析是直接在晶圆样品的表面进行离子束轰击,由于样品在Sims分析之前表面会暴露空气中会导致表面污染,表面效应(surface effect)会影响表面讯号的采集,随着离子溅射深度的增加,侧壁效应(sidewall effect)也会逐渐增强,即,离子束轰击部位的侧壁的离子会混合之前已经产生的离子,产生混合离子,在后续分析的过程中混合离子对真实元素掺杂深度的分析较大影响。,因此,现有的分析晶圆样品中元素的方法存在分析结果不准确的问题。
发明内容
本申请提供一种晶圆样品分析方法,应用于二次离子质谱仪,包括:
提供晶圆样品,所述晶圆样品至少包括一斜面,所述斜面用于在同一面上暴露衬底、第一保护层和第一掺杂层,其中所述第一保护层形成在所述衬底上,所述第一掺杂层形成在所述第一保护层上;
获取所述斜面的斜面图像并分析所述斜面图像,得到所述斜面图像内所述晶圆样品中元素的掺杂深度和掺杂浓度。
附图说明
图1为本申请提供的二次电子质谱仪应用示意图。
图2为本申请的一个实施例提供的晶圆样品分析方法的流程示意图。
图3为本申请的一个实施例提供的晶圆样品的示意图。
图4为本申请的另一个实施例提供的晶圆样品分析方法的流程示意图。
图5为本申请的一个实施例提供的分析结果图的示意图。
图6为本申请的又一个实施例提供的晶圆样品的示意图。
图7为本申请的一个实施例提供的晶圆样品分析装置的示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
现有的SIMS分析晶圆样品中掺杂元素的方法存在分析结果不准确的问题,基于此,本申请提供一种晶圆样品分析方法,应用于二次离子质谱仪。该晶圆样品分析方法提供包括一斜面的晶圆样品,通过获取该晶圆样品的斜面的图像,并通过离子束轰击方式分析该斜面的图像产生二次离子,分析二次离子得到该晶圆样品的元素掺杂深度和不同深度对应的元素掺杂浓度的图谱。因为该斜面图像包括该晶圆样品中多层的剖面图像。此时不用通过离子束不断加深轰击深度的方式轰击该晶圆样品便可以确定晶圆样品中元素的掺杂深度和对应的元素掺杂浓度,因此也不会产生侧壁效应,得到的晶圆中元素的分析结果也更加准确。除此之外,本申请提供的晶圆样品分析方法还在晶圆样品的衬底上形成第一保护层和第一掺杂层,该保护层可以有效防止晶圆样品的表面污染,从而使晶圆样品中元素的分析结果更加准确,需要说明的是对晶圆样品中元素的分析包括对元素的掺杂类型分析、掺杂深度分析及掺杂浓度分析。
请参见图1,本申请提供的晶圆样品分析方法应用于二次离子质谱仪,该二次离子质谱仪包括离子源和二次电子成像系统。该离子源产生一次离子,该一次离子轰击晶圆样品的斜面后产生二次离子,该二次电子成像系统用于生成该二次离子的二次电子像,即该晶圆样品的斜面图像。该二次离子质谱仪中的元素分析系统再分析该斜面图像后确定该晶圆样品中元素的掺杂深度和掺杂浓度。
请一并参见图2,本申请提供一种晶圆样品分析方法,应用于二次离子质谱仪,包括:
S201,提供晶圆样品,该晶圆样品至少包括一斜面,该斜面用于在同一面上暴露衬底、第一保护层和第一掺杂层,其中该第一保护层形成在该衬底上,该第一掺杂层形成在该第一保护层上。
请一并参见图3,晶圆样品经过研磨和抛光可以得到该斜面,该斜面用于在同一面上暴露该晶圆样品的衬底、第一保护层和第一掺杂层。该第一保护层形成在该衬底上,该第一掺杂层形成在该第一保护层上,该第一保护层是为了防止该晶圆样品的表面被污染,该第一掺杂层为了标记该第一保护层的表面所在位置。该第一保护层和该第一掺杂层的厚度可以根据实际需要选择,本申请不做限定。在一个可选的实施例中,该第一保护层可以是由可以是由硅的化合物形成的膜。研磨和抛光后得到的该晶圆样品的斜面形貌应该符合该二次离子质谱仪的样品规格。该斜面和该衬底所在平面之间的夹角可以根据实际需要选择,本申请不做限定。
S202,获取该斜面的斜面图像并分析该斜面图像,得到该斜面图像内该晶圆样品中元素的掺杂深度和掺杂浓度。
该二次离子质谱仪中设立有二次电子成像系统,该斜面图像是由该二次电子成像系统通过分析该斜面上溅射的二次离子得到的。该斜面图像可以是整个该斜面的图像,也可以是工作人员根据实际需要选择的轰击区域的图像。例如,工作人员先选定该斜面上待离子束轰击的区域,再选定该离子束轰击后在该斜面的预设区域采集的图像作为该斜面图像。在得到该斜面图像后,该二次离子质谱仪中的元素分析系统通过该斜面图像确定该晶圆样品中元素的掺杂深度,和不同的掺杂深度对应的掺杂浓度。该元素掺杂指的是在该晶圆样品中掺杂Ⅲ族元素和Ⅴ族元素。若该斜面图像为该斜面的全部图像,则最后确定的该掺杂深度和该掺杂浓度为该斜面在被离子束轰击后,所有斜面范围内的元素的掺杂深度和掺杂浓度。若该斜面图像只是该斜面上工作人员选择的被离子束轰击的区域的图像,则最后确定的该掺杂深度和该掺杂浓度为工作人员选择的区域的图像的元素掺杂深度和掺杂浓度。
工作人员将Ⅲ族元素和Ⅴ族元素掺杂进晶圆后,需要获知元素掺杂的深度和不同的深度对应的元素掺杂浓度,本实施例提供的晶圆样品分析方法,将待分析晶圆样品制备出至少一个用于暴露该晶圆样品的衬底、第一保护层和第一掺杂层的斜面。再通过分析该晶圆样品的斜面图像得到该晶圆样品中元素的掺杂深度和掺杂浓度的分析结果图。由于该斜面图像是由该二次离子质谱仪直接用离子束轰击该晶圆样品的斜面后获取到的图像,该斜面图像包括该晶圆样品所有层的元素分布信息。因此与现有技术中随着离子溅射深度的增加,离子束冲击部位的侧壁的元素混合高能离子束冲击部位产生的元素的结果不同,本申请得到的斜面图像不存在元素混合干扰的问题,通过该斜面图像分析得到的元素分析结果,即元素掺杂深度和元素掺杂浓度更加准确。除此之外,本申请提供的该第一保护层和该第一掺杂层还可以解决晶圆样品的表面污染带来的元素分析结果不准确的问题。
在本申请的一个实施例中,该衬底包括第一部分和第二部分,其中该第一部分为单晶硅,该第二部分为掺杂单晶硅。该第一保护层形成在该掺杂单晶硅上。在获取该斜面图像后,主要是对该第二部分中掺杂的元素的掺杂深度和掺杂浓度进行分析。
请一并参见图4,该步骤S202包括:
S401,根据该斜面图像确定该第一保护层沿斜面方向的第一长度。
如图3所示,该斜面与该晶圆样品的侧壁相交的线的延伸方向即为该斜面方向,该侧壁所在的平面垂直于该衬底和该第一保护层所在的平面。该第一长度为图3中所示的L1。
S402,根据该斜面图像确定该掺杂单晶硅沿该斜面方向的第二长度。
该第二长度为图3中所示的L2。该第一长度和该第二长度均可以由二次离子质谱仪通过该斜面图像测量得到。
S403,获取该第一保护层沿垂直于该衬底方向的厚度,得到第一保护层厚度。
该第一保护层厚度可以由工作人员测量得到。
S404,根据该第一长度、该第二长度和该第一保护层厚度确定该掺杂深度。
该二次离子质谱仪中设置有计算程序,工作人员可以将该第一保护层厚度输入至该计算程序。该计算程序中设置有计算公式:D=L1/L2×L。其中,D代表该晶圆样品中元素的掺杂深度;L1代表该第一长度,L2代表该第二长度,L代表该第一保护层厚度。该二次 离子质谱仪中的该计算程序可以确定出该晶圆样品中元素的掺杂深度。
S405,根据该斜面图像确定该掺杂深度对应的掺杂浓度。
该斜面图像为二次电子像,该二次离子质谱仪可以根据该二次电子像确定该掺杂深度中每个深度数据对应的掺杂浓度的数据。
S406,根据该掺杂深度和该掺杂深度对应的掺杂浓度绘制分析结果图。
请一并参考图5,该二次离子质谱仪通过分析软件可以根据确定的该晶圆样品中元素的掺杂深度,和不同的掺杂深度对应的掺杂浓度绘制该分析结果图。该分析软件例如Win Image和Win Curve数据处理软件。该分析结果图的横坐标可以为元素的掺杂浓度,该分析结果图的纵坐标可以为元素的掺杂深度。该分析结果图以曲线的形式显示多个该掺杂深度的数据,以及与多个该掺杂深度的数据,以及多个该掺杂深度的数据和多个该掺杂浓度的数据之间的对应关系。通过该分析结果图也可以获知该晶圆样品中元素的掺杂浓度最大值对应的掺杂深度。若该斜面图像为工作人员选择的该斜面上的部分区域的图像,此处将该部分区域的图像定义为预设区域图像,该预设区域图像对应有预设深度区域,工作人员可以通过该分析结果图确定该预设深度区域对应的元素的掺杂浓度区域,即,在该分析结果图的纵坐标上选定该预设深度区域后,可以相应的确定该预设深度区域对应的元素的掺杂浓度区域。
在一个可选的实施例中,该分析结果图也可以替换为分析结果表格或者是其他的数据显示形式,只要可以显示该晶圆样品中元素的掺杂深度和对应的掺杂浓度即可。
请一并参见图6,在本申请的一个实施例中,该晶圆样品还包括第二保护层,该第二保护层形成在该第一掺杂层上。该第二保护层与该第一保护层的元素组成可以相同。该第一保护层和该第二保护层可以硅的化合物组成。该第二保护层的厚度可以根据实际需要选择,本申请不做限定。该第二保护层可以确保分析结果更加准确。
在本申请的一个实施例中,该第一掺杂层通过低压化学气相沉淀法形成在该第一保护层上,该第一掺杂层中包括硼元素。该第一掺杂层用于标记该第一保护层的表面的位置。如图5所示,该分析结果图可以通过显示该第一掺杂层的元素深度和浓度的标记线,显示该第一掺杂层标记的该第一保护层的表面的位置。该第一掺杂层还可以避免该第一保护层的表面被污染,进而提高该晶圆样品中元素的掺杂深度和对应的掺杂浓度的分析结果的准确性。该第一掺杂层中的硼元素还可以替换为其他元素,只要可以实现标记该第一保护层的表面位置的作用即可。
在本申请的一个实施例中,晶圆样品中和掺杂浓度是通过预设能量的离子束轰击产生。该预设能量可以由工作人员进行设置,设置的原则是提高该斜面图像的空间分辨率。
在本申请的一个实施例中,该斜面与该衬底所在平面之间的夹角的度数小于或等于10°。如图6所示,角a的度数小于或等于10°。该斜面越能完整得显示该晶圆样品的剖面,根据该斜面获取的该斜面图像越能完整、准确得反映该晶圆样品中元素的掺杂深度和掺杂浓度。
请参见图7,本申请提供一种晶圆样品分析装置10,包括:
处理模块11,用于获取该斜面的斜面图像并分析该斜面图像,得到该斜面图像内该晶圆样品中元素的掺杂深度和掺杂浓度;
该晶圆样品至少包括一该斜面,该斜面用于在同一面上暴露衬底、第一保护层和第一掺杂层,其中该第一保护层形成在该衬底上,该第一掺杂层形成在该第一保护层上。
该衬底包括第一部分和第二部分,其中该第一部分为单晶硅,该第二部分为掺杂单晶硅;该第一保护层形成在该掺杂单晶硅上。
该晶圆样品还包括第二保护层,该第二保护层形成在该第一掺杂层上。
该第一保护层和该第二保护层由硅的化合物组成。
该第一掺杂层通过低压化学气相沉淀法形成在该第一保护层上,该第一掺杂层中包括硼元素。
该晶圆样品中掺杂浓度是通过预设能量的离子束轰击产生。
该斜面与该衬底所在平面之间的夹角的度数小于或等于10°。
该处理模块具体用于:
根据该斜面图像确定该第一保护层沿斜面方向的第一长度;
根据该斜面图像确定该掺杂单晶硅沿该斜面方向的第二长度;
获取该第一保护层沿垂直于该衬底方向的厚度,得到第一保护层厚度;
根据该第一长度、该第二长度和该第一保护层厚度确定该掺杂深度;
根据该斜面图像确定该掺杂深度对应的掺杂浓度;
根据该掺杂深度和该掺杂深度对应的掺杂浓度绘制分析结果图。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求书指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求书来限制。

Claims (10)

  1. 一种晶圆样品分析方法,其特征在于,应用于二次离子质谱仪,所述方法包括:
    提供晶圆样品,所述晶圆样品至少包括一斜面,所述斜面用于在同一面上暴露衬底、第一保护层和第一掺杂层,其中所述第一保护层形成在所述衬底上,所述第一掺杂层形成在所述第一保护层上;
    获取所述斜面的斜面图像并分析所述斜面图像,得到所述斜面图像内所述晶圆样品中元素的掺杂深度和掺杂浓度。
  2. 根据权利要求1所述的方法,其特征在于,所述衬底包括第一部分和第二部分,其中所述第一部分为单晶硅,所述第二部分为掺杂单晶硅;所述第一保护层形成在所述掺杂单晶硅上。
  3. 根据权利要求2所述的方法,其特征在于,获取所述斜面的斜面图像并分析所述斜面图像,得到所述斜面图像内所述晶圆样品中元素的掺杂深度和掺杂浓度包括:
    根据所述斜面图像确定所述第一保护层沿斜面方向的第一长度;
    根据所述斜面图像确定所述掺杂单晶硅沿所述斜面方向的第二长度;
    获取所述第一保护层沿垂直于所述衬底方向的厚度,得到第一保护层厚度;
    根据所述第一长度、所述第二长度和所述第一保护层厚度确定所述掺杂深度;
    根据所述斜面图像确定所述掺杂深度对应的掺杂浓度;
    根据所述掺杂深度和所述掺杂深度对应的掺杂浓度绘制分析结果图。
  4. 根据权利要求2或3所述的方法,其特征在于,所述晶圆样品还包括第二保护层,所述第二保护层形成在所述第一掺杂层上。
  5. 根据权利要求4所述的方法,其特征在于,所述第一保护层和所述第二保护层由硅的化合物组成。
  6. 根据权利要求2或3所述的方法,其特征在于,所述第一掺杂层通过低压化学气相沉淀法形成在所述第一保护层上,所述第一掺杂层中包括硼元素。
  7. 根据权利要求2或3所述的方法,其特征在于,所述晶圆样品中掺杂浓度是通过预设能量的离子束轰击产生。
  8. 根据权利要求2或3所述的方法,其特征在于,所述斜面与所述衬底所在平面之间的夹角的度数小于或等于10°
  9. 一种晶圆样品分析装置,其特征在于,包括:
    处理模块,用于获取斜面的斜面图像并分析所述斜面图像,得到所述斜面图像内晶圆样品中元素的掺杂深度和掺杂浓度;
    所述晶圆样品至少包括一所述斜面,所述斜面用于在同一面上暴露衬底、第一保护层和第一掺杂层,其中所述第一保护层形成在所述衬底上,所述第一掺杂层形成在所述第一保护层上。
  10. 根据权利要求9所述的晶圆样品分析装置,其特征在于,所述衬底包括第一部分和第二部分,其中所述第一部分为单晶硅,所述第二部分为掺杂单晶硅;所述第一保护层形成在所述掺杂单晶硅上。
PCT/CN2021/106119 2020-09-28 2021-07-13 晶圆样品分析方法和装置 WO2022062583A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/597,614 US12033313B2 (en) 2020-09-28 2021-07-13 Wafer sample analysis method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011044823.6 2020-09-28
CN202011044823.6A CN114284163A (zh) 2020-09-28 2020-09-28 晶圆样品分析方法和装置

Publications (1)

Publication Number Publication Date
WO2022062583A1 true WO2022062583A1 (zh) 2022-03-31

Family

ID=80846195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/106119 WO2022062583A1 (zh) 2020-09-28 2021-07-13 晶圆样品分析方法和装置

Country Status (3)

Country Link
US (1) US12033313B2 (zh)
CN (1) CN114284163A (zh)
WO (1) WO2022062583A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0989820A (ja) * 1995-09-21 1997-04-04 Nec Corp 不純物プロファイルの分析方法
US20120280124A1 (en) * 2011-05-03 2012-11-08 International Business Machines Corporation Obtaining elemental concentration profile of sample
JP2015096817A (ja) * 2013-11-15 2015-05-21 富士通株式会社 二次イオン質量分析方法及び二次イオン質量分析装置
CN106290544A (zh) * 2015-05-22 2017-01-04 中芯国际集成电路制造(上海)有限公司 一种二次离子质谱分析方法
CN110402387A (zh) * 2017-04-04 2019-11-01 株式会社半导体能源研究所 有机半导体元件的分析方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2682483B2 (ja) * 1994-12-14 1997-11-26 日本電気株式会社 二次イオン質量分析方法
US6576894B1 (en) * 2001-06-25 2003-06-10 Taiwan Semiconductor Manufacturing Company Structure for FIB based microanalysis and method for manufacturing it
JP3720012B2 (ja) * 2002-10-25 2005-11-24 株式会社東芝 半導体ウェハの不純物濃度分布測定方法およびそのための装置
CN104810239B (zh) 2014-01-23 2017-08-29 中芯国际集成电路制造(上海)有限公司 一种扩展电阻测试样品的制备方法
CN105092324B (zh) * 2014-05-07 2018-03-20 中芯国际集成电路制造(上海)有限公司 一种FinFET鳍片掺杂浓度分布的测量方法和测量样品制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0989820A (ja) * 1995-09-21 1997-04-04 Nec Corp 不純物プロファイルの分析方法
US20120280124A1 (en) * 2011-05-03 2012-11-08 International Business Machines Corporation Obtaining elemental concentration profile of sample
JP2015096817A (ja) * 2013-11-15 2015-05-21 富士通株式会社 二次イオン質量分析方法及び二次イオン質量分析装置
CN106290544A (zh) * 2015-05-22 2017-01-04 中芯国际集成电路制造(上海)有限公司 一种二次离子质谱分析方法
CN110402387A (zh) * 2017-04-04 2019-11-01 株式会社半导体能源研究所 有机半导体元件的分析方法

Also Published As

Publication number Publication date
CN114284163A (zh) 2022-04-05
US20220318988A1 (en) 2022-10-06
US12033313B2 (en) 2024-07-09

Similar Documents

Publication Publication Date Title
US7649173B2 (en) Method of preparing a sample for transmission electron microscopy
US7372016B1 (en) Calibration standard for a dual beam (FIB/SEM) machine
JPH08220005A (ja) 微小異物の分析方法、分析装置およびこれらを用いる半導体素子もしくは液晶表示素子の製法
Cresswell et al. RM 8111: Development of a prototype linewidth standard
US7291849B1 (en) Calibration standard for transmission electron microscopy
WO2022062583A1 (zh) 晶圆样品分析方法和装置
JP2004022318A (ja) 透過型電子顕微鏡装置および試料解析方法
CN113324488B (zh) 一种厚度测量方法和系统
US10054557B2 (en) Method for measuring the mass thickness of a target sample for electron microscopy
Alvis et al. High-throughput, site-specific sample prep of ultra-thin TEM lamella for process metrology and failure analysis
US6248603B1 (en) Method of measuring dielectric layer thickness using SIMS
Chia et al. Recent advances in secondary ion mass spectrometry to characterize ultralow energy ion implants
US6603119B1 (en) Calibration method for quantitative elemental analysis
Buyuklimanli et al. Near-surface secondary-ion-mass-spectrometry analyses of plasma-based B ion implants in Si
CN114822676A (zh) 测量装置的校准方法、用于校准的标准样品及其制备方法
JPH04368767A (ja) 荷電粒子ビーム分析装置のビーム調整方法
Tomita et al. Ultra-shallow depth profiling with secondary ion mass spectrometry
US6677168B1 (en) Analysis of ion implant dosage
JP2682483B2 (ja) 二次イオン質量分析方法
CN101363780A (zh) 能够测量检验芯片上的粒子与缺陷数目的检测芯片的制造方法
Klement et al. Diffusion of oxygen in CdSe-photosensor arrays
JPH1083970A (ja) 半導体イオン注入工程のマスキングフォトレジストの厚み決定方法
US11145556B2 (en) Method and device for inspection of semiconductor samples
JP5391942B2 (ja) 二次イオン質量分析における一次イオンエネルギー補正方法
Kashiwagi et al. Bevel depth profiling by high-spatial-resolution sputtered neutral mass spectrometry with laser postionization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21870961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21870961

Country of ref document: EP

Kind code of ref document: A1