WO2022062203A1 - 多旋翼无人飞行器 - Google Patents

多旋翼无人飞行器 Download PDF

Info

Publication number
WO2022062203A1
WO2022062203A1 PCT/CN2020/135451 CN2020135451W WO2022062203A1 WO 2022062203 A1 WO2022062203 A1 WO 2022062203A1 CN 2020135451 W CN2020135451 W CN 2020135451W WO 2022062203 A1 WO2022062203 A1 WO 2022062203A1
Authority
WO
WIPO (PCT)
Prior art keywords
unmanned aerial
tripod
aerial vehicle
rotor unmanned
vehicle according
Prior art date
Application number
PCT/CN2020/135451
Other languages
English (en)
French (fr)
Inventor
刘祥
李齐
赵鹏飞
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Publication of WO2022062203A1 publication Critical patent/WO2022062203A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/02Undercarriages
    • B64C25/04Arrangement or disposition on aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/32Alighting gear characterised by elements which contact the ground or similar surface 
    • B64C25/58Arrangements or adaptations of shock-absorbers or springs
    • B64C25/62Spring shock-absorbers; Springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U60/00Undercarriages
    • B64U60/50Undercarriages with landing legs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters

Definitions

  • the present application relates to the technical field of unmanned aerial vehicles, and in particular, to a multi-rotor unmanned aerial vehicle.
  • the present application provides a multi-rotor unmanned aerial vehicle.
  • the flexible connection between the tripod and the arm not only does not affect the support function of the tripod, but also significantly improves the unstable rotational speed of the blades, reducing the reduction of the arm. Redesign has better effect.
  • the application provides a multi-rotor unmanned aerial vehicle, including:
  • a plurality of arm assemblies each of which includes an arm, one end of the arm is connected to the body, and the other end of the arm is used to support the power assembly of the multi-rotor unmanned aerial vehicle;
  • At least one of the machine arm assemblies further includes a foot stand, and the foot stand is flexibly connected to the machine arm.
  • a multi-rotor unmanned aerial vehicle is designed in the present application. Due to the flexible connection between the tripod and the arm, the supporting function of the tripod is not affected, but also significantly The unstable rotational speed of the blade is improved, which has a good effect on the weight reduction design of the machine arm.
  • FIG. 1 is a schematic structural diagram of a multi-rotor unmanned aerial vehicle provided by an embodiment of the present application
  • Fig. 2 is the structural representation of the multi-rotor unmanned aerial vehicle in Fig. 1 at another angle;
  • Fig. 3 is the structural representation of the arm assembly in Fig. 1;
  • Figure 4 is a schematic cross-sectional view of the arm assembly in Figure 1;
  • Fig. 5 is the enlarged schematic diagram of Fig. 4 at A;
  • Figure 6 is an exploded schematic view of the arm assembly in Figure 1;
  • Figure 7 is an exploded schematic view of the arm assembly in Figure 1 at another angle
  • Fig. 8 is the structural representation of the tripod in Fig. 1;
  • FIG. 9 is a schematic structural diagram of the tripod in FIG. 1 .
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, features defined as “first”, “second” may expressly or implicitly include one or more of said features. In the description of the present application, “plurality” means two or more, unless otherwise expressly and specifically defined.
  • the multi-rotor UAV of the present application belongs to the field of UAV technology. With the development and promotion of UAV technology, the multi-rotor UAV has been widely used in aerial photography, agriculture, forestry, surveying and mapping and other fields.
  • the aircraft is driven by the motor to drive the blades to rotate and generate thrust to achieve flight.
  • the multi-rotor UAV is flying at a high speed, when the rotational speed of the blades exceeds a given value, the oscillating motion of the blades and the torsional motion of the arm are coupled with each other, resulting in the rapid divergence of the vibration, and the gimbal screen is violent at light.
  • the present application provides a multi-rotor UAV, including a power assembly 300 , a body 200 and a plurality of arm assemblies 100 , each arm assembly 100 includes an arm 20 , and the arm 20 One end of the arm 20 is connected to the body 200, and the other end of the arm 20 is used to support the power assembly 300 of the multi-rotor UAV.
  • at least one arm assembly 100 further includes a tripod 10, and the tripod 10 is flexibly connected with the arm 20, which can reduce the impact force transmitted by the multi-rotor unmanned aerial vehicle when landing, so that the multi-rotor unmanned aerial vehicle can stabilize the drone. landing.
  • k 1 is related to the geometric shape of the blade 302, the density of the blade 302, and the moment of inertia J of the power assembly 300 on the arm 20 around the torsion axis; is the torsional modal frequency of the arm 20 .
  • the torsional modal frequency of the arm 20 directly determines the unstable rotational speed of the blade. Therefore, in order to ensure that the problem of instability does not occur at the designed maximum rotational speed of the blades 302 , it is necessary to try to increase the torsional modal frequency of the arm 20 .
  • D is the outer diameter of the circular tube of the arm 20
  • is the ratio of the inner diameter to the outer diameter of the arm 20
  • G is the material shear modulus of the arm 20
  • l is the length of the arm 20
  • J is the approximate expression of The formula is:
  • J m , J atm and J foot respectively represent the moment of inertia of the power assembly 300 , the arm 20 and the tripod 10 relative to the arm torsion axis, and J arm is negligible relative to J m and J foot .
  • the tripod 10 since the tripod 10 generally needs a built-in antenna to ensure the image transmission performance of the multi-rotor UAV, the structural design space of the tripod 10 is not large, that is, Jm can be regarded as a fixed value after the image transmission scheme is determined.
  • the present application utilizes the flexible connection between the tripod 10 and the arm 20 to eliminate the influence of J foot on the torsional mode of the arm, so as to solve the problem of loss of the multi-rotor UAV due to the coupling between the arm 20 and the blade 302 when the multi-rotor UAV is flying at high speed.
  • the power assembly 300 includes a motor 301 and a paddle 302 , the other end of the arm 20 is provided with a mounting portion 21 , and the motor 301 is mounted on the top of the mounting portion 21 .
  • the paddle 302 is mechanically coupled with the rotor of the motor 301 , and with the rotor of the motor 301 rotating together, the foot bracket 10 is disposed at the bottom of the mounting portion 21 .
  • the motor 301 when the motor 301 is an inner rotor motor, the motor 301 is provided with an output shaft 3011 , the paddle 302 is mounted on the output shaft 3011 , and the casing of the motor 301 is fixed on the mounting portion 21 , so that the paddle 302 can be driven on the output shaft 3011 Or, when the motor 301 is an outer rotor motor, the blades 302 are mounted on the casing of the motor rotor.
  • the shape of the mounting portion 21 is substantially the same as that of the motor 301 , the upper end of the mounting portion 21 is provided with a fixing portion 212 , and the lower end thereof is provided with a groove structure 211 , and the motor 301 is fixed on the fixing portion 212 .
  • the shape of the groove structure 211 is adapted to the structure of the foot frame 10 facing the mounting portion 21 , and the foot frame 10 is flexibly connected in the groove structure 211 .
  • the arm assembly 100 further includes a buffer member, and the buffer member is disposed between the tripod 10 and the mounting portion 21 to realize a flexible connection between the tripod 10 and the arm 20 .
  • the buffer member can be designed separately from the tripod 10 and then installed between the tripod 10 and the mounting portion 21 , or the buffer member can be integrally formed with the tripod 10 . After the tripod 10 is connected to the mounting portion 21 , the buffer member has One end face is in contact with the tripod 10 , and the other end face of the tripod 10 is in contact with the end face of the groove structure 211 . Since most of the buffers are made of elastic rubber materials, they can be pre-compressed and deformed along the axial direction of the mounting portion 21 to reduce the torsional stiffness of the tripod 10 relative to the arm, thereby eliminating the torsional mode of J foot on the arm. Impact.
  • the buffering member includes a connecting member 40 made of rubber material, wherein one end of the connecting member 40 is connected to the mounting portion 21 , and the other end of the connecting member 40 is connected to the tripod 10 .
  • the connecting member 40 has a cylindrical structure, and both ends of the connecting member 40 are provided with a bonding portion or a locking portion, the tripod 10 is provided with a tripod connecting portion, and the bottom of the groove structure 211 is connected with a tripod fixing portion.
  • the bonding or locking portion at one end of the connecting member 40 is connected to the tripod connecting portion, and the bonding or locking portion at the other end of the connecting member 40 is connected to the tripod fixing portion, so that the tripod 10 can pass through the connecting member 40 .
  • the bonding part or the locking part is connected with the mounting part 21 .
  • the buffer member is integrally injection-molded with the tripod 10 and/or the mounting portion 21; or the buffer member is connected with the mounting portion 21 and the tripod 10 by means of bonding, so that the tripod 10 can pass through the buffer
  • the component is flexibly connected to the mounting portion 21 .
  • the buffer member includes a spring member, and the two ends of the spring member are respectively connected to the mounted portion 21 and the tripod 10 .
  • the tripod 10 is L-shaped, and includes a limiting portion 12 and a support portion 11 connected to the limiting portion 12 .
  • the limiting portion 12 is in the shape of a disc, and its structure and size are adapted to the structure and size of the groove structure 211 , so that the limiting portion 12 can just be installed in the groove structure 211 , and the supporting portion 11 is used to support multiple
  • the spring member is arranged between the limiting part 12 and the groove structure 211, which can not only improve the buffering performance of the tripod 10 and ensure that the multi-rotor unmanned aerial vehicle can land smoothly;
  • the torsional stiffness of the frame 10 relative to the arm can eliminate the influence of J foot on the torsional mode of the arm.
  • the mounting portion 21 is provided with a first groove structure
  • the tripod 10 is provided with a second groove structure
  • both ends of the spring member are respectively installed in the first groove structure and the second groove structure.
  • the groove structure enables the tripod 10 to be connected to the mounting portion 21 .
  • the first groove structure is provided at the bottom end of the groove structure 211, and a threaded structure may be provided in the first groove structure and the second groove structure, so that one end of the spring member can be fixed by bonding or screwing.
  • the other end of the spring member is fixed to the second groove structure by bonding or other connection, the structure is simple, and the assembly is convenient.
  • the arm assembly 100 further includes a limiting member 30 , and the limiting member 30 is disposed on the mounting portion 21 of the tripod 10 and/or the arm 20 to limit the swinging range of the tripod 10 .
  • the limiting member 30 may be disposed on a limiting column on the mounting portion 21, and the tripod 10 is provided with a limiting hole matched with the limiting column, so that after the tripod 10 is installed on the mounting portion 21, the tripod 10 It can only move in the gap between the limit hole and the limit post; or the mounting part 21 is provided with a fixing hole, the tripod 10 is provided with a limit hole, and the limit piece 30 is connected to the fixing hole after passing through the limit hole .
  • the limiting member 30 includes a threaded fastener
  • the mounting portion 21 is provided with a screw hole
  • the tripod 10 is provided with a through hole 121
  • the threaded fastener passes through the through hole 121 and is connected to the screw holes to complete the connection between the tripod 10 and the mounting part 21 .
  • the threaded fasteners are inserted into the buffer member constituting the flexible connection between the tripod 10 and the machine arm 20 , wherein the buffer member is provided with a through hole 41 , and the through hole 41
  • the size of the threaded fastener is adapted to the outer diameter of the threaded fastener.
  • the outer side of the buffer member is provided with a clamping slot 42 for clamping on the flange of the tripod 10 .
  • the number of buffers, through holes 121 and threaded fasteners are all three, and the three buffers are correspondingly snapped onto the flange of each through hole 121 through the clamping slot 42, and the three threaded fasteners are Correspondingly, the through holes 41 of each buffer member are penetrated, so that the buffer member can be connected between the tripod 10 and the mounting portion 21 to form a balanced state.
  • the limiting member 30 is a protruding structure provided on the mounting portion 21 for matching with the groove on the tripod 10 ; or the limiting member 30 is a protrusion provided on the tripod 10
  • the protruding structure is used to cooperate with the groove on the mounting part 21 to limit the swinging range of the tripod 10 to a small range, ensuring that the tripod 10 acts as a multi-rotor unmanned aerial vehicle before flying or landing
  • the whole structure and function of the multi-rotor UAV are supported, and at the same time, the risk of the torsional modal frequency of the arm being greatly reduced due to the excessive size and/or inertia of the tripod 10 is avoided.
  • the multi-rotor UAV further includes a communication antenna assembly 50 for communicating with the ground terminal.
  • the communication antenna assembly 50 is installed in the receiving groove 13 formed by the tripod 10 .
  • the accommodating groove 13 is formed by the hollow holes of the limiting portion 12 and the supporting portion 11 , which can not only accommodate the communication antenna assembly 50 , but also cause the supporting portion 11 to be deformed by bending and recover quickly, which is beneficial to slow down multiple The impact force of the rotor unmanned aerial vehicle during landing.
  • the torsional stiffness of the tripod 10 relative to the machine arm can be reduced, so that the local modal frequency of the tripod 10 is lower than the minimum rotational speed of the blade 302, avoiding the need for the tripod 10 to rotate. cause resonance problems.
  • the adjustment can be made by increasing the size of the arm 20 ; when ⁇ critiacal is greater than the maximum rotational speed of the blade 302 , it can be ensured that ⁇ critiacal is greater than the maximum rotational speed of the blade 302 Under the premise of reducing the size of the arm 20, the weight reduction design of the multi-rotor unmanned aerial vehicle is carried out.
  • the inertia J m of the motor 301 is 2e-6kg*m2
  • the inertia J foot of the motor 301 is 3e-6kg*m2
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection connected, or integrally connected. It can be a mechanical connection or an electrical connection. It can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two elements or the interaction relationship between the two elements. For those of ordinary skill in the art, the specific meanings of the above terms in this application can be understood according to specific situations.
  • a first feature "on” or “under” a second feature may include direct contact between the first and second features, or may include the first and second features Not directly but through additional features between them.
  • the first feature being “above”, “over” and “above” the second feature includes the first feature being directly above and obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature is “below”, “below” and “below” the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature has a lower level than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Toys (AREA)
  • Details Of Aerials (AREA)

Abstract

一种多旋翼无人飞行器,包括机体和多个机臂组件(100),每个机臂组件(100)包括机臂(20),机臂(20)的一端与机体连接,机臂(20)的另一端用于支撑多旋翼无人飞行器的动力组件;其中,至少一个机臂组件(100)还包括脚架(10),脚架(10)与机臂(20)柔性连接。

Description

多旋翼无人飞行器 技术领域
本申请涉及无人机技术领域,尤其涉及一种多旋翼无人飞行器。
背景技术
多旋翼无人飞行器在高速飞行状态下,在桨叶的转速超过给定值时,桨叶的摆振运动与机臂的扭转运动相互耦合,导致振动快速发散,轻则导致多旋翼无人飞行器上的云台画面剧烈抖动或多旋翼无人飞行器的控制效果变差,重则导致多旋翼无人飞行器直接失控炸机。
发明内容
本申请提供了一种多旋翼无人飞行器,通过脚架与机臂的柔性连接,不仅不会影响到脚架的支撑功能,而且也显著提升了桨叶的失稳转速,对于机臂的减重设计具有较好的效果。
本申请提供了一种多旋翼无人飞行器,包括:
机体;
多个机臂组件,每个所述机臂组件包括机臂,所述机臂的一端与所述机体连接,所述机臂的另一端用于支撑所述多旋翼无人飞行器的动力组件;
其中,至少一个所述机臂组件还包括脚架,所述脚架与所述机臂柔性连接。
本申请实施例提供的技术方案可以包括以下有益效果:本申请设计了一种多旋翼无人飞行器,由于脚架与机臂的柔性连接,因此,既可以不影响脚架的支撑功能,也显著提升了桨叶的失稳转速,对于机臂的减重设计具有较好的效果。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例提供的一种多旋翼无人飞行器的结构示意图;
图2是图1中的多旋翼无人飞行器在另一角度的结构示意图;
图3是图1中的机臂组件的结构示意图;
图4是图1中的机臂组件的剖面示意图;
图5是图4在A处的放大示意图;
图6是图1中的机臂组件的分解示意图;
图7是图1中的机臂组件在另一个角度的分解示意图;
图8是图1中的脚架的结构示意图;
图9是图1中的脚架的结构示意图。
附图标记说明:
100、机臂组件;200、机体;300、动力组件;301、电机;302、桨叶;
10、脚架;11、支撑部;12、限位部;121、通孔;13、收容槽;
20、机臂;21、安装部;211、凹槽结构;212、固定部;
30、限位件;
40、连接件;41、穿设孔;42、卡槽;
50、天线组件。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、 “右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本申请的多旋翼无人飞行器属于无人机技术领域,随着无人机技术的发展与推广,多旋翼无人飞行器已被广泛应用于航拍、农业、林业、测绘等领域,多旋翼无人飞行器是通过电机驱动桨叶转动并产生的推力实现飞行。但是,多旋翼无人飞行器在高速飞行状态下,桨叶的转速超过给定值时,桨叶的摆振运动与机臂的扭转运动相互耦合,导致振动快速发散,轻则导致云台画面剧烈抖动、飞机控制效果变差,重则导致飞机直接失控炸机。
如图1至图9所示,本申请提供了一种多旋翼无人飞行器,包括动力组件300、机体200和多个机臂组件100,每个机臂组件100包括机臂20,机臂20的一端与机体200连接,机臂20的另一端用于支撑多旋翼无人飞行器的动力组件300。其中,至少一个机臂组件100还包括脚架10,脚架10与机臂20柔性连接,能够减缓多旋翼无人飞行器在着陆时所传递冲击力,使得多旋翼无人飞行器能够无人机平稳降落。
应当说明的是,动力组件300上的桨叶302在高速转动时,桨叶302会与机体200、机臂20及脚架10之间发生耦合运动,当转速达到临界转速时,振动会迅速发散失控,造成严重后果。
示例性的,以两叶折叠桨为例,假设机臂20绕X轴和Y轴的扭转模态频率一致,则桨叶302失稳临界转速的近似计算公式为:
Figure PCTCN2020135451-appb-000001
其中,k 1与桨叶302的几何形状、桨叶302的密度、机臂20上动力组件300绕扭转轴的转动惯量J相关;
Figure PCTCN2020135451-appb-000002
为机臂20的扭转模态频率。
从上式可以看出,机臂20的扭转模态频率直接决定着桨叶的失稳转速。因此,若要保证在桨叶302的设计最大转速下不出现失稳问题,必须设法提高机臂20的扭转模态频率。
假设多旋翼无人飞行器的机臂20为薄壁圆管结构,该机臂20的扭转模态频率的计算公式为:
Figure PCTCN2020135451-appb-000003
其中,D为机臂20的圆管外径,α为机臂20的内径与外径的比值,G为机臂20的材料剪切模量,l为机臂20的长度,J的近似表达式为:
J=J m+J arm+J foot≈J m+J foot  (3)
其中,J m、J atm和J foot分别代表动力组件300、机臂20和脚架10相对机臂扭转轴的转动惯量,J arm相对J m和J foot为可忽略不计。另外,由于脚架10一般需要内置天线以保证多旋翼无人飞行器的图传性能,因此脚架10的结构设计空间不大,即J m在图传方案确定后可视为固定值。
根据公式(1)、公式(2)和公式(3)不难得出:
Figure PCTCN2020135451-appb-000004
由公式(4)不难看出,在机臂20的材料、脚架10的模型、桨叶的外形和动力组件300的电机确定下,若要提升临界转速,就必须要增大机臂20的外径D或增大壁厚,即降低机臂内径与外径的比值α。
但是,增加机臂20的外径或降低机臂20的内径与外径的比值α,会随之带来是多旋翼无人飞行器的重量提升,从而影响多旋翼无人飞行器的飞行性能。而本申请利用脚架10与机臂20柔性连接,消除J foot对机臂扭转模态的影响,从而能够解决多旋翼无人飞行器在高速飞行下,机臂20与桨叶302耦合而导致失稳振动的问题,不需要增加增大机臂20的外径D或增大壁厚,更不需要将桨叶302的转速控制在临界转速之下,避免了因限制桨叶的转速而带来的机动性损失。
在一个可选的实施方式中,如图1和图2所示,动力组件300包括电机301 和桨叶302,机臂20的另一端设有安装部21,电机301安装在安装部21的顶部,桨叶302与电机301的转子机械耦合,并且随着电机301的转子一起转动,脚架10设置在安装部21的底部。例如,电机301为内转子电机时,电机301上设有输出轴3011,桨叶302安装在输出轴3011上,电机301的外壳固定在安装部21上,使得桨叶302能够在输出轴3011驱动下而转动;或者,电机301为外转子电机时,桨叶302则安装在电机转子的外壳上。
示例性的,如图3至图7所示,安装部21的形状与电机301的外形大致相同,其上端设有固定部212,其下端设有凹槽结构211,电机301固定在固定部212上,凹槽结构211的形状与脚架10朝向安装部21的结构相适配,脚架10柔性连接在凹槽结构211内。
在一个可选的实施方式中,机臂组件100还包括缓冲件,缓冲件设置在脚架10与安装部21之间,以实现脚架10与机臂20柔性连接。
其中,缓冲件可以与脚架10分体设计后安装在脚架10与安装部21之间,缓冲件也可以与脚架10一体成型,在脚架10连接在安装部21后,缓冲件的一端面与脚架10接触,脚架10的另一端面与凹槽结构211的端面接触。由于缓冲件大多采用弹性橡胶材料制成,能够沿着安装部21的轴向方向进行预压缩形成变形,以降低脚架10相对机臂的扭转刚度,从而可以消除J foot对机臂扭转模态的影响。
在一个可选的实施方式中,缓冲件包括采用橡胶材料制成的连接件40,其中,连接件40的一端与安装部21连接,连接件40的另一端与脚架10连接。
示例性的,连接件40呈柱形结构,其两端均设有粘接部或锁固部,脚架10上设有脚架连接部,凹槽结构211的底部连接有脚架固定部。其中,连接件40一端的粘接部或锁固部连接至脚架连接部,连接件40另一端的粘接部或锁固部连接至脚架固定部,使得脚架10能够通过连接件40的粘接部或锁固部与安装部21连接。
在一个可选的实施方式中,缓冲件与脚架10和/或安装部21一体注塑成型;或缓冲件通过粘接的方式与安装部21及脚架10连接,使得脚架10能够通过缓冲件与安装部21柔性连接。
在一个可选的实施方式中,缓冲件包括弹簧件,弹簧件的两端部分别与所安装部21和脚架10连接。
示例性的,如图5至图8所示,脚架10呈L形,其包括限位部12和连接在限位部12上的支撑部11。其中,限位部12呈圆盘状,其结构及大小与凹槽结构211的结构及大小相适配,使得限位部12刚好能够安装在凹槽结构211内,支撑部11用于支撑多旋翼无人飞行器的整机结构,弹簧件设置在限位部12与凹槽结构211之间,不仅能够提高脚架10的缓冲性能,保证多旋翼无人飞行器能够平稳落地;而且还可以降低脚架10相对机臂的扭转刚度,消除J foot对机臂扭转模态的影响。
在一个可选的实施方式中,安装部21上设有第一凹槽结构,脚架10上设有第二凹槽结构,弹簧件的两端分别安装在第一凹槽结构与第二凹槽结构上,使得脚架10能够与安装部21连接。
示例性的,第一凹槽结构设置在凹槽结构211的底端,第一凹槽结构和第二凹槽结构内可以设置有螺纹结构,使得弹簧件的一端可以通过粘接或者螺纹连接固定在第一凹槽结构,弹簧件的另一端通过粘接或者另外连接固定在第二凹槽结构,结构简单,方便装配。
在一个可选的实施方式中,机臂组件100还包括限位件30,限位件30设置在脚架10和/或机臂20的安装部21上,用于限制脚架10的摆动幅度。
示例性的,限位件30可以设置在安装部21上的限位柱,脚架10上设有与限位柱配合的限位孔,使得脚架10安装在安装部21后,脚架10只能在限位孔与限位柱之间的间隙进行活动;或者安装部21上设有固定孔,脚架10上设有限位孔,限位件30穿过限位孔后连接至固定孔。
在一个可选的实施方式中,限位件30包括螺纹紧固件,安装部21上设有螺孔,脚架10上设有通孔121,螺纹紧固件穿过通孔121后连接至螺孔,以完成脚架10与安装部21的连接。
示例性的,如图6至图9所示螺纹紧固件穿设在构成脚架10与机臂20柔性连接的缓冲件中,其中,缓冲件上设有穿设孔41,穿设孔41的大小与螺纹紧固件的外径相适配,在缓冲件套装在脚架10后,螺纹紧固件穿过穿设孔41与机臂20连接,或者螺纹紧固件依次穿过脚架10及穿设孔41后与机臂20连接,使得缓冲件能够设置在脚架10与机臂20之间。
在一个可选的实施方式中,缓冲件的外侧设有卡槽42,用于卡接在脚架10的凸缘上。
示例性的,缓冲件、通孔121和螺纹紧固件的数量均为三个,三个缓冲件通过卡槽42对应卡接在每个通孔121的凸缘上,三个螺纹紧固件对应穿设在每个缓冲件的穿设孔41中,使得缓冲件能够连接在脚架10与所述安装部21之间形成一个平衡状态。
在一个可选的实施方式中,限位件30为设置在安装部21上的凸起结构,用于与脚架10上的凹槽配合;或限位件30为设置在脚架10上的凸起结构,用于与安装部21上的凹槽配合,以将脚架10的摆动幅度被限制在一个较小的范围内,保证了脚架10作为多旋翼无人飞行器在飞前或落地后,支撑多旋翼无人飞行器的整机结构功能,同时又避免了脚架10的尺寸和/或惯量过大,导致的机臂扭转模态频率大幅降低的风险。
在一个可选的实施方式中,多旋翼无人飞行器还包括用于与地面端通信连接的通信天线组件50,通信天线组件50安装在脚架10形成的收容槽13内。其中,收容槽13由限位部12及支撑部11的镂空孔洞形成,这样不仅可以容纳通信天线组件50,而且还可以使得支撑部11会产生弯折的形变,并迅速恢复,有利于减缓多旋翼无人飞行器降落时的冲击力。
采用以上技术方案后,由于脚架10与机臂20柔性连接,能够降低脚架10相对机臂的扭转刚度,使得脚架10局部模态频率低于桨叶302的最低转速,避免脚架10引起的共振问题。
其中,若临界转速Ω critiacal小于桨叶302的最大转速,则可以通过增加机臂20的尺寸进行调整;当Ω critiacal大于桨叶302的最大转速,可以在保证Ω critiacal大于桨叶302的最大转速的前提下,通过降低机臂20的尺寸以进行多旋翼无人飞行器的减重设计。
例如,假设电机301的惯量J m为为2e-6kg*m2,和电机301的惯量J foot为3e-6kg*m2,在给定机臂扭转模态频率约束下,脚架10与安装部21刚性连接的方案和本申请采用柔性连接的方案,通过计算可以得到两种方案中机臂20的重量比为m1/m2=1.58,即机臂20可减重36.7%。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接。可以是机械连接,也可以是电连接。可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件 的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
上文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,上文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施方式,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施方式进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (23)

  1. 一种多旋翼无人飞行器,其特征在于,包括:
    机体;
    多个机臂组件,每个所述机臂组件包括机臂,所述机臂的一端与所述机体连接,所述机臂的另一端用于支撑所述多旋翼无人飞行器的动力组件;
    其中,至少一个所述机臂组件还包括脚架,所述脚架与所述机臂柔性连接。
  2. 根据权利要求1所述的多旋翼无人飞行器,其特征在于,所述机臂的另一端设有安装部,所述动力组件包括:
    电机,安装在所述安装部的顶部;
    桨叶,与所述电机的转子机械耦合,并且随着所述电机的转子一起转动;
    其中,所述脚架设置在所述安装部的底部。
  3. 根据权利要求2所述的多旋翼无人飞行器,其特征在于,所述安装部的形状与电机的外形大致相同。
  4. 根据权利要求2所述的多旋翼无人飞行器,其特征在于,所述机臂组件还包括:
    缓冲件,所述缓冲件设置在所述脚架与所述安装部之间,以实现所述脚架与所述机臂柔性连接。
  5. 根据权利要求4所述的多旋翼无人飞行器,其特征在于,所述缓冲件包括采用橡胶材料制成的连接件,所述连接件的一端与所述安装部连接,所述连接件的另一端与所述脚架连接。
  6. 根据权利要求5所述的多旋翼无人飞行器,其特征在于,所述连接件呈柱形结构,其两端均设有粘接部或锁固部,所述脚架上设有脚架连接部,所述凹槽结构的底部连接有脚架固定部,所述连接件一端的粘接部或锁固部连接至脚架连接部,所述连接件另一端的粘接部或锁固部连接至脚架固定部。
  7. 根据权利要求5所述的多旋翼无人飞行器,其特征在于,所述缓冲件与所述脚架和/或安装部一体注塑成型;或所述缓冲件通过粘接的方式与所述安装部及所述脚架连接。
  8. 根据权利要求4所述的多旋翼无人飞行器,其特征在于,所述缓冲件包 括弹簧件,所述弹簧件的两端部分别与所述安装部和所述脚架连接。
  9. 根据权利要求8所述的多旋翼无人飞行器,其特征在于,所述安装部上设有第一凹槽结构,所述脚架上设有第二凹槽结构,所述弹簧件的两端分别安装在所述第一凹槽结构与第二凹槽结构上。
  10. 根据权利要求9所述的多旋翼无人飞行器,其特征在于,所述第一凹槽结构设置在所述安装部下端的凹槽结构上,所述第一凹槽结构和所述第二凹槽结构内设置有螺纹结构,所述弹簧件与所述螺纹结构螺纹连接。
  11. 根据权利要求10所述的多旋翼无人飞行器,其特征在于,所述脚架包括限位部和支撑部,所述支撑部连接在所述限位部上形成L形结构。
  12. 根据权利要求11所述的多旋翼无人飞行器,其特征在于,所述限位部的结构及大小与所述凹槽结构的结构及大小相适配,使得所述限位部能够安装在所述凹槽结构内。
  13. 根据权利要求1至12中任一项所述的多旋翼无人飞行器,其特征在于,所述机臂组件还包括:
    限位件,所述限位件设置在所述脚架和/或所述机臂的安装部上,用于限制所述脚架的摆动幅度。
  14. 根据权利要求13所述的多旋翼无人飞行器,其特征在于,所述限位件为设置在安装部上的限位柱,所述脚架上设有与限位柱配合的限位孔,使得所述脚架安装在安装部后,所述脚架在限位孔与限位柱之间的间隙活动;或,
    所述安装部上设有固定孔,所述脚架上设有限位孔,所述限位件穿过限位孔后连接至固定孔。
  15. 根据权利要求14所述的多旋翼无人飞行器,其特征在于,所述限位件包括螺纹紧固件,所述安装部上设有螺孔,所述脚架上设有通孔,所述螺纹紧固件穿过所述通孔后连接至所述螺孔。
  16. 根据权利要求15所述的多旋翼无人飞行器,其特征在于,所述螺纹紧固件穿设在构成所述脚架与所述机臂柔性连接的缓冲件中。
  17. 根据权利要求16所述的多旋翼无人飞行器,其特征在于,所述缓冲件上设有穿设孔,所述穿设孔的大小与所述螺纹紧固件的外径相适配,在所述缓冲件套装在脚架后,所述螺纹紧固件穿过所述穿设孔与机臂连接。
  18. 根据权利要求16所述的多旋翼无人飞行器,其特征在于,所述缓冲件 的外侧设有卡槽,用于卡接在所述脚架的凸缘上。
  19. 根据权利要求18所述的多旋翼无人飞行器,其特征在于,所述缓冲件、通孔和螺纹紧固件的数量均为三个,三个所述缓冲件通过所述卡槽对应卡接在每个所述通孔的凸缘上,三个所述螺纹紧固件对应穿设在每个所述缓冲件的穿设孔中。
  20. 根据权利要求18所述的多旋翼无人飞行器,其特征在于,所述缓冲件和螺纹紧固件均为多个,多个所述缓冲件分别通过多个所述螺纹紧固件对应连接在所述脚架与所述安装部之间。
  21. 根据权利要求16所述的多旋翼无人飞行器,其特征在于,所述安装部上设有凹槽结构,所述凹槽结构的形状与所述脚架朝向所述安装部的结构相适配。
  22. 根据权利要求13所述的多旋翼无人飞行器,其特征在于,所述限位件为设置在所述安装部上的凸起结构,用于与所述脚架上的凹槽配合;或
    所述限位件为设置在所述脚架上的凸起结构,用于与所述安装部上的凹槽配合。
  23. 根据权利要求1所述的多旋翼无人飞行器,其特征在于,所述多旋翼无人飞行器还包括用于与地面端通信连接的通信天线组件,所述通信天线组件安装在所述脚架形成的收容槽内。
PCT/CN2020/135451 2020-09-24 2020-12-10 多旋翼无人飞行器 WO2022062203A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202022145813.3 2020-09-24
CN202022145813.3U CN213677140U (zh) 2020-09-24 2020-09-24 多旋翼无人飞行器

Publications (1)

Publication Number Publication Date
WO2022062203A1 true WO2022062203A1 (zh) 2022-03-31

Family

ID=76750761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135451 WO2022062203A1 (zh) 2020-09-24 2020-12-10 多旋翼无人飞行器

Country Status (2)

Country Link
CN (1) CN213677140U (zh)
WO (1) WO2022062203A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107512389A (zh) * 2017-09-29 2017-12-26 成都鑫晨航空科技有限公司 一种带专业脚架的航拍器
WO2018042610A1 (ja) * 2016-09-02 2018-03-08 株式会社プロドローン 無人航空機
CN108791826A (zh) * 2018-05-28 2018-11-13 芜湖千创智能科技有限公司 一种可以调整支架高度的植保无人机
CN208198804U (zh) * 2018-05-14 2018-12-07 西安工业大学 一种具有降落缓冲功能的无人机
CN209410317U (zh) * 2018-11-21 2019-09-20 南京邮电大学 一种四旋翼无人机机架
CN211253004U (zh) * 2020-01-02 2020-08-14 杜菊芬 一种地理信息勘测用的无人机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018042610A1 (ja) * 2016-09-02 2018-03-08 株式会社プロドローン 無人航空機
CN107512389A (zh) * 2017-09-29 2017-12-26 成都鑫晨航空科技有限公司 一种带专业脚架的航拍器
CN208198804U (zh) * 2018-05-14 2018-12-07 西安工业大学 一种具有降落缓冲功能的无人机
CN108791826A (zh) * 2018-05-28 2018-11-13 芜湖千创智能科技有限公司 一种可以调整支架高度的植保无人机
CN209410317U (zh) * 2018-11-21 2019-09-20 南京邮电大学 一种四旋翼无人机机架
CN211253004U (zh) * 2020-01-02 2020-08-14 杜菊芬 一种地理信息勘测用的无人机

Also Published As

Publication number Publication date
CN213677140U (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
US10805540B2 (en) Quadcopter with pitched propeller configuration
RU2589534C2 (ru) Платформа для использования в малоразмерных беспилотных летательных аппаратах
CN202295294U (zh) 无人飞行器用云台
NO20160105A1 (en) Resonant Operating Rotor Assembly
CN105691589A (zh) 无人飞行器
US11254444B2 (en) Gimbal, photographing apparatus having same, and unmanned aerial vehicle
WO2020119731A1 (zh) 机身平衡无人机及其控制方法
WO2019007101A1 (zh) 飞行器、倾转驱动机构及其控制方法
WO2022062203A1 (zh) 多旋翼无人飞行器
US10870477B1 (en) Foldable arm mechanism for rotary wing aircraft
US20200317325A1 (en) Folding propeller, power component and unmanned aerial vehicle
JP7244084B2 (ja) 電子部品及び当該電子部品を取り付けた飛行体
WO2019127045A1 (zh) 旋翼系统及无人飞行器
CN213502889U (zh) 一种涵道装置及无人机
WO2020156078A1 (zh) 一种倾转旋翼无人机及其机翼组件
US20200262548A1 (en) Low-vibration drone
CN108891592B (zh) 一种用于多功能小型无人飞行器的带倾转机构动力装置
CN110641680A (zh) 可折叠多旋翼无人机
CN110770124A (zh) 多旋翼飞行器及多旋翼飞行器的控制方法
US10457388B2 (en) Rotor assembly with high lock-number blades
WO2021143449A1 (zh) 无人机脚架及无人机
CN111846220B (zh) 扑翼飞行器
CN113443155A (zh) 一种三轴光电吊舱
CN112644701A (zh) 一种横列式双旋翼无人机
CN214729742U (zh) 一种具有航空摄影测量功能的无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955045

Country of ref document: EP

Kind code of ref document: A1