WO2022062059A1 - 纳米压印工艺监测装置、方法和纳米压印设备 - Google Patents

纳米压印工艺监测装置、方法和纳米压印设备 Download PDF

Info

Publication number
WO2022062059A1
WO2022062059A1 PCT/CN2020/124753 CN2020124753W WO2022062059A1 WO 2022062059 A1 WO2022062059 A1 WO 2022062059A1 CN 2020124753 W CN2020124753 W CN 2020124753W WO 2022062059 A1 WO2022062059 A1 WO 2022062059A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring
wafer
optical
tested
positions
Prior art date
Application number
PCT/CN2020/124753
Other languages
English (en)
French (fr)
Inventor
臧法珩
赵东峰
李琨
董立超
杜凯凯
艾立夫
王喆
饶轶
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2022062059A1 publication Critical patent/WO2022062059A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping

Definitions

  • the invention relates to the field of process monitoring, in particular to a nano-imprint process monitoring device and method and nano-imprint equipment.
  • the monitoring of large-area wafer nano-imprinting process is mainly based on indirect offline monitoring methods, which cannot provide real-time process monitoring in nano-imprint mass production of large-area wafers.
  • how to conveniently realize the monitoring and traversal of the nanoimprint process on a large-area wafer is one of the technical difficulties in the online real-time monitoring of the nanoimprint process.
  • the main purpose of the present invention is to provide a nano-imprint process monitoring device, which aims to conveniently realize all-round real-time process monitoring of large-area wafers.
  • a nanoimprint process monitoring device proposed by the present invention includes a movable stage, a fixed optical monitoring stage, and a processor electrically connected to the optical monitoring stage.
  • the wafer to be tested has a plurality of monitoring positions, the monitoring positions are provided with a PCM module, and the optical monitoring stage is used to generate a directional monitoring optical path;
  • the stage on which the wafer to be tested is installed moves, so that the PCM modules at multiple monitoring positions on the wafer to be tested are moved to the directional monitoring optical path of the optical monitoring stage one by one, so that the optical monitoring stage can be Traverse the plurality of monitoring positions, and the optical monitoring station obtains the monitoring light information respectively fed back by the PCM modules at the plurality of monitoring positions one by one; the processor obtains a plurality of the monitoring light information from the optical monitoring station information, and judge whether the plurality of monitoring positions on the wafer to be tested are qualified according to the plurality of monitoring light information.
  • the stage is moved by at least one of rotation, translation and lift, so that the PCM modules at multiple monitoring positions on the wafer to be tested are moved to the orientation monitoring of the optical monitoring stage one by one. light road.
  • a single side of the wafer or both sides of the wafer to be tested has a chip area and a non-functional area surrounding the outer periphery of the chip area, and the chip area is provided with a plurality of chip units;
  • Each chip unit is provided with one of the PCM modules to form one of the monitoring positions at each chip unit.
  • a plurality of the PCM modules are disposed on the non-functional area, so as to form a plurality of the monitoring positions on the non-functional area.
  • a plurality of the PCM modules on the non-functional area are evenly spaced in the circumferential direction of the wafer to be tested.
  • the PCM module is a nano-grating.
  • the nanoimprint process monitoring device further includes an alarm module, configured to issue a warning when it is determined that the monitoring position is unqualified.
  • the optical monitoring station includes a light source and an imaging module
  • the light source is used for directionally sending monitoring light to form the directional monitoring light path
  • the imaging module is used for receiving the monitoring light information
  • the monitoring light The information includes reflected light spots formed by the reflected light of the PCM module.
  • the present invention also provides a method for monitoring a nano-imprinting process, and the method for monitoring a nano-imprinting process includes the following steps:
  • the stage on which the wafer to be tested is installed is moved, so that the PCM modules at multiple monitoring positions on the wafer to be tested are moved to the directional monitoring optical path of the fixed optical monitoring table one by one, so that the optical monitoring table can be traversing the multiple monitoring positions, and the optical monitoring station acquires the monitoring light information respectively fed back by the PCM modules at the multiple monitoring positions one by one;
  • the processor acquires a plurality of pieces of the monitoring light information from the optical monitoring station, and judges whether the plurality of the monitoring positions on the wafer to be tested are qualified according to the plurality of pieces of the monitoring light information.
  • the stage is moved by at least one of rotation, translation and lift, so that the PCM modules in multiple monitoring positions on the wafer to be tested are moved to the desired location one by one. on the directional monitoring optical path of the optical monitoring station.
  • a single side of the wafer or both sides of the wafer to be tested has a chip area and a non-functional area surrounding the outer periphery of the chip area, and the chip area is provided with a plurality of chip units;
  • Each chip unit is provided with one of the PCM modules to form one of the monitoring positions at each chip unit.
  • a plurality of the PCM modules are disposed on the non-functional area, so as to form a plurality of the monitoring positions on the non-functional area.
  • the nanoimprint process monitoring method further includes the steps:
  • the alarm module issues a warning.
  • the light source of the optical monitoring station is used for directionally sending monitoring light to form the directional monitoring light path
  • the imaging module of the optical monitoring station is used for receiving the monitoring light information
  • the monitoring light information includes reflected light spots formed by the reflected light of the PCM module.
  • the present invention also provides a nano-imprinting device, including the aforementioned nano-imprinting process monitoring device.
  • the technical solution of the present invention is to move the stage on which the wafer to be tested is installed, and when the optical monitoring stage is fixed, multiple monitoring positions on the wafer to be tested can traverse the directional monitoring optical path of the optical monitoring stage, thereby It is convenient to realize all-round real-time monitoring of large-area wafers; in addition, the structure of the PCM module can be monitored by emitting a directional optical path through the optical monitoring station, which can indirectly realize the non-destructive and non-contact real-time process monitoring of the wafer to be tested. .
  • FIG. 1 is a schematic structural diagram of an embodiment of a nanoimprint process monitoring device according to the present invention
  • FIG. 2 is a schematic structural diagram of an embodiment of a wafer to be tested
  • FIG. 3 is another schematic structural diagram of an embodiment of the wafer to be tested
  • FIG. 4 is a schematic flowchart of an embodiment of a nanoimprint process monitoring method according to the present invention.
  • label name label name 100 Optical monitoring station 110 light source 120 imaging module 130 Reflector
  • the invention provides a nano-imprint process monitoring device.
  • the nanoimprint process monitoring device includes a movable stage, a fixed optical monitoring stage 100 , and a processor electrically connected to the optical monitoring stage 100 .
  • the stage is used to install the wafer to be tested 200, the wafer to be tested 200 has a plurality of monitoring positions, the monitoring position is provided with a PCM module 201, and the optical monitoring table 100 is used to generate a directional monitoring optical path;
  • the stage on which the wafer to be tested 200 is installed is moved, so that the PCM (Process Control Monitor) modules 201 at multiple monitoring positions on the wafer to be tested 200 are moved to the directional monitoring optical path of the optical monitoring stage 100 one by one , so that the optical monitoring station 100 can traverse multiple monitoring positions, and the optical monitoring station 100 obtains the monitoring light information fed back by the PCM modules 201 at the multiple monitoring positions one by one; the processor obtains a plurality of monitoring light information from the optical monitoring station 100 , and according to the plurality of monitoring light information, it is judged whether the plurality of monitoring positions on the wafer 200 to be tested are qualified.
  • PCM Process Control Monitor
  • the traversing monitoring of the wafer to be tested 200 can be realized when the optical monitoring table 100 is fixed.
  • the optical monitoring stage 100 monitors a monitoring position on the wafer 200 to be tested, and the directional monitoring optical path emitted by the optical monitoring stage 100 can reach the PCM module 201 at the monitoring position, Then, the PCM module 201 is fed back to the optical monitoring station 100, and the optical monitoring station 100 obtains the monitoring light information of the monitoring position and transmits it to the processor.
  • the nanoimprint process monitoring device completes the process on the wafer 200 to be tested. monitoring of a monitoring location. Thereafter, the nanoimprint process monitoring device repeats the process to monitor the remaining monitoring positions on the wafer 200 under test one by one until the directional monitoring optical path of the optical monitoring stage 100 traverses all monitoring positions on the wafer 200 under test.
  • the processor detects a defect in a monitoring position, it can prompt the technician to review the defective product in time, so as to quickly find the problem that causes the defect, reduce the impact of the problem on production, and improve the efficiency of the nanoimprint process. and yield.
  • the processor may also obtain the monitoring light information of the optical monitoring station 100 one by one, and after the monitoring of all monitoring positions of the wafer 200 to be tested is completed, the processor analyzes all the monitoring light information, and judges Whether all monitoring positions of the wafer 200 to be tested are qualified. In this way, the conditions of all the locations to be tested on the wafer 200 to be tested can be comprehensively reflected to the technicians for more targeted review.
  • the reason why the optical monitoring station 100 can monitor any monitoring position of the wafer 200 to be tested is that the mirror image structure of the product and the mirror image structure of the PCM module 201 are integrated on the nano imprint template.
  • the nano-imprint template is imprinted on the wafer 200 to be tested, so that the PCM module 201 and the product are formed together on the wafer 200 to be tested.
  • the structure of the PCM module 201 can reflect the quality of the nano-suppression process at the monitoring location. In this way, by integrating the mirror image structure of a specific PCM module 201 on different nanoimprint templates, the optical monitoring station 100 only needs to monitor the specific PCM module 201 to indirectly monitor different products.
  • the directional monitoring light path when the directional monitoring light path reaches the PCM module, an incident angle will be formed on its surface, and the directional monitoring light path only refers to the monitoring light path whose angle and relative position to the optical monitoring station 100 remain unchanged.
  • the incident position on the PCM module 201 and the structural difference between each PCM module 201 will affect the incident angle. Different incident angles will cause the PCM module 201 to feed back different monitoring light information to the optical monitoring station 100 .
  • the nanoimprint process monitoring device ensures that the incident position of the directional monitoring optical path on each PCM module 201 is relatively unchanged by moving the stage. On this premise, each PCM module 201 can be monitored by the optical monitoring platform 100 The difference between the structures is used to monitor the nanoimprint process of the corresponding monitoring positions on the wafer 200 under test.
  • the performance of the nanoimprint template there are two main factors affecting the formation of the nanoimprint functional structure, one is the performance of the nanoimprint template, and the other is the quality of the nanoimprint process, because the PCM module 201 and the functional structure are simultaneously formed on the wafer 200 to be tested. , so these two factors also have the same influence on the structure of the PCM module.
  • the functional structure and the structure of the PCM module 201 will be formed on the wafer to be tested 200 with their respective preset structures; when the performance of the nanoimprint template is equal to If at least one of the quality of the nanoimprinting process has a problem, the functional structure and the structure of the PCM module 201 will change synchronously.
  • the optical monitoring station 100 will obtain the preset monitoring light information fed back by the PCM module 201 of the preset structure, and when the processor analyzes the monitoring result, Based on the predicted light information, the obtained monitoring light information is compared with the preset light information, and it can be determined whether the monitoring position corresponding to the monitoring light information is qualified according to the comparison result.
  • the nanoimprint process monitoring device of the present invention moves the stage on which the wafer to be tested 200 is installed, so that multiple monitoring positions on the wafer to be tested 200 can traverse the directional monitoring optical path of the optical monitoring stage 100 , so as to conveniently realize all-round real-time monitoring of large-area wafers; in addition, by monitoring the structure of the PCM module 201 through the directional light path emitted by the optical monitoring platform 100, the non-destructive and non-destructive testing of the wafer 200 to be tested can be indirectly realized. Real-time process monitoring of contacts.
  • the stage is moved by at least one of rotation, translation and lift, so that the PCM modules 201 at multiple monitoring positions on the wafer 200 to be tested are moved to the optical monitoring stage one by one 100 directional monitoring optical path.
  • the stage is a circular stage. It can be understood that rotation can cause circumferential displacement of the stage, translation can cause radial displacement of the stage, and lift can cause axial displacement of the stage.
  • the stage can adopt at least one of the three moving modes, so that the incident position of the PCM module 201 on each monitoring position of the directional monitoring optical path remains relatively unchanged.
  • the technicians can plan different traversal paths and configure different moving schemes of the stage according to different arrangements of monitoring positions on the wafer 200 to be tested, so as to perform efficient traversal monitoring of the wafer 200 to be tested.
  • the wafer to be tested 200 has a chip area 210 and a non-functional area 220 surrounding the periphery of the chip area 210 .
  • the chip area 210 is provided with a plurality of chip units 211 .
  • Each chip unit 211 is provided with a PCM module 201 to form a monitoring position at each chip unit 211 to meet detailed local monitoring of each chip unit 211 ; or, a plurality of PCMs are provided on the non-functional area 220
  • the module 201 is used to form a plurality of monitoring positions on the non-functional area 220 so as to satisfy the simplified overall monitoring of the chip area 210 .
  • each chip unit 211 may be provided with a PCM module 201 to form a monitoring position at each chip unit 211, so as to monitor each chip unit 211 and be non-functional
  • a plurality of PCM modules 201 are provided on the area 220 to form a plurality of monitoring positions on the non-functional area 220 .
  • the PCM module 201 at the position to be tested in the non-functional area 220 can be traversed and monitored, so as to know the overall situation of the wafer 200 to be tested.
  • the PCM module 201 on a chip unit 211 monitors each chip unit 211 in detail, and finds the defective points one by one, so as to provide detailed monitoring results to the technicians, so as to facilitate their analysis of the real cause of the defects; when the processor When no unqualified information is fed back, sampling monitoring can be performed on multiple chip units 211. After traversing and monitoring a certain number of chip unit 211 samples one by one, if no defect is detected, the traversing can be stopped, and the processor can The wafer 200 to be tested is judged to be qualified, and the test result is stored in the internal storage unit to analyze possible subtle process deviations. In this way, the efficiency of traversal can be appropriately improved.
  • the above arrangement of the PCM modules 201 may only exist on one side of the wafer to be tested 200 , so as to be suitable for process monitoring of single-side nano-imprint patterns.
  • the present design is not limited to this.
  • the above arrangement of the PCM modules 201 may also exist on both sides of the wafer to be tested 200, so as to adapt to the process monitoring of the double-sided nano-imprint patterns. .
  • the processor may aggregate all the monitoring light information and all the monitoring results into a monitoring report and send it to the terminal.
  • the technician can evaluate the process difference between different monitoring positions of a single wafer; Wafer-to-wafer deviations can also be tracked, facilitating analysis of wafer-to-wafer nanoimprint process parameter drift.
  • the plurality of PCM modules 201 on the non-functional area 220 are evenly spaced in the circumferential direction of the wafer 200 to be tested, so that the optical monitoring table 100 can monitor the evenly distributed monitoring positions, so , even when a simplified overall monitoring is performed, the obtained monitoring results will be representative, and can also reflect the general situation of the wafer 200 to be tested to a certain extent.
  • the PCM module 201 is a nano-grating, so high-resolution and high-precision measurement can be realized, so as to meet the requirement of controlling the error of the structure size of the nano-imprinted product within a smaller range.
  • nano-gratings include at least one of blazed gratings, tilted gratings, one-dimensional grating binary gratings, multi-step gratings, and the like.
  • the directional monitoring optical path reflects on blazed grating, inclined grating, one-dimensional grating, binary grating or multi-step grating, etc., the loss of optical power is small, and the optical monitoring station 100 can obtain clearer monitoring light information for easy processing Reader analysis.
  • the nanoimprint process monitoring device further includes an alarm module, configured to issue a warning when it is determined that the monitoring position is unqualified.
  • an alarm module configured to issue a warning when it is determined that the monitoring position is unqualified.
  • the alarm module includes at least one of a sound alarm module, an optical alarm module, a vibration alarm module and an electronic information alarm module; wherein the electronic information alarm module is used for sending alarm information to an external terminal.
  • the alarm module of the nano-imprint process monitoring device may be an alarm module combining a sound alarm module and a light alarm module.
  • the optical monitoring station 100 includes a light source 110 and an imaging module 120.
  • the light source 110 is used for directionally sending monitoring light to form a directional monitoring light path
  • the imaging module 120 is used for receiving the monitoring light information
  • the monitoring light information includes The reflected light spot formed by the reflected light of the PCM module 201 .
  • the monitoring light emitted by the light source 110 may be laser light or infrared light, both of which are suitable for monitoring nanoscale structures; the imaging module 120 may use a CCD (Charge-coupled Device, charge-coupled device) or a CMOS (Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor), for photosensitive imaging.
  • CCD Charge-coupled Device, charge-coupled device
  • CMOS Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor
  • the PCM module 201 with the preset structure will form a preset reflection light spot on the imaging module 120 .
  • the processor obtains the electrical signal of the reflected light spot, it will compare the reflected light spot with the preset reflected light spot to judge whether it is qualified or not.
  • the position of the preset reflection spot is within a preset area of the imaging module 120. Therefore, the processor can compare the acquired position of the reflection spot with the preset area, and if it does not deviate from the preset area , the corresponding monitoring position on the wafer 200 to be tested is judged to be qualified; if it deviates from the preset area, the corresponding monitoring position on the wafer 200 to be tested is judged to be unqualified.
  • the size of the preset light spot can also be used as the comparison standard.
  • a reflector 130 can be added to enhance the sensitivity of the imaging module 120 to the angle change reflected by the PCM module 201.
  • the structure of the PCM module 201 changes, because the PCM module 201 is a nanostructure , the change will also be nanoscale, so the change in reflected laser light is tiny.
  • the reflection mirror 130 performs secondary reflection of the reflected light, which is equivalent to indirectly extending the optical path of the reflected light, and can amplify the small changes of the reflected light, thereby expanding the difference between the reflected light spot on the imaging module 120 and the preset reflected light spot.
  • the reflector 130 may not be added, the distance from the PCM module 201 to the imaging module 120 may be appropriately extended, and the optical path of the reflected light may be directly extended, which can also achieve the purpose of increasing the monitoring sensitivity.
  • the invention also provides a method for monitoring the nano-imprinting process.
  • the nanoimprint process monitoring method includes the following steps:
  • the stage on which the wafer to be tested is installed is moved, so that the PCM modules at multiple monitoring positions on the wafer to be tested are moved to the directional monitoring optical path of the fixed optical monitoring table one by one, so that the optical monitoring table can be traversing the multiple monitoring positions, and the optical monitoring station acquires the monitoring light information respectively fed back by the PCM modules at the multiple monitoring positions one by one;
  • the invention can realize the traversal monitoring of the wafer to be tested under the condition that the optical monitoring table is fixed by moving the stage on which the wafer to be tested is installed.
  • the optical monitoring table monitors a monitoring position on the wafer to be tested, and the directional monitoring light path emitted by the optical monitoring table can reach the PCM module at the monitoring position, and then pass through the PCM module. It is fed back to the optical monitoring station, and the optical monitoring station obtains the monitoring light information of the monitoring position and transmits it to the processor.
  • the nanoimprint process monitoring device completes the monitoring of a monitoring position on the wafer to be tested. Thereafter, the nanoimprint process monitoring device repeats the process to monitor the remaining monitoring positions on the wafer to be tested one by one, until the directional monitoring optical path of the optical monitoring table traverses all the monitoring positions on the wafer to be tested.
  • the reason why the optical monitoring station can monitor any monitoring position of the wafer to be tested is that the functional structure and the mirror image structure of the PCM module are integrated on the nanoimprint template.
  • the nano-imprint template is imprinted on the wafer to be tested, so that the PCM module and the functional structure are formed on the wafer to be tested. Therefore, the structure of the PCM module at each monitoring position on the wafer to be tested can be reversed. The quality of the nanoimprint process at the location should be monitored. In this way, the mirror structure of a specific PCM module is integrated on different nano-imprint templates, and the optical monitoring station only needs to monitor the specific PCM module to indirectly monitor different products.
  • the directional monitoring light path when the directional monitoring light path reaches the PCM module, an incident angle will be formed on its surface, and the directional monitoring light path only refers to the monitoring light path whose angle and relative position to the optical monitoring station remain unchanged. Therefore, the directional monitoring light path is in each PCM module.
  • the incident position on the module and the structural difference between each PCM module will affect the size of the incident angle. Different incident angles will cause the PCM module to feed back different monitoring light information to the optical monitoring station.
  • the nanoimprint process monitoring device ensures that the incident position of the directional monitoring optical path on each PCM module is relatively unchanged by moving the stage. Structural differences to monitor the nanoimprint process at the corresponding monitoring positions on the wafer to be tested.
  • the performance of the nanoimprint template there are two main factors that affect the formation of nanoimprint functional structures, one is the performance of the nanoimprint template, and the other is the quality of the nanoimprint process. These two factors also have the same effect on the structure of the modules of the PCM.
  • the functional structure and the structure of the PCM module When there is no problem with the performance of the nanoimprint template and the quality of the nanoimprint process, the functional structure and the structure of the PCM module will be formed on the wafer to be tested with their respective preset structures; If there is a problem with at least one of the quality of the printing process, the functional structure and the structure of the PCM module will change synchronously.
  • the optical monitoring station will obtain the preset monitoring light information fed back by the PCM module with the preset structure; and when the PCM module with the structure changes receives the same orientation When monitoring the optical path, the optical monitoring station will obtain monitoring light information different from the preset monitoring light information.
  • the processor acquires a plurality of pieces of the monitoring light information from the optical monitoring station, and judges whether the plurality of the monitoring positions on the wafer to be tested are qualified according to the plurality of pieces of the monitoring light information.
  • the processor compares the acquired monitoring light information with the preset monitoring light information based on the preset monitoring light information, and judges the monitoring light according to the comparison result. Whether the monitoring position corresponding to the information is qualified.
  • each time the processor acquires a piece of monitoring light information of the optical monitoring stage it analyzes the piece of monitoring light information, and determines whether the monitoring position on the wafer to be tested is qualified.
  • the processor detects a defect in a monitoring position, it can prompt the technician to review the defective product in time, so as to quickly find the problem that causes the defect, reduce the impact of the problem on production, and improve the efficiency of the nanoimprint process. and yield.
  • the processor can also obtain the monitoring light information of the optical monitoring station one by one, and after completing the monitoring of all monitoring positions of the wafer to be tested, analyze all the monitoring light information, and determine the wafer to be tested. all monitoring locations are eligible. In this way, the conditions of all the positions to be tested on the wafer to be tested can be comprehensively reflected to the technicians for more targeted review.
  • the nanoimprint process monitoring method of the present invention moves the stage on which the wafer to be tested is installed, so that multiple monitoring positions on the wafer to be tested can traverse the directional monitoring optical path of the optical monitoring stage, thereby making it convenient and convenient. It realizes all-round real-time monitoring of large-area wafers; the structure of the PCM module can be monitored through the directional optical path emitted by the optical monitoring station, and the non-destructive and non-contact real-time process monitoring of the wafer to be tested can be indirectly realized.
  • the stage is moved by at least one of rotation, translation and lift, so that the PCM modules in multiple monitoring positions on the wafer to be tested are moved to the position of the optical monitoring stage one by one.
  • Directional monitoring of the optical path
  • the stage is a circular stage. It can be understood that rotation can cause circumferential displacement of the stage, translation can cause radial displacement of the stage, and lift can cause axial displacement of the stage.
  • the stage can adopt at least one of these three movement modes, so that the incident position of the PCM module in each monitoring position of the directional monitoring optical path remains relatively unchanged.
  • Technicians can also plan different traversal paths and configure different stage movement schemes according to the different arrangements of monitoring positions on the wafer to be tested, so as to perform efficient traversal monitoring of the wafer to be tested.
  • the wafer to be tested has a chip area 210 and a non-functional area 220 surrounding the periphery of the chip area, and the chip area is provided with a plurality of chip units 211 .
  • Each chip unit 211 is provided with a PCM module 201 to form a monitoring position at each chip unit 211, so as to satisfy detailed local monitoring of each chip unit 211; or, as shown in FIG. 3, a non-functional area 220
  • a plurality of PCM modules 201 are disposed thereon, so as to form a plurality of monitoring positions on the non-functional area 220 , so as to satisfy the simplified overall monitoring of the chip area 210 .
  • each chip unit may be provided with a PCM module to form a monitoring position at each chip unit to monitor each chip unit, and the non-functional area is provided with a PCM module.
  • Multiple PCM modules to form multiple monitoring locations on non-functional areas. The stage can be moved to traverse and monitor the PCM module at the position to be tested in the non-functional area to understand the overall situation of the wafer to be tested. When the processor feeds back the unqualified information, it will traverse each chip unit one by one.
  • the PCM module on the top of the unit monitors each chip unit in detail, and finds out the defects one by one, so that the technician can analyze the real cause of the defect; when the processor does not feedback the unqualified information, it can be carried out Sampling monitoring, after traversing and monitoring a certain number of chip unit samples one by one, if no defect is detected, the traversing can be stopped, and the processor can judge the wafer to be tested as qualified. In this way, the efficiency of traversal can be appropriately improved.
  • the above arrangement of the PCM modules 201 may only exist on one side of the wafer to be tested 200 , so as to be suitable for process monitoring of single-side nano-imprint patterns.
  • the present design is not limited to this.
  • the above arrangement of the PCM modules 201 may also exist on both sides of the wafer to be tested 200, so as to adapt to the process monitoring of the double-sided nano-imprint patterns. .
  • the processor can aggregate all monitoring light information and all monitoring results into a monitoring report and send it to the terminal.
  • the processor can evaluate the process variability between different monitoring positions of a single wafer; Tracking wafer-to-wafer variation facilitates analysis of wafer-to-wafer nanoimprint process parameter drift.
  • multiple PCM modules on the non-functional area are evenly spaced in the circumferential direction of the wafer to be tested, so that the optical monitoring table can monitor the evenly distributed monitoring positions.
  • the monitoring results obtained will also be representative, and to a certain extent, can also reflect the general situation of the wafer under test.
  • the PCM module is a nano-grating, so high-resolution and high-precision measurement can be achieved, so as to meet the requirement of controlling the error of the structure size of the nano-imprinted product within a smaller range.
  • nanogratings include at least one of blazed gratings, tilted gratings, one-dimensional gratings, binary gratings, multi-step gratings, and the like.
  • the directional monitoring optical path reflects on blazed grating, inclined grating, one-dimensional grating, binary grating or multi-step grating, etc., the loss of optical power is small, and the optical monitoring station can obtain clearer monitoring light information, which is convenient for the processor Read analysis.
  • the nanoimprint process monitoring method further includes the steps:
  • the alarm module issues a warning.
  • the alarm mode includes at least one of sound alarm, optical alarm, vibration alarm, and electronic information alarm; wherein, the electronic information alarm points to sending alarm information to an external terminal.
  • the alarm mode of the nanoimprint process monitoring device may be an alarm mode combining sound alarm and light alarm.
  • the optical monitoring station includes a light source and an imaging module.
  • the light source of the optical monitoring station sends monitoring light directionally to form the directional monitoring light path
  • the imaging module of the optical monitoring station receives the monitoring light information, where the monitoring light information includes the reflected light of the PCM module. The reflection spot formed.
  • the monitoring light emitted by the light source can be laser or infrared light, both of which are suitable for monitoring nanoscale structures; the imaging module can use CCD (Charge-coupled Device, charge-coupled device) or CMOS (Complementary Metal Oxide Semiconductor, complementary metal) oxide semiconductor) for photosensitive imaging.
  • CCD Charge-coupled Device, charge-coupled device
  • CMOS Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor
  • the imaging module receives the reflected light from the PCM module, forms a reflected light spot, and converts the received optical signal of the reflected light spot into an electrical signal. It can be understood that, the PCM module with the preset structure will form a preset reflection light spot on the imaging module.
  • the processor After the processor obtains the electrical signal of the reflected light spot, it will compare the reflected light spot with the preset reflected light spot to judge whether it is qualified or not. Within the allowable range of error, the position of the preset reflection spot should be within a preset area of the imaging module, so the processor can compare the position of the acquired reflection spot with the preset area, if it does not deviate from the preset area, Then, it is judged that the corresponding monitoring position on the wafer to be tested is qualified; if it deviates from the preset area, it is judged that the corresponding monitoring position on the wafer to be tested is unqualified. Of course, in other embodiments, the size of the preset light spot can also be used as the comparison standard.
  • a reflector can be added to enhance the sensitivity of the imaging module to the angle change reflected by the PCM module.
  • the structure of the PCM module changes, because the PCM module is a nanostructure, its change will also is on the nanometer scale, so the change in reflected laser light is very small.
  • the mirror reflects the reflected light twice, which is equivalent to indirectly extending the optical path of the reflected light, and can amplify the small changes of the reflected light, thereby expanding the difference between the reflected light spot on the imaging module and the preset reflected light spot.
  • the present invention also provides a nano-imprinting device, the nano-imprinting device includes a nano-imprinting process monitoring device, the specific structure of the nano-imprinting process monitoring device refers to the above-mentioned embodiment, because the nano-imprinting device adopts all the above-mentioned implementations. All the technical solutions of the above-mentioned embodiments have at least all the beneficial effects brought by the technical solutions of the above-mentioned embodiments, and will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

一种纳米压印工艺监测装置、方法和纳米压印设备,其中,纳米压印工艺监测装置包括可移动的载物台、固定的光学监测台(100)、及与光学监测台(100)电连接的处理器,载物台用以安装待测晶圆(200),待测晶圆(200)具有多个监测位置,监测位置设有PCM模块(201),光学监测台(100)用于产生定向监测光路;安装有待测晶圆(200)的载物台移动,以使待测晶圆(200)上多个监测位置的PCM模块(201)逐一移动至光学监测台(100)的定向监测光路上,而使光学监测台(100)能遍历多个监测位置,且光学监测台(100)逐一获取多个监测位置上PCM模块(201)所分别反馈的监测光信息,并将其传输至处理器,处理器根据其判断待测晶圆(200)上多个监测位置是否合格,从而便捷地实现对大面积晶圆全方位的实时工艺监测。

Description

纳米压印工艺监测装置、方法和纳米压印设备 技术领域
本发明涉及工艺监测领域,特别涉及一种纳米压印工艺监测装置及方法和纳米压印设备。
背景技术
目前对大面积晶圆的纳米压印工艺制成的监测多以间接的线下监测方法为主,无法在大面积晶圆的纳米压印量产中提供实时的工艺监测。另外,如何便捷地实现在大面积晶圆的纳米压印工艺监控遍历,是纳米压印工艺在线实时监测的技术难点之一。
发明内容
本发明的主要目的是提出一种纳米压印工艺监测装置,旨在便捷地实现对大面积晶圆全方位的实时工艺监测。
为实现上述目的,本发明提出的一种纳米压印工艺监测装置,包括可移动的载物台、固定的光学监测台、及与所述光学监测台电连接的处理器,所述载物台用以安装待测晶圆,所述待测晶圆具有多个监测位置,所述监测位置设有PCM模块,所述光学监测台用于产生定向监测光路;
安装有待测晶圆的所述载物台移动,以使待测晶圆上多个监测位置的PCM模块逐一移动至所述光学监测台的定向监测光路上,而使所述光学监测台能遍历所述多个监测位置,且所述光学监测台逐一获取多个所述监测位置上PCM模块所分别反馈的监测光信息;所述处理器从所述光学监测台获取多个所述监测光信息,并根据多个所述监测光信息判断待测晶圆上多个所述监测位置是否合格。
可选地,所述载物台通过旋转、平移和升降中的至少一种移动方式进行移动,以使待测晶圆上多个监测位置的PCM模块逐一移动至所述光学监测台的定向监测光路上。
可选地,待测晶圆的晶圆单面或晶圆双面上具有芯片区域、及环设于所述芯片区域外周的非功能区域,所述芯片区域设有多个芯片单元;
每一芯片单元设有一所述PCM模块,以在每一芯片单元处形成一所述监测位置。
可选地,所述非功能区域上设有多个所述PCM模块,以在所述非功能区域上形成多个所述监测位置。
可选地,所述非功能区域上的多个所述PCM模块在待测晶圆的周向上均匀间隔设置。
可选地,所述PCM模块为纳米光栅。
可选地,所述纳米压印工艺监测装置还包括告警模块,用于在判定所述监测位置为不合格时发出警告。
可选地,所述光学监测台包括光源和成像模块,所述光源用于定向发送监测光,以形成所述定向监测光路,所述成像模块用于接收所述监测光信息,所述监测光信息包括所述PCM模块的反射光所形成的反射光斑。
本发明还提出一种纳米压印工艺监测方法,所述纳米压印工艺监测方法包括以下步骤:
S100、安装有待测晶圆的载物台移动,以使待测晶圆上多个监测位置的PCM模块逐一移动至固定的光学监测台的定向监测光路上,而使所述光学监测台能遍历所述多个监测位置,且所述光学监测台逐一获取多个所述监测位置上PCM模块所分别反馈的监测光信息;
S200、处理器从所述光学监测台获取多个所述监测光信息,并根据多个所述监测光信息判断待测晶圆上多个所述监测位置是否合格。
可选地,在所述步骤S100中,所述载物台通过旋转、平移和升降中的至少一种移动方式进行移动,以使待测晶圆上多个监测位置的PCM模块逐一移动至所述光学监测台的定向监测光路上。
可选地,待测晶圆的晶圆单面或晶圆双面上具有芯片区域、及环设于所述芯片区域外周的非功能区域,所述芯片区域设有多个芯片单元;
每一芯片单元设有一所述PCM模块,以在每一芯片单元处形成一所述监测位置。
可选地,所述非功能区域上设有多个所述PCM模块,以在所述非功能区域上形成多个所述监测位置。
可选地,在所述步骤S200之后,所述纳米压印工艺监测方法还包括步骤:
S300、在所述处理器判定所述监测位置为不合格时,告警模块发出警告。
可选地,在所述步骤S100中,所述光学监测台的光源用于定向发送监测光,以形成所述定向监测光路,所述光学监测台的成像模块用于接收所述监测光信息,所述监测光信息包括所述PCM模块的反射光所形成的反射光斑。
本发明还提出一种纳米压印设备,包括前述的纳米压印工艺监测装置。
本发明技术方案通过移动安装有待测晶圆的载物台,在光学监测台固定的情况下,可使待测晶圆上的多个监测位置能遍历于光学监测台的定向监测光路,从而便捷地实现了对大面积晶圆全方位的实时监测;另外,通过光学监测台发射定向光路对PCM模块的结构进行监测,即可间接地实现对待测晶圆的无损、无接触的实时工艺监测。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明纳米压印工艺监测装置一实施例的结构示意图;
图2为待测晶圆一实施例的一结构示意图;
图3为待测晶圆一实施例的另一结构示意图;
图4为本发明纳米压印工艺监测方法一实施例的流程示意图。
附图标号说明:
标号 名称 标号 名称
100 光学监测台 110 光源
120 成像模块 130 反射镜
200 待测晶圆 201 PCM模块
210 芯片区域 211 芯片单元
220 非功能区域    
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,若本发明实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本发明实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,若全文中出现的“和/或”的含义为,包括三个并列的方案,以“A和/或B”为例,包括A方案,或B方案,或A和B同时满足的方案。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
本发明提出一种纳米压印工艺监测装置。
在本发明一实施例中,如图1所示,该纳米压印工艺监测装置,包括可移动的载物台、固定的光学监测台100、及与光学监测台100电连接的处理器,载物台用以安装待测晶圆200,待测晶圆200具有多个监测位置,监测位置设有PCM模块201,光学监测台100用于产生定向监测光路;
安装有待测晶圆200的载物台移动,以使待测晶圆200上多个监测位置的PCM(Process Control Monitor,工艺控制监测)模块201逐一移动至光学监测台100的定向监测光路上,而使光学监测台100能遍历多个监测位置,且光学监测台100逐一获取多个监测位置上PCM模块201所分别反馈的监测光信息;处理器从光学监测台100获取多个监测光信息,并根据多个监测光信息判断待测晶圆200上多个监测位置是否合格。
本发明通过移动安装有待测晶圆200的载物台,可在光学监测台100固定的情况下,实现对待测晶圆200的遍历监测。当载物台移动到相应的位置后,光学监测台100对待测晶圆200上的一监测位置进行监测,由光学监测台100发射的定向监测光路得以到达该监测位置上的PCM模块201上,而后经PCM模块201反馈至光学监测台100,光学监测台100获取到该监测位置的监测光信息,并将其传输至处理器,至此,本纳米压印工艺监测装置完成对待测晶圆200上的一监测位置的监测。此后,本纳米压印工艺监测装置重复该过程,逐一监测待测晶圆200上的其余监测位置,直至光学监测台100的定向监测光路遍历待测晶圆200上的全部监测位置。
可选地,处理器每获取光学监测台100的一监测光信息,即对一监测光信息进行分析,并判断待测晶圆200上的该监测位置是否合格。如此,在处理器监测到一监测位置的不良后,可及时提醒技术人员对不良品进行复查,以快速找到导致不良的问题,减小该问题对生产的影响,从而提升纳米压印工艺的效率及良品率。
当然,在其他实施例中,也可以是,处理器逐一获取光学监测台100的监测光信息,完成待测晶圆200所有监测位置的监测后,处理器对所有监测光信息进行分析,并判断待测晶圆200的所有监测位置是否合格。如此,可将待测晶圆200所有待测位置的情况全面地反映给技术人员,以供其更有针对性地进行复查。
需要说明的是,光学监测台100能对待测晶圆200的任一监测位置进行监测的原因在于,纳米压印模板上同时集成有产品的镜像结构和PCM模块201的镜像结构,在纳米压印的工艺过程中,纳米压印模板压印于待测晶圆200上,从而在待测晶圆200上一同形成PCM模块201和产品,由此,在待测晶圆200上每一监测位置的PCM模块201的结构均能反应该监测位置的纳 米压抑工艺的质量。如此,将特定的PCM模块201的镜像结构集成于不同的纳米压印模板上,光学监测台100只需对特定的PCM模块201进行监测,即可间接地实现对不同产品的监测。
可以理解,定向监测光路到达PCM模块时会在其表面形成一入射角,而定向监测光路仅是指与光学监测台100的角度及相对位置保持不变的监测光路,故定向监测光路在每一PCM模块201上的入射位置和每一PCM模块201之间的结构差异,均会影响入射角的大小,不同的入射角会导致PCM模块201向光学监测台100反馈不同的监测光信息。本纳米压印工艺监测装置通过移动载物台来确保定向监测光路在每一PCM模块201上的入射位置相对不变,在这一前提下,即可通过光学监测台100监测每一PCM模块201之间的结构差异,以监测待测晶圆200上对应的监测位置的纳米压印工艺。
具体地,影响纳米压印功能结构的成型主要有两个因素,一是纳米压印模板的性能,二是纳米压印工艺的质量,因PCM模块201与功能结构同时成型于待测晶圆200,故这两个因素也对PCM的模块的结构有同样的影响。当纳米压印模板性能和纳米压印工艺的质量均未出现问题,则功能结构和PCM模块201的结构将分别以各自的预设结构成型于待测晶圆200;当纳米压印模板性能和纳米压印工艺的质量中的至少其中一者出现问题,则功能结构和PCM模块201的结构将发生同步变化。若光学监测台100的定向监测光路到达预设结构的PCM模块201表面时,光学监测台100将获取该预设结构的PCM模块201反馈的预设监测光信息,处理器在分析监测结果时,以该预测光信息为基准,将获取的监测光信息与预设光信息进行比对,可根据比对结果判断该监测光信息对应的监测位置是否合格。
综上,本发明的纳米压印工艺监测装置通过移动安装有待测晶圆200的载物台,以使待测晶圆200上的多个监测位置能遍历于光学监测台100的定向监测光路,从而便捷地实现了对大面积晶圆全方位的实时监测;另外,通过光学监测台100发射定向光路对PCM模块201的结构进行监测,即可间接地实现对待测晶圆200的无损、无接触的实时工艺监测。
进一步地,在本实施例中,载物台通过旋转、平移和升降中的至少一种移动方式进行移动,以使待测晶圆200上多个监测位置的PCM模块201逐一移动至光学监测台100的定向监测光路上。
不失一般性,载物台为一圆台,可以理解,旋转可使载物台产生周向位移,平移可使载物台产生径向位移,升降可使载物台产生轴向位移。载物台可采用这三种移动方式的至少一种,以使定向监测光路在每一监测位置上的PCM模块201的入射位置保持相对不变。技术人员可根据待测晶圆200上的监测位置的不同排布方式,规划不同的遍历路径,配置不同的载物台移动方案,以对待测晶圆200进行高效率的遍历监测。
进一步地,在本实施例中,如图2所示,待测晶圆200具有芯片区域210、及环设于芯片区域210外周的非功能区域220,芯片区域210设有多个芯片单元211。每一芯片单元211设有一PCM模块201,以在每一芯片单元211处形成一监测位置,以满足对每一芯片单元211进行详细的局部监测;或者,非功能区域220上设有多个PCM模块201,以在非功能区域220上形成多个监测位置,以满足对芯片区域210进行精简的整体监测。
当然,在其他实施例中,也可以是,每一芯片单元211设有一PCM模块201,以在每一芯片单元211处形成一监测位置,以满足对每一芯片单元211进行监测,且非功能区域220上设有多个PCM模块201,以在非功能区域220上形成多个监测位置。载物台可通过移动先使非功能区域220的待测位置上的PCM模块201进行遍历监测,以了解待测晶圆200的整体情况,当处理器反馈不合格的信息后,再逐一遍历每一芯片单元211上的PCM模块201,对每一芯片单元211进行详细的监测,一一找出不良点,以向技术人员提供详细的监测结果,便于其分析导致不良的真因;当处理器未反馈不合格信息的时候,可对多个芯片单元211进行抽样监测,在对一定数目的芯片单元211样品逐一遍历监测后,若还未检出不良,即可停止遍历,并且处理器可将该待测晶圆200判定为合格,同时将检测结果存储于内部的存储单元以便分析可能存在的细微工艺偏移。如此,可适当提升遍历的效率。
需要说明的是,以上PCM模块201的排布形式可以仅在待测晶圆200的晶圆单面上存在,以适应对单面纳米压印图形的工艺监控。然本设计不限于此,于其他实施例中,以上PCM模块201的排布形式还可以在待测晶圆200的晶圆双面上同时存在,以适应对双面纳米压印图形的工艺监控。
可选地,处理器完成待测晶圆200的所有监测位置的判断后,可将全部监测光信息及全部监测结果汇总成监测报告发送至终端。技术人员通过分析 每一待测晶圆200的监测报告,可对单片晶圆的不同监测位置之间的工艺差异性进行评估;通过对多个待测晶圆200的监测报告进行横向比较,还可追踪晶圆与晶圆之间的偏差,便于分析晶圆和晶圆之间的纳米压印工艺制程的参数漂移。
进一步地,在本实施例中,非功能区域220上的多个PCM模块201在待测晶圆200的周向上均匀间隔设置,以使光学监测台100能对均匀分布的监测位置进行监测,如此,即使在进行精简的整体监测时,得到的监测结果也将具有代表性,在一定程度上也能反映待测晶圆200的概况。
进一步地,在本实施例中,PCM模块201为纳米光栅,如此,可实现高分辨力和高精度的测量,以满足将纳米压印产品结构尺寸的误差控制在更小的范围内的要求。不失一般性,纳米光栅包括闪耀光栅、倾斜光栅、一维光栅二元光栅、多台阶光栅等中的至少一种。定向监测光路在闪耀光栅、倾斜光栅、一维光栅、二元光栅或多台阶光栅等上发生反射时,光功率的损失较小,光学监测台100可获取更清晰的监测光信息,以便于处理器读取分析。
进一步地,在本实施例中,纳米压印工艺监测装置还包括告警模块,用于在判定监测位置为不合格时发出警告。如此,可即时引起操作人员或技术人员的注意,使得纳米压印过程中的产品不良问题得到及时处理,从而避免不良产品持续生产,造成物料及能源浪费。
可选地,告警模块包括声音告警模块、光告警模块、振动告警模块及电子信息告警模块的至少一种;其中,电子信息告警模块用于向外部终端发送告警信息。可以理解,警告方式有多种,技术人员可根据实际需求选择上述诸多告警模块中的至少一者,以满足示警要求。例如,在车间常用的安灯系统中,该纳米压印工艺监测装置的告警模块可为声音告警模块与灯光告警模块相结合的一种告警模块。
进一步地,在本实施例中,光学监测台100包括光源110和成像模块120,光源110用于定向发送监测光,以形成定向监测光路,成像模块120用于接收监测光信息,监测光信息包括PCM模块201的反射光所形成的反射光斑。
本发明中,光源110发出的监测光可以是激光或红外光,这两者均适用于对纳米级结构的监测;成像模块120可采用CCD(Charge-coupled Device,电荷耦合元件)或CMOS(Complementary Metal Oxide Semiconductor,互补 金属氧化物半导体),以感光成像。当光源110发出的监测光到达PCM模块201,会在其表面发生反射,成像模块120接收到PCM模块201的反射光,可形成反射光斑,并将接受的反射光斑的光信号转变为电信号。可以理解的是,预设结构的PCM模块201将在成像模块120上形成一预设反射光斑。处理器获取反射光斑的电信号后,会将该反射光斑与预设反射光斑进行比对,以判断其合格与否。在误差允许范围内,预设反射光斑的位置在成像模块120的一预设区域内,因此,处理器可将获取的反射光斑的位置与预设区域进行比对,若其未偏离预设区域,则判断待测晶圆200上对应的监测位置为合格;若其偏离预设区域,则判断待测晶圆200上对应的监测位置为不合格。当然,在其他实施例中,也可将预设光斑的大小作为比对标准。
可选地,在反射光的光路上,可增设一反射镜130以增强成像模块120对PCM模块201反射的角度变化的灵敏度,当PCM模块201的结构发生变化时,因PCM模块201为纳米结构,其变化也将是纳米级的,因此反射激光的变化很微小。反射镜130将反射光进行二次反射,相当于间接延长了反射光的光路,能将反射光的微小变化放大,从而扩大成像模块120上的反射光斑与预设反射光斑的区别。当然,在其他实施例中,也可以是,不增设反射镜130,将PCM模块201至成像模块120的距离适当拉长,通过直接延长反射光的光路,同样可以达到增大监测灵敏度的目的。
本发明还提出一种纳米压印工艺监测方法。
在一实施例中,如图4所示,该纳米压印工艺监测方法包括以下步骤:
S100、安装有待测晶圆的载物台移动,以使待测晶圆上多个监测位置的PCM模块逐一移动至固定的光学监测台的定向监测光路上,而使所述光学监测台能遍历所述多个监测位置,且所述光学监测台逐一获取多个所述监测位置上PCM模块所分别反馈的监测光信息;
本发明通过移动安装有待测晶圆的载物台,可在光学监测台固定的情况下,实现对待测晶圆的遍历监测。当载物台移动到相应的位置后,光学监测台对待测晶圆上的一监测位置进行监测,由光学监测台发射的定向监测光路得以到达该监测位置上的PCM模块上,而后经PCM模块反馈至光学监测台,光学监测台获取到该监测位置的监测光信息,并将其传输至处理器,至此, 本纳米压印工艺监测装置完成对待测晶圆上的一监测位置的监测。此后,本纳米压印工艺监测装置重复该过程,逐一监测待测晶圆上的其余监测位置,直至光学监测台的定向监测光路遍历待测晶圆上的全部监测位置。
需要说明的是,光学监测台能对待测晶圆的任一监测位置进行监测的原因在于,纳米压印模板上同时集成有功能结构和PCM模块的镜像结构,在纳米压印的工艺过程中,纳米压印模板压印于待测晶圆上,从而在待测晶圆上一同形成PCM模块和功能结构,由此,在待测晶圆上的每一监测位置的PCM模块的结构均能反应该监测位置的纳米压印工艺的质量。如此,将特定的PCM模块的镜像结构集成于不同的纳米压印模板上,光学监测台只需对特定的PCM模块进行监测,即可间接地实现对不同产品的监测。
可以理解,定向监测光路到达PCM模块时会在其表面形成一入射角,而定向监测光路仅是指与光学监测台的角度及相对位置保持不变的监测光路,故定向监测光路在每一PCM模块上的入射位置和每一PCM模块之间的结构差异,均会影响入射角的大小,不同的入射角会导致PCM模块向光学监测台反馈不同的监测光信息。本纳米压印工艺监测装置通过移动载物台来确保定向监测光路在每一PCM模块上的入射位置相对不变,在这一前提下,即可通过光学监测台监测每一PCM模块之间的结构差异,以监测待测晶圆上对应的监测位置的纳米压印工艺。
具体地,影响纳米压印功能结构的成型主要有两个因素,一是纳米压印模板的性能,二是纳米压印工艺的质量,因PCM模块与功能结构同时成型于待测晶圆,故这两个因素也对PCM的模块的结构有同样的影响。当纳米压印模板性能和纳米压印工艺的质量均未出现问题,则功能结构和PCM模块的结构将分别以各自的预设结构成型于待测晶圆;当纳米压印模板性能和纳米压印工艺的质量中的至少其中一者出现问题,则功能结构和PCM模块的结构将发生同步变化。若光学监测台的定向监测光路到达预设结构的PCM模块表面时,光学监测台将获取该预设结构的PCM模块反馈的预设监测光信息;而当结构产生变化的PCM模块接收到同一定向监测光路时,光学监测台将获取不同于预设监测光信息的监测光信息。
S200、处理器从所述光学监测台获取多个所述监测光信息,并根据多个所述监测光信息判断待测晶圆上多个所述监测位置是否合格。
处理器在判断待测晶圆上监测位置合格与否时,是以预设监测光信息为基准,将获取的监测光信息与预设监测光信息进行比对,根据比对结果判断该监测光信息对应的监测位置是否合格。
可选地,处理器每获取光学监测台的一监测光信息,即对一监测光信息进行分析,并判断待测晶圆上的该监测位置是否合格。如此,在处理器监测到一监测位置的不良后,可及时提醒技术人员对不良品进行复查,以快速找到导致不良的问题,减小该问题对生产的影响,从而提升纳米压印工艺的效率及良品率。
当然,在其他实施例中,也可以是,处理器逐一获取光学监测台的监测光信息,完成待测晶圆所有监测位置的监测后,对所有监测光信息进行分析,并判断待测晶圆的所有监测位置是否合格。如此,可将待测晶圆所有待测位置的情况全面地反映给技术人员,以供其更有针对性地进行复查。
综上,本发明的纳米压印工艺监测方法通过移动安装有待测晶圆的载物台,以使待测晶圆上的多个监测位置能遍历于光学监测台的定向监测光路,从而便捷地实现了对大面积晶圆全方位实时监测;通过光学监测台发射定向光路对PCM模块的结构进行监测,即可间接地实现对待测晶圆的无损、无接触的实时工艺监测。
进一步地,在所述步骤S100中,载物台通过旋转、平移和升降中的至少一种移动方式进行移动,以使待测晶圆上多个监测位置的PCM模块逐一移动至光学监测台的定向监测光路上。
不失一般性,载物台为一圆台,可以理解,旋转可使载物台产生周向位移,平移可使载物台产生径向位移,升降可使载物台产生轴向位移。载物台可采用这三种移动方式的至少一种,以使定向监测光路在每一监测位置上的PCM模块的入射位置保持相对不变。技术人员也可根据待测晶圆上的监测位置的不同排布方式,规划不同的遍历路径,配置不同的载物台移动方案,以对待测晶圆进行高效率的遍历监测。
进一步地,在本实施例中,如图2所示,待测晶圆具有芯片区域210、及环设于芯片区域外周的非功能区域220,芯片区域设有多个芯片单元211。每一芯片单元211设有一PCM模块201,以在每一芯片单元211处形成一监测位置,从而满足对每一芯片单元211进行详细的局部监测;或者,如图3所 示,非功能区域220上设有多个PCM模块201,以在非功能区域220上形成多个监测位置,从而满足对芯片区域210进行精简的整体监测。
当然,在其他实施例中,也可以是,每一芯片单元设有一PCM模块,以在每一芯片单元处形成一监测位置,以满足对每一芯片单元进行监测,且非功能区域上设有多个PCM模块,以在非功能区域上形成多个监测位置。载物台可通过移动先使非功能区域的待测位置上的PCM模块进行遍历监测,以了解待测晶圆的整体情况,当处理器反馈不合格的信息后,再逐一遍历每一芯片单元上的PCM模块,对每一芯片单元进行详细的监测,一一找出不良点,以便技术人员分析导致不良的真因;当处理器未反馈不合格信息的时候,可对多个芯片单元进行抽样监测,在对一定数目的芯片单元样品逐一遍历监测后,若还未检出不良,即可停止遍历,并且处理器可将该待测晶圆判定为合格。如此,可适当提升遍历的效率。
需要说明的是,以上PCM模块201的排布形式可以仅在待测晶圆200的晶圆单面上存在,以适应对单面纳米压印图形的工艺监控。然本设计不限于此,于其他实施例中,以上PCM模块201的排布形式还可以在待测晶圆200的晶圆双面上同时存在,以适应对双面纳米压印图形的工艺监控。
可选地,处理器完成待测晶圆的所有监测位置的判断后,可将全部监测光信息及全部监测结果汇总成监测报告发送至终端。技术人员通过分析每一待测晶圆的监测报告,可对单片晶圆的不同监测位置之间的工艺差异性进行评估;通过对多个待测晶圆的监测报告进行横向比较,还可追踪晶圆与晶圆之间的偏差,便于分析晶圆和晶圆之间的纳米压印工艺制程的参数漂移。
进一步地,在本实施例中,非功能区域上的多个PCM模块在待测晶圆的周向上均匀间隔设置,以使光学监测台能对均匀分布的监测位置进行监测,如此,即使在进行精简的整体监测时,得到的监测结果也将具有代表性,在一定程度上也能反映待测晶圆的概况。
进一步地,在本实施例中,PCM模块为纳米光栅,如此,可实现高分辨力和高精度的测量,以满足将纳米压印产品结构尺寸的误差控制在更小的范围内的要求。不失一般性,纳米光栅包括闪耀光栅、倾斜光栅、一维光栅、二元光栅、多台阶光栅等中的至少一种。定向监测光路在闪耀光栅、倾斜光栅、一维光栅、二元光栅或多台阶光栅等上发生反射时,光功率的损失较小, 光学监测台可获取更清晰的监测光信息,以便于处理器读取分析。
进一步地,在本实施例中,如图4所示,在所述步骤S200之后,纳米压印工艺监测方法还包括步骤:
S300、在所述处理器判定所述监测位置为不合格时,告警模块发出警告。
如此,一方面可提醒操作人员注意到不合格产品,避免不合格产品流向后一流程;另一方面能够及时向产线技术人员传递信息,使技术人员在问题出现的第一时间就能对不合格品进行检验,使得纳米压印过程中的产品不良问题得到及时处理,从而避免不良产品持续生产,造成物料及能源浪费。
可选地,告警方式包括声音告警、光告警、振动告警及电子信息告警中的至少一种;其中,电子信息告警指向外部终端发送告警信息。可以理解,警告方式有多种,技术人员可根据实际需求选择上述诸多告警模块中的至少一者,以满足示警要求。例如,在车间常用的安灯系统中,该纳米压印工艺监测装置的告警方式可为声音告警与灯光告警相结合的一种告警方式。
进一步地,在本实施例中,光学监测台包括光源和成像模块。在所述步骤S100中,光学监测台的光源定向发送监测光,以形成所述定向监测光路,光学监测台的成像模块则接收所述监测光信息,该监测光信息包括PCM模块的反射光所形成的反射光斑。
光源发出的监测光可以是激光或红外光,这两者均适用于对纳米级结构的监测;成像模块可采用CCD(Charge-coupled Device,电荷耦合元件)或CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体),以感光成像。当光源发出的监测光到达PCM模块,会在其表面发生反射,成像模块接收到PCM模块的反射光,可形成反射光斑,并将接受的反射光斑的光信号转变为电信号。可以理解的是,预设结构的PCM模块将在成像模块上形成一预设反射光斑。处理器获取反射光斑的电信号后,会将该反射光斑与预设反射光斑进行比对,以判断其合格与否。在误差允许范围内,预设反射光斑的位置应在成像模块的一预设区域内,因此处理器可将获取的反射光斑的位置与预设区域进行比对,若其未偏离预设区域,则判断待测晶圆上对应的监测位置为合格;若其偏离预设区域,则判断待测晶圆上对应的监测位置为不合格。当然,在其他实施例中,也可将预设光斑的大小作为比对标准。
可选地,在反射光的光路上,可增设一反射镜以增强成像模块对PCM模 块反射的角度变化的灵敏度,当PCM模块的结构发生变化时,因PCM模块为纳米结构,其变化也将是纳米级的,因此反射激光的变化很微小。反射镜将反射光进行二次反射,相当于间接延长了反射光的光路,能将反射光的微小变化放大,从而扩大成像模块上的反射光斑与预设反射光斑的区别。当然,在其他实施例中,也可以是,不增设反射镜,将PCM模块至成像模块的距离适当拉长,通过直接延长反射光的光路,同样可以达到增大监测灵敏度的目的。
本发明还提出一种纳米压印设备,该纳米压印设备包括纳米压印工艺监测装置,该纳米压印工艺监测装置的具体结构参照上述实施例,由于本纳米压印设备采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。
以上仅为本发明的可选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (13)

  1. 一种纳米压印工艺监测装置,其特征在于,所述纳米压印工艺监测装置包括可移动的载物台、固定的光学监测台、及与所述光学监测台电连接的处理器,所述载物台用以安装待测晶圆,所述待测晶圆具有多个监测位置,所述监测位置设有PCM模块,所述光学监测台用于产生定向监测光路;
    安装有待测晶圆的所述载物台移动,以使待测晶圆上多个监测位置的PCM模块逐一移动至所述光学监测台的定向监测光路上,而使所述光学监测台能遍历所述多个监测位置,且所述光学监测台逐一获取多个所述监测位置上PCM模块所分别反馈的监测光信息;所述处理器从所述光学监测台获取多个所述监测光信息,并根据多个所述监测光信息判断待测晶圆上多个所述监测位置是否合格。
  2. 如权利要求1所述的纳米压印工艺监测装置,其特征在于,所述载物台通过旋转、平移和升降中的至少一种移动方式进行移动,以使待测晶圆上多个监测位置的PCM模块逐一移动至所述光学监测台的定向监测光路上。
  3. 如权利要求1所述的纳米压印工艺监测装置,其特征在于,待测晶圆的晶圆单面或晶圆双面上具有芯片区域、及环设于所述芯片区域外周的非功能区域,所述芯片区域设有多个芯片单元;
    每一芯片单元设有一所述PCM模块,以在每一芯片单元处形成一所述监测位置;及/或
    所述非功能区域上设有多个所述PCM模块,以在所述非功能区域上形成多个所述监测位置。
  4. 如权利要求3所述的纳米压印工艺监测装置,其特征在于,所述非功能区域上的多个所述PCM模块在待测晶圆的周向上均匀间隔设置。
  5. 如权利要求1所述的纳米压印工艺监测装置,其特征在于,所述PCM模块为纳米光栅。
  6. 如权利要求1所述的纳米压印工艺监测装置,其特征在于,所述纳米压印工艺监测装置还包括告警模块,用于在判定所述监测位置为不合格时发出警告。
  7. 如权利要求1至6任一项所述的纳米压印工艺监测装置,其特征在于,所述光学监测台包括光源和成像模块,所述光源用于定向发送监测光,以形成所述定向监测光路,所述成像模块用于接收所述监测光信息,所述监测光信息包括所述PCM模块的反射光所形成的反射光斑。
  8. 一种纳米压印工艺监测方法,其特征在于,所述纳米压印工艺监测方法包括以下步骤:
    S100、安装有待测晶圆的载物台移动,以使待测晶圆上多个监测位置的PCM模块逐一移动至固定的光学监测台的定向监测光路上,而使所述光学监测台能遍历所述多个监测位置,且所述光学监测台逐一获取多个所述监测位置上PCM模块所分别反馈的监测光信息;
    S200、处理器从所述光学监测台获取多个所述监测光信息,并根据多个所述监测光信息判断待测晶圆上多个所述监测位置是否合格。
  9. 如权利要求8所述的纳米压印工艺监测方法,其特征在于,在所述S100中,所述载物台通过旋转、平移和升降中的至少一种移动方式进行移动,以使待测晶圆上多个监测位置的PCM模块逐一移动至所述光学监测台的定向监测光路上。
  10. 如权利要求8所述的纳米压印工艺监测方法,其特征在于,待测晶圆的晶圆单面或晶圆双面上具有芯片区域、及环设于所述芯片区域外周的非功能区域,所述芯片区域设有多个芯片单元;
    每一芯片单元设有一所述PCM模块,以在每一芯片单元处形成一所述监测位置;及/或
    所述非功能区域上设有多个所述PCM模块,以在所述非功能区域上形成 多个所述监测位置。
  11. 如权利要求8所述的纳米压印工艺监测方法,其特征在于,在所述S200之后,所述纳米压印工艺监测方法还包括步骤:
    S300、在所述处理器判定所述监测位置为不合格时,告警模块发出警告。
  12. 如权利要求8至11任一项所述的纳米压印工艺监测方法,其特征在于,在所述S100中,所述光学监测台的光源定向发送监测光,以形成所述定向监测光路,所述光学监测台的成像模块接收所述监测光信息,所述监测光信息包括所述PCM模块的反射光所形成的反射光斑。
  13. 一种纳米压印设备,其特征在于,包括权利要求1至7任一项所述的纳米压印工艺监测装置。
PCT/CN2020/124753 2020-09-25 2020-10-29 纳米压印工艺监测装置、方法和纳米压印设备 WO2022062059A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011022126.0 2020-09-25
CN202011022126.0A CN111929987A (zh) 2020-09-25 2020-09-25 纳米压印工艺监测装置、方法和纳米压印设备

Publications (1)

Publication Number Publication Date
WO2022062059A1 true WO2022062059A1 (zh) 2022-03-31

Family

ID=73334192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124753 WO2022062059A1 (zh) 2020-09-25 2020-10-29 纳米压印工艺监测装置、方法和纳米压印设备

Country Status (2)

Country Link
CN (1) CN111929987A (zh)
WO (1) WO2022062059A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113078072A (zh) * 2021-04-12 2021-07-06 长春光华微电子设备工程中心有限公司 一种探针检测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050212178A1 (en) * 2004-03-26 2005-09-29 Industrial Technology Research Institute Capacitive measurement method and system for nanoimprint process monitoring
CN101145535A (zh) * 2006-09-15 2008-03-19 联华电子股份有限公司 非破坏性检测线宽粗糙现象的方法
US20110157591A1 (en) * 2009-12-30 2011-06-30 Hong Hocheng Monitoring apparatus and method for nano-transfer printing process
CN109839388A (zh) * 2017-11-29 2019-06-04 中微半导体设备(上海)股份有限公司 等离子运行状态实时监控方法、晶圆监测件和监控系统
CN110108726A (zh) * 2019-05-05 2019-08-09 中山易美杰智能科技有限公司 一种用于芯片检测的全自动光学检测系统
CN110854035A (zh) * 2019-11-27 2020-02-28 上海华力微电子有限公司 晶圆边缘缺陷的检测方法及装置
CN110967609A (zh) * 2018-09-29 2020-04-07 合肥晶合集成电路有限公司 一种监测系统及监测方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200509279A (en) * 2003-08-29 2005-03-01 Nanya Technology Corp Method and apparatus for real-time detection of wafer defects
CN101006491A (zh) * 2004-09-27 2007-07-25 Idc公司 测量和建模显示器中的功率消耗
JP6098323B2 (ja) * 2013-04-17 2017-03-22 富士電機株式会社 半導体装置の製造方法
CN108957960A (zh) * 2018-06-06 2018-12-07 中国电子科技集团公司第五十五研究所 一种提升衬底有效芯片数目的曝光方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050212178A1 (en) * 2004-03-26 2005-09-29 Industrial Technology Research Institute Capacitive measurement method and system for nanoimprint process monitoring
CN101145535A (zh) * 2006-09-15 2008-03-19 联华电子股份有限公司 非破坏性检测线宽粗糙现象的方法
US20110157591A1 (en) * 2009-12-30 2011-06-30 Hong Hocheng Monitoring apparatus and method for nano-transfer printing process
CN109839388A (zh) * 2017-11-29 2019-06-04 中微半导体设备(上海)股份有限公司 等离子运行状态实时监控方法、晶圆监测件和监控系统
CN110967609A (zh) * 2018-09-29 2020-04-07 合肥晶合集成电路有限公司 一种监测系统及监测方法
CN110108726A (zh) * 2019-05-05 2019-08-09 中山易美杰智能科技有限公司 一种用于芯片检测的全自动光学检测系统
CN110854035A (zh) * 2019-11-27 2020-02-28 上海华力微电子有限公司 晶圆边缘缺陷的检测方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113078072A (zh) * 2021-04-12 2021-07-06 长春光华微电子设备工程中心有限公司 一种探针检测方法

Also Published As

Publication number Publication date
CN111929987A (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
JP3408816B2 (ja) 可変スポットサイズ走査装置
JP6831784B2 (ja) リソグラフィ製造プロセスに関する診断情報を取得するための方法および装置、診断装置を含むリソグラフィックプロセシングシステム
CN101118153B (zh) 多范围非接触探针
US7761178B2 (en) Automated process control using an optical metrology system optimized with design goals
US5841543A (en) Method and apparatus for verifying the presence of a material applied to a substrate
JP2007501942A (ja) 好適に円形エッジを有する物体の品質を光学的に制御する光学的試験方法及び光学的試験装置
US8294889B2 (en) Method for inspecting nano-imprint template
JPH06258239A (ja) 欠陥検出装置およびその方法
CN102735191B (zh) 一种蜂窝陶瓷垂直度测定装置
WO2022062059A1 (zh) 纳米压印工艺监测装置、方法和纳米压印设备
US7761250B2 (en) Optical metrology system optimized with design goals
WO2018016430A1 (ja) 複合検査システム
CN111415875A (zh) 半导体检测装置、检测方法及半导体工艺装置
US7595869B1 (en) Optical metrology system optimized with a plurality of design goals
JP2002267416A (ja) 表面欠陥検査装置
US7243331B2 (en) Method and system for controlling the quality of a reticle
CN111766417B (zh) 一种导引板mems探针结构模板烧刻设备
JPH06194320A (ja) 半導体製造ラインにおける鏡面基板の検査方法およびその装置並びに半導体製造方法
WO2022062058A1 (zh) 纳米压印工艺监测方法、监测装置及纳米压印设备
JP2013178231A (ja) 検査装置、検査方法、リソグラフィ装置及びインプリント装置
JP2006270111A (ja) 半導体デバイスの検査方法及びその装置
JPH0521561A (ja) 鏡面ウエハの異物検出方法及び装置並びにその分析方法及び装置
JP2663955B2 (ja) 半導体製造用インラインパーティクル検出装置及び半導体製造装置
CN113203960A (zh) 开路短路测试装置及方法
JP2002195959A (ja) 半導体デバイスの検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20954905

Country of ref document: EP

Kind code of ref document: A1