WO2022059918A1 - 에너지 저장 시스템 - Google Patents

에너지 저장 시스템 Download PDF

Info

Publication number
WO2022059918A1
WO2022059918A1 PCT/KR2021/010554 KR2021010554W WO2022059918A1 WO 2022059918 A1 WO2022059918 A1 WO 2022059918A1 KR 2021010554 W KR2021010554 W KR 2021010554W WO 2022059918 A1 WO2022059918 A1 WO 2022059918A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
current
inductor
battery
terminal
Prior art date
Application number
PCT/KR2021/010554
Other languages
English (en)
French (fr)
Inventor
김성실
노정욱
Original Assignee
성실에너지 주식회사
김성실
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성실에너지 주식회사, 김성실 filed Critical 성실에너지 주식회사
Priority to JP2023518453A priority Critical patent/JP7489052B2/ja
Priority to US17/764,963 priority patent/US11824364B2/en
Publication of WO2022059918A1 publication Critical patent/WO2022059918A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Definitions

  • the present invention relates to an energy storage system, and in particular, to prevent damage to the energy storage system when the commercial AC power, which is the grid power supplied to the home, is restored after a power outage, continuously and stably to the load. It can supply battery AC power generated by power and energy accumulated in the battery, and commercial AC power is supplied to the AC/DC converter for charging the battery through the input/output terminal, and at the same time transfers the power charged in the battery to the input/output terminal. It relates to an energy storage system that is easy to install and does not require construction on a distribution box during installation because it is supplied to a load through a power supply and used by connecting the power plug of the energy storage system to an outlet, which is a supply terminal to which commercial AC power is supplied.
  • ESS Energy Storage System
  • ESS Energy Storage System
  • ESS is a type of battery that stores energy. It is linked to the smart grid to store power produced from new and renewable energy sources such as solar and wind power, or from external power during times when electricity rates are low. By receiving and storing power and discharging the stored power during times of high power consumption, it is a device that contributes to improving the efficiency of power operation from the point of view of the power supplier and enabling the use of low electricity rates from the point of view of the consumer.
  • the incoming end of the commercial AC power must be connected to the input unit of the AC/DC converter for charging the battery, and the output terminal of the DC/AC converter that converts the power charged in the battery into an AC voltage is connected to the load terminal
  • the load terminal since the load terminal must be installed in a distribution box provided in the home, installation work is required for the distribution box to install the energy storage system in the grid AC power, so it is not easy to install.
  • An object of the present invention is to prevent the energy storage system from being damaged when the commercial AC power, which is the grid power fed into the home, is restored after a power outage, so that the load is continuously and stably stored in the AC power and the battery of the system by the commercial AC power.
  • the battery AC power generated by the energy can be supplied, and commercial AC power is supplied to the AC/DC converter for charging the battery through the input/output terminal, and the power charged in the battery is supplied to the load through the input/output terminal at the same time.
  • the purpose of the present invention is to provide an energy storage system that is easy to install and does not require construction on a distribution box during installation because the power plug of the energy storage system is connected to an outlet, which is a supply terminal to which commercial AC power is supplied.
  • an energy storage system of the present invention includes: an AC/DC converter for receiving commercial AC power, which is a grid power, through an input/output terminal, and converting the commercial AC power into DC power; a battery for charging the DC power output from the AC/DC converter; a boosting unit for boosting the DC power charged in the battery to output a boosted DC voltage; a DC/AC converter converting the boosted DC voltage into AC power and supplying battery AC power to a load through the input/output terminal; a power control unit that controls the driving of the AC/DC converter so that the battery is charged, and controls the driving of the DC/AC converter so that the battery AC power is supplied to the load; an inductor having one terminal connected to a supply terminal to which the commercial AC power is supplied; a switching unit having one terminal connected to the other terminal of the inductor and the other terminal connected to the input/output terminal; a current determination unit comparing the inductor current flowing through the inductor with a power recovery limiting current determined by a
  • the energy storage system of the present invention prevents the energy storage system from being damaged when the commercial AC power, which is the grid power fed into the home, is restored after a power outage, so that the load is continuously and stably applied to the AC power and the battery of the system by the commercial AC power.
  • Battery AC power generated by the accumulated energy can be supplied, and commercial AC power is supplied to the AC/DC converter for charging the battery through the input/output terminal, and at the same time, the power charged in the battery is supplied to the load through the input/output terminal Since it is used by connecting the power plug of the energy storage system to the outlet, which is the supply terminal to which commercial AC power is supplied, no work on the distribution box is required during installation, and it can be installed easily.
  • FIG. 1 is a block diagram of an energy storage system of the present invention.
  • FIG. 2 is a waveform diagram of a commercial AC power inductor current, a switching control signal, and a load supply power for explaining the operation of the energy storage system of the present invention.
  • the energy storage system of the present invention receives a commercial AC power (Vac), which is a grid power, as an input/output terminal (IOP), and converts the commercial AC power into DC power.
  • AC/DC converter 10 a battery (B) for charging the DC power output from the AC/DC conversion unit (10), and a boosting unit (20) for boosting the DC power charged in the battery (B) to output a boosted DC voltage (DC) ), a DC/AC converter 30 that converts the boosted DC voltage (DC) into AC power and supplies the battery AC power (Bac) to the load 70 through the input/output terminal (IOP), and the battery (B)
  • a power control unit 40 that controls the driving of the AC/DC converter 10 to be charged, and controls the driving of the DC/AC converter 30 so that the battery AC power Bac is supplied to the load 70 .
  • an inductor (L) with one terminal connected to the supply terminal (ACP) to which commercial AC power (Vac) is supplied, and one terminal connected to the other terminal of the inductor (L), and the other terminal is an input/output terminal (IOP)
  • IOP input/output terminal
  • the switching unit SW connected to the current determining unit 50 and the current determining unit 50 for comparing the inductor current IL flowing through the inductor L with the power recovery limiting current Iref determined by the user
  • the activated switching control signal SWC is output to turn on the switching unit SW, and when the inductor current IL is equal to the restoration limit current Iref,
  • the inactive switching control signal SWC is output to turn off the switching unit SW, and after the switching control signal SWC is deactivated, when the reference time Tref determined by the user elapses, the switching control signal SWC is turned off.
  • It is composed of a switching control unit 60 for turning on the switching unit (SW) by activation.
  • the supply terminal (ACP) to which the commercial AC power (Vac) is supplied is connected to an outlet, and a power plug is connected to one terminal of the inductor (L) to connect the power plug to the outlet.
  • the AC/DC converter 10, the battery B, the booster 20, the DC/AC converter 30, and the power control unit 40 of the present invention are This is a typical configuration of an energy storage system.
  • the AC/DC converter 10 receives commercial AC power (Vac) from the supply terminal (ACP) to which the commercial AC power (Vac), which is the grid power, is supplied through the input/output terminal (IOP), and converts the commercial AC power (Vac). It is converted into DC power corresponding to the charging voltage of the battery (B), and the DC power is charged to the battery (B).
  • ACP supply terminal
  • IOP input/output terminal
  • the booster 20 boosts the DC power charged in the battery B to about 400V DC voltage to output the boosted DC voltage DC.
  • the DC/AC converter 30 converts the boosted DC voltage DC into AC power and supplies the battery AC power Bac to the load 70 through the input/output terminal IOP.
  • the power control unit 40 controls the driving of the AC/DC converter 10 so that the battery B is in a set state of charge, and when the condition of discharging the energy stored in the battery B is reached, the battery AC power Bac is Controls the driving of the DC/AC converter 30 to be supplied to the load 70 .
  • the discharge condition may be set in various ways, such as during a daytime time zone set to be usable for peak load during the day, or during a power outage.
  • the load 70 When the commercial AC power (Vac), which is the grid power, is normally supplied, the load 70 is driven by the commercial AC power (Vac), or in a discharge condition, the load 70 is the commercial AC power (Vac) and the battery AC power ( Bac).
  • Vac commercial AC power
  • Vac commercial AC power
  • Bac battery AC power
  • the power recovery limiting current (Iref) determined by the user is set to 40A, which is a value greater than the maximum current supplied to the load, the commercial AC power supply (ac) is normally supplied or the current determination unit is in the event of a power failure.
  • the inductor current IL flowing through the inductor L and the power recovery limiting current Iref are compared.
  • Reference numeral 60 outputs an activated switching control signal SWC, and the switching unit SW is in an ON state by the activated switching control signal SWC.
  • the load ( 70) is driven or in a discharge condition, the load 70 is driven by commercial AC power (Vac) and battery AC power (Bac). The load 70 is supplied to the load 70 is driven.
  • the battery AC power (Bac) is also supplied to the supply terminal (ACP) through the input/output terminal (IOP).
  • the battery AC power (Bac) have a phase difference of 180 degrees, that is, if the AC power of the battery AC power (Bac) is +220V, and the commercial AC power (Vac) is -220V, the inductor current (IL) by the inductor (L) ) becomes large, and when the inductor current IL increases by the current determination unit 50 to the same value as the power recovery limiting current Iref, the switching control unit 60 outputs the deactivated switching control signal SWC. and the switching unit SW is turned off by the deactivated switching control signal SWC, and the inductor current IL becomes 0.
  • the switching unit SW is turned off, and the switching unit ( SW) is turned off, so that the battery AC power Bac is not output to the supply terminal ACP, only the commercial AC power Vac is supplied to the load 70 .
  • the switching control unit 60 outputs the activated switching control signal SWC when the reference time Tref determined by the user, approximately 3 seconds, has elapsed after the switching control signal SWC is deactivated by power recovery, and the switching unit ( SW) is turned on and the energy storage system operates normally.
  • the present invention it is possible to continuously and stably supply the AC power of the system by the commercial AC power and the battery AC power generated by the energy accumulated in the battery to the load 70 even when the power is restored.
  • the power charged in the battery is supplied to the load through the input/output terminal and the power plug of the energy storage system is connected to the outlet, which is the supply terminal to which commercial AC power is supplied, there is no need for construction on the distribution box during installation. , easy to install.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

본 발명의 에너지 저장 시스템은 교류/직류 변환부(10)와, 배터리(B)와, 승압부(20)와, 직류/교류 변환부(30)와, 전력제어부(40)와, 한 단자가 상용교류전원(Vac)이 공급되는 공급단자(ACP)에 연결된 인덕터(L)와, 한 단자가 인덕터(L)의 다른 단자와 연결되고, 다른 단자가 입출력단자(IOP)에 연결된 스위칭부(SW)와, 인덕터(L)에 흐르는 인덕터전류(IL)와 사용자에 의해 정해지는 복전제한전류(Iref)를 비교하는 전류판단부(50)와, 전류판단부(50)에서 인덕터전류(IL)가 복전제한전류(Iref) 보다 작으면 활성화된 스위칭제어신호(SWC)를 출력하여 스위칭부(SW)를 온시키고, 인덕터전류(IL)가 복전제한전류(Iref)와 동일하면 비활성화된 스위칭제어신호(SWC)를 출력하여 스위칭부(SW)를 오프시키고, 스위칭제어신호(SWC)가 비활성화된 이후 사용자에 의해 정해지는 기준시간(Tref)이 경과되면 스위칭제어신호(SWC)를 활성화시켜 스위칭부(SW)를 온시키는 스위칭제어부(60)로 구성된다.

Description

에너지 저장 시스템
본 발명은 에너지 저장 시스템에 관한 것으로, 특히 가정으로 인입되는 계통전원인 상용교류전원이 정전 후 복전시에 에너지 저장 시스템이 손상되는 것을 방지하여 부하에 끊임 없이 안정적으로 상용교류전원에 의한 계통의 교류 전력 및 배터리에 축적된 에너지에 의해 발생된 배터리 교류전력을 공급할 수 있고, 입출력단을 통해 상용교류전원이 배터리 충전을 위한 교류/직류 변환부에 공급되고, 동시에 배터리에 충전된 전력을 입출력단을 통해 부하에 공급되도록 하고 상용교류전원이 공급되는 공급단자인 콘센트에 에너지 저장 시스템의 전원플러그를 접속시켜 사용하므로 설치시 분전함에 대한 공사가 필요하지 않고, 설치가 용이한 에너지 저장 시스템에 관한 것이다.
에너지 저장 시스템(Energy Storage System :ESS)은 에너지를 저장하는 일종의 배터리로서, 스마트 그리드와 연계되어 태양광, 풍력 등 신재생에너지원에서 생산된 전력을 저장하거나 전기요금이 저렴한 시간대에 외부 계통 전력으로부터 전력을 공급받아 저장하고 전력 소비가 높은 시간대에 저장된 전력을 방전함으로써, 전력 공급자의 입장에서는 전력 운영의 효율성을 높이고 소비자의 입장에서는 저렴한 전기요금을 이용할 수 있게 기여하는 장치이다.
특히, 전력수요량이 초과에 의한 대규모 정전 사태가 발생한 경험을 토대로 전력량 부족에 따른 순환 정전에 대한 위험성이 증가하면서 야간과 같은 경부하시에 유휴 전력을 저장하였다가 주간과 같은 첨두부하시나 전력부족시에 사용함으로써, 부하평준화(Load Leveling)를 통한 첨두부하를 분산 할 수 있도록 에너지 저장 시스템에 대한 필요성이 높아지고 있다.
가정에서도 계통 교류 전력인 상용교류전원과 함께 전력부족이나, 정전시를 위해 이러한 에너지 저장 시스템을 사용하고 있다.
가정에서 사용하는 에너지 저장 시스템과 관련된 선행기술로는, 대한민국 등록특허공보 제10-1616982호 "가정용 스마트 에너지 저장 시스템"(공고일자 : 2016.04.29)가 개시되어 있다.
상기 선행기술인 가정용 스마트 에너지 저장 시스템은 상용교류전원에 의한 계통 전력이 정상적으로 공급되거나, 정전에 의해 상용교류전원이 차단된 경우에는 부하에 안정적으로 전원이 공급되나, 상용교류전원이 정전 후 복전될 때, 상용교류전원과 배터리에 저장된 에너지를 방전시켜 발생되는 교류 전원과는 신호 동기가 불일치하는 경우가 발생되고, 이로 인해 에너지 저장 시스템이 손상되는 문제점을 가지고 있다.
또한, 상기 선행기술은 상용교류전원의 인입단은 배터리 충전을 위한 교류/직류 변환부의 입력부에 접속시켜야 하고, 배터리에 충전된 전력을 교류 전압으로 변환시키는 직류/교류 변환부의 출력단은 부하단자에 접속시켜야 하나, 부하단자는 가정 내에 마련된 분전함에 설치를 하여야 하므로, 계통 교류 전원에 에너지 저장 시스템을 장착하기 위해 분전함에 대한 설치 공사가 요구되므로, 설치가 쉽지 않은 문제점을 가지고 있다.
본 발명의 목적은 가정으로 인입되는 계통전원인 상용교류전원이 정전 후 복전시에 에너지 저장 시스템이 손상되는 것을 방지하여 부하에 끊임 없이 안정적으로 상용교류전원에 의한 계통의 교류 전력 및 배터리에 축적된 에너지에 의해 발생된 배터리 교류전력을 공급할 수 있고, 입출력단을 통해 상용교류전원이 배터리 충전을 위한 교류/직류 변환부에 공급되고, 동시에 배터리에 충전된 전력을 입출력단을 통해 부하에 공급되도록 하고 상용교류전원이 공급되는 공급단자인 콘센트에 에너지 저장 시스템의 전원플러그를 접속시켜 사용하므로 설치시 분전함에 대한 공사가 필요하지 않고, 설치가 용이한 에너지 저장 시스템을 제공하는 데 있다.
상기의 목적을 달성하기 위하여 본 발명의 에너지 저장 시스템은, 계통전원인 상용교류전원을 입출력단자로 입력받아 상용교류전원을 직류전원으로 변환하는 교류/직류 변환부; 상기 교류/직류 변환부에서 출력되는 직류전원을 충전하는 배터리; 상기 배터리에 충전된 직류전원을 승압시켜 승압직류전압을 출력하는 승압부; 상기 승압직류전압을 교류전원으로 변환하여 배터리 교류전력을 상기 입출력단자를 통해 부하에 공급하는 직류/교류 변환부; 상기 배터리가 충전이 이루어지도록 상기 교류/직류 변환부의 구동을 제어하고, 상기 배터리 교류전력을 상기 부하에 공급되게 상기 직류/교류 변환부의 구동을 제어하는 전력제어부; 한 단자가 상기 상용교류전원이 공급되는 공급단자에 연결된 인덕터; 한 단자가 상기 인덕터의 다른 단자와 연결되고, 다른 단자가 상기 입출력단자에 연결된 스위칭부; 상기 인덕터에 흐르는 인덕터전류와 사용자에 의해 정해지는 복전제한전류를 비교하는 전류판단부; 및 상기 전류판단부에서 상기 인덕터전류가 상기 복전제한전류 보다 작으면 활성화된 스위칭제어신호를 출력하여 상기 스위칭부를 온시키고, 상기 인덕터전류가 상기 복전제한전류와 동일하면 비활성화된 스위칭제어신호를 출력하여 상기 스위칭부를 오프시키고, 상기 스위칭제어신호가 비활성화된 이후 사용자에 의해 정해지는 기준시간이 경과되면 상기 스위칭제어신호를 활성화시켜 상기 스위칭부를 온시키는 스위칭제어부를 구비한 것을 특징으로 한다.
본 발명의 에너지 저장 시스템은 가정으로 인입되는 계통전원인 상용교류전원이 정전 후 복전시에 에너지 저장 시스템이 손상되는 것을 방지하여 부하에 끊임 없이 안정적으로 상용교류전원에 의한 계통의 교류 전력 및 배터리에 축적된 에너지에 의해 발생된 배터리 교류전력을 공급할 수 있고, 입출력단을 통해 상용교류전원이 배터리 충전을 위한 교류/직류 변환부에 공급되고, 동시에 배터리에 충전된 전력을 입출력단을 통해 부하에 공급되도록 하고 상용교류전원이 공급되는 공급단자인 콘센트에 에너지 저장 시스템의 전원플러그를 접속시켜 사용하므로 설치시 분전함에 대한 공사가 필요하지 않고, 간편하게 설치할 수 있다.
도 1은 본 발명의 에너지 저장 시스템의 구성도.
도 2는 본 발명의 에너지 저장 시스템의 동작을 설명하기 위한 상용교류전원인덕터전류, 스위칭제어신호 및 부하공급전원에 대한 파형도이다.
이하, 첨부된 도면을 참조하여 본 발명의 에너지 저장 시스템을 상세히 설명하고자 한다.
도 1에 도시된 바와 같이, 본 발명의 에너지 저장 시스템은, 계통전원인 상용교류전원(Vac)을 입출력단자(IOP)로 입력받아 상용교류전원을 직류전원으로 변환하는 교류/직류 변환부(10)와, 교류/직류 변환부(10)에서 출력되는 직류전원을 충전하는 배터리(B)와, 배터리(B)에 충전된 직류전원을 승압시켜 승압직류전압(DC)을 출력하는 승압부(20)와, 승압직류전압(DC)을 교류전원으로 변환하여 배터리 교류전력(Bac)을 입출력단자(IOP)를 통해 부하(70)에 공급하는 직류/교류 변환부(30)와, 배터리(B)가 충전이 이루어지도록 교류/직류 변환부(10)의 구동을 제어하고, 배터리 교류전력(Bac)을 부하(70)에 공급되게 직류/교류 변환부(30)의 구동을 제어하는 전력제어부(40)와, 한 단자가 상용교류전원(Vac)이 공급되는 공급단자(ACP)에 연결된 인덕터(L)와, 한 단자가 인덕터(L)의 다른 단자와 연결되고, 다른 단자가 입출력단자(IOP)에 연결된 스위칭부(SW)와, 인덕터(L)에 흐르는 인덕터전류(IL)와 사용자에 의해 정해지는 복전제한전류(Iref)를 비교하는 전류판단부(50)와, 전류판단부(50)에서 인덕터전류(IL)가 복전제한전류(Iref) 보다 작으면 활성화된 스위칭제어신호(SWC)를 출력하여 스위칭부(SW)를 온시키고, 인덕터전류(IL)가 복전제한전류(Iref)와 동일하면 비활성화된 스위칭제어신호(SWC)를 출력하여 스위칭부(SW)를 오프시키고, 스위칭제어신호(SWC)가 비활성화된 이후 사용자에 의해 정해지는 기준시간(Tref)이 경과되면 스위칭제어신호(SWC)를 활성화시켜 스위칭부(SW)를 온시키는 스위칭제어부(60)로 구성된다.
또한, 상용교류전원(Vac)이 공급되는 공급단자(ACP)는 콘센트에 연결시키고, 인덕터(L)의 한 단자에는 전원플러그를 연결하여 전원플러그를 콘센트에 접속시킨다.
상기의 구성에 따른 본 발명의 에너지 저장 시스템의 동작은 다음과 같다.
도 1에 도시된 바와 같이, 본 발명의 교류/직류 변환부(10)와, 배터리(B)와, 승압부(20)와, 직류/교류 변환부(30)와, 전력제어부(40)는 에너지 저장 시스템의 일반적인 구성이다.
교류/직류 변환부(10)는 계통전원인 상용교류전원(Vac)이 공급되는 공급단자(ACP)로부터 입출력단자(IOP)를 통해 상용교류전원(Vac)을 입력받아 상용교류전원(Vac)을 배터리(B)의 충전전압에 대응되는 직류전원으로 변환하고, 배터리(B)에는 직류전원이 충전된다.
승압부(20)는 배터리(B)에 충전된 직류전원을 대략 400V 직류전압으로 승압시켜 승압직류전압(DC)을 출력한다.
직류/교류 변환부(30)는 승압직류전압(DC)을 교류전원으로 변환하여 배터리 교류전력(Bac)을 입출력단자(IOP)를 통해 부하(70)에 공급한다.
전력제어부(40)는 배터리(B)가 설정된 충전상태가 되게 교류/직류 변환부(10)의 구동을 제어하고, 배터리(B)에 축적된 에너지의 방전 조건이 되면 배터리 교류전력(Bac)을 부하(70)에 공급되게 직류/교류 변환부(30)의 구동을 제어한다.
방전 조건은 하루 중 첨두부하시에 대해 이용할 수 있도록 설정된 주간 시간대역이나, 정전시 등 다양하게 설정될 수 있다.
계통전원인 상용교류전원(Vac)이 정상적으로 공급되는 경우 상용교류전원(Vac)에 의해서 부하(70)가 구동되거나, 방전 조건일 경우 부하(70)는 상용교류전원(Vac)과 배터리 교류전력(Bac)에 의해서 구동된다.
상용교류전원(Vac)이 정상적으로 공급되다가 정전이 발생된 경우, 부하(70)는 배터리 교류전력(Bac)에 의해서만 구동된다.
상용교류전원(Vac)이 정상적으로 공급되거나 정전시 부하에 공급되는 최대 전류는 부하가 요구하는 필요 전력/220V 이므로, 가정의 경우 통상 부하가 요구하는 필요 전력은 최대 7KW를 초과되지 않는다고 가정하면 최대 전류는 7KW/220V=32A 이다.
도 3에 도시된 바와 같이, 사용자에 의해 정해지는 복전제한전류(Iref)를 부하에 공급되는 최대 전류 보다 큰 값인 40A라고 설정하면, 상용교류전원(ac)이 정상적으로 공급되거나 정전시에는 전류판단부(50)에 의해 인덕터(L)에 흐르는 인덕터전류(IL)와 복전제한전류(Iref)를 비교하며, 이때 인덕터전류(IL)는 항상 복전제한전류(Iref) 보다 작은 값을 가지게 되므로, 스위칭제어부(60)는 활성화된 스위칭제어신호(SWC)를 출력하고, 활성화된 스위칭제어신호(SWC)에 의해 스위칭부(SW)는 온 상태에 있게 된다.
따라서, 상용교류전원(ac)이 정상적으로 공급되거나 정전시에는 스위칭부(SW)가 계속적으로 온 상태에 있으므로, 상용교류전원(ac)이 정상적으로 공급되는 경우에는 상용교류전원(Vac)에 의해서 부하(70)가 구동되거나, 방전 조건일 경우 부하(70)는 상용교류전원(Vac)과 배터리 교류전력(Bac)에 의해서 구동되고, 정전시에는 배터리 교류전력(Bac)은 입출력단자(IOP)를 통해 부하(70)에 공급되어 부하(70)는 구동된다.
상용교류전원(Vac)이 정전 후 복전시에는 입출력단자(IOP)를 통해 배터리 교류전력(Bac)도 공급단자(ACP)로 공급되며, 도 3에 도시된 바와 같이, 복전시 상용교류전원(Vac)과 배터리 교류전력(Bac)의 위상차가 180도인 경우, 즉, 배터리 교류전력(Bac)의 교류전원은 +220V이고, 상용교류전원(Vac) -220V이면, 인덕터(L)에 의해 인덕터전류(IL)는 커지게 되며, 전류판단부(50)에 의해 인덕터전류(IL)가 증가하여 복전제한전류(Iref)와 동일한 값이 되면, 스위칭제어부(60)는 비활성화된 스위칭제어신호(SWC)를 출력하고, 비활성화된 스위칭제어신호(SWC)에 의해 스위칭부(SW)는 오프되어 인덕터전류(IL)는 0이 된다.
따라서, 복전시 인덕터(L)에 의해 인덕터전류(IL)가 서서히 증가하게 되면서, 인덕터전류(IL)가 복전제한전류(Iref)와 동일한 값이 되면 스위칭부(SW)가 오프되고, 스위칭부(SW)의 오프에 의해 공급단자(ACP)로는 배터리 교류전력(Bac)이 출력되지 못하므로 부하(70)에는 상용교류전원(Vac)만이 공급된다.
따라서, 복전시 상용교류전원(Vac)과 배터리 교류전력(Bac)의 위상 차이에 의해 발생되는 에너지 저장 시스템이 손상되는 것을 방지할 수 있고, 부하(70)는 상용교류전원(Vac)에 의해 정상적으로 구동된다.
스위칭제어부(60)는 복전에 의해 스위칭제어신호(SWC)가 비활성화된 이후 사용자에 의해 정해지는 기준시간(Tref), 대략 3초 정도 경과되면 활성화된 스위칭제어신호(SWC)를 출력하여 스위칭부(SW)는 온되어 에너지 저장 시스템은 정상 동작을 한다.
따라서, 본 발명은 복전시에도 부하(70)에 끊임 없이 안정적으로 상용교류전원에 의한 계통의 교류전력 및 배터리에 축적된 에너지에 의해 발생된 배터리 교류전력을 공급할 수 있다.
또한, 본 발명의 에너지 저장 시스템은 입출력단(IOP)을 통해 상용교류전원(Vac)이 배터리 충전을 위한 교류/직류 변환부(10)에 공급되고, 동시에 배터리(B)에 충전된 배터리 교류전력(Bac)을 입출력단(IOP)을 통해 부하에 공급되도록 하고, 상용교류전원(Vac)이 공급되는 공급단자(ACP)는 콘센트를 통해 연결되고, 에 에너지 저장 시스템의 전원플러그를 콘센트에 접속시켜 전원플러그를 통해 공급단자(ACP)와 인덕터(L)가 연결되도록 하여 에너지 저장 시스템을 설치하기 위해 종래와 같이 분전함에 대한 공사가 필요하지 않고, 간편하게 설치할 수 있다.
본 발명은 배터리에 충전된 전력을 입출력단을 통해 부하에 공급되도록 하고 상용교류전원이 공급되는 공급단자인 콘센트에 에너지 저장 시스템의 전원플러그를 접속시켜 사용하므로 설치시 분전함에 대한 공사가 필요하지 않고, 설치가 용이하다.

Claims (2)

  1. 계통전원인 상용교류전원(Vac)을 입출력단자(IOP)로 입력받아 상용교류전원을 직류전원으로 변환하는 교류/직류 변환부(10);
    상기 교류/직류 변환부(10)에서 출력되는 직류전원을 충전하는 배터리(B);
    상기 배터리(B)에 충전된 직류전원을 승압시켜 승압직류전압(DC)을 출력하는 승압부(20);
    상기 승압직류전압(DC)을 교류전원으로 변환하여 배터리 교류전력(Bac)을 상기 입출력단자(IOP)를 통해 부하(70)에 공급하는 직류/교류 변환부(30);
    상기 배터리(B)가 충전이 이루어지도록 상기 교류/직류 변환부(10)의 구동을 제어하고, 상기 배터리 교류전력(Bac)을 상기 부하(70)에 공급되게 상기 직류/교류 변환부(30)의 구동을 제어하는 전력제어부(40);
    한 단자가 상기 상용교류전원(Vac)이 공급되는 공급단자(ACP)에 연결된 인덕터(L);
    한 단자가 상기 인덕터(L)의 다른 단자와 연결되고, 다른 단자가 상기 입출력단자(IOP)에 연결된 스위칭부(SW);
    상기 인덕터(L)에 흐르는 인덕터전류(IL)와 사용자에 의해 정해지는 복전제한전류(Iref)를 비교하는 전류판단부(50); 및
    상기 전류판단부(50)에서 상기 인덕터전류(IL)가 상기 복전제한전류(Iref) 보다 작으면 활성화된 스위칭제어신호(SWC)를 출력하여 상기 스위칭부(SW)를 온시키고, 상기 인덕터전류(IL)가 상기 복전제한전류(Iref)와 동일하면 비활성화된 스위칭제어신호(SWC)를 출력하여 상기 스위칭부(SW)를 오프시키고, 상기 스위칭제어신호(SWC)가 비활성화된 이후 사용자에 의해 정해지는 기준시간(Tref)이 경과되면 상기 스위칭제어신호(SWC)를 활성화시켜 상기 스위칭부(SW)를 온시키는 스위칭제어부(60)를 구비한 것을 특징으로 하는 에너지 저장 시스템.
  2. 제 1 항에 있어서, 상기 상용교류전원(Vac)이 공급되는 공급단자(ACP)는 콘센트에 연결시키고, 상기 인덕터(L)의 한 단자에는 전원플러그를 연결하여 상기 전원플러그를 상기 콘센트에 접속시키는 것을 특징으로 하는 에너지 저장 시스템.
PCT/KR2021/010554 2020-09-17 2021-08-10 에너지 저장 시스템 WO2022059918A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023518453A JP7489052B2 (ja) 2020-09-17 2021-08-10 エネルギー貯蔵システム
US17/764,963 US11824364B2 (en) 2020-09-17 2021-08-10 Energy storage system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200119759A KR102443460B1 (ko) 2020-09-17 2020-09-17 에너지 저장 시스템
KR10-2020-0119759 2020-09-17

Publications (1)

Publication Number Publication Date
WO2022059918A1 true WO2022059918A1 (ko) 2022-03-24

Family

ID=80776202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/010554 WO2022059918A1 (ko) 2020-09-17 2021-08-10 에너지 저장 시스템

Country Status (4)

Country Link
US (1) US11824364B2 (ko)
JP (1) JP7489052B2 (ko)
KR (1) KR102443460B1 (ko)
WO (1) WO2022059918A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110084751A (ko) * 2010-01-18 2011-07-26 삼성에스디아이 주식회사 전력 저장 장치와 그 동작 방법 및 전력 저장 시스템
KR101643705B1 (ko) * 2015-09-11 2016-07-29 성신전기공업(주) 무정전 전원장치의 제어 장치 및 방법
KR20170046990A (ko) * 2015-10-22 2017-05-04 엘지전자 주식회사 전력 공급 장치 및 이를 구비한 전력 공급 시스템
KR20170127179A (ko) * 2016-05-11 2017-11-21 엘에스산전 주식회사 에너지 저장 장치
KR20200089056A (ko) * 2019-01-16 2020-07-24 한국에너지기술연구원 에너지 비용 절감을 위한 에너지 저장 시스템, 전력 제어 장치 및 전력 제어 방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2114507A1 (en) * 1994-01-28 1995-07-29 Seshadri Sivakumar Bimodal fast transfer off-line uninterruptible power supply
KR100520292B1 (ko) * 2003-04-04 2005-10-13 한국전기연구원 전지전력 저장장치 및 그를 이용한 복합 운전방법
JP2009254192A (ja) 2008-04-10 2009-10-29 Meidensha Corp 無停電電源装置
JP2009296830A (ja) * 2008-06-06 2009-12-17 Hitachi Ltd 無停電電源装置
US9764643B2 (en) * 2013-03-21 2017-09-19 Toyota Jidosha Kabushiki Kaisha Vehicle
CN105027380B (zh) 2013-03-22 2018-09-11 松下知识产权经营株式会社 蓄电系统、监视装置、电力控制系统
JP6155935B2 (ja) 2013-07-23 2017-07-05 レシップホールディングス株式会社 電源装置
JP6260194B2 (ja) 2013-10-22 2018-01-17 日本電気株式会社 蓄電装置、蓄電システムおよび蓄電装置の制御方法
JP6470003B2 (ja) 2014-09-26 2019-02-13 株式会社日立情報通信エンジニアリング 無停電電源装置及び無停電電源装置システム
KR101616982B1 (ko) 2014-11-03 2016-04-29 김민희 가정용 스마트 에너지 저장 시스템
WO2020176073A1 (en) 2019-02-25 2020-09-03 Hewlett-Packard Development Company, L.P. Energy storage and alternating current power combiners

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110084751A (ko) * 2010-01-18 2011-07-26 삼성에스디아이 주식회사 전력 저장 장치와 그 동작 방법 및 전력 저장 시스템
KR101643705B1 (ko) * 2015-09-11 2016-07-29 성신전기공업(주) 무정전 전원장치의 제어 장치 및 방법
KR20170046990A (ko) * 2015-10-22 2017-05-04 엘지전자 주식회사 전력 공급 장치 및 이를 구비한 전력 공급 시스템
KR20170127179A (ko) * 2016-05-11 2017-11-21 엘에스산전 주식회사 에너지 저장 장치
KR20200089056A (ko) * 2019-01-16 2020-07-24 한국에너지기술연구원 에너지 비용 절감을 위한 에너지 저장 시스템, 전력 제어 장치 및 전력 제어 방법

Also Published As

Publication number Publication date
US11824364B2 (en) 2023-11-21
KR20220037157A (ko) 2022-03-24
US20220399720A1 (en) 2022-12-15
KR102443460B1 (ko) 2022-09-15
JP2023542367A (ja) 2023-10-06
JP7489052B2 (ja) 2024-05-23

Similar Documents

Publication Publication Date Title
JP5081596B2 (ja) 電力供給システム
EP2485375B1 (en) Power distribution system
KR101116428B1 (ko) 에너지 저장 시스템
JP2007124864A (ja) 電力変換システム
WO2011039608A1 (ja) 配電システム
KR20090085973A (ko) 대체 에너지원이 접속된 무정전전원장치
KR20150011301A (ko) 선박용 전력관리장치
KR101380530B1 (ko) 계통 연계형 에너지 저장 시스템
CN111953068B (zh) 电力转换系统及其操作方法
KR101097459B1 (ko) 건물용 마이크로그리드 시스템 및 운전방법
US10164437B2 (en) Module for storing/drawing electricity in/from an electric accumulator applicable to photovoltaic systems, a photovoltaic system and a method of upgrading a photovoltaic system
JP2013165624A (ja) 蓄電装置用パワーコンディショナ、蓄電装置
KR102222560B1 (ko) 에너지 저장 시스템
WO2022059918A1 (ko) 에너지 저장 시스템
KR20140037471A (ko) 자가발전 급수전 제어 장치 및 방법
CN111313535A (zh) 一种直驱空调器
JP2015065765A (ja) 充電回路および充電システム
CN109193885A (zh) 光伏储能逆变器的控制系统
KR102281808B1 (ko) 에너지 저장부를 포함하는 무정전 전원장치 및 그 구동방법
JP6355017B2 (ja) 電源制御装置及び電源制御方法
CN112838583A (zh) 一种静态发电机供电系统及其控制方法
KR20170135008A (ko) 조류발전시스템의 운전 제어 방법
KR102659333B1 (ko) 원코드 전원플러그를 이용한 전력 동기화 방법을 구비한 자동차
WO2012002449A1 (ja) エネルギー管理システム
JP3242499U (ja) 電力制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21869541

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023518453

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21869541

Country of ref document: EP

Kind code of ref document: A1