WO2022058640A1 - Polinucleótido para expresión fisiológica en células t - Google Patents

Polinucleótido para expresión fisiológica en células t Download PDF

Info

Publication number
WO2022058640A1
WO2022058640A1 PCT/ES2021/070684 ES2021070684W WO2022058640A1 WO 2022058640 A1 WO2022058640 A1 WO 2022058640A1 ES 2021070684 W ES2021070684 W ES 2021070684W WO 2022058640 A1 WO2022058640 A1 WO 2022058640A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell
seq
polynucleotide
expression
Prior art date
Application number
PCT/ES2021/070684
Other languages
English (en)
French (fr)
Inventor
Francisco MARTÍN MOLINA
María TRISTÁN MANZANO
Noelia MALDONADO PÉREZ
Pedro JUSTICIA LIRIO
Original Assignee
Fundación Pública Andaluza Progreso Y Salud
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ES202030955A external-priority patent/ES2901575A1/es
Application filed by Fundación Pública Andaluza Progreso Y Salud filed Critical Fundación Pública Andaluza Progreso Y Salud
Priority to EP21868788.7A priority Critical patent/EP4215609A1/en
Priority to JP2023518234A priority patent/JP2023541705A/ja
Priority to US18/246,173 priority patent/US20240043868A1/en
Publication of WO2022058640A1 publication Critical patent/WO2022058640A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • A61K39/4611
    • A61K39/4631
    • A61K39/464412
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/7051T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/70539MHC-molecules, e.g. HLA-molecules
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/03Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16041Use of virus, viral particle or viral elements as a vector
    • C12N2740/16043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16051Methods of production or purification of viral material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/008Vector systems having a special element relevant for transcription cell type or tissue specific enhancer/promoter combination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/15Vector systems having a special element relevant for transcription chimeric enhancer/promoter combination

Definitions

  • the present invention relates to a new technology for generating immunotherapeutic T cells.
  • the invention provides an improved system for generating immunotherapeutic T cells comprising a chimeric antigen receptor (CAR).
  • CAR chimeric antigen receptor
  • Adoptive immunotherapy which involves the transfer of autologous antigen-specific T cells generated ex vivo, is a promising strategy for treating viral infections and cancer.
  • T cells used for adoptive immunotherapy can be generated by expansion of antigen-specific T cells or redirection of T cells by genetic engineering. Transfer of viral antigen-specific T cells is a well-established procedure used for the treatment of transplant-associated viral infections and rare virus-associated malignancies. Similarly, isolation and transfer of tumor-specific T cells have been shown to be successful in treating melanoma.
  • CARs are synthetic receptors that consist of a targeting moiety that is associated with one or more signaling domains in a single fusion molecule.
  • the binding moiety of a CAR consists of an antigen-binding domain of a single-chain antibody (scFv), comprising the lumen and variable fragments of a monoclonal antibody joined by a flexible linker. Binding moieties based on receptor or ligand domains have also been used successfully.
  • the signaling domains for first-generation CARs are derived from the cytoplasmic region of the CD3zeta or Fe receptor gamma chains.
  • First-generation CARs have been shown to successfully redirect T-cell cytotoxicity, however, they failed to provide prolonged expansion and antitumor activity in vivo.
  • Signaling domains of costimulatory molecules including CD28, OX-40 (CD134), and 4-1 BB (CD137) have been added alone (second generation) or in combination (third generation) to improve survival and increase cell proliferation T modified with CAR2.
  • CARs have successfully redirected T cells against antigens expressed on the surface of tumor cells of various neoplasms, including lymphomas and solid tumors.
  • CD19 has been presented as an attractive target for immunotherapy because the vast majority of B acute lymphoblastic leukemia (ALL-B) 5 uniformly express CD19, whereas expression is absent in non-hematopoietic cells as well as in hematopoietic cells. myeloid, erythroid, T and bone marrow stem cells. Clinical trials targeting CD19 in B-cell malignancies are underway with encouraging antitumor responses. Most infuse T cells genetically modified to express a chimeric antigen receptor (CAR) with specificity derived from the scFv region of a mouse monoclonal antibody specific for CD19 FMC63.
  • CAR chimeric antigen receptor
  • TCR-type expression enhances the antileukemic activity of CAR-T cells using genome editing systems to express transgenes through the promoter of the TRAC locus.
  • genome editing strategies use very sophisticated technologies that are difficult to implement in clinical practice.
  • Fig. 1 LV expressing eGFP through two synthetic B2M promoters.
  • LTR long terminal repeats
  • eGFP enhanced green fluorescent protein
  • WPRE woodchuck hepatitis virus (WHP) Post-transcriptional regulatory element.
  • CD3/TCR protein expression is decreased in response to anti-CD3/CD28 stimuli in primary T cells.
  • a pure population of human primary T cells was isolated and stimulated with anti-CD3/CD28 (TransAct, Miltenyi) at Oh and CD3 (essential component of the T cell receptor, TCR) expression was determined by FACS and mRNA analysis at the indicated times.
  • Relative ratio [CD3MeFI to CD3+ gate / CD3 MeFI to CD3- gate in TIME] / CD3 MeFI to CD3 + gate / CD3 MeFI to CD3- gate to Oh], C)
  • the fold expression refers to the relative relationship between CD3 mRNA compared to GAPDH mRNA (used as internal control) cleaved at that expression at 0 h.
  • Relative ratio [CD3 expression / GAPDH expression at HR] / [CD3 expression / GAPDH expression at 0 h],
  • Fig. 3 GFP-driven expression by the B2M chimeric promoter mimicked the physiological CD3/TCR pattern after activation in contrast to the EF1-alpha promoter.
  • A) Primary human T cells were isolated and activated for transduction with the lentiviral vectors (LVs) to obtain similar levels of expression ( ⁇ 30-50%). Cells were left undisturbed for 10 days and then stimulated with anti-CD3/CD28 to mimic a physiological stimulation of the TCR/CD3 surface complex. The expression of CD3 and eGFP was simultaneously evaluated at the indicated times both at the protein (FACS) and mRNA levels. (non-transduced population) split on that expression at 0 h).
  • LVs lentiviral vectors
  • the left Y-axis indicates the relative proportion of CD3 mRNA and the right Y-axis refers to the relative proportion of GFP mRNA expression.
  • Relative ratio [GFP expression / GAPDH expression at TIME] / [GFP expression / GAPDH expression at 0 h].
  • the authors of the present invention have developed a system that allows the expression of CAR following the pattern of expression of TCR, avoiding the high levels of expression on the surface of T cells that have been associated with inefficient long-term therapy or with dangerous life-threatening side effects such as cytokine storm.
  • the authors of the invention have selected LV (lentivirus or lentiviral) as the best system to achieve stable expression and the regulatory regions of the B2M locus as a good candidate to express CARs that mimic the expression pattern of TCR after stimulation of CD3/CD28, both at protein and mRNA levels.
  • the authors of the invention have created two synthetic promoters that include most of the regulatory regions of the B2M locus in a reduced size that allows us to insert it into an LV backbone.
  • a first aspect of the invention refers to a polynucleotide that comprises or consists of the sequence SEQ ID NO: 1 or 2, hereinafter polynucleotides of the invention, or a polynucleotide that comprises or consists of a sequence that has an identity with SEQ ID NO: 1 or 2 of at least: a. 80% b. 85% c. 90%d. 95% e. 99%
  • polynucleotide of the invention of SEQ ID NO 1, also called B2M_EWP1 is a sequence of 1161 nucleotides that contains fragments of B2 microglobulin (B2M).
  • polynucleotide of the invention of SEQ ID NO 2 also called B2M_EWP2
  • B2M_EWP2 is a sequence of 1264 nucleotides that contains fragments of B2 microglobulin (B2M).
  • Any of the polynucleotides of the invention (SEQ ID NO 1 or SEQ ID NO 2) are preferably included in lentiviral vectors in order to be able to express them stably in cells.
  • a signal sequence (also known as leader sequence, prepro sequence, or presequence) may be provided in the sequence of any of the polynucleotides of the invention (SEQ ID NO 1 or SEQ ID NO 2) or in the sequence of a vector, such as a lentiviral vector, comprising said polynucleotides.
  • the secretory signal sequence will be operably linked to the transmembrane nucleic acid sequence, ie, the two sequences are joined in the correct reading frame and positioned to direct the newly synthesized polypeptide into the secretory pathway of the host cell.
  • Secretory signal sequences are commonly positioned 5' to the nucleic acid sequence encoding the polypeptide of interest, although certain secretory signal sequences may be positioned elsewhere on the nucleic acid sequence of interest (see, for example, Welch et al., US Patent 5,037,743; Holland et al., US Patent No. 5,143,830).
  • sequences of any of the polynucleotides of the invention may comprise codons optimized for expression in mammalian cells, preferably for expression in human cells.
  • Codon optimization refers to the swapping in a sequence of interest of codons that are generally rare in highly expressed genes of a given species with codons that are generally frequent in highly expressed genes of such species, such codons encoding the amino acids as the codons that Are exchanged.
  • another aspect of the invention relates to a genetic construct, hereinafter genetic construct of the invention, comprising any of the polynucleotides of the invention (SEQ ID NO 1 or SEQ ID NO 2).
  • the genetic construct of the invention is a viral vector, and more preferably a lentiviral vector.
  • the genetic construct of the invention comprises any of the polynucleotides of the invention (SEQ ID NO 1 or SEQ ID NO 2) operably linked to the sequence of a CAR to drive its expression, where the CAR, will comprise at least one extracellular ligand binding domain, a transmembrane domain and at least one intracellular signaling domain.
  • Another aspect of the invention relates to a cell, hereinafter cell of the invention, comprising any of the polynucleotides of the invention (SEQ ID NO 1 or SEQ ID NO 2), or the genetic construction of the invention that in turn comprises any of the polynucleotides of the invention (SEQ ID NO 1 or SEQ ID NO 2).
  • the cell of the invention is an immune cell. More preferably, cell populations of the invention are preferred.
  • the invention relates to a method of preparing immune cells for immunotherapy comprising the introduction into said immune cells of any of the polynucleotides of the invention (SEQ ID NO 1 or SEQ ID NO 2), or of the genetic construct or vector according to the present invention, and expanding said cells.
  • the invention relates to a method comprising providing a cell and expressing at least one CAR on the surface of said cell.
  • the method comprises transforming or transducing the cell with at least any of the polynucleotides of the invention (SEQ ID NO 1 or SEQ ID NO 2) or with a vector or gene construct comprising any of the polynucleotides of the invention (SEQ ID NO 1 or SEQ ID NO 2) operatively linked to the sequence of a CAR, and expressing said polynucleotides in said cell. That is, preferably for cell transformation or transduction any of the polynucleotides of the invention (SEQ ID NO 1 or SEQ ID NO 2) is cloned in a vector that includes the CAR of interest.
  • said method further comprises a step of genetically modifying said cell by inactivating at least one gene that expresses a TCR component, a target for an immunosuppressive agent, the HLA gene and/or an immune checkpoint gene such as PD1 or CTLA-4.
  • said gene is selected from the group consisting of TCRalpha, TCRbeta, CD52, GR, PD1 and CTLA-4.
  • said method further comprises introducing into said T cells a rare-cutting endonuclease capable of selectively inactivating said genes by excising the DNA.
  • said rare-cutting endonuclease TALE-nuclease or Cas9 endonuclease preferably involve the introduction of CAR into a cell using expression vectors comprising or cloned with the polynucleotides of the invention (SEQ ID NO 1 or SEQ ID NO 2).
  • said CAR can be introduced as transgenes encoded by a lentiviral vector.
  • the present invention also relates to isolated cells or cell lines that can be obtained by said method for engineering cells.
  • said isolated cell comprises at least one CAR and a B2 microglobulin promoter, preferably any of the polynucleotides of the invention (SEQ ID NO 1 or SEQ ID NO 2), in particular SEQ ID NO 1 or 2, operatively linked to the CAR to promote its expression.
  • said isolated cell comprises a population of CARs and promoters from the microglobulin B2 locus, in particular of SEQ ID NO 1 or 2, operatively linked to the CARs to drive their expression, each comprising different extracellular ligand-binding domains.
  • Immune cells of the present invention are activated and proliferate independently of antigen binding mechanisms.
  • An isolated immune cell preferably a T cell obtained according to any of the methods described above, is also included in the scope of the present invention.
  • Said immune cell refers to a cell of hematopoietic origin functionally involved in the initiation and/or execution of an innate and/or adaptive immune response.
  • Said immune cell according to the present invention may be derived from a stem cell.
  • the stem cells can be adult stem cells, non-human embryonic stem cells, more particularly non-human stem cells, umbilical cord stem cells, progenitor cells, bone marrow stem cells, induced pluripotent stem cells, totipotent stem cells or hematopoietic stem cells.
  • Representative human cells are CD34 + cells.
  • Said isolated cell can also be a dendritic cell, a killer dendritic cell, a mast cell, an NK cell, a B cell or a T cell.
  • it is a T cell selected from the group consisting of inflammatory T lymphocytes, cytotoxic T lymphocytes , regulatory T cells or helper T cells.
  • said cell may be derived from the group consisting of CD4 + T cells and CD8 + T cells.
  • a source of cells may be obtained from a subject through a variety of methods.
  • Cells can be obtained from a number of non-limiting sources, including cells peripheral blood mononuclear cells, bone marrow, lymph node tissue, umbilical cord blood, thymus tissue, tissue from a site of infection, ascites, pleural effusion, spleen tissue, and tumors.
  • any number of available T cell lines known to those of skill in the art may be employed.
  • said cell may be derived from a healthy donor, from a patient diagnosed with cancer or from a patient diagnosed with infection.
  • said cell is part of a mixed population of cells that have different phenotypic characteristics.
  • the scope of the present invention also encompasses a cell line obtained from a T cell transformed according to the previously described method. Modified cells resistant to immunosuppressive treatment and capable of being obtained by the above method fall within the scope of the present invention.
  • the immune cells in particular the T cells of the present invention can be further activated and expanded generally using methods as described, for example, in US Patents 6,352,694; 6,534,055; 6,905,680; 6,692,964; 5,858,358; 6,887,466; 6,905,681; 7,144,575; 7,067,318; 7,172,869; 7,232,566; 7,175,843; 5,883,223; 6,905,874; 6,797,514; 6,867,041; and US patent application publication no. 20060121005.
  • T cells can be expanded in vitro or in vivo.
  • the T cells of the invention are expanded by contact with an agent that stimulates a CD3/TCR complex and costimulatory molecule on the surface of the T cells to create an activation signal for the T cells.
  • an agent that stimulates a CD3/TCR complex and costimulatory molecule on the surface of the T cells to create an activation signal for the T cells.
  • chemicals such as the calcium ionophore A23187, phorbol 12-myristate 13-acetate (PMA), or mitogenic lectins such as phytohemagglutinin (PHA) can be used to create an activation signal for the T cell.
  • T cell populations can be stimulated in vitro, by contact with an anti-CD3 antibody, or an antigen-binding fragment thereof, or an anti-CD2 antibody immobilized on a surface, or by contact with an anti-CD3 antibody.
  • protein kinase C activator eg bhostatin
  • a calcium ionophore e.g bhostatin
  • a ligand that binds to the accessory molecule is used.
  • a population of T cells can be brought into contact with an anti-CD3 antibody and an anti-CD28 antibody, in conditions appropriate to stimulate T cell proliferation.
  • Appropriate conditions for T cell culture include an appropriate medium (eg, Minimal Essential Media or RPMI1640 Medium or, X-vivo 5, (Lonza)) that may contain factors necessary for proliferation and viability, including serum (eg, fetal bovine or human serum), interleukin-2 (IL-2), insulin, IFN-g, 1 L-4, 1 L-7, GM-CSF, -10 , - 2, 1 L-15, TGF and TNF- or any other additive for cell growth.
  • Other cell growth additives include, but are not limited to, surfactant, plasmanate, and reducing agents such as N-acetylcysteine and 2-mercaptoethanol.
  • Media may include RPMI 1640, A1 MV, DMEM, MEM, a-MEM, F-12, X-Vivo 1 and X-Vivo 20, Optimizer, with added amino acids, sodium pyruvate and vitamins, either serum-free or supplemented with an adequate amount of serum (or plasma) or a defined set of hormones, and/or an amount of cytokines sufficient for T-cell growth and expansion.
  • Antibiotics eg, penicillin and streptomycin, are included only in cultures experimental, not in cell cultures to be infused into a subject.
  • Target cells are maintained under conditions necessary to support growth, eg, a suitable temperature (eg, 37 °C) and atmosphere (eg, air plus 5% CO2). T cells that have been exposed to various times of stimulation may exhibit different characteristics.
  • said cells can be expanded by co-culture with tissue or cells.
  • Said cells may also be expanded in vivo, for example, in the blood of the subject after administering said cell to the subject.
  • composition of the invention refers to a composition, hereinafter composition of the invention, comprising any of the polynucleotides of the invention (SEQ ID NO 1 or SEQ ID NO 2), the genetic construction of the invention comprising any of the polynucleotides of the invention (SEQ ID NO 1 or SEQ ID NO 2), or the cell of the invention.
  • the composition of the invention also comprises a pharmaceutically acceptable carrier.
  • the composition of the invention is a pharmaceutical composition.
  • the composition of the invention comprises one or more additional active ingredients.
  • MEDICAL USES OF THE INVENTION refers to any of the polynucleotides of the invention (SEQ ID NO 1 or SEQ ID NO 2), the genetic construct of the invention, the cell of the invention, or the composition of the invention, for its use in therapy.
  • Another aspect of the invention refers to any of the polynucleotides of the invention (SEQ ID NO 1 or SEQ ID NO 2), the genetic construction of the invention, the cell of the invention, or the composition of the invention, for the treatment of cancer.
  • the cancer is selected from the list consisting of neoplasms, B-cell neoplasms, lymphoma, leukemia, and/or myeloma.
  • the isolated cells obtained by the different methods or the cell line derived from said isolated cell as previously described can be used as a medicine.
  • said medicament can be used to treat cancer, particularly for the treatment of B-cell lymphomas and leukemia in a patient in need thereof.
  • said isolated cell according to the invention or cell line derived from said isolated cell can be used in the manufacture of a medicament for the treatment of cancer in a patient in need thereof.
  • the present invention is based on methods for treating patients in need thereof, said method comprising at least one of the following steps:
  • said T cells of the invention may undergo robust T cell expansion in vivo and may persist for an extended period of time.
  • Said treatment may be palliative, curative or prophylactic. It can be part of an autologous immunotherapy or part of an allogeneic immunotherapy treatment.
  • autologous it is meant that the cells, cell line or population of cells used to treat patients are derived from said patient.
  • Allogeneic means that the cells or population of cells used to treat patients do not originate from said patient, but from a donor.
  • Cancers that can be used with the methods described are described in the previous section.
  • the treatment can be used to treat patients diagnosed with cancer.
  • Cancers that can be treated may comprise non-solid tumors (such as hematologic tumors, including, but not limited to, pre-B ALL (pediatric indication), adult ALL, mantle cell lymphoma, diffuse large B-cell lymphoma, and the like).
  • Types of cancers to be treated with the CARs of the invention include, but are not limited to, certain leukemias or lymphoid neoplasms. Also included are adult tumors/cancers and pediatric tumors/cancers. It may be a treatment in combination with one or more anticancer therapies selected from the group of antibody therapy, chemotherapy, cytokine therapy, dendritic cell therapy, gene therapy, hormonal therapy, laser light therapy, and radiation therapy.
  • said treatment can be administered to patients undergoing immunosuppressive treatment.
  • the present invention preferably relies on cells or population of cells, which have been rendered resistant to at least one immunosuppressive agent due to inactivation of a gene encoding a receptor for such immunosuppressive agent.
  • the immunosuppressive treatment must help the selection and expansion of the T cells according to the invention within the patient.
  • compositions described herein can be administered to a patient subcutaneously, intradermally, intratumorally, intranodally, intramedullary, intramuscularly, by intravenous or intralymphatic injection, or intraperitoneally.
  • the cell compositions of the present invention are preferably administered by intravenous injection.
  • the administration of the cells or population of cells may consist of the administration of 10 4 -10 9 cells per kg of body weight, preferably 10 5 to 10 6 cells/kg of body weight, including all integer values of numbers. cell within those ranges.
  • the cells or population of cells may be administered in one or more doses.
  • said effective amount of cells is administered as a single dose.
  • said effective amount of cells is administered as more than one dose over a period of time. the moment of administration is within the judgment of the responsible physician and depends on the clinical condition of the patient.
  • the cells or population of cells can be obtained from any source, such as blood, banks, or a donor, including the patient himself. While individual needs vary, determination of optimal ranges of effective amounts of a given cell type for a particular disease or condition is within the skill of the art.
  • An effective or effective amount means an amount that provides a therapeutic or prophylactic benefit.
  • the dose administered will depend on the age, health, and weight of the recipient patient, type of concurrent treatment, if any, frequency of treatment, and nature of effect desired.
  • said effective amount of cells or composition comprising those cells is administered parenterally.
  • Said administration may be an intravenous administration. Such administration can be done directly by injection into a tumor.
  • the cells are administered to a patient in conjunction with (eg, before, simultaneously with, or after) any number of treatment modalities, including, but not limited to, treatment with agents such as antiviral therapy, cidofovir and interleukin-2, cytarabine (also known as ARA-C), or natalizimab, treatment for patients with MS or treatment with efaliztimab for patients with psoriasis, or other treatments for patients with PML.
  • agents such as antiviral therapy, cidofovir and interleukin-2, cytarabine (also known as ARA-C), or natalizimab
  • agents such as antiviral therapy, cidofovir and interleukin-2, cytarabine (also known as ARA-C), or natalizimab
  • MS cidofovir and interleukin-2
  • cytarabine also known as ARA-C
  • natalizimab treatment for patients with MS or treatment with
  • the T cells of the invention can be used in combination with chemotherapy, radiation, immunosuppressive agents, such as cyclosporine, azathioprine, methotrexate, mycophenolate, and FK506, antibodies or other immunoablative agents such as CAM PATH, anti-CD3 antibodies, or other therapies.
  • immunosuppressive agents such as cyclosporine, azathioprine, methotrexate, mycophenolate, and FK506, antibodies or other immunoablative agents such as CAM PATH, anti-CD3 antibodies, or other therapies.
  • immunosuppressive agents such as cyclosporine, azathioprine, methotrexate, mycophenolate, and FK506, antibodies or other immunoablative agents such as CAM PATH, anti-CD3 antibodies, or other therapies.
  • cytotoxin fludaribine
  • cyclosporine FK506, rapamycin
  • mycoplienolic acid steroids
  • steroids FR901228
  • cytokines irradi
  • the cell compositions of the present invention are administered to a patient in conjunction with (eg, before, simultaneously with, or following) a bone marrow transplant, T-cell ablative therapy using chemotherapy agents such as fludarabine, radiotherapy of external beam (XRT), cyclophosphamide or antibodies such as OKT3 or CAM PATH.
  • chemotherapy agents such as fludarabine, radiotherapy of external beam (XRT), cyclophosphamide or antibodies such as OKT3 or CAM PATH.
  • the cellular compositions of the present invention are administered after a B-cell ablative therapy, such as agents that react with CD20, eg, Rituxan.
  • a B-cell ablative therapy such as agents that react with CD20, eg, Rituxan.
  • subjects may undergo standard treatment with high-dose chemotherapy followed by peripheral blood stem cell transplantation.
  • subjects receive an infusion of the expanded immune cells of the present invention.
  • the expanded cells are administered before or after surgery.
  • amino acid substitution means the substitution of one amino acid residue for another, eg, the replacement of an arginine residue with a glutamine residue in a peptide sequence is an amino acid substitution.
  • Nucleotides are designated as follows: The one-letter code is used to designate the base of a nucleoside: a is adenine, t is thymine, c is cytosine, and g is guanine.
  • r represents g or a (purine nucleotides)
  • k represents g or t
  • s represents g or c
  • w represents a or t
  • m represents a or c
  • t or c represents (pyrimide nucleotides).
  • d represents g, a or t
  • v represents g, a or c
  • b represents g, t or c
  • h represents a, t or c
  • n represents g, a, t or c.
  • nucleic acid or “polynucleotides” refers to nucleotides and/or polynucleotides, such as deoxyribonucleic acid (DNA) or ribonucleic acid (RNA), oligonucleotides, fragments generated by the polymerase chain reaction (PCR), and fragments generated by ligation, cleavage, endonuclease action, and exonuclease action
  • Nucleic acid molecules can be composed of monomers that are naturally occurring nucleotides (such as DNA and RNA) or natural nucleotide analogs (e.g., enantiomeric forms of naturally occurring nucleotides) or a combination of both Modified nucleotides may have alterations in the sugar moieties and/or in the pyrimidine or purine base Sugar modifications include, for example, the replacement of one or more hydroxyl groups with halogens, alkyl groups, amines and azido groups, or sugar
  • sugar moiety can be replaced with spherically and electronically similar structures, such as aza sugars and carbocyclic sugar analogs.
  • modifications to a base moiety include alkylated purines and pyrimidines, substituted purines or pyrimidines, or other well-known heterocyclic substituents.
  • Nucleic acid monomers can be joined by phosphodiester linkages or analogs of such linkages. Nucleic acids can be single-stranded or double-stranded.
  • CAR chimeric antigen receptor
  • a component present on the target cell eg, an antibody-based specificity for a desired antigen (eg, tumor antigen) with a receptor for T cells that activate the intracellular receptor domain to generate a chimeric protein that exhibits anti-target cell-specific immunity.
  • CARs consist of a single-chain extracellular antibody (scFv) fused to the intracellular signaling domain of the zeta chain of the T-cell antigen receptor complex (scFv) and have the ability, when expressed on T cells, to redirect the antigen recognition based on the specificity of the monoclonal antibody.
  • delivery vector or “delivery vectors” is meant any delivery vector that can be used in the present invention to bring into cell contact (i.e., “contact”) or release within cells or subcellular compartments (i.e. “introduce”) chemical agents/substances and molecules (proteins or nucleic acids) needed in the present invention. Includes, but is not limited to, liposomal delivery vectors, viral delivery vectors, drug delivery vectors, chemical carriers, polymehc carriers, lipoplexes, polyplexes, dendrimers, microbubbles (ultrasound contrast agents), nanoparticles, emulsions, or others. appropriate transfer vectors.
  • delivery vectors allow the delivery of molecules, chemicals, macromolecules (genes, proteins) or other vectors such as plasmids, peptides. In these cases, the delivery vectors are carrier molecules.
  • delivery vector or “delivery vectors” is also meant delivery methods intended to effect transfection.
  • vector refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked.
  • a “vector” in the present invention includes, but is not limited to, a viral vector, a plasmid, an RNA vector, or a linear or circular DNA or RNA molecule which may consist of a molecule chromosomal, non-chromosomal, semi-synthetic or synthetic nucleic acids.
  • Preferred vectors are those capable of autonomous replication (episomal vector) and/or expression of nucleic acids to which they are linked (expression vectors). A large number of suitable and commercially available vectors are known to those skilled in the art.
  • Viral vectors include retroviruses, adenoviruses, parvoviruses (eg, adeno-associated viruses), coronaviruses, negative-strand RNA viruses such as orthomyxoviruses (eg, influenza viruses), rhabdoviruses (eg, rabies, and influenza viruses).
  • vesicular stomatitis vesicular stomatitis
  • paramyxoviruses eg measles and Sendai
  • positive-stranded RNA viruses such as picornaviruses and alphaviruses
  • double-stranded DNA viruses including adenoviruses, herpesviruses (eg herpes simplex virus types 1 and 2, Epstein-Barr virus, cytomegalovirus) and poxviruses (eg, vaccinia, fowlpox, and canarypox).
  • Other viruses include Norwalk virus, togavirus, flavivirus, reovirus, papovavirus, hepadnavirus, and hepatitis virus, for example.
  • retroviruses examples include: avian leukosis-sarcoma, mammalian type C viruses, type B viruses, type D viruses, HTLVBLV group, lentiviruses, spumaviruses (Coffin, JM, Retroviridae: Viruses and their Replication, In Fundamental Virology, Third Edition, BN Fields, et al., Eds., Lippincott-Raven Publishers, Philadelphia, 1996).
  • lentiviral vector HIV-based lentiviral vectors that are very promising for delivery due to their relatively large packaging capacity, reduced immunogenicity, and their ability to stably transduce with high efficiency a wide range of different cell types .
  • Lentiviral vectors are generally generated after transient transfection of three (packaging, envelope, and transfer) or more plasmids into producer cells.
  • lentiviral vectors enter the target cell through the interaction of viral surface glycoproteins with receptors on the cell surface.
  • the viral RNA undergoes reverse transcription, which is mediated by the viral reverse transcriptase complex.
  • the product of reverse transcription is a double-stranded linear viral DNA, which is the substrate for viral integration into the DNA of infected cells.
  • integrating lentiviral vectors or LVs
  • NILV non-integrative lentiviral vectors
  • NILV efficient gene delivery vectors that are not integrated into the genome of a target cell by the action of integrase virus.
  • the vectors and release vectors can be associated or combined with any cell permeabilization technique, such as sonoporation or electroporation or derivatives of these techniques.
  • cell or cells any living eukaryotic cell, primary cell and cell line derived from these organisms for in vitro cultures.
  • Primary cell or “primary cells” means cells taken directly from living tissue (i.e. biopsy material) and established for growth in vitro, which have undergone very few population doublings and are therefore more representative of the main components and characteristics of the tissues from which they are derived, compared to continuous or artificially immortalized tumorigenic cell lines.
  • cell lines may be selected from the group consisting of CHO-K1 cells; HEK293 cells; Caco2 cells; LI2-OS cells; NIH 3T3 cells; NSO cells; SP2 cells; CHO-S cells; DG44 cells; K-562 cells, U-937 cells; MRC5 cells; IMR90 cells; Jurkat cells; HepG2 cells; HeLa cells; HT-1080 cells; HCT-116 cells; Hu-h7 cells; Huvec cells; Dumb cells 4.
  • All of these cell lines can be modified by the method of the present invention to provide cell line models for producing, expressing, quantifying, detecting, studying a gene or protein of interest; these models can also be used to select biologically active molecules of interest in research and production and various fields such as chemistry, biofuels, therapeutics and agronomy, as non-limiting examples.
  • mutants means the substitution, deletion, insertion of up to one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, twenty, twenty-five, thirty , forty, fifty or more nucleotides/amino acids in a polynucleotide (cDNA, gene) or polypeptide sequence.
  • the mutation can affect the coding sequence of a gene or its regulatory sequence. It can also affect the structure of the genomic sequence or the structure/stability of the encoded mRNA.
  • variant(s) we mean a repeat variant, a variant, a DNA-binding variant, a TALEnuclease variant, a polypeptide variant obtained by mutation or replacement of at least one residue in the amino acid sequence of the molecule mother.
  • functional variant means a catalytically active mutant of a protein or domain of a protein; said mutant may have the same activity compared to its original protein or protein domain or additional properties, or greater or lesser activity.
  • identity refers to the sequence identity between two nucleic acid molecules or polypeptides. Identity can be determined by comparing a position in each sequence that can be aligned for comparison purposes. When a position in the compared sequence is occupied by the same base, then the molecules are identical at that position. A degree of similarity or identity between nucleic acid or amino acid sequences is a function of the number of identical or matching nucleotides at positions shared by the nucleic acid sequences.
  • Various alignment algorithms and/or programs can be used to calculate the identity between two sequences, including FASTA or BLAST, which are available as part of the GCG Sequence Analysis Package (University of Wisconsin, Madison, Wis.) and can be used with, for example, the default settings.
  • polypeptides that have at least 70%, 85%, 90%, 95%, 98%, or 99% identity to the polypeptides described herein and preferably exhibit substantially the same functions, as well as the polynucleotide encoding said polypeptides, are contemplated.
  • Similarity describes the relationship between the amino acid sequences of two or more polypeptides.
  • BLASTP can also be used to identify an amino acid sequence that is at least 70%, 75%, 80%, 85%, 87.5%, 90%, 92.5%, 95%, 97.5%, 98%, 99% sequence similarity to a reference amino acid sequence using a similarity matrix such as BLOSUM45, BLOSUM62, or BLOSUM80. Unless otherwise stated, a similarity score will be based on the use of BLOSUM62. When BLASTP is used, the percentage similarity is based on the score of positive BLASTPs and the percentage of sequence identity is based on the score of BLASTP identities.
  • BLASTP "Identities” shows the number and fraction of total residues in high-scoring sequence pairs that are identical; and "Positive” BLASTP displays the number and fraction of residues for which the alignment scores have positive values and are similar to each other.
  • the polynucleotide sequences of similar polypeptides are deduced using the genetic code and can be obtained by conventional means.
  • the polynucleotide that encodes such a functional variant would be produced by reverse translation of its amino acid sequence using the genetic code.
  • signal transducer domain or "costimulatory ligand” refers to a molecule on an antigen-presenting cell that specifically binds to an analogous costimulatory molecule on a T cell, providing a signal that, in addition to the primary signal provided, for example, by binding a TCR/CD3 complex to a peptide-loaded MHC molecule, it mediates a T cell response, including, but not limited to, activation of proliferation, differentiation, and the like.
  • Costimulatory ligand may include but is not limited to CD7, B7-1 (CD80), B7-2 (CD86), PD-L1, PD-L2, 4-1 BBL, OX40L, inducible costimulatory ligand (ICOS-L), molecule intercellular adhesion (ICAM, CD30L, CD40, CD70, CD83, HLA-G, MICA, M1CB, HVEM, lymphotoxin receptor beta, 3/TR6, ILT3, ILT4, an agonist or antibody that binds to the Toll ligand receptor and a ligand that specifically binds with B7-H3
  • a costimulatory ligand also encompasses, but is not limited to, an antibody that specifically binds to a costimulatory molecule present on a T cell, such as, but not limited to, CD27, CD28, 4- IBB, 0X40, CD30, CD40, PD-1, ICOS, lymphocyte function-associated antigen 1 (LFA-1),
  • costimulatory molecule refers to the cognate binding partner on a T cell that specifically binds a costimulatory ligand, thereby mediating a costimulatory response of the cell, such as, but not limited to proliferation.
  • Costimulatory molecules include, but are not limited to, an MHC class I molecule, BTLA, and Toll ligand receptor.
  • costimulatory signal refers to a signal, which in combination with the primary signal, such as TCR/CD3 binding, leads to T cell proliferation and/or up-regulation or down-regulation. of key molecules.
  • extracellular ligand binding domain is defined as an oligo or polypeptide that is capable of binding a ligand.
  • the domain will be capable of interacting with a cell surface molecule.
  • the extracellular ligand-binding domain can be chosen to recognize a ligand that acts as a cell surface marker on target cells associated with a particular disease state.
  • cell surface markers that can act as ligands include those associated with viruses, bacteria and parasitic infections, autoimmune diseases and cancer cells.
  • subject or “patient” as used herein includes all members of the animal kingdom, including non-human primates and humans.
  • eGFP+ T cells where eGFP is expressed under the control of the different chimeric promoters.
  • T-CAR-CD19 cells where the CAR is expressed under the control of the different chimeric promoters.
  • the B2M Teto construct is identical, but placing the Teto sequence downstream of the TSS, while in the B2M Enh5' construct, we changed the position of the enhancer defined by Ensembl from the 3' to the 5' region
  • SEWP is a plasmid that allows the expression of eGFP under the control of the SFFV (spleen focus-forming virus) viral promoter.
  • This plasmid (available in the laboratory) was modified to substitute the promoter for the chimeric constructs. Pooled digestions of all constructs were performed with restriction enzymes BamHI and EcoRI (New England Biolabs) using buffer 2.1 (New England Biolabs) for 1 hour and a half at 37°C. Ultrapure agarose gel electrophoresis was performed, and bands were isolated using the QIAquick® Gel Extraction Kit (QIAGEN). In parallel, the SEWP backbone was digested with the same enzymes to obtain the promoterless fragment.
  • Competent bacteria were transformed and positive colonies were rechecked by colony PCR, with the primers Fw cPPT-clinical (5'-GTGCAGGGGAAAGAATAGTAG-3') and Rv CD19 (5'-TACAGGACTTTCTTTCTGCC-3'). Minipreps of positive colonies were made with the same kit, and checked by Hindll pattern and by sequencing.
  • the cell line used for the production of lentiviral vectors was HEK-293T (embryonic cells from human kidney, ATCC® CRL-11268TM). They are adherent cells that were cultured in flasks T175 with DMEM medium (Dulbecco's Modified Eagle Medium) (Biowest) supplemented with 10% fetal bovine serum (FBS) (Gibco) and 1% penicillin/streptomycin (P/S; 0.5% of each) (Biowest).
  • DMEM medium Dulbecco's Modified Eagle Medium
  • FBS fetal bovine serum
  • P/S penicillin/streptomycin
  • the BxPC-3 line (human pancreatic adenocarcinoma cells, ATCC® CRL-1687TM) is also an adherent cell line that was cultured in T25 flasks with RPMI-1640 medium (from the English Roswell Park Memorial Institute) (Biowest) supplemented with a 10% FBS and 1% P/S.
  • the Jurkat (for acute T-cell leukemia, ATCC® TIB-152TM) and Namalwa (for Burkitt's lymphoma, ATCC® CRL-1432TM) lines are cells in suspension that are also cultured with RPMI-1640 medium supplemented with 10 % FBS and 1% P/S, both cultured in T25 flasks.
  • T cells were obtained from mobilized peripheral blood from a healthy donor.
  • peripheral blood mononuclear cells PBMCs
  • Lymphosep Biowest
  • a specific medium for separating lymphocytes Centrifugation was carried out for 30 minutes at 400g without brake or acceleration. Successive washes were performed, and T lymphocytes were isolated from the entire cell cocktail using the MACSxpress® Pan T Cell Isolation kit (Miltenyi Biotec), which consists of a mixture of antibodies against most PBMC surface markers except for CD3, conjugated with magnetic microspheres, thus constituting a magnetic separation method based on the negative depletion of all cell types except T cells (CD3+).
  • MACSxpress® Pan T Cell Isolation kit MACSxpress® Pan T Cell Isolation kit
  • Isolated T cells were cultured in TexMACSTM medium (Miltenyi Biotec), a T cell-specific medium, supplemented with 5% human serum AB (Biowest), 1% P/S, and 20 IU/mL interleukin-2. (IL-2) (Miltenyi Biotec), kept in an incubator at 37°C and 5% CO2. To promote cell growth, they were stimulated via TCR with T Cell TransActTM (Miltenyi Biotec), an anti-CD3/anti-CD28 polymeric nanomatrix. Cells were passaged 2-3 times per week, maintaining a cell density of 1*106 cells/mL. 4. Production of lentiviral vectors
  • Vector production was performed using HEK-293T cells as packaging cells. Cells were seeded in 6-well plates (Ufe Sciences) showing greater than 90% confluency. to. transfection
  • a second generation packaging system was used, which implies the use of 3 plasmids derived from the lentiviral genome: 1) Transfer plasmid (B2M-SEWP and B2M-CAR); 2) Packaging plasmid (pCMV8.9) of the HIV virus, and 3) Envelope plasmid (pMD2.G) VSV-G, which has the highest range of infectivity. The ratio 10:7:3 was maintained between them, respectively.
  • the transfectant agent chosen was LipoD293TM (SigmaGen Laboratories). Transfection was performed in serum-free DMEM and, 5 hours post-transfection, a medium change was performed with Optimen (Gibco) to eliminate the long-term toxicity of VSV-G and facilitate subsequent concentration.
  • Optimen Collection of viral supernatant and concentration
  • Viral particles present in the supernatant were collected using 5 mL sterile syringes (Terumo), and filtered using filters with a pore size of 0.45 pm (Life Sciences). The concentration of the viral particles was carried out using 100 kD Amicon Ultra-15 filters (Milipore), by means of centrifugation at 1800g at 4°C. Vectors were stored at -80°C. c. Title
  • the titration of the vectors was performed by calculating efficient particles by flow cytometry (FACS Canto II, BD Biosciences).
  • GFP vectors it transduced 5 cell types: Jurkat, Namalwa, HEK-293T, BxPC-3 and primary T cells.
  • Jurkat cells and Namalwa 100,000 cells per well were plated in 48-well plates and the viral vectors were added. To improve transduction efficiency, cells were spinoculated. Spinoculation is a centrifugation process at 800g, 32°C for 1 hour to favor cell-vector contact. In the case of 293T cells, 100,000 cells were also plated.
  • BxPC-3 cells 50,000 cells per well were plated in a 24-well plate.
  • T cells 200,000 cells per well were plated in 96-well plates and, prior to transduction, they were activated via TCR using T Cell TransActTM for 24h. Transduction was performed by spinoculation. In all cases, 5 hours post-transduction, a medium change was performed and, 3 days later, the percentage of transduced cells was determined by flow cytometry.
  • CAR vectors transduction was carried out in Jurkat cells and in primary T cells, following the same procedure.
  • the first step to achieve this work was to design the promoters that we would later use to regulate the expression of eGFP and CAR.
  • B2M P-2 microglobulin
  • MHC major histocompatibility complex
  • B2M-derived promoters differ in the presence or absence of the TetO region, as well as in the position of the enhancer defined by Ensembl.
  • the data was analyzed from the median fluorescence of both GFP and the fluorochrome conjugated with the antibody that is directed against CD3 at the different time points.
  • the phenotype of GFP+ T cells changes over time to a more differentiated state.
  • the cell population at 7 days is still largely memory trunk.
  • the LTRs allow integration.
  • EGFRt encodes for the truncated epidermal growth factor receptor, which allows CAR+ cells to be depleted if necessary (using a monoclonal antibody, cetuximab) and allows indirect detection of CAR using an antibody against this EGFRt conjugated with a fluorochrome.
  • T2A is a self-cleaving peptide, which allows a long peptide to be cut into two short peptides (because CAR and EGFRt are encoded together as a recombinant protein, and are separated thanks to this mechanism).
  • WPRE is a post-transcriptional regulatory element that enhances both viral vector titer and transgene expression.
  • Fresh T cells processed by negative magnetic immunoselection from mobilized peripheral blood from a healthy donor were used. Transduction was carried out by spinoculation, using 50 pL of vector in 100,000 T cells. CAR expression was determined 72 hours post-transduction. With the B2M promoter, a percentage of CAR expression of 18% was observed. CAR3G (the original lentiviral vector in which CAR is expressed under the control of the EF1-a promoter) was used as a positive control for staining and transduction. NTD cells were used as a negative control.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Virology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Hematology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

Sistema mejorado para generar células T inmunoterapéuticas que comprenden un receptor de antígeno quimérico (CAR).

Description

Polinucleótido para expresión fisiológica en células T
CAMPO DE LA INVENCION
La presente invención se refiere a una nueva tecnología para generar células T inmunoterapéuticas. En particular, la invención proporciona un sistema mejorado para generar células T inmunoterapéuticas que comprenden un receptor de antígeno quimérico (CAR).
ANTECEDENTES DE LA INVENCION
La inmunoterapia adoptiva, que implica la transferencia de células T específicas de antígeno autólogo generadas ex vivo, es una estrategia prometedora para tratar infecciones virales y cáncer. Las células T utilizadas para la inmunoterapia adoptiva se pueden generar mediante la expansión de las células T específicas de antígeno o la redirección de las células T mediante ingeniería genética. La transferencia de células T específicas de antígenos virales es un procedimiento bien establecido que se utiliza para el tratamiento de infecciones virales asociadas a trasplantes y neoplasias malignas raras relacionadas con virus. Del mismo modo, se ha demostrado que el aislamiento y la transferencia de células T específicas de tumor tienen éxito en el tratamiento del melanoma.
Se han generado con éxito nuevas especificidades en las células T mediante la transferencia genética de receptores de células T transgénicas o receptores de antígenos quiméricos (CAR). Los CAR son receptores sintéticos que consisten en un resto de direccionamiento que está asociado con uno o más dominios de señalización en una sola molécula de fusión. En general, el resto de unión de un CAR consiste en un dominio de unión a antígeno de un anticuerpo de cadena sencilla (scFv), que comprende la luz 25 y fragmentos variables de un anticuerpo monoclonal unidos por un conector flexible. Los restos de unión basados en dominios de receptor o ligando también se han usado con éxito. Los dominios de señalización para los CAR de primera generación se derivan de la región citoplasmática de las cadenas gamma del receptor CD3zeta o Fe. Se ha demostrado que los CAR de primera generación redirigen con éxito la citotoxicidad de células T, sin embargo, no lograron proporcionar una expansión prolongada y 30 actividad antitumoral ¡n vivo. Los dominios de señalización de moléculas coestimuladoras que incluyen CD28, OX-40 (CD134) y 4-1 BB (CD137) se han agregado solos (segunda generación) o en combinación (tercera generación) para mejorar la supervivencia y aumentar la proliferación de células T modificadas con CAR2. Los CAR han permitido redirigi r con éxito las células T contra los antígenos expresados en la superficie de las células tumorales de diversas neoplasias, incluidos linfomas y tumores sólidos. CD19 se ha presentado como un objetivo atractivo para la inmunoterapia porque la gran mayoría de la leucemia linfoblástica aguda B (ALL-B) 5 expresa de manera uniforme CD19, mientras que la expresión está ausente en las células no hematopoyéticas, así como en las células mieloides, eritroides, T y hueso células madre de médula. Los ensayos clínicos dirigidos a CD19 en tumores malignos de células B están en marcha con respuestas antitumorales alentadoras. La mayoría infunde las células T genéticamente modificadas para expresar un receptor de antígeno quimérico (CAR) con especificidad derivada de la región scFv de un anticuerpo monoclonal de ratón específico para CD19 FMC63. Sin embargo, todavía existe la necesidad de mejorar la construcción de CAR que muestre una mejor compatibilidad con la proliferación de células T, a fin de permitir que las células que expresan tales CAR alcancen un nivel significativo ventaja clínica. En este sentido y, a pesar del claro beneficio para los pacientes tratados con CAR-T, las tecnologías reales que utilizan 15 promotores fuertes para expresar CAR vienen con un lado negativo. Se han reportado efectos secundarios graves, incluyendo muertes de pacientes. Principalmente debido a un síndrome de liberación de citoquinas (SRC) asociado con la hiperactividad de las células CAR-T en los primeros días después de la infusión. Además, un porcentaje significativo de pacientes que respondieron inicialmente, recayeron como consecuencia de reducir la longevidad (y eficacia) de las células CAR-T administradas. Eyquem, Mansilla-Soto y col. 20 ya han demostrado que la expresión de tipo TCR mejora la actividad antileucémica de las células CAR-T utilizando sistemas de edición del genoma para expresar transgenes a través del promotor del locus TRAC. Sin embargo, las estrategias de edición del genoma utilizan tecnologías muy sofisticadas difíciles de implementar en la práctica clínica.
Por lo tanto, es necesario desarrollar polinucleótidos que imiten el patrón de expresión de TCR de una manera muy precisa, que reduzcan de 3 a 4 veces la expresión del transgén 8-24 h después de la activación de las células T, y que vuelvan a recuperar su expresión a las 48-72 h.
DESCRIPCION DE LAS FIGURAS
Fig. 1. LV que expresan eGFP a través de dos promotores B2M sintéticos. A) Se diseñaron dos promotores B2M combinando diferentes regiones reguladoras del locus B2M humano como se muestra en la figura. Se muestran las secuencias completas de ambos promotores sintéticos. Como se puede observar, la principal diferencia entre ambas construcciones es la inserción del potenciador B2M en el 3 '(B2M2) o en el 5' (B2M1) del TSS. B) Esquema de los LV que expresan eGFP a través de los promotores sintéticos B2M1 y B2M2. C) Control de LV que expresa eGFP a través del promotor EF1-alfa. LTR: repeticiones terminales largas; eGFP: proteína fluorescente verde mejorada; WPRE: virus de la hepatitis de la marmota (WHP) Elemento regulador postranscripcional.
Fig. 2. La expresión de la proteína CD3 / TCR disminuye en respuesta a estímulos anti- CD3 / CD28 en células T primarias. A) Se aisló una población pura de células T primarias humanas y se estimuló con anti-CD3 / CD28 (TransAct, Miltenyi) a las Oh y se determinó la expresión de CD3 (componente esencial del receptor de células T, TCR) mediante FACS y análisis de ARNm en la indicada veces. B) La expresión de pliegues indicó la relación relativa entre la mediana de la intensidad de fluorescencia de CD3 en la población de CD3 + en comparación con el MeFI de CD3 en la población de CD3 dividido por esa expresión a las 0 h. Relación relativa = [CD3MeFI de puerta CD3 + / CD3 MeFI de CD3- puerta en TIME] / CD3 MeFI de CD3 + puerta / CD3 MeFI de CD3- puerta a Oh], C) La expresión de pliegue se refiere a la relación relativa entre el ARNm de CD3 en comparación con el ARNm de GAPDH (utilizado como control interno) dividido a esa expresión a las 0 h. Relación relativa = [expresión de CD3 / expresión de GAPDH a la HORA] / [expresión de CD3 / expresión de GAPDH a las 0 h],
Fig. 3. La expresión dirigida por GFP por el promotor quimérico B2M imitó el patrón fisiológico CD3 / TCR después de la activación en contraste con el promotor EF1-alfa. A) Se aislaron y activaron células T primarias humanas para la transducción con los vectores lentivirales (LV) para obtener niveles similares de expresión (~ 30-50%). Las células se dejaron reposar durante 10 días y luego se estimularon con anti-CD3 / CD28 para imitar una estimulación fisiológica del complejo de superficie TCR / CD3. La expresión de CD3 y eGFP se evaluó simultáneamente en los momentos indicados tanto a nivel de proteína (FACS) como de ARNm. ( población no transducida) dividida en esa expresión a las 0 h). C) El eje Y izquierdo indica la proporción relativa de ARNm de CD3 y el eje Y derecho se refiere a la proporción relativa de expresión de ARNm de GFP. Relación relativa = [expresión de GFP / expresión de GAPDH en el TIEMPO] / [expresión de GFP / expresión de GAPDH a las 0 h]. DESCRIPCION DE LA INVENCION
Los autores de la presente invención han desarrollado un sistema que permite la expresión de CAR siguiendo el patrón de expresión de TCR, evitando los altos niveles de expresión en la superficie de las células T que se han asociado con una terapia ineficiente a largo plazo o con efectos secundarios peligrosos que amenazan la vida, como la tormenta de citoquinas. Los autores de la invención han seleccionado LV (lentivirus o lentiviral) como el mejor sistema para lograr una expresión estable y las regiones reguladoras del locus B2M como un buen candidato para expresar los CAR que imitan el patrón de expresión de TCR después de la estimulación de CD3/CD28, tanto a niveles de proteína como de ARNm.
En base a las regiones reguladoras de B2M, los autores de la invención han creado dos promotores sintéticos que incluyen la mayoría de las regiones reguladoras de locus B2M en un tamaño reducido que nos permite insertarlo en un esqueleto LV.
Por tanto, un primer aspecto de la invención se refiere a un polinucleótido que comprende o consiste en la secuencia SEQ ID NO: 1 o 2, de ahora en adelante polinucleótidos de la invención, o un polinucleótido que comprende o consiste en una secuencia que presente una identidad con la SEQ ID NO: 1 o 2 de al menos: a. Un 80% b. Un 85% c. Un 90% d. Un 95% e. Un 99%
SEQ ID NO: 1
1161 bp aattcggcatgcttatcgatttggtccttccttacttgcccctttcggcggggagcaggggaggggtctgggggaggcgtcg cccgggaaagcctgtctgctgcagcctaaccagggcttttgcgggagcgcatggcttttggctgtaattcgtgcatttttaac aaaaacgcctgccttctgcgtgagattctccagagcaaactgggcggcatgggccctgtggtcttttcgtacacacggctt cctctttggctctttgcctggttgtttccaacatgtactgtgcctcttactttcggttttgaaaacatgagggggttgggcgtggta gcttacgcctgtaatcccagcacttagggaggccgaggcgggaggatggcttgaggtccgtagttgagaccagcctgg gctgctccggtggctgaggcgggaggatctcttgagcttaggcttttgagcagaaagagaaaagaaaagaaagaaag aagtgtgaatacaatctcacaaaatcttgccgccttccctcaatcattttcaataatcccaacactttgggaggccaaggca ggctgatcactctcaggaactccaaagattcaggtttactcacgtcatccagcagagaatggaaagtcaaatttcctgaat tgctatgtgtcctcactgttcctcttacaaaagatctgtggactccaccaccacgaaatggcggcaccttatttatggtcaca gaatgatgtacctagagggcgctggaagctctaaagccctagcagttactgcttttactattagtggtcgtttttttctcccccc cgccccccgacaaatcaacagaacaaagaaaattacctaaacacttcttaaacatcacgagactctaagaaaaggaa actgaaaacgggaaagtccctctctctaacctggcactgcgtcgctggcttggagacaggagacggtccctgcgggcct tgtcctgattggctgggccgcgtttaatataagtggaggcgtcgcgctggcgggcattcctgaagctgacagcattcgggc cgagtgtctcgctccgtggccttagctgtgctcgcgctactctctctttctggcctggaggctatccagcgagagactctccta ccctcccgctggcgcgcccgg
En concreto, el polinucleótido de la invención de SEQ ID NO 1 , también llamado B2M_EWP1, es una secuencia de 1161 nucleótidos que contiene fragmentos de B2 microglobulina (B2M).
SEQ ID NO: 2
>B2M_EWP2 1264 bp gaattcggcatgcttatcgattctcactgttcctcttagaaaagatctgtggactccaccaccacgaaatggcggcaccttat ttatggtcacacaatgatgtacctagagggcgctggaagctctaaagccctagcagttactgcttttactattagtggtcgtttt tttctcccccccgccccccgacaaatcaacagaacaaagaaaattacctaaacacttcttaaacatcacgagactctaa gaaaaggaaactgaaaacgggaaagtccctctctctaacctggcactgcgtcgctggcttggagacaggagacggtcc ctgcgggccttgtcctgattggctgggctcgcgtttaatataagtggaggcgtcgcgctggcgggcattcctgaagcttccct atcagtgatagagatctccctatcagtgatagagagacagcattcgggccgagtgtctcgctccgtggccttagctgtgctc gcgctactctctctttctggcctggaggctatccagcgtgagtctctcctaccctcccgctctggtccttccttacttgcccctttc ggcggggagcaggggaggggtctgggggaggcgtcgcccgggaaagcctgtctgctgcagcctaaccagggcttttg cgggagcgcatggcttttggctgtaattcgtgcatttttttttaagaaaaacgcctgccttctgcgtgagattctccagagcaa actgggcggcatgggccctgtggtcttttcgtacacacggcttcctctttggctctttgcctggttgtttccaagatgtactgtgc ctcttactttcggttttgaaaacatgagggggttgggcgtggtagcttacgcctgtaatcccagcacttagggaggccgagg cgggaggatggcttgaggtccgtagttgagaccagcctgggctgctccggtggctgaggcgggaggatctcttgagctta ggcttttgagcagaaagagaaaagaaaagaaagaaagaagtgtgaatacaatctcacaaaatcttgccgccttccctc aatcattttcaataatcccaacactttgggaggccaaggcaggctgatcactctcaggaactccaaagattcaggtttactc acgtcatccagcagagaatggaaagtcaaatttcctgtggtcttttcgtacagagggcttcgaattgctatgtgtctgtggtctt ttcgtacacagggcttcggcgcgcccgggatcc
En concreto, el polinucleótido de la invención de SEQ ID NO 2, también llamado B2M_EWP2, es una secuencia de 1264 nucleótidos que contiene fragmentos de B2 microglobulina (B2M). Cualquiera de los polinucleótidos de la invención (SEQ ID NO 1 o SEQ ID NO 2) se incluyen preferiblemente en vectores lentivirales con la finalidad de poder expresarlos de forma estable en las células.
Para dirigir el polipéptido transmembrana hacia la vía secretora de una célula huésped, una secuencia señal (también conocida como secuencia líder, prepro secuencia o presecuencia) puede ser proporcionada en la secuencia de cualquiera de los polinucleótidos de la invención (SEQ ID NO 1 o SEQ ID NO 2) o en la secuencia de un vector, tal y como un vector lentiviral, que comprenda dichos polinucleótidos. La secuencia señal secretora estará operativamente ligada a la secuencia de ácido nucleico transmembrana, es decir, las dos secuencias se unen en el marco de lectura correcto y se colocan para dirigir el nuevo polipéptido sintetizado en la vía secretora de la célula huésped. Las secuencias señal secretoras se colocan comúnmente en 5 'con respecto a la secuencia de ácido nucleico que codifica el polipéptido de interés, aunque ciertas secuencias señal secretoras pueden colocarse en cualquier otra parte de la secuencia de ácido nucleico de interés (véase, por ejemplo, Welch et al., Patente de EE.UU. 5,037,743; Holland et al., Patente de Estados Unidos N° 5.143.830). Los expertos en la técnica reconocerán que, en vista de la degeneración del código genético, una considerable variación de secuencia es posible entre estas moléculas de polinucleótidos. Preferiblemente, las secuencias de cualquiera de los polinucleótidos de la invención (SEQ ID NO 1 o SEQ ID NO 2) podrán comprender codones optimizados para la expresión en células de mamífero, preferiblemente para expresión en células humanas. La optimización de codones se refiere al intercambio en una secuencia de interés de codones que son generalmente raros en genes altamente expresados de una especie dada por codones que son generalmente frecuentes en genes altamente expresados de tales especies, tales codones codificando los aminoácidos como los codones que se intercambian.
Por tanto, otro aspecto de la invención se refiere a una construcción genética, de ahora en adelante construcción genética de la invención, que comprende cualquiera de los polinucleótidos de la invención (SEQ ID NO 1 o SEQ ID NO 2). Preferiblemente, la construcción genética de la invención es un vector viral, y más preferiblemente un vector lentiviral. Más preferiblemente, la construcción genética de la invención comprende cualquiera de los polinucleótidos de la invención (SEQ ID NO 1 o SEQ ID NO 2) operativamente unidos a la secuencia de un CAR para impulsar su expresión, donde el CAR, comprenderá al menos un dominio de unión a ligando extracelular, un dominio transmembrana y al menos un dominio de señalización intracelular.
CÉLULAS DE LA INVENCIÓN
Otro aspecto de la invención se refiere a una célula, de ahora en adelante célula de la invención, que comprende cualquiera de los polinucleótidos de la invención (SEQ ID NO 1 o SEQ ID NO 2), o la construcción genética de la invención que a su vez comprende cualquiera de los polinucleótidos de la invención (SEQ ID NO 1 o SEQ ID NO 2). En una realización preferida de este aspecto, la célula de la invención es una célula inmune. Más preferiblemente, se prefieren poblaciones de células de la invención.
En una realización particular, la invención se refiere a un método de preparación de células inmunes para inmunoterapia que comprenden la introducción en dichas células inmunitahas de cualquiera de los polinucleótidos de la invención (SEQ ID NO 1 o SEQ ID NO 2), o de la construcción genética o vector según la presente invención, y expandir dichas células. En una realización particular, la invención se refiere a un método que comprende proporcionar una célula y expresar en la superficie de dicha célula al menos un CAR. En una realización particular, el método comprende transformar o transducir la célula con al menos cualquiera de los polinucleótidos de la invención (SEQ ID NO 1 o SEQ ID NO 2) o con un vector o construcción génica que comprende cualquiera de los polinucleótidos de la invención (SEQ ID NO 1 o SEQ ID NO 2) operativamente unidos a la secuencia de un CAR, y expresar dichos polinucleótidos en dicha célula. Es decir, preferiblemente para la transformación o transducción celular se clona cualquiera de los polinucleótidos de la invención (SEQ ID NO 1 o SEQ ID NO 2) en un vector que comprenda el CAR de interés.
En otra realización, dicho método comprende además una etapa de modificar genéticamente dicha célula inactivando al menos un gen que expresa un componente del TCR, una diana para un agente inmunosupresor, el gen HLA y/o un gen de punto de control inmunológico como PD1 o CTLA-4. En una realización preferida, dicho gen se selecciona del grupo que consiste en TCRalpha, TCRbeta, CD52, GR, PD1 y CTLA-4. En una realización preferida dicho método comprende, además, introducir en dichas células T una endonucleasa de corte raro capaz de inactivar selectivamente mediante la escisión del ADN dichos genes. En una realización más preferida, dicha endonucleasa de corte raro TALE-nucleasa o endonucleasa Cas9. Los diferentes métodos descritos anteriormente preferiblemente implican la introducción de CAR en una célula utilizando vectores de expresión que comprendan o que presenten clonados los polinucleótidos de la invención (SEQ ID NO 1 o SEQ ID NO 2). Como ejemplo no limitativo, dicho CAR puede introducirse como transgenes codificado por un vector lentiviral .
Células inmunes
La presente invención también se refiere a células o líneas celulares aisladas susceptibles de ser obtenidas por dicho método para diseñar células. En particular, dicha célula aislada comprende al menos un CAR y un promotor de B2 microglobulina, preferiblemente cualquiera de los polinucleótidos de la invención (SEQ ID NO 1 o SEQ ID NO 2), en particular de SEQ ID NO 1 o 2, operativamente unidos al CAR para impulsar su expresión. En otra realización, dicha célula aislada comprende una población de CAR y promotores del locus B2 microglobulina, en particular de SEQ ID NO 1 o 2, operativamente enlazada a los CAR para impulsar su expresión, cada uno comprende diferentes dominios de unión a ligando extracelular. Células inmunes de la presente invención se activan y proliferan independientemente de los mecanismos de unión del antígeno.
En el alcance de la presente invención también se incluye una célula inmunitaria aislada, preferiblemente una célula T obtenida según cualquiera de los métodos descritos anteriormente. Dicha célula inmune se refiere a una célula de origen hematopoyético involucrada funcionalmente en la iniciación y/o ejecución de una respuesta inmune innata y/o adaptativa. Dicha célula inmune según la presente invención puede derivarse de una célula madre. Las células madre pueden ser células madre adultas, células madre embrionarias no humanas, más particularmente células madre no humanas, células madre de cordón umbilical, células progenitoras, células madre de la médula ósea, células madre pluripotentes inducidas, células madre totipotentes o células madre hematopoyéticas. Las células humanas representativas son células CD34 +. Dicha célula aislada también puede ser una célula dendrítica, una célula dendrítica asesina, un mastocito, una célula NK, una célula B o célula T. En una realización preferida es una célula T seleccionada del grupo que consiste en linfocitos T inflamatorios, linfocitos T citotóxicos, linfocitos T reguladores o linfocitos T auxiliares. En otra realización, dicha célula puede derivar del grupo que consiste en linfocitos T CD4 + y linfocitos T CD8 +. Antes de la expansión y modificación genética de las células de la invención, se puede obtener una fuente de células de un sujeto a través de una variedad de métodos. Las células se pueden obtener de una serie de fuentes no limitantes, incluidas las células mononucleares de sangre periféricas, médula ósea, tejido de los ganglios linfáticos, sangre del cordón umbilical, tejido del timo, tejido de un sitio de infección, ascitis, derrame pleural, tejido del bazo y tumores. En ciertas realizaciones de la presente invención, se pueden emplear cualquier número de líneas de células T disponibles y conocidas por los expertos en la técnica. En otra realización, dicha célula se puede derivar de un donante sano, de un paciente con diagnóstico de cáncer o de un paciente con diagnóstico de infección. En otra realización, dicha célula forma parte de una población mixta de células que presentan diferentes características fenotípicas. El alcance de la presente invención también abarca una línea celular obtenida de una célula T transformada de acuerdo con el método descrito previamente. Células modificadas resistentes a un tratamiento inmunosupresor y susceptibles de ser obtenidas por el método anterior se engloban en el alcance de la presente invención.
Activación y expansión de células T
Ya sea antes o después de la generación de las células T transformadas o transducidas, incluso si las células inmunes modificadas de la presente invención se activan y proliferan independientemente de los mecanismos de unión al antígeno, las células inmunes, en particular las células T de la presente invención se pueden activar y expandir adicionalmente generalmente usando métodos como el descrito, por ejemplo, en las Patentes de Estados Unidos 6.352.694; 6,534,055; 6,905,680; 6,692,964; 5,858,358; 6,887,466; 6,905,681 ; 7,144,575; 7.067.318; 7,172,869; 7,232,566; 7,175,843; 5,883,223; 6,905,874; 6,797,514; 6,867,041 ; y la publicación de solicitud de patente de EE. UU. núm. 20060121005. Las células T pueden expandirse in vitro o ¡n vivo. Generalmente, las células T de la invención se expanden por contacto con un agente que estimula un complejo CD3/TCR y una molécula coestimuladora en la superficie de las células T para crear una señal de activación para las células T. Por ejemplo, productos químicos como el ionóforo de calcio A23187, forbol 12-miristato 13- acetato (PMA), o lectinas mitogénicas como fitohemaglutinina (PHA) se pueden utilizar para crear una señal de activación para la célula T.
Como ejemplos no limitantes, las poblaciones de células T pueden estimularse in vitro, por contacto con un anticuerpo anti-CD3, o un fragmento de unión a antígeno del mismo, o un anticuerpo anti-CD2 inmovilizado en una superficie, o por contacto con un activador de proteína quinasa C (por ejemplo, bhostatina) junto con un ionóforo de calcio. Para la co-estimulación de una molécula accesoria en la superficie de las células T, se utiliza un ligando que se une a la molécula accesoria. Por ejemplo, una población de células T puede ponerse en contacto con un anticuerpo anti-CD3 y un anticuerpo anti-CD28, en condiciones apropiadas para estimular la proliferación de las células T. Condiciones apropiadas para el cultivo de células T incluyen un medio apropiado (por ejemplo, Medios Esenciales Mínimos o Medio RPMI1640 o, X-vivo 5, (Lonza)) que pueden contener factores necesarios para la proliferación y viabilidad, incluido el suero (por ejemplo, suero fetal bovino o humano), interleucina-2 (IL-2), insulina, IFN-g, 1 L-4, 1 L-7, GM-CSF, -10, - 2, 1 L-15, TGF y TNF- o cualquier otro aditivo para el crecimiento de las células. Otros aditivos para el crecimiento de células incluyen, pero no se limitan a, tensioactivo, plasmanato y agentes reductores como N-acetilcisteína y 2- mercaptoetanol. Los medios pueden incluir RPMI 1640, A1 M-V, DMEM, MEM, a-MEM, F-12, X-Vivo 1 y X-Vivo 20, Optimizer, con aminoácidos añadidos, piruvato de sodio y vitaminas, ya sea sin suero o complementado con una cantidad adecuada de suero (o plasma) o un conjunto definido de hormonas, y/o una cantidad de citocinas suficiente para el crecimiento y expansión de las células T. Los antibióticos, por ejemplo, penicilina y estreptomicina, se incluyen solo en cultivos experimentales, no en cultivos de células que se van a infundir en un sujeto. Las células diana se mantienen en las condiciones necesarias para apoyar el crecimiento, por ejemplo, una temperatura adecuada (por ejemplo, 37 ° C) y atmósfera (por ejemplo, aire más 5% de CO2). Células T que han sido expuestas a diversos tiempos de estimulación pueden presentar diferentes características.
En otra realización particular, dichas células pueden expandirse mediante co-cultivo con tejido o células. Dichas células también pueden expandirse in vivo, por ejemplo, en la sangre del sujeto después de administrar dicha célula en el sujeto.
COMPOSICIONES DE LA INVENCIÓN
Otro aspecto de la invención se refiere a una composición, de ahora en adelante composición de la invención, que comprende cualquiera de los polinucleótidos de la invención (SEQ ID NO 1 o SEQ ID NO 2), la construcción genética de la invención que comprende cualquiera de los polinucleótidos de la invención (SEQ ID NO 1 o SEQ ID NO 2), o la célula de la invención. En una realización preferida, la composición de la invención comprende, además, un vehículo farmacéuticamente aceptable. En otra realización preferida, la composición de la invención es una composición farmacéutica. En otra realización preferida, la composición de la invención comprende uno o más principios activos adicionales.
USOS MÉDICOS DE LA INVENCIÓN Otro aspecto de la invención se refiere a cualquiera de los polinucleótidos de la invención (SEQ ID NO 1 o SEQ ID NO 2), la construcción genética de la invención, la célula de la invención, o la composición de la invención, para su uso en terapia.
Otro aspecto de la invención se refiere a cualquiera de los polinucleótidos de la invención (SEQ ID NO 1 o SEQ ID NO 2), la construcción genética de la invención, la célula de la invención, o la composición de la invención, para el tratamiento del cáncer. En una realización preferida, el cáncer se selecciona de la lista que consiste en neoplasias, neoplasias de células B, linfoma, leucemia y/o mieloma.
Las células aisladas obtenidas por los diferentes métodos o la línea celular derivada de dicha célula aislada como se describió previamente, pueden usarse como un medicamento. En otra realización, dicho medicamento se puede utilizar para tratar el cáncer, particularmente para el tratamiento de linfomas de células B y leucemia en un paciente que lo necesite. En otra realización, dicha célula aislada según la invención o línea celular derivada de dicha célula aislada se puede utilizar en la fabricación de un medicamento para el tratamiento de un cáncer en un paciente que lo necesita.
En otro aspecto, la presente invención se basa en métodos para tratar a pacientes que necesitan del mismo, comprendiendo dicho método al menos uno de los siguientes pasos:
(a) proporcionar cualquiera de los polinucleótidos de la invención (SEQ ID NO 1 o SEQ ID NO 2), la construcción genética de la invención, la célula de la invención, o la composición de la invención, y preferiblemente una célula inmunitaria obtenible mediante cualquiera de los métodos anteriormente descritos;
(b) Administrar cualquiera de los polinucleótidos de la invención (SEQ ID NO 1 o SEQ ID NO 2), la construcción genética de la invención, la célula de la invención, o la composición de la invención, o más preferiblemente células inmunes transformadas, a dicho paciente.
En una realización, dichas células T de la invención pueden experimentar una expansión sólida de células T in vivo y pueden persistir durante un período de tiempo prolongado.
Dicho tratamiento puede ser paliativo, curativo o profiláctico. Puede ser parte de una inmunoterapia autóloga o parte de un tratamiento de inmunoterapia alogénica. Por autólogas, significa que las células, la línea celular o la población de células utilizadas para tratar pacientes son procedente de dicho paciente. Por alogénico se entiende que las células o población de células utilizadas para el tratamiento de pacientes no se originan en dicho paciente, sino en un donante.
Las células que se pueden usar con los métodos descritos se describen en la sección anterior. El tratamiento se puede utilizar para tratar a pacientes diagnosticados con cáncer. Los cánceres que pueden tratarse pueden comprender tumores no sólidos (como tumores hematológicos, que incluyen, entre otros, LLA pre-B (indicación pedriática), LLA del adulto, linfoma de células del manto, células B grandes difusas linfoma y similares). Tipos de cánceres a tratar con los CAR de la invención incluyen, pero no se limitan a, ciertas leucemias o neoplasias linfoides. También se incluyen tumores/cánceres en adultos y tumores/cánceres pediátricos. Puede ser un tratamiento en combinación con una o más terapias contra el cáncer seleccionadas del grupo de terapia de anticuerpos, quimioterapia, terapia de citocinas, terapia de células dendríticas, terapia génica, terapia hormonal, terapia con luz láser y radioterapia.
Según una realización preferida de la invención, dicho tratamiento puede administrarse en pacientes sometidos a un tratamiento inmunosupresor. De hecho, la presente invención preferiblemente se basa en células o población de células, que se han hecho resistentes al menos a un agente inmunosupresor debido a la inactivación de un gen que codifica un receptor para tal agente inmunosupresor. En este aspecto, el tratamiento inmunosupresor debe ayudar a la selección y expansión de las células T según la invención dentro del paciente.
La administración de células o población de células según la presente invención puede llevarse a cabo de cualquier manera conveniente, incluso mediante inhalación de aerosol, inyección, ingestión, transfusión, implantación o trasplante. Las composiciones descritas en este documento puede administrarse a un paciente por vía subcutánea, intradérmica, intratumoral, por vía intranodal, intramedular, intramuscular, por inyección intravenosa o intra linfática, o intraperitonealmente. En una realización, las composiciones celulares de la presente invención son preferiblemente administrado por inyección intravenosa.
La administración de las células o población de células puede consistir en la administración de 104-109 células por kg de peso corporal, preferiblemente de 105 a 106 células/kg de peso corporal, incluidos todos los números enteros valores de números de celda dentro de esos rangos. Las células o población de células pueden ser administradas en una o más dosis. En otra realización, dicha cantidad efectiva de células se administran como dosis única. En otra realización, dicha cantidad efectiva de células se administran como más de una dosis durante un período de tiempo. El momento de la administración es dentro del juicio del médico responsable y depende de la condición clínica del paciente. Las células o la población de células se pueden obtener de cualquier fuente, como sangre, bancos o un donante, incluyendo el propio paciente. Si bien las necesidades individuales varían, la determinación de los rangos óptimos de cantidades eficaces de un tipo de célula dado para una enfermedad o afecciones particulares, se encuentra dentro del conocimiento de la técnica.
Una cantidad eficaz o efectiva significa una cantidad que proporciona un beneficio terapéutico o profiláctico.
La dosis administrada dependerá de la edad, salud y peso del paciente destinatario, tipo de tratamiento concurrente, si lo hubiera, frecuencia del tratamiento y naturaleza del efecto deseado. En otra realización, dicha cantidad efectiva de células o composición que comprenden esas células se administran por vía parenteral. Dicha administración puede ser una administración intravenosa. Dicha administración puede realizarse directamente mediante inyección dentro de un tumor.
En ciertas realizaciones de la presente invención, las células se administran a un paciente junto con (por ejemplo, antes, simultáneamente o después de) cualquier número de modalidades de tratamiento, que incluyen, entre otros, el tratamiento con agentes como terapia antiviral, cidofovir e interleucina-2, citarabina (también conocida como ARA-C) o nataliziimab, tratamiento para pacientes con EM o tratamiento con efaliztimab para pacientes con psoriasis u otros tratamientos para pacientes con LMP. En otras realizaciones, las células T de la invención pueden ser utilizado en combinación con quimioterapia, radiación, agentes inmunosupresores, como ciclosporina, azatioprina, metotrexato, micofenolato y FK506, anticuerpos u otros agentes inmunoablativos como CAM PATH, anticuerpos anti-CD3 u otras terapias con anticuerpos, citoxina, fludaribina, ciclosporina, FK506, rapamicina, ácido micoplienólico, esferoides, FR901228, citocinas e irradiación. Estos fármacos inhiben la fosfatasa dependiente del calcio calcineurina (ciclosporina y FK506) o inhibir la quinasa p70S6 que es importante para el crecimiento señalización inducida por factores (rapamicina) (Henderson, Naya et al. 1991 ; Liu, Albers et al. 1992; Bierer, Hollander y col. 1993). En una realización adicional, las composiciones de células de la presente invención se administran a un paciente junto con (por ejemplo, antes, simultáneamente o a continuación de) un trasplante de médula ósea, terapia ablativa de células T usando quimioterapia agentes como fludarabina, radioterapia de haz externo (XRT), ciclofosfamida o anticuerpos como OKT3 o CAM PATH. En otra forma de realización, las composiciones celulares de la presente invención se administran después de una terapia ablativa de células B, como agentes que reaccionan con CD20, por ejemplo, Rituxan. Por ejemplo, en una realización, los sujetos pueden someterse a tratamiento estándar con quimioterapia de dosis alta seguida de un transplante de células madre de sangre periférica. En ciertas realizaciones, después del trasplante, los sujetos reciben una infusión de las células inmunes expandidas de la presente invención. En una realización adicional, las células expandidas se administran antes o después de la cirugía.
Otras definiciones
- A menos que se especifique lo contrario, "un", "uno", "el," y "al menos uno" se utilizan indistintamente y significa uno o más de uno.
- Los residuos de aminoácidos en una secuencia polipeptídica son designado aquí según el código de una letra, en el que, por ejemplo, Q significa Gln o residuo de glutamina, R significa Arg o residuo de arginina y D significa Asp o residuo de ácido aspártico.
- Sustitución de aminoácidos significa la sustitución de un residuo de aminoácido por otro, por ejemplo, el reemplazo de un residuo de arginina con un residuo de glutamina en la secuencia de un péptido es una sustitución de aminoácidos.
- Los nucleótidos se designan como sigue: se utiliza el código de una letra para designar la base de un nucleósido: a es adenina, t es timina, c es citosina y g es guanina. Para los nucleótidos degenerados, r representa g ó a (nucleótidos de purina), k representa g ó t, s representa g ó c, w representa a ó t, m representa a ó c, y representa t ó c (nucleótidos de piri midi na), d representa g, a ó t, v representa g, a ó c, b representa g, t ó c, h representa a, t ó c, yn representa g, a, t ó c.
"Como se usa en este documento," ácido nucleico "o" polinucleótidos "se refiere a nucleótidos y/o polinucleótidos, como ácido desoxirribonucleico (ADN) o ácido ribonucleico (ARN), oligonucleótidos, fragmentos generados por la reacción en cadena de la polimerasa (PCR), y fragmentos generados por ligación, escisión, acción de endonucleasa y acción de exonucleasa. Las moléculas de ácido nucleico pueden estar compuestas por monómeros que son nucleótidos que se encuentran en la naturaleza (como ADN y ARN) o análogos de nucleótidos naturales (p. ej. , formas enantioméricas de nucleótidos naturales) o una combinación de ambos. Los nucleótidos modificados pueden tener alteraciones en los restos de azúcar y/o en la base de pirimidina o purina. Las modificaciones del azúcar incluyen, por ejemplo, el reemplazo de uno o más grupos hidroxilo con halógenos, grupos alquilo, aminas y grupos azido, o azúcares pueden ser funcionalizados como éteres o ésteres. Además, toda la fracción de azúcar se puede reemplazar con estructuras esférica y electrónicamente similares, como azúcares aza y análogos de azúcar carbocíclico. Ejemplos de modificaciones en un resto de base incluyen purinas alquiladas y pirimidinas, purinas o pirimidinas adiadas u otros sustitutos heterocíclicos bien conocidos. Los monómeros de ácido nucleico se pueden unir mediante enlaces fosfodiéster o análogos de dichos enlaces. Los ácidos nucleicos pueden ser monocatenarios o bicatenarios.
- Por receptor de antígeno quimérico (CAR) se entiende moléculas que combinan un dominio de unión contra un componente presente en la célula diana, por ejemplo, una especificidad basada en anticuerpos para un antígeno deseado (por ejemplo, antígeno tumoral) con un receptor de células T que activa el receptor intracelular dominio para generar una proteína quimérica que exhibe una inmunidad celular específica anti-target. Generalmente, CAR consiste en un anticuerpo extracelular monocatenario (scFv) fusionado al dominio de señalización intracelular de la cadena zeta del complejo del receptor de antígeno de células T (scFv) y tienen la capacidad, cuando se expresan en células T, de redi rigir el reconocimiento de antígenos en función de la especificidad del anticuerpo monoclonal.
- Por "vector de entrega" o "vectores de entrega" se entiende cualquier vector de entrega que pueda ser utilizado en la presente invención para poner en contacto celular (es decir, "contactar") o liberar dentro de las células o compartimentos subcelulares (es decir, "introducir") agentes/sustancias químicas y moléculas (proteínas o ácidos nucleicos) necesarios en la presente invención. Incluye, pero no se limita a, vectores liposomales de liberación, vectores de liberación viral, vectores de liberación de fármacos, portadores químicos, portadores poliméhcos, lipoplexes, polyplexes, dendrímeros, microburbujas (agentes de contraste de ultrasonido), nanopartículas, emulsiones u otros vectores de transferencia apropiados. Estos vectores de liberación permiten el suministro de moléculas, productos químicos, macromoléculas (genes, proteínas) u otros vectores como plásmidos, péptidos. En estos casos, los vectores de administración son portadores de moléculas. Por "vector de liberación" o "vectores de liberación" también se entiende los métodos de liberación destinados a realizar la transfección.
- Los términos "vector" o "vectores" se refieren a una molécula de ácido nucleico capaz de transportar otro ácido nucleico al que se ha ligado. Un "vector" en la presente invención incluye, pero no se limita a, un vector viral, un plásmido, un vector de ARN o una molécula lineal o circular de ADN o ARN que puede constar de una molécula cromosómica, no cromosómica, semisintética o ácidos nucleicos sintéticos. Los vectores preferidos son aquellos capaces de replicación autónoma (vector episomal) y/ o expresión de ácidos nucleicos a los que están ligados (vectores de expresión). Los expertos en la técnica conocen un gran número de vectores adecuados y comercialmente disponibles.
Los vectores virales incluyen retrovirus, adenovirus, parvovirus (p. Ej. Virus adenoasociados), coronavirus, virus de ARN de cadena negativa como ortomixovirus (p. ej., virus de la influenza), rabdovirus (p. Ej., Rabia y virus de la estomatitis vesicular), paramixovirus (p. Ej. Sarampión y Sendai), virus de ARN de cadena positiva como picornavirus y alfavirus, y Virus de ADN de doble cadena que incluyen adenovirus, herpesvirus (p. Ej., Virus del herpes simple tipo 1 y 2, virus de Epstein-Barr, citomegalovirus) y poxvirus (p. ej., vaccinia, viruela aviar y canarypox). Otros virus incluyen virus Norwalk, togavirus, flavivirus, reovirus, papovavirus, hepadnavirus y virus de la hepatitis, por ejemplo. Ejemplos de retrovirus incluyen: leucosis-sarcoma aviar, virus de tipo C de mamíferos, virus de tipo B, virus de tipo D, grupo HTLVBLV, lentivirus, espumavirus (Coffin, J. M., Retroviridae: Los virus y sus replicación, In Fundamental Virology, Tercera Edición, B. N. Fields, et al., Eds., Lippincott-Raven Publishers, Filadelfia, 1996).
- Por "vector lentiviral" se entiende vectores lentivirales basados en el VIH que son muy prometedores para liberación debido a su capacidad de envasado relativamente grande, inmunogenicidad reducida y su capacidad para transducir de manera estable con alta eficiencia una amplia gama de diferentes tipos de células. Los vectores lentivirales generalmente se generan después de la transfección transitoria de tres (empaquetamiento, envolvente y transferencia) o más plásmidos en células productoras. Como el VIH, los vectores lentivirales entran en la célula diana a través de la interacción de glicoproteínas de superficie viral con receptores en la superficie celular. Al entrar, el ARN viral se somete a una transcripción inversa, que está mediada por el complejo viral de transcriptasa inversa. El producto de la transcripción inversa es una doble hebra de ADN viral lineal, que es el sustrato para la integración viral en el ADN de células infectadas. Por "vectores lentivirales integradores (o LV)", se entiende vectores tales como por ejemplo, pero sin limitarse, aquellos que son capaces de integrar el genoma de una célula diana. Por el contrario, como "vectores lentivirales no integrativos (o NILV)" se refiere a vectores de suministro de genes eficientes que no se integran el genoma de una célula diana mediante la acción del virus integrasa. - Los vectores y vectores de liberación se pueden asociar o combinar con cualquier técnica de permeabilización celular, como sonoporación o electroporación o derivados de estas técnicas.
- Por célula o células se entiende cualquier célula viva eucariota, célula primaria y línea celular derivados de estos organismos para cultivos in vitro.
- Por "célula primaria" o "células primarias" se entiende las células extraídas directamente de tejido vivo (es decir, material de biopsia) y establecidas para crecimiento in vitro, que han sufrido muy pocas duplicaciones de población y, por lo tanto, son más representativas de los principales componentes y características de los tejidos de los que se derivan, en comparación a líneas celulares tumorigénicas continuas o inmortalizadas artificialmente.
Como ejemplos no limitantes, se pueden seleccionar líneas celulares del grupo que consiste en células CHO-K1 ; Células HEK293; Células Caco2; Células LI2-OS; Células NIH 3T3; Células NSO; Células SP2; Células CHO-S; Células DG44; Células K-562, células U-937; Células MRC5; Células IMR90; Células Jurkat; Células HepG2; Células HeLa; Células HT-1080; Células HCT-116; Células Hu-h7; Células Huvec; Células Muda 4.
Todas estas líneas celulares pueden modificarse mediante el método de la presente invención para proporcionar modelos de línea celular para producir, expresar, cuantificar, detectar, estudiar un gen o una proteína de interés; estos modelos también se pueden utilizar para seleccionar moléculas biológicamente activas de interés en la investigación y producción y diversos campos como químico, biocombustibles, terapéutica y agronomía, como ejemplos no limitativos.
- por "mutación" se entiende la sustitución, supresión, inserción de hasta uno, dos, tres, cuatro, cinco, seis, siete, ocho, nueve, diez, once, doce, trece, catorce, quince, veinte, veinticinco, treinta, cuarenta, cincuenta o más nucleótidos/ aminoácidos en un polinucleótido (cDNA, gen) o una secuencia polipeptídica. La mutación puede afectar la secuencia codificante de un gen o su secuencia reguladora. También puede afectar la estructura de la secuencia genómica o la estructura / estabilidad del ARNm codificado.
- por "vahante (s)", se entiende una vanante repetida, una vanante, una vahante de unión al ADN, una vahante TALEnucleasa, una vahante polipeptídica obtenida por mutación o reemplazo de al menos un residuo en la secuencia de aminoácidos de la molécula madre. - por "variante funcional" se entiende un muíante catalíticamente activo de una proteína o dominio de una proteína; dicho muíante puede tener la misma actividad en comparación con su proteína o dominio de proteína original o propiedades adicionales, o mayor o menor actividad.
- "identidad" se refiere a la identidad de secuencia entre dos moléculas de ácido nucleico o polipéptidos. La identidad se puede determinar mediante la comparación de una posición en cada secuencia que puede alinearse con fines de comparación. Cuando una posición en la secuencia comparada está ocupada por la misma base, entonces las moléculas son idénticas en esa posición. Un grado de similitud o identidad entre secuencias de ácidos nucléicos o aminoácidos es una función del número de nucleótodos idénticos o coincidentes en posiciones compartidas por las secuencias de ácido nucleico. Se pueden usar varios algoritmos de alineación y/ o programas para calcular la identidad entre dos secuencias, incluyendo FASTA o BLAST, que están disponibles como parte del paquete de análisis de secuencias GCG (Universidad de Wisconsin, Madison, Wis.) Y se puede utilizar con, por ejemplo, la configuración predeterminada. Por ejemplo, polipéptidos que tienen al menos 70%, 85%, 90%, 95%, 98% o 99% de identidad con los polipéptidos descritos en este documento y que preferiblemente exhiben sustancialmente las mismas funciones, así como el polinucleótido que codifica dichos polipéptidos, se contemplan.
- "similitud" describe la relación entre las secuencias de aminoácidos de dos o más polipéptidos. BLASTP también puede usarse para identificar una secuencia de aminoácidos que tenga al menos 70%, 75%, 80%, 85%, 87,5%, 90%, 92,5%, 95%, 97,5%, 98%, 99% de similitud de secuencia con una secuencia de aminoácidos de referencia utilizando una matriz de similitud como BLOSUM45, BLOSUM62 o BLOSUM80. A menos que se indique lo contrario, una puntuación de similitud se basará en el uso de BLOSUM62. Cuando se utiliza BLASTP, el porcentaje de similitud se basa en la puntuación de BLASTP positivos y el porcentaje de identidad de secuencia se basa en la puntuación de identidades BLASTP. "Identidades" de BLASTP muestra el número y fracción de residuos totales en los pares de secuencias de alta puntuación que son idénticos; y "Positivos" BLASTP muestra el número y la fracción de residuos para los que las puntuaciones de alineación tienen valores positivos y son similares entre sí. Secuencias de aminoácidos que tienen estos grados de identidad o similitud o cualquier grado intermedio de identidad o de similitud con las secuencias de aminoácidos descritas en este documento, se contemplan y están abarcadas por esta divulgación. Las secuencias de polinucleótidos de polipéptidos similares son deducidos utilizando el código genético y pueden obtenerse por medios convencionales. El polinucleótido que codifica una vahante funcional de este tipo se produciría mediante traducción inversa de su secuencia de aminoácidos utilizando el código genético.
- "dominio transductor de señal" o "ligando coestimulador" se refiere a una molécula en una célula presentadora de antígenos que se une específicamente a una molécula coestimuladora análoga en una célula T, que proporciona una señal que, además de la señal primaria proporcionada, por ejemplo, mediante la vinculación de un complejo TCR/CD3 con una molécula MHC cargada con péptido, media una respuesta de célula T, incluyendo, pero sin limitarse a, activación de proliferación, diferenciación y similares. El ligando coestimulador puede incluir, entre otros, CD7, B7-1 (CD80), B7-2 (CD86), PD- L1 , PD-L2, 4-1 BBL, OX40L, ligando coestimulador inducible (ICOS-L), molécula de adhesión intercelular (ICAM, CD30L, CD40, CD70, CD83, HLA-G, MICA, M1CB, HVEM, receptor de linfotoxina beta, 3/TR6, ILT3, ILT4, un agonista o anticuerpo que se une al receptor del ligando Toll y un ligando que se une específicamente con B7-H3. Un ligando coestimulador también abarca, entre otros, un anticuerpo que se une específicamente a una molécula coestimuladora presente en una célula T, tales como, pero no limitado a, CD27, CD28, 4-IBB, 0X40, CD30, CD40, PD-1 , ICOS, linfocitos antígeno 1 asociado a la función (LFA-1), CD2, CD7, LTGHT, NKG2C, B7-H3, un ligando que se une específicamente con CD83.
Una "molécula coestimuladora" se refiere al compañero de unión afín en una célula T que específicamente se une a un ligando coestimulador, mediando así una respuesta coestimuladora de la célula, tales como, pero no limitado a la proliferación. Las moléculas coestimuladoras incluyen, pero no se limittan, a una molécula de MHC de clase I, BTLA y receptor de ligando de Toll.
Una "señal coestimuladora" como se usa en este documento se refiere a una señal, que en combinación con la señal primaria, como la ligadura de TCR / CD3, conduce a la proliferación de células T y/o regulación positiva o regulación a la baja de moléculas clave.
-El término "dominio de unión a ligando extracelular" como se usa en el presente documento se define como un oligo o polipéptido que es capaz de unirse a un ligando. Preferiblemente, el dominio será capaz de interactuar con una molécula de la superficie celular. Por ejemplo, el dominio de unión a ligando extracelular puede ser elegido para reconocer un ligando que actúa como un marcador de superficie celular en células diana asociadas con un estado de enfermedad particular. Así ejemplos de marcadores de superficie celular que pueden actuar como ligandos incluyen los asociados con virus, bacterias e infecciones parasitarias, enfermedades autoinmunes y células cancerosas. El término "sujeto" o "paciente" como se usa en este documento incluye a todos los miembros del reino animal, incluidos primates no humanos y humanos.
La descripción anterior de la invención permite que cualquier persona experta en esta técnica pueda hacer y usar la invención, en particular para el objeto de las reivindicaciones adjuntas, que forman parte de la descripción original.
Cuando se indica aquí un límite o rango numérico, se incluyen los puntos finales. Además, todos los valores y los subintervalos dentro de un límite o rango numérico se incluyen específicamente como si se hubieran escrito específicamente.
Vahas modificaciones a las realizaciones preferidas serán fácilmente evidentes para los expertos en la técnica, y los principios genéricos definidos en este documento se pueden aplicar a otras realizaciones y aplicaciones sin apartarse del espíritu y alcance de la invención. Por lo tanto, esta invención no está destinada a limitarse a las realizaciones mostradas, sino que debe concederse el alcance más amplio de acuerdo con los principios y características aquí descritos.
Habiendo descrito en general esta invención, se puede obtener una mayor comprensión mediante referencia a ciertos ejemplos específicos, que se proporcionan en este documento con fines ilustrativos únicamente, y no pretenden ser limitantes a menos que se especifique lo contrario.
A menos que se defina específicamente en este documento, todos los términos técnicos y científicos utilizados tienen el mismo significado como comúnmente lo entiende un experto en los campos de la terapia génica, bioquímica, genética y biología molecular. Todos los métodos y materiales similares o equivalentes a los descritos en este documento se pueden utilizar en la práctica o prueba de la presente invención, con métodos y materiales adecuados que se describen en este documento. Todas las publicaciones, solicitudes de patente, patentes y otras referencias mencionadas aquí son incorporadas por referencia en su totalidad. En caso de conflicto, la presente especificación, incluidas las definiciones, prevalecerá. Además, los materiales, métodos y ejemplos son solo ilustrativos y no son pretende ser limitante, a menos que se especifique lo contrario. La práctica de la presente invención empleará, a menos que se indique lo contrario, técnicas convencionales de biología celular, cultivo celular, biología molecular, biología transgénica, microbiología, ADN recombinante e inmunología, que están dentro de los conocimientos de la técnica. Tales técnicas se explican completamente en la literatura. Ver, por ejemplo, Current Protocols in Molecular Biology (Frederick M. AUSUBEL, 2000, Wiley and son Inc, Library of Congress, USA); Molecular Cloning: A Laboratory Manual, Third Edition, (Sambrooket a I, 2001 , Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press); Oligonucleotide Synthesis (M. J. Gait ed., 1984); Mullis et al. U.S. Pat. No. 4,683,195; Nucleic Acid Hybridization (B. D. Harries & S. J. Higgins eds. 1984); Transcription And Translation (B. D. Hames& S. J. Higgins eds. 1984); Culture Of Animal Cells (R. I .Freshney, Alan R. Liss, I nc., 1987); I mmobilized Cells And Enzymes (IRL Press, 1986); B. Perbal, A Practical Guide To Molecular Cloning (1984); the series, Methods In ENZYMOLOGY (J. Abelson and M . Simon, eds. -in-chief, Academic Press, I nc., New York), específicamente, Vols.154 and 155 (Wu et al. eds.) and Vol. 185, "Gene Expression Technology" (D. Goeddel, ed.); Gene Transfer Vectors For Mammalian Cells (J. H. Miller and M . P. Calos eds., 1987, Cold Spring Harbor La boratory); Immunochemical Methods I n Cell And Molecular Biology (Mayer and Walker, eds., Academic Press, London, 1987); Handbook Of Experimental I mmunology, Volumes I -IV (D. M . Weir and C. C. Blackwell, eds., 1986); and Manipulating the Mouse Embryo, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986).
EJEMPLOS DE LA INVENCIÓN
ESQUEMA
1. Generación in sílico de promotores quiméricos de las diferentes moléculas implicadas en la ruta de señalización del TCR. a. Selección de las moléculas implicadas en la ruta de señalización del TCR. b. Búsqueda en bases de datos de elementos reguladores implicados en la expresión y función promotora de las moléculas seleccionadas. c. Diseño de las construcciones definitivas in sílico.
2. Generación de células T eGFP+, dónde eGFP se exprese bajo el control de los diferentes promotores quiméricos. a. Clonaje de las secuencias promotoras en un vector lentivi ral con GFP. b. Producción de vectores lentivirales con las diferentes construcciones. c. Transducción celular con los vectores virales, y estudio de la cinética de expresión de GFP, tanto a nivel de ARNm como a nivel de proteína.
3. Generación de células T-CAR-CD19, dónde el CAR se exprese bajo el control de los diferentes promotores quiméricos. a. Clonaje de las secuencias promotoras en un esqueleto lentiviral que contenga el CAR. b. Producción de vectores lentivirales con las diferentes construcciones. c. Transducción celular con los vectores virales, y estudio de la cinética de expresión del CAR, tanto a nivel de ARNm como a nivel de proteína.
Materiales y métodos
1. Diseño de los promotores quiméricos
Se ha generado una construcción (B2M) que contiene un promotor definido por Genecopoeia (chr15:45002449-45003706). También se añadió un promotor definido por EPD (chr15:45003666-45003725) aguas abajo, y el promotor 3 definido por Switchgear. Estos dos últimos solapan parcialmente con el exón 1 de la B2M. Aguas abajo se ha colocado una región definida por Ensembl como en/?ancer(chr15:45004699-45004998), y en la región 3’, otro promotor definido por Switchgear que solapa con el exón 2. La construcción B2M Teto es idéntica, pero colocando la secuencia Teto aguas abajo del TSS, mientras que en la construcción B2M Enh5’, cambiamos la posición del enhancer definida por Ensembl de la región 3’ a la 5’
2. Clonaje molecular de los vectores
Las construcciones se reconstituyeron en 20 pL de agua de agua ultrapura en condiciones de esterilidad. a. Plásmido SEWP con los promotores quiméricos
SEWP es un plásmido que permite la expresión de eGFP bajo el control del promotor viral SFFV (del inglés spleen focus-forming virus). Se modificó este plásmido (disponible en el laboratorio) para sustituir el promotor por las construcciones quiméricas. Se realizaron las digestiones combinadas de todas las construcciones con las enzimas de restricción BamHI y EcoRI (New England Biolabs) usando el buffer 2.1 (New England Biolabs) durante 1 hora y media a 37°C. Se realizó la electroforesis en gel de agarosa ultrapura, y se aislaron las bandas mediante el kit QIAquick® Gel Extraction Kit (QIAGEN). Paralelamente, se digirió el esqueleto SEWP con las mismas enzimas para obtener el fragmento sin promotor. Se realizó la ligación de los promotores con los fragmentos de SEWP utilizando la DNA ligasa T4 (New England Biolabs) en una proporción inserto:vector de 7:1. La reacción se llevó a cabo durante toda la noche a 16°C. Se transformaron bacterias competentes E. coli Stbl3 (Life Technologies) con el producto de ligación, y se comprobaron las colonias positivas por PCR de colonias, con el siguiente programa: 1x (95°C, 10 min); 35x (95°C, 30 seg / 62°C, 30 seg / 72°C, 30 seg); 1x (72°C, 10 min), mediante el kit KAPA Taq PCR (Kapa Biosystems) y los siguientes cebadores (Sigma): Fw-cPPT (5’-ACAGCAGAGATCCAGTTTGG-3’) y Rv- eGFP (5’-TCACTCTCGGCATGGACG-3’) (Fig. 5). Se realizó una miniprep usando el kit Wizard® Plus SV Minipreps DNA Purification System (Promega) de las colonias positivas para la ligación, y el ADN plasmídico se chequeó por patrón de Hindlll y por secuenciación. b. CAR 3G con los promotores quiméricos
Para generar los plásmidos de interés, se partió de un CAR de tercera generación frente a CD 19 (Creative Biolabs) que presenta el promotor EF1-a (factor de elongación 1 a, del inglés Elongation Factor 1 a). Se clonaron 4 construcciones: CD247, LCK, B2M y CD4 P1 en el esqueleto lentiviral del CAR. Para ello, se realizaron las digestiones con las enzimas Clal y EcoRI y el buffer 3.1 (New England Biolabs) en el plásmido original del CAR para liberar el promotor, y en las construcciones en pUC57 para obtener los promotores quiméricos, a 37°C durante 1 hora y media. Se aislaron las bandas de un gel de agarosa ultrapura y se realizó la ligación de igual manera. Se transformaron bacterias competentes y se volvió a chequear colonias positivas por PCR de colonias, con los cebadores Fw cPPT-clínico (5’-GTGCAGGGGAAAGAATAGTAG-3’) y Rv CD19 (5’-TACAGGACTTTCTTTCTGCC-3’). Se realizaron minipreps de las colonias positivas con el mismo kit, y se chequearon por patrón Hindlll y por secuenciación.
3. Cultivo celular a. Cultivo de líneas celulares
Se realizó el cultivo de 4 líneas celulares. La línea celular utilizada para la producción de vectores lentivirales fue la HEK-293T (células embrionarias procedentes de riñón humano, ATCC® CRL-11268™). Son células adherentes que se cultivaron en frascos T175 con medio DMEM (Medio de Eagle Modificado por Dulbecco, del inglés Dulbecco's Modified Eagle Medium) (Biowest) suplementado con un 10% de suero bovino fetal (FBS) (Gibco) y un 1% de penicilina/estreptomicina (P/S; 0,5% de cada uno) (Biowest). La línea BxPC-3 (células de adenocarcinoma pancreático humano, ATCC® CRL- 1687™) es también una línea celular adherente que se cultivó en frascos T25 con medio RPMI-1640 (del inglés Roswell Park Memorial Institute) (Biowest) suplementado con un 10% de FBS y un 1 % de P/S. Las líneas Jurkat (de leucemia de células T aguda, ATCC® TIB-152™) y Namalwa (de linfoma de Burkitt, ATCC® CRL-1432™) son células en suspensión que se cultivan también con medio RPMI-1640 suplementado con un 10% de FBS y un 1 % de P/S, ambas cultivadas en frascos T25.
Las cuatro líneas celulares se mantuvieron en incubadores con una temperatura de 37°C. Las HEK-293T se mantuvieron en una atmósfera al 10% de dióxido de carbono (CO2), mientas que las 3 líneas restantes se mantuvieron con una atmósfera al 5% de CO2. Las células fueron pasadas 3 veces por semana, manteniendo una densidad celular aproximada de 1*106 células/mL. b. Cultivo de células T primarias
Las células T primarias se obtuvieron a partir sangre periférica movilizada de un donante sano. Partiendo de la sangre periférica, se aislaron las células mononucleares de sangre periférica (PBMCs, del inglés Peripheral Blood Mononuclear Cells) por centrifugación por gradiente de densidad, utilizando para ello Lymphosep (Biowest), un medio específico para separar linfocitos. La centrifugación se llevó a cabo con una duración de 30 minutos a 400g sin freno ni aceleración. Se realizaron sucesivos lavados, y se aislaron los linfocitos T de todo el cóctel celular usando el kit MACSxpress® Pan T Cell Isolation (Miltenyi Biotec), que consta de una mezcla de anticuerpos frente a la mayoría de marcadores de superficie de PBMCs a excepción de CD3, conjugados con microesferas magnéticas, por lo que constituye un método de separación magnética basado en la depleción negativa de todos los tipos celulares a excepción de las células T (CD3+). Las células T aisladas se cultivaron con medio TexMACSTM (Miltenyi Biotec), un medio específico de células T, suplementado con un 5% de suero humano AB (Biowest), un 1% de P/S y 20 UI/mL de interleuquina-2 (IL-2) (Miltenyi Biotec), mantenidas en un incubador a 37°C y 5% de CO2. Para favorecer el crecimiento celular, estas se estimularon vía TCR con T Cell TransAct™ (Miltenyi Biotec), una nanomatriz polimérica anti-CD3/anti-CD28. Las células se pasaron entre 2 y 3 veces por semana, manteniendo una densidad celular de 1*106 células/mL. 4. Producción de vectores lentivirales
La producción de vectores se realizó utilizando las células HEK-293T como células empaquetadoras. Se sembraron las células en placas de 6 pocilios (Ufe Sciences) presentando una confluencia mayor del 90%. a. Transfección
Se utilizó un sistema de empaquetamiento de segunda generación, lo que implica la utilización de 3 plásmidos derivados del genoma lentiviral: 1) Plásmido de transferencia (B2M-SEWP y B2M-CAR); 2) Plásmido empaquetador (pCMV8.9) del virus del VIH, y 3) Plásmido de envuelta (pMD2.G) VSV-G, que presenta el mayor rango de infectividad. Se mantuvo entre ellos la proporción 10:7:3 respectivamente. El agente transfectante elegido fue la LipoD293TM (SigmaGen Laboratories). La transfección se realizó en DMEM sin suero y, 5 horas post-transfección, se realizó un cambio de medio con Optimen (Gibco) para eliminar la toxicidad a largo plazo de VSV-G y facilitar la posterior concentración. b. Recogida del sobrenadante viral y concentración
Se realizaron 3 recogidas, la primera se realizó 24 horas después de la transfección, la segunda 48 horas después y la tercera, 72 horas después. Las partículas virales presentes en el sobrenadante se recogieron utilizando jeringas estériles de 5 mL (Terumo), y se filtró utilizando filtros con un tamaño de poro de 0,45 pm (Life Sciences). La concentración de las partículas virales se llevó a cabo utilizando filtros Amicon Ultra - 15 de 100 kD (Milipore), mediante centrifugación a 1800g a 4°C. Los vectores se almacenaron a -80°C. c. Titulación
La titulación de los vectores (unidades de transducción/mililitro; UT/mL) se realizó por cálculo de partículas eficientes mediante citometría de flujo (FACS Canto II, BD Biosciences).
5. Transducción celular
En el caso de los vectores GFP, realizó la transducción de 5 tipos celulares: Jurkat, Namalwa, HEK-293T, BxPC-3 y células T primarias. Respecto a las células Jurkat y Namalwa, se plaqueron 100.000 células por pocilio, en placas de 48 pocilios y se añadieron los vectores virales. Para mejorar la eficacia de transducción, las células se espinocularon. La espinoculación es un proceso de centrifugación a 800g, 32°C durante 1 hora para favorecer el contacto célula - vector. En el caso de las células 293T, se plaquearon también 100.000 células. Respecto a las células BxPC-3, se plaqueron 50.000 células por pocilio una placa de 24 pocilios. Finalmente, en el caso de las células T, se plaquearon 200.000 células por pocilio en placas de 96 pocilios y, previo a la transducción, se activaron vía TCR utilizando T Cell TransAct™ durante 24h. La transducción se realizó mediante espinoculación. En todos los casos, 5 horas post - transducción se realizó un cambio de medio y, 3 días después, se determinó el porcentaje de células transducidas mediante citometría de flujo.
En el caso de los vectores CAR, la transducción se llevó a cabo en células Jurkat y en células T primarias, siguiendo el mismo procedimiento.
6. RT-PCR
Para realizar esta técnica, se partió de aproximadamente 700.000 células T de las cual se extrajo ARN mensajero con Trizol (Ambion). Una vez obtenido el ARN mensajero, se llevó a cabo la retrotranscripción del mismo, poniendo la misma cantidad de ARNm en todas las muestras. Tras esto, se diluyó el ADN complementario (ADNc), y se llevó a cabo la PCR en tiempo real de todas las muestras por duplicado, utilizando los cebadores adjuntados en la Tabla 1.
Figure imgf000027_0001
7. Citometría de flujo
Para los experimentos de citometría de flujo, se tiñeron entre 20.000 y 50.000 células con diferentes anticuerpos, que se adjuntan en la Tabla 2.
Figure imgf000028_0001
Tabla 2 | Anticuerpos utilizados previo a la lectura por citometría de flujo.
8. Análisis estadístico de datos
El análisis estadístico de los datos se llevó a cabo utilizando GraphPad Prism 6, utilizando la media, la desviación estándar asociada a la media (SEM), y el test T de Student para datos no pareados, con dos colas y con una significancia *** para p<0,001 .
Resultados
Diseño in sílico de los promotores quiméricos
El primer paso para la consecución de este trabajo fue diseñar los promotores que utilizaríamos posteriormente para regular la expresión de eGFP y del CAR.
P-2 microglobulina (B2M), se ha visto que puede presentar un patrón de expresión similar al del TCR. B2M es una proteína estructural del complejo mayor de histocompatibilidad (MHC) de clase I, presente en todas las células nucleadas. Su presencia es fundamental para la estabilidad de la unión antigénica a este complejo, mientras que su ausencia hace que no se puedan desarrollar las células T CD8+.
Los promotores derivados de B2M se diferencian en la presencia o ausencia de la región TetO, así como en la posición del enhancer definido por Ensembl.
Tras esto, clonamos los promotores en esqueletos lentivirales GFP y seleccionamos las construcciones para clonarlos en esqueletos lentivirales que contienen el CAR (Fig. 1 A) .
Generación de células T GFP+ con los promotores quiméricos
Una vez tenemos nuestros promotores clonados en un esqueleto lentiviral GFP+, generamos vectores lentivirales para poder transducir células T primarias, lo que nos permitirá generar células T que expresen nuestro gen reportero eGFP bajo cada uno de los promotores previamente diseñados. Generamos los vectores lentivirales siguiendo el procedimiento explicado con anterioridad y, paso previo a transducir células T, se calculó el título de nuestros vectores. Una vez titulados nuestros vectores virales, seguimos el mismo proceso para transducir células T primarias previamente aisladas, partiendo de una población de células T (CD3+) mayor del 70%.
B2M mimetiza el patrón de expresión del TCR
Para estudiar la expresión de GFP bajo el control de los promotores derivados de B2M, se estudiaron tanto la proteína como el ARN mensajero. Así, generamos las cinéticas de proteína y de mensajero de GFP y CD3.
Los datos se analizaron a partir de la mediana de fluorescencia tanto de GFP como del fluorocromo conjugado con el anticuerpo que va dirigido frente a CD3 en los diferentes puntos temporales
Respecto a los promotores derivados de B2M, a nivel de proteína, podemos observar en la que en B2M Enh5’, la expresión de GFP replica fielmente la expresión fisiológica de CD3. En el caso de B2M, GFP aumenta su expresión en el intervalo de 0 a 8 horas, al contrario que en el caso de CD3. Curiosamente, los vectores B2M Teto, donde la única diferencia con B2M es la inserción del operón Teto a 10 pb del sitio de inicio de transcripción, el patrón de expresión de GFP es más similar al de CD3, al observarse ese incremento de expresión a las 8 horas.
A nivel de ARN mensajero se observa un patrón muy parecido al de proteína, siendo el vector B2M Enh5’ el que mejor mimetiza el patrón de CD3, seguido del promotor B2M TetO. Aunque en ambos casos, la bajada de expresión de eGFP a las 8 horas es más pronunciada que la observada en CD3. A partir de las 8 horas, el patrón entre eGFP y CD3 es prácticamente idéntico.
El fenotipo de las células T GFP+ cambia con el tiempo hacia un estado de mayor diferenciación.
De manera paralela al estudio de la cinética de expresión de GFP bajo el control de los promotores quiméricos en las células T, se realizó un estudio de la evolución temporal del fenotipo celular, utilizando para ello dos anticuerpos, uno frente a CD62L, y otro frente a CD45RA, una ¡soforma de CD45 que conserva los 3 exones, por lo que presenta el mayor peso molecular de todas las ¡soformas. La expresión selectiva en membrana de estos marcadores nos permite distinguir 4 fenotipos propios de células T: células T troncales memoria, células T memoria central, células T efectoras y células T efectoras memoria.
En el caso del promotor B2M la población celular a 7 días sigue siendo en gran medida troncal memoria.
Generación de células T CAR+ con el promotor quimérico B2M.
Una vez obtenidos los resultados utilizando GFP como transgén, clonamos el promotor BM2 en el vector CAR. Una vez clonado el promotor en el esqueleto lentivi ral del CAR de tercera generación, y generados los vectores lentivirales tal y como se detalla en la sección materiales y métodos, se transdujeron las células T con los vectores CAR.
En esta construcción (Fig. 1 y Fig. 2), los LTRs permiten la integración. EGFRt codifica para el receptor del factor de crecimiento epidérmico truncado, que permite deplecionar las células CAR+ en caso de ser necesario (utilizando un anticuerpo monoclonal, cetuximab) y permite la detección indirecta del CAR utilizando un anticuerpo frente a este EGFRt conjugado con un fluorocromo. T2A es un péptido de autoescisión, que permite cortar un péptido largo en dos péptidos cortos (pues el CAR y EGFRt se codifican juntos como una proteína recombinante, y se separan gracias a este mecanismo). WPRE es un elemento de regulación post-transcripcional que potencia tanto el título del vector viral como la expresión del transgén.
Se utilizaron células T frescas, procesadas por inmunoselección magnética negativa a partir de sangre periférica movilizada de un donante sano. La transducción se llevó a cabo mediante espinoculación, utilizando 50 pL de vector en 100.000 células T. La expresión del CAR se determinó 72 horas post - transducción. Con el promotor B2M, se observó un porcentaje de expresión del CAR del 18%. Se utilizó CAR3G (el vector lentiviral original en el que el CAR se expresa bajo el control del promotor EF1-a) como control positivo de tinción y de transducción. Las células NTD se utilizaron como control negativo.

Claims

REIVINDICACIONES
1 . Un polinucleótido que comprenda o consista en la secuencia SEQ ID NO: 1 o 2, o que comprenda o consista en una secuencia que presente una identidad con la SEQ ID NO: 1 o 2 de al menos un 95%.
2. Un polinucleótido que comprenda o consista en la secuencia SEQ ID NO: 1 , o que comprenda o consista en una secuencia que presente una identidad con la SEQ ID NO: 1 de al menos un 95%.
3. Un polinucleótido que comprenda o consista en la secuencia SEQ ID NO: 2, o que comprensa o consista en una secuencia que presente una identidad con la SEQ ID NO: 2 de al menos un 95%.
4. Un polinucleótido que consista en la secuencia SEQ ID NO: 1 o 2.
5. Un polinucleótido que consista en la secuencia SEQ ID NO: 1.
6. Un polinucleótido que consista en la secuencia SEQ ID NO: 2.
7. Una construcción genética que comprende el polinucleótido según la cualquiera de las reivindicaciones 1 a 6.
8. La construcción genética según la reivindicación 7, donde dicha construcción génica es un vector viral.
9. La construcción genética según la reivindicación 8, donde el vector viral es un vector lentiviral .
10. La construcción genética según cualquiera de las reivindicaciones 7 a 9, donde el promotor se encuentra operativamente unido a un receptor de antígeno quimérico (CAR) que comprende un dominio de unión a ligando extracelular, un dominio transmembrana y al menos un dominio de señalización intracelular.
11. Una célula transformada o transducida con un polinucleótido según cualquiera de las reivindicaciones 1 6, o una construcción genética según cualquiera de las reivindicaciones 7 a 10. La célula según la reivindicación 11, donde dicha célula es una célula inmune. La célula inmune según la reivindicación 12, donde dicha célula se selecciona de la lista que consiste en linfocitos inflamatorios, linfocitos T citotóxicos, linfocitos T reguladores o linfocitos auxiliares. El polinucleótido según cualquiera de las reivindicaciones 1 6, la construcción genética según cualquiera de las reivindicaciones 7 a 10, o la célula según cualquiera de las reivindicaciones 11 a 13, para su uso en terapia. El polinucleótido según cualquiera de las reivindicaciones 1 6, la construcción genética según cualquiera de las reivindicaciones 7 a 10, o la célula según cualquiera de las reivindicaciones 11 a 13, para su uso en el tratamiento de cáncer, donde preferiblemente el cáncer se selecciona de la lista que consiste en neoplasias, neoplasias de células B, linfoma, leucemia y/o mieloma.
PCT/ES2021/070684 2020-09-21 2021-09-21 Polinucleótido para expresión fisiológica en células t WO2022058640A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21868788.7A EP4215609A1 (en) 2020-09-21 2021-09-21 Polynucleotide for physiological expression in t-cells
JP2023518234A JP2023541705A (ja) 2020-09-21 2021-09-21 T細胞における生理学的発現のためのポリヌクレオチド
US18/246,173 US20240043868A1 (en) 2020-09-21 2021-09-21 Polynucleotide for physiological expression in t-cells

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ESP202030954 2020-09-21
ESP202030955 2020-09-21
ES202030955A ES2901575A1 (es) 2020-09-21 2020-09-21 Polinucleótido para expresión fisiológica en células T
ES202030954 2020-09-21

Publications (1)

Publication Number Publication Date
WO2022058640A1 true WO2022058640A1 (es) 2022-03-24

Family

ID=80775948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2021/070684 WO2022058640A1 (es) 2020-09-21 2021-09-21 Polinucleótido para expresión fisiológica en células t

Country Status (4)

Country Link
US (1) US20240043868A1 (es)
EP (1) EP4215609A1 (es)
JP (1) JP2023541705A (es)
WO (1) WO2022058640A1 (es)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US5037743A (en) 1988-08-05 1991-08-06 Zymogenetics, Inc. BAR1 secretion signal
US5143830A (en) 1986-05-15 1992-09-01 Holland Ian B Process for the production of a polypeptide
US5858358A (en) 1992-04-07 1999-01-12 The United States Of America As Represented By The Secretary Of The Navy Methods for selectively stimulating proliferation of T cells
US6352694B1 (en) 1994-06-03 2002-03-05 Genetics Institute, Inc. Methods for inducing a population of T cells to proliferate using agents which recognize TCR/CD3 and ligands which stimulate an accessory molecule on the surface of the T cells
US6534055B1 (en) 1988-11-23 2003-03-18 Genetics Institute, Inc. Methods for selectively stimulating proliferation of T cells
US6692964B1 (en) 1995-05-04 2004-02-17 The United States Of America As Represented By The Secretary Of The Navy Methods for transfecting T cells
US6797514B2 (en) 2000-02-24 2004-09-28 Xcyte Therapies, Inc. Simultaneous stimulation and concentration of cells
US6867041B2 (en) 2000-02-24 2005-03-15 Xcyte Therapies, Inc. Simultaneous stimulation and concentration of cells
US6905874B2 (en) 2000-02-24 2005-06-14 Xcyte Therapies, Inc. Simultaneous stimulation and concentration of cells
US6905680B2 (en) 1988-11-23 2005-06-14 Genetics Institute, Inc. Methods of treating HIV infected subjects
US20060121005A1 (en) 2000-02-24 2006-06-08 Xcyte Therapies, Inc. Activation and expansion of cells
US7067318B2 (en) 1995-06-07 2006-06-27 The Regents Of The University Of Michigan Methods for transfecting T cells
US7175843B2 (en) 1994-06-03 2007-02-13 Genetics Institute, Llc Methods for selectively stimulating proliferation of T cells
CN108018312A (zh) * 2017-12-20 2018-05-11 上海优卡迪生物医药科技有限公司 一种t淋巴细胞白血病的car-t治疗载体及其构建方法和应用
WO2018213332A1 (en) * 2017-05-17 2018-11-22 Seattle Children's Hospital (dba Seattle Children's Research Institute) Generating mammalian t cell activation inducible synthetic promoters (syn+pro) to improve t cell therapy
CN110055281A (zh) * 2019-04-25 2019-07-26 山东大学第二医院 一种用于制备car-t的慢病毒载体及其构建方法和应用

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683195B1 (es) 1986-01-30 1990-11-27 Cetus Corp
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US5143830A (en) 1986-05-15 1992-09-01 Holland Ian B Process for the production of a polypeptide
US5037743A (en) 1988-08-05 1991-08-06 Zymogenetics, Inc. BAR1 secretion signal
US6887466B2 (en) 1988-11-23 2005-05-03 Genetics Institute, Inc. Methods for selectively stimulating proliferation of T cells
US5883223A (en) 1988-11-23 1999-03-16 Gray; Gary S. CD9 antigen peptides and antibodies thereto
US6905680B2 (en) 1988-11-23 2005-06-14 Genetics Institute, Inc. Methods of treating HIV infected subjects
US6534055B1 (en) 1988-11-23 2003-03-18 Genetics Institute, Inc. Methods for selectively stimulating proliferation of T cells
US7232566B2 (en) 1988-11-23 2007-06-19 The United States As Represented By The Secretary Of The Navy Methods for treating HIV infected subjects
US7144575B2 (en) 1988-11-23 2006-12-05 The Regents Of The University Of Michigan Methods for selectively stimulating proliferation of T cells
US5858358A (en) 1992-04-07 1999-01-12 The United States Of America As Represented By The Secretary Of The Navy Methods for selectively stimulating proliferation of T cells
US6352694B1 (en) 1994-06-03 2002-03-05 Genetics Institute, Inc. Methods for inducing a population of T cells to proliferate using agents which recognize TCR/CD3 and ligands which stimulate an accessory molecule on the surface of the T cells
US7175843B2 (en) 1994-06-03 2007-02-13 Genetics Institute, Llc Methods for selectively stimulating proliferation of T cells
US6905681B1 (en) 1994-06-03 2005-06-14 Genetics Institute, Inc. Methods for selectively stimulating proliferation of T cells
US7172869B2 (en) 1995-05-04 2007-02-06 The United States Of America As Represented By The Secretary Of The Navy Methods for transfecting T cells
US6692964B1 (en) 1995-05-04 2004-02-17 The United States Of America As Represented By The Secretary Of The Navy Methods for transfecting T cells
US7067318B2 (en) 1995-06-07 2006-06-27 The Regents Of The University Of Michigan Methods for transfecting T cells
US20060121005A1 (en) 2000-02-24 2006-06-08 Xcyte Therapies, Inc. Activation and expansion of cells
US6905874B2 (en) 2000-02-24 2005-06-14 Xcyte Therapies, Inc. Simultaneous stimulation and concentration of cells
US6867041B2 (en) 2000-02-24 2005-03-15 Xcyte Therapies, Inc. Simultaneous stimulation and concentration of cells
US6797514B2 (en) 2000-02-24 2004-09-28 Xcyte Therapies, Inc. Simultaneous stimulation and concentration of cells
WO2018213332A1 (en) * 2017-05-17 2018-11-22 Seattle Children's Hospital (dba Seattle Children's Research Institute) Generating mammalian t cell activation inducible synthetic promoters (syn+pro) to improve t cell therapy
CN108018312A (zh) * 2017-12-20 2018-05-11 上海优卡迪生物医药科技有限公司 一种t淋巴细胞白血病的car-t治疗载体及其构建方法和应用
CN110055281A (zh) * 2019-04-25 2019-07-26 山东大学第二医院 一种用于制备car-t的慢病毒载体及其构建方法和应用

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"Gene Expression Technology", vol. 185, ACADEMIC PRESS, INC.
"Handbook Of Experimental Immunology", vol. I-IV, 1986, COLD SPRING HARBOR LABORATORY PRESS
B. PERBAL: "A Practical Guide To Molecular Cloning", 1984
COFFIN, J. M. ET AL.: "Fundamental Virology", 1996, LIPPINCOTT-RAVEN PUBLISHERS, article "Retroviridae: The viruses and their replication"
FREDERICK M. AUSUBEL: "Molecular Biology", 2000, WILEY AND SONS INC
R. I. FRESHNEY: "Immunochemical Methods In Cell And Molecular Biology", 1987, COLD SPRING HARBOR LABORATORY
SAMBROOK: "Molecular Cloning: A Laboratory Manual", 2001, COLD SPRING HARBOR LABORATORY PRESS
TRISTAN-MANZANO M ET AL.: "LVs development for a fine-tuned regulation of CARs in T cells", HUMAN GENE THERAPY, vol. 30, no. 11, 2019, pages A71 - A72, XP009518862, ISSN: 1557-7422, DOI: 10.1089/hum.2019.29095.abstracts *

Also Published As

Publication number Publication date
EP4215609A1 (en) 2023-07-26
JP2023541705A (ja) 2023-10-03
US20240043868A1 (en) 2024-02-08

Similar Documents

Publication Publication Date Title
ES2930431T3 (es) Receptor quimérico de antígeno específico para CD19 y sus usos
ES2765710T3 (es) Receptores de antígeno quimérico específicos de CD33 para la inmunoterapia del cáncer
ES2777305T3 (es) Receptores de antígeno quiméricos específicos de la glicoproteína trofoblástica (5T4, TPBG) para inmunoterapia contra el cáncer
ES2876925T3 (es) Receptores de antígeno quiméricos específicos para ROR1 (NTRKR1) para inmunoterapia contra el cáncer
CN108137669B (zh) 抗ror1嵌合抗原受体
JP7314115B2 (ja) ユニバーサル抗cd22キメラ抗原受容体操作免疫細胞
ES2846811T3 (es) Composiciones de células T mejoradas
ES2750725T3 (es) Receptores de antígeno quiméricos BCMA
ES2781073T3 (es) Receptores de antígenos quiméricos del promotor MND
US10874693B2 (en) CD19 specific chimeric antigen receptor and uses thereof
JP7195154B2 (ja) 初代免疫細胞における逐次遺伝子編集
ES2911015T3 (es) Receptores quiméricos de antígeno anti-sialil Tn
ES2977415T3 (es) Receptores de antígenos quiméricos contra CD79A
WO2017156479A1 (en) Ror1 chimeric antigen receptors
ES2910227T3 (es) Composición y métodos para la estimulación y expansión de células T
WO2018206791A1 (en) Protease based switch chimeric antigen receptors for safer cell immunotherapy
BR112020011898A2 (pt) receptores daric nkg2d
WO2022058640A1 (es) Polinucleótido para expresión fisiológica en células t
ES2901575A1 (es) Polinucleótido para expresión fisiológica en células T
US20220009993A1 (en) Polynucleotide for safer and more effective immunotherapies
AU2018265242B2 (en) Protease based switch chimeric antigen receptors for safer cell immunotherapy
EP4330288A1 (en) New anti-muc1 cars and gene edited immune cells for solid tumors cancer immunotherapy
NZ714044B2 (en) Cd19 specific chimeric antigen receptor and uses thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868788

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023518234

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021868788

Country of ref document: EP

Effective date: 20230421