WO2022057737A1 - 一种停车控制方法及相关设备 - Google Patents

一种停车控制方法及相关设备 Download PDF

Info

Publication number
WO2022057737A1
WO2022057737A1 PCT/CN2021/117645 CN2021117645W WO2022057737A1 WO 2022057737 A1 WO2022057737 A1 WO 2022057737A1 CN 2021117645 W CN2021117645 W CN 2021117645W WO 2022057737 A1 WO2022057737 A1 WO 2022057737A1
Authority
WO
WIPO (PCT)
Prior art keywords
parking
vehicle
information
target area
area
Prior art date
Application number
PCT/CN2021/117645
Other languages
English (en)
French (fr)
Inventor
陈升辉
石跃鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21868562.6A priority Critical patent/EP4207134A1/en
Publication of WO2022057737A1 publication Critical patent/WO2022057737A1/zh
Priority to US18/123,106 priority patent/US20230242098A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/06Automatic manoeuvring for parking
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • G05D1/0297Fleet control by controlling means in a control room
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/14Traffic control systems for road vehicles indicating individual free spaces in parking areas
    • G08G1/141Traffic control systems for road vehicles indicating individual free spaces in parking areas with means giving the indication of available parking spaces
    • G08G1/144Traffic control systems for road vehicles indicating individual free spaces in parking areas with means giving the indication of available parking spaces on portable or mobile units, e.g. personal digital assistant [PDA]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/027Parking aids, e.g. instruction means
    • B62D15/0285Parking performed automatically
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/14Traffic control systems for road vehicles indicating individual free spaces in parking areas
    • G08G1/141Traffic control systems for road vehicles indicating individual free spaces in parking areas with means giving the indication of available parking spaces
    • G08G1/143Traffic control systems for road vehicles indicating individual free spaces in parking areas with means giving the indication of available parking spaces inside the vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/14Traffic control systems for road vehicles indicating individual free spaces in parking areas
    • G08G1/145Traffic control systems for road vehicles indicating individual free spaces in parking areas where the indication depends on the parking areas
    • G08G1/146Traffic control systems for road vehicles indicating individual free spaces in parking areas where the indication depends on the parking areas where the parking area is a limited parking space, e.g. parking garage, restricted space
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/14Traffic control systems for road vehicles indicating individual free spaces in parking areas
    • G08G1/145Traffic control systems for road vehicles indicating individual free spaces in parking areas where the indication depends on the parking areas
    • G08G1/148Management of a network of parking areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle

Definitions

  • the present application relates to the field of unmanned vehicles, and in particular, to a parking control method and related equipment.
  • the embodiments of the present application provide a parking control method and related equipment, so as to effectively alleviate the problems of "difficulty parking and disorderly parking" of unmanned vehicles.
  • an embodiment of the present application provides a parking control method, which is applied to an unmanned vehicle system, and the method includes:
  • control the second vehicle to travel from the current position to a third position, where the distance between the third position and the travel track is greater than the first preset distance;
  • the first vehicle is controlled to enter the first parking space according to the travel trajectory.
  • the unmanned vehicle drives and parks according to the trajectory, if it detects that there is an impact in the parking lot (in the target area)
  • a vehicle (second vehicle) driven by an unmanned vehicle such as a vehicle that is too close to the driving track
  • first parking space controlling the movement of other vehicles can fully integrate parking resources, so that when parking, there will be no unmanned vehicles that are too large to pass through the narrow space between the vehicles, and thus cannot be parked in the parking space.
  • the unmanned vehicle cannot park in the target parking space. It greatly improves the success rate of unmanned vehicles parked in the parking space and solves the problem of difficult parking.
  • it will also dynamically change many times according to surrounding information (such as: parking space adjustment of other vehicles, scheduled parking time), which improves the flexibility of parking space utilization in the parking lot. Real-time dynamic scheduling of unmanned vehicles is realized, and the utilization rate of parking lots is improved.
  • the target area includes a parking area and a non-parking area
  • the target area does not include a lane
  • the non-parking area includes an obstacle area and a vehicle driving area
  • the vehicle driving area is driving on the vehicle.
  • there is only a parking space for parking in the parkingable area of the target area and there is no lane for driving a vehicle.
  • the non-stop area includes, in addition to the obstacle area, a vehicle travel area for vehicles to travel, and there is no lane in the non-stop area.
  • the parking spaces can be tiled, the lanes can be eliminated, the space in the parking lot can be utilized as much as possible, the occupied resources of the lanes can be saved, and more vehicles can be parked in a certain parking area. Greatly improved space utilization.
  • the method further includes: if not, controlling the second vehicle A vehicle drives into the first parking space according to the travel trajectory.
  • the first vehicle can be directly controlled to drive into the first parking space according to the driving trajectory without the need to characterize other vehicles.
  • the method further includes: planning the first parking space in the target area according to a preset parking strategy and parking information corresponding to the first vehicle, and obtaining the first parking space
  • the parking space information includes the second location
  • the parking information includes the first location.
  • the parking space of the driverless vehicle is not pre-defined, but dynamically changed according to the preset parking strategy and vehicle model information, which can get rid of the fixed size and orientation of the existing parking space, and improve the parking space in the parking lot.
  • the utilization rate can also meet the different parking needs of different unmanned vehicles as much as possible.
  • the parking information includes: a first duration of the first vehicle, where the first duration is an expected parking duration of the first vehicle in the target area; It is assumed that the parking strategy includes: the longer the first time period is, the farther the distance between the second position and the exit of the target area is.
  • the unmanned vehicle with longer parking time is farther from the exit in the target area, and similarly, the unmanned vehicle with shorter parking time is closer to the exit in the target area, which can facilitate parking Vehicles with a short time, quickly drive out of the parking lot.
  • the parking information includes the first duration
  • the method further includes: after detecting that the first vehicle has passed a second duration in the target area, controlling the first The vehicle travels to a second parking space closer to the exit, and the second duration is shorter than the first duration.
  • the parking space of the first vehicle is not fixed, and the parking space can be dynamically changed according to the parking time.
  • the scheduled parking time adjust the location of the parking spaces, and arrange the parking spaces according to the scheduled parking time to the second parking space that is closer to the exit, so that the driverless vehicle can quickly drive out. Therefore, the embodiment of the present application can dynamically adjust the position of the unmanned vehicle during the parking period of the unmanned vehicle. As the time approaches the exit time, the position is closer to the exit, which is convenient for the vehicle to drive out quickly.
  • the parking information includes: vehicle type information of the first vehicle; the preset parking strategy includes: the larger the vehicle type of the first vehicle, the greater the number of vehicles in the target area.
  • the area corresponding to the first parking space is larger.
  • unmanned vehicles of different models are divided into different sizes of parking spaces. Therefore, it can adapt to changes in the size of various vehicles, and the size of the parking spaces is not fixed, so as to allocate the parking spaces with the minimum area corresponding to the models. Effectively improve the parking utilization of limited space.
  • the method further includes: receiving a first parking request sent by a first terminal, where the first parking request includes the vehicle model information; and monitoring the target in response to the first parking request
  • a parking permission instruction is sent to the first terminal, and the parking permission instruction includes the area information of the target area, and the area information includes the following information At least one of: the location information of the target area, the entrance information of at least one of the target areas, the information of at least one exit of the target area; the parking information according to the preset parking strategy and the corresponding parking information of the first vehicle, in Before planning the first parking space in the target area, the method further includes: receiving the parking information sent by the first terminal.
  • the parking control device may receive a parking request from the first terminal, and determine that when the area of the parking area in the parking lot is larger than the parking area corresponding to the vehicle type information, that is, when the first vehicle can also be parked, Respond to the request and return the parking lot information to the first terminal. It is convenient and quick to reserve parking spaces in the parking lot through the terminal, which improves the user experience.
  • the method further includes: receiving a vehicle pickup request sent by the first terminal, where the vehicle pickup request includes a first exit identifier, the first exit identifier is used to identify the first exit, and the The first exit is an exit for the first vehicle to drive out of the target area; in response to the vehicle pickup request, the first vehicle is controlled to drive to an exit parking space, and the relationship between the exit parking space and the first exit is The distance between them is within the second preset distance.
  • a car pickup request can be sent to the parking lot, so that the unmanned vehicle can drive to a parking space near the exit in advance and wait for the user to pick up the car, which greatly shortens the time for the user to find a car. Solved the rare problem of users looking for a car.
  • the method further includes: receiving a second parking request sent by the first terminal, where the second parking request includes a second parking duration; in response to the second parking request, according to the According to the second parking duration and a preset parking strategy, the third parking space is planned in the target area, the parking space information of the third parking space is obtained, and the first vehicle is controlled to drive to the third parking space.
  • the second parking request sent by the first terminal can be received to extend the parking time time to improve the user's parking experience.
  • an embodiment of the present application provides a parking control device, which is applied to an unmanned vehicle system, and the device includes:
  • a trajectory unit configured to plan a driving trajectory of the first vehicle in the target area according to a first position of the first vehicle and a second position of the first parking space, where the first position is the first position of the first vehicle current location;
  • a detection unit configured to detect whether there is a second vehicle in the target area whose distance from the travel track is less than a first preset distance
  • a first control unit configured to, if present, control the second vehicle to travel from a current position to a third position, where the distance between the third position and the travel track is greater than the first preset distance
  • a second control unit configured to control the first vehicle to drive into the first parking space according to the travel trajectory.
  • the target area includes a parking area and a non-parking area
  • the target area does not include a lane
  • the non-parking area includes an obstacle area and a vehicle driving area
  • the vehicle driving area is driving on the vehicle.
  • the first control unit is further configured to: if not exist, control the first vehicle to drive into the first parking space according to the travel trajectory.
  • the apparatus further includes: a parking space unit, configured to plan the first parking space in the target area according to a preset parking strategy and parking information corresponding to the first vehicle, and obtain The parking space information of the first parking space, the parking space information includes the second position, and the parking information includes the first position.
  • a parking space unit configured to plan the first parking space in the target area according to a preset parking strategy and parking information corresponding to the first vehicle, and obtain The parking space information of the first parking space, the parking space information includes the second position, and the parking information includes the first position.
  • the parking information includes: a first duration of the first vehicle, where the first duration is an expected parking duration of the first vehicle in the target area; It is assumed that the parking strategy includes: the longer the first time period is, the farther the distance between the second position and the exit of the target area is.
  • the parking information includes the first duration
  • the apparatus further includes: a third control unit configured to detect that the first vehicle has passed the second duration in the target area Afterwards, the first vehicle is controlled to drive to a second parking space closer to the exit, and the second duration is shorter than the first duration.
  • the parking information includes: vehicle type information of the first vehicle; the preset parking strategy includes: the larger the vehicle type of the first vehicle, the greater the number of vehicles in the target area. The area corresponding to the first parking space is larger.
  • the device further includes: a first receiving unit, configured to receive a first parking request sent by a first terminal, where the first parking request includes the vehicle model information; a first response unit, In response to the first parking request, when it is detected that the area of the parkingable area in the target area is larger than the parking area corresponding to the vehicle type information, a parking permission instruction is sent to the first terminal, and the parking permission instruction includes the area information of the target area, the area information includes at least one of the following information: location information of the target area, entry information of at least one of the target areas, information of at least one exit of the target area; a second receiving unit, The method is configured to receive the parking information sent by the first terminal before planning the first parking space in the target area according to a preset parking strategy and the parking information corresponding to the first vehicle.
  • a first receiving unit configured to receive a first parking request sent by a first terminal, where the first parking request includes the vehicle model information
  • a first response unit In response to the first parking request, when it is detected that the area of the parking
  • the apparatus further includes: a third receiving unit, configured to receive a vehicle pickup request sent by the first terminal, where the vehicle pickup request includes a first exit identifier, and the first exit identifier is used for for identifying a first exit, where the first exit is an exit for the first vehicle to drive out of the target area; a second response unit for controlling the first vehicle to drive to the exit in response to the vehicle pickup request At the parking space, the distance between the exit parking space and the first exit is within a second preset distance.
  • the device further includes: a fourth receiving unit, configured to receive a second parking request sent by the first terminal, where the second parking request includes a second parking duration; a third response unit, In response to the second parking request, the third parking space is planned in the target area according to the second parking duration and the preset parking strategy, and the parking space information of the third parking space is obtained; the fourth control The unit is configured to control the first vehicle to travel to the third parking space.
  • an embodiment of the present application provides a server, applied to an unmanned vehicle system, including a memory and a processor coupled to the memory; the memory is used to store instructions, and the processor is used to execute the instructions; wherein the processor executes the method described in the first aspect or any possible implementation manner of the first aspect.
  • an embodiment of the present application provides a computer storage medium for storing computer software instructions used for the parking control device provided in the second aspect, which includes the instructions for executing the parking control method in the first aspect. program of.
  • an embodiment of the present application provides a computer program, where the computer program includes instructions, when the computer program is executed by a computer, the computer can execute the process executed by the parking control apparatus in the second aspect.
  • the present application provides a chip system
  • the chip system includes a processor for supporting a terminal device to implement the functions involved in the above first aspect, for example, generating or processing the information involved in the above parking control method .
  • the chip system further includes a memory for storing necessary program instructions and data of the data sending device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • FIG. 1 is a schematic diagram of a conventional parking process provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of parking after the existing parking process shown in FIG. 1 according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a parking plan provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a parking process based on the parking plan shown in FIG. 3 provided in an embodiment of the present application.
  • FIG. 5A is a schematic structural diagram of a parking control system provided by an embodiment of the present application.
  • FIG. 5B is a schematic diagram of a software architecture of a parking control system provided by an embodiment of the present application.
  • FIG. 6 is a functional block diagram of an intelligent vehicle 002 provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a vehicle driving control device provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a parking control method provided by an embodiment of the present application.
  • FIG. 9 is a two-dimensional plan view of a parking lot provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of reserving/cancelling a virtual parking space in the parking lot when the unmanned vehicle does not arrive at the parking lot provided by an embodiment of the present application.
  • FIG. 11A is a schematic diagram of a parking lot for planning a driving trajectory according to an embodiment of the present application.
  • FIG. 11B is a schematic flowchart of an unmanned vehicle arriving in a parking lot for parking according to an embodiment of the present application.
  • FIG. 11C is a schematic diagram of a first vehicle parking provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of an adjustment process for an unmanned vehicle approaching a predetermined parking time provided by an embodiment of the present application.
  • FIG. 13 is a schematic flowchart of an unmanned vehicle modifying a predetermined parking time according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a parking control device provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of another parking control device provided by an embodiment of the present application.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device may be components.
  • One or more components may reside within a process and/or thread of execution, and a component may be localized on one computer and/or distributed between 2 or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals
  • FIG. 1 is a schematic diagram of a conventional parking process provided by an embodiment of the present application.
  • an image acquisition device is used to acquire a first image of a vehicle entering a preset ground area in real time;
  • a parking control device is used to plan and set a virtual parking space for the preset ground area, and receive the image
  • the first image frame sent by the acquisition device is obtained, and the virtual parking space is superimposed on the first image frame to form a second image frame;
  • the electronic display device is configured to receive the data sent by the parking control device.
  • the second image frame is displayed and the second image frame is displayed, so that the user can complete the parking operation in the virtual parking space according to the second image frame.
  • FIG. 1 is a schematic diagram of a conventional parking process provided by an embodiment of the present application.
  • an image acquisition device is used to acquire a first image of a vehicle entering a preset ground area in real time
  • a parking control device is used to plan and set a virtual parking space for the preset ground area, and receive the image
  • FIG. 2 which is a schematic diagram of parking after the existing parking process shown in FIG. 1 provided by an embodiment of the present application.
  • the parking area is divided into multiple virtual parking spaces, which are used for vehicles to park in the parking area without the need for construction operations such as marking parking lines on the ground.
  • the parking lot can be built quickly, with low maintenance costs and convenient
  • the unified management of parking vehicles is also convenient for parking personnel to complete parking easily.
  • FIG. 3 is a schematic diagram of a parking plan provided by an embodiment of the present application.
  • the panoramic state diagram of the parking lot includes a plurality of divided parking spaces, which are suitable for many vehicle types.
  • a driving lane of the vehicle In front of the plurality of parking spaces is a driving lane of the vehicle, which is used for the vehicle to park in the target parking space.
  • FIG. 4 is a schematic diagram of a parking process based on the parking plan shown in FIG. 3 according to an embodiment of the present application.
  • a panoramic state diagram of each parking lot is correspondingly generated according to the monitored parking lot states; it is judged whether a parking request sent by the vehicle is received; if so, the location of the vehicle that triggered the parking request is determined according to the location information of the vehicle Parking lot; obtain the current panoramic state map of the corresponding parking lot, plan a parking path for the vehicle requesting parking according to the current panoramic state map of the parking lot, and generate driving parameters for the requesting vehicle according to the planned parking path; the requesting vehicle follows the driving parameters drive.
  • the parking lot where the vehicle that issued the first parking request is located is generated and determined according to the parking lot state of the vehicle's position; according to the current panoramic state of the parking lot
  • the picture shows the vehicle requesting parking planning a parking path and generating driving parameters, and then sending the planned parking path and driving parameters to the vehicle requesting parking, so that the vehicle can automatically drive in the parking lot according to the parking path and driving parameters, and arrive at the target parking lot bit.
  • the embodiment of the present application provides a parking control method, so that the unmanned vehicle can not only mobilize the vehicle already in the parking lot at any time, but the virtual parking space of the system is not pre-defined, but is based on the vehicle type when the parking space is reserved. Dynamic changes, get rid of the existing constraints of size, orientation, etc. It can also cooperate with the parking planning system in the parking lot, cancel the entry and exit lane lines, and tile the vehicles into the parking lot to maximize the utilization of the site.
  • FIG. 5A is a schematic structural diagram of a parking control system provided by an embodiment of the present application.
  • the architecture of the parking control system in this application may include the service device 001, the smart vehicle 002 and the terminal device 003 in FIG. 5A, wherein the service device 001, the smart vehicle 002 and the terminal device 003 can communicate through the network, so that the service device 001 monitors
  • the intelligent vehicle 002 drives and stops within the target area.
  • the service equipment 001 can be installed next to the parking space, adopts a dedicated short-range communication technology (Dedicated Short Range Communication, DSRC), communicates with an on-board unit (OBU, On Board Unit), and realizes vehicle identification, vehicle control and other service devices;
  • the service device 001 may also be a service device that quickly acquires, processes, analyzes and extracts data, based on interactive data, and brings various conveniences to third parties. For example: backend server, cloud server, roadside unit, etc.
  • the service device 001 can plan the driving trajectory of the first vehicle in the target area (in the parking lot) according to the current position of the first vehicle and the position of the first parking space; The second vehicle whose distance between the travel tracks is less than the first preset distance; if there is, control the second vehicle to travel from the current position to a third position whose distance from the travel track is greater than the first preset distance; control the first The vehicle drives into the first parking space according to the driving trajectory.
  • the service device 001 may include: a floor plan module 0011 , a vehicle guidance module 0012 , a parking space management module 0013 and a communication module 0014 . in
  • the floor plan module based on the panoramic cameras arranged around the parking lot, generates a two-dimensional floor plan of the parking lot; at the same time, it supports setting/cancelling the non-parking area on the floor plan of the parking lot;
  • the vehicle guidance module based on the coordinates generated by the virtual parking space management module, guides the vehicle to a specific position, and guides the vehicle to adjust the body posture according to the panoramic camera, so that it can accurately park in the virtual parking space;
  • the parking space management module delineate an appropriate virtual parking space.
  • delineate an appropriate virtual parking space When the vehicle is approaching the departure time, re-plan the virtual parking spaces around the vehicle, arrange according to the principle of the shorter the predetermined parking time and the closer to the entrance and exit, and dispatch the vehicle to the new virtual parking space according to the new virtual parking space;
  • the communication module can establish the communication between the parking planning system and the handheld terminal, and the communication between the parking planning system and the unmanned vehicle based on the communication methods such as 4G/5G or WIFI.
  • the intelligent vehicle 002 is a vehicle that perceives the road environment through the vehicle-mounted sensing system, and controls the vehicle to reach the predetermined target according to the planned driving route.
  • Smart cars use technologies such as computers, modern sensing, information fusion, communication, artificial intelligence and automatic control.
  • the intelligent vehicle in this application may be a vehicle that mainly relies on a computer-based intelligent driver in the vehicle to achieve the purpose of unmanned driving, may be an intelligent vehicle with an assisted driving system or a fully automatic driving system, or may It is a wheeled mobile robot, etc.
  • the electronic control unit in the intelligent vehicle can receive the control instructions sent by the service equipment 001, and then control the vehicle to drive to the target position.
  • the smart vehicle 002 can also feed back to the service device 001 through various sensors, various data during the driving process, such as driving speed, driving position, driving curvature and so on.
  • the terminal device 003 is a device that can install and run related applications and provide local service programs for customers.
  • the terminal device 003 in the embodiment of this solution may include, but is not limited to, any electronic product based on an intelligent operating system, which can perform human-computer interaction with the user through input devices such as a keyboard, a virtual keyboard, a touchpad, a touchscreen, and a voice control device. , such as smartphones, tablets, smart watches, personal computers, etc.
  • the smart operating system includes, but is not limited to, any operating system that enriches device functions by providing various mobile applications to the mobile device, such as: Android (Android TM ), iOS TM , Windows Phone TM and the like.
  • the terminal device 003 may send a parking request to the service device 001 to reserve a parking service for the smart vehicle 002 in the target area.
  • the terminal device 003 may also send a parking request to the service device 001 again during the parking period to extend the parking time of the intelligent vehicle 002 .
  • the terminal device 003 can also send a pickup request to the service device 001 when it is about to leave, so that the smart vehicle 002 can drive to the exit attachment in advance and wait for pickup.
  • the terminal device 003 is equivalent to the first terminal.
  • FIG. 5B is a schematic diagram of a software architecture of a parking control system provided by an embodiment of the present application. As shown in Figure 5B:
  • On-board software on unmanned vehicles communicates and interacts with the parking planning system of the parking lot, and realizes the function of reserving parking spaces by reporting information such as its model and reserved parking time; it is equivalent to the intelligent vehicle 002 shown in Figure 5A above.
  • 2002 Parking Planning System Interacting with in-vehicle software and handheld terminal software, it plans and manages virtual parking spaces in the parking lot, and guides vehicles and surrounding vehicles as they arrive and exit. After the vehicle arrives at the virtual parking space, the virtual parking space information of the vehicle is fed back to the handheld terminal software in real time, which is equivalent to the service device 001 shown in FIG. 5A above.
  • Handheld terminal software used to interact with the parking planning system, to know the information of virtual parking spaces in real time, and to update the scheduled parking time; it is equivalent to the terminal device 003 shown in Figure 5A above.
  • FIG. 5A and FIG. 5B is only an exemplary parking control implementation in the embodiment of the application, and the parking control system architecture in the embodiment of the application includes but is not limited to the above parking control. system structure.
  • an embodiment of the present application provides an intelligent vehicle 002 applied in the above-mentioned vehicle driving control system architecture. Please refer to FIG. 6 .
  • FIG. 6 is an example of an intelligent vehicle 002 provided by the embodiment of the present application. Functional block diagram.
  • the intelligent vehicle 002 may be configured in a fully or partially autonomous driving mode.
  • the intelligent vehicle 002 can control itself while in an autonomous driving mode, and can determine the current state of the vehicle and its surroundings through human manipulation, determine the likely behavior of at least one other vehicle in the surrounding environment, and determine the other
  • the intelligent vehicle 002 is controlled based on the determined information with a confidence level corresponding to the likelihood that the vehicle will perform the possible behavior.
  • the intelligent vehicle 002 may be placed to operate without human interaction.
  • Intelligent vehicle 002 may include various subsystems, such as travel system 202 , sensor system 204 , control system 206 , one or more peripherals 208 and power supply 210 , computer system 212 , and user interface 216 .
  • intelligent vehicle 002 may include more or fewer subsystems, and each subsystem may include multiple elements. Additionally, each of the subsystems and elements of the intelligent vehicle 002 may be wired or wirelessly interconnected.
  • the travel system 202 may include components that provide powered motion for the intelligent vehicle 002 .
  • travel system 202 may include engine 218 , energy source 219 , transmission 220 , and wheels/tires 221 .
  • the engine 218 may be an internal combustion engine, an electric motor, an air compression engine, or other types of engine combinations, such as a gasoline engine and electric motor hybrid engine, an internal combustion engine and an air compression engine hybrid engine.
  • Engine 218 converts energy source 219 into mechanical energy.
  • Examples of energy sources 219 include gasoline, diesel, other petroleum-based fuels, propane, other compressed gas-based fuels, ethanol, solar panels, batteries, and other sources of electricity.
  • the energy source 219 may also provide energy to other systems of the intelligent vehicle 002 .
  • Transmission 220 may transmit mechanical power from engine 218 to wheels 221 .
  • Transmission 220 may include a gearbox, a differential, and a driveshaft.
  • transmission 220 may also include other devices, such as clutches.
  • the drive shafts may include one or more axles that may be coupled to one or more wheels 221 .
  • Sensor system 204 may include several sensors that sense information about the environment surrounding intelligent vehicle 002 .
  • the sensor system 204 may include a positioning system 222 (which may be a GPS system, a Beidou system or other positioning system), an inertial measurement unit (IMU) 224, a radar 226, a laser rangefinder 228, and Camera 230.
  • the sensor system 204 may also include sensors that monitor the internal systems of the smart vehicle 002 (eg, an in-vehicle air quality monitor, a fuel gauge, an oil temperature gauge, etc.). Sensor data from one or more of these sensors can be used to detect objects and their corresponding characteristics (position, shape, orientation, velocity, etc.). This detection and identification is a critical function for the safe operation of the autonomous intelligent vehicle 002 .
  • the positioning system 222 may be used to estimate the geographic location of the intelligent vehicle 002 .
  • the IMU 224 is used to sense position and orientation changes of the intelligent vehicle 002 based on inertial acceleration.
  • IMU 224 may be a combination of an accelerometer and a gyroscope.
  • the IMU 224 may be used to measure the curvature of the intelligent vehicle 002 .
  • Radar 226 may utilize radio signals to sense objects within the surrounding environment of intelligent vehicle 002 . In some embodiments, in addition to sensing objects, radar 226 may be used to sense the speed and/or heading of objects.
  • Laser rangefinder 228 may utilize laser light to sense objects in the environment in which intelligent vehicle 002 is located.
  • the laser rangefinder 228 may include one or more laser sources, laser scanners, and one or more detectors, among other system components.
  • Camera 230 may be used to capture multiple images of the surrounding environment of intelligent vehicle 002 .
  • Camera 230 may be a still camera or a video camera.
  • Control system 206 controls the operation of the intelligent vehicle 002 and its components.
  • Control system 206 may include various elements including steering system 232 , throttle 234 , braking unit 236 , sensor fusion algorithms 238 , computer vision system 240 , route control system 242 , and obstacle avoidance system 244 .
  • Steering system 232 is operable to adjust the heading of intelligent vehicle 002 .
  • it may be a steering wheel system.
  • the throttle 234 is used to control the operating speed of the engine 218 and thus the speed of the intelligent vehicle 002 .
  • the braking unit 236 is used to control the deceleration of the intelligent vehicle 002 .
  • the braking unit 236 may use friction to slow the wheels 221 .
  • the braking unit 236 may convert the kinetic energy of the wheels 221 into electrical current.
  • the braking unit 236 may also take other forms to slow the wheels 221 to control the speed of the smart vehicle 002 .
  • Computer vision system 240 may be operable to process and analyze images captured by camera 230 in order to identify objects and/or features in the environment surrounding intelligent vehicle 002 .
  • the objects and/or features may include traffic signals, road boundaries and obstacles.
  • Computer vision system 240 may use object recognition algorithms, Structure from Motion (SFM) algorithms, video tracking, and other computer vision techniques.
  • SFM Structure from Motion
  • computer vision system 240 may be used to map the environment, track objects, estimate the speed of objects, and the like.
  • the route control system 242 is used to determine the travel route of the intelligent vehicle 002 .
  • route control system 242 may combine data from sensors 238, GPS 222, and one or more predetermined maps to determine a driving route for intelligent vehicle 002.
  • the obstacle avoidance system 244 is used to identify, evaluate, and avoid or otherwise overcome potential obstacles in the environment of the intelligent vehicle 002 .
  • control system 206 may additionally or alternatively include components other than those shown and described. Alternatively, some of the components shown above may be reduced.
  • Peripherals 208 may include a wireless communication system 246, an onboard computer 248, a microphone 250 and/or a speaker 252.
  • peripherals 208 provide a means for a user of intelligent vehicle 002 to interact with user interface 216 .
  • the onboard computer 248 may provide information to the user of the smart vehicle 002 .
  • User interface 216 may also operate on-board computer 248 to receive user input.
  • the onboard computer 248 can be operated via a touch screen.
  • peripherals 208 may provide a means for intelligent vehicle 002 to communicate with other devices located within the vehicle.
  • microphone 250 may receive audio (eg, voice commands or other audio input) from a user of intelligent vehicle 002 .
  • speaker 252 may output audio to a user of intelligent vehicle 002 .
  • Wireless communication system 246 may wirelessly communicate with one or more devices, either directly or via a communication network.
  • wireless communication system 246 may use 3G cellular communications, such as CDMA, EVDO, GSM/GPRS, or 4G cellular communications, such as LTE. Or 5G cellular communications.
  • the wireless communication system 246 may communicate with a wireless local area network (WLAN) using WiFi.
  • WLAN wireless local area network
  • the wireless communication system 246 may communicate directly with the device using an infrared link, Bluetooth, or Zig Bee.
  • Other wireless protocols, such as various vehicle communication systems, for example, wireless communication system 246 may include one or more dedicated short range communications (DSRC) devices, which may include a combination of vehicle and/or roadside stations. public and/or private data communications between them.
  • DSRC dedicated short range communications
  • Power supply 210 may provide power to various components of intelligent vehicle 002 .
  • the power source 210 may be a rechargeable lithium-ion or lead-acid battery.
  • One or more battery packs of such batteries may be configured as a power source to provide power to various components of the intelligent vehicle 002 .
  • power source 210 and energy source 219 may be implemented together, such as in some all-electric vehicles.
  • Computer system 212 may include at least one processor 213 that executes instructions 215 stored in a non-transitory computer-readable medium such as memory 214 .
  • Computer system 212 may also be multiple computing devices that control individual components or subsystems of intelligent vehicle 002 in a distributed fashion.
  • the processor 213 may be any conventional processor, such as a commercially available CPU. Alternatively, the processor may be a dedicated device such as an ASIC or other hardware-based processor.
  • FIG. 6 functionally illustrates the processor, memory, and other elements of the computer 120 in the same block, one of ordinary skill in the art will understand that the processor, computer, or memory may actually include a processor, a computer, or a memory that may or may not Multiple processors, computers, or memories stored within the same physical enclosure.
  • the memory may be a hard drive or other storage medium located within an enclosure other than computer 120 .
  • reference to a processor or computer will be understood to include reference to a collection of processors or computers or memories that may or may not operate in parallel.
  • some components such as the steering and deceleration components may each have their own processor that only performs computations related to component-specific functions .
  • a processor may be located remotely from the vehicle and in wireless communication with the vehicle. In other aspects, some of the processes described herein are performed on a processor disposed within the vehicle while others are performed by a remote processor, including taking steps necessary to perform a single maneuver.
  • the processor 213 may receive a control instruction and a driving trajectory of the vehicle, and in response to the instruction, control the smart vehicle 002 to travel to the first parking space according to the driving trajectory.
  • data storage 214 may include instructions 215 (eg, program logic) executable by processor 213 to perform various functions of intelligent vehicle 002, including those described above.
  • Data storage 224 may also contain additional instructions, including sending data to, receiving data from, interacting with, and/or performing operations on one or more of propulsion system 202 , sensor system 204 , control system 206 , and peripherals 208 control commands.
  • the memory 214 may store data in embodiments of the present application, such as the vehicle's position, direction, speed, and other such vehicle data, as well as other information.
  • data may be used by intelligent vehicle 002 and computer system 212 during operation of intelligent vehicle 002 in autonomous, semi-autonomous, and/or manual modes.
  • the current speed and current curvature of the vehicle can be fine-tuned according to the road information of the target road segment and the received vehicle speed range and vehicle curvature range, so that the speed and curvature of the intelligent vehicle are within the vehicle speed range and the vehicle curvature range.
  • User interface 216 for providing information to or receiving information from a user of intelligent vehicle 002 .
  • user interface 216 may include one or more input/output devices within the set of peripheral devices 208 , such as wireless communication system 246 , onboard computer 248 , microphone 250 and speaker 252 .
  • Computer system 212 may control functions of intelligent vehicle 002 based on input received from various subsystems (eg, travel system 202 , sensor system 204 , and control system 206 ) and from user interface 216 .
  • computer system 212 may utilize input from control system 206 in order to control steering unit 232 to avoid obstacles detected by sensor system 204 and obstacle avoidance system 244 .
  • computer system 212 is operable to provide control over many aspects of intelligent vehicle 002 and its subsystems.
  • one or more of these components described above may be installed or associated with the intelligent vehicle 002 separately.
  • data storage device 214 may exist partially or completely separate from intelligent vehicle 002 .
  • the above-described components may be communicatively coupled together in a wired and/or wireless manner.
  • the above component is just an example.
  • components in each of the above modules may be added or deleted according to actual needs, and FIG. 6 should not be construed as a limitation on the embodiments of the present application.
  • a self-driving car traveling on a road can recognize objects within its surroundings to determine adjustments to its current speed.
  • the objects may be other vehicles, traffic control equipment, or other types of objects.
  • each identified object may be considered independently, and based on the object's respective characteristics, such as its current speed, acceleration, distance from the vehicle, etc., may be used to determine the speed at which the autonomous vehicle is to adjust.
  • the autonomous vehicle smart vehicle 002 or a computing device associated with the autonomous vehicle 002 may be based on the characteristics of the identified objects and the surrounding environment. state (eg, today in a parking lot or a dynamic object, etc.) to predict the behavior of the identified object.
  • each identified object is dependent on the behavior of the other, so it is also possible to predict the behavior of a single identified object by considering all identified objects together.
  • the intelligent vehicle 002 can adjust its speed based on the predicted behavior of the identified object.
  • the self-driving car can determine what steady state the vehicle will need to adjust to (eg, accelerate, decelerate, or stop) based on the predicted behavior of the object.
  • other factors may also be considered to determine the speed of the intelligent vehicle 002, such as the lateral position of the intelligent vehicle 002 in the road on which it is traveling, the curvature of the road, the proximity of static and dynamic objects, and the like.
  • the computing device may also provide instructions to modify the steering angle of the intelligent vehicle 002 so that the self-driving car follows a given trajectory and/or maintains contact with objects in the vicinity of the self-driving car ( For example, safe lateral and longitudinal distances for cars in adjacent lanes on the road.
  • the above-mentioned intelligent vehicles 002 can be cars, trucks, motorcycles, buses, boats, airplanes, helicopters, lawn mowers, recreational vehicles, playground vehicles, construction equipment, trams, golf carts, trains, and trolleys, etc.,
  • the embodiments of the present application are not particularly limited.
  • the smart vehicle function diagram in FIG. 6 is only an exemplary implementation in the embodiments of the present application, and the smart vehicles in the embodiments of the present application include but are not limited to the above structures.
  • FIG. 7 is a schematic structural diagram of a vehicle driving control device provided by an embodiment of the present application.
  • a vehicle driving control device When applied to the above-mentioned FIG. 6 , it is equivalent to the computer system 212 shown in FIG. 6 , and may include a processor 203 .
  • 203 is coupled to the system bus 205 .
  • Processor 203 may be one or more processors, each of which may include one or more processor cores.
  • Memory 235 may store relevant data information, and memory 235 is coupled to system bus 205 .
  • a video adapter 207 which can drive a display 209, is coupled to the system bus 205.
  • System bus 205 is coupled to input-output (I/O) bus 213 through bus bridge 201 .
  • I/O input-output
  • I/O interface 215 is coupled to the I/O bus.
  • the I/O interface 215 communicates with various I/O devices, such as an input device 217 (e.g., keyboard, mouse, touch screen, etc.), a media tray 221, (e.g., CD-ROM, multimedia interface, etc.).
  • Transceiver 223 which can send and/or receive radio communication signals
  • camera 255 which can capture sceneries and dynamic digital video images
  • external USB interface 225 e.g., USB interface, USB interface, etc.
  • the interface connected to the I/O interface 215 may be a USB interface.
  • the processor 203 may be any conventional processor, including a reduced instruction set computing ("RISC”) processor, a complex instruction set computing (“CISC”) processor, or a combination thereof.
  • the processor may be a special purpose device such as an application specific integrated circuit (“ASIC").
  • the processor 203 may be a neural network processor or a combination of a neural network processor and the above-mentioned conventional processors.
  • the processor 203 may calculate appropriate refined trajectory data (ie, target speed and target curvature) of the smart vehicle 002 according to the first driving information and in combination with the conditions around the vehicle.
  • computer system 212 may be located remotely from the autonomous vehicle and may be in wireless communication with the autonomous vehicle.
  • some of the processes described in the embodiments of the present application are performed on a processor disposed within the autonomous vehicle, and others are performed by a remote processor, including taking actions required to perform a single maneuver.
  • Network interface 229 is a hardware network interface, such as a network card.
  • the network 227 may be an external network, such as the Internet, or an internal network, such as an Ethernet network or a virtual private network (VPN).
  • the network 227 may also be a wireless network, such as a WiFi network, a cellular network, and the like.
  • the transceiver 223 (which can transmit and/or receive radio communication signals), can use various wireless communication methods such as not limited to 2nd generation mobile networks (2G), 3G, 4G, 5G, etc., and can also be DSRC technology, or long term evolution-vehicle technology (Long Term Evolution-Vehicle, LTE-V), etc., its main function is to receive information data sent by external devices, and send the information data back to external devices when the vehicle is driving on the target road section Perform storage analysis.
  • 2G 2nd generation mobile networks
  • 3G, 4G, 5G, etc. can also be DSRC technology, or long term evolution-vehicle technology (Long Term Evolution-Vehicle, LTE-V), etc.
  • LTE-V Long Term Evolution-Vehicle
  • the hard drive interface 231 is coupled to the system bus 205 .
  • the hardware driver interface 231 is connected to the hard disk drive 233 .
  • System memory 235 is coupled to system bus 205 . Data running in system memory 235 may include operating system OS 237 and application programs 243 of computer system 212 .
  • Memory 235 is coupled to system bus 205 .
  • the memory 235 may be used to store the travel information of the vehicles passing through the target road section in the memory according to a certain format.
  • the operating system includes the Shell 239 and the kernel 241.
  • Shell 239 is an interface between the user and the kernel of the operating system.
  • the shell is the outermost layer of the operating system. The shell manages the interaction between the user and the operating system: waiting for user input; interpreting user input to the operating system; and processing various operating system output.
  • Kernel 241 consists of those parts of the operating system that manage memory, files, peripherals, and system resources. Interacting directly with hardware, the operating system kernel usually runs processes and provides inter-process communication, providing CPU time slice management, interrupts, memory management, IO management, and more.
  • Applications 243 include programs that control the autonomous driving of the car, such as programs that manage the interaction of the autonomous car with obstacles on the road, programs that control the route or speed of the autonomous vehicle, and programs that control the interaction of the autonomous vehicle with other autonomous vehicles on the road. .
  • Application 243 also exists on the system of software deployment server 249 .
  • the computer system 212 may download the application program 243 from the software deployment server 249 when the autonomous driving related program 247 needs to be executed.
  • the application program 243 can convert the driving trajectories, maps and other information received or calculated by the processor into the control-by-wire commands for controlling the vehicle through the dynamic model of vehicle engineering, such as the bicycle model or the Ackerman model.
  • the speed information and curvature information are converted into the accelerator pedal opening, and the angular velocity information of the steering wheel controls the vehicle to travel according to the driving trajectory.
  • Sensor 253 is associated with computer system 212 .
  • Sensor 253 is used to detect the environment around computer system 212 .
  • the sensor 253 can detect animals, cars, obstacles and crosswalks, etc. Further sensors can also detect the environment around the above-mentioned animals, cars, obstacles and crosswalks, such as: the environment around animals, for example, animals appear around other animals, weather conditions, ambient light levels, etc.
  • the sensors may be cameras, infrared sensors, chemical detectors, microphones, and the like.
  • the structure of the vehicle driving control device in FIG. 7 is only an exemplary implementation in the embodiment of the present application, and the structure of the vehicle driving control device applied to the intelligent vehicle in the embodiment of the present application includes but is not limited to the above. structure.
  • the user arrives at a large shopping mall by driverless car, and needs to park the driverless vehicle in the parking lot of the shopping mall.
  • the parking lot has a total of one floor and only one entrance and exit.
  • the user can reserve a parking space in the parking lot before parking to confirm that there is still space for parking in the parking lot.
  • FIG. 8 is a schematic flowchart of a parking control method provided by an embodiment of the present application.
  • the method can be applied to the system architecture described in FIG. 1 above, and the parking control device 004 can be used to support and execute
  • the method flow shown in FIG. 8 is step S801-step S8013.
  • the interaction between the first terminal (equivalent to the terminal device 003 shown in FIG. 5A ) and the parking control device (equivalent to the service device 001 shown in FIG. 5A ) will be described below with reference to FIG. 8 .
  • the method may include the following steps S801-S8013.
  • Step S801 Receive a first parking request sent by a first terminal.
  • the parking control device receives a first parking request sent by a first terminal, where the first parking request includes the vehicle type information. It can be understood that, before the unmanned vehicle (equivalent to the first vehicle in the embodiment of the present application) is parked, it can be determined whether there is any remaining space in the parking lot (in the target area) according to the vehicle type information. parking. Therefore, the first terminal may send the first parking request to the parking control device.
  • Step S802 In response to the first parking request, when it is detected that the area of the parkingable area in the target area is larger than the parking area corresponding to the vehicle type information, a parking permission instruction is sent to the first terminal.
  • the parking control device detects that the area of the parking area in the target area is larger than the parking area corresponding to the vehicle type information, that is, the remaining parking space in the target area
  • a parking permission instruction is sent to the first terminal, where the parking permission instruction includes area information of the target area, and the area information includes at least one of the following information: the location of the target area information, at least one entry information of the target area, and at least one exit information of the target area.
  • the parking control device receives the first parking request sent by the first terminal, it can determine whether there is still space left in the target area for parking the first vehicle according to the vehicle type information of the first vehicle.
  • the parking control device may respond to the first parking request and send a parking permission instruction to the first terminal.
  • the area information can help the first terminal to locate the position of the target area, and select an entrance and exit that is convenient for the first vehicle to enter and exit, which is beneficial to improve the parking experience.
  • the parking control device detects that the area of the parkingable area in the target area is smaller than the parking area corresponding to the vehicle type information, and sends a parking prohibition instruction to the first terminal. For example, if the parking control device determines that the first vehicle cannot park in the target area, the parking control device may respond to the first parking request and send a parking prohibition instruction to the first terminal, indicating that the parking space in the target area is full or the remaining area is insufficient to allow the first vehicle to stop.
  • the target area includes a parkingable area and a non-parking area, the target area does not include a lane, and the non-parking area includes an obstacle area and a vehicle driving area, and the vehicle driving area is used for vehicle driving.
  • the parking area of the target area there are only parking spaces for parking, and there are no lanes for vehicles.
  • the non-stop area includes, in addition to the obstacle area, a vehicle travel area for vehicles to travel, and there is no lane in the non-stop area. Therefore, in the embodiment of the present application, the parking spaces can be tiled, the lanes can be eliminated, the space in the parking lot can be utilized as much as possible, the occupied resources of the lanes can be saved, and more vehicles can be parked in a certain parking area. Greatly improved space utilization.
  • different non-parking areas can be set in the target area to support dynamic addition or deletion, so as to realize dynamic setting of some non-parking areas in the parking lot. And there is no need to pre-allocate parking spaces on the site.
  • the system When a vehicle reserves a parking space, the system will demarcate a virtual parking space according to its model, reserved parking time, and other factors; when the vehicle arrives and the occupants get off, the system will take over the driverless vehicle. Guide it to the designated virtual parking space; when the driverless vehicle is about to arrive at the departure time, the system will dispatch the driverless vehicles in the virtual parking spaces around it to the position closest to the entrance and exit; finally, when the occupant arrives , the driverless vehicle drove out in time.
  • the method further includes: acquiring area information of the target area.
  • the parking control device can obtain the surrounding information of the target area with the help of a camera device (such as a panoramic camera) erected around the target area, and generate a two-dimensional parking lot plan corresponding to the target area to determine the area information of the target area.
  • a camera device such as a panoramic camera
  • FIG. 9 is a two-dimensional plan view of a parking lot provided by an embodiment of the present application.
  • 101 is the range in which virtual parking spaces can be demarcated in the parking lot; 102 is the virtual parking space that has been parked, and 2h is the scheduled parking time set by the occupants; 103 is the non-parking range, which may be 104 is a virtual parking space that has been reserved but has not been parked; 105 is that the virtual parking space has been parked, and 3h is the reserved parking time set by the occupant. Therefore, according to the two-dimensional parking lot plan, the area information of the target area can be determined.
  • Step S803 Receive parking information sent by the first terminal.
  • the parking control device may receive the parking information sent by the first terminal.
  • the parking information may include: one or more of the current location of the first vehicle, vehicle identification, terminal identification, vehicle model information, parking duration, parking start time, parking end time, entrance identification, and exit identification.
  • the current position of the first vehicle can be used to plan the parking path of the vehicle; the vehicle identification can be used to identify the first vehicle; the terminal identification can be used to identify the first terminal; the vehicle type information can be used to determine the size of the parking space; The length of parking in the target area can be used to determine the location of the parking space; the parking start time and parking end time can be used to determine the parking duration for planning the parking space; the entrance sign is used to identify the entrance of the vehicle into the parking lot; the exit sign is used to identify Exit for vehicles leaving the car park.
  • step S801 and step S803 may be performed together, that is, the parking information may be included in the first parking request sent by the first terminal.
  • the parking information can be sent to the parking control device together with the parking request.
  • Step S804 Plan a first parking space in the target area according to the preset parking strategy and the parking information corresponding to the first vehicle.
  • the parking control device may plan the first parking space in the target area according to a preset parking strategy and parking information corresponding to the first vehicle, and obtain the parking space information of the first parking space, the parking space information The second location is included, and the parking information includes the first location.
  • the first position may be the current position of the first vehicle.
  • the first parking space is a virtual parking space, and the parking space tailored according to the parking information of the vehicle is not a pre-divided parking space.
  • the preset parking strategy can be understood as a parking space planning strategy.
  • the preset parking strategy may include: 1) the shorter the predetermined parking time, the closer it is to the entrance and exit; 2) the size of the vehicle type preferentially matches the irregular area in the parking lot; 3) the virtual parking spaces are tiled without setting the entry and exit lanes; 4 ) The position of the parking space can minimize the movement of the original vehicle in the target area when planning the driving trajectory.
  • the smaller the label the higher the priority.
  • the first position may also be the position of the entrance where the first vehicle enters the target area.
  • the parking information includes: a first duration of the first vehicle, where the first duration is an expected parking duration of the first vehicle in the target area; It is assumed that the parking strategy includes: the longer the first time period is, the farther the distance between the second position and the exit of the target area is.
  • the unmanned vehicle with longer parking time is farther from the exit in the target area, and similarly, the unmanned vehicle with shorter parking time is closer to the exit in the target area, which can facilitate parking Vehicles with a short time, quickly drive out of the parking lot.
  • the parking information includes: vehicle type information of the first vehicle; the preset parking strategy includes: the larger the vehicle type of the first vehicle, the greater the number of vehicles in the target area.
  • the area corresponding to the first parking space is larger.
  • unmanned vehicles of different models are divided into different sizes of parking spaces. Therefore, it can adapt to changes in the size of various vehicles, and the size of the parking spaces is not fixed, so as to allocate the parking spaces with the minimum area corresponding to the models. Effectively improve the parking utilization of limited space.
  • the parking control apparatus may receive a parking cancellation request sent by the first terminal, where the parking cancellation request includes a vehicle identification.
  • the parking control device cancels the parking space of the vehicle corresponding to the vehicle identification in response to the parking cancellation request.
  • FIG. 10 is a schematic flowchart of reserving/cancelling a virtual parking space in a parking lot when an unmanned vehicle does not arrive at a parking lot provided by an embodiment of the present application. As shown in Figure 10:
  • the parking control device forms a two-dimensional parking lot plan according to the surrounding panoramic cameras.
  • the parking control device can set the non-parking location area (such as: entrance/exit/ground damage area, vehicle adjustment area, etc.) and/or duration (after the timeout, the non-parking area will be automatically cancelled. It can also be set to Permanent).
  • the non-parking location area such as: entrance/exit/ground damage area, vehicle adjustment area, etc.
  • duration after the timeout, the non-parking area will be automatically cancelled. It can also be set to Permanent).
  • the parking control device waits for a parking request from the driverless vehicle. If the received request is a parking reservation, go to 307 . If the received request is to cancel the parking reservation, go to 304 .
  • the parking control device processes the request for canceling the parking reservation.
  • the parking control device determines whether the unmanned vehicle has reserved a virtual parking space. If not, return 303 and continue to wait for the request. If so, go to 306.
  • the parking control device cancels the virtual parking space reserved by the unmanned vehicle, and returns to 303, and continues to wait for the request.
  • the parking control device processes the parking reservation request.
  • the parking control device plans virtual parking spaces according to the virtual parking space planning priority principle (equivalent to the preset parking strategy in the implementation of the present application).
  • the parking control device determines whether there is a free virtual parking space. If not, return 303 and continue to wait for the request. If so, go to 310.
  • the parking control device returns the floor plan of the parking lot with reserved virtual parking spaces to the unmanned vehicle/terminal. Return to 303 and continue to wait for the request.
  • the area of the non-parking area can be freely set for the area that cannot be used temporarily (the ground is damaged, etc.), or the area that cannot be used for a long time (obstacles, entrances and exits, etc.). It can effectively increase the availability of the system.
  • the virtual parking space in the target area is demarcated according to the vehicle type reported by the unmanned vehicle (equal to or slightly larger than the vehicle type), and when demarcating, the lane line is cancelled and the vehicle is tiled, which can maximize the space of the site. utilization.
  • Step S805 planning the travel trajectory of the first vehicle in the target area according to the first position of the first vehicle and the second position of the first parking space.
  • the parking control device plans the travel trajectory of the first vehicle in the target area according to the first position of the first vehicle and the second position of the first parking space, where the first position is the first vehicle The current position of , and the second position is the position of the planned parking space.
  • a strategy of minimizing the movement of the original vehicle in the target area may be followed.
  • FIG. 11A is a schematic diagram of a parking lot for planning a driving trajectory according to an embodiment of the present application. As shown in FIG. 11A , the parking space in the target area meets the parking requirement of the first vehicle, and both the track 1 and the track 2 meet the driving requirement of the first vehicle.
  • the driving trajectory corresponding to the first vehicle is the trajectory 1.
  • Step S806 Detect whether there is a second vehicle in the target area whose distance from the travel track is smaller than the first preset distance.
  • the parking control device may detect whether there is a second vehicle in the target area whose distance from the traveling track is smaller than the first preset distance. The parking control device determines whether there is a vehicle that needs to adjust the position of the original vehicle in the target area, so that the first vehicle can park smoothly.
  • Step S807 If there is, control the second vehicle to travel from the current position to the third position.
  • FIG. 11B is a schematic flowchart of an unmanned vehicle arriving at a parking lot for parking according to an embodiment of the present application. As shown in Figure 11B:
  • the parking control may take over the driverless vehicle. In the parking lot, the parking control will have the power to schedule the movement of the vehicle.
  • the parking control device dispatches the unmanned vehicle in the original virtual parking space to vacate the space for the vehicle to run.
  • the parking control device plans a path and guides the vehicle to reach the designated position; and adjusts the body posture to accurately park in the virtual parking space.
  • the parking control device guides the surrounding vehicles back to their new virtual parking spaces.
  • the first vehicle is controlled to drive into the first parking space according to the travel trajectory.
  • the parking control device detects that there is no second vehicle in the target area with a distance from the travel track less than the first preset distance, the parking control device can directly control the first vehicle to drive into the first parking space according to the travel track.
  • Step S808 Control the first vehicle to drive into the first parking space according to the driving track.
  • FIG. 11C is a schematic diagram of a first vehicle parking provided by an embodiment of the present application.
  • the target area includes a parkingable area and a non-parking area, wherein the first parking space is the parking space planned by the parking control device, and the driving trajectory is the vehicle driving trajectory between the first position and the second position.
  • the current position of the second vehicle occupies the trajectory when the first vehicle enters the first parking space. Therefore, in order for the first vehicle to enter the first parking space smoothly, the second vehicle is first adjusted to the third position, and then the first vehicle is controlled.
  • the driving path into the first parking space is controlled.
  • the parking control device may send a control command to the first vehicle, so that the first vehicle responds to the control command and drives into the first parking space according to the driving track.
  • the control instruction may include one or more of travel trajectory, speed information, and curvature information.
  • the parking information includes the first duration
  • the method further includes: after detecting that the first vehicle has passed a second duration in the target area, controlling the first The vehicle travels to a second parking space closer to the exit, and the second duration is shorter than the first duration.
  • the second parking space is closer to the exit than the first parking space, which is more convenient for the user to pick up the car.
  • the first vehicle is controlled to drive to a second parking space that is closer to the exit, there may not be a first parking space, but other positions in the target area. This is because the parking space of the first vehicle is not fixed, and the parking space can change dynamically according to the parking time.
  • the position of the first vehicle may be adjusted.
  • the unmanned vehicle in the parking space in the target area is about to reach the exit time, it will adjust the position of the parking space according to the predetermined parking time, and arrange its parking spaces according to the predetermined parking time to the first parking lot closer to the exit.
  • the second parking space is convenient for driverless vehicles to drive out quickly. Therefore, the embodiment of the present application can dynamically adjust the position of the unmanned vehicle during the parking period of the unmanned vehicle. As the time approaches the exit time, the position is closer to the exit, which is convenient for the vehicle to drive out quickly.
  • FIG. 12 is a schematic diagram of an adjustment process for an unmanned vehicle approaching a predetermined parking time provided by an embodiment of the present application. As shown in Figure 12:
  • the parking control device and the occupant's handheld terminal can determine whether to drive out, if no, that is, there is no response or the occupant has not arrived at the exit time, then go to 506 . If so, go to 503.
  • the parking control device redefines the virtual parking space according to the virtual parking space planning priority principle.
  • the parking control device schedules and adjusts the unmanned vehicle on the virtual parking space to park in a new virtual parking space.
  • Adjust the scheduled parking time of the vehicle for example, add 10 minutes.
  • the system will arrange the vehicles closest to the exit time in the virtual parking space closest to the entrance and exit according to the parking priority.
  • the vehicle can be driven out the fastest.
  • Step S809 Receive the second parking request sent by the first terminal.
  • the parking control device receives a second parking request sent by the first terminal, and the second parking request may be sent multiple times to extend the parking time of the first vehicle.
  • Step S8010 In response to the second parking request, according to the second parking duration and the preset parking strategy, plan a third parking space in the target area, and obtain parking space information of the third parking space.
  • the parking control device plans the third parking space in the target area according to the second parking duration and the preset parking strategy, and obtains parking space information of the third parking space.
  • a second parking request sent by the first terminal can be received to extend the parking time.
  • Step S8011 Control the first vehicle to drive to the third parking space.
  • FIG. 13 is a schematic flowchart of an unmanned vehicle modifying a predetermined parking time according to an embodiment of the present application. As shown in Figure 13:
  • the occupant checks the information related to the virtual parking space of the vehicle (such as coordinates, the location of the virtual parking space on the floor plan of the parking lot, the scheduled parking time, etc.).
  • the parking control device receives an occupant delayed parking time request.
  • the parking control device updates the estimated parking time of the driverless vehicle.
  • Step S8012 Receive a vehicle pickup request sent by the first terminal.
  • the parking control device receives a vehicle pickup request sent by the first terminal, where the vehicle pickup request includes a first exit identifier, and the first exit identifier is used to identify a first exit, and the first exit is the first exit.
  • the vehicle exits the exit of the target area.
  • the user wants to pick up the car, he can send a pick-up request to the parking lot, so that the unmanned vehicle can drive to the parking space near the exit in advance and wait for the user to pick up the car, which greatly shortens the time for the user to find a car and solves the rare problem of the user looking for a car. .
  • Step S8013 In response to the vehicle pickup request, control the first vehicle to drive to the exit parking space.
  • the parking control device controls the first vehicle to drive to an exit parking space in response to the vehicle pickup request, and the distance between the exit parking space and the first exit is within a second preset distance.
  • the exit parking space may be a parking space in a pre-planned area, which can facilitate the user to pick up the car.
  • the virtual parking spaces delineated are in a tiled relationship, and the lane lines between them are canceled.
  • Different non-parking areas can be set on the floor plan of the parking lot, and dynamic addition or deletion is supported to realize the dynamic setting of some non-parking areas in the parking lot.
  • the system will demarcate a virtual parking space according to its model, reserved parking time, and other factors; when the vehicle arrives and the occupants get off, the system will take over the driverless vehicle.
  • the system will dispatch the driverless vehicles in the virtual parking spaces around it to the position closest to the entrance and exit; finally, when the occupant arrives , the driverless vehicle drove out in time. Therefore, when parking, controlling the movement of other vehicles can fully integrate parking resources, so that when parking, there will be no unmanned vehicles that are too large to pass through the narrow space between the vehicles, and thus cannot be parked in the parking space. or because the vehicles on both sides of the parking space are too large, the unmanned vehicle cannot park in the target parking space. It greatly improves the success rate of unmanned vehicles parked in the parking space and solves the problem of difficult parking.
  • the parking space after the parking space is demarcated in the present application, it will also dynamically change many times according to surrounding information (such as: parking space adjustment of other vehicles, scheduled parking time), which improves the flexibility of parking space utilization in the parking lot.
  • surrounding information such as: parking space adjustment of other vehicles, scheduled parking time
  • Real-time dynamic scheduling of unmanned vehicles is realized, and the utilization rate of parking lots is improved.
  • FIG. 14 is a schematic structural diagram of a parking control device provided by an embodiment of the present application.
  • the parking control device 10 is applied to an unmanned vehicle system, and may include a trajectory unit 901 , a detection unit 902 , and a first control unit 903 and the second control unit 904, may also include a parking space unit 905, a third control unit 906, a first receiving unit 907, a first responding unit 908, a second receiving unit 909, a third receiving unit 910, and a second responding unit 911 , the fourth receiving unit 912, the third responding unit 913 and the fourth controlling unit 914, wherein the detailed description of each unit is as follows.
  • a trajectory unit 901 configured to plan a driving trajectory of the first vehicle in the target area according to a first position of the first vehicle and a second position of the first parking space, where the first position is the first vehicle 's current location;
  • a detection unit 902 configured to detect whether there is a second vehicle in the target area whose distance from the travel track is less than a first preset distance
  • a first control unit 903 configured to, if present, control the second vehicle to travel from a current position to a third position, where the distance between the third position and the travel track is greater than the first preset distance;
  • the second control unit 904 is configured to control the first vehicle to drive into the first parking space according to the travel trajectory.
  • the target area includes a parking area and a non-parking area
  • the target area does not include a lane
  • the non-parking area includes an obstacle area and a vehicle driving area
  • the vehicle driving area is driving on the vehicle.
  • the first control unit 903 is further configured to: if it does not exist, control the first vehicle to drive into the first parking space according to the travel trajectory.
  • the apparatus further includes: a parking space unit 905, configured to plan the first parking space in the target area according to a preset parking strategy and parking information corresponding to the first vehicle, Obtaining parking space information of the first parking space, where the parking space information includes the second position, and the parking information includes the first position.
  • a parking space unit 905 configured to plan the first parking space in the target area according to a preset parking strategy and parking information corresponding to the first vehicle, Obtaining parking space information of the first parking space, where the parking space information includes the second position, and the parking information includes the first position.
  • the parking information includes: a first duration of the first vehicle, where the first duration is an expected parking duration of the first vehicle in the target area; It is assumed that the parking strategy includes: the longer the first time period is, the farther the distance between the second position and the exit of the target area is.
  • the parking information includes the first duration
  • the apparatus further includes: a third control unit 906, configured to detect that the first vehicle passes a second time in the target area After the duration, the first vehicle is controlled to drive to a second parking space closer to the exit, and the second duration is shorter than the first duration.
  • the parking information includes: vehicle type information of the first vehicle; the preset parking strategy includes: the larger the vehicle type of the first vehicle, the greater the number of vehicles in the target area. The area corresponding to the first parking space is larger.
  • the apparatus further includes: a first receiving unit 907, configured to receive a first parking request sent by a first terminal, where the first parking request includes the vehicle model information; a first response unit 908: In response to the first parking request, when it is detected that the area of the parkingable area in the target area is larger than the parking area corresponding to the vehicle type information, send a parking permission instruction to the first terminal, where the parking permission instruction includes: The area information of the target area, the area information includes at least one of the following information: location information of the target area, entry information of at least one of the target areas, information of at least one exit of the target area; A unit 909 is configured to receive the parking information sent by the first terminal before planning the first parking space in the target area according to a preset parking strategy and parking information corresponding to the first vehicle.
  • the apparatus further includes: a third receiving unit 910, configured to receive a vehicle pickup request sent by the first terminal, where the vehicle pickup request includes a first exit identifier, the first exit identifier used to identify a first exit, where the first exit is the exit of the first vehicle leaving the target area; a second response unit 911, used to control the driving of the first vehicle in response to the vehicle pickup request To the exit parking space, the distance between the exit parking space and the first exit is within a second preset distance.
  • a third receiving unit 910 configured to receive a vehicle pickup request sent by the first terminal, where the vehicle pickup request includes a first exit identifier, the first exit identifier used to identify a first exit, where the first exit is the exit of the first vehicle leaving the target area
  • a second response unit 911 used to control the driving of the first vehicle in response to the vehicle pickup request To the exit parking space, the distance between the exit parking space and the first exit is within a second preset distance.
  • the apparatus further includes: a fourth receiving unit 912, configured to receive a second parking request sent by the first terminal, where the second parking request includes a second parking duration; a third responding unit 913: In response to the second parking request, according to the second parking duration and the preset parking strategy, plan the third parking space in the target area, and obtain the parking space information of the third parking space;
  • the fourth control unit 914 is configured to control the first vehicle to travel to the third parking space.
  • FIG. 15 is a schematic structural diagram of another parking control apparatus provided by an embodiment of the present application.
  • the parking control apparatus 100 includes at least one processor 1001 , at least one memory 1002 , and at least one communication interface 1003 .
  • the device may also include general components such as an antenna, which will not be described in detail here.
  • the processor 1001 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits used to control the execution of the above programs.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication interface 1003 is used to communicate with other devices or communication networks, such as Ethernet, Radio Access Network (RAN), Core Network, Wireless Local Area Networks (Wireless Local Area Networks, WLAN) and the like.
  • RAN Radio Access Network
  • Core Network Core Network
  • Wireless Local Area Networks Wireless Local Area Networks, WLAN
  • Memory 1002 may be read-only memory (ROM) or other type of static storage device that can store static information and instructions, random access memory (RAM), or other type of static storage device that can store information and instructions It can also be an electrically erasable programmable read-only memory (Electrically Erasable Programmable Read-Only Memory, EEPROM), a compact disc read-only memory (CD-ROM) or other optical disk storage, optical disk storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of being executed by a computer Access any other medium without limitation.
  • the memory can exist independently and be connected to the processor through a bus.
  • the memory can also be integrated with the processor.
  • the memory 1002 is used for storing the application code for executing the above solution, and the execution is controlled by the processor 1001 .
  • the processor 1001 is configured to execute the application code stored in the memory 1002 .
  • the code stored in the memory 1002 can execute the parking control method provided in FIG. 8 above, for example, according to the first position of the first vehicle and the second position of the first parking space, plan the driving trajectory of the first vehicle in the target area,
  • the first position is the current position of the first vehicle; detect whether there is a second vehicle in the target area whose distance from the driving track is less than the first preset distance; if there is, control the second vehicle
  • the vehicle travels from the current position to a third position, and the distance between the third position and the travel trajectory is greater than the first preset distance; the first vehicle is controlled to drive into the first vehicle according to the travel trajectory parking space.
  • the disclosed apparatus may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative, for example, the division of the above-mentioned units is only a logical function division, and other division methods may be used in actual implementation, for example, multiple units or components may be combined or integrated. to another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical or other forms.
  • the above-mentioned units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated units are implemented in the form of software functional units and sold or used as independent products, they may be stored in a computer-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , including several instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc., specifically a processor in the computer device) to execute all or part of the steps of the above methods in various embodiments of the present application.
  • a computer device which may be a personal computer, a server, or a network device, etc., specifically a processor in the computer device
  • the aforementioned storage medium may include: U disk, mobile hard disk, magnetic disk, optical disk, Read-Only Memory (Read-Only Memory, abbreviation: ROM) or Random Access Memory (Random Access Memory, abbreviation: RAM), etc.
  • a medium that can store program code may include: U disk, mobile hard disk, magnetic disk, optical disk, Read-Only Memory (Read-Only Memory, abbreviation: ROM) or Random Access Memory (Random Access Memory, abbreviation: RAM), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Traffic Control Systems (AREA)

Abstract

本申请实施例提供了一种停车控制方法及相关设备,应用于无人驾驶车辆系统,其中,一种停车控制方法,包括:根据第一车辆的第一位置和第一车位的第二位置,在目标区域内规划第一车辆的行驶轨迹,第一位置为第一车辆的当前位置;检测所述目标区域内是否存在与行驶轨迹之间距离小于第一预设距离的第二车辆;若存在,控制第二车辆由当前位置行驶至第三位置,第三位置与行驶轨迹之间的距离大于第一预设距离;控制第一车辆按照行驶轨迹驶入第一车位。实施本申请实施例可以大大缓解停车难的问题。

Description

一种停车控制方法及相关设备
本申请要求于2020年9月19日提交中国专利局、申请号为202010990863.3、申请名称为“一种停车控制方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无人驾驶车辆领域,尤其涉及一种停车控制方法及相关设备。
背景技术
随着物联网技术和人工智能技术的发展,汽车行业也在发生着显著变化,无人驾驶汽车正逐步实现商用化,紧接着由于无人驾驶汽车的需要,智能停车场也慢慢出现。一般情况下,智能停车场可以对辖区内无人驾驶汽车进行统一调度管理,且结合虚拟车位技术,可以有效解决未来无人驾驶汽车“停车难、停车乱”问题。但是当前划定的虚拟车位一般都是固定的,不能根据车型大小,场地,驶出时间等动态变化,对于停车场的场地利用率未见明显提升。
因此,如何实现无人驾驶车辆的实时动态调度,提升停车场的利用率,是亟待解决的问题。
发明内容
本申请实施例提供一种停车控制方法及相关设备,以有效缓解无人驾驶汽车“停车难、停车乱”的问题。
第一方面,本申请实施例提供了一种停车控制方法,应用于无人驾驶车辆系统,所述方法包括:
根据第一车辆的第一位置和第一车位的第二位置,在所述目标区域内规划所述第一车辆的行驶轨迹,所述第一位置为所述第一车辆的当前位置;
检测所述目标区域内是否存在与所述行驶轨迹之间距离小于第一预设距离的第二车辆;
若存在,控制所述第二车辆由当前位置行驶至第三位置,所述第三位置与所述行驶轨迹之间的距离大于所述第一预设距离;
控制所述第一车辆按照所述行驶轨迹驶入所述第一车位。
实施本申请实施例,首先规划无人驾驶车辆从当前位置到第一车位的行驶轨迹,无人驾驶车辆在按照该轨迹行驶进行停车时,若检测到停车场内(目标区域内)存在有影响到无人驾驶车辆行驶的车辆(第二车辆)时,如:与行驶轨迹距离过近的车辆,可以先控制该车辆行驶至不影响第一车辆行驶的地点处,再控制第一车辆停进第一车位。因此,这种在停车时,控制其他车辆移动,可以充分的整合停车资源,使得在停车时,不会存在因无人驾驶车辆的车型过大无法通过车辆间的狭小空间,进而无法停入车位中;或者由于车位两边的车型过大,出现无人驾驶车辆无法停车在目标车位上的情况。大大提升了无人驾驶车辆停进车位的成功率,解决停车难的问题。同时,在本申请的车位划定后,也会根据周边信息(比如:其他车辆的车位调整,预定停车时间)多次动态变化,提升了停车场内车位利用的灵活性。实现了 无人驾驶车辆的实时动态调度,提升停车场的利用率。
在一种可能实现的方式中,所述目标区域包括可停车区域和不可停车区域且所述目标区域不包括车道,所述不可停车区域包括障碍物区域和车辆行驶区域,所述车辆行驶区域用于车辆行驶。在本申请实施例中,目标区域的可停车区域内只有用于停车的车位,没有用于车辆行驶的车道。不可停产区域内除了障碍物区域外,还包括用于车辆行驶的车辆行驶区域,而且该不可停车区域内也没有车道。因此,本申请实施例可以将车位平铺,取消车道,尽可能的利用了停车场内的空间,节省了车道的占地资源,使得在一定的停车区域中,让更多的车辆可以停车,极大地提升了空间利用率。
在一种可能实现的方式中,所述检测所述目标区域内是否存在与所述行驶轨迹之间距离小于第一预设距离的第二车辆之后,还包括:若不存在,控制所述第一车辆按照所述行驶轨迹驶入所述第一车位。在本申请实施例中,若检测到不存在影响第一车辆行驶的车辆,则不需要特征其他车辆,就可以直接控制第一车辆按照行驶轨迹驶入第一车位。
在一种可能实现的方式中,所述方法还包括:根据预设停车策略和所述第一车辆对应的停车信息,在所述目标区域内规划所述第一车位,获得所述第一车位的车位信息,所述车位信息包括所述第二位置,所述停车信息包括所述第一位置。在本申请实施例中,无人驾驶车辆的车位并不是预先划定的,而是根据预设停车策略和车型信息动态变化的,可以摆脱现有车位的固定大小和方位,提高停车场内的利用率,也可以尽量的满足不同无人驾驶车辆的不同停车需求。
在一种可能实现的方式中,所述停车信息包括:所述第一车辆的第一时长,所述第一时长为所述第一车辆预计在所述目标区域内的停车时长;所述预设停车策略包括:所述第一时长越长,所述第二位置与所述目标区域的出口之间的距离越远。在本申请实施例中,停车时间越长的无人驾驶车辆离目标区域内的出口越远,同理,停车时间越短的无人驾驶车辆离目标区域内的出口越近,进而可以方便停车时间短的车辆,快速驶出停车场。
在一种可能实现的方式中,所述停车信息包括所述第一时长,所述方法还包括:检测到所述第一车辆在所述目标区域内经过第二时长后,控制所述第一车辆行驶至距出口更近的第二车位处,所述第二时长小于所述第一时长。在本申请实施例中,第一车辆的车位不是固定不变的,该车位可以根据停车时间动态变化,例如:目标区域内的车位上的无人驾驶车辆随着即将到达驶出时间时,会根据预定停车时间,调整车位位置,将其车位按预定停车时间排布,至距出口更近的第二车位处,方便无人驾驶车辆快速驶出。因此,本申请实施例可以在无人驾驶车辆停车期间,动态的调整车辆的位置,随着时间越临近驶出时间,其位置离出口越近,方便车辆可以快速驶出。
在一种可能实现的方式中,所述停车信息包括:所述第一车辆的车型信息;所述预设停车策略包括:所述第一车辆的车型越大,在所述目标区域内的所述第一车位对应的区域越大。在本申请实施例中,不同车型的无人驾驶车辆被划分的车位大小不同,因此,可以适应各种车辆大小的变化,不固定车位的大小,以分配车型所对应的最小面积的车位,可以有效的提高有限空间的停车利用率。
在一种可能实现的方式中,所述方法还包括:接收第一终端发送的第一停车请求,所述第一停车请求包括所述车型信息;响应于第一停车请求,监测到所述目标区域内可停车区域面积大于所述车型信息对应的停车面积时,向所述第一终端发送允许停车指示,所述允许停车指示包括所述目标区域的区域信息,所述区域信息包括以下信息中的至少一个:所述目标区域的位置信息,所述目标区域至少一个的入口信息,所述目标区域至少一个出口信息;所 述根据预设停车策略和所述第一车辆对应的停车信息,在所述目标区域内规划所述第一车位之前,还包括:接收所述第一终端发送的所述停车信息。在本申请实施例中,停车控制装置可以接收来自第一终端的停车请求,确定停车场内可停车区域面积大于所述车型信息对应的停车面积时,即,还可以停下第一车辆时,响应该请求,并将停车场的信息返回第一终端。通过终端预约停车场的车位,方便快捷,提升了用户体验。
在一种可能实现的方式中,所述方法还包括:接收第一终端发送的提车请求,所述提车请求包括第一出口标识,所述第一出口标识用于识别第一出口,所述第一出口为所述第一车辆驶出所述目标区域的出口;响应于所述提车请求,控制所述第一车辆行驶至出口车位处,所述出口车位与所述第一出口之间的距离在第二预设距离之内。在本申请实施例中,当用户想提车时,可以向停车场发送提车请求,使得无人驾驶车辆可以提前行驶至出口附近的车位处等待用户提车,大大缩短了用户找车时间,解决了用户找车难得问题。
在一种可能实现的方式中,所述方法还包括:接收第一终端发送的第二停车请求,所述第二停车请求包括第二停车时长;响应于所述第二停车请求,根据所述第二停车时长和预设停车策略,在所述目标区域内规划所述第三车位,获得所述第三车位的车位信息;控制所述第一车辆行驶至所述第三车位处。在本申请实施例中,无人驾驶车辆在停车场内即将到达驶出时间时,或者,用户想要修改该车辆的停车时间时,可以接收第一终端发送的第二停车请求,以延长停车时间,提升用户停车体验。
第二方面,本申请实施例提供了一种停车控制装置,应用于无人驾驶车辆系统,所述装置包括:
轨迹单元,用于根据第一车辆的第一位置和第一车位的第二位置,在所述目标区域内规划所述第一车辆的行驶轨迹,所述第一位置为所述第一车辆的当前位置;
检测单元,用于检测所述目标区域内是否存在与所述行驶轨迹之间距离小于第一预设距离的第二车辆;
第一控制单元,用于若存在,控制所述第二车辆由当前位置行驶至第三位置,所述第三位置与所述行驶轨迹之间的距离大于所述第一预设距离;
第二控制单元,用于控制所述第一车辆按照所述行驶轨迹驶入所述第一车位。
在一种可能实现的方式中,所述目标区域包括可停车区域和不可停车区域且所述目标区域不包括车道,所述不可停车区域包括障碍物区域和车辆行驶区域,所述车辆行驶区域用于车辆行驶。
在一种可能实现的方式中,所述第一控制单元,还用于:若不存在,控制所述第一车辆按照所述行驶轨迹驶入所述第一车位。
在一种可能实现的方式中,所述装置还包括:车位单元,用于根据预设停车策略和所述第一车辆对应的停车信息,在所述目标区域内规划所述第一车位,获得所述第一车位的车位信息,所述车位信息包括所述第二位置,所述停车信息包括所述第一位置。
在一种可能实现的方式中,所述停车信息包括:所述第一车辆的第一时长,所述第一时长为所述第一车辆预计在所述目标区域内的停车时长;所述预设停车策略包括:所述第一时长越长,所述第二位置与所述目标区域的出口之间的距离越远。
在一种可能实现的方式中,所述停车信息包括所述第一时长,所述装置还包括:第三控制单元,用于检测到所述第一车辆在所述目标区域内经过第二时长后,控制所述第一车辆行驶至距出口更近的第二车位处,所述第二时长小于所述第一时长。
在一种可能实现的方式中,所述停车信息包括:所述第一车辆的车型信息;所述预设停车策略包括:所述第一车辆的车型越大,在所述目标区域内的所述第一车位对应的区域越大。
在一种可能实现的方式中,所述装置还包括:第一接收单元,用于接收第一终端发送的第一停车请求,所述第一停车请求包括所述车型信息;第一响应单元,用于响应于第一停车请求,监测到所述目标区域内可停车区域面积大于所述车型信息对应的停车面积时,向所述第一终端发送允许停车指示,所述允许停车指示包括所述目标区域的区域信息,所述区域信息包括以下信息中的至少一个:所述目标区域的位置信息,所述目标区域至少一个的入口信息,所述目标区域至少一个出口信息;第二接收单元,用于在根据预设停车策略和所述第一车辆对应的停车信息,在所述目标区域内规划所述第一车位之前,接收所述第一终端发送的所述停车信息。
在一种可能实现的方式中,所述装置还包括:第三接收单元,用于接收第一终端发送的提车请求,所述提车请求包括第一出口标识,所述第一出口标识用于识别第一出口,所述第一出口为所述第一车辆驶出所述目标区域的出口;第二响应单元,用于响应于所述提车请求,控制所述第一车辆行驶至出口车位处,所述出口车位与所述第一出口之间的距离在第二预设距离之内。
在一种可能实现的方式中,所述装置还包括:第四接收单元,用于接收第一终端发送的第二停车请求,所述第二停车请求包括第二停车时长;第三响应单元,用于响应于所述第二停车请求,根据所述第二停车时长和预设停车策略,在所述目标区域内规划所述第三车位,获得所述第三车位的车位信息;第四控制单元,用于控制所述第一车辆行驶至所述第三车位处。
第三方面,本申请实施例提供了一种服务器,应用于无人驾驶车辆系统,包括存储器及与所述存储器耦合的处理器;所述存储器用于存储指令,所述处理器用于执行所述指令;其中,所述处理器执行上述第一方面或第一方面的任意可能的实施方式中所描述的方法。
第四方面,本申请实施例提供一种计算机存储介质,用于储存为上述第二方面提供的一种停车控制装置所用的计算机软件指令,其包含用于执行上述第一方面停车控制方法所涉及的程序。
第五方面,本申请实施例提供了一种计算机程序,该计算机程序包括指令,当该计算机程序被计算机执行时,使得计算机可以执行上述第二方面中的停车控制装置所执行的流程。
第六方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于支持终端设备实现上述第一方面中所涉及的功能,例如,生成或处理上述停车控制方法中所涉及的信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存数据发送设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种现有停车流程示意图。
图2是本申请实施例提供的一种上述图1所示现有停车流程后的停车示意图。
图3是本申请实施例提供的一种停车规划示意图。
图4是本申请实施例提供的一种基于上述图3所示停车规划的停车流程示意图。
图5A是本申请实施例提供的一种停车控制系统构架示意图。
图5B是本申请实施例提供的一种停车控制系统软件构架示意图。
图6是本申请实施例提供的一种智能车辆002的功能框图。
图7是本申请实施例提供的一种车辆行驶控制装置结构示意图。
图8是本申请实施例提供的一种停车控制方法的流程示意图。
图9是本申请实施例提供的一种二维的停车场平面图。
图10是本申请实施例提供的一种无人驾驶车辆未到达停车场时,向停车场预定/取消虚拟车位的流程示意图。
图11A是本申请实施例提供的一种规划行车轨迹的停车场示意图。
图11B是本申请实施例提供的一种无人驾驶车辆到达停车场停车的流程示意图。
图11C是本申请实施例提供的一种第一车辆停车示意图。
图12是本申请实施例提供的一种无人驾驶车辆接近预定停车时间的调整过程示意图。
图13是本申请实施例提供的一种无人驾驶车辆修改预定停车时间的流程示意图。
图14是本申请实施例提供的一种停车控制装置的结构示意图。
图15是本申请实施例提供的另一种停车控制装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例进行描述。
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
首先,为了便于理解本申请实施例,以下具体分析本申请实施例所需要解决的技术问题。随着国内汽车保有量的不断攀升,以及国内停车位仍然存在极大缺口的背景下,“停车难、停车乱”已成为人们日常出行的难题。因此,越来越多人开始思考如何在有限的空间快速规划出更多的停车位。示例性的,为解决“停车难、停车乱”的问题,在常用一些停车方案中,可以采用以下几种方式:
现有技术1:请参考附图1,图1是本申请实施例提供的一种现有停车流程示意图。如图1所示,影像获取装置,用于实时获取进入预设地面区域的车辆的第一影像画面;停车控制装置,用于为所述预设地面区域规划设置虚拟停车位,接收所述影像获取装置发送来的所述第一影像画面,并将所述虚拟停车位叠加在所述第一影像画面上形成第二影像画面;电子显示装置,用于接收所述停车控制装置发送来的所述第二影像画面并显示所述第二影像画面,以使用户根据所述第二影像画面完成在所述虚拟停车位的停车操作。请参考附图2,图2是本申请实施例提供的一种上述图1所示现有停车流程后的停车示意图。如图2所示,停车区域中划分了多个虚拟停车位,用于车辆在停车区域内停车不需要在地面标注停车标线等施工操作,快速搭建停车场,且维持成本低,同时可以方便地对停车车辆进行统一管理,也方便停车人员轻松地完成停车。
缺点:1)在第一影像画面上,划定固定虚拟停车位,类比当前现有停车场。当接收到车辆停车需求时,将合适的虚拟停车位分配给车辆。其虚拟停车位固定,无法适应车辆车型大小的变化。
2)划定虚拟停车位时,存在进出车道,停车场内场地利用率不高。
现有技术2:请参考附图3,图3是本申请实施例提供的一种停车规划示意图。如图3所示,停车场全景状态图,包括了多个划分好的停车位,适应于较多的车型。其中该多个停车位前面是车辆的行车道,用于车辆停进目标车位中。请参考附图4,图4是本申请实施例提供的一种基于上述图3所示停车规划的停车流程示意图。如图4所示,根据监测到的各停车场状态对应生成各停车场全景状态图;判断是否接收到车辆发出的停车请求;若是,根据车辆的位置信息确定触发出停车请求的车辆所处的停车场;获取到相应停车场当前全景状态图,根据停车场当前全景状态图为请求停车的车辆规划停车路径,根据规划的停车路径为发出请求的车辆生成行驶参数;发出请求的车辆按照行驶参数行驶。即,在该方案中,在接收到车辆发出的第一停车请求后,根据车辆的位的停车场状态生成确定出发出第一停车请求的车辆所处的停车场;根据该停车场当前全景状态图为请求停车的车辆规划停车路径并且生成行驶参数,然后将规划出的停车路径以及行驶参数发送给请求停车的车辆,使得车辆按照停车路径和行驶参数在停车场中进行自动行驶,到达目标停车位。该方案能够针对多个停车场的自动停车进行集中式管理,有效降低了自动停车所花费的成本。
缺点:1)车道线固定,不能随着车型变化,划定标准车位,并不利于提高有限空间的利用率。
2)使用油漆喷涂车位,导致不易修改车位。
3)无法在一片空地上快速规划出适应多种车型的停车场。
随着经济的发展,群众对于车型大小有多样化的需求,从而导致停车场难以应对变化的停车需求;当上下班或旅游高峰期时,在一定时间内对于某一些特定区域的停车位需求将大幅上涨。无人管理情况下,车辆会无序停放在周围的空地上,从而引发较多的社会问题。因此,本申请实施例提供一种停车控制方法,以便无人驾驶车辆不仅可以,随时调动已经在停车场内的车辆,本系统的虚拟车位并不是预先划定的,是根据预定车位时的车型动态变化, 摆脱现有大小、方位等束缚。还可以配合停车场内的停车规划系统,取消出入车道线,将车辆平铺到停车场中,最大程度提高场地利用率。
为了便于理解本申请实施例,下面先对本申请实施例所基于的其中一种停车控制系统架构进行描述。请参阅图5A,图5A是本申请实施例提供的一种停车控制系统构架示意图。本申请中的停车控制系统构架可以包括图5A中的服务设备001、智能车辆002和终端设备003,其中,服务设备001、智能车辆002和终端设备003可以通过网络通信,以使得服务设备001监控智能车辆002在目标区域内行驶、停车。
服务设备001,可以是安装在车位旁边,采用专用短程通信技术(Dedicated Short Range Communication,DSRC),与车载单元(OBU,On Board Unit)进行通讯,实现车辆身份识别,车辆控制等的服务装置;该服务设备001还可以是用于是一种通过快速获取、处理、分析和提取数据,以交互数据为基础,为第三方使用带来各种便利的服务设备。例如:后台服务器、云服务器、路侧单元等等。服务设备001在本申请实施例中可以根据第一车辆的当前位置和第一车位的位置,在目标区域内(停车场内)规划第一车辆的行驶轨迹;检测所述目标区域内是否存在与行驶轨迹之间距离小于第一预设距离的第二车辆;若存在,控制第二车辆由当前位置行驶至与行驶轨迹之间的距离大于第一预设距离的第三位置处;控制第一车辆按照行驶轨迹驶入第一车位。
具体的,如图5A所示服务设备001可包括:平面图模块0011、车辆引导模块0012、车位管理模块0013和通讯模块0014。其中
1)平面图模块,基于布置在停车场周围的全景摄像头,生成二维的停车场平面图;同时支持对停车场平面图设置/取消不可停车区域;
2)车辆引导模块,基于虚拟车位管理模块生成的坐标,引导车辆到具体位置,并根据全景摄像头,引导车辆调整车身姿势,使其准确停入虚拟车位;
3)车位管理模块,根据车辆上报的车型大小,预定停车时间及当前停车场平面图,划定合适的虚拟车位。当车辆接近驶出时间时,重新规划该车辆周围虚拟车位,按预定停车时间越短,离出入口越近原则排布,并根据新的虚拟车位调度车辆到达新的虚拟车位;
4)通讯模块,可以基于4G/5G或WIFI等的通信方式,建立停车规划系统与手持终端的通信,及停车规划系统与无人驾驶车辆的通信。
智能车辆002是通过车载传感系统感知道路环境,根据规划的行车路线并控制车辆到达预定目标的汽车。智能汽车集中运用了计算机、现代传感、信息融合、通讯、人工智能及自动控制等技术,是一个集环境感知、规划决策、多等级辅助驾驶等功能于一体的高新技术综合体。其中,本申请中的智能车辆可以是主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶目的的车辆,可以是拥有辅助驾驶系统或者全自动驾驶系统的智能车辆,还可以是轮式移动机器人等。当智能车辆002为拥有自动驾驶系统的智能车辆时且行驶服务设备001覆盖区域内时,智能车辆中的电子控制单元可以接收服务设备001发送的控制指令,进而控制车辆行驶至目标位置。智能车辆002还可以通过各种传感器向服务设备001反馈,行驶过程中的各种数据,如行驶速度、行驶位置、行驶曲率等等。
终端设备003,可以安装并运行相关的应用,为客户提供本地服务程序的设备。本方案实施例中的终端设备003可以包括但不限于任何一种基于智能操作系统的电子产品,其可与用户通过键盘、虚拟键盘、触摸板、触摸屏以及声控设备等输入设备来进行人机交互,诸如智能手机、平板电脑、智能手表、个人电脑等。其中,智能操作系统包括但不限于任何通过 向移动设备提供各种移动应用来丰富设备功能的操作系统,诸如:安卓(Android TM)、iOS TM、Windows Phone TM等。例如:在本申请实施例中,在停车前,终端设备003可以向服务设备001发送停车请求,用于预约在目标区域内针对智能车辆002的停车服务。终端设备003还可以在停车期间,再次向服务设备001发送停车请求,以延长智能车辆002的停车时间。终端设备003还可以在即将离开的时候,向服务设备001发送提车请求,以便智能车辆002提前行驶至出口附件等待提车。在本申请中,终端设备003相当于第一终端。
可选的,基于上述图5A所示的一种停车控制系统构架示意图,请参考图5B,图5B是本申请实施例提供的一种停车控制系统软件构架示意图。如图5B所示:
2001无人驾驶车辆上的车载软件:与停车场的停车规划系统通信交互,通过上报其车型,预定停车时间等信息,实现预定车位功能;相当于上述图5A所示的智能车辆002。
2002停车规划系统:与车载软件和手持终端软件交互,其规划并管理停车场内的虚拟车位,并在车辆到达和驶出时,引导其和周边车辆。在车辆到达虚拟车位后,将车辆的虚拟车位信息实时反馈给手持终端软件;相当于上述图5A所示的服务设备001。
2003手持终端软件:用于与停车规划系统交互,可实时了解虚拟车位的信息,及更新预定停车时间;相当于上述图5A所示的终端设备003。
可以理解的是,图5A和图5B中的停车控制系统架构只是本申请实施例中的一种示例性的停车控制实施方式,本申请实施例中的停车控制系统架构包括但不仅限于以上停车控制系统架构。
基于上述车辆行驶控制系统架构,本申请实施例提供了一种应用于上述车辆行驶控制系统架构中的智能车辆002,请参见图6,图6是本申请实施例提供的一种智能车辆002的功能框图。
在一个实施例中,可以将智能车辆002配置为完全或部分地自动驾驶模式。例如,智能车辆002可以在处于自动驾驶模式中的同时控制自身,并且可通过人为操作来确定车辆及其周边环境的当前状态,确定周边环境中的至少一个其他车辆的可能行为,并确定该其他车辆执行可能行为的可能性相对应的置信水平,基于所确定的信息来控制智能车辆002。在智能车辆002处于自动驾驶模式中时,可以将智能车辆002置为在没有和人交互的情况下操作。
智能车辆002可包括各种子系统,例如行进系统202、传感器系统204、控制系统206、一个或多个外围设备208以及电源210、计算机系统212和用户接口216。可选地,智能车辆002可包括更多或更少的子系统,并且每个子系统可包括多个元件。另外,智能车辆002的每个子系统和元件可以通过有线或者无线互连。
行进系统202可包括为智能车辆002提供动力运动的组件。在一个实施例中,行进系统202可包括引擎218、能量源219、传动装置220和车轮/轮胎221。引擎218可以是内燃引擎、电动机、空气压缩引擎或其他类型的引擎组合,例如汽油发动机和电动机组成的混动引擎,内燃引擎和空气压缩引擎组成的混动引擎。引擎218将能量源219转换成机械能量。
能量源219的示例包括汽油、柴油、其他基于石油的燃料、丙烷、其他基于压缩气体的燃料、乙醇、太阳能电池板、电池和其他电力来源。能量源219也可以为智能车辆002的其他系统提供能量。
传动装置220可以将来自引擎218的机械动力传送到车轮221。传动装置220可包括变速箱、差速器和驱动轴。在一个实施例中,传动装置220还可以包括其他器件,比如离合器。其中,驱动轴可包括可耦合到一个或多个车轮221的一个或多个轴。
传感器系统204可包括感测关于智能车辆002周边的环境的信息的若干个传感器。例如,传感器系统204可包括定位系统222(定位系统可以是GPS系统,也可以是北斗系统或者其他定位系统)、惯性测量单元(inertial measurement unit,IMU)224、雷达226、激光测距仪228以及相机230。传感器系统204还可包括被监视智能车辆002的内部系统的传感器(例如,车内空气质量监测器、燃油量表、机油温度表等)。来自这些传感器中的一个或多个的传感器数据可用于检测对象及其相应特性(位置、形状、方向、速度等)。这种检测和识别是自主智能车辆002的安全操作的关键功能。
定位系统222可用于估计智能车辆002的地理位置。
IMU 224用于基于惯性加速度来感测智能车辆002的位置和朝向变化。在一个实施例中,IMU 224可以是加速度计和陀螺仪的组合。例如:IMU 224可以用于测量智能车辆002的曲率。
雷达226可利用无线电信号来感测智能车辆002的周边环境内的物体。在一些实施例中,除了感测物体以外,雷达226还可用于感测物体的速度和/或前进方向。
激光测距仪228可利用激光来感测智能车辆002所位于的环境中的物体。在一些实施例中,激光测距仪228可包括一个或多个激光源、激光扫描器以及一个或多个检测器,以及其他系统组件。
相机230可用于捕捉智能车辆002的周边环境的多个图像。相机230可以是静态相机或视频相机。
控制系统206为控制智能车辆002及其组件的操作。控制系统206可包括各种元件,其中包括转向系统232、油门234、制动单元236、传感器融合算法238、计算机视觉系统240、路线控制系统242以及障碍物避免系统244。
转向系统232可操作来调整智能车辆002的前进方向。例如在一个实施例中可以为方向盘系统。
油门234用于控制引擎218的操作速度并进而控制智能车辆002的速度。
制动单元236用于控制智能车辆002减速。制动单元236可使用摩擦力来减慢车轮221。在其他实施例中,制动单元236可将车轮221的动能转换为电流。制动单元236也可采取其他形式来减慢车轮221转速从而控制智能车辆002的速度。
计算机视觉系统240可以操作来处理和分析由相机230捕捉的图像以便识别智能车辆002周边环境中的物体和/或特征。所述物体和/或特征可包括交通信号、道路边界和障碍物。计算机视觉系统240可使用物体识别算法、运动中恢复结构(Structure from Motion,SFM)算法、视频跟踪和其他计算机视觉技术。在一些实施例中,计算机视觉系统240可以用于为环境绘制地图、跟踪物体、估计物体的速度等等。
路线控制系统242用于确定智能车辆002的行驶路线。在一些实施例中,路线控制系统242可结合来自传感器238、GPS 222和一个或多个预定地图的数据以为智能车辆002确定行驶路线。
障碍物避免系统244用于识别、评估和避免或者以其他方式越过智能车辆002的环境中的潜在障碍物。
当然,在一个实例中,控制系统206可以增加或替换地包括除了所示出和描述的那些以外的组件。或者也可以减少一部分上述示出的组件。
智能车辆002通过外围设备208与外部传感器、其他车辆、其他计算机系统或用户之间进行交互。外围设备208可包括无线通信系统246、车载电脑248、麦克风250和/或扬声器 252。
在一些实施例中,外围设备208提供智能车辆002的用户与用户接口216交互的手段。例如,车载电脑248可向智能车辆002的用户提供信息。用户接口216还可操作车载电脑248来接收用户的输入。车载电脑248可以通过触摸屏进行操作。在其他情况中,外围设备208可提供用于智能车辆002与位于车内的其它设备通信的手段。例如,麦克风250可从智能车辆002的用户接收音频(例如,语音命令或其他音频输入)。类似地,扬声器252可向智能车辆002的用户输出音频。
无线通信系统246可以直接地或者经由通信网络来与一个或多个设备无线通信。例如,无线通信系统246可使用3G蜂窝通信,例如CDMA、EVD0、GSM/GPRS,或者4G蜂窝通信,例如LTE。或者5G蜂窝通信。无线通信系统246可利用WiFi与无线局域网(wireless local area network,WLAN)通信。在一些实施例中,无线通信系统246可利用红外链路、蓝牙或Zig Bee与设备直接通信。其他无线协议,例如:各种车辆通信系统,例如,无线通信系统246可包括一个或多个专用短程通信(dedicated short range communications,DSRC)设备,这些设备可包括车辆和/或路边台站之间的公共和/或私有数据通信。
电源210可向智能车辆002的各种组件提供电力。在一个实施例中,电源210可以为可再充电锂离子或铅酸电池。这种电池的一个或多个电池组可被配置为电源为智能车辆002的各种组件提供电力。在一些实施例中,电源210和能量源219可一起实现,例如一些全电动车中那样。
智能车辆002的部分或所有功能受计算机系统212控制。计算机系统212可包括至少一个处理器213,处理器213执行存储在例如存储器214这样的非暂态计算机可读介质中的指令215。计算机系统212还可以是采用分布式方式控制智能车辆002的个体组件或子系统的多个计算设备。
处理器213可以是任何常规的处理器,诸如商业可获得的CPU。替选地,该处理器可以是诸如ASIC或其它基于硬件的处理器的专用设备。尽管图6功能性地图示了处理器、存储器、和在相同块中的计算机120的其它元件,但是本领域的普通技术人员应该理解该处理器、计算机、或存储器实际上可以包括可以或者可以不存储在相同的物理外壳内的多个处理器、计算机、或存储器。例如,存储器可以是硬盘驱动器或位于不同于计算机120的外壳内的其它存储介质。因此,对处理器或计算机的引用将被理解为包括对可以或者可以不并行操作的处理器或计算机或存储器的集合的引用。不同于使用单一的处理器来执行此处所描述的步骤,诸如转向组件和减速组件的一些组件每个都可以具有其自己的处理器,所述处理器只执行与特定于组件的功能相关的计算。
在此处所描述的各个方面中,处理器可以位于远离该车辆并且与该车辆进行无线通信。在其它方面中,此处所描述的过程中的一些在布置于车辆内的处理器上执行而其它则由远程处理器执行,包括采取执行单一操纵的必要步骤。
在本申请实施例中,处理器213可以接收车辆行驶的控制指令和行驶轨迹,响应于该指令控制智能车辆002按照行驶轨迹行驶至第一车位处。
在一些实施例中,数据存储装置214可包含指令215(例如,程序逻辑),指令215可被处理器213执行来执行智能车辆002的各种功能,包括以上描述的那些功能。数据存储装置224也可包含额外的指令,包括向推进系统202、传感器系统204、控制系统206和外围设备208中的一个或多个发送数据、从其接收数据、与其交互和/或对其进行控制的指令。
除了指令215以外,存储器214在本申请实施例中还可存储数据,例如车辆的位置、方 向、速度以及其它这样的车辆数据,以及其他信息。这种信息可在智能车辆002在自主、半自主和/或手动模式中操作期间被智能车辆002和计算机系统212使用。例如:可以根据目标路段的道路信息,和接收的车辆速度范围和车辆曲率范围内对车辆的当前速度和当前曲率进行微调,以使智能车辆的速度和曲率在车辆速度范围和车辆曲率范围内。
用户接口216,用于向智能车辆002的用户提供信息或从其接收信息。可选地,用户接口216可包括在外围设备208的集合内的一个或多个输入/输出设备,例如无线通信系统246、车载电脑248、麦克风250和扬声器252。
计算机系统212可基于从各种子系统(例如,行进系统202、传感器系统204和控制系统206)以及从用户接口216接收的输入来控制智能车辆002的功能。例如,计算机系统212可利用来自控制系统206的输入以便控制转向单元232来避免由传感器系统204和障碍物避免系统244检测到的障碍物。在一些实施例中,计算机系统212可操作来对智能车辆002及其子系统的许多方面提供控制。
可选地,上述这些组件中的一个或多个可与智能车辆002分开安装或关联。例如,数据存储装置214可以部分或完全地与智能车辆002分开存在。上述组件可以按有线和/或无线方式来通信地耦合在一起。
可选地,上述组件只是一个示例,实际应用中,上述各个模块中的组件有可能根据实际需要增添或者删除,图6不应理解为对本申请实施例的限制。
在道路行进的自动驾驶汽车,如上面的智能车辆002,可以识别其周围环境内的物体以确定对当前速度的调整。所述物体可以是其它车辆、交通控制设备、或者其它类型的物体。在一些示例中,可以独立地考虑每个识别的物体,并且基于物体的各自的特性,诸如它的当前速度、加速度、与车辆的间距等,可以用来确定自动驾驶汽车所要调整的速度。
可选地,自动驾驶汽车智能车辆002或者与自动驾驶智能车辆002相关联的计算设备(如图6的计算机系统212、计算机视觉系统240、存储器214)可以基于所识别的物体的特性和周围环境的状态(例如,停车场内的今天或动态物体等等)来预测所述识别的物体的行为。可选地,每一个所识别的物体都依赖于彼此的行为,因此还可以将所识别的所有物体全部一起考虑来预测单个识别的物体的行为。智能车辆002能够基于预测的所述识别的物体的行为来调整它的速度。换句话说,自动驾驶汽车能够基于所预测的物体的行为来确定车辆将需要调整到(例如,加速、减速、或者停止)什么稳定状态。在这个过程中,也可以考虑其它因素来确定智能车辆002的速度,诸如,智能车辆002在行驶的道路中的横向位置、道路的曲率、静态和动态物体的接近度等等。
除了提供调整自动驾驶汽车的速度的指令之外,计算设备还可以提供修改智能车辆002的转向角的指令,以使得自动驾驶汽车遵循给定的轨迹和/或维持与自动驾驶汽车附近的物体(例如,道路上的相邻车道中的轿车)的安全横向和纵向距离。
上述智能车辆002可以为轿车、卡车、摩托车、公共汽车、船、飞机、直升飞机、割草机、娱乐车、游乐场车辆、施工设备、电车、高尔夫球车、火车、和手推车等,本申请实施例不做特别的限定。
可以理解的是,图6中的智能车辆功能图只是本申请实施例中的一种示例性的实施方式,本申请实施例中的智能车辆包括但不仅限于以上结构。
请参考附图7,图7是本申请实施例提供的一种车辆行驶控制装置结构示意图,应用于上述图6中,相当于图6所示的计算机系统212,可以包括处理器203,处理器203和系统总 线205耦合。处理器203可以是一个或者多个处理器,其中每个处理器都可以包括一个或多个处理器核。存储器235可以存储相关数据信息,存储器235和系统总线205耦合。显示适配器(video adapter)207,显示适配器207可以驱动显示器209,显示器209和系统总线205耦合。系统总线205通过总线桥201和输入输出(I/O)总线213耦合。I/O接口215和I/O总线耦合。I/O接口215和多种I/O设备进行通信,比如输入设备217(如:键盘,鼠标,触摸屏等),多媒体盘(media tray)221,(例如,CD-ROM,多媒体接口等)。收发器223(可以发送和/或接受无线电通信信号),摄像头255(可以捕捉景田和动态数字视频图像)和外部USB接口225。其中,可选地,和I/O接口215相连接的接口可以是USB接口。
其中,处理器203可以是任何传统处理器,包括精简指令集计算(“RISC”)处理器、复杂指令集计算(“CISC”)处理器或上述的组合。可选地,处理器可以是诸如专用集成电路(“ASIC”)的专用装置。可选地,处理器203可以是神经网络处理器或者是神经网络处理器和上述传统处理器的组合。例如:处理器203可以根据第一行驶信息,结合车辆周边的状况,计算出智能车辆002合适的精细化的轨迹数据(即,目标速度和目标曲率)。
可选地,在本申请所述的各种实施例中,计算机系统212可位于远离自动驾驶车辆的地方,并且可与自动驾驶车辆进行无线通信。在其它方面,本申请实施例所述的一些过程在设置在自动驾驶车辆内的处理器上执行,其它由远程处理器执行,包括采取执行单个操纵所需的动作。
计算机系统212可以通过网络接口229和软件部署服务器(deploying server)249通信。网络接口229是硬件网络接口,比如,网卡。网络227可以是外部网络,比如因特网,也可以是内部网络,比如以太网或者虚拟私人网络(VPN)。可选地,网络227还可以是无线网络,比如WiFi网络,蜂窝网络等。
收发器223(可以发送和/或接受无线电通信信号),可以通过不限于第二代移动通信网络(2th generation mobile networks,2G)、3G、4G、5G等各种无线通信方式,也可以是DSRC技术,或者长时间演进-车辆技术(Long Term Evolution-Vehicle,LTE-V)等,其主要功能是接收外部设备发送的信息数据,并将该车辆在目标路段行驶时信息数据发送回给外部设备进行存储分析。
硬盘驱动接口231和系统总线205耦合。硬件驱动接口231和硬盘驱动器233相连接。系统内存235和系统总线205耦合。运行在系统内存235的数据可以包括计算机系统212的操作系统OS 237和应用程序243。
存储器235和系统总线205耦合。例如,本申请中存储器235可以用于将通行目标路段车辆的行驶信息按照一定格式存储在存储器中。
操作系统包括Shell 239和内核(kernel)241。Shell 239是介于使用者和操作系统之内核(kernel)间的一个接口。shell是操作系统最外面的一层。shell管理使用者与操作系统之间的交互:等待使用者的输入;向操作系统解释使用者的输入;并且处理各种各样的操作系统的输出结果。
内核241由操作系统中用于管理存储器、文件、外设和系统资源的那些部分组成。直接与硬件交互,操作系统内核通常运行进程,并提供进程间的通信,提供CPU时间片管理、中断、内存管理、IO管理等等。
应用程序243包括控制汽车自动驾驶相关的程序,比如,管理自动驾驶的汽车和路上障碍物交互的程序,控制自动驾驶汽车路线或者速度的程序,控制自动驾驶汽车和路上其他自动驾驶汽车交互的程序。应用程序243也存在于软件部署服务器249的系统上。在一个实施 例中,在需要执行自动驾驶相关程序247时,计算机系统212可以从软件部署服务器249下载应用程序243。例如:应用程序243可以根据处理器接收或计算出来的行驶轨迹、地图等信息,通过车辆工程的动力学模型,比如自行车模型或者阿克曼模型,转化成控制车辆的线控命令,也就是将速度信息和曲率信息,转化成油门踏板开度,方向盘的角速度信息控制车辆按照行驶轨迹行驶。
传感器253和计算机系统212关联。传感器253用于探测计算机系统212周围的环境。举例来说,传感器253可以探测动物,汽车,障碍物和人行横道等,进一步传感器还可以探测上述动物,汽车,障碍物和人行横道等物体周围的环境,比如:动物周围的环境,例如,动物周围出现的其他动物,天气条件,周围环境的光亮度等。可选地,如果计算机系统212位于自动驾驶的汽车上,传感器可以是摄像头,红外线感应器,化学检测器,麦克风等。
可以理解的是,图7中的车辆行驶控制装置结构只是本申请实施例中的一种示例性的实施方式,本申请实施例中的应用于智能车辆的车辆行驶控制装置结构包括但不仅限于以上结构。
基于图5A提供的停车控制系统架构,以及图6提供的停车控制设备的结构,结合本申请中提供的停车控制方法和涉及的应用场景,对本申请中提出的技术问题进行具体分析和解决。
应用场景:用户乘坐无人驾驶汽车到达大商场,需要将该无人驾驶车辆停进该商场的停车场内。其中,该停车场共一层,只有1个出入口。用户在停车前可以预约停车场内的车位,以确定该停车场内还有空余的空间停车。
参见图8,图8是本申请实施例提供的一种停车控制方法的流程示意图,该方法可应用于上述图1中所述的系统架构中,其中的停车控制设备004可以用于支持并执行图8中所示的方法流程步骤S801-步骤S8013。下面将结合附图8从第一终端(相当于上述图5A所示的终端设备003)和停车控制装置(相当于上述图5A所示的服务设备001)之间的交互进行描述。该方法可以包括以下步骤S801-步骤S8013。
步骤S801:接收第一终端发送的第一停车请求。
具体的,停车控制装置接收第一终端发送的第一停车请求,所述第一停车请求包括所述车型信息。可以理解的是,在无人驾驶车辆(相当于本申请实施例中的第一车辆)停车之前可以首先根据该车辆的车型信息,去确定停车场(目标区域内)中是否还有剩余的空间停车。因此,第一终端可以向停车控制装置发送第一停车请求。
步骤S802:响应于第一停车请求,监测到目标区域内可停车区域面积大于车型信息对应的停车面积时,向第一终端发送允许停车指示。
具体的,停车控制装置响应于第一终端发送的第一停车请求,监测到所述目标区域内可停车区域面积大于所述车型信息对应的停车面积时,即,目标区域内剩余可以停车的空间可以容纳第一车辆时,向所述第一终端发送允许停车指示,所述允许停车指示包括所述目标区域的区域信息,所述区域信息包括以下信息中的至少一个:所述目标区域的位置信息,所述目标区域至少一个的入口信息,所述目标区域至少一个出口信息。当停车控制装置接收到第一终端发送的第一停车请求时,可以根据第一车辆的车型信息确定目标区域内是否还有剩余的空间用于第一车辆停车。若停车控制装置确定第一车辆可以停车,则可以响应该第一停车请求,向第一终端发送允许停车指示。还需要说明的是,区域信息可以帮助第一终端定位目标区域的位置,选择方便第一车辆进出的出入口,有利于提升停车体验。
可选的,停车控制装置响应于第一停车请求,监测到所述目标区域内可停车区域面积小于所述车型信息对应的停车面积时,向所述第一终端发送禁止停车指示。例如,停车控制装置确定第一车辆不能够在目标区域内停车,则可以停车控制装置响应该第一停车请求,向第一终端发送禁止停车指示,说明目标区域内车位已满,或者剩余区域不足以允许第一车辆停车。
可选的,所述目标区域包括可停车区域和不可停车区域且所述目标区域不包括车道,所述不可停车区域包括障碍物区域和车辆行驶区域,所述车辆行驶区域用于车辆行驶。目标区域的可停车区域内只有用于停车的车位,没有用于车辆行驶的车道。不可停产区域内除了障碍物区域外,还包括用于车辆行驶的车辆行驶区域,而且该不可停车区域内也没有车道。因此,本申请实施例可以将车位平铺,取消车道,尽可能的利用了停车场内的空间,节省了车道的占地资源,使得在一定的停车区域中,让更多的车辆可以停车,极大地提升了空间利用率。
可选的,在目标区域内可以设置不同的不可停车区域,支持动态增加或删除,实现对停车场部分不可停车区域的动态设置。且无需对场地进行车位预先分配,当车辆预定车位时,系统将根据其车型,预定停车时间等因素,划定虚拟车位;当车辆到达且乘员下车后,系统将接管无人驾驶车辆,并将其引导到指定的虚拟车位;当无人驾驶车辆即将到达驶出时间时,系统会调度其周围虚拟车位上的无人驾驶车辆,将其安排到最接近出入口的位置;最后当乘员到达时,无人驾驶车辆及时驶出。
可选的,接收第一终端发送的第一停车请求后,所述方法还包括:获取目标区域的区域信息。例如:停车控制装置可以借助搭设在目标区域周围的摄像设备(如:全景摄像头),获取目标区域的周边信息,并生成目标区域对应的二维停车场平面图,以确定目标区域的区域信息。请参考附图9,图9是本申请实施例提供的一种二维的停车场平面图。日中,如图9所示,101是停车场内可被划定虚拟车位的范围;102是虚拟车位已被停入,且2h是乘员设定的预定停车时间;103是不可停车范围,可能是地面不平整处,或有障碍物的地方;104是已被预定,但还未停入车辆的虚拟车位;105是虚拟车位已被停入,且3h是乘员设定的预定停车时间。因此,根据该二维停车场平面图,可以确定目标区域的区域信息。
步骤S803:接收第一终端发送的停车信息。
具体的,停车控制装置可以接收所述第一终端发送的所述停车信息。所述停车信息可以包括:第一车辆的当前位置、车辆标识、终端标识、车型信息、停车时长、停车开始时间、停车结束时间、入口标识、出口标识中的一个或多个。其中,第一车辆的当前位置可以用于规划车辆的停车路径;车辆标识可以用于识别第一车辆;终端标识可以用于识别第一终端;车型信息可以用于确定车位大小;停车时长为预计在目标区域内停车的时长,可以用于确定车位位置;停车开始时间和停车结束时间可以用于确定停车时长,以便规划车位;入口标识用于识别车辆进入停车场的入口;出口标识用于识别车辆离开停车场的出口。
可以理解的是,步骤S801和步骤S803可以一起进行,即,在所述第一终端发送的第一停车请求中可以包括所述停车信息。如:该停车信息可以与停车请求一起发送给停车控制装置。
步骤S804:根据预设停车策略和第一车辆对应的停车信息,在目标区域内规划第一车位。
具体的,停车控制装置可以根据预设停车策略和所述第一车辆对应的停车信息,在所述目标区域内规划所述第一车位,获得所述第一车位的车位信息,所述车位信息包括所述第二位置,所述停车信息包括所述第一位置。其中,所述第一位置可以为第一车辆的当前位置。 第一车位为虚拟车位,根据车辆的停车信息量身定制的并不是预先划分好的车位。其中,预设停车策略可以理解为车位规划策略。例如:预设停车策略可以包括:1)预定停车时长越短,离出入口越近;2)车型大小优先匹配停车场内的不规则区域;3)不设置进出车道,将虚拟车位平铺;4)车位的位置可以使得在规划行车轨迹时,尽量减少目标区域内原有车辆的移动。上述4个策略中,标号越小,优先级越高。
可选的,第一位置还可以为第一车辆进入目标区域时所在的入口的位置。
在一种可能实现的方式中,所述停车信息包括:所述第一车辆的第一时长,所述第一时长为所述第一车辆预计在所述目标区域内的停车时长;所述预设停车策略包括:所述第一时长越长,所述第二位置与所述目标区域的出口之间的距离越远。在本申请实施例中,停车时间越长的无人驾驶车辆离目标区域内的出口越远,同理,停车时间越短的无人驾驶车辆离目标区域内的出口越近,进而可以方便停车时间短的车辆,快速驶出停车场。
在一种可能实现的方式中,所述停车信息包括:所述第一车辆的车型信息;所述预设停车策略包括:所述第一车辆的车型越大,在所述目标区域内的所述第一车位对应的区域越大。在本申请实施例中,不同车型的无人驾驶车辆被划分的车位大小不同,因此,可以适应各种车辆大小的变化,不固定车位的大小,以分配车型所对应的最小面积的车位,可以有效的提高有限空间的停车利用率。
可选的,停车控制装置可以接收第一终端发送的停车取消请求,所述停车取消请求包括车辆标识。停车控制装置响应于所述停车取消请求,取消车辆标识对应车辆的车位。
请参考附图10,图10是本申请实施例提供的一种无人驾驶车辆未到达停车场时,向停车场预定/取消虚拟车位的流程示意图。如图10所示:
301:停车控制装置根据布置在周围的全景摄像头形成二维的停车场平面图。
302:停车控制装置可以在平面图界面上设定不可停车位置区域(如:出入口/地面损坏区域、车辆调整区域等)和/或时长(超时后,该不可停车范围将自动取消。也可设置为永久有效)。
303:停车控制装置等待无人驾驶车辆的停车请求。如果收到的请求是停车预定,则转到307。如果收到的请求是取消停车预定,则转到304。
304:停车控制装置处理取消停车预定请求。
305:停车控制装置判断无人驾驶车辆是否已预定虚拟车位。如果无,则返回303,继续等待请求。如果有,则转到306。
306:停车控制装置取消无人驾驶车辆预定的虚拟车位,并返回303,继续等待请求。
307:停车控制装置处理停车预定请求。
308:停车控制装置根据虚拟车位规划优先级原则(相当于本申请实施中的预设停车策略),规划虚拟车位。
309:停车控制装置判断是否有空闲虚拟车位。如果无,则返回303,继续等待请求。如果有,则转到310。
310:停车控制装置将有已预定虚拟车位的停车场平面图返回给无人驾驶车辆/终端。返回303,继续等待请求。
其中,在如图10所示流程中,根据步骤302,对部分暂时不能使用(地面破损等)的区域,或长期不能使用(障碍物,出入口等)的区域,可自由设置不可停车区域范围。能有效增加系统的可用性。根据步骤308,目标区域内的虚拟车位是根据无人驾驶车辆上报的车型来划定的(等于或稍大于车型),且划定时,取消车道线,将车辆平铺,可以最大增加场地的 利用率。
步骤S805:根据第一车辆的第一位置和第一车位的第二位置,在目标区域内规划第一车辆的行驶轨迹。
具体的,停车控制装置根据第一车辆的第一位置和第一车位的第二位置,在所述目标区域内规划所述第一车辆的行驶轨迹,所述第一位置为所述第一车辆的当前位置,第二位置为规划的车位的位置。其中在规划第一车辆的行驶轨迹时,可以遵循尽量减少目标区域内原有车辆移动的策略。请参考附图11A,图11A是本申请实施例提供的一种规划行车轨迹的停车场示意图。如图11A所示,目标区域内车位满足第一车辆的停车需求,轨迹1和轨迹2均满足第一车辆的行车需求。但若第一车辆按照行驶轨迹2停进车位时需要调动车位旁边的车辆2,而第一车辆按照行驶轨迹1停进车位时不需要调动其他车辆,因此,第一车辆对应的行驶轨迹为轨迹1。
步骤S806:检测目标区域内是否存在与所述行驶轨迹之间距离小于第一预设距离的第二车辆。
具体的,停车控制装置可以检测目标区域内是否存在与所述行驶轨迹之间距离小于第一预设距离的第二车辆。停车控制装置确定目标区域内是否需要有调整原有车辆的位置的车辆,以便第一车辆顺利的停车。
步骤S807:若存在,控制第二车辆由当前位置行驶至第三位置。
具体的,停车控制装置检测到目标区域内存在与所述行驶轨迹之间距离小于第一预设距离的第二车辆,则控制所述第二车辆由当前位置行驶至第三位置,所述第三位置与所述行驶轨迹之间的距离大于所述第一预设距离。请参考附图11B,图11B是本申请实施例提供的一种无人驾驶车辆到达停车场停车的流程示意图。如图11B所示:
401:当第一车辆达到并乘员下车后,停车控制装置可以接管无人驾驶车辆。在停车场内,停车控制装置将拥有调度车辆移动的权力。
402:停车控制装置调度原有虚拟车位上的无人驾驶车辆,空出位置,以便车辆行驶。
403:停车控制装置规划路径,引导车辆到达指定位置;并调整车身姿势,使其准确停入虚拟车位。
404:停车控制装置引导周围车辆回到其新的虚拟车位上。
可选的,若不存在,控制所述第一车辆按照所述行驶轨迹驶入所述第一车位。停车控制装置检测到目标区域内不存在与所述行驶轨迹之间距离小于第一预设距离的第二车辆,则可以直接控制第一车辆按照所述行驶轨迹驶入所述第一车位。
步骤S808:控制第一车辆按照行驶轨迹驶入第一车位。
具体的,停车控制装置控制第一车辆按照行驶轨迹驶入第一车位。在控制所述第二车辆由当前位置行驶至第三位置后,停车控制装置可以直接控制第一车辆按照行驶轨迹驶入第一车位。请参考附图11C,图11C是本申请实施例提供的一种第一车辆停车示意图。如图11C所示,目标区域内包括可停车区域和不可停车区域,其中,第一车位为停车控制装置规划的车位,行驶轨迹为第一位置至第二位置之间的车辆行驶轨迹。然而,第二车辆的当前位置占据了第一车辆进入第一车位时的轨迹,因此,为了第一车辆顺利进入第一车位,首先将第二车辆调整至第三位置处,再控制第一车辆按照行驶轨迹驶入第一车位。
可选的,停车控制装置控制第一车辆按照行驶轨迹驶入第一车位时,停车控制装置可以向第一车辆发送控制指令,使得该第一车辆响应于该控制指令,按照行驶轨迹驶入第一车位。其中,该控制指令可以包括行驶轨迹、速度信息、曲率信息中的一个或多个。
在一种可能实现的方式中,所述停车信息包括所述第一时长,所述方法还包括:检测到所述第一车辆在所述目标区域内经过第二时长后,控制所述第一车辆行驶至距出口更近的第二车位处,所述第二时长小于所述第一时长。可以理解的是,第二车位相较于第一车位距出口更近,更方便用户提车。还可以理解是的,控制所述第一车辆行驶至距出口更近的第二车位处时,可能并不是有第一车位驶出的,有可能是目标区域中的其他位置。这是因为,第一车辆的车位不是固定不变的,该车位可以根据停车时间动态变化,例如:当其他车辆停车进目标区域时,有可能会调整第一车辆的位置。而且,目标区域内的车位上的无人驾驶车辆可以随着即将到达驶出时间时,会根据预定停车时间,调整车位位置,将其车位按预定停车时间排布,至距出口更近的第二车位处,方便无人驾驶车辆快速驶出。因此,本申请实施例可以在无人驾驶车辆停车期间,动态的调整车辆的位置,随着时间越临近驶出时间,其位置离出口越近,方便车辆可以快速驶出。
请参考附图12,图12是本申请实施例提供的一种无人驾驶车辆接近预定停车时间的调整过程示意图。如图12所示:
501:当无人驾驶车辆的停车时间接近预定停车时间(比如还差10分钟到达预定停车时间)。
502:停车控制装置可以与乘员手持终端(相当于第一终端)确定是否驶出,如否,即无响应或乘员未到驶出时刻,则转到506。如是,则转到503。
503:停车控制装置根据虚拟车位规划优先级原则,则重新划定虚拟车位。
504:停车控制装置调度调整虚拟车位上的无人驾驶车辆,使其停入新的虚拟车位。
505:乘员到达时,调度其周边虚拟车位中车辆,让该车辆快速驶出,并回收该虚拟车位。
506:调整该车辆预定停车时间(比如累加10分钟)。
其中,根据步骤503,系统将根据停车优先级,将最接近驶出时间的车辆排布在离出入口最近的虚拟车位。能在乘员到达时,使车辆最快驶出时。
步骤S809:接收第一终端发送的第二停车请求。
具体的,停车控制装置接收第一终端发送的第二停车请求,该第二停车请求可以多次发送,以延长第一车辆的停车时间。
步骤S8010:响应于第二停车请求,根据第二停车时长和预设停车策略,在目标区域内规划第三车位,获得第三车位的车位信息。
具体的,停车控制装置响应于第二停车请求,根据所述第二停车时长和预设停车策略,在所述目标区域内规划所述第三车位,获得所述第三车位的车位信息。当用户想要修改第一车辆的停车时间时,可以接收第一终端发送的第二停车请求,以延长停车时间。在规划第三车位时可以对应参考上述规划第一车位时的方法,此处不再赘述。
步骤S8011:控制第一车辆行驶至第三车位处。
具体的,停车控制装置控制第一车辆行驶至第三车位处。在控制第一车辆行驶至第三车位处时可以对应参考上述控制第一车辆行驶至第一车位时的方法,此处不再赘述。请参考附图13,图13是本申请实施例提供的一种无人驾驶车辆修改预定停车时间的流程示意图。如图13所示:
601:乘员查看车辆虚拟车位相关信息(比如坐标,停车场平面图上虚拟车位位置,预定停车时间等)。
602:停车控制装置收到乘员延迟停车时间请求。
603:停车控制装置更新无人驾驶车辆预计停车时间。
步骤S8012:接收第一终端发送的提车请求。
具体的,停车控制装置接收第一终端发送的提车请求,所述提车请求包括第一出口标识,所述第一出口标识用于识别第一出口,所述第一出口为所述第一车辆驶出所述目标区域的出口。当用户想提车时,可以向停车场发送提车请求,使得无人驾驶车辆可以提前行驶至出口附近的车位处等待用户提车,大大缩短了用户找车时间,解决了用户找车难得问题。
步骤S8013:响应于提车请求,控制第一车辆行驶至出口车位处。
具体的,停车控制装置响应于提车请求,控制第一车辆行驶至出口车位处,所述出口车位与所述第一出口之间的距离在第二预设距离之内。其中,出口车位可以是预先规划好的区域内的车位,可以方便用户提车。
实施本申请实施例,其划定的虚拟车位之间是平铺的关系,取消之间的车道线。借助搭设在四周的全景摄像头,生成二维的停车场平面图。在停车场平面图可以设置不同的不可停车区域,支持动态增加或删除,实现对停车场部分不可停车区域的动态设置。且无需对场地进行车位预先分配,当车辆预定车位时,系统将根据其车型,预定停车时间等因素,划定虚拟车位;当车辆到达且乘员下车后,系统将接管无人驾驶车辆,并将其引导到指定的虚拟车位;当无人驾驶车辆即将到达驶出时间时,系统会调度其周围虚拟车位上的无人驾驶车辆,将其安排到最接近出入口的位置;最后当乘员到达时,无人驾驶车辆及时驶出。因此,这种在停车时,控制其他车辆移动,可以充分的整合停车资源,使得在停车时,不会存在因无人驾驶车辆的车型过大无法通过车辆间的狭小空间,进而无法停入车位中;或者由于车位两边的车型过大,出现无人驾驶车辆无法停车在目标车位上的情况。大大提升了无人驾驶车辆停进车位的成功率,解决停车难的问题。同时,在本申请的车位划定后,也会根据周边信息(比如:其他车辆的车位调整,预定停车时间)多次动态变化,提升了停车场内车位利用的灵活性。实现了无人驾驶车辆的实时动态调度,提升停车场的利用率。
上述详细阐述了本申请实施例的方法,下面提供了本申请实施例的相关装置。
请参见图14,图14是本申请实施例提供的一种停车控制装置的结构示意图,该停车控制装置10应用于无人驾驶车辆系统,可以包括轨迹单元901、检测单元902、第一控制单元903和第二控制单元904,还可以包括车位单元905,第三控制单元906,第一接收单元907,第一响应单元908,第二接收单元909,第三接收单元910,第二响应单元911,第四接收单元912,第三响应单元913和第四控制单元914,其中,各个单元的详细描述如下。
轨迹单元901,用于根据第一车辆的第一位置和第一车位的第二位置,在所述目标区域内规划所述第一车辆的行驶轨迹,所述第一位置为所述第一车辆的当前位置;
检测单元902,用于检测所述目标区域内是否存在与所述行驶轨迹之间距离小于第一预设距离的第二车辆;
第一控制单元903,用于若存在,控制所述第二车辆由当前位置行驶至第三位置,所述第三位置与所述行驶轨迹之间的距离大于所述第一预设距离;
第二控制单元904,用于控制所述第一车辆按照所述行驶轨迹驶入所述第一车位。
在一种可能实现的方式中,所述目标区域包括可停车区域和不可停车区域且所述目标区域不包括车道,所述不可停车区域包括障碍物区域和车辆行驶区域,所述车辆行驶区域用于车辆行驶。
在一种可能实现的方式中,所述第一控制单元903,还用于:若不存在,控制所述第一 车辆按照所述行驶轨迹驶入所述第一车位。
在一种可能实现的方式中,所述装置还包括:车位单元905,用于根据预设停车策略和所述第一车辆对应的停车信息,在所述目标区域内规划所述第一车位,获得所述第一车位的车位信息,所述车位信息包括所述第二位置,所述停车信息包括所述第一位置。
在一种可能实现的方式中,所述停车信息包括:所述第一车辆的第一时长,所述第一时长为所述第一车辆预计在所述目标区域内的停车时长;所述预设停车策略包括:所述第一时长越长,所述第二位置与所述目标区域的出口之间的距离越远。
在一种可能实现的方式中,所述停车信息包括所述第一时长,所述装置还包括:第三控制单元906,用于检测到所述第一车辆在所述目标区域内经过第二时长后,控制所述第一车辆行驶至距出口更近的第二车位处,所述第二时长小于所述第一时长。
在一种可能实现的方式中,所述停车信息包括:所述第一车辆的车型信息;所述预设停车策略包括:所述第一车辆的车型越大,在所述目标区域内的所述第一车位对应的区域越大。
在一种可能实现的方式中,所述装置还包括:第一接收单元907,用于接收第一终端发送的第一停车请求,所述第一停车请求包括所述车型信息;第一响应单元908,用于响应于第一停车请求,监测到所述目标区域内可停车区域面积大于所述车型信息对应的停车面积时,向所述第一终端发送允许停车指示,所述允许停车指示包括所述目标区域的区域信息,所述区域信息包括以下信息中的至少一个:所述目标区域的位置信息,所述目标区域至少一个的入口信息,所述目标区域至少一个出口信息;第二接收单元909,用于在根据预设停车策略和所述第一车辆对应的停车信息,在所述目标区域内规划所述第一车位之前,接收所述第一终端发送的所述停车信息。
在一种可能实现的方式中,所述装置还包括:第三接收单元910,用于接收第一终端发送的提车请求,所述提车请求包括第一出口标识,所述第一出口标识用于识别第一出口,所述第一出口为所述第一车辆驶出所述目标区域的出口;第二响应单元911,用于响应于所述提车请求,控制所述第一车辆行驶至出口车位处,所述出口车位与所述第一出口之间的距离在第二预设距离之内。
在一种可能实现的方式中,所述装置还包括:第四接收单元912,用于接收第一终端发送的第二停车请求,所述第二停车请求包括第二停车时长;第三响应单元913,用于响应于所述第二停车请求,根据所述第二停车时长和预设停车策略,在所述目标区域内规划所述第三车位,获得所述第三车位的车位信息;第四控制单元914,用于控制所述第一车辆行驶至所述第三车位处。
需要说明的是,本申请实施例中所描述的停车控制装置10中各功能单元的功能可参见上述图8中所述的方法实施例中步骤S801-步骤S8013的相关描述,此处不再赘述。
如图15所示,图15是本申请实施例提供的另一种停车控制装置的结构示意图,该停车控制装置100包括至少一个处理器1001,至少一个存储器1002、至少一个通信接口1003。此外,该设备还可以包括天线等通用部件,在此不再详述。
处理器1001可以是通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制以上方案程序执行的集成电路。
通信接口1003,用于与其他设备或通信网络通信,如以太网,无线接入网(RAN),核心网,无线局域网(Wireless Local Area Networks,WLAN)等。
存储器1002可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。
其中,所述存储器1002用于存储执行以上方案的应用程序代码,并由处理器1001来控制执行。所述处理器1001用于执行所述存储器1002中存储的应用程序代码。
存储器1002存储的代码可执行以上图8提供的停车控制方法,比如根据第一车辆的第一位置和第一车位的第二位置,在所述目标区域内规划所述第一车辆的行驶轨迹,所述第一位置为所述第一车辆的当前位置;检测所述目标区域内是否存在与所述行驶轨迹之间距离小于第一预设距离的第二车辆;若存在,控制所述第二车辆由当前位置行驶至第三位置,所述第三位置与所述行驶轨迹之间的距离大于所述第一预设距离;控制所述第一车辆按照所述行驶轨迹驶入所述第一车位。
需要说明的是,本申请实施例中所描述的停车控制装置100中各功能单元的功能可参见上述图8中所述的方法实施例中的步骤S801-步骤S8013相关描述,此处不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可能可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如上述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
上述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该 计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以为个人计算机、服务端或者网络设备等,具体可以是计算机设备中的处理器)执行本申请各个实施例上述方法的全部或部分步骤。其中,而前述的存储介质可包括:U盘、移动硬盘、磁碟、光盘、只读存储器(Read-Only Memory,缩写:ROM)或者随机存取存储器(Random Access Memory,缩写:RAM)等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (23)

  1. 一种停车控制方法,其特征在于,应用于无人驾驶车辆系统,所述方法包括:
    根据第一车辆的第一位置和第一车位的第二位置,在所述目标区域内规划所述第一车辆的行驶轨迹,所述第一位置为所述第一车辆的当前位置;
    检测所述目标区域内是否存在与所述行驶轨迹之间距离小于第一预设距离的第二车辆;
    若存在,控制所述第二车辆由当前位置行驶至第三位置,所述第三位置与所述行驶轨迹之间的距离大于所述第一预设距离;
    控制所述第一车辆按照所述行驶轨迹驶入所述第一车位。
  2. 根据权利要求1所述方法,其特征在于,所述目标区域包括可停车区域和不可停车区域且所述目标区域不包括车道,所述不可停车区域包括障碍物区域和车辆行驶区域,所述车辆行驶区域用于车辆行驶。
  3. 根据权利要求1所述方法,其特征在于,所述检测所述目标区域内是否存在与所述行驶轨迹之间距离小于第一预设距离的第二车辆之后,还包括:
    若不存在,控制所述第一车辆按照所述行驶轨迹驶入所述第一车位。
  4. 根据权利要求1所述方法,其特征在于,所述方法还包括:
    根据预设停车策略和所述第一车辆对应的停车信息,在所述目标区域内规划所述第一车位,获得所述第一车位的车位信息,所述车位信息包括所述第二位置,所述停车信息包括所述第一位置。
  5. 根据权利要求4所述方法,其特征在于,所述停车信息包括:所述第一车辆的第一时长,所述第一时长为所述第一车辆预计在所述目标区域内的停车时长;
    所述预设停车策略包括:所述第一时长越长,所述第二位置与所述目标区域的出口之间的距离越远。
  6. 根据权利要求5所述方法,其特征在于,所述停车信息包括所述第一时长,所述方法还包括:
    检测到所述第一车辆在所述目标区域内经过第二时长后,控制所述第一车辆行驶至距出口更近的第二车位处,所述第二时长小于所述第一时长。
  7. 根据权利要求5所述方法,其特征在于,所述停车信息包括:所述第一车辆的车型信息;
    所述预设停车策略包括:所述第一车辆的车型越大,在所述目标区域内的所述第一车位对应的区域越大。
  8. 根据权利要求7所述方法,其特征在于,所述方法还包括:
    接收第一终端发送的第一停车请求,所述第一停车请求包括所述车型信息;
    响应于第一停车请求,监测到所述目标区域内可停车区域面积大于所述车型信息对应的停车面积时,向所述第一终端发送允许停车指示,所述允许停车指示包括所述目标区域的区 域信息,所述区域信息包括以下信息中的至少一个:所述目标区域的位置信息,所述目标区域至少一个的入口信息,所述目标区域至少一个出口信息;
    所述根据预设停车策略和所述第一车辆对应的停车信息,在所述目标区域内规划所述第一车位之前,还包括:
    接收所述第一终端发送的所述停车信息。
  9. 根据权利要求1所述方法,其特征在于,所述方法还包括:
    接收第一终端发送的提车请求,所述提车请求包括第一出口标识,所述第一出口标识用于识别第一出口,所述第一出口为所述第一车辆驶出所述目标区域的出口;
    响应于所述提车请求,控制所述第一车辆行驶至出口车位处,所述出口车位与所述第一出口之间的距离在第二预设距离之内。
  10. 根据权利要求1所述方法,其特征在于,所述方法还包括:
    接收第一终端发送的第二停车请求,所述第二停车请求包括第二停车时长;
    响应于所述第二停车请求,根据所述第二停车时长和预设停车策略,在所述目标区域内规划所述第三车位,获得所述第三车位的车位信息;
    控制所述第一车辆行驶至所述第三车位处。
  11. 一种停车控制装置,其特征在于,应用于无人驾驶车辆系统,所述装置包括:
    轨迹单元,用于根据第一车辆的第一位置和第一车位的第二位置,在所述目标区域内规划所述第一车辆的行驶轨迹,所述第一位置为所述第一车辆的当前位置;
    检测单元,用于检测所述目标区域内是否存在与所述行驶轨迹之间距离小于第一预设距离的第二车辆;
    第一控制单元,用于若存在,控制所述第二车辆由当前位置行驶至第三位置,所述第三位置与所述行驶轨迹之间的距离大于所述第一预设距离;
    第二控制单元,用于控制所述第一车辆按照所述行驶轨迹驶入所述第一车位。
  12. 根据权利要求11所述装置,其特征在于,所述目标区域包括可停车区域和不可停车区域且所述目标区域不包括车道,所述不可停车区域包括障碍物区域和车辆行驶区域,所述车辆行驶区域用于车辆行驶。
  13. 根据权利要求11所述装置,其特征在于,所述第一控制单元,还用于:
    若不存在,控制所述第一车辆按照所述行驶轨迹驶入所述第一车位。
  14. 根据权利要求11所述装置,其特征在于,所述装置还包括:
    车位单元,用于根据预设停车策略和所述第一车辆对应的停车信息,在所述目标区域内规划所述第一车位,获得所述第一车位的车位信息,所述车位信息包括所述第二位置,所述停车信息包括所述第一位置。
  15. 根据权利要求14所述装置,其特征在于,所述停车信息包括:所述第一车辆的第一时长,所述第一时长为所述第一车辆预计在所述目标区域内的停车时长;
    所述预设停车策略包括:所述第一时长越长,所述第二位置与所述目标区域的出口之间的距离越远。
  16. 根据权利要求15所述装置,其特征在于,所述停车信息包括所述第一时长,所述装置还包括:
    第三控制单元,用于检测到所述第一车辆在所述目标区域内经过第二时长后,控制所述第一车辆行驶至距出口更近的第二车位处,所述第二时长小于所述第一时长。
  17. 根据权利要求15所述装置,其特征在于,所述停车信息包括:所述第一车辆的车型信息;
    所述预设停车策略包括:所述第一车辆的车型越大,在所述目标区域内的所述第一车位对应的区域越大。
  18. 根据权利要求17所述装置,其特征在于,所述装置还包括:
    第一接收单元,用于接收第一终端发送的第一停车请求,所述第一停车请求包括所述车型信息;
    第一响应单元,用于响应于第一停车请求,监测到所述目标区域内可停车区域面积大于所述车型信息对应的停车面积时,向所述第一终端发送允许停车指示,所述允许停车指示包括所述目标区域的区域信息,所述区域信息包括以下信息中的至少一个:所述目标区域的位置信息,所述目标区域至少一个的入口信息,所述目标区域至少一个出口信息;
    第二接收单元,用于在根据预设停车策略和所述第一车辆对应的停车信息,在所述目标区域内规划所述第一车位之前,接收所述第一终端发送的所述停车信息。
  19. 根据权利要求11所述装置,其特征在于,所述装置还包括:
    第三接收单元,用于接收第一终端发送的提车请求,所述提车请求包括第一出口标识,所述第一出口标识用于识别第一出口,所述第一出口为所述第一车辆驶出所述目标区域的出口;
    第二响应单元,用于响应于所述提车请求,控制所述第一车辆行驶至出口车位处,所述出口车位与所述第一出口之间的距离在第二预设距离之内。
  20. 根据权利要求11所述装置,其特征在于,所述装置还包括:
    第四接收单元,用于接收第一终端发送的第二停车请求,所述第二停车请求包括第二停车时长;
    第三响应单元,用于响应于所述第二停车请求,根据所述第二停车时长和预设停车策略,在所述目标区域内规划所述第三车位,获得所述第三车位的车位信息;
    第四控制单元,用于控制所述第一车辆行驶至所述第三车位处。
  21. 一种服务器,其特征在于,应用于无人驾驶车辆系统,包括存储器及与所述存储器耦合的处理器;所述存储器用于存储指令,所述处理器用于执行所述指令;其中,所述处理器执行所述指令时执行如上权利要求1-10中任一项所述的方法。
  22. 一种计算机程序,其特征在于,所述计算机程序包括指令,当所述计算机程序被计算机执行时,使得所述计算机执行如权利要求1-10中任意一项所述的方法。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,该计算机程序被处理器执行时实现上述权利要求1-10任意一项所述的方法。
PCT/CN2021/117645 2020-09-19 2021-09-10 一种停车控制方法及相关设备 WO2022057737A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21868562.6A EP4207134A1 (en) 2020-09-19 2021-09-10 Parking control method and related device
US18/123,106 US20230242098A1 (en) 2020-09-19 2023-03-17 Parking control method and related device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010990863.3A CN114255608A (zh) 2020-09-19 2020-09-19 一种停车控制方法及相关设备
CN202010990863.3 2020-09-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/123,106 Continuation US20230242098A1 (en) 2020-09-19 2023-03-17 Parking control method and related device

Publications (1)

Publication Number Publication Date
WO2022057737A1 true WO2022057737A1 (zh) 2022-03-24

Family

ID=80775895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117645 WO2022057737A1 (zh) 2020-09-19 2021-09-10 一种停车控制方法及相关设备

Country Status (4)

Country Link
US (1) US20230242098A1 (zh)
EP (1) EP4207134A1 (zh)
CN (1) CN114255608A (zh)
WO (1) WO2022057737A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115091617A (zh) * 2022-06-30 2022-09-23 三一专用汽车有限责任公司 搅拌车控制方法、搅拌作业控制系统和搅拌车
CN115116265A (zh) * 2022-06-29 2022-09-27 中国第一汽车股份有限公司 立体停车库的停车方法、装置和存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115009229A (zh) * 2022-06-13 2022-09-06 广西添亿友科技有限公司 一种光伏发电板的远程控制清洁方法及系统
CN117095338B (zh) * 2023-10-18 2024-02-06 深圳市前海铼停科技有限公司 基于道路视频识别的无线停车方法及相关装置
CN117831340B (zh) * 2024-01-11 2024-06-28 深圳点点电工网络科技有限公司 停车位生成方法、控制装置及计算机可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010010652A1 (de) * 2010-03-09 2011-09-15 Valeo Schalter Und Sensoren Gmbh Verfahren zum Unterstützen eines Fahrers beim Einparken eines Fahrzeugs in eine Querparklücke sowie Fahrerassistenzeinrichtung
CN108389426A (zh) * 2018-04-20 2018-08-10 驭势科技(北京)有限公司 一种用于控制车辆停车的方法与设备
CN109584608A (zh) * 2018-12-07 2019-04-05 东软睿驰汽车技术(沈阳)有限公司 一种停车场自动泊车方法及系统
CN111179631A (zh) * 2018-11-13 2020-05-19 现代自动车株式会社 自动驾驶车辆的停车控制系统
CN111452790A (zh) * 2020-03-27 2020-07-28 北京百度网讯科技有限公司 自动代客泊车的控制方法、装置、电子设备和存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10964209B2 (en) * 2003-12-24 2021-03-30 Mark W. Publicover Method and system for traffic and parking management
CN110782696B (zh) * 2019-01-25 2022-01-04 长城汽车股份有限公司 用于代客泊车的控制系统
CN110281917A (zh) * 2019-05-31 2019-09-27 惠州市德赛西威汽车电子股份有限公司 一种自主泊车控制方法
CN110246355B (zh) * 2019-06-13 2021-06-04 广州小鹏汽车科技有限公司 车辆调度控制方法、装置、计算机设备和存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010010652A1 (de) * 2010-03-09 2011-09-15 Valeo Schalter Und Sensoren Gmbh Verfahren zum Unterstützen eines Fahrers beim Einparken eines Fahrzeugs in eine Querparklücke sowie Fahrerassistenzeinrichtung
CN108389426A (zh) * 2018-04-20 2018-08-10 驭势科技(北京)有限公司 一种用于控制车辆停车的方法与设备
CN111179631A (zh) * 2018-11-13 2020-05-19 现代自动车株式会社 自动驾驶车辆的停车控制系统
CN109584608A (zh) * 2018-12-07 2019-04-05 东软睿驰汽车技术(沈阳)有限公司 一种停车场自动泊车方法及系统
CN111452790A (zh) * 2020-03-27 2020-07-28 北京百度网讯科技有限公司 自动代客泊车的控制方法、装置、电子设备和存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115116265A (zh) * 2022-06-29 2022-09-27 中国第一汽车股份有限公司 立体停车库的停车方法、装置和存储介质
CN115091617A (zh) * 2022-06-30 2022-09-23 三一专用汽车有限责任公司 搅拌车控制方法、搅拌作业控制系统和搅拌车

Also Published As

Publication number Publication date
EP4207134A1 (en) 2023-07-05
CN114255608A (zh) 2022-03-29
US20230242098A1 (en) 2023-08-03

Similar Documents

Publication Publication Date Title
WO2022057737A1 (zh) 一种停车控制方法及相关设备
JP7255782B2 (ja) 障害物回避方法、障害物回避装置、自動運転装置、コンピュータ可読記憶媒体及びプログラム
WO2021212379A1 (zh) 车道线检测方法及装置
WO2021102955A1 (zh) 车辆的路径规划方法以及车辆的路径规划装置
WO2022021910A1 (zh) 一种车辆碰撞检测方法、装置及计算机可读存储介质
WO2021000800A1 (zh) 道路可行驶区域推理方法及装置
CN113492830B (zh) 一种车辆泊车路径规划方法及相关设备
CN113160547B (zh) 一种自动驾驶方法及相关设备
WO2022205211A1 (zh) 控制车辆行驶的方法、装置及车辆
CN112672942B (zh) 一种车辆换道方法及相关设备
US11726471B2 (en) Methods and systems for gradually adjusting vehicle sensor perspective using remote assistance
US20230331259A1 (en) Vehicle summoning method, intelligent vehicle, and device
WO2022062825A1 (zh) 车辆的控制方法、装置及车辆
CN113167038B (zh) 一种车辆通过道闸横杆的方法及装置
CN111867878B (zh) 一种基于智能交通系统的车辆共享充电方法及系统、移动充电车
CN113954858A (zh) 一种规划车辆行驶路线的方法以及智能汽车
WO2022052872A1 (zh) 自动驾驶方法及装置
WO2022061702A1 (zh) 驾驶提醒的方法、装置及系统
WO2022127502A1 (zh) 控制方法和装置
WO2022151839A1 (zh) 一种车辆转弯路线规划方法及装置
WO2021254000A1 (zh) 车辆纵向运动参数的规划方法和装置
WO2023015510A1 (zh) 防碰撞的方法和控制装置
WO2022041820A1 (zh) 换道轨迹的规划方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868562

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021868562

Country of ref document: EP

Effective date: 20230330

NENP Non-entry into the national phase

Ref country code: DE