WO2022151839A1 - 一种车辆转弯路线规划方法及装置 - Google Patents

一种车辆转弯路线规划方法及装置 Download PDF

Info

Publication number
WO2022151839A1
WO2022151839A1 PCT/CN2021/132795 CN2021132795W WO2022151839A1 WO 2022151839 A1 WO2022151839 A1 WO 2022151839A1 CN 2021132795 W CN2021132795 W CN 2021132795W WO 2022151839 A1 WO2022151839 A1 WO 2022151839A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
entry
turn
ray
turning
Prior art date
Application number
PCT/CN2021/132795
Other languages
English (en)
French (fr)
Inventor
刘大伟
湛逸飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022151839A1 publication Critical patent/WO2022151839A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096708Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control
    • G08G1/096725Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control where the received information generates an automatic action on the vehicle control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes

Definitions

  • the present application relates to the field of unmanned driving, and in particular, to a method and device for planning a turning route of a vehicle.
  • Turning route planning is one of the key steps in making high-precision maps.
  • the methods of planning turning routes are usually manual annotation and semi-automatic annotation.
  • the way of manual annotation is usually that the cartographer draws manually according to the point cloud map.
  • Manually drawing the route is not only time-consuming and laborious, but also cannot guarantee the smoothness and aesthetics of the route.
  • the semi-automatic labeling method is usually to automatically generate a smooth curve of the turning route, but the conflict scenario in the turning route will not be considered during the generation process, and manual review and manual adjustment will be required in the follow-up.
  • an embodiment of the present application provides a method for planning a turning route of a vehicle, the method comprising:
  • At least according to the entry point and the entry direction predict whether a conflict occurs when different vehicles enter the road intersection area from the first direction and the second direction at the same time and turn;
  • an entry direction point is determined in the road intersection area according to the entry point, the exit point and the entry direction, and the entry direction point is determined according to the entry direction point. Turn-by-turn route.
  • the vehicle turning route planning method provided by the embodiment of the present application can predict whether a conflict occurs when different vehicles enter the road intersection area from the first direction and the second direction at the same time and turn according to at least the entry point and the entry direction.
  • an approaching direction point is determined, and a turning route is determined according to the approaching direction point.
  • the technical solutions of the embodiments of the present application can not only automatically predict whether a conflict will occur during the turning process of the vehicle, but also automatically generate a new entry direction point, which is the key to determine the turning route. point, the turning route can be optimized so that the generated turning route does not conflict with other turning routes.
  • the vehicle turning route planning method provided by the embodiments of the present application can not only replace the manual labeling of turning routes in high-precision maps in the related art, reduce the cost of generating turning routes, and improve the efficiency of generating turning routes, but also can provide on-site route planning for unmanned vehicles. Reliable technical solutions.
  • the predicting that different vehicles simultaneously enter the destination from the first direction and the second direction according to at least the entry point and the entry direction Whether there is a conflict in the case of the above-mentioned road intersection area and turning including:
  • the left-turn in the first direction and the second direction are respectively made
  • the end point of the right lane line of the lane to be turned and its entry direction are taken as the entry point and its entry direction;
  • the embodiment of the present application provides a method for determining whether a conflict occurs in the prediction when there is a left-turn waiting lane in the first direction and the second direction, and using the information that is easier to obtain in the left-turn waiting lane , that is, you can quickly determine whether a conflict occurs.
  • the predicting whether a conflict occurs when different vehicles enter the road intersection area and turn from the first direction and the second direction simultaneously including:
  • the predicting whether a conflict occurs when different vehicles enter the road intersection area from the first direction and the second direction at the same time and make a turn including:
  • the embodiment of the present application provides another method for predicting whether a conflict will occur when there is a left turn waiting lane. Similarly, this method can use less and easily obtained data to complete conflict prediction.
  • predicting that different vehicles enter the destination from the first direction and the second direction at the same time according to at least the entry point and the entry direction Whether there is a conflict in the case of the above-mentioned road intersection area and turning including:
  • Pre-fitting turning lane lines in the first direction and the second direction are respectively determined, and the pre-fitting turning lane lines are determined according to the entry point, the exit point and the intermediate point, wherein the The entry point includes the end point of the rightmost or leftmost lane line, and the intermediate point includes the ray extending from the entry point in the entry direction and the exit point extending in the opposite direction in the exit direction. the intersection point;
  • the embodiment of the present application provides a general turning conflict prediction method, which is especially suitable for the conflict prediction between the left turn and the left turn of the vehicle, the conflict prediction between the right turn and the right turn of the vehicle, and the vehicle Conflict prediction between left and right turns.
  • the driving-in direction point is determined in the road intersection area according to the driving-in point, the driving-out point, and the driving-in direction
  • a driving-in direction point is determined according to the driving-in point, the driving-out point, and the driving-in direction.
  • the entry direction point determines the turning route, including:
  • a left-turn curve is determined based on the entry point in the first direction, the exit point, the at least one entry direction point, or the first entry point, the exit point, the at least one entry point
  • the driving-in direction point and the intersection point determine a left-turn curve, and a left-turn curve on the other side of the left-turn route is determined according to the left-turn curve.
  • the embodiment of the present application provides a method for planning a left-turn route when there is a left-turn waiting lane and a conflict is predicted.
  • the entry points of the first direction and the second direction can be connected Any point on the line segment is taken as the entry direction point, and a left turn curve is determined according to the entry direction point. It can be seen that this method can quickly and effectively plan a left turn curve that avoids conflicts.
  • the driving-in direction point is determined in the road intersection area according to the driving-in point, the driving-out point, and the driving-in direction
  • the driving-in direction point is determined according to the driving-in point, the driving-out point, and the driving-in direction.
  • the entry direction point determines the turning route, including:
  • the exit point, the at least one entry direction point, or according to the entry point of the first direction, the exit point, the third ray and the intersection point of the fourth ray and the at least one entry direction point determine a left-turn curve, and a left-turn curve on the other side of the left-turn route is determined according to the left-turn curve.
  • the embodiment of the present application provides a method for planning a left-turn route when there is a left-turn lane to be turned and a conflict is predicted.
  • this method the entry point of the first direction and the second direction, the At least one point in the triangle formed by the intersection of the first ray and the second ray is used as the entry direction point, and the left turn curve is determined according to the entry direction point. It can be seen that this method can quickly and effectively Plan out a left-turn curve that avoids conflict.
  • the determining a left turn curve according to the entry point in the first direction, the exit point, and the at least one entry direction point includes:
  • a left-turn curve is determined according to the entry point in the first direction, the exit point, the intersection of the third ray and the fourth ray, and the at least one entry direction point.
  • the embodiment of the present application provides a method for planning a left-turn route when there is a left-turn waiting lane and a conflict is predicted.
  • the intersection of the third ray and the fourth ray can be used as the determination of the left turn One point of the curve to improve the accuracy of the left turn curve.
  • the driving-in direction point is determined in the road intersection area according to the driving-in point, the driving-out point and the driving-in direction
  • the driving-in direction point is determined according to the driving-in point, the driving-out point and the driving-in direction.
  • the entry direction point determines the turning route, including:
  • a turning curve is determined according to the entry point in the first direction, the exit point, and the at least one entry direction point, and a turning curve on the other side of the turning route is determined according to the turning curve.
  • the embodiments of the present application are directed to a method for planning a turning route when the turning lane lines of the first direction and the second direction intersect.
  • the embodiments of the present application provide a high-precision map labeling method, including:
  • the turning route is marked on the high-precision map.
  • the turning route planning method can be applied to the high-precision map labeling, which can replace the manual labeling method, improve the labeling efficiency and reduce the labeling cost.
  • embodiments of the present application provide a vehicle driving control method, including:
  • the vehicle is controlled to follow the turning route.
  • the embodiment of the present application can apply the turning route planning method to the on-site route planning of the unmanned vehicle, and can quickly and accurately provide the unmanned vehicle with a turning route that avoids conflicts.
  • a vehicle turning route planning device including:
  • an information determination module for respectively determining the entry point, the exit point and the entry direction of the entry point into the road intersection area from the first direction and the second direction;
  • a conflict prediction module configured to predict whether different vehicles enter the road intersection area from the first direction and the second direction at the same time and turn according to at least the entry point and the entry direction. conflict;
  • the route determination module is configured to determine the entry direction point in the road intersection area according to the entry point, the exit point and the entry direction when the prediction result is a conflict, and determine the entry direction point according to the entry point, the exit point and the entry direction
  • the inbound direction point determines the turn route.
  • the conflict prediction module is specifically configured to:
  • the left-turn in the first direction and the second direction are respectively made
  • the end point of the right lane line of the lane to be turned and its entry direction are taken as the entry point and its entry direction;
  • the conflict prediction module is further configured to:
  • the conflict prediction module is further configured to:
  • the conflict prediction module is specifically configured to:
  • Pre-fitting turning lane lines in the first direction and the second direction are respectively determined, and the pre-fitting turning lane lines are determined according to the entry point, the exit point and the intermediate point, wherein the The entry point includes the end point of the rightmost or leftmost lane line, and the intermediate point includes the ray extending from the entry point in the entry direction and the exit point extending in the opposite direction in the exit direction. the intersection point;
  • the route determination module is specifically configured to:
  • a left-turn curve is determined based on the entry point in the first direction, the exit point, the at least one entry direction point, or the first entry point, the exit point, the at least one entry point
  • the driving-in direction point and the intersection point determine a left-turn curve, and a left-turn curve on the other side of the left-turn route is determined according to the left-turn curve.
  • the route determination module is specifically used for:
  • the exit point, the at least one entry direction point, or according to the entry point of the first direction, the exit point, the third ray and the intersection point of the fourth ray and the at least one entry direction point determine a left-turn curve, and a left-turn curve on the other side of the left-turn route is determined according to the left-turn curve.
  • the route determination module is further configured to:
  • a left-turn curve is determined according to the entry point in the first direction, the exit point, the intersection of the third ray and the fourth ray, and the at least one entry direction point.
  • the route determination module is specifically configured to:
  • a turning curve is determined according to the entry point in the first direction, the exit point, and the at least one entry direction point, and a turning curve on the other side of the turning route is determined according to the turning curve.
  • embodiments of the present application provide a high-precision map labeling device, including the fourth aspect and the vehicle turning route planning device and labeling module provided by any possible implementation manner of the fourth aspect, wherein ,
  • the labeling module is used for labeling the turning route in the high-precision map.
  • embodiments of the present application provide a vehicle driving control device, including the fourth aspect and the vehicle turning route planning device and vehicle control module provided by any possible implementation manner of the fourth aspect, wherein ,
  • the vehicle control module is configured to control the vehicle to travel according to the turning route.
  • an embodiment of the present application provides a vehicle for driving according to the turning route marked by the high-precision map labeling method provided in the second aspect, or, according to the turning route determined by the vehicle driving control method provided in the third aspect drive.
  • embodiments of the present application provide a vehicle turning route planning device, characterized by comprising: a processor; a memory for storing instructions executable by the processor; wherein the processor is configured to execute the When the instruction is executed, one or more methods of implementing the first/second/third aspect or the multiple possible implementation manners of the first/second/third aspect are implemented.
  • embodiments of the present application provide a non-volatile computer-readable storage medium on which computer program instructions are stored, characterized in that, when the computer program instructions are executed by a processor, the above-mentioned first/ One or more of the multiple possible implementation manners of the second/third aspect or the first/second/third aspect.
  • embodiments of the present application provide a computer program product, comprising computer-readable codes, or a non-volatile computer-readable storage medium carrying computer-readable codes, when the computer-readable codes are stored in an electronic
  • the processor in the electronic device executes one or more methods of the first/second/third aspect or the multiple possible implementation manners of the first/second/third aspect.
  • an embodiment of the present application provides a chip, where the chip includes at least one processor, and the processor is configured to run a computer program or computer instructions stored in a memory to execute any of the possible implementations of the above aspects. method.
  • the chip may further include a memory for storing computer programs or computer instructions.
  • the chip may further include a communication interface for communicating with other modules other than the chip.
  • one or more chips may constitute a chip system.
  • FIG. 1 is a schematic structural diagram of a lane line planning system provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of another lane line planning system provided by an embodiment of the present application.
  • FIG. 3 is a functional block diagram of an intelligent vehicle 003 provided by an embodiment of the present application.
  • FIG. 4 shows a flowchart of a method for planning a turning route of a vehicle according to an embodiment of the present application.
  • FIG. 5 shows a scene example diagram according to an embodiment of the present application.
  • FIG. 6 shows a scene example diagram according to an embodiment of the present application.
  • FIG. 7 shows a scene example diagram according to an embodiment of the present application.
  • FIG. 8 shows a scene example diagram according to an embodiment of the present application.
  • FIG. 9 shows a scene example diagram according to an embodiment of the present application.
  • FIG. 10 shows a scene example diagram according to an embodiment of the present application.
  • FIG. 11 shows a scene example diagram according to an embodiment of the present application.
  • FIG. 12 shows a scene example diagram according to an embodiment of the present application.
  • FIG. 13 shows a scene example diagram according to an embodiment of the present application.
  • FIG. 14 shows a scene example diagram according to an embodiment of the present application.
  • FIG. 15 shows a schematic structural diagram of a module of an apparatus for planning a turning route of a vehicle according to an embodiment of the present application.
  • FIG. 16 shows a schematic structural diagram of a module of an apparatus for planning a turning route of a vehicle according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a lane planning system provided by an embodiment of the present application.
  • the system includes a collection device 001 and a route planning device 002, wherein the collection device 001 and the route planning device 002 can communicate through a network. , to send the collected raw data for planning lane lines to the route planning device 002, and the route planning device 002 completes the planning of the lane lines.
  • the collection apparatus 001 may be an electronic device with data collection capability and data transceiver capability.
  • the acquisition device 001 may be an acquisition vehicle equipped with one or more sensors such as lidar, camera, Global Navigation Satellite System (GNSS), Inertial Measurement Unit (IMU).
  • the collecting vehicle can collect the intersection information of the turning lane line to be marked in the high-precision map, that is, before drawing the high-precision map, the information required for drawing the high-precision map can be collected by the collecting vehicle driving on each road.
  • GNSS Global Navigation Satellite System
  • IMU Inertial Measurement Unit
  • lidar is mainly used to collect point cloud data, because lidar can accurately reflect position information, so the width of the road, the height of signal lights and some other information can be obtained through lidar;
  • the camera is mainly used to collect road signs, Lane lines and other information;
  • GNSS is mainly used to record the coordinates of the current collection point;
  • IMU is mainly used to record the angle and acceleration information of the collection vehicle, and is used to correct the position and angle of the collection vehicle.
  • the collection device 001 may also be a roadside unit installed at an intersection, and the roadside unit may acquire intersection information within the coverage area, and monitor multiple smart vehicles within the coverage area.
  • the roadside unit can collect the intersection information of the lanes to be planned in automatic driving, that is, the roadside unit can monitor the dynamics in the intersection at any time, and can send the information of the intersection to the intelligent vehicles that need to pass the intersection.
  • the intersection information may be acquired by one roadside unit, or the intersection information may be acquired by the cooperation of multiple roadside units, so as to obtain the information of all roads connected to the intersection.
  • the roadside unit may be composed of a high-gain directional beam control read-write antenna and a radio frequency controller.
  • the high-gain directional beam control read-write antenna is a microwave transceiver module, responsible for signal and data transmission/reception, modulation/demodulation, encoding/decoding, encryption/decryption; the radio frequency controller is used to control the transmission and reception of data and the processing of the upper computer.
  • intersection information to be marked with the turning lane line in the high-precision map can be collected through the collection device 001, such as road-level data at the intersection (that is, the data of each road connected to the intersection), lane-level data at the intersection (also That is, the data of each lane connected to the intersection) and the information of obstacles in the intersection.
  • Road-level can also be called non-high-precision vector road network data, which is used to describe specific roads from road-level accuracy.
  • the road-level data is the road network data collected according to the road granularity, that is, a lane containing multiple lanes will only have one vector data with the unit of link (link) as the unit.
  • Vector data includes a series of location coordinate points, usually a series of location coordinate points on the road centerline; road-level data also includes road grade, traffic capacity, number of lanes, road category, driving mode, road bandwidth, and so on.
  • Lane-level data can be called high-precision vector road network data, which are used to describe specific roads from lane line accuracy.
  • lane-level data is road network data collected according to the granularity of lane lines, which may include, but is not limited to, lane edge line information of any road (including vector data of the location of the lane edge line), lane boundary line information (including lane edge line information) vector data of the location of the dividing line), etc.
  • the obstacle can be an object that hinders driving in the intersection, the information of the obstacle can be vector data of the location of the obstacle, and the obstacle includes but is not limited to at least one of the following: curbs, trees, street lights, and so on.
  • the route planning apparatus 002 may be an electronic device with data processing capability and data transceiving capability, may be a physical device such as a host, rack server, blade server, etc., or may be a virtual device such as a virtual machine, a container, and the like.
  • the route planning device 002 can respectively determine the entry point, the exit point and the entry direction of the entry point into the road intersection area from the first direction and the second direction; at least according to the entry point and the entry point direction, predict whether a conflict will occur when different vehicles enter the road intersection area from the first direction and the second direction at the same time and turn; if the predicted result is a conflict, according to the entry point ,
  • the driving-out point and the driving-in direction determine the driving-in direction point in the road intersection area, and determine the turning route according to the driving-in direction point.
  • the collected intersection information may be the intersection information to be marked with turning lane lines in the high-precision map
  • the route planning device 002 may be a device that generates a high-precision map. After the route planning device 002 generates the high-precision map, the above-mentioned high-precision map can be sent to the intelligent vehicle 003, and the intelligent vehicle 003 can complete the driving according to the high-precision map.
  • the collected intersection information may be the information of the intersection of the turning lane line to be planned in automatic driving.
  • FIG. 2 is another example provided by the embodiment of the present application.
  • the route planning device 002 can be an intelligent vehicle 003 driving at an intersection.
  • the intelligent vehicle 003 receives the information of the intersection sent by the roadside unit, it can plan a lane without conflict according to the information of the intersection. Wire.
  • the turning lane lines may include left-turn lane lines or right-turn lane lines, which are not limited in this embodiment of the present application.
  • a Bezier curve can be used to draw a lane line
  • a spline curve can also be used to accurately draw a lane line
  • the embodiment of the present application does not impose any limitation on a tool for drawing a lane line.
  • the embodiment of the present application provides an intelligent vehicle 003 applied in the above lane planning system architecture.
  • FIG. 3 is a functional block diagram of an intelligent vehicle 003 provided by an embodiment of the present application.
  • the intelligent vehicle 003 may be configured in a fully or partially autonomous driving mode.
  • the intelligent vehicle 003 can control itself while in an autonomous driving mode, and can determine the current state of the vehicle and its surroundings through human manipulation, determine the possible behavior of at least one other vehicle in the surrounding environment, and determine the other
  • the intelligent vehicle 003 is controlled based on the determined information with a confidence level corresponding to the likelihood that the vehicle will perform the possible behavior.
  • the intelligent vehicle 003 can be set to operate without human interaction.
  • Intelligent vehicle 003 may include various subsystems, such as travel system 202 , sensor system 204 , control system 206 , one or more peripherals 208 and power supply 210 , computer system 212 and user interface 216 .
  • the intelligent vehicle 003 may include more or fewer subsystems, and each subsystem may include multiple elements. Additionally, each of the subsystems and elements of the intelligent vehicle 003 may be interconnected by wire or wirelessly.
  • the travel system 202 may include components that provide powered motion for the intelligent vehicle 003 .
  • travel system 202 may include engine 218 , energy source 219 , transmission 220 , and wheels/tires 221 .
  • Engine 218 may be an internal combustion engine, an electric motor, an air compression engine, or other types of engine combinations, such as a hybrid engine consisting of an air oil engine and an electric motor, a hybrid engine consisting of an internal combustion engine and an air compression engine.
  • Engine 218 converts energy source 219 into mechanical energy.
  • Examples of energy sources 219 include gasoline, diesel, other petroleum-based fuels, propane, other compressed gas-based fuels, ethanol, solar panels, batteries, and other sources of electricity.
  • the energy source 219 may also provide energy to other systems of the intelligent vehicle 003 .
  • Transmission 220 may transmit mechanical power from engine 218 to wheels 221 .
  • Transmission 220 may include a gearbox, a differential, and a driveshaft.
  • transmission 220 may also include other devices, such as clutches.
  • the drive shafts may include one or more axles that may be coupled to one or more wheels 221 .
  • Sensor system 204 may include several sensors that sense information about the environment surrounding intelligent vehicle 003 .
  • the sensor system 204 may include a global positioning system 222 (the positioning system may be a GPS system, a Beidou system or other positioning systems), an inertial measurement unit (IMU) 224, a radar 226, a laser rangefinder 228 and camera 230.
  • the sensor system 204 may also include sensors that monitor the internal systems of the smart vehicle 003 (eg, an in-vehicle air quality monitor, a fuel gauge, an oil temperature gauge, etc.). Sensor data from one or more of these sensors can be used to detect objects and their corresponding characteristics (position, shape, orientation, velocity, etc.). This detection and identification is a critical function for the safe operation of the autonomous intelligent vehicle 003 .
  • the positioning system 222 may be used to estimate the geographic location of the intelligent vehicle 003 .
  • the IMU 224 is used to sense position and orientation changes of the intelligent vehicle 003 based on inertial acceleration.
  • IMU 224 may be a combination of an accelerometer and a gyroscope.
  • IMU 224 may be used to measure the curvature of smart vehicle 003.
  • Radar 226 may utilize radio signals to sense objects within the surrounding environment of intelligent vehicle 003 . In some embodiments, in addition to sensing objects, radar 226 may be used to sense the speed and/or heading of objects.
  • the laser rangefinder 228 may utilize laser light to sense objects in the environment in which the intelligent vehicle 003 is located.
  • the laser rangefinder 228 may include one or more laser sources, laser scanners, and one or more detectors, among other system components.
  • Camera 230 may be used to capture multiple images of the surrounding environment of intelligent vehicle 003 .
  • Camera 230 may be a still camera or a video camera.
  • Control system 206 controls the operation of the intelligent vehicle 003 and its components.
  • Control system 206 may include various elements including steering system 232 , throttle 234 , braking unit 236 , sensor fusion algorithms 238 , computer vision system 240 , route control system 242 , and obstacle avoidance system 244 .
  • Steering system 232 is operable to adjust the heading of intelligent vehicle 003 .
  • it may be a steering wheel system.
  • the throttle 234 is used to control the operating speed of the engine 218 and thus the speed of the intelligent vehicle 003 .
  • the braking unit 236 is used to control the deceleration of the intelligent vehicle 003 .
  • the braking unit 236 may use friction to slow the wheels 221 .
  • the braking unit 236 may convert the kinetic energy of the wheels 221 into electrical current.
  • the braking unit 236 may also take other forms to slow down the wheels 221 to control the speed of the smart vehicle 003 .
  • Computer vision system 240 is operable to process and analyze images captured by camera 230 in order to identify objects and/or features in the environment surrounding intelligent vehicle 003 .
  • the objects and/or features may include traffic signals, road boundaries and obstacles.
  • Computer vision system 240 may use object recognition algorithms, Structure from Motion (SFM) algorithms, video tracking, and other computer vision techniques.
  • SFM Structure from Motion
  • computer vision system 240 may be used to map the environment, track objects, estimate the speed of objects, and the like.
  • the route control system 242 is used to determine the travel route of the intelligent vehicle 003 .
  • route control system 242 may combine data from sensors 238, GPS 222, and one or more predetermined maps to determine a driving route for intelligent vehicle 003.
  • Obstacle avoidance system 244 is used to identify, evaluate and avoid or otherwise overcome potential obstacles in the environment of intelligent vehicle 003 .
  • control system 206 may additionally or alternatively include components other than those shown and described. Alternatively, some of the components shown above may be reduced.
  • Peripherals 208 may include a wireless communication system 246, an onboard computer 248, a microphone 250 and/or a speaker 252.
  • peripherals 208 provide a means for a user of intelligent vehicle 003 to interact with user interface 216 .
  • the onboard computer 248 may provide information to the user of the smart vehicle 003 .
  • User interface 216 may also operate on-board computer 248 to receive user input.
  • the onboard computer 248 can be operated via a touch screen.
  • peripheral devices 208 may provide a means for intelligent vehicle 003 to communicate with other devices located within the vehicle.
  • microphone 250 may receive audio (eg, voice commands or other audio input) from a user of intelligent vehicle 003 .
  • speaker 252 may output audio to the user of intelligent vehicle 003 .
  • Wireless communication system 246 may wirelessly communicate with one or more devices, either directly or via a communication network.
  • wireless communication system 246 may use 3G cellular communications, such as CDMA, EVDO, GSM/GPRS, or 4G cellular communications, such as LTE. Or 5G cellular communications.
  • the wireless communication system 246 may communicate with a wireless local area network (WLAN) using WiFi.
  • WLAN wireless local area network
  • the wireless communication system 246 may communicate directly with the device using an infrared link, Bluetooth, or ZigBee.
  • Other wireless protocols, such as various vehicle communication systems, for example, wireless communication system 246 may include one or more dedicated short range communications (DSRC) devices, which may include a combination of vehicle and/or roadside stations. public and/or private data communications between them.
  • DSRC dedicated short range communications
  • Power supply 210 may provide power to various components of intelligent vehicle 003 .
  • the power source 210 may be a rechargeable lithium-ion or lead-acid battery.
  • One or more battery packs of such batteries may be configured as a power source to provide power to various components of the intelligent vehicle 003 .
  • power source 210 and energy source 219 may be implemented together, such as in some all-electric vehicles.
  • Computer system 212 may include at least one processor 213 that executes instructions 215 stored in a non-transitory computer readable medium such as data storage device 214 .
  • Computer system 212 may also be multiple computing devices that control individual components or subsystems of intelligent vehicle 003 in a distributed fashion.
  • the processor 213 may be any conventional processor, such as a commercially available CPU. Alternatively, the processor may be a dedicated device such as an ASIC or other hardware-based processor.
  • FIG. 3 functionally illustrates a processor, memory, and other elements of the computer 120 in the same block, one of ordinary skill in the art will understand that the processor, computer, or memory may actually include what may or may not Multiple processors, computers, or memories stored within the same physical enclosure.
  • the memory may be a hard drive or other storage medium located within an enclosure other than computer 120 .
  • reference to a processor or computer will be understood to include reference to a collection of processors or computers or memories that may or may not operate in parallel.
  • some components such as the steering and deceleration components, may each have its own processor that only performs computations related to component-specific functions .
  • a processor may be located remotely from the vehicle and in wireless communication with the vehicle. In other aspects, some of the processes described herein are performed on a processor disposed within the vehicle while others are performed by a remote processor, including taking steps necessary to perform a single maneuver.
  • data storage 214 may include instructions 215 (eg, program logic) executable by processor 213 to perform various functions of intelligent vehicle 003, including those described above.
  • Data storage 224 may also contain additional instructions, including sending data to, receiving data from, interacting with, and/or performing operations on one or more of propulsion system 202 , sensor system 204 , control system 206 , and peripherals 208 control commands.
  • memory 214 may store data such as road maps, route information, vehicle location, direction, speed, and other such vehicle data, among other information. Such information may be used by intelligent vehicle 003 and computer system 212 during operation of intelligent vehicle 003 in autonomous, semi-autonomous, and/or manual modes.
  • User interface 216 for providing information to or receiving information from a user of intelligent vehicle 003 .
  • the user interface 216 may include one or more input/output devices within the set of peripheral devices 208 , such as a wireless communication system 246 , an onboard computer 248 , a microphone 250 and a speaker 252 .
  • Computer system 212 may control functions of intelligent vehicle 003 based on input received from various subsystems (eg, wireless communication system 246 , travel system 202 , sensor system 204 , and control system 206 ) and from user interface 216 .
  • the computer system 212 may utilize input from the wireless communication system 246 to plan lane lines at intersections that need to be passed in autonomous driving by which obstacles at the intersection can be avoided.
  • computer system 212 is operable to provide control over many aspects of intelligent vehicle 003 and its subsystems.
  • computer system 212 may also receive information from, or transfer information to, other computer systems.
  • the computer system 212 may transfer sensor data collected from the sensor system 204 of the smart vehicle 003 to another computer system remotely, and have the data processed by another computer system, such as the sensor system by the other computer system.
  • another computer system such as the sensor system by the other computer system.
  • data collected by each sensor is fused, and then the data or analysis result obtained after fusion is returned to the computer system 212 .
  • data from computer system 212 may be transmitted via a network to a cloud-side computer system for further processing.
  • Networks and intermediate nodes may include various configurations and protocols, including the Internet, the World Wide Web, Intranets, Virtual Private Networks, Wide Area Networks, Local Area Networks, private networks using one or more of the company's proprietary communication protocols, Ethernet, WiFi and HTTP, and various combinations of the foregoing.
  • Such communications may be by any device capable of transferring data to and from other computers, such as modems and wireless interfaces.
  • the remote computer system that interacts with the computer system 212 in the intelligent vehicle 003 may include a server with multiple computers, such as a load balancing server farm, in order to receive, from the computer system 212 , The purpose of processing and transmitting data, which exchanges information with different nodes of the network.
  • the server may have processors, memory, instructions and data, and the like.
  • the data of the server may include providing weather-related information.
  • the server may receive, monitor, store, update, and transmit various information related to the weather. This information may include, for example, precipitation, cloud, and/or temperature information in the form of reports, radar information, forecasts, and the like.
  • the data of the server can also include high-precision map data, traffic information of the road ahead (such as real-time traffic congestion and traffic accidents, etc.), and the server can send the high-precision map data and traffic information to the computer system 212 , so that it can assist the intelligent vehicle 003003 to better perform automatic driving and ensure driving safety.
  • one or more of these components described above may be installed or associated with the intelligent vehicle 003 separately.
  • data storage device 214 may exist partially or completely separate from intelligent vehicle 003 .
  • the above-described components may be communicatively coupled together in a wired and/or wireless manner.
  • the above component is just an example.
  • components in each of the above modules may be added or deleted according to actual needs, and FIG. 3 should not be construed as a limitation on the embodiments of the present application.
  • a self-driving car traveling on a road can recognize objects within its surroundings to determine adjustments to its current speed.
  • the objects may be other vehicles, traffic control equipment, or other types of objects.
  • each identified object may be considered independently, and based on the object's respective characteristics, such as its current speed, acceleration, distance from the vehicle, etc., may be used to determine the speed at which the autonomous vehicle is to adjust.
  • the autonomous vehicle smart vehicle 003 or a computing device associated with the autonomous vehicle 003 may be based on the characteristics of the identified objects and the surrounding environment. state (eg, traffic, rain, ice on the road, etc.) to predict the behavior of the identified object.
  • each identified object is dependent on the behavior of the other, so it is also possible to predict the behavior of a single identified object by considering all identified objects together.
  • the intelligent vehicle 003 is able to adjust its speed based on the predicted behavior of the identified object.
  • the self-driving car can determine what steady state the vehicle will need to adjust to (eg, accelerate, decelerate, or stop) based on the predicted behavior of the object.
  • other factors may also be considered to determine the speed of the intelligent vehicle 003, such as the lateral position of the intelligent vehicle 003 in the road on which it is traveling, the curvature of the road, the proximity of static and dynamic objects, and the like.
  • the computing device may also provide instructions to modify the steering angle of the intelligent vehicle 003 so that the self-driving car follows a given trajectory and/or maintains contact with objects in the vicinity of the self-driving car ( For example, safe lateral and longitudinal distances for cars in adjacent lanes on the road.
  • the above-mentioned intelligent vehicles 003 can be cars, trucks, motorcycles, buses, boats, airplanes, helicopters, lawn mowers, recreational vehicles, playground vehicles, construction equipment, trams, golf carts, trains, and trolleys, etc.,
  • the embodiments of the present application are not particularly limited.
  • the function diagram of the smart vehicle 003 in FIG. 3 is only an exemplary implementation in the embodiments of the present application, and the smart vehicle 003 in the embodiments of the present application includes but is not limited to the above structures.
  • FIG. 4 is a schematic flowchart of an embodiment of a vehicle turning route planning method provided by the present application.
  • the present application provides method operation steps as shown in the following embodiments or drawings, more or less operation steps may be included in the method based on routine or without creative effort. In steps that logically do not have a necessary causal relationship, the execution order of these steps is not limited to the execution order provided by the embodiments of the present application.
  • the method may be executed sequentially or in parallel (eg, in a parallel processor or multi-threaded processing environment) according to the methods shown in the embodiments or the accompanying drawings.
  • FIG. 4 an embodiment of a vehicle turning route planning method provided by the present application is shown in FIG. 4 , and the method may include:
  • S101 Determine the entry point, the exit point and the entry direction of the entry point entering the road intersection area from the first direction and the second direction, respectively.
  • the road intersection area may include an area where multiple roads meet, and after vehicles enter the road intersection area, they may go straight or turn according to the instructions of traffic lights to avoid conflicts between vehicles.
  • FIG. 5 and FIG. 6 are schematic diagrams of the road surface of the road intersection area 501. As shown in the figures, the road intersection area 501 is respectively connected with a plurality of roads, and each road also includes a plurality of lane lines.
  • the first direction and the second direction may include traffic directions of two roads entering the road intersection area 501 , and the first direction and the second direction may include, for example, two
  • the first direction and the second direction shown in FIG. 5 are opposite directions, and two adjacent directions may also be included.
  • the first direction and the second direction shown in FIG. 9 and FIG. 10 are opposite directions.
  • the adjacent direction is not limited in this application.
  • the entry point, the exit point, and the entry direction of the entry point entering the road intersection area 501 from the first direction and the second direction may be determined respectively.
  • the end point of the right lane line of the left-turn waiting lane and its entry direction may be used as the entry point and its entry direction.
  • the approaching direction of the end point of the right lane line may include the tangential direction of the end point along the right lane line.
  • the first direction and the second direction are opposite directions, and both the first direction and the second direction are provided with a left-turn waiting lane 503 in the road intersection area 501 .
  • the generated turning routes do not conflict.
  • the left-turn waiting lanes 503 in the first direction and the second direction are provided in the road intersection area 501
  • the The end points of the right lane line of the left-turn waiting lane 503 in the first direction and the second direction and the entry direction thereof are taken as the entry point and the entry direction thereof.
  • the driving direction of point B and point B can be used as the driving point and the driving direction
  • the driving direction of point C and point C can be used as the driving point and driving direction.
  • the approach direction is used as the approach point and approach direction.
  • the end point of the rightmost lane of the left-turn lane can be used as the entry point, and the corresponding entry direction is the traffic direction of the lane.
  • point B can be used as the entry point of the first direction, and the corresponding exit point is the first direction.
  • the exit point is the end point of the turning lane line.
  • the end point of the rightmost lane line in the exit direction can be taken as the exit point.
  • point E can be taken as the exit point for turning left from the first direction and exiting the road intersection area 501 .
  • any point in the boundary area between the road intersection area 501 and the exit lane may also be used as the exit point, which is not limited in this application.
  • S103 According to at least the entry point and the entry direction, predict whether a conflict occurs when different vehicles enter the road intersection area from the first direction and the second direction at the same time and turn.
  • S203 According to the positional relationship between the entry point in the first direction and the second direction and the extension line of the entry point along the entry direction, predict that different vehicles will simultaneously drive from the first Whether a conflict occurs when one direction and the second direction enter the road intersection area and turn.
  • FIG. 7 is a simple schematic diagram of FIG. 5 , wherein the gray area in FIG. 7 is the road intersection area 501 .
  • Point B in FIG. 7 is the entry point in the first direction, the tangent of point B along the left-turn lane line in FIG.
  • FIG. 7 is the entry direction of point B, and the extension line of point B along its entry direction is shown in FIG. 7
  • Point C in FIG. 7 is the entry point of the second direction.
  • the tangent of point C along the left-turn lane line is the entry direction of point C, and the extension line of point C along its entry direction is shown in FIG. 7
  • the second ray 703 in that is to say, in this embodiment of the present application, the first ray 701 starting from point B, point C, and the second ray 703 starting from point C can be used to predict the In the case of a left-turn lane to be turned in one direction and the second direction, it is predicted whether a conflict will occur.
  • the entry point and its entry direction are relatively easy to obtain data, and whether a conflict will occur can be predicted based on simple data, which has high prediction efficiency .
  • predicting whether a conflict occurs when different vehicles enter the road intersection area from the first direction and the second direction at the same time and make a turn may include:
  • S301 Determine a ray extending along the approaching direction with the approaching point of the first direction as the starting point.
  • point C is the entry point of the second direction. It can be found that point C is on the left side of the first ray 701 , so it can be predicted that different A conflict occurs when the vehicle enters the road intersection area 501 from the first direction and the second direction at the same time and turns.
  • predicting whether a conflict occurs when different vehicles enter the road intersection area from the first direction and the second direction at the same time and make a turn may include:
  • S401 Determine a first ray starting from the entry point in the first direction and extending along the entry direction, and determining a second ray starting from the entry point in the second direction and extending along the entry direction Rays;
  • the first ray 701 is a light-colored dashed arrow starting from point B
  • the second ray 703 is a light-colored dashed arrow starting from point C .
  • the first ray 701 and the second ray 703 intersect at point H, then it can be predicted that different vehicles enter the road from the first direction and the second direction at the same time. A conflict occurs when the area 501 is turned and turned.
  • the road conditions in FIG. 7 satisfy the above two conditions for judging conflict at the same time. It should be noted that in the technical solution of the present application, in the case of a left-turn waiting lane, the judgment of any of the above-mentioned embodiments is satisfied. In the case of conflicting conditions, it can be predicted that a conflict occurs when different vehicles enter the road intersection area from the first direction and the second direction at the same time and turn.
  • predicting that different vehicles enter the road intersection area 501 from the first direction and the second direction at the same time according to at least the entry point and the entry direction Whether there is a conflict in the case of turning and turning including:
  • S501 Determine the pre-fitting turning lane lines in the first direction and the second direction respectively, and the pre-fitting turning lane lines are determined according to the entry point, the exit point, and the intermediate point, wherein, The entry point includes the end point of the rightmost or leftmost lane line, and the intermediate point includes the ray extending from the entry point along the entry direction and the exit point extending in the opposite direction along the exit direction. the intersection of the rays;
  • the embodiment of the present application provides a general method for predicting conflict, which is especially suitable for between left turn and left turn when there is no left turn waiting lane in the first direction and the second direction, as well as judging left turn and right turn, The application scenario of whether there is a conflict between a right turn and a right turn.
  • the pre-fitted turning lane lines in the first direction and the second direction may be determined according to the entry point, the exit point, and the intermediate point, respectively.
  • the intermediate point may comprise the intersection of a ray of the entry point extending in the entry direction and a ray of the exit point extending oppositely in the exit direction.
  • the number of the intermediate points is not limited, and may also include any point in the road intersection area 501, which is not limited in this application.
  • the pre-fitted turning lane line may be generated by a drawing method such as a Bezier curve or a spline curve, which is not limited in this application.
  • FIG. 8 shows the pre-fitted turning lane line 801 and the pre-fitted turning lane line 803 generated from the first direction and the second direction without the left turn lane, as shown in FIG. 8 , The pre-fitted turn lane line 801 and the pre-fit turn lane line 803 in the first direction and the second direction intersect, whereby a conflict can be predicted.
  • FIG. 9 shows the pre-fitted turning lane line 901 and the pre-fitted turning lane line 903 generated in the scenario of turning left in the first direction and turning right in the second direction.
  • the pre-fitted turning lane lines in the first direction The fitted left-turn lane line and the pre-fit right-turn lane line 901 and the pre-fit turn lane line 903 of the second direction intersect, whereby a conflict can be predicted.
  • FIG. 10 shows pre-fitted turn lane lines 1001 and pre-fit turn lane lines 1003 generated from the first direction right turn and the second direction right turn.
  • the first direction and The pre-fitted turn lane line 1001 and the pre-fit turn lane line 1003 in the second direction intersect, whereby a conflict can be predicted.
  • a direction point may be entered in the road intersection area 501 according to the entry point, the exit point, that is, the entry direction.
  • the driving direction point is used as the adjustment key point of the turning route, which can avoid conflicts between the generated turning routes.
  • the driving-in direction point is determined in the road intersection area according to the driving-in point, the driving-out point and the driving-in direction, and the driving-in direction point is determined according to the driving-in direction point Determine turn-by-turn routes, which can include:
  • S601 Select at least one entry direction point from the line segment connecting the entry points in the first direction and the second direction;
  • S603 Determine a left-turn curve according to the entry point in the first direction, the exit point, and the at least one entry direction point, and determine a left-turn curve on the other side of the left-turn route according to the left-turn curve .
  • the left-turn curve may be determined according to the entry point B, the exit point E, and the entry direction point G in the first direction.
  • B, E, and G may be connected by a drawing method such as a Bezier curve or a spline curve to generate the left turn curve, and the present application does not limit the drawing method of the curve.
  • the left-turn curve on the side of point B is generated, the left-turn curve on the side of point A in the left-turn route may be determined according to the left-turn curve.
  • a ray parallel to BC can be determined, and a point I is taken on the ray, so that the length of AI is equal to the length of BG.
  • the determining of the left-turn curve according to the entry point in the first direction, the exit point, and the at least one entry direction point may include:
  • S701 Determine a third ray extending in the opposite direction of the exit direction with the exit point as the starting point, where the exit point includes the end point of the rightmost lane line in the exit direction;
  • S703 Determine a fourth ray starting from the entry point in the first direction and extending toward the entry point in the second direction;
  • S707 Determine a left turn curve according to the entry point in the first direction, the exit point, the intersection of the third ray and the fourth ray, and the at least one entry direction point.
  • the left-turn curve may be determined according to the entry point B in the first direction, the exit point E, the entry direction point G, and the intersection point L. On the basis of the previous embodiment, adding an intersection L to determine the left-turn curve can further improve the accuracy of the left-turn curve.
  • the method for generating a left-turn route provided by this embodiment of the present application is not only applicable to the conflict situation where the second entry point is on the left side of the ray that starts from the entry point in the first direction and extends along the entry direction, but also It can be applied to the conflict situation where the first ray intersects with the second ray.
  • the driving-in direction point is determined in the road intersection area according to the driving-in point, the driving-out point and the driving-in direction, and the driving-in direction point is determined according to the driving-in direction point to determine the turn-by-turn route, including:
  • S801 Select at least one driving direction point from the triangle formed by the driving point of the first direction and the second direction and the intersection of the first ray and the second ray;
  • the embodiment of the present application is applicable to a route where there is a left-turn to-be-turned route, and the ray extending from the entry point in the first direction along its entry direction intersects with the ray extending from the entry point in the second direction in the extended entry direction.
  • the driving-in point B in the first direction, the driving-in point C in the second direction, the first ray 701 and the second ray 703 At least one driving direction point is selected from the triangle BCH formed by the intersection point H of .
  • the left-turn curve may be determined according to the entry point B in the first direction, the exit point E, and the at least one entry direction point.
  • a left-turn curve may be determined according to the entry point B in the first direction, the exit point E, the at least one entry direction point G, and the intersection point L .
  • the manner of determining the L may refer to the descriptions of S701-S705, which will not be repeated here.
  • the left-turn curve on the side of point A can be generated according to the drawing of the left-turn curve on the side of point B.
  • a vector between point B and the at least one entry direction point may be determined, and then at point A, at least one entry direction corresponding to point A is determined by using the vector point, and then use the same curve drawing method to draw a left turn curve on the side of point A.
  • the driving-in direction point is determined in the road intersection area according to the driving-in point, the driving-out point and the driving-in direction, and the driving-in direction point is determined according to the driving-in direction point Determine turn-by-turn routes, which can include:
  • S901 Select at least one entry direction point from the area formed by the intersection of the pre-fitted turning lane lines of the first direction and the second direction.
  • S903 Determine a turning curve according to the entry point in the first direction, the exit point, and the at least one entry direction point, and determine a turning curve on the other side of the turning route according to the turning curve.
  • This embodiment of the present application is applicable to a scenario of pre-fitting turning lanes.
  • a curve formed by the intersection of the pre-fitting turning lane lines in the first direction and the second direction may be used.
  • the pre-fitted turning lane lines of the first direction and the second direction intersect at two points A and B.
  • at least one point on the lower arc 807 of AB may be selected as the point of the approaching direction of the first direction, and point C is selected in FIG. 8 .
  • At least one point on the arc 805 on AB may also be selected as the point of the approaching direction of the second direction, and point D is selected in FIG. 8 .
  • the left-turn curves of the first direction and the second direction as shown in FIG. 11 can be obtained by planning according to the driving-in point, the driving-out point and the driving-in direction points C and D, respectively.
  • the left turn curve in the first direction and the right turn curve in the second direction as shown in FIG. 12 can be planned and obtained, and the curve in the first direction as shown in FIG. A right turn curve and a right turn curve in the second direction.
  • the number and position of the entry direction points are not limited to the above examples.
  • it can also be determined that the entry direction points of the first direction and the second direction are the same point, and the generated two turns
  • the lane lines are tangent and are not a conflict situation.
  • the prediction result when the prediction result includes that different vehicles enter the road intersection area 501 from the first direction and the second direction at the same time and turn into the road intersection area 501 and no conflict occurs, it can also be planned to obtain Turn-by-turn route.
  • the first direction and the second direction may be combined
  • the pre-fitted turning lane lines are respectively used as the finally determined turning lane lines in the first direction and the second direction.
  • the turning lane line may be marked on the high-precision map later, or the vehicle may be controlled to travel according to the turning lane line.
  • the entry point, the exit point and the entry direction can be predicted based on the Determine the turn-by-turn route.
  • FIG. 14 is a simple schematic diagram of FIG. 5 .
  • a third ray 705 starting from the exit point E and extending in the opposite direction of the exit direction and a fifth ray 1401 starting from the entry point B and extending in the entry direction.
  • the intersection point P of the third ray 705 and the fifth ray 1401 is determined, and the left-turn lane line of the first direction is determined according to the entry point B, the exit point E, and the intersection point P.
  • a Bezier curve can be used to draw a lane line
  • a spline curve can also be used to accurately draw a lane line
  • the embodiment of the present application does not impose any limitation on a tool for drawing a lane line.
  • the vehicle turning route planning method provided by the embodiment of the present application can predict whether a conflict occurs when different vehicles enter the road intersection area from the first direction and the second direction at the same time and turn according to at least the entry point and the entry direction.
  • an approaching direction point is determined, and a turning route is determined according to the approaching direction point.
  • the technical solutions of the embodiments of the present application can not only automatically predict whether a conflict will occur during the turning process of the vehicle, but also automatically generate a new entry direction point, which is used as the key to determine the turning route. point, the turning route can be optimized so that the generated turning route does not conflict with other turning routes.
  • the vehicle turning route planning method provided by the embodiments of the present application can not only replace the manual labeling of turning routes in high-precision maps in the related art, reduce the cost of generating turning routes, and improve the efficiency of generating turning routes, but also can provide on-site route planning for unmanned vehicles. Reliable technical solutions.
  • Another aspect of the present application also provides a high-precision map labeling method, including:
  • the turning route is marked on the high-precision map.
  • the turning route planning method can be applied to the high-precision map labeling, which can replace the manual labeling method, improve the labeling efficiency and reduce the labeling cost.
  • Another aspect of the present application also provides a vehicle driving control method, comprising:
  • the vehicle is controlled to follow the turning route.
  • the embodiment of the present application can apply the turning route planning method to the on-site route planning of the unmanned vehicle, and can quickly and accurately provide the unmanned vehicle with a turning route that avoids conflicts.
  • the device 1500 includes:
  • an information determination module 1501 configured to respectively determine the entry point, the exit point and the entry direction of the entry point entering the road intersection area from the first direction and the second direction;
  • the conflict prediction module 1503 is configured to predict whether different vehicles enter the road intersection area from the first direction and the second direction at the same time and turn according to at least the entry point and the entry direction. conflict;
  • the route determination module 1505 is configured to determine an entry direction point in the road intersection area according to the entry point, the exit point and the entry direction when the prediction result is a conflict.
  • the approach point defines the turning route.
  • the conflict prediction module is specifically used for:
  • the left-turn in the first direction and the second direction are respectively made
  • the end point of the right lane line of the lane to be turned and its entry direction are taken as the entry point and its entry direction;
  • the conflict prediction module is further configured to: include:
  • the conflict prediction module is further configured to: include:
  • the conflict prediction module is specifically used for:
  • Pre-fitting turning lane lines in the first direction and the second direction are respectively determined, and the pre-fitting turning lane lines are determined according to the entry point, the exit point and the intermediate point, wherein the The entry point includes the end point of the rightmost or leftmost lane line, and the intermediate point includes the ray extending from the entry point in the entry direction and the exit point extending in the opposite direction in the exit direction. the intersection point;
  • the route determination module is specifically configured to include:
  • a left-turn curve is determined according to the entry point in the first direction, the exit point, and the at least one entry direction point, and a left-turn curve on the other side of the left-turn route is determined according to the left-turn curve.
  • the route determination module is specifically configured to include:
  • a left-turn curve is determined according to the entry point in the first direction, the exit point, and the at least one entry direction point, and a left-turn curve on the other side of the left-turn route is determined according to the left-turn curve.
  • the route determination module is also used for:
  • a left turn curve is determined according to the entry point in the first direction, the exit point, the intersection of the third ray and the fourth ray, and the at least one entry direction point.
  • the root route determination module is specifically used for:
  • a turning curve is determined according to the entry point in the first direction, the exit point, and the at least one entry direction point, and a turning curve on the other side of the turning route is determined according to the turning curve.
  • Another aspect of the present application further provides a high-precision map labeling device, including the vehicle turning route planning device and labeling module described in any of the above embodiments, wherein,
  • the labeling module is used for labeling the turning route in the high-precision map.
  • Another aspect of the present application further provides a vehicle driving control device, including the vehicle turning route planning device and the vehicle control module according to any of the above embodiments, wherein,
  • the vehicle control module is configured to control the vehicle to travel according to the turning route.
  • Another aspect of the present application further provides a vehicle for driving according to the high-precision map marked by the high-precision map marking method described in the above embodiment, or driving according to the turning route determined by the vehicle driving control method described in the above embodiment .
  • An embodiment of the present application provides an apparatus for planning a turning route of a vehicle.
  • the apparatus includes: a processor and a memory for storing instructions executable by the processor; wherein the processor is configured to execute The above method is implemented when the instruction is executed.
  • Embodiments of the present application provide a non-volatile computer-readable storage medium on which computer program instructions are stored, and when the computer program instructions are executed by a processor, implement the above method.
  • Embodiments of the present application provide a computer program product, including computer-readable codes, or a non-volatile computer-readable storage medium carrying computer-readable codes, when the computer-readable codes are stored in a processor of an electronic device When running in the electronic device, the processor in the electronic device executes the above method.
  • a computer-readable storage medium may be a tangible device that can hold and store instructions for use by the instruction execution device.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing.
  • Computer-readable storage media include: portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable read-only memory (Electrically Programmable Read-Only-Memory, EPROM or flash memory), static random access memory (Static Random-Access Memory, SRAM), portable compact disk read-only memory (Compact Disc Read-Only Memory, CD - ROM), Digital Video Disc (DVD), memory sticks, floppy disks, mechanically encoded devices, such as punch cards or raised structures in grooves on which instructions are stored, and any suitable combination of the foregoing .
  • RAM random access memory
  • ROM read only memory
  • EPROM erasable programmable read-only memory
  • EPROM Errically Programmable Read-Only-Memory
  • SRAM static random access memory
  • portable compact disk read-only memory Compact Disc Read-Only Memory
  • CD - ROM Compact Disc Read-Only Memory
  • DVD Digital Video Disc
  • memory sticks floppy disks
  • the computer readable program instructions or code described herein may be downloaded to various computing/processing devices from a computer readable storage medium, or to an external computer or external storage device over a network such as the Internet, a local area network, a wide area network and/or a wireless network.
  • the network may include copper transmission cables, fiber optic transmission, wireless transmission, routers, firewalls, switches, gateway computers, and/or edge servers.
  • a network adapter card or network interface in each computing/processing device receives computer-readable program instructions from a network and forwards the computer-readable program instructions for storage in a computer-readable storage medium in each computing/processing device .
  • the computer program instructions used to perform the operations of the present application may be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or in one or more source or object code written in any combination of programming languages, including object-oriented programming languages such as Smalltalk, C++, etc., and conventional procedural programming languages such as the "C" language or similar programming languages.
  • the computer readable program instructions may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server implement.
  • the remote computer can be connected to the user's computer through any kind of network—including a Local Area Network (LAN) or a Wide Area Network (WAN)—or, can be connected to an external computer (e.g. use an internet service provider to connect via the internet).
  • electronic circuits such as programmable logic circuits, Field-Programmable Gate Arrays (FPGA), or Programmable Logic Arrays (Programmable Logic Arrays), are personalized by utilizing state information of computer-readable program instructions.
  • Logic Array, PLA the electronic circuit can execute computer readable program instructions to implement various aspects of the present application.
  • These computer readable program instructions may be provided to a processor of a general purpose computer, special purpose computer or other programmable data processing apparatus to produce a machine that causes the instructions when executed by the processor of the computer or other programmable data processing apparatus , resulting in means for implementing the functions/acts specified in one or more blocks of the flowchart and/or block diagrams.
  • These computer readable program instructions can also be stored in a computer readable storage medium, these instructions cause a computer, programmable data processing apparatus and/or other equipment to operate in a specific manner, so that the computer readable medium storing the instructions includes An article of manufacture comprising instructions for implementing various aspects of the functions/acts specified in one or more blocks of the flowchart and/or block diagrams.
  • Computer readable program instructions can also be loaded onto a computer, other programmable data processing apparatus, or other equipment to cause a series of operational steps to be performed on the computer, other programmable data processing apparatus, or other equipment to produce a computer-implemented process , thereby causing instructions executing on a computer, other programmable data processing apparatus, or other device to implement the functions/acts specified in one or more blocks of the flowcharts and/or block diagrams.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of instructions, which comprises one or more functions for implementing the specified logical function(s) executable instructions.
  • the functions noted in the blocks may occur out of the order noted in the figures. For example, two blocks in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.
  • each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations can be implemented in hardware (eg, circuits or ASICs (Application) that perform the corresponding functions or actions. Specific Integrated Circuit, application-specific integrated circuit)), or can be implemented by a combination of hardware and software, such as firmware.

Abstract

一种车辆转弯路线规划方法及装置(1500),包括:分别确定从第一方向和第二方向进入道路交汇区域的驶入点、驶出点及所述驶入点的驶入方向(S101);至少根据驶入点及驶入方向,预测不同车辆同时从第一方向和第二方向驶入道路交汇区域并转弯的情况下是否产生冲突(S103);在预测结果为产生冲突的情况下,根据驶入点、驶出点及驶入方向在道路交汇区域内确定驶入方向点,并根据驶入方向点确定转弯路线(S105)。

Description

一种车辆转弯路线规划方法及装置
本申请要求于2021年01月12日提交中国专利局、申请号为202110035292.2、申请名称为“一种车辆转弯路线规划方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无人驾驶领域,尤其涉及一种车辆转弯路线规划方法及装置。
背景技术
无人驾驶技术的崛起与发展为解决城市道路拥堵问题、降低交通安全隐患提供了新的思路。在复杂动态的城市道路环境中,受到出行目的与交通流量的影响,不同的交通参与者之间不可避免地产生时间或空间上的冲突。在无人驾驶中,交通路口的转弯场景中这种冲突比较明显,因此,规划出能够避免冲突的转弯路线显得尤为重要。
转弯路线规划是制作高精地图的关键步骤之一,相关技术中规划转弯路线的方式通常是人工标注和半自动化标注。人工标注的方式通常是制图员根据点云地图进行手工绘制,手工绘制路线不仅费时费力,而且还不能保证路线的光滑度和美观度。半自动化标注的方式通常是自动生成转弯路线的光滑曲线,但是生成过程中不会考虑到转弯路线中的冲突场景,后续还需要人工审核和人工调整。
因此,相关技术中亟需一种能够自动生成且避免冲突的规划转弯路线的方式。
发明内容
有鉴于此,提出了一种车辆转弯路线规划方法及装置。
第一方面,本申请的实施例提供了一种车辆转弯路线规划方法,所述方法包括:
分别确定从第一方向和第二方向进入道路交汇区域的驶入点、驶出点及所述驶入点的驶入方向;
至少根据所述驶入点及所述驶入方向,预测不同车辆同时从所述第一方向和所述第二方向驶入所述道路交汇区域并转弯的情况下是否产生冲突;
在预测结果为产生冲突的情况下,根据所述驶入点、所述驶出点及所述驶入方向在所述道路交汇区域内确定驶入方向点,并根据所述驶入方向点确定转弯路线。
本申请实施例提供的车辆转弯路线规划方法,能够至少根据驶入点和驶入方向,预测不同车辆同时从第一方向和第二方向驶入道路交汇区域并转弯的情况下是否产生冲突,在预测结果为产生冲突的情况下,确定驶入方向点,并根据所述驶入方向点确定转弯路线。由此可见,本申请实施例的技术方案不仅可以实现自动化地预测车辆转弯过程中是否产生冲突,还可以自动化地生成一个新的驶入方向点,所述驶入方向点作为确定转弯路线的关键点,能够优化转弯路线,使得生成的转弯路线不与其他转弯路线产生冲突。本申请实施例提供的车辆转弯路线规划方法不仅可以代替相关技术中手工标注高精地图中转弯路线的方式,降低转弯路线生成成本,提高转弯路线生成效率,还可以为无人车现场规划路线提供可靠的技术方案。
根据第一方面,在第一种可能的实现方式中,所述至少根据所述驶入点及所述驶入方向,预测不同车辆同时从所述第一方向和所述第二方向驶入所述道路交汇区域并转弯的情况下是否产生冲突,包括:
在所述道路交汇区域内设置有所述第一方向和所述第二方向上的左转待转车道的情况下,分别将所述第一方向和所述第二方向上的所述左转待转车道的右车道线的端点及其驶入方向作为驶入点及其驶入方向;
根据所述第一方向和所述第二方向上的所述驶入点以及所述驶入点沿其驶入方向上的延长线之间的位置关系,预测不同车辆同时从所述第一方向和所述第二方向驶入所述道路交汇区域并转弯的情况下是否产生冲突。
本申请实施例提供了在所述第一方向和所述第二方向上有左转待转车道的情况下,如何判断预测是否产生冲突的方式,利用左转待转车道中较易获取的信息,即可以快速确定出是否产生冲突。
根据第一方面,在第二种可能的实现方式中,所述预测不同车辆同时从所述第一方向和所述第二方向驶入所述道路交汇区域并转弯的情况下是否产生冲突,包括:
确定以所述第一方向的驶入点为起点、沿其驶入方向延长的射线;
在所述第二方向的驶入点位于所述射线的左侧的情况下,预测发生冲突。
本申请实施例中,利用到第一方向的驶入点、驶入方向和第二方向的驶入点这些数据,即可以快速获取到是否产生冲突。
根据第一方面,在第三种可能的实现方式中,所述预测不同车辆同时从所述第一方向和所述第二方向驶入所述道路交汇区域并转弯的情况下是否产生冲突,包括:
确定以所述第一方向的驶入点为起点、沿其驶入方向延长的第一射线,以及以所述第二方向的驶入点为起点、沿其驶入方向延长的第二射线;
在确定所述第一射线与所述第二射线相交的情况下,预测发生冲突。
本申请实施例提供了另一种预测有左转待转车道情况下是否产生冲突的方式,同样地,该方式可以利用较少的且容易获取的数据即可以完成冲突预测。
根据第一方面,在第四种可能的实现方式中,所述至少根据所述驶入点及所述驶入方向,预测不同车辆同时从所述第一方向和所述第二方向驶入所述道路交汇区域并转弯的情况下是否产生冲突,包括:
分别确定所述第一方向和所述第二方向的预拟合转弯车道线,所述预拟合转弯车道线根据所述驶入点、所述驶出点和中间点确定,其中,所述驶入点包括最右侧或者最左侧车道线的端点,所述中间点包括所述驶入点沿所述驶入方向延长的射线与所述驶出点沿驶出方向反向延长的射线的交点;
在所述第一方向和所述第二方向的预拟合转弯车道线相交的情况下,预测发生冲突。
本申请实施例提供了通用的转弯冲突预测的方式,尤其适用于没有左转待转车道情况下车辆左转与左转之间的冲突预测、车辆右转与右转之间的冲突预测以及车辆左转与右转之间的冲突预测。
根据第一方面,在第五种可能的实现方式中,所述根据所述驶入点、所述驶出点及所述驶入方向在所述道路交汇区域内确定驶入方向点,并根据所述驶入方向点确定转弯路线,包括:
从连接所述第一方向和所述第二方向的驶入点之间的线段上选取至少一个驶入方向点;
根据所述第一方向的驶入点、所述驶出点、所述至少一个驶入方向点确定左转曲线,或者根据所述第一驶入点、所述驶出点、所述至少一个驶入方向点、所述交点确定左转曲线,并根据所述左转曲线确定左转路线另一侧的左转曲线。
本申请实施例提供了在有左转待转车道且预测有冲突的情况下规划左转路线的方式,在该方式中,可以将所述第一方向和所述第二方向的驶入点连接的线段上的任意一点作为驶入方向点,并根据所述驶入方向点确定左转曲线,由此可见,该方式可以快速有效地规划出避免冲突的左转曲线。
根据第一方面,在第六种可能的实现方式中,所述根据所述驶入点、所述驶出点及所述驶入方向在所述道路交汇区域内确定驶入方向点,并根据所述驶入方向点确定转弯路线,包括:
从所述第一方向和所述第二方向的驶入点、所述第一射线与所述第二射线的交点所组成的三角形中选取出至少一个驶入方向点;
根据所述第一方向的驶入点、所述驶出点、所述至少一个驶入方向点,或者根据所述第一方向的驶入点、所述驶出点、所述第三射线与所述第四射线的交点、所述至少一个驶入方向点确定左转曲线,并根据所述左转曲线确定左转路线另一侧的左转曲线。
本申请实施例提供了在有左转待转车道且预测有冲突的情况下规划左转路线的方式,在该方式中,可以将所述第一方向和所述第二方向的驶入点、所述第一射线与所述第二射线的交点所组成的三角形中的至少一点作为驶入方向点,并根据所述驶入方向点确定左转曲线,由此可见,该方式可以快速有效地规划出避免冲突的左转曲线。
根据第一方面,在第七种可能的实现方式中,所述根据所述第一方向的驶入点、所述驶出点、所述至少一个驶入方向点确定左转曲线,包括:
确定以驶出点为起点、沿驶出方向的反方向延长的第三射线,所述驶出点包括所述驶出方向上最右侧车道线的端点;
确定以所述第一方向的驶入点为起点且向所述第二方向的驶入点延长的第四射线;
确定所述第三射线与所述第四射线的交点;
根据所述第一方向的驶入点、所述驶出点、所述第三射线与所述第四射线的交点、所述至少一个驶入方向点确定左转曲线。
本申请实施例提供了在有左转待转车道且预测有冲突的情况下规划左转路线的方式,在该方式中,进一步地,可以将第三射线与第四射线的交点作为确定左转曲线的其中一点,提高左转曲线的准确性。
根据第一方面,在第八种可能的实现方式中,所述根据所述驶入点、所述驶出点及所述驶入方向在所述道路交汇区域内确定驶入方向点,并根据所述驶入方向点确定转弯路线,包括:
从所述第一方向和所述第二方向的预拟合转弯车道线相交所形成的区域中选取至少一个驶入方向点;
根据所述第一方向的驶入点、所述驶出点以及所述至少一个驶入方向点确定转弯曲线,并根据所述转弯曲线确定转弯路线另一侧的转弯曲线。
本申请实施例针对所述第一方向和所述第二方向的转弯车道线相交的情况下规划转弯路 线的方式。
第二方面,本申请的实施例提供了一种高精地图标注方法,包括:
利用所述第一方面以及所述第一方面任何一种可能的实现方式所提供的所述车辆转弯路线规划方法确定所述转弯路线;
将所述转弯路线标注于高精地图中。
本申请实施例可以将所述转弯路线规划方式应用于高精地图标注中,可以代替人工标注的方式,提高标注效率,降低标注成本。
第三方面,本申请的实施例提供了一种车辆行驶控制方法,包括:
利用所述第一方面以及所述第一方面任何一种可能的实现方式所提供的所述车辆转弯路线规划方法确定所述转弯路线;
控制车辆按照所述转弯路线行驶。
本申请实施例可以将所述转弯路线规划方式应用于无人车现场路线规划中,可以快速、准确地给无人车提供避免冲突的转弯路线。
第四方面,本申请的实施例提供了一种车辆转弯路线规划装置,包括:
信息确定模块,用于分别确定从第一方向和第二方向进入道路交汇区域的驶入点、驶出点及所述驶入点的驶入方向;
冲突预测模块,用于至少根据所述驶入点及所述驶入方向,预测不同车辆同时从所述第一方向和所述第二方向驶入所述道路交汇区域并转弯的情况下是否产生冲突;
路线确定模块,用于在预测结果为产生冲突的情况下,根据所述驶入点、所述驶出点及所述驶入方向在所述道路交汇区域内确定驶入方向点,并根据所述驶入方向点确定转弯路线。
根据第四方面,在第一种可能的实现方式中,所述冲突预测模块,具体用于:
在所述道路交汇区域内设置有所述第一方向和所述第二方向上的左转待转车道的情况下,分别将所述第一方向和所述第二方向上的所述左转待转车道的右车道线的端点及其驶入方向作为驶入点及其驶入方向;
根据所述第一方向和所述第二方向上的所述驶入点以及所述驶入点沿其驶入方向上的延长线之间的位置关系,预测不同车辆同时从所述第一方向和所述第二方向驶入所述道路交汇区域并转弯的情况下是否产生冲突。
根据第四方面,在第二种可能的实现方式中,所述冲突预测模块,还用于:
确定以所述第一方向的驶入点为起点、沿其驶入方向延长的射线;
在所述第二方向的驶入点位于所述射线的左侧的情况下,预测发生冲突。
根据第四方面,在第三种可能的实现方式中,所述冲突预测模块,还用于:
确定以所述第一方向的驶入点为起点、沿其驶入方向延长的第一射线,以及以所述第二方向的驶入点为起点、沿其驶入方向延长的第二射线;
在确定所述第一射线与所述第二射线相交的情况下,预测发生冲突。
根据第四方面,在第四种可能的实现方式中,所述冲突预测模块,具体用于:
分别确定所述第一方向和所述第二方向的预拟合转弯车道线,所述预拟合转弯车道线根据所述驶入点、所述驶出点和中间点确定,其中,所述驶入点包括最右侧或者最左侧车道线的端点,所述中间点包括所述驶入点沿所述驶入方向延长的射线与所述驶出点沿驶出方向反向延长的射线的交点;
在所述第一方向和所述第二方向的预拟合转弯车道线相交的情况下,预测发生冲突。
根据第四方面,在第五种可能的实现方式中,所述路线确定模块,具体用于:
从连接所述第一方向和所述第二方向的驶入点之间的线段上选取至少一个驶入方向点;
根据所述第一方向的驶入点、所述驶出点、所述至少一个驶入方向点确定左转曲线,或者根据所述第一驶入点、所述驶出点、所述至少一个驶入方向点、所述交点确定左转曲线,并根据所述左转曲线确定左转路线另一侧的左转曲线。
根据第四方面,在第六种可能的实现方式中,所述路线确定模块,具体用于:
从所述第一方向和所述第二方向的驶入点、所述第一射线与所述第二射线的交点所组成的三角形中选取出至少一个驶入方向点;
根据所述第一方向的驶入点、所述驶出点、所述至少一个驶入方向点,或者根据所述第一方向的驶入点、所述驶出点、所述第三射线与所述第四射线的交点、所述至少一个驶入方向点确定左转曲线,并根据所述左转曲线确定左转路线另一侧的左转曲线。
根据第四方面,在第七种可能的实现方式中,所述路线确定模块,还用于:
确定以驶出点为起点、沿驶出方向的反方向延长的第三射线,所述驶出点包括所述驶出方向上最右侧车道线的端点;
确定以所述第一方向的驶入点为起点且向所述第二方向的驶入点延长的第四射线;
确定所述第三射线与所述第四射线的交点;
根据所述第一方向的驶入点、所述驶出点、所述第三射线与所述第四射线的交点、所述至少一个驶入方向点确定左转曲线。
根据第四方面,在第八种可能的实现方式中,所述路线确定模块,具体用于:
从所述第一方向和所述第二方向的预拟合转弯车道线相交所形成的区域中选取至少一个驶入方向点;
根据所述第一方向的驶入点、所述驶出点以及所述至少一个驶入方向点确定转弯曲线,并根据所述转弯曲线确定转弯路线另一侧的转弯曲线。
第五方面,本申请的实施例提供了一种高精地图标注装置,包括所述第四方面以及所述第四方面任何一种可能的实现方式提供的车辆转弯路线规划装置和标注模块,其中,
所述标注模块,用于将所述转弯路线标注于高精地图中。
第六方面,本申请的实施例提供了一种车辆行驶控制装置,包括所述第四方面以及所述第四方面任何一种可能的实现方式提供的车辆转弯路线规划装置和车辆控制模块,其中,
所述车辆控制模块,用于控制车辆按照所述转弯路线行驶。
第七方面,本申请的实施例提供了一种车辆,用于按照第二方面提供的高精地图标注方法标注的转弯路线行驶,或者,按照第三方面提供的车辆行驶控制方法确定的转弯路线行驶。
第八方面,本申请的实施例提供了一种车辆转弯路线规划装置,其特征在于,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为执行所述指令时实现上述第一/二/三方面或者第一/二/三方面的多种可能的实现方式中的一种或几种的方法。
第九方面,本申请的实施例提供了一种非易失性计算机可读存储介质,其上存储有计算机程序指令,其特征在于,所述计算机程序指令被处理器执行时实现上述第一/二/三方面或者第一/二/三方面的多种可能的实现方式中的一种或几种的方法。
第十方面,本申请的实施例提供了一种计算机程序产品,包括计算机可读代码,或者承 载有计算机可读代码的非易失性计算机可读存储介质,当所述计算机可读代码在电子设备中运行时,所述电子设备中的处理器执行上述第一/二/三方面或者第一/二/三方面的多种可能的实现方式中的一种或几种的方法。
第十一方面,本申请实施例提供一种芯片,该芯片包括至少一个处理器,该处理器用于运行存储器中存储的计算机程序或计算机指令,以执行上述各方面任一项可能的实现中的方法。
可选的,该芯片还可以包括存储器,该存储器用于存储计算机程序或计算机指令。可选的,该芯片还可以包括通信接口,用于与芯片以外的其他模块进行通信。
可选的,一个或多个芯片可以构成芯片系统。
本申请的这些和其他方面在以下(多个)实施例的描述中会更加简明易懂。
附图说明
包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了本申请的示例性实施例、特征和方面,并且用于解释本申请的原理。
图1是本申请实施例提供的一种车道线规划系统的结构示意图。
图2是本申请实施例提供的另一种车道线规划系统的架构示意图。
图3是本申请实施例提供的一种智能车辆003的功能框图。
图4示出根据本申请一实施例的车辆转弯路线规划的方法流程图。
图5示出根据本申请一实施例的场景示例图。
图6示出根据本申请一实施例的场景示例图。
图7示出根据本申请一实施例的场景示例图。
图8示出根据本申请一实施例的场景示例图。
图9示出根据本申请一实施例的场景示例图。
图10示出根据本申请一实施例的场景示例图。
图11示出根据本申请一实施例的场景示例图。
图12示出根据本申请一实施例的场景示例图。
图13示出根据本申请一实施例的场景示例图。
图14示出根据本申请一实施例的场景示例图。
图15示出根据本申请一实施例的车辆转弯路线规划装置的模块结构示意图。
图16示出根据本申请一实施例的车辆转弯路线规划装置的模块结构示意图。
具体实施方式
以下将参考附图详细说明本申请的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本申请,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本申请同样可以实施。在一些实例中,对于本领 域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本申请的主旨。
为了便于理解本申请实施例,下面先对本申请实施例所基于的其中一种车道线规划系统的结构进行描述。请参见图1,图1是本申请实施例提供的一种车道线规划系统的结构示意图,该系统包括采集装置001和路线规划装置002,其中,采集装置001和路线规划装置002可以通过网络通信,以将采集到的用于规划车道线的原始数据向路线规划装置002发送,由路线规划装置002完成车道线的规划。
采集装置001可以是具有数据采集能力和数据收发能力的电子设备。比如说采集装置001可以是装备有激光雷达、摄像头、全球导航卫星系统(Global Navigation Satellite System,GNSS)、惯性测量单元(Inertial Measurement Unit,IMU)等一个或多种传感器的采集车辆。采集车辆可以收集高精度地图中待标注转弯车道线的路口信息,也即在绘制高精度地图之前,可以通过行驶在各个道路上的采集车辆来收集绘制高精度地图所需要的信息。其中,激光雷达主要用于采集点云数据,因为激光雷达可以精确地反应出位置信息,所以通过激光雷达可以获取路面的宽度、信号灯的高度以及一些其他信息;摄像头主要用于采集路面的标识、车道线等信息;GNSS主要用于记录当前采集点的坐标;IMU主要用于记录采集车辆的角度和加速度信息,用于校正采集车辆的位置和角度。
或者,采集装置001还可以是安装于路口处的路侧单元,路侧单元可以获取覆盖区域内的路口信息,以及监控覆盖区域内的多个智能车辆。路侧单元可以采集到自动驾驶中待规划车道线的路口信息,也即路侧单元可以随时监控路口内的动态,可以将路口的信息向需要通过路口的智能车辆发送。需要说明的是,可以由一个路侧单元来获取路口信息,也可以由多个路侧单元协作配合来获取路口信息,以达到可以获取到与路口连接的所有道路的信息。其中,路侧单元可以是由高增益定向束控读写天线和射频控制器组成。高增益定向束控读写天线是一个微波收发模块,负责信号和数据的发送/接收、调制/解调、编码/解码、加密/解密;射频控制器是控制发射和接收数据以及处理向上位机收发信息的模块。
通过采集装置001可以采集到高精度地图中待标注转弯车道线的路口信息,比如说路口处的道路级数据(也即与路口相连的每个道路的数据)、路口处的车道级数据(也即与路口相连的每个车道的数据)、路口内的障碍物的信息。道路级还可以称为非高精矢量路网数据,用于从道路级精度描述具体的道路。道路级数据是按照道路粒度采集的路网数据,也即包含多条车道的一条车道也只会有一条以路段(link)为单位的矢量数据。矢量数据包括一系列位置坐标点,通常是道路中心线上的一系列位置坐标点;道路级数据还包括道路等级、通行能力、车道数、道路类别、行驶方式、道路宽带等等。车道级数据可以称为高精矢量路网络数据,用于从车道线精度描述具体的道路。具体来说,车道级数据是按照车道线粒度采集的路网数据,可以包括但不限于任意一条道路的车道边缘线信息(包括车道边缘线所在位置的矢量数据)、车道分界线信息(包括车道分界线所在位置的矢量数据)等。障碍物可以为路口内妨碍行驶的物体,障碍物的信息可以是障碍物所在位置的矢量数据,障碍物包括但不限于以下至少一项:路牙、树木、路灯等等。
路线规划装置002可以是具有数据处理能力和数据收发能力的电子设备,可以是实体设备如主机、机架式服务器、刀片式服务器等,也可以是虚拟设备如虚拟机、容器等。路线规划装置002可以分别确定从第一方向和第二方向进入道路交汇区域的驶入点、驶出点及所述驶入点的驶入方向;至少根据所述驶入点及所述驶入方向,预测不同车辆同时从所述第一方 向和所述第二方向驶入所述道路交汇区域并转弯的情况下是否产生冲突;在预测结果为产生冲突的情况下,根据所述驶入点、所述驶出点及所述驶入方向在所述道路交汇区域内确定驶入方向点,并根据所述驶入方向点确定转弯路线。
需要说明的是,当采集装置001为采集车辆时,收集的路口信息可以为高精度地图中待标注转弯车道线的路口信息,路线规划装置002可以为生成高精度地图的设备。当路线规划装置002生成高精度地图后,可以将上述高精度地图发送给智能车辆003,智能车辆003可以根据该高精度地图完成行驶。
当采集装置001为安装于路口处的路侧单元时,收集的路口信息可以为自动驾驶中待规划转弯车道线的路口的信息,请参见图2,图2是本申请实施例提供的另一种车道线规划系统的架构示意图。从图2可以看出,路线规划装置002可以为行驶于路口处的智能车辆003,当智能车辆003接收到路侧单元发送的路口的信息后,根据路口的信息可以规划出不产生冲突的车道线。
需要说明的是,转弯车道线可以包括左转车道线或者右转车道线,本申请实施例不做任何限制。
需要说明的是,可以使用贝塞尔曲线来绘制车道线,还可以使用样条曲线来确绘制车道线,本申请实施例对于绘制车道线的工具不做任何限制。
基于上述车道线规划系统架构,本申请实施例提供了一种应用于上述车道线规划系统架构中的智能车辆003。请参见图3,图3是本申请实施例提供的一种智能车辆003的功能框图。在一个实施例中,可以将智能车辆003配置为完全或部分地自动驾驶模式。例如,智能车辆003可以在处于自动驾驶模式中的同时控制自身,并且可通过人为操作来确定车辆及其周边环境的当前状态,确定周边环境中的至少一个其他车辆的可能行为,并确定该其他车辆执行可能行为的可能性相对应的置信水平,基于所确定的信息来控制智能车辆003。在智能车辆003处于自动驾驶模式中时,可以将智能车辆003置为在没有和人交互的情况下操作。
智能车辆003可包括各种子系统,例如行进系统202、传感器系统204、控制系统206、一个或多个外围设备208以及电源210、计算机系统212和用户接口216。可选地,智能车辆003可包括更多或更少的子系统,并且每个子系统可包括多个元件。另外,智能车辆003的每个子系统和元件可以通过有线或者无线互连。
行进系统202可包括为智能车辆003提供动力运动的组件。在一个实施例中,行进系统202可包括引擎218、能量源219、传动装置220和车轮/轮胎221。引擎218可以是内燃引擎、电动机、空气压缩引擎或其他类型的引擎组合,例如气油发动机和电动机组成的混动引擎,内燃引擎和空气压缩引擎组成的混动引擎。引擎218将能量源219转换成机械能量。
能量源219的示例包括汽油、柴油、其他基于石油的燃料、丙烷、其他基于压缩气体的燃料、乙醇、太阳能电池板、电池和其他电力来源。能量源219也可以为智能车辆003的其他系统提供能量。
传动装置220可以将来自引擎218的机械动力传送到车轮221。传动装置220可包括变速箱、差速器和驱动轴。在一个实施例中,传动装置220还可以包括其他器件,比如离合器。其中,驱动轴可包括可耦合到一个或多个车轮221的一个或多个轴。
传感器系统204可包括感测关于智能车辆003周边的环境的信息的若干个传感器。例如, 传感器系统204可包括全球定位系统222(定位系统可以是GPS系统,也可以是北斗系统或者其他定位系统)、惯性测量单元(inertial measurement unit,IMU)224、雷达226、激光测距仪228以及相机230。传感器系统204还可包括被监视智能车辆003的内部系统的传感器(例如,车内空气质量监测器、燃油量表、机油温度表等)。来自这些传感器中的一个或多个的传感器数据可用于检测对象及其相应特性(位置、形状、方向、速度等)。这种检测和识别是自主智能车辆003的安全操作的关键功能。
定位系统222可用于估计智能车辆003的地理位置。IMU 224用于基于惯性加速度来感测智能车辆003的位置和朝向变化。在一个实施例中,IMU 224可以是加速度计和陀螺仪的组合。例如:IMU 224可以用于测量智能车辆003的曲率。
雷达226可利用无线电信号来感测智能车辆003的周边环境内的物体。在一些实施例中,除了感测物体以外,雷达226还可用于感测物体的速度和/或前进方向。
激光测距仪228可利用激光来感测智能车辆003所位于的环境中的物体。在一些实施例中,激光测距仪228可包括一个或多个激光源、激光扫描器以及一个或多个检测器,以及其他系统组件。
相机230可用于捕捉智能车辆003的周边环境的多个图像。相机230可以是静态相机或视频相机。
控制系统206为控制智能车辆003及其组件的操作。控制系统206可包括各种元件,其中包括转向系统232、油门234、制动单元236、传感器融合算法238、计算机视觉系统240、路线控制系统242以及障碍物避免系统244。
转向系统232可操作来调整智能车辆003的前进方向。例如在一个实施例中可以为方向盘系统。
油门234用于控制引擎218的操作速度并进而控制智能车辆003的速度。
制动单元236用于控制智能车辆003减速。制动单元236可使用摩擦力来减慢车轮221。在其他实施例中,制动单元236可将车轮221的动能转换为电流。制动单元236也可采取其他形式来减慢车轮221转速从而控制智能车辆003的速度。
计算机视觉系统240可以操作来处理和分析由相机230捕捉的图像以便识别智能车辆003周边环境中的物体和/或特征。所述物体和/或特征可包括交通信号、道路边界和障碍物。计算机视觉系统240可使用物体识别算法、运动中恢复结构(Structure from Motion,SFM)算法、视频跟踪和其他计算机视觉技术。在一些实施例中,计算机视觉系统240可以用于为环境绘制地图、跟踪物体、估计物体的速度等等。
路线控制系统242用于确定智能车辆003的行驶路线。在一些实施例中,路线控制系统242可结合来自传感器238、GPS 222和一个或多个预定地图的数据以为智能车辆003确定行驶路线。
障碍物避免系统244用于识别、评估和避免或者以其他方式越过智能车辆003的环境中的潜在障碍物。
当然,在一个实例中,控制系统206可以增加或替换地包括除了所示出和描述的那些以外的组件。或者也可以减少一部分上述示出的组件。
智能车辆003通过外围设备208与外部传感器、其他车辆、其他计算机系统或用户之间进行交互。外围设备208可包括无线通信系统246、车载电脑248、麦克风250和/或扬声器 252。
在一些实施例中,外围设备208提供智能车辆003的用户与用户接口216交互的手段。例如,车载电脑248可向智能车辆003的用户提供信息。用户接口216还可操作车载电脑248来接收用户的输入。车载电脑248可以通过触摸屏进行操作。在其他情况中,外围设备208可提供用于智能车辆003与位于车内的其它设备通信的手段。例如,麦克风250可从智能车辆003的用户接收音频(例如,语音命令或其他音频输入)。类似地,扬声器252可向智能车辆003的用户输出音频。
无线通信系统246可以直接地或者经由通信网络来与一个或多个设备无线通信。例如,无线通信系统246可使用3G蜂窝通信,例如CDMA、EVD0、GSM/GPRS,或者4G蜂窝通信,例如LTE。或者5G蜂窝通信。无线通信系统246可利用WiFi与无线局域网(wireless local area network,WLAN)通信。在一些实施例中,无线通信系统246可利用红外链路、蓝牙或ZigBee与设备直接通信。其他无线协议,例如:各种车辆通信系统,例如,无线通信系统246可包括一个或多个专用短程通信(dedicated short range communications,DSRC)设备,这些设备可包括车辆和/或路边台站之间的公共和/或私有数据通信。
电源210可向智能车辆003的各种组件提供电力。在一个实施例中,电源210可以为可再充电锂离子或铅酸电池。这种电池的一个或多个电池组可被配置为电源为智能车辆003的各种组件提供电力。在一些实施例中,电源210和能量源219可一起实现,例如一些全电动车中那样。
智能车辆003的部分或所有功能受计算机系统212控制。计算机系统212可包括至少一个处理器213,处理器213执行存储在例如数据存储装置214这样的非暂态计算机可读介质中的指令215。计算机系统212还可以是采用分布式方式控制智能车辆003的个体组件或子系统的多个计算设备。
处理器213可以是任何常规的处理器,诸如商业可获得的CPU。替选地,该处理器可以是诸如ASIC或其它基于硬件的处理器的专用设备。尽管图3功能性地图示了处理器、存储器、和在相同块中的计算机120的其它元件,但是本领域的普通技术人员应该理解该处理器、计算机、或存储器实际上可以包括可以或者可以不存储在相同的物理外壳内的多个处理器、计算机、或存储器。例如,存储器可以是硬盘驱动器或位于不同于计算机120的外壳内的其它存储介质。因此,对处理器或计算机的引用将被理解为包括对可以或者可以不并行操作的处理器或计算机或存储器的集合的引用。不同于使用单一的处理器来执行此处所描述的步骤,诸如转向组件和减速组件的一些组件每个都可以具有其自己的处理器,所述处理器只执行与特定于组件的功能相关的计算。
在此处所描述的各个方面中,处理器可以位于远离该车辆并且与该车辆进行无线通信。在其它方面中,此处所描述的过程中的一些在布置于车辆内的处理器上执行而其它则由远程处理器执行,包括采取执行单一操纵的必要步骤。
在一些实施例中,数据存储装置214可包含指令215(例如,程序逻辑),指令215可被处理器213执行来执行智能车辆003的各种功能,包括以上描述的那些功能。数据存储装置224也可包含额外的指令,包括向推进系统202、传感器系统204、控制系统206和外围设备208中的一个或多个发送数据、从其接收数据、与其交互和/或对其进行控制的指令。
除了指令215以外,存储器214还可存储数据,例如道路地图、路线信息,车辆的位置、 方向、速度以及其它这样的车辆数据,以及其他信息。这种信息可在智能车辆003在自主、半自主和/或手动模式中操作期间被智能车辆003和计算机系统212使用。
用户接口216,用于向智能车辆003的用户提供信息或从其接收信息。可选地,用户接口216可包括在外围设备208的集合内的一个或多个输入/输出设备,例如无线通信系统246、车车在电脑248、麦克风250和扬声器252。
计算机系统212可基于从各种子系统(例如,无线通信系统246、行进系统202、传感器系统204和控制系统206)以及从用户接口216接收的输入来控制智能车辆003的功能。例如,计算机系统212可利用来自无线通信系统246的输入以便规划出在自动驾驶中需要通过的路口处的车道线,通过该车道线可以避免碰到路口处的障碍物。在一些实施例中,计算机系统212可操作来对智能车辆003及其子系统的许多方面提供控制。
可选的,计算机系统212还可以从其它计算机系统接收信息,或者将信息转移到其它计算机系统。例如,计算机系统212可以将从智能车辆003的传感器系统204收集的传感器数据转移到远程的另一个计算机系统,并交由另一个计算机系统对此数据进行处理,比如由另一个计算机系统对传感器系统204中各个传感器采集的数据进行数据融合,然后再将融合后得到的数据或者分析结果返回至计算机系统212。可选的,来自计算机系统212的数据可以经由网络被传送到云侧的计算机系统用于进一步的处理。网络以及中间节点可以包括各种配置和协议,包括因特网、万维网、内联网、虚拟专用网络、广域网、局域网、使用一个或多个公司的专有通信协议的专用网络、以太网、WiFi和HTTP、以及前述的各种组合。这种通信可以由能够传送数据到其它计算机和从其它计算机传送数据的任何设备,诸如调制解调器和无线接口。
如上所述,在一些可能的实施例中,与该智能车辆003中的计算机系统212进行交互的远程计算机系统可以包括具有多个计算机的服务器,例如负载均衡服务器群,为了从计算机系统212接收、处理并传送数据的目的,其与网络的不同节点交换信息。该服务器可以有处理器、存储器、指令和数据等等。例如,在本申请的一些实施例中,该服务器的数据可以包括提供天气相关的信息。例如,服务器可以接收、监视、存储、更新、以及传送与天气相关的各种信息。该信息可以包括例如以报告形式、雷达信息形式、预报形式等的降水、云、和/或温度信息。该服务器的数据还可以包括高精度地图数据、前方路段的交通信息(例如实时的交通拥挤状况和交通事故发生情况等等),服务器可以将该高精度地图数据和交通信息等发送给计算机系统212,从而可以辅助智能车辆003003更好地进行自动驾驶,保证驾驶安全。
可选地,上述这些组件中的一个或多个可与智能车辆003分开安装或关联。例如,数据存储装置214可以部分或完全地与智能车辆003分开存在。上述组件可以按有线和/或无线方式来通信地耦合在一起。
可选地,上述组件只是一个示例,实际应用中,上述各个模块中的组件有可能根据实际需要增添或者删除,图3不应理解为对本申请实施例的限制。
在道路行进的自动驾驶汽车,如上面的智能车辆003,可以识别其周围环境内的物体以确定对当前速度的调整。所述物体可以是其它车辆、交通控制设备、或者其它类型的物体。在一些示例中,可以独立地考虑每个识别的物体,并且基于物体的各自的特性,诸如它的当前速度、加速度、与车辆的间距等,可以用来确定自动驾驶汽车所要调整的速度。
可选地,自动驾驶汽车智能车辆003或者与自动驾驶智能车辆003相关联的计算设备(如 图3的计算机系统212、计算机视觉系统240、存储器214)可以基于所识别的物体的特性和周围环境的状态(例如,交通、雨、道路上的冰、等等)来预测所述识别的物体的行为。可选地,每一个所识别的物体都依赖于彼此的行为,因此还可以将所识别的所有物体全部一起考虑来预测单个识别的物体的行为。智能车辆003能够基于预测的所述识别的物体的行为来调整它的速度。换句话说,自动驾驶汽车能够基于所预测的物体的行为来确定车辆将需要调整到(例如,加速、减速、或者停止)什么稳定状态。在这个过程中,也可以考虑其它因素来确定智能车辆003的速度,诸如,智能车辆003在行驶的道路中的横向位置、道路的曲率、静态和动态物体的接近度等等。
除了提供调整自动驾驶汽车的速度的指令之外,计算设备还可以提供修改智能车辆003的转向角的指令,以使得自动驾驶汽车遵循给定的轨迹和/或维持与自动驾驶汽车附近的物体(例如,道路上的相邻车道中的轿车)的安全横向和纵向距离。
上述智能车辆003可以为轿车、卡车、摩托车、公共汽车、船、飞机、直升飞机、割草机、娱乐车、游乐场车辆、施工设备、电车、高尔夫球车、火车、和手推车等,本申请实施例不做特别的限定。
可以理解的是,图3中的智能车辆003功能图只是本申请实施例中的一种示例性的实施方式,本申请实施例中的智能车辆003包括但不仅限于以上结构。
下面结合附图对本申请所述的车辆转弯路线规划方法进行详细的说明。图4是本申请提供的车辆转弯路线规划方法的一种实施例的方法流程示意图。虽然本申请提供了如下述实施例或附图所示的方法操作步骤,但基于常规或者无需创造性的劳动在所述方法中可以包括更多或者更少的操作步骤。在逻辑性上不存在必要因果关系的步骤中,这些步骤的执行顺序不限于本申请实施例提供的执行顺序。所述方法在实际中的车辆转弯路线规划过程中或者装置执行时,可以按照实施例或者附图所示的方法顺序执行或者并行执行(例如并行处理器或者多线程处理的环境)。
具体的,本申请提供的车辆转弯路线规划方法的一种实施例如图4所示,所述方法可以包括:
S101:分别确定从第一方向和第二方向进入道路交汇区域的驶入点、驶出点及所述驶入点的驶入方向。
本申请实施例中,所述道路交汇区域可以包括多条道路交汇的区域,车辆进入所述道路交汇区域之后,可以根据交通灯的指示直行或者转弯,避免车辆之间产生冲突。图5和图6展示了道路交汇区域501的路面示意图,如图所示,道路交汇区域501分别与多条道路连接,每条道路上还包括多条车道线。在本申请实施例中,所述第一方向和所述第二方向可以包括进入所述道路交汇区域501的两条道路的通行方向,所述第一方向和所述第二方向例如可以包括两个相对的方向,例如图5所示的第一方向和第二方向为相对方向,也可以包括两个相邻的方向,例如图9和图10所示的第一方向和第二方向为相邻方向,本申请在此不做限制。
本申请实施例中,可以分别确定从所述第一方向和所述第二方向进入所述道路交汇区域501的驶入点、驶出点以及所述驶入点的驶入方向。车辆在所述道路交汇区域501中转弯的情况包括左转和右转,其中,左转情况还可以划分为有左转待转车道和没有左转待转车道的情况。
在本申请的一个实施例中,在有左转待转车道的情况下,可以将所述左转待转车道的右车道线的端点及其驶入方向作为驶入点及其驶入方向。其中,所述右车道线的端点的驶入方向可以包括所述端点沿所述右车道线的切线方向。如图5所示,第一方向与第二方向为相对方向,且所述第一方向和所述第二方向在所述道路交汇区域501内均设置有左转待转车道503。在规划所述第一方向和所述第二方向的转弯路线的情况下,若最接近对方的车道线不产生冲突,则生成的转弯路线不会产生冲突。基于此,在本申请的一个实施例中,在所述道路交汇区域501内设置有所述第一方向和所述第二方向上的左转待转车道503的情况下,可以分别将所述第一方向和所述第二方向上的所述左转待转车道503的右车道线的端点及其驶入方向作为驶入点及其驶入方向。如图5所示,在所述第一方向上,可以将B点以及B点的驶入方向作为驶入点和驶入方向,在所述第二方向上,可以将C点以及C点的驶入方向作为驶入点和驶入方向。本申请的另一个实施例中,在没有左转待转车道的情况下,可以将左转车道的最右侧车道的端点作为驶入点,对应的驶入方向即为车道的通行方向。如图6所示,在没有左转待转车道的路面状况下,可以将B点作为所述第一方向的驶入点,对应的驶出点即为所述第一方向。
在本申请实施例中,所述驶出点为转弯车道线的终点,同样地,基于若最接近对方的车道线不产生冲突,则生成的转弯路线不会产生冲突的前提,在左转弯的情况下,可以将驶出方向上最右侧车道线的端点作为所述驶出点。如图5所示,可以将E点作为从所述第一方向左转并驶出所述道路交汇区域501的驶出点。当然,在其他实施例中,还可以将所述道路交汇区域501与驶出车道之间的边界区域中的任意一点作为驶出点,本申请在此不做限制。
S103:至少根据所述驶入点及所述驶入方向,预测不同车辆同时从所述第一方向和所述第二方向驶入所述道路交汇区域并转弯的情况下是否产生冲突。
本申请实施例中,在确定转弯路线的过程中,可以首先预测车辆同时从所述第一方向和所述第二方向驶入所述道路交汇区域501并转弯的情况下是否产生冲突,进而对确定出不冲突的转弯路线具有重要作用。下面通过多个实施例对不同转弯场景下预测是否产生冲突进行说明。
在本申请的一个实施例中,所述至少根据所述驶入点及所述驶入方向,预测不同车辆同时从所述第一方向和所述第二方向驶入所述道路交汇区域501并转弯的情况下是否产生冲突,可以包括:
S201:在所述道路交汇区域内设置有所述第一方向和所述第二方向上的左转待转车道的情况下,分别将所述第一方向和所述第二方向上的所述左转待转车道的右车道线的端点及其驶入方向作为驶入点及其驶入方向。
S203:根据所述第一方向和所述第二方向上的所述驶入点以及所述驶入点沿其驶入方向上的延长线之间的位置关系,预测不同车辆同时从所述第一方向和所述第二方向驶入所述道路交汇区域并转弯的情况下是否产生冲突。
本申请实施例提供了所述道路交汇区域501内设置有所述第一方向和所述第二方向上的左转待转车道503的情况下预测是否产生冲突的方式。具体地,可以根据所述第一方向和所述第二方向上的所述驶入点以及所述驶入点沿其驶入方向上的延长线之间的位置关系,预测是否产生冲突。下面通过一个具体的示例说明上述实施例,图7是图5的简易示意图,其中, 图7中灰色区域为道路交汇区域501。图7中的B点为所述第一方向的驶入点,图7中B点沿左转车道线的切线为B点的驶入方向,B点沿其驶入方向的延长线为图7中的第一射线701。图7中的C点为所述第二方向的驶入点,同样地,C点沿左转车道线的切线为C点的驶入方向,C点沿其驶入方向的延长线为图7中的第二射线703。也就是说,在本申请实施例中,可以根据B点、以B点为起点的第一射线701、C点、以C点为起点的第二射线703之间的位置关系,预测所述第一方向和所述第二方向上的左转待转车道的情况下预测是否产生冲突。
本申请实施例中,在有左转待转车道的情况下,驶入点及其驶入方向是比较容易获取的数据,根据简单的数据即可以预测出是否产生冲突,具有较高的预测效率。
在本申请的一个实施例中,所述预测不同车辆同时从所述第一方向和所述第二方向驶入所述道路交汇区域并转弯的情况下是否产生冲突,可以包括:
S301:确定以所述第一方向的驶入点为起点、沿其驶入方向延长的射线。
S303:在所述第二方向的驶入点位于所述射线的左侧的情况下,预测发生冲突。
下面通过图7说明上述实施例,如图7所示,C点为所述第二方向的驶入点,可以发现,C点在所述第一射线701的左侧,那么,可以预测得到不同车辆同时从所述第一方向和所述第二方向驶入所述道路交汇区域501并转弯的情况下产生冲突。
在本申请的一个实施例中,所述预测不同车辆同时从所述第一方向和所述第二方向驶入所述道路交汇区域并转弯的情况下是否产生冲突,可以包括:
S401:确定以所述第一方向的驶入点为起点、沿其驶入方向延长的第一射线,以及以所述第二方向的驶入点为起点、沿其驶入方向延长的第二射线;
S403:在确定所述第一射线与所述第二射线相交的情况下,预测发生冲突。
下面通过图7说明上述实施例,如图7所示,所述第一射线701为以B点为起点的浅色虚线箭头,所述第二射线703为以C点为起点的浅色虚线箭头。如图7所示,所述第一射线701与所述第二射线703相交于H点,那么,可以预测得到不同车辆同时从所述第一方向和所述第二方向驶入所述道路交汇区域501并转弯的情况下产生冲突。
由此可见,图7中的道路状况同时满足上述两个判断冲突的条件,需要说明的是,在本申请技术方案中,在有左转待转车道的情况下,满足上述任一实施例判断冲突的条件的情况下,均可以预测得到不同车辆同时从所述第一方向和所述第二方向驶入所述道路交汇区域并转弯的情况下产生冲突。
在本申请的另一个实施例中,所述至少根据所述驶入点及所述驶入方向,预测不同车辆同时从所述第一方向和所述第二方向驶入所述道路交汇区域501并转弯的情况下是否产生冲突,包括:
S501:分别确定所述第一方向和所述第二方向的预拟合转弯车道线,所述预拟合转弯车道线根据所述驶入点、所述驶出点和中间点确定,其中,所述驶入点包括最右侧或者最左侧车道线的端点,所述中间点包括所述驶入点沿所述驶入方向延长的射线与所述驶出点沿驶出方向反向延长的射线的交点;
S503:在所述第一方向和所述第二方向的预拟合转弯车道线相交的情况下,预测发生冲突。
本申请实施例提供了通用的预测冲突的方式,尤其适用于所述第一方向和所述第二方向上没有左转待转车道时左转与左转之间以及判断左转与右转、右转与右转之间是否冲突的应 用场景。在本申请实施例中,首先可以根据所述驶入点、所述驶出点和中间点分别确定所述第一方向和所述第二方向上的预拟合转弯车道线。在一个实施例中,所述中间点可以包括所述驶入点沿所述驶入方向延长的射线与所述驶出点沿驶出方向反向延长的射线的交点。在其他实施例中,所述中间点的数量不做限制,还可以包括所述道路交汇区域501中的任意点,本申请在此不做限制。本申请实施例中,可以采用贝塞尔曲线、样条曲线等绘图方式生成所述预拟合转弯车道线,本申请在此不做限制。图8展示了在没有左转待转车道的情况下从所述第一方向和所述第二方向生成的预拟合转弯车道线801和预拟合转弯车道线803,如图8所示,所述第一方向和所述第二方向上的预拟合转弯车道线801和预拟合转弯车道线803相交,由此可以预测发生冲突。图9展示了第一方向从左转、第二方向右转的场景下生成的预拟合转弯车道线901和预拟合转弯车道线903,如图9所示,所述第一方向的预拟合左转车道线和所述第二方向的预拟合右转车道线901和预拟合转弯车道线903相交,由此可以预测发生冲突。图10展示了从所述第一方向右转和所述第二方向右转生成的预拟合转弯车道线1001和预拟合转弯车道线1003,如图10所示,所述第一方向和所述第二方向上的预拟合转弯车道线1001和预拟合转弯车道线1003相交,由此可以预测发生冲突。
S105:在预测结果为产生冲突的情况下,根据所述驶入点、所述驶出点及所述驶入方向在所述道路交汇区域内确定驶入方向点,并根据所述驶入方向点确定转弯路线。
本申请实施例中,在预测结果为产生冲突的情况下,可以根据所述驶入点、所述驶出点即所述驶入方向在所述道路交汇区域501内驶入方向点。其中,所述驶入方向点作为转弯路线的调整关键点,可以避免生成的转弯路线之间产生冲突。
在本申请的一个实施例中,所述根据所述驶入点、所述驶出点及所述驶入方向在所述道路交汇区域内确定驶入方向点,并根据所述驶入方向点确定转弯路线,可以包括:
S601:从连接所述第一方向和所述第二方向的驶入点之间的线段上选取至少一个驶入方向点;
S603:根据所述第一方向的驶入点、所述驶出点、所述至少一个驶入方向点确定左转曲线,并根据所述左转曲线确定左转路线另一侧的左转曲线。
下面通过图7说明上述实施例方法,从连接两个方向上的驶入点B和C的线段上选取至少一个驶入方向点,图7中选择驶入方向点G。在本申请实施例中,可以根据第一方向上的驶入点B、所述驶出点E和所述驶入方向点G确定左转曲线。在一些实施例中,可以利用贝塞尔曲线、样条曲线等绘图方式连接B、E、G,生成所述左转曲线,本申请在此对曲线绘制方式不做限制。在生成以B点一侧的左转曲线之后,可以根据所述左转曲线确定左转路线中A点侧的左转曲线。在本申请的一个实施例中,可以确定与BC相平行的射线,并在射线上取点I,使得AI的长度与BG的长度相等。同样地,确定以另一侧的驶出点F为起点,沿驶出方向的反方向延长的射线,该射线与射线AI相交于M点。基于此,可以利用同样的曲线绘制方式连接A、I、F生成另一侧的左转曲线,当然还可以连接A、I、M、F生成另一侧的左转曲线。
在本申请的另一个实施例中,所述根据所述第一方向的驶入点、所述驶出点、所述至少一个驶入方向点确定左转曲线,可以包括:
S701:确定以驶出点为起点、沿驶出方向的反方向延长的第三射线,所述驶出点包括所 述驶出方向上最右侧车道线的端点;
S703:确定以所述第一方向的驶入点为起点且向所述第二方向的驶入点延长的第四射线;
S705:确定所述第三射线与所述第四射线的交点;
S707:根据所述第一方向的驶入点、所述驶出点、所述第三射线与所述第四射线的交点、所述至少一个驶入方向点确定左转曲线。
下面通过图7说明上述实施例,在有左转待转车道的情况下,首先确定以驶出点E为起点、沿驶出方向的反方向延长的第三射线705。确定以所述第一方向的驶入点B为起点且向所述第二方向的驶入点C延长的第四射线707。确定所述第三射线705与所述第四射线707的交点L。在本申请的一个实施例中,可以根据第一方向上的驶入点B、所述驶出点E、所述驶入方向点G以及所述交点L确定左转曲线。在上一个实施例的基础上,增加交点L确定所述左转曲线,可以进一步提升所述左转曲线的精确性。
本申请实施例提供的生成左转路线的方式不仅适用于第二驶入点在以所述第一方向的驶入点为起点、沿其驶入方向延长的射线的左侧的冲突情况,也可以适用于所述第一射线与所述第二射线相交的冲突情况。
在本申请的另一个实施例中,所述根据所述驶入点、所述驶出点及所述驶入方向在所述道路交汇区域内确定驶入方向点,并根据所述驶入方向点确定转弯路线,包括:
S801:从所述第一方向和所述第二方向的驶入点、所述第一射线与所述第二射线的交点所组成的三角形中选取出至少一个驶入方向点;
S803:根据所述第一方向的驶入点、所述驶出点、所述至少一个驶入方向点,或者根据所述第一方向的驶入点、所述驶出点、所述第三射线与所述第四射线的交点、所述至少一个驶入方向点确定左转曲线,并根据所述左转曲线确定左转路线另一侧的左转曲线。
本申请实施例适用于有左转待转路线,且所述第一方向的驶入点沿其驶入方向延长的射线与所述第二方向的驶入点延期驶入方向延长的射线相交的情况。如图7所示,在本申请实施例中,可以从所述第一方向的驶入点B、所述第二方向的驶入点C和所述第一射线701和所述第二射线703的交点H所组成的三角形BCH中选取出至少一个驶入方向点。在本申请实施例中,可以根据第一方向上的驶入点B、所述驶出点E和所述至少一个驶入方向点确定左转曲线。同样地,在本申请的另一个实施例中,可以根据第一方向上的驶入点B、所述驶出点E、所述至少一个驶入方向点G以及所述交点L确定左转曲线。其中所述L的确定方式可以参考S701-S705的描述,在此不再赘述。同样地,在生成B点侧的左转曲线之后,可以根据B点侧的左转曲线绘制生成A点侧的左转曲线。在确定A点侧的左转曲线的过程中,可以确定B点与所述至少一个驶入方向点的向量,然后,在A点处利用所述向量确定出A点对应的至少一个驶入方向点,再利用相同的曲线绘制方式绘制生成A点侧的左转曲线。
在本申请的一个实施例中,所述根据所述驶入点、所述驶出点及所述驶入方向在所述道路交汇区域内确定驶入方向点,并根据所述驶入方向点确定转弯路线,可以包括:
S901:从所述第一方向和所述第二方向的预拟合转弯车道线相交所形成的区域中选取至少一个驶入方向点。
S903:根据所述第一方向的驶入点、所述驶出点以及所述至少一个驶入方向点确定转弯曲线,并根据所述转弯曲线确定转弯路线另一侧的转弯曲线。
本申请实施例适用于预拟合转弯车道的场景,在规划该场景下的转弯曲线的过程中,可 以在所述第一方向和所述第二方向的预拟合转弯车道线相交所形成的区域中选取至少一个驶入方向点。如图8所示,所述第一方向和所述第二方向的预拟合转弯车道线相交于A、B两点。根据上述实施例提供的技术方案,例如可以在AB下弧形807上选择至少一个点作为所述第一方向的驶入方向点,图8中选择的是C点。另外,还可以在AB上弧形805上选择至少一个点作为所述第二方向的驶入方向点,图8中选择的是D点。在确定驶入方向点之后,可以根据驶入点、驶出点和驶入方向点C和D分别规划得到如图11所示的所述第一方向和所述第二方向的左转曲线。利用相同的方式,可以规划得到如图12所示的所述第一方向的左转曲线和所述第二方向的右转曲线,还可以规划得到如图13所示的所述第一方向的右转曲线和所述第二方向的右转曲线。需要说明的是,所述驶入方向点的数量和位置不限于上述示例,例如还可以确定所述第一方向与所述第二方向的驶入方向点为同一个点,生成的两个转弯车道线相切,不属于冲突的情况。
在本申请实施例中,在预测结果包括不同车辆同时从所述第一方向和所述第二方向驶入所述道路交汇区域501并转弯的情况下不产生冲突的情况下,也可以规划得到转弯路线。在本申请的一个实施例中,在根据所述第一方向和所述第二方向的预拟合转弯车道线预测不产生冲突的情况下,可以将所述第一方向和所述第二方向的预拟合转弯车道线分别作为最终确定的所述第一方向和所述第二方向的转弯车道线。同样地,后续还可以将所述转弯车道线标注于高精地图中,或者控制车辆按照所述转弯车道线行驶。
在本申请的另一个实施例中,在所述第一方向和所述第二方向设置有左转待转车道的情况下,在根据所述第一方向和所述第二方向上的所述驶入点以及所述驶入点沿其驶入方向上的延长线之间的位置关系预测不产生冲突的情况下,可以根据所述驶入点、所述驶出点及所述驶入方向确定转弯路线。
下面通过一个具体的示例说明上述实施例,图14是图5的简易示意图,在确定没有冲突的情况下,在确定第一方向上的转弯车道线的过程中,如图14所示,可以确定以驶出点E为起点、沿驶出方向的反方向延长的第三射线705,以及以驶入点B为起点,沿驶入方向延长的第五射线1401。确定所述第三射线705与所述第五射线1401的交点P,并根据驶入点B、驶出点E、交点P确定所述第一方向的左转车道线。需要说明的是,可以使用贝塞尔曲线来绘制车道线,还可以使用样条曲线来确绘制车道线,本申请实施例对于绘制车道线的工具不做任何限制。
本申请实施例提供的车辆转弯路线规划方法,能够至少根据驶入点和驶入方向,预测不同车辆同时从第一方向和第二方向驶入道路交汇区域并转弯的情况下是否产生冲突,在预测结果为产生冲突的情况下,确定驶入方向点,并根据所述驶入方向点确定转弯路线。由此可见,本申请实施例的技术方案不仅可以实现自动化地预测车辆转弯过程中是否产生冲突,还可以自动化地生成一个新的驶入方向点,所述驶入方向点作为确定转弯路线的关键点,能够优化转弯路线,使得生成的转弯路线不与其他转弯路线产生冲突。本申请实施例提供的车辆转弯路线规划方法不仅可以代替相关技术中手工标注高精地图中转弯路线的方式,降低转弯路线生成成本,提高转弯路线生成效率,还可以为无人车现场规划路线提供可靠的技术方案。
本申请另一方面还提供一种高精地图标注方法,包括:
利用上述任一实施例所述的车辆转弯路线规划方法确定所述转弯路线;
将所述转弯路线标注于高精地图中。
本申请实施例可以将所述转弯路线规划方式应用于高精地图标注中,可以代替人工标注的方式,提高标注效率,降低标注成本。
本申请另一方面还提供一种车辆行驶控制方法,包括:
利用上述任一实施例所述的车辆转弯路线规划方法确定所述转弯路线;
控制车辆按照所述转弯路线行驶。
本申请实施例可以将所述转弯路线规划方式应用于无人车现场路线规划中,可以快速、准确地给无人车提供避免冲突的转弯路线。
本申请另一方面还提供一种车辆转弯路线规划装置,如图15所示,所述装置1500包括:
信息确定模块1501,用于分别确定从第一方向和第二方向进入道路交汇区域的驶入点、驶出点及所述驶入点的驶入方向;
冲突预测模块1503,用于至少根据所述驶入点及所述驶入方向,预测不同车辆同时从所述第一方向和所述第二方向驶入所述道路交汇区域并转弯的情况下是否产生冲突;
路线确定模块1505,用于在预测结果为产生冲突的情况下,根据所述驶入点、所述驶出点及所述驶入方向在所述道路交汇区域内确定驶入方向点,并根据所述驶入方向点确定转弯路线。
可选的,在本申请的一个实施例中,所述冲突预测模块,具体用于:
在所述道路交汇区域内设置有所述第一方向和所述第二方向上的左转待转车道的情况下,分别将所述第一方向和所述第二方向上的所述左转待转车道的右车道线的端点及其驶入方向作为驶入点及其驶入方向;
根据所述第一方向和所述第二方向上的所述驶入点以及所述驶入点沿其驶入方向上的延长线之间的位置关系,预测不同车辆同时从所述第一方向和所述第二方向驶入所述道路交汇区域并转弯的情况下是否产生冲突。
可选的,在本申请的一个实施例中,所述冲突预测模块,还用于:包括:
确定以所述第一方向的驶入点为起点、沿其驶入方向延长的射线;
在所述第二方向的驶入点位于所述射线的左侧的情况下,预测发生冲突。
可选的,在本申请的一个实施例中,所述冲突预测模块,还用于:包括:
确定以所述第一方向的驶入点为起点、沿其驶入方向延长的第一射线,以及以所述第二方向的驶入点为起点、沿其驶入方向延长的第二射线;
在确定所述第一射线与所述第二射线相交的情况下,预测发生冲突。
可选的,在本申请的一个实施例中,所述冲突预测模块,具体用于:
分别确定所述第一方向和所述第二方向的预拟合转弯车道线,所述预拟合转弯车道线根据所述驶入点、所述驶出点和中间点确定,其中,所述驶入点包括最右侧或者最左侧车道线的端点,所述中间点包括所述驶入点沿所述驶入方向延长的射线与所述驶出点沿驶出方向反向延长的射线的交点;
在所述第一方向和所述第二方向的预拟合转弯车道线相交的情况下,预测发生冲突。
可选的,在本申请的一个实施例中,所述路线确定模块,具体用于包括:
从连接所述第一方向和所述第二方向的驶入点之间的线段上选取至少一个驶入方向点;
根据所述第一方向的驶入点、所述驶出点、所述至少一个驶入方向点确定左转曲线,并根据所述左转曲线确定左转路线另一侧的左转曲线。
可选的,在本申请的一个实施例中,所述路线确定模块,具体用于包括:
从所述第一方向和所述第二方向的驶入点、所述第一射线与所述第二射线的交点所组成的三角形中选取出至少一个驶入方向点;
根据所述第一方向的驶入点、所述驶出点、所述至少一个驶入方向点确定左转曲线,并根据所述左转曲线确定左转路线另一侧的左转曲线。
可选的,在本申请的一个实施例中,所述路线确定模块,还用于:
确定以驶出点为起点、沿驶出方向的反方向延长的第三射线,所述驶出点包括所述驶出方向上最右侧车道线的端点;
确定以所述第一方向的驶入点为起点且向所述第二方向的驶入点延长的第四射线;
确定所述第三射线与所述第四射线的交点;
根据所述第一方向的驶入点、所述驶出点、所述第三射线与所述第四射线的交点、所述至少一个驶入方向点确定左转曲线。
可选的,在本申请的一个实施例中,所述根路线确定模块,具体用于:
从所述第一方向和所述第二方向的预拟合转弯车道线相交所形成的区域中选取至少一个驶入方向点;
根据所述第一方向的驶入点、所述驶出点以及所述至少一个驶入方向点确定转弯曲线,并根据所述转弯曲线确定转弯路线另一侧的转弯曲线。
本申请另一方面还提供一种高精地图标注装置,包括上述任一实施例所述的车辆转弯路线规划装置和标注模块,其中,
所述标注模块,用于将所述转弯路线标注于高精地图中。
本申请另一方面还提供一种车辆行驶控制装置,包括上述任一实施例所述的车辆转弯路线规划装置和车辆控制模块,其中,
所述车辆控制模块,用于控制车辆按照所述转弯路线行驶。
本申请另一方面还提供一种车辆,用于按照上述实施例所述的高精地图标注方法标注的高精地图行驶,或者,按照上述实施例所述的车辆行驶控制方法确定的转弯路线行驶。
本申请的实施例提供了一种车辆转弯路线规划装置,如图16所示,所述装置包括:处理器以及用于存储处理器可执行指令的存储器;其中,所述处理器被配置为执行所述指令时实现上述方法。
本申请的实施例提供了一种非易失性计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现上述方法。
本申请的实施例提供了一种计算机程序产品,包括计算机可读代码,或者承载有计算机可读代码的非易失性计算机可读存储介质,当所述计算机可读代码在电子设备的处理器中运行时,所述电子设备中的处理器执行上述方法。
计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以是――但不限于――电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的 例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、可擦式可编程只读存储器(Electrically Programmable Read-Only-Memory,EPROM或闪存)、静态随机存取存储器(Static Random-Access Memory,SRAM)、便携式压缩盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、数字多功能盘(Digital Video Disc,DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。
这里所描述的计算机可读程序指令或代码可以从计算机可读存储介质下载到各个计算/处理设备,或者通过网络、例如因特网、局域网、广域网和/或无线网下载到外部计算机或外部存储设备。网络可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收计算机可读程序指令,并转发该计算机可读程序指令,以供存储在各个计算/处理设备中的计算机可读存储介质中。
用于执行本申请操作的计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码,所述编程语言包括面向对象的编程语言—诸如Smalltalk、C++等,以及常规的过程式编程语言—诸如“C”语言或类似的编程语言。计算机可读程序指令可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络—包括局域网(Local Area Network,LAN)或广域网(Wide Area Network,WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。在一些实施例中,通过利用计算机可读程序指令的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或可编程逻辑阵列(Programmable Logic Array,PLA),该电子电路可以执行计算机可读程序指令,从而实现本申请的各个方面。
这里参照根据本申请实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本申请的各个方面。应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机可读程序指令实现。
这些计算机可读程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机可读程序指令存储在计算机可读存储介质中,这些指令使得计算机、可编程数据处理装置和/或其他设备以特定方式工作,从而,存储有指令的计算机可读介质则包括一个制造品,其包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的各个方面的指令。
也可以把计算机可读程序指令加载到计算机、其它可编程数据处理装置、或其它设备上,使得在计算机、其它可编程数据处理装置或其它设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机、其它可编程数据处理装置、或其它设备上执行的指令实现流程图和/或框图中的一个或多个方框中规定的功能/动作。
附图中的流程图和框图显示了根据本申请的多个实施例的装置、系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。
也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行相应的功能或动作的硬件(例如电路或ASIC(Application Specific Integrated Circuit,专用集成电路))来实现,或者可以用硬件和软件的组合,如固件等来实现。
尽管在此结合各实施例对本发明进行了描述,然而,在实施所要求保护的本发明过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其它变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其它单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
以上已经描述了本申请的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (27)

  1. 一种车辆转弯路线规划方法,其特征在于,包括:
    分别确定从第一方向和第二方向进入道路交汇区域的驶入点、驶出点及所述驶入点的驶入方向;
    至少根据所述驶入点及所述驶入方向,预测不同车辆同时从所述第一方向和所述第二方向驶入所述道路交汇区域并转弯的情况下是否产生冲突;
    在预测结果为产生冲突的情况下,根据所述驶入点、所述驶出点及所述驶入方向在所述道路交汇区域内确定驶入方向点,并根据所述驶入方向点确定转弯路线。
  2. 根据权利要求1所述的方法,其特征在于,所述至少根据所述驶入点及所述驶入方向,预测不同车辆同时从所述第一方向和所述第二方向驶入所述道路交汇区域并转弯的情况下是否产生冲突,包括:
    在所述道路交汇区域内设置有所述第一方向和所述第二方向上的左转待转车道的情况下,分别将所述第一方向和所述第二方向上的所述左转待转车道的右车道线的端点及其驶入方向作为驶入点及其驶入方向;
    根据所述第一方向和所述第二方向上的所述驶入点以及所述驶入点沿其驶入方向上的延长线之间的位置关系,预测不同车辆同时从所述第一方向和所述第二方向驶入所述道路交汇区域并转弯的情况下是否产生冲突。
  3. 根据权利要求2所述的方法,其特征在于,所述预测不同车辆同时从所述第一方向和所述第二方向驶入所述道路交汇区域并转弯的情况下是否产生冲突,包括:
    确定以所述第一方向的驶入点为起点、沿其驶入方向延长的射线;
    在所述第二方向的驶入点位于所述射线的左侧的情况下,预测发生冲突。
  4. 根据权利要求2所述的方法,其特征在于,所述预测不同车辆同时从所述第一方向和所述第二方向驶入所述道路交汇区域并转弯的情况下是否产生冲突,包括:
    确定以所述第一方向的驶入点为起点、沿其驶入方向延长的第一射线,以及以所述第二方向的驶入点为起点、沿其驶入方向延长的第二射线;
    在确定所述第一射线与所述第二射线相交的情况下,预测发生冲突。
  5. 根据权利要求1所述的方法,其特征在于,所述至少根据所述驶入点及所述驶入方向,预测不同车辆同时从所述第一方向和所述第二方向驶入所述道路交汇区域并转弯的情况下是否产生冲突,包括:
    分别确定所述第一方向和所述第二方向的预拟合转弯车道线,所述预拟合转弯车道线根据所述驶入点、所述驶出点和中间点确定,其中,所述驶入点包括最右侧或者最左侧车道线的端点,所述中间点包括所述驶入点沿所述驶入方向延长的射线与所述驶出点沿驶出方向反向延长的射线的交点;
    在所述第一方向和所述第二方向的预拟合转弯车道线相交的情况下,预测发生冲突。
  6. 根据权利要求3或者4所述的方法,其特征在于,所述根据所述驶入点、所述驶出点及所述驶入方向在所述道路交汇区域内确定驶入方向点,并根据所述驶入方向点确定转弯路线,包括:
    从连接所述第一方向和所述第二方向的驶入点之间的线段上选取至少一个驶入方向点;
    根据所述第一方向的驶入点、所述驶出点、所述至少一个驶入方向点确定左转曲线,并根据所述左转曲线确定左转路线另一侧的左转曲线。
  7. 根据权利要求4所述的方法,其特征在于,所述根据所述驶入点、所述驶出点及所述驶入方向在所述道路交汇区域内确定驶入方向点,并根据所述驶入方向点确定转弯路线,包括:
    从所述第一方向和所述第二方向的驶入点、所述第一射线与所述第二射线的交点所组成的三角形中选取出至少一个驶入方向点;
    根据所述第一方向的驶入点、所述驶出点、所述至少一个驶入方向点确定左转曲线,并根据所述左转曲线确定左转路线另一侧的左转曲线。
  8. 根据权利要求6或7所述的方法,其特征在于,所述根据所述第一方向的驶入点、所述驶出点、所述至少一个驶入方向点确定左转曲线,包括:
    确定以驶出点为起点、沿驶出方向的反方向延长的第三射线,所述驶出点包括所述驶出方向上最右侧车道线的端点;
    确定以所述第一方向的驶入点为起点且向所述第二方向的驶入点延长的第四射线;
    确定所述第三射线与所述第四射线的交点;
    根据所述第一方向的驶入点、所述驶出点、所述第三射线与所述第四射线的交点、所述至少一个驶入方向点确定左转曲线。
  9. 根据权利要求5所述的方法,其特征在于,所述根据所述驶入点、所述驶出点及所述驶入方向在所述道路交汇区域内确定驶入方向点,并根据所述驶入方向点确定转弯路线,包括:
    从所述第一方向和所述第二方向的预拟合转弯车道线相交所形成的区域中选取至少一个驶入方向点;
    根据所述第一方向的驶入点、所述驶出点以及所述至少一个驶入方向点确定转弯曲线,并根据所述转弯曲线确定转弯路线另一侧的转弯曲线。
  10. 一种高精地图标注方法,其特征在于,包括:
    利用权利要求1-9任一项所述的车辆转弯路线规划方法确定所述转弯路线;
    将所述转弯路线标注于高精地图中。
  11. 一种车辆行驶控制方法,其特征在于,包括:
    利用权利要求1-9任一项所述的车辆转弯路线规划方法确定所述转弯路线;
    控制车辆按照所述转弯路线行驶。
  12. 一种车辆转弯路线规划装置,其特征在于,包括:
    信息确定模块,用于分别确定从第一方向和第二方向进入道路交汇区域的驶入点、驶出点及所述驶入点的驶入方向;
    冲突预测模块,用于至少根据所述驶入点及所述驶入方向,预测不同车辆同时从所述第一方向和所述第二方向驶入所述道路交汇区域并转弯的情况下是否产生冲突;
    路线确定模块,用于在预测结果为产生冲突的情况下,根据所述驶入点、所述驶出点及所述驶入方向在所述道路交汇区域内确定驶入方向点,并根据所述驶入方向点确定转弯路线。
  13. 根据权利要求12所述的装置,其特征在于,所述冲突预测模块,具体用于:
    在所述道路交汇区域内设置有所述第一方向和所述第二方向上的左转待转车道的情况下,分别将所述第一方向和所述第二方向上的所述左转待转车道的右车道线的端点及其驶入方向作为驶入点及其驶入方向;
    根据所述第一方向和所述第二方向上的所述驶入点以及所述驶入点沿其驶入方向上的延长线之间的位置关系,预测不同车辆同时从所述第一方向和所述第二方向驶入所述道路交汇区域并转弯的情况下是否产生冲突。
  14. 根据权利要求13所述的装置,其特征在于,所述冲突预测模块,还用于:
    确定以所述第一方向的驶入点为起点、沿其驶入方向延长的射线;
    在所述第二方向的驶入点位于所述射线的左侧的情况下,预测发生冲突。
  15. 根据权利要求13所述的装置,其特征在于,所述冲突预测模块,还用于:
    确定以所述第一方向的驶入点为起点、沿其驶入方向延长的第一射线,以及以所述第二方向的驶入点为起点、沿其驶入方向延长的第二射线;
    在确定所述第一射线与所述第二射线相交的情况下,预测发生冲突。
  16. 根据权利要求12所述的装置,其特征在于,所述冲突预测模块,具体用于:
    分别确定所述第一方向和所述第二方向的预拟合转弯车道线,所述预拟合转弯车道线根据所述驶入点、所述驶出点和中间点确定,其中,所述驶入点包括最右侧或者最左侧车道线的端点,所述中间点包括所述驶入点沿所述驶入方向延长的射线与所述驶出点沿驶出方向反向延长的射线的交点;
    在所述第一方向和所述第二方向的预拟合转弯车道线相交的情况下,预测发生冲突。
  17. 根据权利要求14或者15所述的装置,其特征在于,所述路线确定模块,具体用于:
    从连接所述第一方向和所述第二方向的驶入点之间的线段上选取至少一个驶入方向点;
    根据所述第一方向的驶入点、所述驶出点、所述至少一个驶入方向点确定左转曲线,并根据所述左转曲线确定左转路线另一侧的左转曲线。
  18. 根据权利要求15所述的装置,其特征在于,所述路线确定模块,具体用于:
    从所述第一方向和所述第二方向的驶入点、所述第一射线与所述第二射线的交点所组成的三角形中选取出至少一个驶入方向点;
    根据所述第一方向的驶入点、所述驶出点、所述至少一个驶入方向点确定左转曲线,并根据所述左转曲线确定左转路线另一侧的左转曲线。
  19. 根据权利要求17或18所述的装置,其特征在于,所述路线确定模块,还用于:
    确定以驶出点为起点、沿驶出方向的反方向延长的第三射线,所述驶出点包括所述驶出方向上最右侧车道线的端点;
    确定以所述第一方向的驶入点为起点且向所述第二方向的驶入点延长的第四射线;
    确定所述第三射线与所述第四射线的交点;
    根据所述第一方向的驶入点、所述驶出点、所述第三射线与所述第四射线的交点、所述至少一个驶入方向点确定左转曲线。
  20. 根据权利要求16所述的装置,其特征在于,所述路线确定模块,具体用于:
    从所述第一方向和所述第二方向的预拟合转弯车道线相交所形成的区域中选取至少一个驶入方向点;
    根据所述第一方向的驶入点、所述驶出点以及所述至少一个驶入方向点确定转弯曲线,并根据所述转弯曲线确定转弯路线另一侧的转弯曲线。
  21. 一种高精地图标注装置,其特征在于,包括权利要求12-20中任意一项所述的车辆转弯路线规划装置和标注模块,其中,
    所述标注模块,用于将所述转弯路线标注于高精地图中。
  22. 一种车辆行驶控制装置,其特征在于,包括权利要求12-20中任意一项所述的车辆转弯路线规划装置和车辆控制模块,其中,
    所述车辆控制模块,用于控制车辆按照所述转弯路线行驶。
  23. 一种车辆,其特征在于,用于按照权利要求10所述的高精地图标注方法标注的转弯路线行驶,或者,按照权利要求11所述的车辆行驶控制方法确定的转弯路线行驶。
  24. 一种车辆转弯路线规划装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为执行所述指令时实现权利要求1-11任意一项所述的方法。
  25. 一种非易失性计算机可读存储介质,其上存储有计算机程序指令,其特征在于,所述计算机程序指令被处理器执行时实现权利要求1-11中任意一项所述的方法。
  26. 一种计算机程序产品,其特征在于,包括计算机可读代码,或者承载有计算机可读 代码的非易失性计算机可读存储介质,当所述计算机可读代码在电子设备的处理器中运行时,所述电子设备中的处理器执行上述权利要求1-11中任意一项所述的方法。
  27. 一种芯片,其特征在于,包括至少一个处理器,该处理器用于运行存储器中存储的计算机程序或计算机指令,以执行上述权利要求1-11中任意一项所述的方法。
PCT/CN2021/132795 2021-01-12 2021-11-24 一种车辆转弯路线规划方法及装置 WO2022151839A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110035292.2 2021-01-12
CN202110035292.2A CN114764980B (zh) 2021-01-12 2021-01-12 一种车辆转弯路线规划方法及装置

Publications (1)

Publication Number Publication Date
WO2022151839A1 true WO2022151839A1 (zh) 2022-07-21

Family

ID=82362909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132795 WO2022151839A1 (zh) 2021-01-12 2021-11-24 一种车辆转弯路线规划方法及装置

Country Status (2)

Country Link
CN (1) CN114764980B (zh)
WO (1) WO2022151839A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115965713A (zh) * 2023-03-17 2023-04-14 高德软件有限公司 掉头车道的生成方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104616541A (zh) * 2015-02-03 2015-05-13 吉林大学 基于鱼群效应的无信号交叉口车车协同控制系统
CN108597251A (zh) * 2018-04-02 2018-09-28 昆明理工大学 一种基于车联网的交通路口分布式车辆碰撞预警方法
CN109003467A (zh) * 2017-06-07 2018-12-14 华为技术有限公司 一种防止车辆碰撞的方法、装置及系统
US20190196472A1 (en) * 2016-08-30 2019-06-27 Continental Automotive Gmbh System and method for analyzing driving trajectories for a route section
CN110850874A (zh) * 2019-11-11 2020-02-28 驭势科技(北京)有限公司 一种智能驾驶车辆的控制方法、装置、系统及存储介质
CN111145569A (zh) * 2019-11-22 2020-05-12 京东数字科技控股有限公司 一种道路监测、车辆行驶控制方法、装置及车路协同系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140121544A (ko) * 2013-04-05 2014-10-16 한국전자통신연구원 교차로 충돌 정보 제공 장치 및 방법
US9751506B2 (en) * 2015-10-27 2017-09-05 GM Global Technology Operations LLC Algorithms for avoiding automotive crashes at left and right turn intersections
DE102017204570A1 (de) * 2017-03-20 2018-09-20 Honda Motor Co., Ltd. Fahrzeug-Fahrt-Unterstützungs-Vorrichtung
JP7062898B2 (ja) * 2017-09-07 2022-05-09 株式会社デンソー 衝突回避装置
CN111879330A (zh) * 2020-08-05 2020-11-03 苏州挚途科技有限公司 路口行驶路径的规划方法、装置、处理器和自动驾驶车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104616541A (zh) * 2015-02-03 2015-05-13 吉林大学 基于鱼群效应的无信号交叉口车车协同控制系统
US20190196472A1 (en) * 2016-08-30 2019-06-27 Continental Automotive Gmbh System and method for analyzing driving trajectories for a route section
CN109003467A (zh) * 2017-06-07 2018-12-14 华为技术有限公司 一种防止车辆碰撞的方法、装置及系统
CN108597251A (zh) * 2018-04-02 2018-09-28 昆明理工大学 一种基于车联网的交通路口分布式车辆碰撞预警方法
CN110850874A (zh) * 2019-11-11 2020-02-28 驭势科技(北京)有限公司 一种智能驾驶车辆的控制方法、装置、系统及存储介质
CN111145569A (zh) * 2019-11-22 2020-05-12 京东数字科技控股有限公司 一种道路监测、车辆行驶控制方法、装置及车路协同系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115965713A (zh) * 2023-03-17 2023-04-14 高德软件有限公司 掉头车道的生成方法、装置、设备及存储介质
CN115965713B (zh) * 2023-03-17 2023-05-23 高德软件有限公司 掉头车道的生成方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN114764980A (zh) 2022-07-19
CN114764980B (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
WO2021136130A1 (zh) 一种轨迹规划方法及装置
WO2021027568A1 (zh) 障碍物避让方法及装置
WO2021102955A1 (zh) 车辆的路径规划方法以及车辆的路径规划装置
WO2022001773A1 (zh) 轨迹预测方法及装置
CN113968216B (zh) 一种车辆碰撞检测方法、装置及计算机可读存储介质
WO2021212379A1 (zh) 车道线检测方法及装置
CN112146671B (zh) 路径规划方法、相关设备及计算机可读存储介质
WO2021147748A1 (zh) 一种自动驾驶方法及相关设备
JP2023508114A (ja) 自動運転方法、関連装置及びコンピュータ読み取り可能記憶媒体
WO2021217420A1 (zh) 车道线跟踪方法和装置
CN112672942B (zh) 一种车辆换道方法及相关设备
US11274936B2 (en) Safety-assured remote driving for autonomous vehicles
WO2022148172A1 (zh) 车道线规划方法及相关装置
CN113492830A (zh) 一种车辆泊车路径规划方法及相关设备
WO2022142839A1 (zh) 一种图像处理方法、装置以及智能汽车
WO2022016901A1 (zh) 一种规划车辆行驶路线的方法以及智能汽车
US20240017719A1 (en) Mapping method and apparatus, vehicle, readable storage medium, and chip
WO2022160900A1 (zh) 一种测试场景构建方法及装置
WO2022151839A1 (zh) 一种车辆转弯路线规划方法及装置
CN113859265A (zh) 一种驾驶过程中的提醒方法及设备
CN110599790B (zh) 一种智能驾驶车辆进站停靠的方法、车载设备和存储介质
CN114255275A (zh) 一种构建地图的方法及计算设备
US20230192134A1 (en) Methods and Systems for Providing Incremental Remote Assistance to an Autonomous Vehicle
CN113799794B (zh) 车辆纵向运动参数的规划方法和装置
WO2023102827A1 (zh) 一种路径约束方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919030

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21919030

Country of ref document: EP

Kind code of ref document: A1