WO2022057653A1 - 一种氮化硅陶瓷和玻璃材料的双层组合物在发动机中的应用 - Google Patents

一种氮化硅陶瓷和玻璃材料的双层组合物在发动机中的应用 Download PDF

Info

Publication number
WO2022057653A1
WO2022057653A1 PCT/CN2021/116665 CN2021116665W WO2022057653A1 WO 2022057653 A1 WO2022057653 A1 WO 2022057653A1 CN 2021116665 W CN2021116665 W CN 2021116665W WO 2022057653 A1 WO2022057653 A1 WO 2022057653A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon nitride
double
engine
layer
layer composition
Prior art date
Application number
PCT/CN2021/116665
Other languages
English (en)
French (fr)
Inventor
杨德宁
Original Assignee
深圳前海发维新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010968954.7A external-priority patent/CN112145304A/zh
Application filed by 深圳前海发维新材料科技有限公司 filed Critical 深圳前海发维新材料科技有限公司
Priority to CN202180035831.0A priority Critical patent/CN116194424A/zh
Publication of WO2022057653A1 publication Critical patent/WO2022057653A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Definitions

  • the present invention relates to the field of new materials combining inventions and technical elements (especially positional elements) variation inventions, and the field of inventions of application in engines, in particular to a double-layer composition of silicon nitride ceramics and glass materials in an engine Applications.
  • the bilayer composition of silicon nitride ceramics and glass materials can take advantage of new properties and can actually solve 4 major industrial technical problems of metal engines and gas turbines:
  • the friction coefficient is small (much smaller than that of various metals or ceramics such as zirconia ceramics, alumina ceramics, and mullite ceramics), which is technically due to the surface layer generated when the silicon nitride material is under pressure.
  • the self-lubricating performance of the gas film layer such as the low friction coefficient of the magnetic swirl train (that is, in the working state without lubricating oil, can produce the effect similar to lubricating oil.
  • the large-scale bearings of wind power use silicon nitride materials. , without lubricating oil for more than ten years). Therefore, it can better overcome the technical problems that the metal engine cylinder has a large friction coefficient, which seriously affects the engine efficiency; therefore, it can better overcome the engine cylinder in a high temperature environment.
  • Technical issues with reduced effectiveness are described by the gas film layer, such as the low friction coefficient of the magnetic swirl train (that is, in the working state without lubricating oil.
  • the thermal expansion rate from 0-40°C to 900°C is equal to or lower than 4 ( ⁇ 10-6/°C) low thermal expansion rate properties
  • Thermal expansion can resist thermal shock , 0-40 °C heating to more than 1000 °C, rapid cooling and then rapid heating, it will not break, that is, it has good thermal shock resistance, which is better than all kinds of aluminum alloys and gray cast iron metals and zirconia ceramics, alumina ceramics,
  • the thermal shock resistance of mullite ceramics is much better, so it can better overcome the difficulty of starting the metal engine block in cold weather conditions, and when driving in harsh road conditions where the accelerator is continuously increased and the accelerator is decreased rapidly.
  • the big problem of industrial technology that causes damage to metal engine blocks can produce the technical effect of prolonging the service life of the engine.
  • the thermal shock resistance is much better than that of various aluminum alloys, gray cast iron metals, and zirconia ceramics, alumina ceramics, and mullite ceramics. Therefore, the existing technical problems of metal engines and gas turbines can be better overcome and solved: metal engines and gas turbines will be deformed to the limit when the deformation point (350-450°C) exceeds the deformation point, so only cooling water is used to remove heat, resulting in large heat Major technical issues with partial churn.
  • the thermal conductivity of the glass material in the double-layer composition of the silicon nitride ceramic and the glass material is less than 7w/[(mK)] (represents the fluid or the object and the object, the unit area per unit time is less than 7w/[(mK)].
  • the thermal shock resistance is much better than that of various aluminum alloys and gray cast iron metals and zirconia ceramics, alumina ceramics, and mullite ceramics. Therefore, when the heat energy passes through the glass material layer, it is blocked by the glass material layer with low thermal conductivity, which can overcome and solve the existing technical problems of metal engines and gas turbines: the thermal diffusivity of the engine cylinders of metal engines and gas turbines is greater than 50-120mm2 . /S, the thermal conductivity is greater than 50-120w/[(mK)], which will quickly dissipate the heat energy, and the resulting thermal energy utilization rate of the metal engine is only 30-35% of the industrial technology.
  • the cylinder of a metal engine can only withstand a temperature of 300° C. for a long time, it must be rapidly cooled by cooling water, otherwise the cylinder will be pulled and the engine will be damaged.
  • the double-layer composition of silicon nitride ceramics and glass materials can fully burn the fuel in the engine cylinder and effectively remove gases such as carbon dioxide, which can greatly reduce the carbon emissions of the double-layer composition of silicon nitride ceramics and glass materials compared with metal engines. .
  • the double-layer composition of silicon nitride ceramics and glass materials in the cylinder can be maintained at 800-1000 °C for a long time without being rapidly cooled by cooling water, which enables the double-layer composition of silicon nitride ceramics and glass materials.
  • the utilization rate of thermal energy in the cylinder of the physical engine is increased to 70-85%.
  • the present invention can greatly improve thermal efficiency, greatly save energy, and more thoroughly and significantly reduce carbon emissions in the field of automobiles, ships, aircraft, diesel, coal and natural gas power generation in the engine and gas turbine industries (which can greatly change and upgrade current).
  • the invention solves the five major technical problems of metal engines and gas turbines by using new properties, and produces a new technical effect---the invention of use.
  • one of the five new properties is utilized, one of the four major technical problems of metal engines and gas turbines is solved, and one of the major problems of industrial technology has been greatly improved, resulting in a significant improvement in the thermal efficiency of the engine and gas turbine industry.
  • the application of the double-layer composition of silicon nitride ceramics and glass material of the present invention in an engine has outstanding substantive features and significant progress, and has the inventiveness stipulated in Article 22, paragraph 3 of the Patent Law.
  • the thermal diffusivity of metal materials will be greater than 8-
  • the poor performance of 30mm 2 /S that is, the ability of the object to become uniform in temperature during heating or cooling, that is, poor thermal shock resistance, will cause damage to the metal engine block is a big problem in industrial technology; and
  • the present invention proposes the application of a double-layer composition of silicon nitride ceramics and glass materials in the field of engines.
  • a double-layer composition of silicon nitride ceramics and glass materials in an engine characterized in that the inner layer is a silicon nitride ceramic material layer in contact with a piston, and its thermal expansion rises from 0-40°C to 900°C
  • Its outer layer is a glass material layer wrapped with a silicon nitride ceramic material layer, its thermal conductivity is less than 5w/[(mK)], and its thermal diffusivity is less than 5mm 2 /S, its thermal expansion rate from 0-40°C to 800°C is equal to or lower than 8( ⁇ 10-6/°C), its softening point temperature is more than 800°C, calculated by weight percentage, the alumina content is 1-46 %, the content of magnesium oxide is 0-15%, the content of silicon oxide is 30-82%, the content of calcium oxide is 0-15%, and the content of boron oxide is 0-15%.
  • the inner layer is a silicon nitride ceramic material layer in contact with the piston, and its thermal expansion rate from 0-40°C to 1200°C is equal to or lower than 6 ( ⁇ 10-6/°C).
  • the glass material layer wrapped with the silicon nitride ceramic material layer has a thermal conductivity of less than 4w/[(mK)], a thermal diffusivity of less than 4mm 2 /S, and its thermal expansion rate from 0-40°C to 1000°C is equal to Or lower than 8( ⁇ 10-6/°C), its softening point temperature>1000°C.
  • the double-layer composition of silicon nitride ceramics and glass material is used for the cylinder liner of vehicle engine, marine engine, thermal engine piston aircraft engine, construction machinery engine and fuel generator.
  • the double-layer composition of silicon nitride ceramics and glass material is covered on the combustion chamber of the heat engine type turbine engine and the outer shell surface of the turbine.
  • the double-layer composition of the silicon nitride ceramic and glass material is covered on the steam chamber wall of the steam turbine and/or the surface layer of the cylinder layer and/or the surface layer of the steam nozzle and/or the surface layer of the steel plate and/or the blade. Skin and/or cylinder skin and/or steam delivery pipe skin.
  • the double-layer composition of silicon nitride ceramics and glass material is covered on the surface of the cylinder liner of the piston engine of the generator and/or the outer casing of the turbocharging system component.
  • the double-layer composition of silicon nitride ceramics and glass material is used in a heat engine type engine.
  • the double-layer composition of silicon nitride ceramics and glass material is covered on the surface of the casing of the turbocharger system component of the heat engine type engine.
  • the double-layer composition of the silicon nitride ceramic and glass material is used for the cylinder head and/or the piston and/or the piston pin and/or the connecting rod and/or the intake valve and/or the engine of the heat engine. / or exhaust valve.
  • the double-layer composition of silicon nitride ceramics and glass material is used as a tubular material in a high temperature environment.
  • the inner layer is a silicon nitride ceramic material layer in contact with a piston, and its thermal expansion rate from 0-40°C to 900°C is equal to or Below 5 ( ⁇ 10-6/°C);
  • the outer layer is a glass material layer wrapped with a silicon nitride ceramic material layer, and its thermal conductivity is less than 5w/[(mK)], and its thermal diffusivity is less than 5mm 2 /S, its thermal expansion rate from 0-40°C to 800°C is equal to or lower than 8( ⁇ 10-6/°C), its softening point temperature is more than 800°C, calculated by weight percentage, the alumina content is 1- 46%, the content of magnesium oxide is 0-15%, the content of silicon oxide is 30-82%, the content of calcium oxide is 0-15%, and the content of boron oxide is 0-15%.
  • the double-layer composition of the silicon nitride ceramic and glass material and the application thereof, the glass material layer wrapped with the silicon nitride ceramic material layer has a thermal conductivity of less than 4w/[(mK)] and a thermal diffusivity of less than 4mm 2 /S, its thermal expansion rate from 0-40°C to 1000°C is equal to or lower than 8( ⁇ 10-6/°C), and its softening point temperature>1000°C.
  • the ejector rod method of NETZSCH is used to test the softening temperature and thermal expansion rate of the double-layer composition of silicon nitride ceramic and glass material and its application, and the test conditions are: heating rate 5°C /min.
  • a double-layer composition of silicon nitride ceramics and glass materials in an engine, wherein the inner layer is a silicon nitride ceramic material layer in contact with a piston, and its thermal expansion increases from 0-40°C to 900°C
  • the rate is equal to or lower than 5 ( ⁇ 10-6/°C);
  • the outer layer is a glass material layer wrapped with a silicon nitride ceramic material layer, and its thermal conductivity is less than 5w/[(mK)], thermal diffusion
  • the rate is less than 5mm 2 /S, its thermal expansion rate from 0-40°C to 800°C is equal to or lower than 8( ⁇ 10-6/°C), its softening point temperature is more than 800°C, calculated by weight percentage, alumina content It is 1-46%, the content of magnesium oxide is 0-15%, the content of silicon oxide is 30-82%, the content of calcium oxide is 0-15%, and the content of boron oxide is 0-15%.
  • the double-layer composition of silicon nitride ceramic and glass material of Example 1 has the following six properties simultaneously:
  • the double-layer composition of silicon nitride ceramics and glass material of Example 1 can take advantage of new properties to actually solve 4 major industrial technical problems of metal engines and gas turbines:
  • the friction coefficient is small (much smaller than that of various metals or ceramics such as zirconia ceramics, alumina ceramics, and mullite ceramics), which is technically due to the surface layer generated when the silicon nitride material is under pressure.
  • the self-lubricating performance of the gas film layer such as the low friction coefficient of the magnetic swirl train (that is, in the working state without lubricating oil, can produce the effect similar to lubricating oil.
  • the large-scale bearings of wind power use silicon nitride materials. , without lubricating oil for more than ten years). Therefore, it can better overcome the technical problems that the metal engine cylinder has a large friction coefficient, which seriously affects the engine efficiency; therefore, it can better overcome the engine cylinder in a high temperature environment.
  • Technical issues with reduced effectiveness are described by the gas film layer, such as the low friction coefficient of the magnetic swirl train (that is, in the working state without lubricating oil.
  • the thermal expansion rate from 0-40°C to 900°C is equal to or lower than 4 ( ⁇ 10-6/°C) low thermal expansion rate property thermal expansion, can resist thermal shock, Heating at 0-40°C to above 1000°C, rapid cooling and then rapid heating, it will not break, which is the property of good thermal shock resistance, which is better than all kinds of aluminum alloys and gray cast iron metals and zirconia ceramics, alumina ceramics, mo
  • the thermal shock resistance of Laishi ceramics is much better, so it can better overcome the difficulty of starting the metal engine block in cold weather conditions, and when driving in harsh road conditions where the accelerator is continuously increased and the accelerator is decreased rapidly, it will cause The big problem of industrial technology that metal engine block produces damage; can produce the technical effect of prolonging the service life of the engine.
  • the thermal shock resistance is much better than that of various aluminum alloys, gray cast iron metals, and zirconia ceramics, alumina ceramics, and mullite ceramics. Therefore, the existing technical problems of metal engines and gas turbines can be better overcome and solved: metal engines and gas turbines will be deformed to the limit when the deformation point (350-450°C) exceeds the deformation point, so only cooling water is used to remove heat, resulting in large heat Major technical issues with partial churn.
  • the thermal conductivity of the glass material in the double-layer composition of the silicon nitride ceramic and the glass material is less than 7w/[(mK)] (represents the fluid or the object and the object, the unit area per unit time is less than 7w/[(mK)].
  • the thermal shock resistance is much better than that of various aluminum alloys and gray cast iron metals and zirconia ceramics, alumina ceramics, and mullite ceramics. Therefore, when the heat energy passes through the glass material layer, it is blocked by the glass material layer with low thermal conductivity, which can overcome and solve the existing technical problems of metal engines and gas turbines: the thermal diffusivity of the engine cylinders of metal engines and gas turbines is greater than 50-120mm2 . /S, the thermal conductivity is greater than 50-120w/[(mK)], which will quickly dissipate the heat energy, and the resulting thermal energy utilization rate of the metal engine is only 30-35% of the industrial technology.
  • the cylinder of a metal engine can only withstand a temperature of 300° C. for a long time, it must be rapidly cooled by cooling water, otherwise the cylinder will be pulled and the engine will be damaged.
  • the double-layer composition of silicon nitride ceramics and glass materials can fully burn the fuel in the engine cylinder and effectively remove gases such as carbon dioxide, which can greatly reduce the carbon emissions of the double-layer composition of silicon nitride ceramics and glass materials compared with metal engines. .
  • the double-layer composition of silicon nitride ceramics and glass materials in the cylinder can be maintained at 800-1000 °C for a long time without being rapidly cooled by cooling water, which enables the double-layer composition of silicon nitride ceramics and glass materials.
  • the utilization rate of thermal energy in the cylinder of the physical engine is increased to 70-85%.
  • the present invention can greatly improve thermal efficiency, greatly save energy, and more thoroughly and significantly reduce carbon emissions in the field of automobiles, ships, aircraft, diesel and coal and natural gas power generation to generate engines and gas turbines (which can greatly change and upgrade current).
  • the double-layer composition of silicon nitride ceramic and glass material of this embodiment and its application are used in engines, gas turbines and high-temperature thermal insulation materials, and are greatly superior in chemical resistance to corrosion, wear resistance and hardness. Metal materials for engines and gas turbines and other high temperature thermal insulation materials.
  • the thermal conductivity is less than 5w/[(mK)], and the thermal diffusivity is less than 5mm 2 /S, which is from The thermal expansion rate from 0-40°C to 800°C is equal to or lower than 8( ⁇ 10-6/°C), and its softening point temperature is more than 800°C.
  • the problem that the modification will damage the engine so only the cooling water system is designed to quickly reduce the temperature of the metal engine cylinder to 200 °C with an insurance factor; and the metal engine cylinder, the energy of the calorific value of the fuel, is taken away in large quantities, making the metal engine cylinders.
  • the engine thermal energy utilization rate can only have technical problems of 35-40%.
  • the double-layer composition of silicon nitride ceramics and glass material of the present invention is not limited to not deforming at a temperature higher than 500-600 °C, but also not deforming at a temperature of 150-200 °C and less than 800 °C.
  • the first embodiment is the double-layer composition of silicon nitride ceramics and glass material and its application as defined in claim 1, and the softening point of the glass material is >800 °C and the property of rising from 0-40 °C to 800 °C, It is a safety scheme with an insurance factor in the design. That is, the double-layer composition of silicon nitride ceramics and glass material and its application can maintain the fuel thermal energy value at 800°C to convert it into greater mechanical energy during the operation of the engine cylinder, and will not produce limit expansion deformation.
  • the silicon nitride ceramic of the present invention is used in the inner layer of the engine cylinder where the piston is pulled and rubbed thousands of times per minute, because the porosity of the sintered silicon nitride ceramic is 18-20% (metal engine
  • the inner wall of the cylinder is designed with a lot of fine groove structures to save the lubricating oil), so it is beneficial for the engine lubricating oil to enter the pores, so that the silicon nitride friction surface in the cylinder body is micro-decomposed to form a thin gas film, so that the friction surface The sliding resistance reduction function.
  • the engine lubricating oil enters the pores up to 18-20 and has the function of sufficient lubricating oil, which produces a double effect of reducing resistance and saving energy.
  • the technology of the present invention compares a technology of the present inventor (the original ones of other silicon nitride silicon nitride ceramics and glass materials).
  • the double-layer composition and the original patented technology of the double-layer composition of silicon nitride ceramics and glass materials) have the advantage of saving manufacturing costs.
  • the silicon nitride friction surface in the cylinder can be decomposed in small amounts to form a thin gas film, thereby reducing the sliding resistance between the friction surfaces, and the role of lubricating oil, which can achieve dual lubrication effects. It can produce the effect of reducing resistance and saving energy.
  • a double-layer composition of silicon nitride ceramics and glass materials in an engine, wherein the inner layer is a silicon nitride ceramic material layer in contact with a piston, and its thermal expansion increases from 0-40°C to 1200°C
  • the rate is equal to or lower than 6 ( ⁇ 10-6/°C);
  • the outer layer is a glass material layer wrapped with a silicon nitride ceramic material layer, and its thermal conductivity is less than 5w/[(mK)], thermal diffusion
  • the rate is less than 5mm 2 /S, its thermal expansion rate from 0-40°C to 800°C is equal to or lower than 8( ⁇ 10-6/°C), its softening point temperature is more than 1100°C, calculated by weight percentage, alumina content
  • the content of magnesium oxide is 30-46%, the content of magnesium oxide is 0-15%, the content of silicon oxide is 30-82%, the content of calcium oxide is 0-15%, and the content of boron oxide is 0-15%.
  • the double-layer composition of silicon nitride ceramics and glass material of Example 2 has the following 6 properties at the same time:
  • the double-layer composition of silicon nitride ceramics and glass material of Example 1 can take advantage of new properties to actually solve 4 major industrial technical problems of metal engines and gas turbines:
  • the friction coefficient is small (much smaller than that of various metals or ceramics such as zirconia ceramics, alumina ceramics, and mullite ceramics), which is technically due to the surface layer generated when the silicon nitride material is under pressure.
  • the self-lubricating performance of the gas film layer such as the low friction coefficient of the magnetic swirl train (that is, in the working state without lubricating oil, can produce the effect similar to lubricating oil.
  • the large-scale bearings of wind power use silicon nitride materials. , without lubricating oil for more than ten years). Therefore, it can better overcome the technical problems that the metal engine cylinder has a large friction coefficient, which seriously affects the engine efficiency; therefore, it can better overcome the engine cylinder in a high temperature environment.
  • Technical issues with reduced effectiveness are described by the gas film layer, such as the low friction coefficient of the magnetic swirl train (that is, in the working state without lubricating oil.
  • the thermal expansion rate from 0-40°C to 900°C is equal to or lower than 4 ( ⁇ 10-6/°C) low thermal expansion rate property thermal expansion, can resist thermal shock, Heating at 0-40°C to above 1000°C, rapid cooling and then rapid heating, it will not break, which is the property of good thermal shock resistance, which is better than all kinds of aluminum alloys and gray cast iron metals and zirconia ceramics, alumina ceramics, mo
  • the thermal shock resistance of Laishi ceramics is much better, so it can better overcome the difficulty of starting the metal engine block in cold weather conditions, and when driving in harsh road conditions where the accelerator is continuously increased and the accelerator is decreased rapidly, it will cause The big problem of industrial technology that metal engine block produces damage; can produce the technical effect of prolonging the service life of the engine.
  • the thermal shock resistance is much better than that of various aluminum alloys, gray cast iron metals, and zirconia ceramics, alumina ceramics, and mullite ceramics. Therefore, the existing technical problems of metal engines and gas turbines can be better overcome and solved: metal engines and gas turbines will be deformed to the limit when the deformation point (350-450°C) exceeds the deformation point, so only cooling water is used to remove heat, resulting in large heat Major technical issues with partial churn.
  • the thermal conductivity of the glass material in the double-layer composition of the silicon nitride ceramic and the glass material is less than 7w/[(mK)] (represents the fluid or the object and the object, the unit area per unit time is less than 7w/[(mK)].
  • the thermal shock resistance is much better than that of various aluminum alloys and gray cast iron metals and zirconia ceramics, alumina ceramics, and mullite ceramics. Therefore, when the heat energy passes through the glass material layer, it is blocked by the glass material layer with low thermal conductivity, which can overcome and solve the existing technical problems of metal engines and gas turbines: the thermal diffusivity of the engine cylinders of metal engines and gas turbines is greater than 50-120mm2 . /S, the thermal conductivity is greater than 50-120w/[(mK)], which will quickly dissipate the heat energy, and the resulting thermal energy utilization rate of the metal engine is only 30-35% of the industrial technology.
  • the cylinder of a metal engine can only withstand a temperature of 300° C. for a long time, it must be rapidly cooled by cooling water, otherwise the cylinder will be pulled and the engine will be damaged.
  • the double-layer composition of silicon nitride ceramics and glass materials can fully burn the fuel in the engine cylinder and effectively remove gases such as carbon dioxide, which can greatly reduce the carbon emissions of the double-layer composition of silicon nitride ceramics and glass materials compared with metal engines. .
  • the double-layer composition of silicon nitride ceramics and glass materials in the cylinder can be maintained at 800-1000 °C for a long time without being rapidly cooled by cooling water, which enables the double-layer composition of silicon nitride ceramics and glass materials.
  • the utilization rate of thermal energy in the cylinder of the physical engine is increased to 70-85%.
  • the present invention can greatly improve thermal efficiency, greatly save energy, and more thoroughly and significantly reduce carbon emissions in the field of automobiles, ships, aircraft, diesel, coal and natural gas power generation in the engine and gas turbine industries (which can greatly change and upgrade current).
  • the double-layer composition of silicon nitride ceramic and glass material of this embodiment and its application are used in engines, gas turbines and high-temperature thermal insulation materials, and are greatly superior in chemical resistance to corrosion, wear resistance and hardness. Metal materials for engines and gas turbines and other high temperature thermal insulation materials.
  • the thermal conductivity of the glass material is less than 5w/[(mK)]
  • the thermal diffusivity is less than 5mm 2 /S
  • its thermal expansion rate from 0-40°C to 1000°C is equal to or Below 8( ⁇ 10-6/°C)
  • its softening point temperature is more than 1100°C.
  • the double-layer composition of silicon nitride ceramics and glass material and application thereof are used in vehicle engines, marine engines, heat engines, etc. Cylinder liners for piston aircraft engines, construction machinery engines, and fuel generators.
  • the double-layer composition of silicon nitride ceramics and glass material and its application is covered in the combustion of a heat engine turbine engine. casings of chambers and turbines.
  • the double-layer composition of silicon nitride ceramics and glass material and application thereof the double-layer composition of silicon nitride ceramics and glass material and application thereof are covered on the steam chamber wall of a steam turbine and /or cylinder surface layer and/or steam nozzle surface layer and/or steel plate surface layer and/or blade surface layer and/or cylinder surface layer and/or steam conveying pipe surface.
  • the double-layer composition of silicon nitride ceramics and glass material and application thereof is covered on the piston engine of generator.
  • the double-layer composition of silicon nitride ceramic and glass material and its application the double-layer composition of silicon nitride ceramic and glass material and its application are used in a heat engine engine.
  • the double-layer composition of silicon nitride ceramics and glass material and its application is covered in the turbocharger of a heat engine engine. pressure on the surface of the housing of the system components.
  • the double-layer composition of silicon nitride ceramic and glass material and application thereof are used in the cylinder head of heat engine type engine and/or piston and/or piston pin and/or connecting rod and/or intake valve and/or exhaust valve.
  • the double-layer composition of silicon nitride ceramic and glass material and application thereof the double-layer composition of silicon nitride ceramic and glass material and application thereof are used as a tubular material in a high temperature environment.
  • the double-layer composition of silicon nitride ceramics and glass materials of the present invention and its application can also have other various embodiments. Based on this embodiment, those of ordinary skill in the art can make Other embodiments obtained under the premise all belong to the scope of protection of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Ceramic Products (AREA)

Abstract

一种氮化硅陶瓷和玻璃材料的双层组合物在发动机中的应用,其内层是与活塞接触的氮化硅陶瓷材料层,其从0-40℃升到900℃的热膨胀率等于或低于5(×10 -6/℃);其所述的外层是包裹着氮化硅陶瓷材料层的玻璃材料层,其:导热系数小于5w/[(m.K)],热扩散率小于5mm 2/S,其从0-40℃升到800℃的热膨胀率等于或低于8(×10 -6/℃),其软化点温度>800℃,按重量百分比计算,氧化铝含量为1-46%,氧化镁的含量0-15%,氧化硅含量为30-82%,氧化钙含量为0-15%,氧化硼含量为0-15%。该应用能推动发动机和气轮机产业进步,大幅提升热效率,同等燃油时可大幅提升发动机马力、大幅节省能源、大幅减少碳排放并对全球气候变暖产生减缓作用。

Description

一种氮化硅陶瓷和玻璃材料的双层组合物在发动机中的应用 技术领域
本发明涉及组合发明和技术要素(尤其位置要素)变化发明的新材料领域,和在发动机中的应用用途的发明领域,尤其涉及一种氮化硅陶瓷和玻璃材料的双层组合物在发动机中的应用。
现有的玻璃材料、陶瓷材料、天然矿材料、金属材料和微晶玻璃材料和各种现有技术产品方案,都不能同时具有以下6种性质:
A.低摩擦系数的性能;B.低热扩散率mm 2/S的性能表示(即物体在加热或冷却中,温度趋于均匀一致的能力,就是抗热震性能好的性质);C.低热导率的防热能流失的性质;D.低热膨胀率性质;E.高软化点(变形点.)的性质;F.耐腐蚀化学性能和耐磨性质。
氮化硅陶瓷和玻璃材料的双层组合物能利用新性质,能实际解决金属发动机和气轮机的4个重大的产业性技术问题:
其1.摩擦系数小(比各类金属或陶瓷如:氧化锆陶瓷、氧化铝陶瓷、莫来石陶瓷摩擦系数小很多),在技术基理上是由于氮化硅材料受压力时产生的表层气膜层的尤如磁旋浮火车的很低的摩擦系数的自润滑性能(即在没有润滑油时的工作状态,能产生近似润滑油的效果,如风电的大型轴承就采用氮化硅材料,十几年不加润滑油)。所以能更好的克服金属发动机气缸摩擦系数大,严重影响发动机效率的技术问题;所以能更好的克服发动机气缸在髙温环境下有机润滑剂机油被碳化失效而,出现的使机油的润滑剂效果下降的技术问题。
其2..由于所述氮化硅材料,从0-40℃升到900℃的热膨胀率等于或低于4(×10-6/℃)的低热膨胀率性质热膨胀性,能抵抗冷热冲击,0-40℃加热到1000℃以上,急剧冷却再急剧加热,也不会碎裂,就是抗热震性能好的性质,比各类铝 合金及灰铸铁金属和氧化锆陶瓷、氧化铝陶瓷、莫来石陶瓷抗热震性能好很多,所以能更好的克服金属发动机缸体在寒冷的气候条件发动困难,和在不断急剧加大油门和不断急速降低油门的恶劣路现环境驾驶时,会使金属发动机缸体产生损坏的产业性技术的大问题;能产生了发动机使用寿命延长的技术效果。
其3.由于所述氮化硅材料和玻璃材料的软化点变型点温度,比各类铝合金及灰铸铁金属和氧化锆陶瓷、氧化铝陶瓷、莫来石陶瓷抗热震性能好很多。所以能更好的克服和解决金属发动机和气轮机现有技术问题为:金属发动机和气轮机在超过变形点(350-450℃)气缸会极限的变型,所以只有利用冷却水把热量排除,造成热量大部分流失的重大技术问题。
其4.由于所述氮化硅陶瓷和玻璃材料的双层组合物中的玻璃材料小于7w/[(m.K)]的导热系数(表示的是流体或物体与物体之间,单位时间单位面积上的传热量)比各类铝合金及灰铸铁金属和氧化锆陶瓷、氧化铝陶瓷、莫来石陶瓷抗热震性能好很多。所以能在热能通过玻璃材料层时,被低导热系数的玻璃材料层阻挡,能克服和解决金属发动机和气轮机现有技术问题为:金属发动机和气轮机的发动机气缸的热扩散率大于50-120mm 2/S,热导率大于50-120w/[(m.K)],会使热能快速失散,和由此造成的金属发动机的热能利用率只有30-35%的产业性技术的大问题。
由于金属发动机气缸内只能长期承受300℃的温度,必须要被冷却水快速降温,不然就会产生拉缸而损坏发动机;而本发明氮化硅陶瓷和玻璃材料的双层组合物发动机气缸温度,能比金属发动机气缸长期承受高出几百度的高温状态,在氮化硅陶瓷和玻璃材料的双层组合物气缸内能长期保持800-1000℃又不须要被冷却水快速降温,这就能使氮化硅陶瓷和玻璃材料的双层组合物发动机气缸中的燃油能充分燃烧并有效去除二氧化碳等气体,能使氮化硅陶瓷和玻璃材料的双层 组合物发动机碳排放比较金属发动机大大降低。
所以气缸内的氮化硅陶瓷和玻璃材料的双层组合物发动机气缸能长期保持800-1000℃又不须要被冷却水快速降温,这就能使氮化硅陶瓷和玻璃材料的双层组合物发动机气缸中更多的热能值转变为机械动力,有助于解决现有技术热能利用率只有30-35%的产业性技术的大问题,有助于氮化硅陶瓷和玻璃材料的双层组合物发动机气缸中热能利用率提升到70-85%。所以本发明能在汽车领域、船舶领域、飞机领域、柴油及煤炭及天然气发电领域产生发动机和气轮机产业中,大幅提升热效率、大幅节省能源、更彻底的大幅减少碳排放(可大幅改变和升级现有汽车国六排放标准及欧洲的排放标准)、能对全球气候变暖产生减缓作用的新趋势的技术效果。
而本发明利用新性质解决了金属发动机和气轮机的5个重大技术问题,产生了新的技术效果的---用途发明。只要利用了5个新性质中的其中1个新性质,解决了金属发动机和气轮机的4个重大技术问题其中1个产业性技术的大问题,产生了发动机和气轮机产业进步的大幅提升热效率、大幅节省能源、更彻底的大幅减少碳排放(可大幅改变和升级现有汽车国六排放标准及欧洲的排放标准)、对全球气候变暖产生减缓作用的新趋势的技术效果。那么本发明一种氮化硅陶瓷和玻璃材料的双层组合物在发动机中的应用,就具有突出的实质性特点和显著的进步,具备专利法第22条第3款规定的创造性。
背景技术
现在所有国家的汽车公司、船舶公司、飞机公司、火力发电气轮机公司,如:日本丰田汽车公司和本田等汽车公司;德国宝马汽车公司和大众等汽车公司;美国的通用汽车公司和福特汽车公司;韩国的现代汽车公司和起亚汽车公司;中国上海汽车公司和吉利汽车公司及长城等汽车公司;及中船集团公司,三井船 用柴油机公司;中国商用飞机公司; 沃尔沃公司; 中远集团公司; 中海集团公司; 日本邮船公司;川崎汽船公司;上海汽轮机公司;C919大飞机发动机公司;波音飞机发动机公司;空客飞机发动机公司等等,都设立有专门的研究所:
都在研究1.如何克服发动机气缸的金属材料,就是在加了润滑油时摩擦系数也大,产生的严重影响发动机效率的技术问题;如何克服金属发动机气缸在髙温环境下有机润滑剂机油被碳化失效,而出现的使机油的润滑剂效果下降的技术问题,产生的严重影响发动机效率不高的技术问题。
都在研究2.如何克服金属发动机缸体在寒冷的气候条件发动困难,和在不断急剧加大油门和不断急速降低油门的恶劣路现环境驾驶时,会因为金属材料的热扩散率大于8-30mm 2/S的性能差(即物体在加热或冷却中,温度趋于均匀一致的能力,也就是抗热震性能差,会使金属发动机缸体产生损坏的产业性技术的大问题;和产生了发动机使用寿命被缩短的产业性技术的大问题。及金属材料耐腐蚀化学性能差.和产生了发动机使用寿命被缩短的产业性技术的大问题。
都在研究3.如何克服和解决现有技术的金属发动机和气轮机气缸,在超过金属材料(350-450℃)的极限变型温度性质,会而形成金属发动机气缸损坏。也就是因为(金属材料的高温热膨胀性质很差和极限变型点温度很低的材料性质)的重大技术问题,和金属材料技术的摩擦系数高、热扩散率mm 2/S的性能不好和导热系数w/(m.K)的性能不好的重大技术问题,所以金属发动机和气轮机气缸只能利用冷却水把(影响金属材料超过(350-450℃)的极限变型温度的热量全部排除,因此造成了当今金属发动机和气轮机产业技术的燃料热能值转化为机械动力的热效率只有30-35%。而产生30-35%燃料热能值不得不从气缸壁流失的重大技术问题(其中有20-30%的燃料热能值会在气缸排气时不可避免的流失,而涡轮增压技术只能回收使用气缸排气的燃料热能值的很少部分)。
都在研究4.当今金属发动机和气轮机产业技术在汽车领域、船舶领域、飞机领域、柴油及煤炭及天然气发电领域造成了金属发动机气缸内的温度很低,不能使油料充分燃烧并彻底的去除二氧化碳等气体的技术问题。
所以需要新的技术方案,产生推动发动机和气轮机产业进步的:大幅提升热效率和同等燃油时大幅提升发动机马力、大幅节省能源、更彻底的大幅减少碳排放(可大幅改变和升级现有汽车国六排放标准及欧洲的排放标准)、对全球气候变暖产生减缓作用的新趋势的技术效果。
发明内容
为了解决上述问题,本发明提出一种氮化硅陶瓷和玻璃材料的双层组合物在发动机领域的应用。
本发明通过以下技术方案实现的:
一种氮化硅陶瓷和玻璃材料的双层组合物在发动机中的应用,其特征在于,内层是与活塞接触的氮化硅陶瓷材料层,其从0-40℃升到900℃的热膨胀率等于或低于5(×10-6/℃);其外层是包裹着氮化硅陶瓷材料层的玻璃材料层,其导热系数小于5w/[(m.K)],热扩散率小于5mm 2/S,其从0-40℃升到800℃的热膨胀率等于或低于8(×10-6/℃),其软化点温度>800℃,按重量百分比计算,氧化铝含量为1-46%,氧化镁的含量0-15%,氧化硅含量为30-82%,氧化钙含量为0-15%,氧化硼含量为0-15%。
所述的内层是与活塞接触的氮化硅陶瓷材料层,其从0-40℃升到1200℃的热膨胀率等于或低于6(×10-6/℃)。
所述的包裹着氮化硅陶瓷材料层的玻璃材料层,导热系数小于4w/[(m.K)],热扩散率小于4mm 2/S,其从0-40℃升到1000℃的热膨胀率等于或低于8(×10-6/℃),其软化点温度>1000℃。
将所述的氮化硅陶瓷和玻璃材料的双层组合物,用于车辆发动机、船舶发动机、热机类活塞式飞机发动机、工程机械发动机、燃料发电机的气缸套。
进一步的,将所述的氮化硅陶瓷和玻璃材料的双层组合物,覆盖在热机类的涡轮发动机的燃烧室和涡轮机的外壳表层。
进一步的,将所述的氮化硅陶瓷和玻璃材料的双层组合物,覆盖在汽轮机的蒸汽室壁上和/或汽缸层表层和/或蒸汽喷嘴表层和/或钢盘表层和/或叶片表层和/或缸体表层和/或蒸汽输送管道表层。
进一步的,将所述的氮化硅陶瓷和玻璃材料的双层组合物,覆盖在发电机的活塞式发动机的气缸套和/或涡轮增压系统组件的外壳的表面。
进一步的,将所述的氮化硅陶瓷和玻璃材料的双层组合物,用于热机类的发动机。
进一步的,将所述的氮化硅陶瓷和玻璃材料的双层组合物,覆盖在热机类的发动机的涡轮增压系统组件的外壳的表面。
进一步的,将所述的氮化硅陶瓷和玻璃材料的双层组合物,用于热机类的发动机的气缸盖和/或活塞和/或活塞销和/或连杆和/或进气门和/或排气门。
进一步的,将所述的氮化硅陶瓷和玻璃材料的双层组合物,用于高温环境的管状材料。
具体实施方式
为了更加清楚、完整的说明本发明的技术方案,下面对本发明作进一步说明。
一种氮化硅陶瓷和玻璃材料的双层组合物在发动机中的应用,其内层是与活塞接触的氮化硅陶瓷材料层,其从0-40℃升到900℃的热膨胀率等于或低于5(× 10-6/℃);其所述的外层是包裹着氮化硅陶瓷材料层的玻璃材料层,其:导热系数小于5w/[(m.K)],热扩散率小于5mm 2/S,其从0-40℃升到800℃的热膨胀率等于或低于8(×10-6/℃),其软化点温度>800℃,按重量百分比计算,氧化铝含量为1-46%,氧化镁的含量0-15%,氧化硅含量为30-82%,氧化钙含量为0-15%,氧化硼含量为0-15%。
所述的氮化硅陶瓷和玻璃材料的双层组合物及其应用,所述的内层是与活塞接触的氮化硅陶瓷材料层,其从0-40℃升到1200℃的热膨胀率等于或低于6(×10-6/℃);
所述的氮化硅陶瓷和玻璃材料的双层组合物及其应用,所述的包裹着氮化硅陶瓷材料层的玻璃材料层,导热系数小于4w/[(m.K)],热扩散率小于4mm 2/S,其从0-40℃升到1000℃的热膨胀率等于或低于8(×10-6/℃),其软化点温度>1000℃。
在本实施方式中,釆用德国耐驰仪器的顶杆法来测试所述氮化硅陶瓷和玻璃材料的双层组合物及其应用的软化温度和热膨胀率,测试条件为:升温速度5℃/min。
实施例1
一种氮化硅陶瓷和玻璃材料的双层组合物在发动机中的应用,其所述的内层是与活塞接触的氮化硅陶瓷材料层,其从0-40℃升到900℃的热膨胀率等于或低于5(×10-6/℃);其所述的外层是包裹着氮化硅陶瓷材料层的玻璃材料层,其:导热系数小于5w/[(m.K)],热扩散率小于5mm 2/S,其从0-40℃升到800℃的热膨胀率等于或低于8(×10-6/℃),其软化点温度>800℃,按重量百分比计算,氧化铝含量为1-46%,氧化镁的含量0-15%,氧化硅含量为30-82%,氧化钙含量为0-15%,氧化硼含量为0-15%。
实施例1的氮化硅陶瓷和玻璃材料的双层组合物,同时具有以下6种性质:
A.低摩擦系数的性能;B.低热扩散率mm 2/S的性能表示(即物体在加热或冷却中,温度趋于均匀一致的能力,就是抗热震性能好的性质);C.低热导率的防热能流失的性质;D.低热膨胀率性质;E.高软化点(变形点.)的性质;F耐腐蚀化学性能和耐磨性质。
实施例1的氮化硅陶瓷和玻璃材料的双层组合物能利用新性质,实际解决金属发动机和气轮机的4个重大的产业性技术问题:
其1.摩擦系数小(比各类金属或陶瓷如:氧化锆陶瓷、氧化铝陶瓷、莫来石陶瓷摩擦系数小很多),在技术基理上是由于氮化硅材料受压力时产生的表层气膜层的尤如磁旋浮火车的很低的摩擦系数的自润滑性能(即在没有润滑油时的工作状态,能产生近似润滑油的效果,如风电的大型轴承就采用氮化硅材料,十几年不加润滑油)。所以能更好的克服金属发动机气缸摩擦系数大,严重影响发动机效率的技术问题;所以能更好的克服发动机气缸在髙温环境下有机润滑剂机油被碳化失效而,出现的使机油的润滑剂效果下降的技术问题。
其2.由于所述氮化硅材料,从0-40℃升到900℃的热膨胀率等于或低于4(×10-6/℃)的低热膨胀率性质热膨胀性,能抵抗冷热冲击,0-40℃加热到1000℃以上,急剧冷却再急剧加热,也不会碎裂,就是抗热震性能好的性质,比各类铝合金及灰铸铁金属和氧化锆陶瓷、氧化铝陶瓷、莫来石陶瓷抗热震性能好很多,所以能更好的克服金属发动机缸体在寒冷的气候条件发动困难,和在不断急剧加大油门和不断急速降低油门的恶劣路现环境驾驶时,会使金属发动机缸体产生损坏的产业性技术的大问题;能产生了发动机使用寿命延长的技术效果。
其3.由于所述氮化硅材料和玻璃材料的软化点变型点温度,比各类铝合金及灰铸铁金属和氧化锆陶瓷、氧化铝陶瓷、莫来石陶瓷抗热震性能好很多。所 以能更好的克服和解决金属发动机和气轮机现有技术问题为:金属发动机和气轮机在超过变形点(350-450℃)气缸会极限的变型,所以只有利用冷却水把热量排除,造成热量大部分流失的重大技术问题。
其4.由于所述氮化硅陶瓷和玻璃材料的双层组合物中的玻璃材料小于7w/[(m.K)]的导热系数(表示的是流体或物体与物体之间,单位时间单位面积上的传热量)比各类铝合金及灰铸铁金属和氧化锆陶瓷、氧化铝陶瓷、莫来石陶瓷抗热震性能好很多。所以能在热能通过玻璃材料层时,被低导热系数的玻璃材料层阻挡,能克服和解决金属发动机和气轮机现有技术问题为:金属发动机和气轮机的发动机气缸的热扩散率大于50-120mm 2/S,热导率大于50-120w/[(m.K)],会使热能快速失散,和由此造成的金属发动机的热能利用率只有30-35%的产业性技术的大问题。
由于金属发动机气缸内只能长期承受300℃的温度,必须要被冷却水快速降温,不然就会产生拉缸而损坏发动机;而本发明氮化硅陶瓷和玻璃材料的双层组合物发动机气缸温度,能比金属发动机气缸长期承受高出几百度的高温状态,在氮化硅陶瓷和玻璃材料的双层组合物气缸内能长期保持800-1000℃又不须要被冷却水快速降温,这就能使氮化硅陶瓷和玻璃材料的双层组合物发动机气缸中的燃油能充分燃烧并有效去除二氧化碳等气体,能使氮化硅陶瓷和玻璃材料的双层组合物发动机碳排放比较金属发动机大大降低。
所以气缸内的氮化硅陶瓷和玻璃材料的双层组合物发动机气缸能长期保持800-1000℃又不须要被冷却水快速降温,这就能使氮化硅陶瓷和玻璃材料的双层组合物发动机气缸中更多的热能值转变为机械动力,有助于解决现有技术热能利用率只有30-35%的产业性技术的大问题,有助于氮化硅陶瓷和玻璃材料的双层组合物发动机气缸中热能利用率提升到70-85%。所以本发明能在汽车领域、 船舶领域、飞机领域、柴油及煤炭及天然气发电领域产生发动机和气轮机产业中,大幅提升热效率、大幅节省能源、更彻底的大幅减少碳排放(可大幅改变和升级现有汽车国六排放标准及欧洲的排放标准)、能对全球气候变暖产生减缓作用的新趋势的技术效果。
而且,本实施例的氮化硅陶瓷和玻璃材料的双层组合物及其应用用于发动机和气轮机和高温隔热材料使用方面,在耐腐蚀化学性能和耐磨、硬度性质方面,大大优于金属材料发动机和气轮机和其它高温隔热材料。
申请人为何在此实施例中,限定所述氮化硅陶瓷和玻璃材料的双层组合物及其应用的导热系数小于5w/[(m.K)],热扩散率小于5mm 2/S,其从0-40℃升到800℃的热膨胀率等于或低于8(×10-6/℃),其软化点温度>800℃。是因为上述新性质是发明人经过大量实验摸索和反复证明的,并在此实施例中,指出只有如此,才能产生氮化硅陶瓷和玻璃材料的双层组合物及其应用能同时具有6个新性质,并利用这些性质,才能解决了金属发动机气轮机的4个重大技术问题。
这是因为此领域的技术人员都知遒,因为在排气量较小的(如在1升-4升)的金属汽车发动机的气缸运行中,每分钟活塞会在气缸中上下运动近1000次。而从气体点火在气缸中燃烧膨胀时的温度1200℃,用极快的速度膨胀15-18倍,使燃油的热值的能量,转化为产生对活塞的推动的机械能。这时如果在正常的120公里车速时,气缸中燃烧膨胀时的温度气体温度一般达到500-600℃;现有技术金属发动机气缸在350-450℃会产生极限膨胀变型造成活塞快速运动与缸体变型会拉坏发动机的问题,所以只有设计冷却水系统,快速把金属发动机气缸的温度降到有保险系数的200℃;而金属发动机气缸,燃油的热值的能量,被大量带走,使金属发动机热能利用率,只能有35-40的技术问题。
本发明氮化硅陶瓷和玻璃材料的双层组合物不只限于高出500-600℃不变型,而是加了保险系数150-200℃的小于800℃也不变型。能适应各种中小型汽车--在碰到驾车人把正常的120公里车速加到150公里或以上,及如高速加油门上坡时,气缸中燃烧膨胀时的温度气体温度就会超过500-600℃,达到700-800℃的特别状态。能适应各种中小型汽车--在碰到如欧州有些国家可以让汽车跑到200公里时速,气体温度就会超过500-600℃,达到700-800℃的特别状态。
所以本第一实施例也就是权利要求1中限定氮化硅陶瓷和玻璃材料的双层组合物及其应用,的玻璃材料软化点>800℃和从0-40℃升到800℃的性质,是设计中具有保险系数的安全方案。也就是氮化硅陶瓷和玻璃材料的双层组合物及其应用发动机气缸运行中,能保持在800℃时的燃油热能值使之转化为更大的机械能,也不会产生极限膨胀变型。
在具体应用中适合于在(排气量4升以下)的普通排量的车辆发动机的应用。
本实施例中,本发明的氮化硅陶瓷用于发动机气缸中与活塞每分钟拉动和摩擦上千次的内层位置,由于烧结类氮化硅陶瓷的孔隙率为18-20%(金属发动机气缸内壁都设计有很多保存润滑油的细微凹槽结构),所以有利于发动机润滑油进入孔隙,使缸体内具有氮化硅摩擦表面微量分解形成薄薄得气膜,从而使摩擦面之间的滑动阻力减少的功能。和发动机润滑油进入达18-20孔隙又具有充分润滑油作用,产生了双重的减少阻力节能的效果。
而比较本发明人的(原有的一种氮化硅陶瓷和玻璃材料的双层组合物的专利技术),或比较(原有的一种氮化硅氮化硅陶瓷和玻璃材料的双层组合物的专利技术),由于其在烧结时是玻璃粉粒溶化后包裹了氮化硅粉粒或其它陶瓷或固体粉粒,因为孔隙被玻璃填平而不会出现18-20孔隙,所以发动机气缸内壁就很平滑。这就还需要在硬度很高的氮化硅或各种陶瓷材料上,制造很多保存润滑油的细微 凹槽结构。所以本发明(一种氮化硅陶瓷和玻璃材料的双层组合物在发动机中的应用)技术,比较一种本发明人的(原有的其它的氮化硅氮化硅陶瓷和玻璃材料的双层组合物和原有的氮化硅陶瓷和玻璃材料的双层组合物的专利技术),具有节省制造成本的优点。加上能使缸体内的氮化硅摩擦表面微量分解形成薄薄得气膜,从而使摩擦面之间的滑动阻力减少的作用,和润滑油的作用,能达到双重润滑效果。就能产生减少阻力和节能的效果。
另外由于比较本发明人的一种氮化硅陶瓷和玻璃材料的双层组合物的专利技术,或比较氮化硅氮化硅陶瓷和玻璃材料的双层组合物的专利技术,由于其在烧结时是由20-40%玻璃粉粒溶化后占据了发动机气缸内壁表层的面积,所以本发明(一种氮化硅陶瓷和玻璃材料的双层组合物在发动机中的应用)技术,比较之下会有更大的发动机气缸内壁表层的面积是完全的氮化硅材料,就能使缸体内更大面积的氮化硅摩擦表面微量分解形成薄薄得气膜,从而在更大面积中使摩擦面之间的滑动阻力减少,能产生更大的减少阻力和节能的效果。
实施例2
一种氮化硅陶瓷和玻璃材料的双层组合物在发动机中的应用,其所述的内层是与活塞接触的氮化硅陶瓷材料层,其从0-40℃升到1200℃的热膨胀率等于或低于6(×10-6/℃);其所述的外层是包裹着氮化硅陶瓷材料层的玻璃材料层,其:导热系数小于5w/[(m.K)],热扩散率小于5mm 2/S,其从0-40℃升到800℃的热膨胀率等于或低于8(×10-6/℃),其软化点温度>1100℃,按重量百分比计算,氧化铝含量为30-46%,氧化镁的含量0-15%,氧化硅含量为30-82%,氧化钙含量为0-15%,氧化硼含量为0-15%。
实施例2的氮化硅陶瓷和玻璃材料的双层组合物,同时具有以下6种性质:
A.低摩擦系数的性能;B.低热扩散率mm 2/S的性能表示(即物体在加热或冷 却中,温度趋于均匀一致的能力,就是抗热震性能好的性质);C.低热导率的防热能流失的性质;D.低热膨胀率性质;E.高软化点(变形点.)的性质;F耐腐蚀化学性能和耐磨性质。
实施例1的氮化硅陶瓷和玻璃材料的双层组合物能利用新性质,实际解决金属发动机和气轮机的4个重大的产业性技术问题:
其1.摩擦系数小(比各类金属或陶瓷如:氧化锆陶瓷、氧化铝陶瓷、莫来石陶瓷摩擦系数小很多),在技术基理上是由于氮化硅材料受压力时产生的表层气膜层的尤如磁旋浮火车的很低的摩擦系数的自润滑性能(即在没有润滑油时的工作状态,能产生近似润滑油的效果,如风电的大型轴承就采用氮化硅材料,十几年不加润滑油)。所以能更好的克服金属发动机气缸摩擦系数大,严重影响发动机效率的技术问题;所以能更好的克服发动机气缸在髙温环境下有机润滑剂机油被碳化失效而,出现的使机油的润滑剂效果下降的技术问题。
其2.由于所述氮化硅材料,从0-40℃升到900℃的热膨胀率等于或低于4(×10-6/℃)的低热膨胀率性质热膨胀性,能抵抗冷热冲击,0-40℃加热到1000℃以上,急剧冷却再急剧加热,也不会碎裂,就是抗热震性能好的性质,比各类铝合金及灰铸铁金属和氧化锆陶瓷、氧化铝陶瓷、莫来石陶瓷抗热震性能好很多,所以能更好的克服金属发动机缸体在寒冷的气候条件发动困难,和在不断急剧加大油门和不断急速降低油门的恶劣路现环境驾驶时,会使金属发动机缸体产生损坏的产业性技术的大问题;能产生了发动机使用寿命延长的技术效果。
其3.由于所述氮化硅材料和玻璃材料的软化点变型点温度,比各类铝合金及灰铸铁金属和氧化锆陶瓷、氧化铝陶瓷、莫来石陶瓷抗热震性能好很多。所以能更好的克服和解决金属发动机和气轮机现有技术问题为:金属发动机和气轮机在超过变形点(350-450℃)气缸会极限的变型,所以只有利用冷却水把热量 排除,造成热量大部分流失的重大技术问题。
其4.由于所述氮化硅陶瓷和玻璃材料的双层组合物中的玻璃材料小于7w/[(m.K)]的导热系数(表示的是流体或物体与物体之间,单位时间单位面积上的传热量)比各类铝合金及灰铸铁金属和氧化锆陶瓷、氧化铝陶瓷、莫来石陶瓷抗热震性能好很多。所以能在热能通过玻璃材料层时,被低导热系数的玻璃材料层阻挡,能克服和解决金属发动机和气轮机现有技术问题为:金属发动机和气轮机的发动机气缸的热扩散率大于50-120mm 2/S,热导率大于50-120w/[(m.K)],会使热能快速失散,和由此造成的金属发动机的热能利用率只有30-35%的产业性技术的大问题。
由于金属发动机气缸内只能长期承受300℃的温度,必须要被冷却水快速降温,不然就会产生拉缸而损坏发动机;而本发明氮化硅陶瓷和玻璃材料的双层组合物发动机气缸温度,能比金属发动机气缸长期承受高出几百度的高温状态,在氮化硅陶瓷和玻璃材料的双层组合物气缸内能长期保持800-1000℃又不须要被冷却水快速降温,这就能使氮化硅陶瓷和玻璃材料的双层组合物发动机气缸中的燃油能充分燃烧并有效去除二氧化碳等气体,能使氮化硅陶瓷和玻璃材料的双层组合物发动机碳排放比较金属发动机大大降低。
所以气缸内的氮化硅陶瓷和玻璃材料的双层组合物发动机气缸能长期保持800-1000℃又不须要被冷却水快速降温,这就能使氮化硅陶瓷和玻璃材料的双层组合物发动机气缸中更多的热能值转变为机械动力,有助于解决现有技术热能利用率只有30-35%的产业性技术的大问题,有助于氮化硅陶瓷和玻璃材料的双层组合物发动机气缸中热能利用率提升到70-85%。所以本发明能在汽车领域、船舶领域、飞机领域、柴油及煤炭及天然气发电领域产生发动机和气轮机产业中,大幅提升热效率、大幅节省能源、更彻底的大幅减少碳排放(可大幅改变和升 级现有汽车国六排放标准及欧洲的排放标准)、能对全球气候变暖产生减缓作用的新趋势的技术效果。
而且,本实施例的氮化硅陶瓷和玻璃材料的双层组合物及其应用用于发动机和气轮机和高温隔热材料使用方面,在耐腐蚀化学性能和耐磨、硬度性质方面,大大优于金属材料发动机和气轮机和其它高温隔热材料。
申请人为何在此实施例中,限定所述玻璃材料的导热系数小于5w/[(m.K)],热扩散率小于5mm 2/S,其从0-40℃升到1000℃的热膨胀率等于或低于8(×10-6/℃),其软化点温度>1100℃。是因为上述新性质是发明人经过大量实验摸索和反复证明的,并在此实施例中,指出只有如此,才能产生氮化硅陶瓷和玻璃材料的双层组合物及其应用能同时具有6个新性质,并利用这些性质,才能解决了金属发动机气轮机的4个重大技术问题。
在具体应用中适合于在20-50吨以上的重型卡车和大功率发动机工程车及大功率发动机的发电机组和大型及巨型船舶发动机及火电核电的巨型气轮机。。由于其马力巨大,热量对气缸的影响更大,所以要求具有更高水平的氮化硅陶瓷和玻璃材料的双层组合物发动机。
进一步的,所述氮化硅陶瓷和玻璃材料的双层组合物及其应用,将所述的氮化硅陶瓷和玻璃材料的双层组合物及其应用用于车辆发动机、船舶发动机、热机类活塞式飞机发动机、工程机械发动机、燃料发电机的气缸套。
进一步的,所述氮化硅陶瓷和玻璃材料的双层组合物及其应用,将所述的氮化硅陶瓷和玻璃材料的双层组合物及其应用,覆盖在热机类的涡轮发动机的燃烧室和涡轮机的外壳表层。
进一步的,所述氮化硅陶瓷和玻璃材料的双层组合物及其应用,将所述的氮化硅陶瓷和玻璃材料的双层组合物及其应用,覆盖在汽轮机的蒸汽室壁上和/ 或汽缸层表层和/或蒸汽喷嘴表层和/或钢盘表层和/或叶片表层和/或缸体表层和/或蒸汽输送管道表层。
进一步的,所述氮化硅陶瓷和玻璃材料的双层组合物及其应用,将所述的氮化硅陶瓷和玻璃材料的双层组合物及其应用,覆盖在发电机的活塞式发动机的气缸套和/或涡轮增压系统组件的外壳的表面。
进一步的,所述氮化硅陶瓷和玻璃材料的双层组合物及其应用,将所述的氮化硅陶瓷和玻璃材料的双层组合物及其应用用于,热机类的发动机。
进一步的,所述氮化硅陶瓷和玻璃材料的双层组合物及其应用,将所述的氮化硅陶瓷和玻璃材料的双层组合物及其应用,覆盖在热机类的发动机的涡轮增压系统组件的外壳的表面。
进一步的,所述氮化硅陶瓷和玻璃材料的双层组合物及其应用,将所述的氮化硅陶瓷和玻璃材料的双层组合物及其应用,用于热机类的发动机的气缸盖和/或活塞和/或活塞销和/或连杆和/或进气门和/或排气门。
进一步的,所述氮化硅陶瓷和玻璃材料的双层组合物及其应用,将所述的氮化硅陶瓷和玻璃材料的双层组合物及其应用,用于高温环境的管状材料。
当然,本发明一种氮化硅陶瓷和玻璃材料的双层组合物及其应用,还可有其它多种实施方式,基于本实施方式,本领域的普通技术人员在没有做出任何创造性劳动的前提下所获得其他实施方式,都属于本发明所保护的范围。

Claims (11)

  1. 一种氮化硅陶瓷和玻璃材料的双层组合物在发动机中的应用,其特征在于,内层是与活塞接触的氮化硅陶瓷材料层,其从0-40℃升到900℃的热膨胀率等于或低于5(×10-6/℃);外层是包裹着氮化硅陶瓷材料层的玻璃材料层,其导热系数小于5w/[(m.K)],热扩散率小于5mm 2/S,其从0-40℃升到800℃的热膨胀率等于或低于8(×10-6/℃),其软化点温度>800℃,按重量百分比计算,氧化铝含量为1-46%,氧化镁的含量0-15%,氧化硅含量为30-82%,氧化钙含量为0-15%,氧化硼含量为0-15%。
  2. 根据权利要求1所述的氮化硅陶瓷和玻璃材料的双层组合物在发动机中的应用,其特征在于,所述的内层是与活塞接触的氮化硅陶瓷材料层,其从0-40℃升到1200℃的热膨胀率等于或低于6(×10-6/℃)。
  3. 根据权利要求1所述的氮化硅陶瓷和玻璃材料的双层组合物在发动机中的应用,其特征在于,所述的包裹着氮化硅陶瓷材料层的玻璃材料层,导热系数小于4w/[(m.K)],热扩散率小于4mm 2/S,其从0-40℃升到1000℃的热膨胀率等于或低于8(×10-6/℃),其软化点温度>1000℃。
  4. 根据权利要求1至3任一项所述氮化硅陶瓷和玻璃材料的双层组合物在发动机中的应用,其特征在于,将所述的氮化硅陶瓷和玻璃材料的双层组合物用于车辆发动机、船舶发动机、热机类活塞式飞机发动机、工程机械发动机、燃料发电机的气缸套。
  5. 根据权利要求1至3任一项所述氮化硅陶瓷和玻璃材料的双层组合物在发动机中的应用,其特征在于,将所述的氮化硅陶瓷和玻璃材料的双层组合物,覆盖在热机类的涡轮发动机的燃烧室和涡轮机的外壳表层。
  6. 根据权利要求1至3任一项所述氮化硅陶瓷和玻璃材料的双层组合物在发动机中的应用,其特征在于,将所述的氮化硅陶瓷和玻璃材料的双层组合物及其 应用,覆盖在汽轮机的蒸汽室壁上和/或汽缸层表层和/或蒸汽喷嘴表层和/或钢盘表层和/或叶片表层和/或缸体表层和/或蒸汽输送管道表层。
  7. 根据权利要求1至3任一项所述氮化硅陶瓷和玻璃材料的双层组合物在发动机中的应用,其特征在于,将所述的氮化硅陶瓷和玻璃材料的双层组合物,覆盖在发电机的活塞式发动机的气缸套和/或涡轮增压系统组件的外壳的表面。
  8. 根据权利要求1至3任一项所述氮化硅陶瓷和玻璃材料的双层组合物在发动机中的应用,其特征在于,将所述的氮化硅陶瓷和玻璃材料的双层组合物,用于热机类的发动机。
  9. 根据权利要求1至3任一项所述氮化硅陶瓷和玻璃材料的双层组合物在发动机中的应用,其特征在于,将所述的氮化硅陶瓷和玻璃材料的双层组合物,覆盖在热机类的发动机的涡轮增压系统组件的外壳的表面。
  10. 根据权利要求1至3任一项所述氮化硅陶瓷和玻璃材料的双层组合物在发动机中的应用,其特征在于,将所述的氮化硅陶瓷和玻璃材料的双层组合物,用于热机类的发动机的气缸盖和/或活塞和/或活塞销和/或连杆和/或进气门和/或排气门。
  11. 根据权利要求1至3任一项所述氮化硅陶瓷和玻璃材料的双层组合物在发动机中的应用,其特征在于,将所述的氮化硅陶瓷和玻璃材料的双层组合物,用于高温环境的管状材料。
PCT/CN2021/116665 2020-09-15 2021-09-06 一种氮化硅陶瓷和玻璃材料的双层组合物在发动机中的应用 WO2022057653A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180035831.0A CN116194424A (zh) 2020-09-15 2021-09-06 一种氮化硅陶瓷和玻璃材料的双层组合物在发动机中的应用

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN202010968954.7 2020-09-15
CN202010968954.7A CN112145304A (zh) 2020-09-15 2020-09-15 一种具有高热能利用率的车辆
CN202010989365 2020-09-18
CN202010989365.7 2020-09-18
CN202011054021.3 2020-09-30
CN202011054021 2020-09-30
CN202011080648.6 2020-10-10
CN202011080648 2020-10-10
CN202110941235.0 2021-08-17
CN202110941235.0A CN113548900A (zh) 2020-09-15 2021-08-17 一种氮化硅陶瓷和玻璃材料的双层组合物在发动机中的应用

Publications (1)

Publication Number Publication Date
WO2022057653A1 true WO2022057653A1 (zh) 2022-03-24

Family

ID=77797694

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2021/111675 WO2022057518A1 (zh) 2020-09-15 2021-08-10 一种高软化点、低热膨胀系数、高耐磨、低热导率的玻璃复合材料在发动机气轮机中的应用
PCT/CN2021/116667 WO2022057654A1 (zh) 2020-09-15 2021-09-06 一种低热扩散率低摩擦系数低热导率低热膨胀的氮化硅玻璃复合材料在发动机中的应用
PCT/CN2021/116665 WO2022057653A1 (zh) 2020-09-15 2021-09-06 一种氮化硅陶瓷和玻璃材料的双层组合物在发动机中的应用

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/CN2021/111675 WO2022057518A1 (zh) 2020-09-15 2021-08-10 一种高软化点、低热膨胀系数、高耐磨、低热导率的玻璃复合材料在发动机气轮机中的应用
PCT/CN2021/116667 WO2022057654A1 (zh) 2020-09-15 2021-09-06 一种低热扩散率低摩擦系数低热导率低热膨胀的氮化硅玻璃复合材料在发动机中的应用

Country Status (2)

Country Link
CN (5) CN114195524A (zh)
WO (3) WO2022057518A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022057518A1 (zh) * 2020-09-15 2022-03-24 深圳前海发维新材料科技有限公司 一种高软化点、低热膨胀系数、高耐磨、低热导率的玻璃复合材料在发动机气轮机中的应用
CN114163244B (zh) * 2021-12-27 2022-10-14 中国科学院上海硅酸盐研究所 一种外硬内韧氮化硅陶瓷及其制备方法
CN116253299B (zh) * 2023-02-20 2024-06-14 安徽工业大学 一种利用含硅固废制备杂质包覆型Si2N2O的方法、制备所得Si2N2O及其应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4980321A (en) * 1987-12-25 1990-12-25 Isuzu Motors Limited Parts for internal combustion engine such as piston and cylinder head
CN1666969A (zh) * 2004-03-12 2005-09-14 常州华盛天龙机械有限公司 玻璃包覆热等静压制备高性能氮化硅陶瓷
US20150040879A1 (en) * 2012-02-22 2015-02-12 Ngk Insulators, Ltd. Structure of combustion chamber for engine and inner wall structure of flow path
CN111233319A (zh) * 2019-12-26 2020-06-05 杨德宁 一种铝硼硅的玻璃组合物的应用
CN111253065A (zh) * 2019-12-26 2020-06-09 杨德宁 一种高软化点的玻璃组合物的应用
CN111348829A (zh) * 2020-04-29 2020-06-30 杨德宁 一种高软化点防火高温玻璃组合物的应用
CN111499189A (zh) * 2020-05-11 2020-08-07 杨德宁 一种高软化点玻璃材料在发动机气缸体的应用
CN112145304A (zh) * 2020-09-15 2020-12-29 深圳前海发维新材料科技有限公司 一种具有高热能利用率的车辆
CN113429212A (zh) * 2020-09-15 2021-09-24 深圳前海发维新材料科技有限公司 一种低热扩散率低摩擦系数低热导率低热膨胀的氮化硅玻璃复合材料在发动机中的应用

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198302A (en) * 1990-04-23 1993-03-30 Corning Incorporated Coated inorganic fiber reinforcement materials and ceramic composites comprising the same
JPH0538565A (ja) * 1991-08-01 1993-02-19 Toyota Motor Corp 鋳ぐるみ用セラミツク焼成体
US5256603A (en) * 1992-11-19 1993-10-26 Corning Incorporated Glass bonded ceramic composites
US6214754B1 (en) * 1997-03-21 2001-04-10 Electro-Science Laboratories, Inc. Silicon nitride coating compositions
JP2000039032A (ja) * 1998-04-21 2000-02-08 Carl Zeiss:Fa トルク伝達装置の摩擦ライニング
DE10000836B4 (de) * 2000-01-12 2005-03-17 Schott Ag Alkalifreies Aluminoborosilicatglas und dessen Verwendungen
US6630417B2 (en) * 2000-05-30 2003-10-07 Kyocera Corporation Porcelain composition, porcelain and method of producing the same, and wiring board and method of producing the same
WO2003040057A1 (fr) * 2001-11-05 2003-05-15 Asahi Glass Company, Limited Composition de vitroceramique
DE102006056209B4 (de) * 2006-11-29 2009-09-10 Schott Ag Panzermaterial und Verfahren zu dessen Herstellung
WO2013133300A1 (ja) * 2012-03-09 2013-09-12 旭硝子株式会社 ガラスセラミックス体、積層体、携帯型電子機器用筐体、および携帯型電子機器
CN103360078A (zh) * 2012-04-05 2013-10-23 深圳光启创新技术有限公司 一种氮化硅复合材料的制备方法及其制备的基板
EP2894137A4 (en) * 2012-09-10 2016-04-20 Ngk Insulators Ltd CERAMIC COMPOSITE
CN102912163B (zh) * 2012-10-23 2014-04-16 陕西科技大学 一种玻璃/金属复合材料的制备方法
WO2015134135A1 (en) * 2014-03-05 2015-09-11 Applied Materials, Inc. Critical chamber component surface improvement to reduce chamber particles
CN105016738B (zh) * 2014-04-30 2017-07-14 广东工业大学 氮化硅陶瓷及其制备方法
CN105174972B (zh) * 2015-09-10 2017-10-17 电子科技大学 一种玻璃/陶瓷纳米复合材料的制备方法
EP3225351B1 (en) * 2016-03-30 2020-05-06 General Electric Company Brazing compositions for ductile braze structures, and related processes and devices
US11236023B2 (en) * 2018-11-07 2022-02-01 Honeywell International Inc. Method of forming a protective coating on a surface of a ceramic substrate
CN110028246B (zh) * 2019-05-08 2021-08-03 哈尔滨工业大学 一种玻璃焊料及其制备方法和应用
CN112500172B (zh) * 2020-05-11 2021-10-01 深圳前海发维新材料科技有限公司 一种高软化点、低热膨胀系数、高耐磨、低热导率的玻璃复合材料在发动机气轮机中的应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4980321A (en) * 1987-12-25 1990-12-25 Isuzu Motors Limited Parts for internal combustion engine such as piston and cylinder head
CN1666969A (zh) * 2004-03-12 2005-09-14 常州华盛天龙机械有限公司 玻璃包覆热等静压制备高性能氮化硅陶瓷
US20150040879A1 (en) * 2012-02-22 2015-02-12 Ngk Insulators, Ltd. Structure of combustion chamber for engine and inner wall structure of flow path
CN111233319A (zh) * 2019-12-26 2020-06-05 杨德宁 一种铝硼硅的玻璃组合物的应用
CN111253065A (zh) * 2019-12-26 2020-06-09 杨德宁 一种高软化点的玻璃组合物的应用
CN111348829A (zh) * 2020-04-29 2020-06-30 杨德宁 一种高软化点防火高温玻璃组合物的应用
CN111499189A (zh) * 2020-05-11 2020-08-07 杨德宁 一种高软化点玻璃材料在发动机气缸体的应用
CN112145304A (zh) * 2020-09-15 2020-12-29 深圳前海发维新材料科技有限公司 一种具有高热能利用率的车辆
CN113429212A (zh) * 2020-09-15 2021-09-24 深圳前海发维新材料科技有限公司 一种低热扩散率低摩擦系数低热导率低热膨胀的氮化硅玻璃复合材料在发动机中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHOU XIYA, YAO LILI,ZHOU BINYANG,HU JUN: "RESEARCH ON PREPARATION OF Si3N4 AND GLASS-CERAMIC COMPOSITE", CHINA CERAMICS, vol. 46, no. 7, 5 July 2010 (2010-07-05), pages 33 - 35, XP055912050, ISSN: 1001-9642, DOI: 10.16521/j.cnki.issn.1001-9642.2010.07.005 *

Also Published As

Publication number Publication date
WO2022057518A1 (zh) 2022-03-24
CN117120398A (zh) 2023-11-24
CN113429212A (zh) 2021-09-24
CN116194424A (zh) 2023-05-30
WO2022057654A1 (zh) 2022-03-24
CN114195524A (zh) 2022-03-18
CN113548900A (zh) 2021-10-26

Similar Documents

Publication Publication Date Title
WO2022057653A1 (zh) 一种氮化硅陶瓷和玻璃材料的双层组合物在发动机中的应用
CN103484796B (zh) 一种发动机活塞材料的加工工艺
Ciniviz et al. Ceramic coating applications and research fields for internal combustion engines
French Ceramics in reciprocating internal combustion engines
CN111663092B (zh) 一种金属基体表面陶瓷热障涂层及其在发动机中的应用
Katz Opportunities and prospects for the application of structural ceramics
Zucchetto et al. An assessment of the performance and requirements for" adiabatic" engines
McLean The Application of Ceramics to the Small Gas Turbine
CN105484889A (zh) 一种组合式气缸套
Kamo Adiabatic diesel-engine technology in future transportation
Walzer et al. Ceramic components in passenger-car diesel engines
CN104763515A (zh) 一种柴油机及车辆
US5884550A (en) Integral ring carbon-carbon piston
CN104500251B (zh) 超耐磨纳米陶瓷合金涂层大功率发动机缸套及其制造方法
CN112500172A (zh) 一种玻璃复合材料及其生产方法和应用
KR100684370B1 (ko) 냉각수 첨가제
Lumby et al. Syalon ceramics for advanced engine components
CN220319691U (zh) 一种活塞环组件
Tricker et al. Impact of High Performance Combustion Chamber Alloys on Fuel Efficiency
Miyamoto Automotive Coatings and Applications
Navarro Understanding Bore Scoring in Al-Si Cylinder Systems
WO2016008861A1 (en) Process for obtaining a piston and piston so obtained
Krause et al. Development of an Additive Manufactured Heavy-Duty Piston with an Innovative Piston Bowl
McLean et al. The Ceramic Gas Turbine—A Candidate Powerplant for the Middle-and Long-Term Future
Raval et al. A Review Paper on Redesigned Piston Rings to Improve Engine Performance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868478

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29.06.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21868478

Country of ref document: EP

Kind code of ref document: A1