WO2022057371A1 - 混合电力推进系统、启动方法及控制方法 - Google Patents

混合电力推进系统、启动方法及控制方法 Download PDF

Info

Publication number
WO2022057371A1
WO2022057371A1 PCT/CN2021/103234 CN2021103234W WO2022057371A1 WO 2022057371 A1 WO2022057371 A1 WO 2022057371A1 CN 2021103234 W CN2021103234 W CN 2021103234W WO 2022057371 A1 WO2022057371 A1 WO 2022057371A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
control unit
management module
mode
battery
Prior art date
Application number
PCT/CN2021/103234
Other languages
English (en)
French (fr)
Inventor
张小玉
王希炜
刘博�
桂勇
Original Assignee
中船动力研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010973271.0A external-priority patent/CN112249291B/zh
Priority claimed from CN202010974435.1A external-priority patent/CN112224372B/zh
Application filed by 中船动力研究院有限公司 filed Critical 中船动力研究院有限公司
Publication of WO2022057371A1 publication Critical patent/WO2022057371A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/75Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using propulsion power supplied by both fuel cells and batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/17Use of propulsion power plant or units on vessels the vessels being motor-driven by electric motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the embodiments of the present application relate to the technical field of ship power supplies, for example, to a hybrid electric propulsion system, a start-up method, and a control method.
  • the embodiments of the present application provide a hybrid electric propulsion system, a start-up method and a control method, so as to improve the stability and safety of the power system, ensure the use characteristics and service life of components on the ship, and improve the effect of energy saving and emission reduction.
  • a hybrid electric propulsion system including:
  • the start switch is configured to generate a start signal according to the input start information
  • An uninterruptible power supply unit is connected to the start switch, and the uninterruptible power supply unit is configured to supply power to the battery control unit, the fuel cell control unit and the energy integrated management module according to the start signal, so that all The battery control unit, the fuel cell control unit and the energy integrated management module complete the self-check;
  • the integrated energy management module is connected to the start switch, and the integrated energy management module is configured to acquire the battery control unit and the fuel cell control unit in response to receiving the start signal the self-check information obtained, and judge whether the hybrid electric propulsion system meets the startup conditions according to the obtained self-check information and the self-check information of the integrated energy management module itself;
  • the mode selection unit is connected to the energy integrated management module, the mode selection unit is set to determine a startup mode, and generates a corresponding mode signal according to the startup mode;
  • the integrated energy management module is further configured to start the battery control unit and the fuel cell control unit according to the mode signal, and to adjust the energy output of the battery control unit and the fuel cell control unit;
  • the battery control unit and the fuel cell control unit are respectively connected to the DC bus, and the battery control unit and the fuel cell control unit are configured to supply power to the DC bus.
  • an embodiment of the present application provides a method for starting a hybrid electric propulsion system, which is configured to start the hybrid electric propulsion system described in the first aspect, and the method for starting the hybrid electric propulsion system includes:
  • the start switch generates a start signal according to the input start information
  • the uninterruptible power supply unit supplies power to the battery control unit, the fuel cell control unit and the integrated energy management module according to the start signal, so that the battery control unit, the fuel cell control unit and the integrated energy management module complete the self-check;
  • the integrated energy management module acquires the self-check information of the battery control unit and the fuel cell control unit in response to receiving the start signal, and passes the self-check of the battery control unit and the fuel cell control unit information and the self-check information of the integrated energy management module to determine whether the hybrid electric propulsion system meets the startup conditions;
  • the mode selection unit determines an activation mode, and generates a corresponding mode signal according to the activation mode
  • the integrated energy management module starts the battery control unit and the fuel cell control unit according to the mode signal, and adjusts the energy output of the battery control unit and the fuel cell control unit;
  • the battery control unit and the fuel cell control unit supply power to the DC bus.
  • embodiments of the present application provide a control method for a marine fuel cell control unit, which is applied to a hybrid electric propulsion system, where the hybrid electric propulsion system includes an integrated energy management module and at least one fuel cell control unit, the energy The integrated management module is connected to the at least one fuel cell control unit, the fuel cell control unit includes a fuel cell and a fuel cell controller, and the integrated energy management module is configured to control the fuel cell in the fuel cell control unit.
  • Power supply, the control method of the marine fuel cell control unit includes:
  • the energy integrated management module determines the fuel cell opening number, and controls the opening of the corresponding fuel cell according to the fuel cell opening number;
  • the integrated energy management module determines the target output power of the fuel cell according to the power demand, and obtains the current output power of the fuel cell through the fuel cell controller;
  • the integrated energy management module judges whether the difference between the current output power and the target output power is within a preset difference range; in response to the difference between the current output power and the target output power being within the preset value range; Set the judgment result within the range of the difference value to maintain the output power of the fuel cell by controlling the DC/DC converter connected to the integrated energy management module; in response to the difference between the current output power and the target output power The judgment result that the value is not within the preset difference range, by controlling the DC/DC converter connected with the integrated energy management module to adjust the output power of the fuel cell to the target output power;
  • the integrated energy management module determines a fuel cell shutdown number, and controls the shutdown of a corresponding fuel cell according to the fuel cell shutdown number.
  • an embodiment of the present application provides a hybrid electric propulsion system
  • the hybrid electric propulsion system includes an energy integrated management module and at least one fuel cell control unit, each of the fuel cell control units is integrated with the energy a management module is connected, the fuel cell control unit includes a fuel cell and a fuel cell controller, and the energy integrated management module is configured to control the fuel cell in the fuel cell control unit;
  • the integrated energy management module is configured to determine the fuel cell opening number, and control the opening of the corresponding fuel cell according to the fuel cell opening number;
  • the energy integrated management module is further configured to determine the target output power of the fuel cell according to the power demand, and obtain the current output power of the fuel cell through the fuel cell controller; determine the current output power and the target output power Whether the difference of the output power is within the preset difference range; in response to the judgment result that the difference between the current output power and the target output power is within the preset difference range, by controlling the integrated energy management module connected to the DC/DC converter to maintain the output power of the fuel cell; in response to the judgment result that the difference between the current output power and the target output power is not within the preset difference range, control and a DC/DC converter connected to the integrated energy management module to adjust the output power of the fuel cell to the target output power;
  • the integrated energy management module is further configured to determine a fuel cell shutdown number, and control the shutdown of the corresponding fuel cell according to the fuel cell shutdown number.
  • FIG. 1 is a structural block diagram of a hybrid electric propulsion system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the connection relationship between a plurality of components in a hybrid electric propulsion system shown in FIG. 1;
  • FIG. 3 is a structural block diagram of another hybrid electric propulsion system provided by an embodiment of the present application.
  • FIG. 4 is another structural block diagram of another hybrid electric propulsion system provided by an embodiment of the present application.
  • FIG. 5 is a flowchart of a method for starting a hybrid electric propulsion system provided by an embodiment of the present application
  • FIG. 6 is a flowchart of a control method for a marine battery control unit provided by an embodiment of the present application.
  • FIG. 7 is a voltage curve diagram of a marine battery provided by an embodiment of the present application.
  • FIG. 8 is a flowchart of a control method of a marine fuel cell control unit provided by an embodiment of the present application.
  • Fig. 9 is a kind of flow chart of step S310 in Fig. 8;
  • Fig. 10 is another flow chart of step S310 in Fig. 8;
  • Fig. 11 is the flow chart of step S330 in Fig. 8;
  • FIG. 12 is a flowchart of another control method of a marine fuel cell control unit provided by an embodiment of the present application.
  • FIG. 13 is a control strategy diagram of a marine fuel cell control unit under non-mode control provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of an opening level of a marine fuel cell control unit under non-mode control provided by an embodiment of the present application.
  • 15 is a schematic diagram of the number of openings of a marine fuel cell control unit under non-mode control provided by an embodiment of the present application;
  • FIG. 16 is a flowchart of a control method of a marine fuel cell control unit under mode control provided by an embodiment of the present application.
  • FIG. 1 is a structural block diagram of a hybrid electric propulsion system provided by an embodiment of the present application. Referring to FIG. 1 , the system includes:
  • the start switch 110 is set to generate a start signal according to the input start information
  • Uninterruptible power supply unit 120 the uninterruptible power supply unit 120 is connected to the start switch 110, and the uninterruptible power supply unit 120 is set to supply power to the battery control unit 12, the fuel cell control unit 11 and the energy integrated management module 30 according to the start signal, so that the battery control The unit 12, the fuel cell control unit 11 and the energy integrated management module 30 complete the self-check;
  • the integrated energy management module 30 is connected to the start switch 110, and the integrated energy management module 30 is configured to obtain the self-check information of the battery control unit 12 and the fuel cell control unit 11 after receiving the start signal, that is, the self-check result, And according to the self-check results of the battery control unit 12 and the fuel cell control unit 11 and the self-check results of the energy integrated management module 30, it is judged whether the hybrid electric propulsion system meets the startup conditions;
  • the mode selection unit 80 is connected to the energy integrated management module 30, the mode selection unit 80 is set to select a startup mode, and generates a corresponding mode signal according to the startup mode;
  • the integrated energy management module 30 is further configured to start the battery control unit 12 and the fuel cell control unit 11 according to the mode signal, and to allocate the energy output of the battery control unit 12 and the fuel cell control unit 11;
  • the battery control unit 12 and the fuel cell control unit 11 are both connected to the DC bus L, and the battery control unit 12 and the fuel cell control unit 11 are configured to supply power to the DC bus L to supply power to the load 40 .
  • the uninterruptible power supply unit 120 is respectively connected with the battery control unit 12 , the fuel cell control unit 11 and the energy integrated management module 30 .
  • the integrated energy management module 30 is connected to the battery control unit 12 and the fuel cell control unit 11 respectively.
  • the battery control unit 12 may also be referred to as a battery unit
  • the fuel cell control unit 11 may also be referred to as a fuel cell unit.
  • the power system on the ship includes a power supply side and a power consumption side
  • the power supply side can be the hybrid electric propulsion system described in the embodiment of the application
  • the power consumption side is the load 40 on the ship.
  • vessel loads 40 may include cabin machinery, deck machinery, vessel lighting, conduction equipment, AC propulsion motors, and other electrical utilities.
  • the power supply side includes a power supply module 10 that provides electrical energy, and an energy integrated management module 30 that is responsible for allocating the energy output of the power supply module 10 .
  • the hybrid electric propulsion system includes a start switch 110, and the start switch 110 can generate a start signal according to the input start information.
  • the integrated energy management module 30 is connected to the start switch 110, which may be an electrical connection or a communication connection.
  • the start switch 110 is a start button on the ship.
  • the hybrid electric propulsion system further includes an uninterruptible power system (UPS) unit 120, and the uninterruptible power supply unit 120 is connected to the start switch 110, which may be an electrical connection or a communication connection.
  • UPS uninterruptible power system
  • the uninterruptible power supply unit 120 supplies power to the battery control unit 12, the fuel cell control unit 12, and the integrated energy management module 30 according to the received start signal, so that the battery control unit 12, the fuel cell control unit 11, and the integrated energy management module 30 can complete the automatic operation. check.
  • the electricity supplied by the uninterruptible power supply unit 120 to the battery control unit 12 , the fuel cell control unit 11 and the energy integrated management module 30 is weak electricity, which can satisfy the self-check of the system.
  • the state of the fuel cell control unit 11 and the battery control unit 12 in the power supply module 10 on the ship can be obtained, as well as the state of the energy integrated management module 30, and whether it is satisfied that the hybrid electric propulsion system is turned on is determined according to the feedback self-check information. conditions to ensure that the system can start up safely.
  • the power supply module 10 includes a fuel cell control unit 11 and a battery control unit 12 .
  • Planned Maintenance System means that ship machinery (including electrical equipment) is formulated by the shipowner according to the relevant requirements of the relevant regulations of China Classification Society (CCS) and the provisions of the equipment manufacturer's manual. A detailed set of periodic maintenance plans. Through the implementation and implementation of the plan on the ship, the ship machinery can always be kept in good operating condition.
  • CCS China Classification Society
  • the integrated energy management module 30 may be a set of shared databases, running on the ship and shore-based computer systems, respectively, and also has planned maintenance system (PMS) management, ship spare parts management, basic database management, and maintenance report management. It is a computer application system with five functions such as ship-shore data exchange.
  • PMS planned maintenance system
  • the mode selection unit 80 is set to select the starting mode, and generate a corresponding mode signal according to the starting mode; the energy integrated management module 30 is also set to start the battery control unit 12 and the fuel cell control unit 11 according to the mode signal; the battery control unit 12 and the fuel cell control unit 11
  • the control unit 11 is respectively connected with the energy integrated management module 30, and the energy integrated management module 30 turns on the battery control unit 12 and the fuel cell control unit 11 according to the mode signal, and allocates the energy output of the battery control unit 12 and the fuel cell control unit 11;
  • the unit 12 and the fuel cell control unit 11 are arranged to supply the DC bus L to supply the load 40 .
  • the energy integrated management module in the embodiment of the present application is connected to the power supply module, and can adjust the energy output of the fuel cell control unit and the battery control unit according to the mode signal or the speed signal.
  • the integrated energy management module allocates the energy of the fuel cell control unit and the battery control unit according to the received mode signals and the power demand of the load. output.
  • the energy output of the fuel cell control unit and the battery control unit is adjusted by the energy integrated management module according to the mode signal or the speed signal, which improves the stability of the power system, and completes the self-check of the power system before starting, which improves the performance of the power system.
  • the safety of the power system ensures the use characteristics and service life of the devices on the ship, and improves the effect of energy saving and emission reduction.
  • the startup modes include berthing mode, inbound and outbound mode, sailing mode and half-speed mode; the integrated energy management module 30 is further configured to deploy the battery control unit 12 and the fuel cell according to the berthing mode control strategy when the berthing mode is selected.
  • the energy output of the control unit 11 enables the hybrid electric propulsion system to enter the berthing mode.
  • the energy output of the battery control unit 12 and the fuel cell control unit 11 is deployed according to the inbound and outbound mode control strategy to make the hybrid electric propulsion system enter.
  • the energy output of the battery control unit 12 and the fuel cell control unit 11 is adjusted according to the sailing mode control strategy to make the hybrid electric propulsion system enter the sailing mode, and when the half-speed mode is selected, press the half-speed
  • the mode control strategy coordinates the energy output of the battery control unit 12 and the fuel cell control unit 11 to put the hybrid electric propulsion system into half speed mode.
  • FIG. 2 is a schematic diagram of the connection relationship between multiple components in a hybrid electric propulsion system shown in FIG. 1; with reference to FIGS. 1 and 2, the hybrid electric propulsion system further includes a converter module 20, so The converter module 20 includes a first DC/DC converter unit 21 and a second DC/DC converter unit 22 .
  • the first DC/DC converter unit 21 is connected between the DC bus L and the fuel cell control unit 11, and the second DC/DC converter unit 22 is connected between the DC bus L and the battery control unit 12;
  • the fuel cell control The unit 11 includes a fuel cell 111 and a fuel cell controller 112
  • the battery control unit 12 includes a battery 121 and a battery controller 122
  • the converter unit includes a DC (Direct current, direct current)/DC converter and a DC/DC controller.
  • the first The DC/DC converter unit 21 and the second DC/DC converter unit 22 are converter units; the fuel cell controller 112, the battery controller 122 and the DC/DC controller are all connected to the energy integrated management module;
  • the uninterruptible power supply unit 120 is set to power on the fuel cell controller 112, the battery controller 122 and the DC/DC controller; the energy integrated management module 30 is also set to power on the fuel cell controller 112, the battery controller 112, the battery control module 30 in the uninterruptible power supply unit 120 After the controller 122 and the DC/DC controller are powered on, a discharge command is transmitted to the battery controller 122 to control the battery 122 to supply power to the DC bus L.
  • the fuel cell is connected to the fuel cell controller
  • the battery is connected to the battery controller
  • the DC/DC converter is connected to the DC/DC controller
  • the DC/DC converter may be a unidirectional converter or a bidirectional converter.
  • the DC/DC converter corresponding to the fuel cell is a unidirectional converter
  • the DC/DC converter corresponding to the lithium battery is a bidirectional converter
  • the battery control unit 12 and the fuel cell control unit 11 are respectively connected to the DC bus L through a DC/DC converter.
  • the power supply side includes a converter module 20 connected between the power supply module 10 and the DC bus L.
  • the converter module 20 is configured to output a valid fixed voltage after converting the voltage input by the power supply module 10 .
  • the electric energy output by the power supply module 10 is converted by the converter module 20 and provided to the DC bus L, and the load 40 on the ship obtains the working voltage through the DC bus L.
  • a DC/AC (Alternating current, alternating current) converter unit 50 is arranged between the load 40 and the DC bus L, and the DC/AC converter unit 50 is arranged to convert the voltage on the DC bus L into a voltage required by the load 40.
  • the DC/AC converter unit 50 includes a DC/AC controller and a DC/AC converter 51 , and the DC/AC controller is connected to the DC/AC converter 51 .
  • the power supply module 10 includes a fuel cell control unit 11 and a battery control unit 12, and the fuel cell control unit 11 is the main propulsion power source of the ship.
  • the battery control unit 12 can make up for the lack of dynamic characteristics of the fuel cell control unit 11 , and mainly play the role of shaving peaks and filling valleys and stabilizing the power system.
  • the storage battery 121 is a secondary battery and can be charged and discharged.
  • the battery 121 can be a lithium iron phosphate battery, a lithium cobalt oxide battery, a lithium manganate battery, or a lithium cobalt manganate battery, which has problems such as safety in use and difficulty in estimating battery power.
  • the battery controller 122 may be a battery management system (BATTERY MANAGEMENT SYSTEM, BMS), and the state of charge (SOC) of the power battery pack can be accurately estimated through the BMS. Ensure that the SOC value is maintained within a reasonable range to prevent damage to the battery due to overcharge or overdischarge, so as to predict the remaining energy of the hybrid vehicle energy storage battery or the state of charge of the energy storage battery at any time.
  • BMS battery management system
  • SOC state of charge
  • the BMS can also collect the voltage, temperature, charging and discharging current, and total battery voltage of the battery 121 in real time to prevent the battery 121 from being overcharged or overdischarged. By giving the battery status in time, the reliability and efficiency of the entire battery operation are maintained, the utilization rate of the battery is improved, the battery is prevented from overcharging and overdischarging, and the service life of the battery is prolonged.
  • the battery control unit 12 includes a battery 121 and a battery controller 122.
  • the battery controller 122 is connected to the energy integrated management module 30.
  • the battery controller 122 is configured to transmit the status information of the battery to the energy integrated management module 30, and according to the energy integrated management module 30
  • the feedback command signal controls the energy output of the battery.
  • the fuel cell 111 also known as an electrochemical generator, is a chemical device that directly converts the chemical energy of the fuel into electrical energy.
  • the fuel cell 111 uses fuel and oxygen as raw materials, and has no mechanical transmission components, so there is no noise pollution, and it emits very little harmful gas.
  • the fuel includes hydrogen fuel or biofuel. Operating conditions such as the pressure, humidity, internal humidity and temperature of the reaction gas directly affect the performance and life of the stack.
  • the fuel cell controller (Fuel Control Unit, FCU) 112 is the control "brain" of the fuel cell engine system, which mainly realizes the online detection, real-time control and fault diagnosis of the fuel cell to ensure the stable and reliable operation of the fuel cell.
  • the fuel cell control unit 11 includes a fuel cell 111 and a fuel cell controller 112, the fuel cell controller 112 is connected to the integrated energy management module 30, and the fuel cell controller 112 is configured to transmit the state information of the fuel cell to the integrated energy management module 30, and The energy output of the fuel cell 111 is controlled according to the command signal fed back by the energy integrated management module 30 .
  • the converter module 20 includes a first DC/DC converter unit 21 and a second DC/DC converter unit 22, the first end of the first DC/DC converter unit 21 is connected to the fuel cell control unit 11; the first DC/DC converter unit 21 is connected to the fuel cell control unit 11; The second end of the DC converter unit 21 is electrically connected to the DC bus L; the first end of the second DC/DC converter unit 22 is connected to the battery control unit 12; the second end of the second DC/DC converter unit 22 is connected to the battery control unit 12.
  • DC bus L connection The integrated energy management module 30 is also connected to the converter module 20 , and the integrated energy management module 30 is configured to control the conduction state of the converter module 20 .
  • the battery controller 122 of the battery control unit 12 After the battery controller 122 of the battery control unit 12 completes power-on and self-checking, it can control the battery 121 to supply power to the DC bus L according to the discharge command transmitted by the energy integrated management module 30, so that the DC bus has a certain voltage.
  • FIG. 3 is a structural block diagram of another hybrid electric propulsion system provided by an embodiment of the present application.
  • the number of fuel cell control units 11 is multiple, and the number of battery control units 12 is multiple.
  • the fuel cell control unit 11 is arranged in a one-to-one correspondence with the first DC/DC converter unit 21, and the battery control unit 12 is arranged in a one-to-one correspondence with the second DC/DC converter unit 22; wherein, the first DC/DC converter unit 21 includes a unidirectional converter 211 , and the second DC/DC converter unit 22 includes a bidirectional converter 221 .
  • the hybrid electric propulsion system consists of four fuel cell control units 11 and two sets of batteries with the same capacity.
  • the control unit 12, 6 matching DC/DC converter units and the energy integrated management module 30 are composed.
  • An energy management module that is mutually redundant with the integrated energy management module 30 may be provided, and the energy management module is configured as a backup control system when the integrated energy management module 30 is damaged.
  • the first DC/DC converter unit 21 includes a unidirectional converter 211
  • the second DC/DC converter unit includes a bidirectional converter 221 .
  • the one-way converter 211 and the two-way converter 221 have a corresponding DC/DC controller respectively, and the energy integrated management module 30 controls the corresponding converters through the DC/DC controller. Since the fuel cell 111 is a power generating device and cannot store electrical energy, the direction of energy transmission is irreversible. Only a one-way DC/DC converter, namely the one-way converter 211 is needed to realize the energy transfer between the fuel cell 111 and the DC bus L. Convert and transfer. The storage battery 122 can release the stored electric energy. Therefore, a bidirectional DC/DC converter, namely the bidirectional converter 221, is provided to realize the bidirectional flow of energy between the storage battery 121 and the DC bus L, so as to improve the utilization rate of energy.
  • the hybrid electric propulsion system further includes a hydrogen supply system 130
  • the hydrogen supply system 130 includes a hydrogen supply unit 60 for supplying hydrogen to the fuel cell control unit 11 and a hydrogen system controller 70
  • the DC bus L is set To supply power to the hydrogen supply system 130, so that the hydrogen supply system 130 completes the self-check
  • the integrated energy management module 30 is also connected in communication with the hydrogen system controller 70.
  • the integrated energy management module 30 is configured to receive the self-check information of the hydrogen supply system 130 and judge whether the hydrogen supply system 130 meets the startup conditions according to the self-check information.
  • the battery controller 122 of the battery control unit 12 can control the battery 121 to supply power to the DC bus L according to the discharge command transmitted by the energy integrated management module 30, so that there is a certain amount of power on the DC bus. Numerical voltage.
  • the hydrogen supply system 130 includes a hydrogen system controller 70 , and the hydrogen supply system 130 completes self-checking through the hydrogen system controller 70 . Check whether the communication between the hydrogen system controller 70 and the integrated energy management module 30 is lost, and transmit the corresponding information to the integrated energy management module.
  • the energy integrated management module receives the self-check information of the hydrogen supply system 130 and judges whether the hydrogen supply system 130 meets the startup conditions according to the self-check information.
  • the hydrogen supply unit 60 includes a plurality of hydrogen cylinder groups 61 , and each hydrogen cylinder 61 group is configured to provide hydrogen for a pair of fuel cell control units 11 ; a manual switch is connected between the multiple hydrogen cylinder groups 61 S1 , the manual switch S1 is set to control the communication state between the hydrogen cylinder groups 61 .
  • the hybrid electric propulsion system includes four fuel cell control units 11 .
  • two hydrogen cylinder groups 61 are required.
  • Each hydrogen cylinder group 61 supplies hydrogen to a pair of fuel cell control units 11 .
  • a manual switch S1 is connected between the two hydrogen cylinder groups 61, and the connection state between the hydrogen cylinder groups 61 is controlled by the manual switch S1, so as to prevent one of the hydrogen cylinder groups 61 from being unable to supply gas and affecting the power supply of the fuel cell control unit 11, The stability of the power system is improved, and the use characteristics and service life of the devices on the ship are guaranteed.
  • the power supply module 10 further includes a hydrogen supply system 130, and the hydrogen supply system 130 includes a hydrogen system controller 70 and a plurality of hydrogen cylinder groups 61; a fuel cell controller 112 of each fuel cell 111 and a hydrogen system controller 70 are all connected to the integrated energy management module 30 .
  • the hybrid electric propulsion system further includes a speed monitoring unit 90, and the speed monitoring unit 90 is connected with the energy integrated management module 30;
  • the speed monitoring unit 90 is configured to generate a speed signal according to the monitored sailing speed, and transmit the speed signal to the integrated energy management module 30; mode, sailing mode or half speed mode.
  • the power supply mode of the hybrid electric propulsion system of the ship can also be determined by receiving the sailing speed of the ship through the integrated energy management module 30 . For example, when the integrated energy management module 30 receives that the sailing speed of the ship is less than 2 knots, it will allocate the output power of the power supply module 10 in the berthing mode. When the integrated energy management module 30 receives that the sailing speed of the ship is greater than 2 knots and less than 8 knots, it will allocate the output power of the power supply module 10 in the inbound and outbound or half speed mode.
  • the integrated energy management module 30 When the integrated energy management module 30 receives that the sailing speed of the ship is greater than 8 knots, it will allocate the output power of the power supply module in the sailing mode. It provides a double guarantee for meeting the power requirements of at least one driving state of the ship and the failure mode, ensuring the power demand of the ship's work, improving the stability of the power system, ensuring the use characteristics and service life of the devices on the ship, and improving energy saving. emission reduction effect.
  • the integrated energy management module 30 When the integrated energy management module 30 receives that the sailing speed of the ship is equal to 2 knots, it will adjust the output power of the power supply module 10 in the berthing mode, in and out of the port or in the half speed mode.
  • the integrated energy management module 30 When the integrated energy management module 30 receives that the sailing speed of the ship is equal to 8 knots, it will adjust the output power of the power supply module 10 in sailing mode, port entry and exit or half speed mode.
  • the average speed of the ship's sailing set time period monitored by the speed monitoring unit 90 can be used as the speed signal, which can improve the accuracy of the speed signal and prevent the triggering of a wrong speed signal from being inconsistent with the actual working state of the ship.
  • the conforming working mode improves the stability of the power system, ensures the use characteristics and service life of the devices on the ship, and improves the effect of energy saving and emission reduction.
  • the monitored average speed of the ship sailing for ten minutes can be used as the speed signal. While ensuring the accuracy of the speed signal, it also ensures that the triggered working mode changes in time with the actual working state of the ship.
  • the load on the ship has a low demand for electricity, and it is only necessary to maintain the power consumption of the ship's lighting or conduction equipment, and does not need to provide power for the navigation of the ship.
  • the fuel cell 111 and the battery 121 stop working, and the DC/DC converters (i.e. the one-way converter 211 and the two-way converter 221) on the power supply side are disconnected.
  • the fuel cell 111 and the battery 121 are controlled to be turned on, and the fuel cell 111 can work with an output power of 40kW.
  • the SOC value of the battery 121 is lower than 40%, the two fuel cells are turned on. The battery 111 is charged and the battery 121 is charged until the SOC value of the battery 121 reaches 50%, and one fuel cell 111 is turned off.
  • the integrated energy management module 30 turns on the four fuel cells 111 through the hydrogen system controller 70 and the fuel cell controller 112, and controls the first DC/DC converter unit 211 to output a power of 40kW
  • the SOC value of the battery 121 is lower than 50%
  • the output power of the fuel cell 111 is adjusted to 60kW
  • the SOC value of the battery 121 is lower than 40%
  • the output power of the fuel cell 111 is adjusted to 80kW.
  • the SOC value of the battery 121 returns to 55%, the output power of the fuel cell 111 drops back to 40 kW.
  • the integrated energy management module 30 controls the power supply side DC/DC converter unit to close, and controls the fuel cell 111 as the main output, and ensures that the SOC value of the battery 121 maintains a high value. For example, if the battery 121 and the fuel cell 111 are all turned on, once the SOC value of the battery 121 decreases, the power of the fuel cell 111 increases step by step to ensure that the SOC value of the battery 121 is not less than 55%.
  • the maximum output power of the fuel cell 111 can be 200kW.
  • the integrated energy management module 30 controls the fuel cell control unit 11 and the battery control unit 12 of the starting part, and controls to reduce the load's demand for output power, that is, reduce the corresponding output power according to the number of batteries that can still work.
  • the integrated energy management module 30 is further configured to start the hybrid electric propulsion system according to a set start-up rule when there is no mode signal input and no speed signal input.
  • the integrated energy management module 30 can control the energy output of the fuel cell control unit 11 according to the SOC value of the battery control unit 12 , for example, determine the number and output power of the fuel cell control unit 11 to be turned on.
  • the integrated energy management module 30 is also connected to the alarm module 100, and the integrated energy management module 30 is further configured to control the alarm module 100 to give an alarm when an abnormal situation enters the half-speed mode, and to remind in time. There is a message that the fuel cell or battery is damaged.
  • the integrated energy management module 30 is configured to control the fuel cell 111 in the fuel cell control unit 11, including:
  • the integrated energy management module 30 is set to determine the fuel cell opening number, and control the opening of the corresponding fuel cell according to the fuel cell opening number;
  • the controller obtains the current output power of the fuel cell, that is, the actual output power; determines whether the difference between the actual output power and the target output power is within the preset difference range; if the difference between the actual output power and the target output power is within the preset difference Within the range, the output power of the fuel cell is maintained by controlling the DC/DC converter connected to the energy integrated management module; if the difference between the actual output power and the target output power is not within the preset difference range, the control and energy
  • the DC/DC converter connected to the integrated management module adjusts the output power of the fuel cell to the target output power; and the integrated energy management module 30 is further configured to determine the fuel cell shutdown number, and control the shutdown of the corresponding fuel cell according to the fuel cell shutdown number.
  • the embodiment of the present application provides a hybrid electric propulsion system, which uses a fuel cell as the main propulsion power source of a ship, and a battery as an auxiliary energy source, which mainly plays the role of peak shaving and valley filling, which can make up for the lack of dynamic characteristics of the fuel cell and stabilize the power system. effect.
  • a strategy for rationally allocating the start-stop and power output of each group of fuel cells is formulated to meet the needs of the ship in multiple driving states and failure modes.
  • the best energy distribution strategy is formulated to achieve the effect of energy saving and emission reduction.
  • FIG. 5 is a flowchart of a method for starting a hybrid electric propulsion system provided by an embodiment of the present application. Referring to FIG. 5 , the method includes:
  • the start switch generates a start signal according to the input start information.
  • the hybrid electric propulsion system further includes a start switch, and the start switch can generate a start signal according to the input start information.
  • the energy integrated management module is connected with the start switch, which may be an electrical connection or a communication connection.
  • the start switch is the start button on the ship. When the start button is pressed, information can be transmitted between the integrated energy management module and the start switch, and the integrated energy management module can receive the start signal of the hybrid electric propulsion system on the ship.
  • the uninterruptible power supply unit supplies power to the battery control unit, the fuel cell control unit and the energy integrated management module according to the start signal, so that the battery control unit, the fuel cell control unit and the energy integrated management module complete the self-check.
  • the hybrid electric propulsion system further includes an uninterruptible power system (UPS) unit, and the uninterruptible power supply unit is connected to the start switch, which may be an electrical connection or a communication connection.
  • the uninterruptible power supply unit supplies power to the battery control unit, the fuel cell control unit and the energy integrated management module according to the received start signal, so that the battery control unit, the fuel cell control unit and the energy integrated management module complete the self-check.
  • the power supply of the uninterruptible power supply unit for the battery control unit, the fuel cell control unit and the energy integrated management module is weak current, which can satisfy the self-check of the system.
  • the purpose is to know the status of the fuel cell control unit and the lithium battery unit, and to determine whether the conditions for turning on the hybrid electric propulsion system are met according to the feedback self-check information, so as to ensure that the system can be started safely.
  • the energy integrated management module obtains the self-check information of the battery control unit and the fuel cell control unit after receiving the start signal, and judges according to the self-check information of the battery control unit and the fuel cell control unit and the self-check information of the energy integrated management module itself Whether the hybrid electric propulsion system meets the start-up conditions.
  • the integrated energy management module receives the battery control unit and the integrated energy management module.
  • the self-check information fed back by the fuel cell control unit combined with the self-check information of the energy integrated management module itself, judges the current status of the fuel cell control unit, the lithium battery unit, and the energy integrated management module itself to determine whether the conditions for turning on the hybrid electric propulsion system are met. .
  • the mode selection unit selects a startup mode, and generates a corresponding mode signal according to the startup mode.
  • the mode selection unit selects the starting mode, and generates a corresponding mode signal according to the starting mode.
  • the activation modes include berthing mode, inbound and outbound mode, sailing mode and half speed mode.
  • the energy integrated management module starts the battery control unit and the fuel cell control unit according to the mode signal, and allocates the energy output of the battery control unit and the fuel cell control unit.
  • the integrated energy management module when the integrated energy management module selects the berthing mode, it allocates the energy output of the battery control unit and the fuel cell control unit according to the berthing mode control strategy to make the hybrid electric propulsion system enter the berthing mode; when the integrated energy management module selects the entry and exit mode, The energy output of the battery control unit and the fuel cell control unit is allocated according to the control strategy of the entry and exit mode to make the hybrid electric propulsion system enter the entry and exit mode; the energy integrated management module allocates the battery control unit and fuel according to the control strategy of the navigation mode when the navigation mode is selected.
  • the energy output of the battery control unit enables the hybrid electric propulsion system to enter the sailing mode; and when the half-speed mode is selected, the energy integrated management module allocates the energy output of the battery control unit and the fuel cell control unit according to the half-speed mode control strategy to make the hybrid electric The propulsion system goes into half speed mode.
  • the battery control unit and the fuel cell control unit supply power to the DC bus to supply power to the load.
  • the uninterruptible power supply unit supplies power to the battery control unit, the fuel cell control unit and the integrated energy management module according to the activation signal, including:
  • the uninterruptible power supply unit supplies power to the fuel cell controller, battery controller and DC/DC controller.
  • the fuel cell control unit is arranged in a one-to-one correspondence with the first DC/DC converter unit, and the battery control unit is arranged in a one-to-one correspondence with the second DC/DC converter unit, and each DC/DC converter unit includes a DC/DC converter unit.
  • Converters and DC/DC Controllers are respectively connected with the fuel cell controller, the battery controller and the DC/DC controller.
  • the uninterruptible power supply unit supplies power to the battery control unit, the fuel cell control unit and the energy integrated management module according to the start signal, that is, the uninterruptible power supply unit supplies power to the fuel cell controller, the battery controller and the DC/DC controller, so that the fuel cell controller ,
  • the battery controller and the DC/DC controller complete the self-check and complete the acquisition of the status information of the fuel cell, the battery and the DC/DC converter unit.
  • the battery controller and the DC/DC controller after the uninterruptible power supply is powered on for the fuel cell controller, the battery controller and the DC/DC controller, it further includes: the integrated energy management module transmits a discharge command to the battery controller to control the battery to supply power to the DC bus;
  • the DC bus powers the hydrogen supply system so that the hydrogen supply system completes the self-check;
  • the energy integrated management module receives the self-check information of the hydrogen supply system and judges whether the hydrogen supply system meets the startup conditions according to the self-check information.
  • the battery controller of the battery control unit After the battery controller of the battery control unit completes the power-on and self-test, it can control the battery to supply power to the DC bus according to the discharge command transmitted by the energy integrated management module, so that the DC bus has a certain value of voltage.
  • the hydrogen supply system After the hydrogen supply system obtains the voltage from the DC bus, it also needs to complete the self-test.
  • the hydrogen supply system includes the hydrogen system controller, and the hydrogen supply system also completes the self-check through the hydrogen system controller. At the same time, check whether the communication between the hydrogen system controller and the energy integrated management module is lost, and transmit the corresponding information to the energy integrated management module.
  • the energy integrated management module receives the self-check information of the hydrogen supply system and judges whether the hydrogen supply system meets the startup conditions according to the self-check information.
  • the method for starting the hybrid electric propulsion system further includes: when the mode signal is not received, the integrated energy management module starts the hybrid electric propulsion system according to the speed signal to enter the berthing mode, the port entry and departure mode, the sailing mode or the half speed mode ; When the mode signal and speed signal are not received, the energy integrated management module starts the hybrid electric propulsion system according to the set start-up rule.
  • the power supply mode of the hybrid electric propulsion system of the ship can also be determined by receiving the sailing speed of the ship through the integrated energy management module.
  • the integrated energy management module receives that the sailing speed of the ship is lower than the first set speed, it will allocate the output power of the power supply module in the berthing mode.
  • the integrated energy management module receives that the sailing speed of the ship is greater than the first speed and less than the second set speed, it will allocate the output power of the power supply module in the mode of entering and leaving the port or half speed.
  • the integrated energy management module receives that the sailing speed of the ship is greater than the second set speed, it will allocate the output power of the power supply module in the sailing mode.
  • the integrated energy management module starts the hybrid electric propulsion system according to the set start-up rule. For example, the integrated energy management module determines the start-up output and output power of the fuel cell control unit according to the SOC value of the battery control unit.
  • the embodiments of the present application provide a hybrid electric propulsion system and a startup method.
  • the hybrid electric propulsion system includes: a startup switch configured to generate a startup signal according to input startup information; an uninterruptible power supply unit configured to generate a battery control unit, fuel The battery control unit and the integrated energy management module supply power, so that the battery control unit, the fuel cell control unit and the integrated energy management module complete the self-check; the integrated energy management module is set to judge whether the hybrid electric propulsion system meets the startup conditions according to the self-check information;
  • the mode selection unit is set to select the starting mode and generate the corresponding mode signal; the energy integrated management module is also set to start the battery control unit and the fuel cell control unit according to the mode signal and allocate the energy output of the two; the battery control unit and the fuel cell control unit The unit is set up to supply the DC bus to power the load.
  • the energy output of the fuel cell control unit and the battery control unit is adjusted by the integrated energy management module according to the mode signal or the speed signal, which improves the stability of the power system, and completes the self-check of the power system before starting, which improves the performance of the power system.
  • the safety of the power system ensures the use characteristics and service life of the devices on the ship, and improves the effect of energy saving and emission reduction.
  • An embodiment of the present application also provides a method for controlling a marine battery control unit.
  • the ship includes a plurality of battery control units, and each battery control unit is connected to an integrated energy management module.
  • FIG. 6 is a marine battery control unit provided by an embodiment of the present application. The flowchart of the control method of the battery control unit, referring to FIG. 6, the method includes:
  • the energy integrated management module sets a battery control unit as the main control battery unit.
  • the battery control units of the whole ship are equally divided into the left and right half-chords and independently form a domain.
  • the two domain batteries are online at the same time under normal conditions, and jointly undertake the task of maintaining the voltage of the DC bus. Balance the current during the charging and discharging process of the battery control unit, so that the SOC values of the batteries in each battery control unit tend to be consistent, and ensure that the charging and discharging of multiple battery control units on the ship are uniform and have a similar lifespan.
  • the control mode of the battery control unit is master-slave control. Master-slave control means that in the island operation mode, that is, the battery control units of the whole ship are equally divided into the left and right half-chords to form an independent domain.
  • One of the battery control unit power supplies adopts constant voltage and constant frequency control (V/F control), and one of them is controlled by constant voltage and constant frequency.
  • the battery control unit is set up to provide voltage and frequency references to other battery control units, while other distributed power sources can use constant power control (P/Q control).
  • the battery control unit using V/F control is the main control battery unit.
  • the power controller that controls the main battery unit is called the master controller, and the power controllers of other batteries are called slave controllers.
  • the energy integrated management module receives the power consumption request information of the whole ship, and obtains the state-of-charge information of each battery control unit.
  • the integrated energy management module After receiving the power consumption request information of the whole ship, the integrated energy management module obtains the state-of-charge information of the batteries in each battery control unit through the battery controller of each battery control unit, so as to make the charge status of the battery control units of the whole ship. Status information is gathered in the integrated energy management module.
  • the main control battery unit allocates the power supply of each battery control unit according to the state-of-charge information of each battery control unit and in combination with the power consumption request information of the whole ship.
  • the battery controller of each battery control unit is connected to the energy integrated management module, so the battery controller in the battery control unit of the main control battery unit can combine the state of charge information of each battery control unit with the whole ship
  • the power request information distributes the power supply of each battery control unit, which avoids overcharge or overdischarge of the battery control unit on the ship, improves the service life of the battery control unit, and improves the stability and safety of the power system.
  • the power supply amount allocated to each battery control unit is the same, so that the SOC values of the batteries in each battery control unit tend to be consistent, ensuring that each battery control unit on the ship is evenly charged and discharged, and has a similar lifespan.
  • the energy integrated management module controls the power supply of the correspondingly connected battery control unit according to the allocated power supply amount.
  • the integrated energy management module determines the requested power of the corresponding battery control unit according to the allocated power supply, and the battery control unit outputs the corresponding output current according to the requested power.
  • the integrated energy management module can set a battery control unit as the main control battery unit.
  • the energy integrated management module judges whether a battery control unit satisfies the preset conditions of successful connection with the energy integrated management module and whether the state of charge of the battery control unit meets the discharge requirement. If a battery control unit is successfully connected and the state of charge meets the discharge requirement, Then control a battery control unit to enter the main control mode; if not satisfied, for example, a battery control unit is not successfully connected or/and the state of charge does not meet the discharge requirements, the energy integrated management module determines whether the next battery control unit meets the preset requirements. condition until the setting of the main control battery unit is completed.
  • each battery control unit has an equal status in control before setting the main control battery unit.
  • Each battery control unit can be set as the master control battery unit.
  • the energy integrated management module judges whether a battery control unit satisfies the preset conditions, and if a battery control unit satisfies the preset conditions, controls a battery control unit to enter the main control mode; if a battery control unit does not meet the preset conditions, the energy integrated
  • the management module judges whether the next battery control unit satisfies the preset condition until the setting of the main control battery unit is completed.
  • the preset conditions are whether the battery controller in the battery control unit can exchange information with the integrated energy management module and whether the state of charge of the battery in the battery control unit meets the discharge requirements.
  • the preset conditions may also include other condition requirements, and the preset conditions may be formulated according to actual needs.
  • the control method of the marine battery module further includes: the energy integrated management module determines whether the battery control unit set as the main control battery unit satisfies the connection with the energy integrated management module and whether the state of charge of the battery control unit meets the requirements. Discharge requirements, if the battery control unit that is set to be the main control battery unit is connected to the energy integrated management module and the state of charge of the battery control unit meets the discharge requirements, the main control mode of the battery control unit will be maintained; if it is set to be the main control unit If the battery control unit of the battery unit is not connected to the integrated energy management module and/or the state of charge of the battery control unit does not meet the discharge requirement, the main control mode of the battery control unit is exited.
  • the method further includes: the energy integrated management module sets the next battery control unit to be the main control battery unit.
  • the energy integrated management module sets a battery control unit to be the main control battery unit
  • the preset conditions of the discharge requirements are met, if the battery control unit that is set to be the main control battery unit is connected to the energy integrated management module and the state of charge of the battery control unit meets the discharge requirements, the main control mode of the battery control unit is maintained; If the battery control unit set as the main control battery unit is not connected to the energy integrated management module and/or the state of charge of the battery control unit does not meet the discharge requirements, then exit the main control mode of the battery control unit; the energy integrated management module is set to Set a battery control unit as the main control battery unit.
  • the preset conditions can also be whether the battery controller in the battery control unit can exchange information with the integrated energy management module, and whether the state of charge of the battery in the battery control unit meets the discharge requirements. Other conditions and requirements can also be included, which can be formulated according to actual needs.
  • the method for controlling the marine battery module further includes: after each battery control unit fails to be set as the main control battery unit, the integrated energy management module controls the power supply of at least one battery control unit according to the droop control mode.
  • the control mode of the battery control unit enters the droop control mode.
  • the energy integrated management module controls at least one battery control unit according to a preset power supply distribution strategy.
  • the power supply amount of the at least one battery control unit controlled by the integrated energy management module according to the droop control mode may be to evenly distribute the power supply amount of the plurality of battery control units.
  • the battery controller limits the charging and discharging of the battery according to the continuous charging and discharging rate and the maximum charging and discharging rate of the corresponding battery at each SOC value.
  • the corresponding output current of the battery control unit according to the requested power output can be determined based on the following equation:
  • Voc is the open circuit voltage of the battery control unit in a state of charge
  • I is the output current
  • R is the equivalent internal resistance of the battery control unit
  • R is the equivalent internal resistance of the battery
  • P request is the requested power of the battery control unit.
  • control output current is:
  • control output current is:
  • V V OC -IR.
  • the instantaneous SOC value of the battery is:
  • SOC 0 is the initial state of charge
  • Q max is the battery capacity
  • control method of the marine battery control unit further includes: the integrated energy management module judges the state of charge of each battery, and triggers an alarm unit on the ship when the charge reserve of the battery control unit is lower than 30%.
  • the battery control unit in order to ensure that the battery control unit has enough power to respond to high-frequency power at any time and sufficient electric energy to cope with unexpected situations, it is necessary to effectively manage the SOC value of the battery in the battery control unit.
  • the higher the SOC value the stronger the discharge capacity of the battery; the lower the SOC value, the greater the allowable charging power of the battery.
  • the usage range of the battery SOC value is 20% to 100%.
  • the use range of the SOC value of the battery is designed to be 30% to 80%.
  • the alarm unit on the ship is triggered.
  • the embodiments of the present application provide a control method for a marine fuel cell control unit and a hybrid electric propulsion system, which can achieve effective energy conservation and emission reduction by formulating an appropriate energy distribution strategy in combination with the working state of the fuel cell.
  • the embodiment of the present application also provides a control method for a marine fuel cell control unit, the ship includes a plurality of fuel cell control units, each fuel cell control unit is connected to an integrated energy management module, and the integrated energy management module is configured to control the fuel cell Turning on, discharging, and turning off the fuel cell in the control unit.
  • FIG. 8 is a flowchart of a control method for a marine fuel cell control unit provided by an embodiment of the present application. Referring to FIG. 8 , the method includes:
  • S310 Determine the fuel cell startup number, and control the startup of the corresponding fuel cell according to the fuel cell startup number.
  • the control of the fuel cell includes start-stop control and output power control.
  • Start-stop is divided into normal start-stop and emergency stop, normal start-stop and power signal are realized by communication, and emergency stop is realized by hard wire connection.
  • the power of the fuel cell is realized by controlling the DC/DC converter connected to the fuel cell by the energy integrated management module.
  • the energy integrated management module determines the fuel cell opening number, and controls the opening of the corresponding fuel cell according to the fuel cell opening number.
  • the power supply module of the ship includes a total of 4 fuel cells, and the numbers for the 4 fuel cells are set in advance.
  • the energy integrated management module determines that two fuel cells need to be turned on with an output power of 40KW according to the power demand of the ship's load, then the energy integrated management module determines that the number corresponding to the two fuel cells is the fuel cell opening number, and according to the fuel cell opening number Controls the opening of the fuel cell corresponding to the fuel cell opening number.
  • S320 Determine the working state of the fuel cell and determine the target output power of the fuel cell according to the power demand, and obtain the actual output power of the fuel cell through the fuel cell controller; the working state includes steady state and transient state.
  • the fuel cell control unit includes a fuel cell and a fuel cell controller.
  • the fuel cell controller For example, after the fuel cell is successfully started, the current needs to be pulled slowly, and the current increase rate is provided by the fuel cell controller.
  • the fuel cell power supply needs to maintain a certain power output. If the ship mode and the battery SOC value are both within a set range, the fuel cell power does not change and works in a steady state; if the ship operating mode or the battery SOC value changes, the fuel cell If the power needs to be changed, the operation is considered to be transient. Steady state means that the actual output power of the fuel cell is consistent with the target output power target, or is close to the allowable range, then the energy integrated management module maintains the power signal to the DC/DC controller unchanged, so as to control the DC connected to the fuel cell by controlling the DC/DC controller.
  • the /DC converter maintains the output power of the fuel cell unchanged. Transients are caused by changes in the working mode of the ship or changes in the SOC value of the battery.
  • the change of the ship's working mode is determined by the mode signal input from the mode selection unit to the energy integrated management module or the speed signal input from the speed monitoring unit to the energy integrated management module. speed mode.
  • the change of the battery SOC value is transmitted from the battery controller BMS to the energy integrated management module.
  • the integrated energy management module determines the number of fuel cells turned on and the output power provided by each fuel cell to the DC bus according to the working mode of the ship and the state of charge of the battery on the ship.
  • the integrated energy management module regulates the output power of the fuel cell through the DC/DC converter connected with the fuel cell.
  • S330 Determine whether the difference between the actual output power and the target output power is within the preset difference range; if the difference between the actual output power and the target output power is within the preset difference range, connect to the energy comprehensive management module through control
  • the DC/DC converter is used to maintain the output power of the fuel cell; if the difference between the actual output power and the target output power is not within the preset difference range, the DC/DC converter connected to the integrated energy management module is controlled to adjust the The output power of the fuel cell reaches the target output power.
  • the output power of the fuel cell is adjusted to the target output power by controlling the DC/DC converter connected with the energy integrated management module.
  • the energy integrated management module determines the rate of change of the output power of the fuel cell according to the target output power, the current output power, that is, the actual output power and the set transient time, and transmits the corresponding calculated power signal to the DC/DC converter.
  • DC/DC controller controls the DC/DC converter according to the power signal to adjust the output power of the fuel cell.
  • the energy integrated management module may further include: receiving the actual output power of the fuel cell fed back by the fuel cell controller, And judge whether the actual output power of the fuel cell keeps up with the target output power within the set transient time, if the actual output power of the fuel cell does not keep up with the target output power within the set transient time, increase the set state time.
  • the integrated energy management module determines the power change rate of the fuel cell according to the target output power, the actual output power and the set transient time, and transmits the corresponding calculated power signal to the DC/DC A controller to regulate the output power of the fuel cell.
  • the energy integrated management module also needs to receive the fuel cell power signal fed back by the fuel cell controller, and determine whether the fuel cell power keeps up with the target output power according to the communication cycle. If the fuel cell power does not keep up with the target output power, the transient time will be increased. until the set target value is reached.
  • the set transient time is less than or equal to 10 seconds, so as to ensure that the fuel cell can timely keep up with the demand for the DC bus voltage when the ship is working normally.
  • S340 Determine the fuel cell shutdown number, and control the shutdown of the corresponding fuel cell according to the fuel cell shutdown number.
  • the integrated energy management module determines the fuel cell shutdown number corresponding to the fuel cell that needs to be shut down according to the power demand of the ship's load, and controls the shutdown of the corresponding fuel cell according to the fuel cell shutdown number.
  • the control method of the marine fuel cell control unit can control the opening, discharging and closing of the battery in the power supply module.
  • the control method of the marine fuel cell control unit includes: the energy integrated management module determines the fuel cell opening number, and according The fuel cell opening number controls the opening of the corresponding fuel cell; the integrated energy management module adjusts the output power of the fuel cell through the DC/DC converter connected to the fuel cell according to the working mode of the ship and the state of charge of the battery; the integrated energy management module Determine the fuel cell shutdown number, and control the shutdown of the corresponding fuel cell according to the fuel cell shutdown number.
  • FIG. 9 is a flow chart of step S310 in FIG. 8 .
  • controlling the opening of the corresponding fuel cell according to the fuel cell opening number includes:
  • the energy integrated management module transmits the fuel cell activation number to the hydrogen system controller.
  • the hydrogen system controller controls to open the valve of the corresponding hydrogen cylinder group according to the fuel cell opening number.
  • the hydrogen system controller judges whether the valve of the corresponding hydrogen cylinder group is successfully opened; if the valve of the corresponding hydrogen cylinder group fails to open successfully, it feeds back the hydrogen cylinder group opening failure signal to the integrated energy management module; The system controller transmits the opening number of the next fuel cell; if the valve of the corresponding hydrogen cylinder group is successfully opened, it will feed back a successful signal of opening the hydrogen cylinder group to the energy integrated management module.
  • the integrated energy management module After receiving the successful signal of opening the hydrogen cylinder group, the integrated energy management module sends an opening instruction signal to the corresponding fuel cell controller according to the fuel cell opening number.
  • the fuel cell controller determines whether the fuel cell is successfully turned on within the preset time; if the fuel cell is successfully turned on within the preset time, the output current of the fuel cell is controlled; if the fuel cell fails to be turned on within the preset time, the Then, the fuel cell startup failure signal is fed back to the energy integrated management module; the energy integrated management module sends the startup instruction signal to the fuel cell controller again.
  • the integrated energy management module determines whether the number of times of sending the start-up instruction information is within a preset number of times, and if the number of times of sending the start-up instruction information is greater than the preset number of times, it controls to start another fuel cell.
  • the hybrid electric propulsion system includes four fuel cell control units, two hydrogen cylinder banks are required. Each hydrogen cylinder bank supplies hydrogen to a pair of fuel cell control units.
  • a manual switch is connected between the two hydrogen cylinder groups, and the manual switch is set to control the connection state between the hydrogen cylinder groups, so as to prevent one of the hydrogen cylinder groups from being unable to supply gas and affecting the power supply of the fuel cell, improving the stability of the power system It ensures the use characteristics and service life of the devices on the ship.
  • the hydrogen system controller is used to control the opening and closing of the solenoid valve of the bottle mouth of the hydrogen cylinder group, and the hydrogen system controller is connected with the energy integrated management module.
  • the energy integrated management module transmits the fuel cell opening number to the hydrogen system controller; the hydrogen system controller controls to open the valve of the corresponding hydrogen cylinder group according to the fuel cell opening number.
  • the hydrogen system controller can also judge whether the hydrogen cylinder set is successfully opened. If the hydrogen cylinder set is not successfully opened, it will feed back the hydrogen cylinder set failure signal to the energy integrated management module; the energy integrated management module transmits the next fuel cell to the hydrogen system controller. Turn on numbering. Alternatively, it is also possible to control to open the next hydrogen cylinder group and to open the switch between the two hydrogen cylinder groups.
  • the energy integrated management module then sends an opening command signal to the corresponding fuel cell controller according to the fuel cell opening number, and can also feed back to the energy integrated management module that the hydrogen cylinder group supplying hydrogen for the fuel cell to be opened fails to open, causing the energy integrated management module to fail. Records can be made and information fed back to staff. If the hydrogen cylinder group is successfully opened, it will feed back the hydrogen cylinder group open success signal to the energy integrated management module; after receiving the hydrogen cylinder group open success signal, the energy integrated management module can directly send the fuel cell open number to the corresponding fuel cell controller according to the fuel cell open number. Turn on the command signal.
  • the fuel cell controller also determines whether the fuel cell is successfully turned on within the preset time; if the fuel cell is successfully turned on within the preset time, it controls the output current of the fuel cell to supply power to the DC bus; If the startup fails within the preset time, the fuel cell startup failure signal is fed back to the energy integrated management module, and the energy integrated management module sends the startup instruction signal to the fuel cell controller again.
  • the energy integrated management module determines whether the number of times of sending the start-up command information is within the preset number of times, and if the number of times of sending the start-up command information is greater than the preset number of times, it controls to start another fuel cell.
  • FIG. 10 is another flowchart of step S310 in FIG. 8 .
  • the method includes:
  • step S3190 determine whether the valve is successfully opened. If the valve is successfully opened, step S31110 is executed, and if the valve is unsuccessfully opened, the process returns to step S3170.
  • step S31130 Determine whether the fuel cell is successfully turned on. If the fuel cell is successfully turned on, step S31140 is executed, and if the fuel cell is unsuccessfully turned on, step S31150 is executed.
  • step S31160 Determine whether the number of times of opening is greater than 3, that is, S>3. If the number of times of opening is greater than 3, execute step S31170, and if the number of times of opening is less than or equal to 3, return to step S31120.
  • FIG. 11 is a flowchart of step S330 in FIG. 8 .
  • step S330 in FIG. 8 determines the fuel cell shutdown number, and control the shutdown of the corresponding fuel cell according to the fuel cell shutdown number, including:
  • the integrated energy management module controls the fuel cell to be shut down through the fuel cell controller according to the fuel cell shut down number, and controls the DC/DC converter connected to the fuel cell in a one-to-one correspondence to reduce the output power to zero.
  • the fuel cell controller feeds back a shutdown signal to the integrated energy management module.
  • the energy integrated management module transmits a valve closing signal to the hydrogen system controller according to the shutdown signal to control the closing of the hydrogen cylinder group that supplies hydrogen for the fuel cell.
  • the fuel cell needs a certain time to reduce the load, and the DC/DC converter needs to be controlled to cooperate.
  • the output power of the fuel cell is reduced to 0 by controlling the DC/DC converter, the residual reactant gas inside the fuel cell can also be removed, the air side is controlled by the fuel cell controller, and the hydrogen side is controlled by the hydrogen system controller.
  • the integrated energy management module transmits the closing valve signal to the hydrogen system controller according to the shutdown signal to control the closing of the hydrogen cylinder group supplying hydrogen for the fuel cell, and stop the action of the proportional control valve arranged on the pipeline between the fuel cell and the hydrogen cylinder group.
  • Fig. 12 is a flowchart of another method for controlling the marine fuel cell control unit provided by the embodiment of the present application, which should be set to control the power supply of the fuel cell control unit in different working modes of the ship. Referring to Fig. 12, the method includes:
  • the energy integrated management module triggers mode control or non-mode control according to the mode selection signal and the speed signal; wherein under the mode control, the ship's working mode includes at least one of berthing mode, inbound and outbound mode, sailing mode or half-speed mode.
  • the control modes of the output power of the fuel cell control unit include non-mode control and mode control.
  • the energy integrated management module triggers mode control or non-mode control according to the mode selection signal and the speed signal.
  • the ship's working mode includes at least one of a berthing mode, a port entry and exit mode, a sailing mode or a half-speed mode.
  • the integrated energy management module is connected with the mode selection unit, and the integrated energy management module can determine the working mode of the ship according to the mode signal input by the mode selection unit.
  • the integrated energy management module is also connected with the speed monitoring unit, and the integrated energy management module determines the berthing mode, entry and exit mode, sailing mode and half speed mode of the hybrid electric propulsion system according to the speed signal input by the speed monitoring unit.
  • the integrated energy management module triggers mode control or non-mode control according to the mode selection signal and the speed signal, including: the integrated energy management module determines whether there is a mode signal input; if there is a mode signal input, triggering the mode control; If there is no mode signal input, it is judged whether there is a speed signal input; if there is a speed signal input, the mode control is triggered; if there is no speed signal input, the non-mode control is triggered; the energy integrated management module controls the fuel cell control according to the mode signal or the speed signal.
  • the energy output of the unit improves the stability of the power system, ensures the use characteristics and service life of the devices on the ship, and improves the effect of energy saving and emission reduction.
  • the integrated energy management module controls the number of fuel cells to be activated and the output power of the fuel cells in the fuel cell control unit according to the state of charge of the battery control unit during non-mode control.
  • a ship includes a plurality of fuel cell control units, and also includes a plurality of battery control units.
  • Each fuel cell control unit includes a fuel cell and a fuel cell controller paired with each fuel cell.
  • Each battery control unit includes a battery and a battery controller paired with each battery.
  • the energy integrated management module controls the opening of the corresponding battery through each battery controller and calculates the rate of change of the output current of the battery.
  • Each battery is also connected with a corresponding DC/DC converter, and the energy integrated management module can also control the output power of the corresponding battery to supply power to the DC bus through the DC/DC converter.
  • the integrated energy management module obtains the state of charge of the battery control unit during non-mode control, and controls the number of fuel cells to be activated in the fuel cell control unit and the output power of the fuel cell according to the state of charge of the battery control unit.
  • the fuel cell control unit controls the output power and the activation quantity of the fuel cell control unit according to the state of charge of the battery control unit during non-mode control, including:
  • the integrated energy management module obtains the state of charge of the battery control unit through the battery controller.
  • the minimum value among the SOC values corresponding to the plurality of batteries may be used as the judgment value.
  • the SOC values of the batteries in the battery control unit are maintained to be consistent, so as to ensure that the multiple battery control units on the ship are charged and discharged evenly and have similar life spans. If the state of charge of the battery control unit is less than the first set state of charge threshold, the power mode is triggered, and the fuel cells in the fuel cell control unit are controlled to start all up with an output power greater than the first set power threshold; if the battery control unit The state of charge of the battery is greater than the second set state of charge threshold, then trigger the economy mode, control the fuel cell in the fuel cell control unit to output a constant power at the first set power threshold, and determine the state of charge according to the battery control unit. The number of fuel cells turned on. FIG.
  • the demarcation points of the SOC values of the battery control unit in the two modes are 55% and 60%.
  • the power mode is triggered; when the SOC value of the battery control unit rises to 60%, the economy mode is triggered.
  • the output power of the fuel cell is 40kW; in the power mode, the fuel cell is fully turned on, and the output power is greater than 40kW.
  • adjusting the output power of the fuel cell according to the state of charge of the battery control unit includes: if the state of charge of the battery control unit is in the process of decreasing, reducing the output power according to the first setting of the state of charge of the battery control unit. Determine the increase of the output power of each fuel cell by a small amount; if the state of charge of the battery module is in the rising process, determine the increase of the output power of each fuel cell according to the second set increase of the state of charge of the battery control unit. reduce the amount.
  • Fig. 14 is a schematic diagram of the start-up level of a marine fuel cell control unit under non-mode control provided by an embodiment of the present application. Referring to Fig. 14, according to the difference of the SOC value of the battery, the output power of the fuel cell is also different, and the power mode is classified into different levels.
  • level 1 the output power of the fuel cell is 60kW
  • level 2 the output power of the fuel cell is 80kW
  • level 3 the output power of the fuel cell is 100kW
  • level 4 the output power of the fuel cell is 110kW.
  • determining the number of activations of the fuel cell according to the state of charge of the battery control unit includes: if the state of charge of the battery control unit is in the process of decreasing, reducing the number of fuel cells according to the third setting of the state of charge of the battery control unit. A small amount determines the increased starting quantity of the fuel cell; if the state of charge of the battery control unit is in the rising process, the fuel cell decreasing starting quantity is determined according to the fourth set increase in the state of charge of the battery control unit.
  • Fig. 15 is a schematic diagram of the number of openings of a marine fuel cell control unit under non-mode control provided by an embodiment of the present application. Referring to Fig.
  • the trigger values are 0.77%, 74%, 71% and 68%, turn on 1, 2, 3 and 4 fuel cells respectively; during the rising process of the SOC value of the battery, the trigger values are 7%, 73%, 76% and 79%, respectively turn on 3, 2, 1 and 0.
  • the integrated energy management module controls the number of fuel cells activated and the output power of the fuel cells in the fuel cell control unit according to the ship work mode corresponding to the mode selection signal or the ship work mode corresponding to the speed signal.
  • the ship's working mode includes at least one of a berthing mode, a port entry and exit mode, a sailing mode, or a half speed mode.
  • the integrated energy management module determines which working mode the ship is in according to the mode signal or the speed signal, so as to control the output power of the fuel cell and the activation quantity of the fuel cell accordingly.
  • the energy integrated management module controls the energy output of the fuel cell control unit according to the mode signal or the speed signal, which improves the stability of the power system, ensures the use characteristics and service life of the devices on the ship, and improves the effect of energy saving and emission reduction.
  • controlling the output power of the fuel cell in the battery control unit and the number of activations of the fuel cell according to the input mode including: if the state of charge of the battery is less than the third set state of charge If the state threshold is set, the two fuel cells with lower power generation on both sides are controlled to be started, and the output power of the fuel cell with lower power generation is controlled to be the first preset power threshold. If the state of charge of the battery is greater than the third set state of charge threshold and less than the fourth set state of charge threshold, control to start a fuel cell, and control the output power of the fuel cell to be the first preset power threshold; if If the battery state of charge is greater than the fourth set state of charge threshold, the fuel cell is not activated.
  • FIG. 16 is a flowchart of a control method of a marine fuel cell control unit under mode control provided by an embodiment of the present application.
  • the ship enters the berthing mode, without connecting to shore power, When the ship is under load, part of the fuel cell is required to be turned on and work with an output of 40kW. If the SOC value of the battery is greater than or equal to 80%, the battery can be powered without starting the fuel cell, which corresponds to step A in FIG. 16 . If the SOC value of the battery is less than or equal to 40%, after the ship enters the berthing mode, the load on the ship is a device that requires low power such as daily lighting.
  • the fuel cell that is controlled to be turned on is the one with lower power generation on both sides of the fuel cell.
  • the fuel cell that is, corresponds to step B in FIG. 16 .
  • the method before controlling to start a fuel cell, the method further includes: comparing the hydrogen pressure in the hydrogen cylinder group supplied by the fuel cell with the lower power generation with a preset pressure threshold; if the hydrogen pressure in the hydrogen cylinder group is greater than If the pressure difference threshold is preset, the fuel cell with reduced power generation on the side is controlled to start, which corresponds to step C in FIG.
  • the preset pressure difference threshold can be 2Mpa to ensure that the hydrogen cylinder group can supply hydrogen to the fuel cell normally, ensure the power supply of the fuel cell to the ship, and improve the stability of the ship's power system.
  • the output power of the fuel cells in the battery module and the number of activations of the fuel cells are controlled according to the input mode, including: controlling each fuel cell to be turned on; if the state of charge of the battery is greater than the fifth set state of charge threshold, the output power of each fuel cell is controlled to be the first preset power threshold; if the state of charge of the battery is less than the fifth set state of charge threshold and greater than the sixth set state of charge state threshold, the output power of each fuel cell is controlled to be the second preset power threshold; if the state of charge of the battery is less than the sixth preset state of charge threshold, the output power of each fuel cell is controlled to be the third preset power threshold A power threshold; wherein the first preset power threshold is less than the second preset power threshold, and the second preset power threshold is less than the third preset power threshold.
  • the ship is provided with four fuel cells, and when the ship enters the port entry and exit mode, all four fuel cells are turned on.
  • the energy integrated management module controls the output power of each fuel cell to be 40kW, which corresponds to step E in Figure 16; when the SOC value of the battery is less than or equal to 50 % and greater than 40%, 40% can also be replaced with 45%, the energy integrated management module controls the output power of each fuel cell to be 60kW, which corresponds to step F in Figure 16; when the SOC value of the battery is less than or equal to 40 %, the integrated energy management module controls the output power of each fuel cell to be 80kW, which corresponds to step G in FIG. 16 .
  • the power supply of the fuel cell is increased, and each battery is charged at the same time until the SOC value of the battery reaches 55%, and the output power of the fuel cell is controlled to drop back to 40kW.
  • controlling the output power of the fuel cells in the battery module and the starting number of the fuel cells according to the input mode includes: controlling each fuel cell to be turned on; if the state of charge of the battery is greater than The seventh set state of charge threshold, then control the output power of each fuel cell to be the fourth preset power threshold; if the state of charge of the battery is less than the seventh preset state of charge threshold and greater than the eighth preset state of charge threshold, then control the output power of each fuel cell to be the fifth preset power threshold; if the state of charge of the battery is less than the eighth preset state of charge threshold and greater than the ninth preset state of charge threshold, then control each fuel cell
  • the output power of the battery is the sixth preset power threshold; if the state of charge of the battery is less than the ninth preset state of charge threshold, the output power of each fuel cell is controlled to be the seventh preset power threshold;
  • the power threshold is set to be less than the fifth preset power threshold, the fifth preset power threshold is less than the sixth preset power threshold
  • the ship is provided with four fuel cells, and when the ship enters the sailing mode, all four fuel cells are turned on. Once the SOC value of the battery decreases, the power of the fuel cell increases step by step to ensure that the SOC of the battery is not less than 55%, and the maximum output power of the fuel cell is 200kW.
  • the energy integrated management module controls the output power of each fuel cell to be 50kW, which corresponds to step H in Figure 16; when the SOC value of the battery is less than or equal to 68 % and greater than 64%, the integrated energy management module controls the output power of each fuel cell to be 70kW, which corresponds to step I in Figure 16; when the SOC value of the battery is less than or equal to 64% and greater than 60%, the integrated energy The management module controls the output power of each fuel cell to be 90kW, which corresponds to step J in Figure 16; when the SOC value of the battery is less than or equal to 60%, the energy integrated management module controls the output power of each fuel cell to 110kW, That is, it corresponds to step K in FIG. 16 .
  • the half-speed mode is determined according to the complete condition of the fuel cell control unit and/or the battery control unit; wherein, the number of battery control units is two; the number of fuel cell control units is at least two; If the number of battery control units working normally is less than two and/or the number of fuel cell control units working normally is less than two, the power demand for the battery module and the fuel cell is reduced by reducing the speed of the ship .
  • the control method for the fuel cell and the battery can be changed.
  • the change method cannot meet the load demand, it will remind the power shortage and reduce the load. run.
  • the average power of a voyage is about 185kW, indicating that at least 2 fuel cells are required to meet full power operation.
  • the battery plays the role of stabilizing the busbar voltage and providing power for transient loads.
  • the ship needs to sail at half speed. Exemplarily, if the number of batteries in the ship is 2, and the number of fuel cells is 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

本申请实施例公开了一种混合电力推进系统、启动方法及控制方法,混合电力推进系统包括:启动开关设置为根据启动信息生成启动信号;不间断电源单元设置为根据启动信号为蓄电池控制单元、燃料电池控制单元和能量综合管理模块供电;模式选择单元设置为确定启动模式并生成对应的模式信号;能量综合管理模块还设置为根据模式信号启动蓄电池控制单元和燃料电池控制单元。

Description

混合电力推进系统、启动方法及控制方法
本公开要求在2020年09月16日提交中国专利局、申请号为202010974435.1的中国专利申请的优先权,同时要求在2020年09月16日提交中国专利局、申请号为202010973271.0的中国专利申请的优先权,以上申请的全部内容通过引用结合在本公开中。
技术领域
本申请实施例涉及船舶电源技术领域,例如涉及一种混合电力推进系统、启动方法及控制方法。
背景技术
船舶作为海上主要的交通工具,相关技术通常根据船舶的吨位、用途采用柴油机、蒸汽轮机或燃气轮机作为主动力源,而柴油机、蒸汽轮机和燃气轮机都是采用燃烧的方式产生能源,这一过程会伴随着产生大量的污染物,且能源转换效率不高。因此,对船舶的供电系统以及供电策略的研究提出了更高的要求。
发明内容
本申请实施例提供了一种混合电力推进系统、启动方法及控制方法,以提高电力系统的稳定性和安全性,保证船舶上器件的使用特性和使用寿命,提高节能减排的效果。
第一方面,本申请实施例提供了一种混合电力推进系统,包括:
启动开关,所述启动开关设置为根据输入的启动信息生成启动信号;
不间断电源单元,所述不间断电源单元与所述启动开关连接,所述不间断电源单元设置为根据所述启动信号为蓄电池控制单元、燃料电池控制单元和能量综合管理模块供电,以使所述蓄电池控制单元、所述燃料电池控制单元和所述能量综合管理模块完成自检;
所述能量综合管理模块,所述能量综合管理模块与所述启动开关连接,所述能量综合管理模块设置为响应于接收到所述启动信号,获取所述蓄电池控制单元和所述燃料电池控制单元的自检信息,并根据获取的自检信息以及所述能量综合管理模块自身的自检信息判断所述混合电力推进系统是否满足启动条件;
模式选择单元,所述模式选择单元与所述能量综合管理模块连接,所述模式选择单元设置为确定启动模式,并根据所述启动模式生成对应的模式信号;
所述能量综合管理模块还设置为根据所述模式信号启动所述蓄电池控制单元和所述燃料电池控制单元,并调配所述蓄电池控制单元和所述燃料电池控制单元的能量输出;
所述蓄电池控制单元和所述燃料电池控制单元分别与直流母线连接,所述蓄电池控制单 元和所述燃料电池控制单元设置为向所述直流母线供电。
第二方面,本申请实施例提供了一种混合电力推进系统的启动方法,设置为启动第一方面所述的混合电力推进系统,混合电力推进系统的启动方法包括:
启动开关根据输入的启动信息生成启动信号;
不间断电源单元根据所述启动信号为蓄电池控制单元、燃料电池控制单元和能量综合管理模块供电,以使所述蓄电池控制单元、燃料电池控制单元和能量综合管理模块完成自检;
所述能量综合管理模块响应于接收到所述启动信号,获取所述蓄电池控制单元和所述燃料电池控制单元的自检信息,并通过所述蓄电池控制单元和所述燃料电池控制单元的自检信息以及所述能量综合管理模块的自检信息判断所述混合电力推进系统是否满足启动条件;
模式选择单元确定启动模式,并根据所述启动模式生成对应的模式信号;
所述能量综合管理模块根据所述模式信号启动所述蓄电池控制单元和所述燃料电池控制单元,并调配所述蓄电池控制单元和所述燃料电池控制单元的能量输出;
所述蓄电池控制单元和所述燃料电池控制单元向直流母线供电。
第三方面,本申请实施例提供了一种船用燃料电池控制单元的控制方法,应用于混合电力推进系统,所述混合电力推进系统包括能量综合管理模块与至少一个燃料电池控制单元,所述能量综合管理模块与所述至少一个燃料电池控制单元连接,所述燃料电池控制单元包括燃料电池和燃料电池控制器,所述能量综合管理模块设置为控制所述燃料电池控制单元中所述燃料电池的供电,所述船用燃料电池控制单元的控制方法包括:
所述能量综合管理模块确定燃料电池开启编号,并根据所述燃料电池开启编号控制开启对应的燃料电池;
所述能量综合管理模块根据功率需求确定所述燃料电池的目标输出功率,通过所述燃料电池控制器获取所述燃料电池的当前输出功率;
所述能量综合管理模块判断所述当前输出功率与所述目标输出功率的差值是否在预设差值范围内;响应于所述当前输出功率与所述目标输出功率的差值在所述预设差值范围内的判断结果,通过控制与所述能量综合管理模块相连的DC/DC变换器以维持所述燃料电池的输出功率;响应于所述当前输出功率与所述目标输出功率的差值不在所述预设差值范围内的判断结果,通过控制与所述能量综合管理模块相连的DC/DC变换器以调节所述燃料电池的输出功率至所述目标输出功率;
所述能量综合管理模块确定燃料电池关闭编号,并根据所述燃料电池关闭编号控制关闭对应的燃料电池。
第四方面,本申请实施例提供了一种混合电力推进系统,所述混合电力推进系统包括能量综合管理模块与至少一个燃料电池控制单元,每个所述燃料电池控制单元均与所述能量综 合管理模块连接,所述燃料电池控制单元包括燃料电池和燃料电池控制器,所述能量综合管理模块设置为对所述燃料电池控制单元中的燃料电池进行控制;
所述能量综合管理模块设置为确定燃料电池开启编号,并根据所述燃料电池开启编号控制开启对应的燃料电池;
所述能量综合管理模块还设置为根据功率需求确定所述燃料电池的目标输出功率,并通过所述燃料电池控制器获取所述燃料电池的当前输出功率;判断所述当前输出功率与所述目标输出功率的差值是否在预设差值范围内;响应于所述当前输出功率与所述目标输出功率的差值在预设差值范围内的判断结果,通过控制与所述能量综合管理模块相连的DC/DC变换器以维持所述燃料电池的输出功率;响应于所述当前输出功率与所述目标输出功率的差值不在所述预设差值范围内的判断结果,通过控制与所述能量综合管理模块相连的DC/DC变换器以调节所述燃料电池的输出功率至所述目标输出功率;
所述能量综合管理模块还设置为确定燃料电池关闭编号,并根据所述燃料电池关闭编号控制关闭对应的燃料电池。
附图说明
图1是本申请实施例提供的一种混合电力推进系统的结构框图;
图2是图1所示的一种混合电力推进系统中的多个部件之间的连接关系示意图;
图3是本申请实施例提供的另一种混合电力推进系统的一种结构框图;
图4是本申请实施例提供的另一种混合电力推进系统的另一种结构框图;
图5是本申请实施例提供的一种混合电力推进系统的启动方法流程图;
图6是本申请实施例提供的一种船用蓄电池控制单元的控制方法的流程图;
图7是本申请实施例提供的一种船用蓄电池的电压曲线图;
图8是本申请实施例提供的一种船用燃料电池控制单元的控制方法的流程图;
图9是图8中步骤S310的一种流程图;
图10是图8中步骤S310的另一种流程图;
图11是图8中步骤S330的流程图;
图12是本申请实施例提供的另一种船用燃料电池控制单元的控制方法的流程图;
图13是本申请实施例提供的一种船用燃料电池控制单元在非模式控制下的控制策略图;
图14是本申请实施例提供的一种船用燃料电池控制单元在非模式控制下的开启等级示意图;
图15是本申请实施例提供的一种船用燃料电池控制单元在非模式控制下的开启数量示意图;
图16是本申请实施例提供的一种船用燃料电池控制单元在模式控制下的控制方法流程图。
具体实施方式
下面结合附图和实施例对本申请进行说明。为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
本申请实施例提供了一种混合电力推进系统,图1是本申请实施例提供的一种混合电力推进系统的结构框图,参考图1,包括:
启动开关110,启动开关110设置为根据输入的启动信息生成启动信号;
不间断电源单元120,不间断电源单元120与启动开关110连接,不间断电源单元120设置为根据启动信号为蓄电池控制单元12、燃料电池控制单元11和能量综合管理模块30供电,以使蓄电池控制单元12、燃料电池控制单元11和能量综合管理模块30完成自检;
能量综合管理模块30,能量综合管理模块30与启动开关110连接,能量综合管理模块30设置为在接收到启动信号后获取蓄电池控制单元12和燃料电池控制单元11的自检信息即自检结果,并根据蓄电池控制单元12和燃料电池控制单元11的自检结果以及能量综合管理模块30的自检结果判断混合电力推进系统是否满足启动条件;
模式选择单元80,模式选择单元80与能量综合管理模块30连接,模式选择单元80设置为选择启动模式,并根据启动模式生成对应的模式信号;
能量综合管理模块30还设置为根据模式信号启动蓄电池控制单元12和燃料电池控制单元11,并调配蓄电池控制单元12和燃料电池控制单元11的能量输出;
蓄电池控制单元12和燃料电池控制单元11均与直流母线L连接,蓄电池控制单元12和燃料电池控制单元11设置为向直流母线L供电以为负载40供电。
在一实施例中,不间断电源单元120分别与蓄电池控制单元12、燃料电池控制单元11和能量综合管理模块30连接。
在一实施例中,能量综合管理模块30分别与蓄电池控制单元12、燃料电池控制单元11连接。蓄电池控制单元12也可记为蓄电池单元,燃料电池控制单元11也可记为燃料电池单元。
在一实施例中,船舶上的电力系统包括供电侧与用电侧,供电侧可为本申请实施例所述的混合电力推进系统,用电侧为船上的负载40。例如,船舶负载40可包括舱室机械、甲板机械、船舶照明、通导设备、交流推进电机及其他用电设施。供电侧包括提供电能的供电模块10、负责调配供电模块10能量输出的能量综合管理模块30。混合电力推进系统包括启动开关110,启动开关110可以根据输入的启动信息生成启动信号。能量综合管理模块30与启 动开关110连接,可以为电连接也可以为通信连接。例如启动开关110为船上的启动按钮,当按下启动按钮时,可以使能量综合管理模块30与启动开关110之间进行信息传输,能量综合管理模块30可以接收到船舶上混合电力推进系统的启动信号。混合电力推进系统还包括不间断电源(Uninterruptible Power System,UPS)单元120,不间断电源单元120与启动开关110连接,可以为电连接也可以为通信连接。不间断电源单元120根据接收到的启动信号为蓄电池控制单元12、燃料电池控制单元12和能量综合管理模块30供电,以使蓄电池控制单元12、燃料电池控制单元11和能量综合管理模块30完成自检。不间断电源单元120为蓄电池控制单元12、燃料电池控制单元11和能量综合管理模块30供的电为弱电,满足系统的自检即可。本申请实施例可以获知船舶上供电模块10中的燃料电池控制单元11和蓄电池控制单元12的状态,以及获知能量综合管理模块30的状态,根据反馈的自检信息确定是否满足混合电力推进系统开启的条件,保证系统能够安全启动。
供电模块10包括燃料电池控制单元11和蓄电池控制单元12。
计划保养体系(Planned Maintenance System,PMS),是指船舶机械(包括电气设备)根据中国船级社(China Classification Society,CCS)相关规范的有关要求和设备制造厂说明书的规定,由船东制定出的一套详细的周期性维修保养计划。通过该计划在船上的贯彻和实施,使船舶机械始终保持在良好的运行状态。
在一实施例中,能量综合管理模块30可以为一套基于共享数据库,分别运行于船舶和岸基计算机系统,同时具备计划保养体系(PMS)管理、船舶备件管理、基础数据库管理、机务报表管理和船-岸数据交换等五大功能的计算机应用系统。
模式选择单元80设置为选择启动模式,并根据启动模式生成对应的模式信号;能量综合管理模块30还设置为根据模式信号启动蓄电池控制单元12和燃料电池控制单元11;蓄电池控制单元12和燃料电池控制单元11分别与能量综合管理模块30连接,能量综合管理模块30根据模式信号开启蓄电池控制单元12和燃料电池控制单元11,并调配蓄电池控制单元12和燃料电池控制单元11的能量输出;蓄电池控制单元12和燃料电池控制单元11设置为向直流母线L供电以为负载40供电。
本申请实施例中的能量综合管理模块与供电模块连接,可以根据模式信号或速度信号调配燃料电池控制单元和蓄电池控制单元的能量输出。船舶处于不同的工作模式时可以发送不同工作模式对应的模式信号至能量综合管理模块,此时能量综合管理模块根据接收到的模式信号以及负载的功率需求调配燃料电池控制单元和蓄电池控制单元的能量输出。通过能量综合管理模块根据模式信号或速度信号调配所述燃料电池控制单元和所述蓄电池控制单元的能量输出,提高了电力系统的稳定性,并在启动前完成对电力系统的自检,提高了电力系统的安全性,保证了船舶上器件的使用特性和使用寿命,提高了节能减排的效果。
在一实施例中,启动模式包括停泊模式、进出港模式、航行模式以及半速模式;能量综合管理模块30还设置为在选择停泊模式时,按停泊模式控制策略调配蓄电池控制单元12和燃料电池控制单元11的能量输出以使混合电力推进系统进入停泊模式,在选择进出港模式时,按进出港模式控制策略调配蓄电池控制单元12和燃料电池控制单元11的能量输出以使混合电力推进系统进入进出港模式,在选择航行模式时,按航行模式控制策略调配蓄电池控制单元12和燃料电池控制单元11的能量输出以使混合电力推进系统进入航行模式,以及在选择半速模式时,按半速模式控制策略调配蓄电池控制单元12和燃料电池控制单元11的能量输出以使混合电力推进系统进入半速模式。
在一实施例中,图2是图1所示的一种混合电力推进系统中的多个部件之间的连接关系示意图;参考图1和2,混合电力推进系统还包括变换器模块20,所述变换器模块20包括第一DC/DC变换器单元21和第二DC/DC变换器单元22。第一DC/DC变换器单元21连接在直流母线L与燃料电池控制单元11之间,第二DC/DC变换器单元22连接在直流母线L与蓄电池控制单元12之间;所述燃料电池控制单元11包括燃料电池111和燃料电池控制器112,蓄电池控制单元12包括蓄电池121和蓄电池控制器122,变换器单元包括DC(Direct current,直流)/DC变换器和DC/DC控制器,第一DC/DC变换器单元21、第二DC/DC变换器单元22为变换器单元;燃料电池控制器112、蓄电池控制器122和DC/DC控制器均与能量综合管理模块连接;
不间断电源单元120设置为为燃料电池控制器112、蓄电池控制器122和DC/DC控制器上电;能量综合管理模块30还设置为在不间断电源单元120为燃料电池控制器112、蓄电池控制器122和DC/DC控制器上电后,向蓄电池控制器122传输放电指令以控制蓄电池122向直流母线L供电。
在一实施例中,燃料电池与燃料电池控制器连接,蓄电池与蓄电池控制器连接,DC/DC变换器与DC/DC控制器连接。
在一实施例中,DC/DC变换器可为单向变换器或双向变换器。
在一实施例中,燃料电池对应的DC/DC变换器为单向变换器,锂电池对应的DC/DC变换器为双向变换器。
在一实施例中,蓄电池控制单元12和燃料电池控制单元11分别通过DC/DC变换器与直流母线L连接。
在一实施例中,供电侧包括连接在供电模块10与直流母线L之间的变换器模块20。变换器模块20设置为将供电模块10输入的电压转变后输出有效的固定电压。供电模块10输出的电能经过变换器模块20的转换后提供给直流母线L,船上的负载40通过直流母线L获取工作电压。负载40与直流母线L之间设置有DC/AC(Alternating current,交流)变换器单元 50,DC/AC变换器单元50设置为将直流母线L上的电压转换成负载40需要的电压。DC/AC变换器单元50包括DC/AC控制器和DC/AC变换器51,DC/AC控制器与DC/AC变换器51连接。其中,供电模块10包括燃料电池控制单元11和蓄电池控制单元12,燃料电池控制单元11为船舶的主要推进动力源。蓄电池控制单元12做为辅助能源,可弥补燃料电池控制单元11的动态特性不足,主要起到削峰填谷以及稳定电力系统的作用。
蓄电池121为二次电池,可以进行充放电。蓄电池121可以是磷酸铁锂电池、钴酸锂电池、锰酸锂电池、锰酸钴锂电池蓄电池,存在使用安全性、电池电量估算困难等问题。蓄电池控制器122可以为蓄电池管理系统(BATTERY MANAGEMENT SYSTEM,BMS),通过BMS可以准确估测动力电池组的荷电储量(State of Charge,SOC)。保证SOC值维持在合理的范围内,防止由于过充电或过放电对电池的损伤,从而随时预报混合动力汽车储能电池还剩余多少能量或者储能电池的荷电状态。BMS还可以实时采集蓄电池121的电压、温度、充放电电流及蓄电池总电压,防止蓄电池121发生过充电或过放电现象。通过及时给出电池状况,保持整组电池运行的可靠性和高效性,提高了电池的利用率,防止电池出现过充电和过放电,延长电池的使用寿命。蓄电池控制单元12包括蓄电池121和蓄电池控制器122,蓄电池控制器122与能量综合管理模块30连接,蓄电池控制器122设置为向能量综合管理模块30传输蓄电池的状态信息,并根据能量综合管理模块30回馈的指令信号控制蓄电池的能量输出。
燃料电池111又称电化学发电器,是一种把燃料所具有的化学能直接转换成电能的化学装置。燃料电池111将燃料和氧气作为原料,没有机械传动部件,故没有噪声污染,排放出的有害气体极少,燃料包括氢燃料或生物燃料等。反应气体的压力、湿度、电堆内部湿度及温度等操作条件直接影响电堆的性能和寿命。燃料电池控制器(Fuel Control Unit,FCU)112是燃料电池发动机系统的控制“大脑”,主要实现对燃料电池的在线检测、实时控制及故障诊断,确保燃料电池稳定可靠工作。燃料电池控制单元11包括燃料电池111和燃料电池控制器112,燃料电池控制器112与能量综合管理模块30连接,燃料电池控制器112设置为向能量综合管理模块30传输燃料电池的状态信息,并根据能量综合管理模块30回馈的指令信号控制燃料电池111的能量输出。变换器模块20包括第一DC/DC变换器单元21和第二DC/DC变换器单元22,第一DC/DC变换器单元21的第一端与燃料电池控制单元11连接;第一DC/DC变换器单元21的第二端与直流母线L电连接;第二DC/DC变换器单元22的第一端与蓄电池控制单元12连接;第二DC/DC变换器单元22的第二端与直流母线L连接。能量综合管理模块30还和变换器模块20连接,能量综合管理模块30设置为控制变换器模块20的导通状态。
蓄电池控制单元12的蓄电池控制器122完成上电以及自检后,可以根据能量综合管理模块30传输的放电指令控制蓄电池121向直流母线L供电,使直流母线上具有一定数值的电压。
图3是本申请实施例提供的另一种混合电力推进系统的一种结构框图,参考图2-3,燃料电池控制单元11的个数为多个,蓄电池控制单元12的个数为多个,燃料电池控制单元11与第一DC/DC变换器单元21一一对应设置,蓄电池控制单元12与第二DC/DC变换器单元22一一对应设置;其中,第一DC/DC变换器单元21包括单向变换器211,第二DC/DC变换器单元22包括双向变换器221。
例如,燃料电池控制单元11的个数为多个,蓄电池控制单元12的个数为多个,如图3所示,混合电力推进系统由4台燃料电池控制单元11、2组容量相同的蓄电池控制单元12、6个配套的DC/DC变换器单元以及能量综合管理模块30组成。可以设置一个与能量综合管理模块30互为冗余的能量管理模块,能量管理模块设置为在能量综合管理模块30损坏时作为备份的控制系统。第一DC/DC变换器单元21包括单向变换器211,第二DC/DC变换器单元包括双向变换器221。单向变换器211和双向变换器221分别对应有一个DC/DC控制器,能量综合管理模块30通过DC/DC控制器控制对应的变换器。由于燃料电池111是一种发电装置,不能存储电能,因此能量传输的方向不可逆,仅需要单向DC/DC变换器即单向变换器211即可实现燃料电池111与直流母线L之间能量的转换和传输。而蓄电池122可以将存储的电能进行释放,因此,通过设置双向DC/DC变换器即双向变换器221来实现蓄电池121与直流母线L之间能量的双向流动,以提高能源的利用率。
在一实施例中,参考图3,混合电力推进系统还包括供氢系统130,供氢系统130包括为燃料电池控制单元11供氢的供氢单元60以及氢系统控制器70;直流母线L设置为为供氢系统130供电,以使供氢系统130完成自检;
能量综合管理模块30还与氢系统控制器70通讯连接,能量综合管理模块30设置为接收供氢系统130的自检信息并根据所述自检信息判断供氢系统130是否满足启动条件。
在一实施例中,蓄电池控制单元12的蓄电池控制器122完成上电以及自检后,可以根据能量综合管理模块30传输的放电指令以控制蓄电池121向直流母线L供电,使直流母线上具有一定数值的电压。供氢系统130从直流母L获取电压后,同样需要完成自检。供氢系统130包括氢系统控制器70,供氢系统130通过氢系统控制器70完成自检。检查氢系统控制器70与能量综合管理模块30的通讯是否有丢失,将相应信息传输至能量综合管理模块。能量综合管理模块接收供氢系统130的自检信息并根据自检信息判断供氢系统130是否满足启动条件。
在一实施例中,供氢单元60包括多个氢气瓶组61,每个氢气瓶61组设置为为一对燃料电池控制单元11提供氢气;多个氢气瓶组61彼此之间连接有手动开关S1,手动开关S1设置为控制氢气瓶组61之间的连通状态。
示例性地,混合电力推进系统包括4台燃料电池控制单元11,则需要两个氢气瓶组61。每个氢气瓶组61为一对燃料电池控制单元11提供氢气。两个氢气瓶组61之间连接有手动开 关S1,通过手动开关S1控制氢气瓶组61之间的连通状态,以防止其中一个氢气瓶组61不能供气而影响燃料电池控制单元11的供电,提高了电力系统的稳定性,保证了船舶上器件的使用特性和使用寿命。
在一实施例中,供电模块10还包括供氢系统130,供氢系统130包括氢系统控制器70和多个氢气瓶组61;每个燃料电池111的燃料电池控制器112以及氢系统控制器70均与能量综合管理模块30连接。
在一实施例中,参考图4,混合电力推进系统还包括速度监测单元90,速度监测单元90与能量综合管理模块30连接;
速度监测单元90设置为根据监测到的航行速度生成速度信号,并将速度信号传输给能量综合管理模块30;能量综合管理模块30还设置为根据速度信号启动混合电力推进系统进入停泊模式、进出港模式、航行模式或半速模式。
在一实施例中,若无模式信号输入给能量综合管理模块30,船舶的混合电力推进系统的供电方式还可以通过能量综合管理模块30接收船舶的航行速度确定。例如,当能量综合管理模块30接收到船舶的航行速度小于2海里每小时,则以停泊模式调配供电模块10的输出电量。当能量综合管理模块30接收到船舶的航行速度大于2海里每小时且小于8海里每小时,则以进出港或半速模式调配供电模块10的输出电量。当能量综合管理模块30接收到船舶的航行速度大于8海里每小时,则以航行模式调配供电模块的输出电量。为满足船舶至少一个行驶状态以及故障模式下的功率需求提供了双重保障,保证了船舶工作的电量需求,提高了电力系统的稳定性,保证了船舶上器件的使用特性和使用寿命,提高了节能减排的效果。
当能量综合管理模块30接收到船舶的航行速度等于2海里每小时,则以停泊模式、进出港或半速模式调配供电模块10的输出电量。
当能量综合管理模块30接收到船舶的航行速度等于8海里每小时,则以航行模式、进出港或半速模式调配供电模块10的输出电量。
在一实施例中,可以以速度监测单元90监测到的船舶航行设定时间段内的平均航速作为速度信号,可以提高速度信号的准确性,防止有误的速度信号触发与船舶实际工作状态不符合的工作模式,提高了电力系统的稳定性,保证了船舶上器件的使用特性和使用寿命,提高了节能减排的效果。例如,可以将监测到的船舶航行十分钟的平均航速作为速度信号,在保证速度信号的准确性的同时,也保证了触发的工作模式随着船舶实际工作状态的改变而及时改变。
在一实施例中,当船舶处于停泊模式时,此时船舶负载对电量需求较低,只需维持船舶照明或通导设备等用电即可,不需为船舶的航行提供动力。例如,若船舶有岸电接入,燃料电池111与蓄电池121停止工作,并且电源侧DC/DC变换器(即单向变换器211和双向变换 器221)断开。若船舶没有岸电接入,当存在负载时,控制燃料电池111和蓄电池121开启,燃料电池111可以以40kW的输出功率工作,当蓄电池121的SOC值低于40%时,则开启两台燃料电池111,并为蓄电池121充电,直至蓄电池121的SOC值达到50%,关闭一台燃料电池111。
当船舶处于进出港模式时,船舶以较低船速航行或者存在不连续性功率,船舶负载对电量需求增加。例如,当船舶处于进出港模式时,能量综合管理模块30通过氢气系统控制器70和燃料电池控制器112开启4台燃料电池111,并通过控制第一DC/DC变换器单元211输出40kW的功率;当蓄电池121的SOC值低于50%时,调节燃料电池111的输出功率为60kW,当蓄电池121的SOC值低于40%时,调节燃料电池111的输出功率为80kW。直到蓄电池121的SOC值回升至55%,燃料电池111的输出功率降回40kW。
当船舶处于航行模式时,能量综合管理模块30控制电源侧DC/DC变换器单元闭合,并且控制燃料电池111为主输出,并保证蓄电池121的SOC值维持较高值。例如,蓄电池121和燃料电池111全部开启,一旦蓄电池121的SOC值下降,燃料电池111的功率逐级上升,保证蓄电池121的SOC值不小于55%,其中,燃料电池111的最大输出功率可以为200kW。此时能量综合管理模块30控制启动部分的燃料电池控制单元11和蓄电池控制单元12,并控制降低负载对输出功率的需求,即根据还能工作的电池数量降低相应的输出功率。
在一实施例中,能量综合管理模块30还设置为在没有模式信号输入和速度信号输入时,根据设定启动规则启动所述混合电力推进系统。
例如,能量综合管理模块30可以根据蓄电池控制单元12的SOC值控制燃料电池控制单元11的能量输出,例如确定燃料电池控制单元11的开启数量以及输出功率。
在一实施例中,参考图4,能量综合管理模块30还与报警模块100连接,能量综合管理模块30还设置为在异常情况进入所述半速模式时,控制报警模块100报警,以及时提醒燃料电池或蓄电池存在损坏的信息。
在一实施例中,能量综合管理模块30设置为对燃料电池控制单元11中燃料电池111进行控制,包括:
能量综合管理模块30设置为确定燃料电池开启编号,并根据燃料电池开启编号控制开启对应的燃料电池;能量综合管理模块30还设置为根据功率需求实时确定燃料电池的目标输出功率,并通过燃料电池控制器获取燃料电池的当前输出功率即实际输出功率;判断实际输出功率与目标输出功率的差值是否在预设差值范围内;若实际输出功率与目标输出功率的差值在预设差值范围内,则通过控制与能量综合管理模块相连的DC/DC变换器以维持燃料电池的输出功率;若实际输出功率与目标输出功率的差值不在预设差值范围内,则通过控制与能量综合管理模块相连的DC/DC变换器以调节燃料电池的输出功率至目标输出功率;以及能量综 合管理模块30还设置为确定燃料电池关闭编号,并根据燃料电池关闭编号控制关闭对应的燃料电池。
本申请实施例提供了一种混合电力推进系统,以燃料电池为船舶的主要推进动力源,蓄电池作为辅助能源,主要起到削峰填谷的作用,可弥补燃料电池动态特性不足,稳定电力系统的作用。在船舶停泊、进出港口和航行等不同状态下,根据当前蓄电池系统的荷电状态,制定合理分配每组燃料电池的启停和功率输出的策略,以满足船舶多个行驶状态以及故障模式下的功率需求,同时,结合每个产品的使用特性和寿命的考虑,制定出最佳的能量分配策略,达到节能减排的效果。
本申请实施例还提供了一种混合电力推进系统的启动方法,图5是本申请实施例提供的一种混合电力推进系统的启动方法流程图,参考图5,方法包括:
S110、启动开关根据输入的启动信息生成启动信号。
例如,混合电力推进系统还包括启动开关,启动开关可以根据输入的启动信息生成启动信号。能量综合管理模块与启动开关连接,可以为电连接也可以为通信连接。例如,启动开关为船上的启动按钮,当按下启动按钮时,可以使能量综合管理模块与启动开关之间进行信息传输,能量综合管理模块可以接收到船舶上混合电力推进系统的启动信号。
S120、不间断电源单元根据启动信号为蓄电池控制单元、燃料电池控制单元和能量综合管理模块供电,以使蓄电池控制单元、燃料电池控制单元和能量综合管理模块完成自检。
例如,混合电力推进系统还包括不间断电源(Uninterruptible Power System,UPS)单元,不间断电源单元与启动开关连接,可以为电连接也可以为通信连接。不间断电源单元根据接收到的启动信号为蓄电池控制单元、燃料电池控制单元和能量综合管理模块供电,以使蓄电池控制单元、燃料电池控制单元和能量综合管理模块完成自检。不间断电源单元为蓄电池控制单元、燃料电池控制单元和能量综合管理模块的供电为弱电,满足系统的自检即可。目的在于可以获知燃料电池控制单元、锂电池单元的状态,根据反馈的自检信息确定是否满足混合电力推进系统开启的条件,保证系统能够安全启动。
S130、能量综合管理模块在接收到启动信号后获取蓄电池控制单元和燃料电池控制单元的自检信息,根据蓄电池控制单元和燃料电池控制单元的自检信息和能量综合管理模块自身的自检信息判断混合电力推进系统是否满足启动条件。
例如,不间断电源单元为蓄电池控制单元、燃料电池控制单元和能量综合管理模块供电并使蓄电池控制单元、燃料电池控制单元和能量综合管理模块完成自检后,能量综合管理模块接收蓄电池控制单元以及燃料电池控制单元反馈的自检信息,并结合能量综合管理模块自身的自检信息判断当前的燃料电池控制单元、锂电池单元以及能量综合管理模块自身的状态判断是否满足开启混合电力推进系统的条件。
S140、模式选择单元选择启动模式,并根据启动模式生成对应的模式信号。
例如,在能量综合管理模块判断满足开启混合电力推进系统的条件时,模式选择单元选择启动模式,并根据启动模式生成对应的模式信号。启动模式包括停泊模式、进出港模式、航行模式以及半速模式。
S150、能量综合管理模块根据模式信号启动蓄电池控制单元和燃料电池控制单元,并调配蓄电池控制单元和燃料电池控制单元的能量输出。
例如,能量综合管理模块在选择停泊模式时,按停泊模式控制策略调配蓄电池控制单元和燃料电池控制单元的能量输出以使混合电力推进系统进入停泊模式;能量综合管理模块在选择进出港模式时,按进出港模式控制策略调配蓄电池控制单元和燃料电池控制单元的能量输出以使混合电力推进系统进入进出港模式;能量综合管理模块在选择航行模式时,按航行模式控制策略调配蓄电池控制单元和燃料电池控制单元的能量输出以使混合电力推进系统进入航行模式;以及能量综合管理模块在选择半速模式时,按半速模式控制策略调配蓄电池控制单元和燃料电池控制单元的能量输出以使混合电力推进系统进入半速模式。
S160、蓄电池控制单元和燃料电池控制单元向直流母线供电以向负载供电。
在一实施例中,不间断电源单元根据启动信号为蓄电池控制单元、燃料电池控制单元和能量综合管理模块供电,包括:
不间断电源单元为燃料电池控制器、蓄电池控制器和DC/DC控制器供电。
例如,燃料电池控制单元与第一DC/DC变换器单元一一对应设置,蓄电池控制单元与第二DC/DC变换器单元一一对应设置,每个DC/DC变换器单元均包括DC/DC变换器和DC/DC控制器。每个燃料电池控制单元包括燃料电池和燃料电池控制器,每个蓄电池控制单元包括蓄电池和蓄电池控制器。能量综合管理模块分别与燃料电池控制器、蓄电池控制器和DC/DC控制器连接。不间断电源单元根据启动信号为蓄电池控制单元、燃料电池控制单元和能量综合管理模块供电,即不间断电源单元为燃料电池控制器、蓄电池控制器和DC/DC控制器供电,使燃料电池控制器、蓄电池控制器和DC/DC控制器完成自检并完成对燃料电池、蓄电池以及DC/DC变换器单元的状态信息的获取。
在一实施例中,不间断电源为燃料电池控制器、蓄电池控制器和DC/DC控制器上电之后,还包括:能量综合管理模块向蓄电池控制器传输放电指令以控制蓄电池向直流母线供电;直流母线为供氢系统供电,以使供氢系统完成自检;能量综合管理模块接收供氢系统的自检信息并根据自检信息判断供氢系统是否满足启动条件。
例如,蓄电池控制单元的蓄电池控制器完成上电以及自检后,可以根据能量综合管理模块传输的放电指令以控制蓄电池向直流母线供电,使直流母线上具有一定数值的电压。供氢系统从直流母线获取电压后,同样需要完成自检。供氢系统包括氢系统控制器,供氢系统同 样通过氢系统控制器完成自检。同时检查氢系统控制器与能量综合管理模块的通讯是否有丢失,将相应信息传输至能量综合管理模块。能量综合管理模块接收供氢系统的自检信息并根据自检信息判断供氢系统是否满足启动条件。
在一实施例中,混合电力推进系统的启动方法还包括:在接收不到模式信号时,能量综合管理模块根据速度信号启动混合电力推进系统进入停泊模式、进出港模式、航行模式或半速模式;在接收不到模式信号和速度信号时,能量综合管理模块根据设定启动规则启动混合电力推进系统。
例如,若无模式信号输入给能量综合管理模块,船舶的混合电力推进系统的供电方式还可以通过能量综合管理模块接收船舶的航行速度确定。当能量综合管理模块接收到船舶的航行速度小于第一设定速度时,则以停泊模式调配供电模块的输出电量。当能量综合管理模块接收到船舶的航行速度大于第一速度且小于第二设定速度时,则以进出港或半速模式调配供电模块的输出电量。当能量综合管理模块接收到船舶的航行速度大于第二设定速度时,则以航行模式调配供电模块的输出电量。为满足船舶每个行驶状态以及故障模式下的功率需求提供了双重保障,保证了船舶工作的电量需求,提高了电力系统的稳定性,保证了船舶上器件的使用特性和使用寿命,提高了节能减排的效果。另外,可以以速度监测单元监测到的船舶航行设定时间段内的平均航速作为速度信号,提高了速度信号的准确性,防止有误的速度信号触发与船舶实际工作状态不符合的工作模式。在接收不到模式信号和速度信号时,能量综合管理模块根据设定启动规则启动所述混合电力推进系统。例如能量综合管理模块根据蓄电池控制单元SOC值确定燃料电池控制单元的开启输出量以及输出功率。
本申请实施例提供了混合电力推进系统、启动方法,混合电力推进系统包括:启动开关,设置为根据输入的启动信息生成启动信号;不间断电源单元,设置为根据启动信号为蓄电池控制单元、燃料电池控制单元和能量综合管理模块供电,以使蓄电池控制单元、燃料电池控制单元和能量综合管理模块完成自检;能量综合管理模块,设置为根据自检信息判断混合电力推进系统是否满足启动条件;模式选择单元,设置为选择启动模式并生成对应的模式信号;能量综合管理模块还设置为根据模式信号启动蓄电池控制单元和燃料电池控制单元并调配二者的能量输出;蓄电池控制单元和燃料电池控制单元设置为向直流母线供电以为负载供电。本申请实施例通过能量综合管理模块根据模式信号或速度信号调配燃料电池控制单元和蓄电池控制单元的能量输出,提高了电力系统的稳定性,并在启动前完成对电力系统的自检,提高了电力系统的安全性,保证了船舶上器件的使用特性和使用寿命,提高了节能减排的效果。
本申请实施例还提供了一种船用蓄电池控制单元的控制方法,船上包括多个蓄电池控制单元,每个蓄电池控制单元均与综合能量管理模块连接,图6是本申请实施例提供的一种船用蓄电池控制单元的控制方法的流程图,参考图6,方法包括:
S210、能量综合管理模块设定一蓄电池控制单元为主控制电池单元。
例如,全船蓄电池控制单元均分于左右半弦独立成一个域,两个域电池在正常情况下同时在线,共同承担维持直流母线的电压的任务。在蓄电池控制单元充放电过程中均衡电流,使每个蓄电池控制单元中的蓄电池的SOC值趋于一致,保证船舶上多个蓄电池控制单元充放电均匀,寿命相近。蓄电池控制单元的控制方式为主从控制。主从控制是指在孤岛运行模式时,即全船蓄电池控制单元均分于左右半弦独立成一个域,其中一个蓄电池控制单元电源采取定电压和定频率控制(V/F控制),其中一个蓄电池控制单元设置为向其它蓄电池控制单元提供电压和频率参考,而其他的分布式电源则可采用定功率控制(P/Q控制)。采用V/F控制的蓄电池控制单元为主控制电池单元。主控制电池单元的电源控制器称为主控制器,而其他的蓄电池的电源控制器称为从控制器。
S220、能量综合管理模块接收整船用电请求信息,并获取每个蓄电池控制单元的荷电状态信息。
例如,能量综合管理模块在接收整船用电请求信息后,通过每个蓄电池控制单元的蓄电池控制器获取每个蓄电池控制单元中蓄电池的荷电状态信息,使全船的蓄电池控制单元的荷电状态信息汇聚在能量综合管理模块中。
S230、主控制电池单元根据每个蓄电池控制单元的荷电状态信息并结合整船用电请求信息分配每个蓄电池控制单元的供电量。
例如,每个蓄电池控制单元的蓄电池控制器均与能量综合管理模块连接,因此,主控制电池单元的蓄电池控制单元中的蓄电池控制器可以根据每个蓄电池控制单元的荷电状态信息并结合整船用电请求信息分配每个蓄电池控制单元的供电量,避免了船舶上蓄电池控制单元的过充或过放,提高了蓄电池控制单元的使用寿命,提高了电力系统的稳定性和安全性。
在一实施例中,分配给每个蓄电池控制单元的供电量相同,使每个蓄电池控制单元中的蓄电池的SOC值趋于一致,保证船舶上每个蓄电池控制单元充放电均匀,寿命相近。
S240、能量综合管理模块根据分配的供电量控制对应连接的蓄电池控制单元供电。
例如,能量综合管理模块根据分配的供电量确定对应的蓄电池控制单元的请求功率,蓄电池控制单元根据请求功率输出相应的输出电流。
在一实施例中,能量综合管理模块可设定一蓄电池控制单元为主控制电池单元。
能量综合管理模块判断一蓄电池控制单元是否满足与能量综合管理模块连接成功以及蓄电池控制单元的荷电状态是否满足放电要求的预设条件,若一蓄电池控制单元连接成功且荷电状态满足放电要求,则控制一蓄电池控制单元进入主控制模式;若不满足,例如,一蓄电池控制单元未连接成功或/和荷电状态未满足放电要求,则能量综合管理模块判断下一蓄电池控制单元是否满足预设条件,直至完成主控制电池单元的设定。
在一实施例中,每个蓄电池控制单元在设定主控制电池单元之前,在控制上均为同等地位。每个蓄电池控制单元均可以设定为主控制电池单元。能量综合管理模块判断一蓄电池控制单元是否满足预设条件,若一蓄电池控制单元满足预设条件,则控制一蓄电池控制单元进入主控制模式;若一蓄电池控制单元不满足预设条件,则能量综合管理模块判断下一蓄电池控制单元是否满足预设条件,直至完成主控制电池单元的设定。其中,预设条件为该蓄电池控制单元中的蓄电池控制器是否可以与能量综合管理模块之间进行信息交互以及蓄电池控制单元中的蓄电池的电荷状态是否满足放电要求。预设条件也可以包括其它条件要求,可根据实际需要制定预设条件。
在一实施例中,船用蓄电池模块的控制方法还包括;能量综合管理模块判断设定为主控制电池单元的蓄电池控制单元是否满足与能量综合管理模块保持连接以及蓄电池控制单元的荷电状态是否满足放电要求,若设定为主控制电池单元的蓄电池控制单元与能量综合管理模块保持连接以及蓄电池控制单元的荷电状态满足放电要求,则维持蓄电池控制单元的主控制模式;若设定为主控制电池单元的蓄电池控制单元未与能量综合管理模块保持连接和/或蓄电池控制单元的荷电状态不满足放电要求,则退出蓄电池控制单元的主控制模式。
在一实施例中,退出蓄电池控制单元的主控制模式后,还包括:能量综合管理模块设定下一蓄电池控制单元为主控制电池单元。
例如,能量综合管理模块设定一蓄电池控制单元为主控制电池单元后,还需判断设定为主控制电池单元的蓄电池控制单元是否满足与能量综合管理模块保持连接以及蓄电池控制单元的荷电状态是否满足放电要求的预设条件,若设定为主控制电池单元的蓄电池控制单元与能量综合管理模块保持连接以及蓄电池控制单元的荷电状态满足放电要求,则维持蓄电池控制单元的主控制模式;若设定为主控制电池单元的蓄电池控制单元未与能量综合管理模块保持连接和/或蓄电池控制单元的荷电状态不满足放电要求,则退出蓄电池控制单元的主控制模式;能量综合管理模块设定下一蓄电池控制单元为主控制电池单元。其中,预设条件同样可以为该蓄电池控制单元中的蓄电池控制器是否可以与能量综合管理模块之间进行信息交互,以及蓄电池控制单元中的蓄电池的电荷状态是否满足放电要求。也可以还包括其它条件要求,可根据实际需要制定。
在一实施例中,船用蓄电池模块的控制方法还包括:当每个蓄电池控制单元设定为主控制电池单元失败后,能量综合管理模块根据下垂控制模式控制至少一个蓄电池控制单元的供电量。
例如,蓄电池控制单元设定为主控制电池单元失败后,即蓄电池控制单元主从控制模式失效后,蓄电池控制单元的控制方式进入下垂控制模式。能量综合管理模块根据预先设定的供电量分配策略控制至少一个蓄电池控制单元。
在一实施例中,能量综合管理模块根据下垂控制模式控制至少一个蓄电池控制单元的供电量可以为,平均分配多个蓄电池控制单元的供电量。通过如此设置,可使每个蓄电池控制单元中的蓄电池的SOC值趋于一致,保证船舶上每个蓄电池控制单元充放电均匀,寿命相近。
在一实施例中,蓄电池控制器根据相应蓄电池在每个SOC值下的持续充放电倍率以及最大充放电倍率来限制蓄电池的充放电。蓄电池控制单元根据请求功率输出相应的输出电流可基于以下方程来确定:
IV OC-I 2R-P request=0;
其中,Voc为蓄电池控制单元在一荷电状态下的开路电压,I为输出电流;R为蓄电池控制单元的等效内阻,R为蓄电池的等效内阻,R值随SOC变化,在本申请实施例中假设为定值,由电芯的内阻值决定。P request为蓄电池控制单元的请求功率。
若上述方程存在实根,则控制输出电流为:
Figure PCTCN2021103234-appb-000001
若上述方程无实根,则控制输出电流为:
Figure PCTCN2021103234-appb-000002
对应的输出电压为:
V=V OC-IR。
蓄电池瞬时SOC值为:
Figure PCTCN2021103234-appb-000003
其中,SOC 0为初始荷电状态;Q max为电池容量。仅考虑SOC对电池V oc的影响,示例性的,磷酸铁锂电池电压曲线可如图7所示。
在一实施例中,船用蓄电池控制单元的控制方法还包括:能量综合管理模块判断每个蓄电池的荷电状态,并且在蓄电池控制单元的荷电储量低于30%时触发船上的报警单元。
例如,为了保证蓄电池控制单元在任意时候都有足够的功率响应高频功率以及有足够的电能应付意外情况,需要对蓄电池控制单元中的蓄电池的SOC值进行有效的管理。SOC值越高,蓄电池的放电能力强;SOC值越低,允许对蓄电池充电功率越大。例如,蓄电池SOC值使用区间为20%~100%。为保证一定裕度,设计蓄电池SOC值使用范围为30%~80%,当SOC值低于30%时,触发船上的报警单元。该蓄电池停止供电,并对蓄电池进行充电。通过如此设置,避免了船舶上至少一个蓄电池控制单元的过充或过放,提高了蓄电池控制单元的 使用寿命,提高了电力系统的稳定性和安全性。
本申请实施例提供了船用燃料电池控制单元的控制方法、混合电力推进系统,通过结合燃料电池的工作状态制定适宜的能量分配策略,实现有效的节能减排。
本申请实施例还提供了一种船用燃料电池控制单元的控制方法,船上包括多个燃料电池控制单元,每个燃料电池控制单元均与能量综合管理模块连接,能量综合管理模块设置为控制燃料电池控制单元中燃料电池的开启、放电和关闭,图8是本申请实施例提供的一种船用燃料电池控制单元的控制方法的流程图,参考图8,方法包括:
S310、确定燃料电池开启编号,并根据燃料电池开启编号控制开启对应的燃料电池。
例如,燃料电池的控制包含启停控制,输出功率控制。启停分为正常启停以及急停,正常启停以及功率信号通过通讯方式实现,急停通过硬线连接实现。燃料电池的功率通过能量综合管理模块控制与该燃料电池相连的DC/DC变换器实现。能量综合管理模块确定燃料电池开启编号,并根据燃料电池开启编号控制开启对应的燃料电池。例如,船舶的供电模块总共包括4台燃料电池,为4台燃料电池提前设定好编号。能量综合管理模块根据船舶负载的功率需求,确定需要以40KW的输出功率开启两台燃料电池,则能量综合管理模块确定两台燃料电池对应的编号即为燃料电池开启编号,并根据燃料电池开启编号控制开启与燃料电池开启编号对应的燃料电池。
S320、确定燃料电池的工作状态并根据功率需求确定燃料电池的目标输出功率,通过燃料电池控制器获取燃料电池的实际输出功率;其中工作状态包括稳态和暂态。
在一实施例中,燃料电池控制单元包括燃料电池和燃料电池控制器。
例如,燃料电池启动成功后,需要缓慢拉载电流,电流增加率由燃料电池控制器提供。燃料电池供电需要维持一定的功率输出,若船舶模式与蓄电池SOC值均在一个设置段内时,则燃料电池功率不变,工作在稳态;若船舶工作模式或蓄电池SOC值变化,则燃料电池功率需要改变,则认为工作在暂态。稳态意味着燃料电池实际输出功率与目标输出功率目标一致,或在允许范围内接近,则能量综合管理模块维持给DC/DC控制器的功率信号不变,以通过控制与燃料电池连接的DC/DC变换器维持燃料电池的输出功率不变。暂态是由于船舶工作模式变化或者蓄电池SOC值的变化导致的。船舶工作模式变化是通过模式选择单元向能量综合管理模块输入的模式信号或速度监测单元向能量综合管理模块输入的速度信号确定的,船舶启动后可进入停泊模式、进出港模式、航行模式以及半速模式。蓄电池SOC值变化是蓄电池控制器BMS向能量综合管理模块传输过来的。能量综合管理模块根据船舶所处的工作模式,以及船舶上蓄电池的荷电状态确定燃料电池的开启数量以及每个燃料电池向直流母线提供的输出功率。能量综合管理模块通过与燃料电池连接的DC/DC变换器以调节燃料电池的输出功率。
S330、判断实际输出功率与目标输出功率的差值是否在预设差值范围内;若实际输出功率与目标输出功率的差值在预设差值范围内,则通过控制与能量综合管理模块相连的DC/DC变换器以维持燃料电池的输出功率;若实际输出功率与目标输出功率的差值不在预设差值范围内,则通过控制与能量综合管理模块相连的DC/DC变换器以调节燃料电池的输出功率至目标输出功率。
在一实施例中,通过控制与能量综合管理模块相连的DC/DC变换器以调节燃料电池的输出功率至目标输出功率。例如,能量综合管理模块根据目标输出功率、当前输出功率即实际输出功率以及设定暂态时间确定燃料电池的输出功率的变化率,并将相应计算出来的功率信号传输给DC/DC变换器的DC/DC控制器;DC/DC控制器根据功率信号控制DC/DC变换器以调节燃料电池的输出功率。
在一实施例中,DC/DC控制器根据功率信号控制DC/DC变换器以调节燃料电池的输出功率之后,还可以包括:能量综合管理模块接收燃料电池控制器反馈燃料电池的实际输出功率,并判断燃料电池的实际输出功率在设定暂态时间内是否跟上目标输出功率,若燃料电池的实际输出功率在设定暂态时间内没有跟上目标输出功率,则增加所述设定暂态时间。
例如,当燃料电池的功率需要变化的时候,能量综合管理模块根据目标输出功率、实际输出功率以及设定暂态时间确定燃料电池的功率变化率,将相应计算出来的功率信号传输给DC/DC控制器以调节燃料电池的输出功率。同时,能量综合管理模块还需接收燃料电池控制器反馈的燃料电池的功率信号,根据通讯周期确定燃料电池功率是否跟上目标输出功率,若燃料电池功率没有跟上目标输出功率则增加暂态时间直到达到设定目标值。
在一实施例中,所述设定暂态时间小于或等于10秒,以保证燃料电池能够及时地跟上船舶正常工作时对直流母线电压的需求。
S340、确定燃料电池关闭编号,并根据燃料电池关闭编号控制关闭对应的燃料电池。
例如,能量综合管理模块根据船舶负载的功率需求,确定需要关闭的燃料电池对应的燃料电池关闭编号,并根据燃料电池关闭编号控制关闭对应的燃料电池。
本申请实施例提供的船用燃料电池控制单元的控制方法,可控制供电模块中蓄电池的开启、放电和关闭,船用燃料电池控制单元的控制方法包括:能量综合管理模块确定燃料电池开启编号,并根据燃料电池开启编号控制开启对应的燃料电池;能量综合管理模块根据船舶的工作模式以及蓄电池的荷电状态,通过与燃料电池连接的DC/DC变换器以调节燃料电池的输出功率;能量综合管理模块确定燃料电池关闭编号,并根据燃料电池关闭编号控制关闭对应的燃料电池。通过如此设置,满足了船舶多个行驶状态以及故障模式下的功率需求,达到了节能减排的效果。本申请实施例结合燃料电池的工作状态制定适宜的能量分配策略,实现了有效的节能减排。
在一实施例中,图9是图8中步骤S310的一种流程图,参考图9,根据燃料电池开启编号控制开启对应的燃料电池,包括:
S3110、能量综合管理模块传输燃料电池开启编号至氢系统控制器。
S3120、氢系统控制器根据燃料电池开启编号控制开启对应的氢气瓶组的阀门。
S3130、氢系统控制器判断对应的氢气瓶组的阀门是否开启成功;若对应的氢气瓶组的阀门开启不成功,则向能量综合管理模块反馈氢气瓶组开启失败信号;能量综合管理模块向氢系统控制器传输下一燃料电池开启编号;若对应的氢气瓶组的阀门开启成功,则向能量综合管理模块反馈氢气瓶组开启成功信号。
S3140、能量综合管理模块接收到氢气瓶组开启成功信号后,根据燃料电池开启编号向对应的燃料电池控制器发送开启指令信号。
S3150、燃料电池控制器判断燃料电池在预设时间内是否开启成功;若燃料电池在预设时间内开启成功,则控制所述燃料电池输出电流;若燃料电池在预设时间内开启不成功,则向能量综合管理模块反馈燃料电池开启失败信号;能量综合管理模块向燃料电池控制器再次发送开启指令信号。
S3160、能量综合管理模块判断发送开启指令信息的次数是否在预设次数内,若发送开启指令信息的次数大于预设次数,则控制启动另一所述燃料电池。
例如,若混合电力推进系统包括4台燃料电池控制单元,则需要两个氢气瓶组。每个氢气瓶组为一对燃料电池控制单元提供氢气。两个氢气瓶组之间连接有手动开关,通过手动开关设置为控制氢气瓶组之间的连通状态,以防止其中一个氢气瓶组不能供气而影响燃料电池的供电,提高了电力系统的稳定性,保证了船舶上器件的使用特性和使用寿命。氢系统控制器用来控制氢气瓶组的瓶口电磁阀的开闭,氢系统控制器与能量综合管理模块连接。能量综合管理模块传输燃料电池开启编号至氢系统控制器;氢系统控制器根据燃料电池开启编号控制开启对应的氢气瓶组的阀门。氢系统控制器还可判断是否开启氢气瓶组成功,若氢气瓶组未成功开启,则向能量综合管理模块反馈氢气瓶组开启失败信号;能量综合管理模块向氢系统控制器传输下一燃料电池开启编号。或者,还可控制开启下一氢气瓶组并打开两个氢气瓶组之间的开关。能量综合管理模块再根据燃料电池开启编号向对应的燃料电池控制器发送开启指令信号,也可以向能量综合管理模块反馈为待开启的燃料电池供氢的氢气瓶组开启失败,使能量综合管理模块可以进行记录并向工作人员反馈信息。若氢气瓶组成功开启,则向能量综合管理模块反馈氢气瓶组开启成功信号;能量综合管理模块接收到氢气瓶组开启成功信号后,可直接根据燃料电池开启编号向对应的燃料电池控制器发送开启指令信号。
在一实施例中,燃料电池控制器还判断燃料电池在预设时间内是否开启成功;若燃料电池在预设时间内开启成功,则控制燃料电池输出电流以向直流母线供电;若燃料电池在预设 时间内开启不成功,则向能量综合管理模块反馈燃料电池开启失败信号,能量综合管理模块向燃料电池控制器再次发送开启指令信号。能量综合管理模块判断发送开启指令信息的次数是否在预设次数内,若发送开启指令信息的次数大于预设次数,则控制启动另一燃料电池。
示例性地,图10是图8中步骤S310的另一种流程图,参考图10,方法包括:
S3170、确定燃料电池开启编号。
S3180、将开启信息发送至氢系统控制器,开启相应的阀门。
S3190、判断阀门开启是否成功。若阀门开启成功,则执行步骤S31110,若阀门开启不成功,则返回步骤S3170。
S31110、记录开启次数S。
S31120、发送燃料电池开启信号。
S31130、判断燃料电池是否开启成功。若燃料电池开启成功,则执行步骤S31140,若燃料电池开启不成功,则执行步骤S31150。
S31140、允许拉载电流。
S31150、开启次数加1,即S=S+1。
S31160、判断开启次数是否大于3,即S>3。若开启次数大于3,则执行步骤S31170,若开启次数小于或等于3,则返回步骤S31120。
S31170、启动另外一台燃料电池。
可选的,图11是图8中步骤S330的流程图,参考如11,确定燃料电池关闭编号,并根据燃料电池关闭编号控制关闭对应的燃料电池,包括:
S3310、能量综合管理模块根据燃料电池关闭编号通过燃料电池控制器控制关闭燃料电池,并控制与燃料电池一一对应连接的DC/DC变换器降低输出功率至零。
S3320、燃料电池控制器向能量综合管理模块回馈关机信号。
S3330、能量综合管理模块根据关机信号向氢系统控制器传输关闭阀门信号以控制关闭为燃料电池供氢气的氢气瓶组。
S3340、停止设置在燃料电池和氢气瓶组之间管路上的比例调节阀动作。
例如,在正常关闭过程中,燃料电池需要一定时间来减载,需要控制DC/DC变换器进行配合。当通过控制DC/DC变换器控制燃料电池的输出功率减为0之后,还可排除燃料电池内部残余反应气,空气侧由燃料电池控制器控制,氢气侧由氢系统控制器控制。能量综合管理模块根据关机信号向氢系统控制器传输关闭阀门信号以控制关闭为燃料电池供氢气的氢气瓶组,并停止设置在燃料电池和氢气瓶组之间管路上的比例调节阀的动作。
图12是本申请实施例提供的另一种船用燃料电池控制单元的控制方法的流程图,应设置为对燃料电池控制单元在船舶不同的工作模式下的供电控制,参考图12,方法包括:
S410、能量综合管理模块根据模式选择信号以及速度信号触发模式控制或者非模式控制;其中在模式控制下,船舶工作模式包括停泊模式、进出港模式、航行模式或半速模式中的至少一种。
例如,燃料电池控制单元输出功率的控制方式包括非模式控制和模式控制。能量综合管理模块对燃料电池控制单元的控制需要先确定燃料电池控制单元的控制为非模式控制还是模式控制。能量综合管理模块根据模式选择信号以及速度信号触发模式控制或者非模式控制。其中,在模式控制下,船舶工作模式包括停泊模式、进出港模式、航行模式或半速模式中的至少一种。能量综合管理模块与模式选择单元连接,能量综合管理模块可以根据模式选择单元输入的模式信号确定船舶工作模式。能量综合管理模块还与速度监测单元连接,能量综合管理模块根据速度监测单元输入的速度信号确定混合电力推进系统的停泊模式、进出港模式、航行模式和半速模式。
在一实施例中,能量综合管理模块根据模式选择信号以及速度信号触发模式控制或者非模式控制,包括:能量综合管理模块判断是否有模式信号输入;若有模式信号输入,则触发模式控制;若没有模式信号输入,则判断是否有速度信号输入;若有速度信号输入,则触发模式控制;若没有速度信号输入,则触发非模式控制;能量综合管理模块根据模式信号或速度信号控制燃料电池控制单元的能量输出,提高了电力系统的稳定性,保证了船舶上器件的使用特性和使用寿命,提高了节能减排的效果。
S420、能量综合管理模块在非模式控制时,根据蓄电池控制单元的荷电状态控制燃料电池控制单元中燃料电池的启动数量以及燃料电池的输出功率。
例如,船舶上包括多个燃料电池控制单元,还包括多个蓄电池控制单元。每个燃料电池控制单元中包括燃料电池和与每个燃料电池配对设置的燃料电池控制器。每个蓄电池控制单元中包括蓄电池和与每个蓄电池配对设置的蓄电池控制器。能量综合管理模块通过每个电池控制器控制对应的电池的开启以及计算电池输出电流的变化率。每个电池还对应连接有一个DC/DC变换器,能量综合管理模块还可以通过DC/DC变换器控制对应的电池向直流母线供电中的输出功率。能量综合管理模块在非模式控制时,获取蓄电池控制单元的荷电状态,并根据蓄电池控制单元的荷电状态控制燃料电池控制单元中燃料电池的启动数量以及燃料电池的输出功率。
在一实施例中,燃料电池控制单元在非模式控制时,根据蓄电池控制单元的荷电状态控制燃料电池控制单元的输出功率以及启动数量,包括:
获取蓄电池控制单元的荷电状态;
若蓄电池控制单元的荷电状态小于第一设定荷电状态阈值,控制燃料电池控制单元中的燃料电池以大于第一设定功率阈值的输出功率进行全部启动操作;并根据蓄电池控制单元的 荷电状态调节燃料电池的输出功率;
若蓄电池控制单元的荷电状态大于第二设定荷电状态阈值,控制燃料电池控制单元中的燃料电池以第一设定功率阈值恒定输出,并根据蓄电池控制单元的荷电状态确定所述燃料电池的开启数量。
例如,能量综合管理模块通过蓄电池控制器获取蓄电池控制单元的荷电状态。可以以多个蓄电池对应的SOC值中的最小值为判断值。
在一实施例中,维持蓄电池控制单元中的蓄电池的SOC值趋于一致,保证船舶上多个蓄电池控制单元充放电均匀,寿命相近。若蓄电池控制单元的荷电状态小于第一设定荷电状态阈值,则触发动力模式,控制燃料电池控制单元中的燃料电池以大于第一设定功率阈值的输出功率全部启动;若蓄电池控制单元的荷电状态大于第二设定荷电状态阈值,则触发经济模式,控制燃料电池控制单元中的燃料电池以第一设定功率阈值恒定输出,并根据蓄电池控制单元的荷电状态确定所述燃料电池的开启数量。图13是本申请实施例提供的一种船用燃料电池控制单元在非模式控制下的控制策略图,参考图13,例如,两种模式的蓄电池控制单元SOC值分界点为55%与60%。当蓄电池控制单元SOC值下降至55%以下,触发动力模式;当蓄电池控制单元SOC值上升至60%,触发经济模式。经济模式时,燃料电池输出功率为40kW;动力模式时,燃料电池全部开启,输出功率大于40kW。
在一实施例中,根据蓄电池控制单元的荷电状态调节燃料电池的输出功率,包括:若蓄电池控制单元的荷电状态在下降过程中,根据蓄电池控制单元的荷电状态的第一设定减小量确定每个燃料电池的输出功率的增加量;若蓄电池模块的荷电状态在上升过程中,根据蓄电池控制单元的荷电状态的第二设定增加量确定每个燃料电池的输出功率的减少量。
例如,动力模式被触发,则表明蓄电池控制单元中蓄电池的SOC值相对较低。例如,蓄电池SOC值小于55%,或充电回升过程中仍旧小于60%,对重载的维持能力下降,这时需要提高燃料电池的输出功率使蓄电池的SOC值回升。图14是本申请实施例提供的一种船用燃料电池控制单元在非模式控制下的开启等级示意图,参考图14,根据蓄电池的SOC值的不同,燃料电池的输出功率也不同,将动力模式分级,SOC值越低,级别越高,输出功率越大,防止蓄电池的SOC值继续下降。暂分为四级:1级,燃料电池的输出功率60kW;2级,燃料电池的输出功率80kW;3级,燃料电池的输出功率100kW;4级,燃料电池输出功率110kW。蓄电池的SOC值下降过程中,触发值为55%,49%,43%以及37%,分别为1级,2级,3级以及4级;蓄电池的SOC值上升过程中,触发值为42%,48%,54%以及60%,分别为3级,2级,1级以及经济模式。
在一实施例中,根据蓄电池控制单元的荷电状态确定燃料电池的启动数量,包括:若蓄电池控制单元的荷电状态在下降过程中,根据蓄电池控制单元的荷电状态的第三设定减小量 确定燃料电池增加的启动数量;若蓄电池控制单元的荷电状态在上升过程中,根据蓄电池控制单元的荷电状态的第四设定增加量确定燃料电池减小的启动数量。
例如,经济模式被触发,则表明蓄电池控制单元中蓄电池的SOC值相对较高。例如,燃料电池共有4台,经济模式下,燃料电池的输出功率为恒值40kW,开启的数量仍旧由蓄电池的SOC值决定,成阶梯式开启和关闭。图15是本申请实施例提供的一种船用燃料电池控制单元在非模式控制下的开启数量示意图,参考图15,蓄电池的SOC值下降过程中,触发值为0.77%,74%,71%以及68%,分别开启1台,2台,3台以及4台燃料电池;蓄电池的SOC值上升过程中,触发值为7%,73%,76%以及79%,分别开启3台,2台,1台以及0台。
S430、能量综合管理模块在模式控制时,根据模式选择信号对应的船舶工作模式或速度信号对应的船舶工作模式控制燃料电池控制单元中燃料电池的启动数量以及燃料电池的输出功率。
例如,在模式控制下,船舶工作模式包括停泊模式、进出港模式、航行模式或半速模式中的至少一种。能量综合管理模块根据模式信号或速度信号确定船舶处于哪个工作模式,以对燃料电池的输出功率以及燃料电池的启动数量进行相应的控制。能量综合管理模块根据模式信号或速度信号控制燃料电池控制单元的能量输出,提高了电力系统的稳定性,保证了船舶上器件的使用特性和使用寿命,提高了节能减排的效果。
在一实施例中,进入停泊模式后,则根据输入的模式控制蓄电池控制单元中燃料电池的输出功率以及所述燃料电池的启动数量,包括:若蓄电池的荷电状态小于第三设定荷电状态阈值,则控制启动两侧发电量较低的两台燃料电池,并控制发电量较低的燃料电池的输出功率为第一预设功率阈值。若蓄电池的荷电状态大于第三设定荷电状态阈值且小于第四设定荷电状态阈值,则控制启动一台燃料电池,并控制燃料电池的输出功率为第一预设功率阈值;若蓄电池荷电状态大于第四设定荷电状态阈值,则不启动燃料电池。
示例性的,图16是本申请实施例提供的一种船用燃料电池控制单元在模式控制下的控制方法流程图,参考图16,船舶进入停泊模式后,在不接入岸电的情况下,当船舶存在负载时需要部分的燃料电池开启并以输出功率为40kW进行工作。若蓄电池的SOC值大于或等于80%,则可以由蓄电池供电而不启动燃料电池,即对应于图16中的步骤A。若蓄电池的SOC值小于或等于40%,船舶进入停泊模式后,船舶存在的负载为日常照明等需求功率不高的器件,因此,控制开启的燃料电池是燃料电池中两侧发电量较低的燃料电池,即对应于图16中的步骤B。当蓄电池的SOC回升至50%以上,关闭一台。在一实施例中,控制启动一台燃料电池前,还包括:比较一侧发电量较低的燃料电池供氢的氢气瓶组内氢气压强与预设压强阈值;若氢气瓶组内氢气压强大于预设压力差阈值,则控制启动该一侧发电量降低的燃料电池, 即对应于图16中的步骤C;若氢气瓶组内氢气压强小于或等于预设压力差阈值,则控制启动压力高的一侧中发电量低的燃料电池,即对应于图16中的步骤D。例如,预设压力差阈值可以为2Mpa,以保证氢气瓶组能够正常地对燃料电池供氢,保证了燃料电池对船舶的供电,提高了船舶电力系统的稳定性。
在一实施例中,进入进出港模式后,则根据输入的模式控制蓄电池模块中燃料电池的输出功率以及所述燃料电池的启动数量,包括:控制每个燃料电池开启;若蓄电池的荷电状态大于第五设定荷电状态阈值,则控制每个燃料电池的输出功率为第一预设功率阈值;若蓄电池的荷电状态小于第五设定荷电状态阈值且大于第六设定荷电状态阈值,则控制每个燃料电池的输出功率为第二预设功率阈值;若蓄电池的荷电状态小于第六设定荷电状态阈值,则控制每个燃料电池的输出功率为第三预设功率阈值;其中,第一预设功率阈值小于第二预设功率阈值,第二预设功率阈值小于第三预设功率阈值。
示例性的,船舶设有4台燃料电池,当船舶进入进出港模式后,4台燃料电池全部开启。请继续参考图16,当蓄电池的SOC值大于50%时,能量综合管理模块控制每台燃料电池的输出功率为40kW,即对应于图16中的步骤E;当蓄电池的SOC值小于或等于50%且大于40%时,40%也可替换为45%,能量综合管理模块控制每台燃料电池的输出功率为60kW,即对应于图16中的步骤F;当蓄电池的SOC值小于或等于40%时,能量综合管理模块控制每台燃料电池的输出功率为80kW,即对应于图16中的步骤G。通过如此设置,加大燃料电池的供电量,同时对每个蓄电池进行充电,直到蓄电池的SOC值达到55%,控制燃料电池的输出功率降回到40kW。
在一实施例中,进入航行模式后,则根据输入的模式控制蓄电池模块中燃料电池的输出功率以及所述燃料电池的启动数量,包括:控制每个燃料电池开启;若蓄电池的荷电状态大于第七设定荷电状态阈值,则控制每个燃料电池的输出功率为第四预设功率阈值;若蓄电池的荷电状态小于第七设定荷电状态阈值且大于第八设定荷电状态阈值,则控制每个燃料电池的输出功率为第五预设功率阈值;若蓄电池的荷电状态小于第八设定荷电状态阈值且大于第九设定荷电状态阈值,则控制每个燃料电池的输出功率为第六预设功率阈值;若蓄电池的荷电状态小于第九设定荷电状态阈值,则控制每个燃料电池的输出功率为第七预设功率阈值;其中,第四预设功率阈值小于第五预设功率阈值,第五预设功率阈值小于第六预设功率阈值;第六预设功率阈值小于第七预设功率阈值。
示例性的,船舶设有4台燃料电池,当船舶进入航行模式后,4台燃料电池全部开启。一旦蓄电池的SOC值下降,燃料电池功率逐级上升,以保证蓄电池的SOC不小于55%,燃料电池的最大输出功率为200kW。请继续参考图17,当蓄电池的SOC值大于68%时,能量综合管理模块控制每台燃料电池的输出功率为50kW,即对应于图16中的步骤H;当蓄电池 的SOC值小于或等于68%且大于64%时,能量综合管理模块控制每台燃料电池的输出功率为70kW,即对应于图16中的步骤I;当蓄电池的SOC值小于或等于64%且大于60%时,能量综合管理模块控制每台燃料电池的输出功率为90kW,即对应于图16中的步骤J;当蓄电池的SOC值小于或等于60%时,能量综合管理模块控制每台燃料电池的输出功率为110kW,即对应于图16中的步骤K。
在一实施例中,半速模式根据燃料电池控制单元和/或蓄电池控制单元的完整情况确定;其中,蓄电池控制单元的个数为两个;燃料电池控制单元的个数至少为两个;若蓄电池控制单元正常工作的个数少于两个和/或燃料电池控制单元正常工作的个数少于两个,则通过降低船速以降低对所述蓄电池模块和所述燃料电池的用电需求。
例如,当燃料电池控制单元中的燃料电池或蓄电池控制单元中的蓄电池存在损坏时,可改变对燃料电池和蓄电池的控制方式,当改变方式也不能满足负载需求时,则提醒功率不足,降载运行。一个航次的平均功率约185kW,则表明至少需要2台燃料电池才能满足全功率运行。蓄电池起着稳定母线电压以及提供瞬态负载的功率的作用,当蓄电池丢失1台,可用功率降低一半,燃料电池的最大功率也受限制,此情况下需要船舶半速航行。示例性的,若船舶的蓄电池为2台,燃料电池为4台。根据燃料电池与蓄电池的丢失数组合,可分为:“3燃料电池+2蓄电池”、“2燃料电池+2蓄电池”、“1燃料电池+2蓄电池”、“0燃料电池+2蓄电池”、“4燃料电池+1蓄电池”、“3燃料电池+1蓄电池”、“2燃料电池+1蓄电池”、“1燃料电池+1蓄电池”、“0燃料电池+1蓄电池”以及只有燃料电池工作。
燃料电池与蓄电池的组合情况很多,每一个组合都有最佳的控制方式不现实。可对以上组合进行分类,保留能够满足船舶全功率运行的组合。其余组合均采用降速的方式来降低功率,但动力源的控制方式不变,变化的是船舶上的负载。当只有燃料电池工作的时候,还可限制负载的变化速率。以上组合中,理论上仅有“3燃料电池+2蓄电池”与“2燃料电池+2蓄电池”两个组合既能保证功率又能保证续航,可以全功率运行。
注意,上述仅为本申请的较佳实施例。本领域技术人员会理解,本申请不限于这里所述的特定实施例,对本领域技术人员来说能够进行多种明显的变化、重新调整和替代而不会脱离本申请的保护范围。因此,虽然通过以上实施例对本申请进行了说明,但是本申请不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例。

Claims (20)

  1. 一种混合电力推进系统,包括:
    启动开关,所述启动开关设置为根据输入的启动信息生成启动信号;
    不间断电源单元,所述不间断电源单元与所述启动开关连接,所述不间断电源单元设置为根据所述启动信号为蓄电池控制单元、燃料电池控制单元和能量综合管理模块供电,以使所述蓄电池控制单元、所述燃料电池控制单元和所述能量综合管理模块完成自检;
    所述能量综合管理模块,所述能量综合管理模块与所述启动开关连接,所述能量综合管理模块设置为响应于接收到所述启动信号,获取所述蓄电池控制单元和所述燃料电池控制单元的自检信息,并根据获取的自检信息以及所述能量综合管理模块自身的自检信息判断所述混合电力推进系统是否满足启动条件;
    模式选择单元,所述模式选择单元与所述能量综合管理模块连接,所述模式选择单元设置为确定启动模式,并根据所述启动模式生成对应的模式信号;
    所述能量综合管理模块还设置为根据所述模式信号启动所述蓄电池控制单元和所述燃料电池控制单元,并调配所述蓄电池控制单元和所述燃料电池控制单元的能量输出;
    所述蓄电池控制单元和所述燃料电池控制单元分别与直流母线连接,所述蓄电池控制单元和所述燃料电池控制单元设置为向所述直流母线供电。
  2. 根据权利要求1所述的混合电力推进系统,其中,所述混合电力推进系统还包括变换器模块,所述变换器模块包括至少两个DC/DC变换器单元,所述至少两个DC/DC变换器单元中的一个连接在所述直流母线与所述燃料电池控制单元之间,所述至少两个DC/DC变换器单元中的另一个连接在所述直流母线与所述蓄电池控制单元之间;所述燃料电池控制单元包括燃料电池和燃料电池控制器,所述蓄电池控制单元包括蓄电池和蓄电池控制器,每个所述DC/DC变换器单元包括DC/DC变换器和DC/DC控制器;所述燃料电池控制器、所述蓄电池控制器和每个所述DC/DC控制器均与所述能量综合管理模块连接;
    所述不间断电源单元设置为为所述燃料电池控制器、所述蓄电池控制器和每个所述DC/DC控制器上电;所述能量综合管理模块还设置为在所述不间断电源单元为所述燃料电池控制器、所述蓄电池控制器和每个所述DC/DC控制器上电后,向所述蓄电池控制器传输放电指令以控制所述蓄电池向所述直流母线供电。
  3. 根据权利要求2所述的混合电力推进系统,其中,所述混合电力推进系统还包括供氢系统,所述供氢系统包括为所述燃料电池控制单元供氢的氢气瓶组以及氢系统控制器;所述直流母线设置为为所述供氢系统供电,以使所述供氢系统完成自检;所述能量综合管理模块还与所述氢系统控制器通讯连接,所述能量综合管理模块设置为接收所述供氢系统的自检信息并根据所述自检信息判断所述供氢系统是否满足启动条件。
  4. 根据权利要求1所述的混合电力推进系统,其中,所述启动模式包括停泊模式、进出 港模式、航行模式以及半速模式;所述能量综合管理模块还设置为所述模式选择单元将启动模式确定为停泊模式,按停泊模式控制策略调配所述蓄电池控制单元和所述燃料电池控制单元的能量输出以使所述混合电力推进系统进入停泊模式,响应于所述模式选择单元将启动模式确定为进出港模式,按进出港模式控制策略调配所述蓄电池控制单元和所述燃料电池控制单元的能量输出以使所述混合电力推进系统进入进出港模式,响应于所述模式选择单元将启动模式确定为航行模式,按航行模式控制策略调配所述蓄电池控制单元和所述燃料电池控制单元的能量输出以使所述混合电力推进系统进入航行模式,以及响应于所述模式选择单元将启动模式确定为半速模式,按半速模式控制策略调配所述蓄电池控制单元和所述燃料电池控制单元的能量输出以使所述混合电力推进系统进入半速模式。
  5. 根据权利要求4所述的混合电力推进系统,其中,所述混合电力推进系统还包括速度监测单元,所述速度监测单元与所述能量综合管理模块连接;所述速度监测单元设置为根据监测到的航行速度生成速度信号,并将所述速度信号传输给所述能量综合管理模块;所述能量综合管理模块还设置为根据所述速度信号启动所述混合电力推进系统进入所述停泊模式、所述进出港模式、所述航行模式或所述半速模式。
  6. 根据权利要求5所述的混合电力推进系统,其中,所述能量综合管理模块还设置为响应于没有所述模式信号输入和所述速度信号输入,根据设定启动规则启动所述混合电力推进系统。
  7. 一种混合电力推进系统的启动方法,所述混合电力推进系统的启动方法用于启动权利要求1-6任一所述的混合电力推进系统,所述混合电力推进系统的启动方法包括:
    启动开关根据输入的启动信息生成启动信号;
    不间断电源单元根据所述启动信号为蓄电池控制单元、燃料电池控制单元和能量综合管理模块供电,以使所述蓄电池控制单元、燃料电池控制单元和能量综合管理模块完成自检;
    所述能量综合管理模块响应于接收到所述启动信号,获取所述蓄电池控制单元和所述燃料电池控制单元的自检信息,并根据获取的自检信息以及所述能量综合管理模块自身的自检信息判断所述混合电力推进系统是否满足启动条件;
    模式选择单元确定启动模式,并根据所述启动模式生成对应的模式信号;
    所述能量综合管理模块根据所述模式信号启动所述蓄电池控制单元和所述燃料电池控制单元,并调配所述蓄电池控制单元和所述燃料电池控制单元的能量输出;
    所述蓄电池控制单元和所述燃料电池控制单元向直流母线供电。
  8. 根据权利要求7所述的混合电力推进系统的启动方法,其中,所述不间断电源单元根据所述启动信号为蓄电池控制单元、燃料电池控制单元和能量综合管理模块供电,包括:
    所述不间断电源单元为燃料电池控制器、蓄电池控制器和DC/DC控制器上电;
    所述不间断电源为所述燃料电池控制器、所述蓄电池控制器和所述DC/DC控制器上电之后,所述混合电力推进系统的启动方法还包括:
    所述能量综合管理模块向所述蓄电池控制器传输放电指令以控制蓄电池向所述直流母线供电;
    所述直流母线为供氢系统供电,以使所述供氢系统完成自检;
    所述能量综合管理模块接收所述供氢系统的自检信息并根据所述自检信息判断所述供氢系统是否满足启动条件。
  9. 根据权利要求7所述的混合电力推进系统的启动方法,其中,所述混合电力推进系统的启动方法还包括:
    所述能量综合管理模块响应于所述模式选择单元将启动模式确定为停泊模式,按停泊模式控制策略调配所述蓄电池控制单元和所述燃料电池控制单元的能量输出以使所述混合电力推进系统进入停泊模式;响应于所述模式选择单元将启动模式确定为进出港模式,按进出港模式控制策略调配所述蓄电池控制单元和所述燃料电池控制单元的能量输出以使所述混合电力推进系统进入进出港模式;响应于所述模式选择单元将启动模式确定为航行模式,按航行模式控制策略调配所述蓄电池控制单元和所述燃料电池控制单元的能量输出以使所述混合电力推进系统进入航行模式;以及响应于所述模式选择单元将启动模式确定为半速模式,按半速模式控制策略调配所述蓄电池控制单元和所述燃料电池控制单元的能量输出以使所述混合电力推进系统进入半速模式。
  10. 根据权利要求7所述的混合电力推进系统的启动方法,其中,所述混合电力推进系统的启动方法还包括:所述能量综合管理模块响应于未接收到所述模式信号,根据速度信号启动所述混合电力推进系统进入停泊模式、进出港模式、航行模式或半速模式;所述能量综合管理模块响应于未接收到所述模式信号和所述速度信号,根据设定启动规则启动所述混合电力推进系统。
  11. 一种船用燃料电池控制单元的控制方法,应用于混合电力推进系统,所述混合电力推进系统包括能量综合管理模块与至少一个燃料电池控制单元,所述能量综合管理模块与所述至少一个燃料电池控制单元连接,所述燃料电池控制单元包括燃料电池和燃料电池控制器,所述能量综合管理模块设置为控制所述燃料电池控制单元中所述燃料电池的供电,所述船用燃料电池控制单元的控制方法包括:
    所述能量综合管理模块确定燃料电池开启编号,并根据所述燃料电池开启编号控制开启对应的燃料电池;
    所述能量综合管理模块根据功率需求确定所述燃料电池的目标输出功率,通过所述燃料电池控制器获取所述燃料电池的当前输出功率;
    所述能量综合管理模块判断所述当前输出功率与所述目标输出功率的差值是否在预设差值范围内;响应于所述当前输出功率与所述目标输出功率的差值在所述预设差值范围内的判断结果,通过控制与所述能量综合管理模块相连的DC/DC变换器以维持所述燃料电池的输出功率;响应于所述当前输出功率与所述目标输出功率的差值不在所述预设差值范围内的判断结果,通过控制与所述能量综合管理模块相连的DC/DC变换器以调节所述燃料电池的输出功率至所述目标输出功率;
    所述能量综合管理模块确定燃料电池关闭编号,并根据所述燃料电池关闭编号控制关闭对应的燃料电池。
  12. 根据权利要求11所述的船用燃料电池控制单元的控制方法,其中,所述混合电力推进系统包括供氢单元,所述供氢单元包括氢系统控制器和至少一个氢气瓶组,每个所述燃料电池的燃料电池控制器以及所述氢系统控制器均与所述能量综合管理模块连接,其中,所述根据所述燃料电池开启编号控制开启对应的燃料电池,包括:
    所述能量综合管理模块传输所述燃料电池开启编号至所述氢系统控制器;
    所述氢系统控制器根据所述燃料电池开启编号控制开启对应的所述氢气瓶组的阀门;
    所述氢系统控制器判断对应的所述氢气瓶组的阀门是否开启成功;所述氢系统控制器响应于所述氢气瓶组的阀门开启不成功的判断结果,向所述能量综合管理模块反馈氢气瓶组开启失败信号,所述能量综合管理模块向所述氢系统控制器传输下一燃料电池开启编号;所述氢系统控制器响应于所述氢气瓶组的阀门开启成功的判断结果,向所述能量综合管理模块反馈氢气瓶组开启成功信号,所述能量综合管理模块接收到所述氢气瓶组开启成功信号后,根据所述燃料电池开启编号向对应的所述燃料电池控制器发送开启指令信号。
  13. 根据权利要求12所述的船用燃料电池控制单元的控制方法,所述根据所述燃料电池开启编号向对应的所述燃料电池控制器发送开启指令信号之后,所述船用燃料电池控制单元的控制方法还包括:
    所述燃料电池控制器判断所述燃料电池在预设时间内是否开启成功;所述燃料电池控制器响应于所述燃料电池在预设时间内开启成功的判断结果,控制所述燃料电池输出电流;所述燃料电池控制器响应于所述燃料电池在预设时间内开启不成功的判断结果,向所述能量综合管理模块反馈燃料电池开启失败信号,所述能量综合管理模块向所述燃料电池控制器再次发送开启指令信号。
  14. 根据权利要求13所述的船用燃料电池控制单元的控制方法,所述能量综合管理模块向所述燃料电池控制器再次发送开启指令信号之后,所述船用燃料电池控制单元的控制方法还包括:所述能量综合管理模块判断发送所述开启指令信息的次数是否在预设次数内;所述能量综合管理模块响应于发送所述开启指令信息的次数大于所述预设次数的判断结果,控制 启动另一所述燃料电池。
  15. 根据权利要求11所述的船用燃料电池控制单元的控制方法,其中,所述通过控制与所述能量综合管理模块相连的DC/DC变换器以调节所述燃料电池的输出功率至所述目标输出功率,包括:
    所述能量综合管理模块根据所述目标输出功率、所述当前输出功率以及设定暂态时间确定所述燃料电池的输出功率的变化率,并将与所述变化率对应的功率信号传输给DC/DC变换器的DC/DC控制器;
    所述DC/DC控制器根据所述功率信号控制所述DC/DC变换器以调节所述燃料电池的输出功率。
  16. 根据权利要求15所述的船用燃料电池控制单元的控制方法,所述DC/DC控制器根据所述功率信号控制所述DC/DC变换器以调节所述燃料电池的输出功率之后,所述船用燃料电池控制单元的控制方法还包括:所述能量综合管理模块接收所述燃料电池控制器反馈所述燃料电池的当前输出功率,并判断所述燃料电池的当前输出功率在所述设定暂态时间内是否跟上所述目标输出功率;所述能量综合管理模块响应于所述燃料电池的当前输出功率在所述设定暂态时间内没有跟上所述目标输出功率的判断结果,增加所述设定暂态时间。
  17. 根据权利要求16所述的船用燃料电池控制单元的控制方法,其中,所述设定暂态时间小于或等于10秒。
  18. 根据权利要求12所述的船用燃料电池控制单元的控制方法,其中,所述能量综合管理模块确定燃料电池关闭编号,并根据所述燃料电池关闭编号控制关闭对应的燃料电池,包括:
    所述能量综合管理模块根据所述燃料电池关闭编号通过所述燃料电池控制器控制关闭所述燃料电池,并控制与所述燃料电池对应连接的DC/DC变换器降低输出功率至零;
    所述燃料电池控制器向所述能量综合管理模块回馈关机信号;
    所述能量综合管理模块根据所述关机信号向所述氢系统控制器传输关闭阀门信号以控制关闭为所述燃料电池供氢气的氢气瓶组。
  19. 根据权利要求18所述的船用燃料电池控制单元的控制方法,其中,所述燃料电池控制器向所述能量综合管理模块回馈关机信号之后,所述船用燃料电池控制单元的控制方法还包括:所述能量综合管理模块停止设置在所述燃料电池和所述氢气瓶组之间的管路上的比例调节阀的动作。
  20. 一种混合电力推进系统,所述混合电力推进系统包括能量综合管理模块与至少一个燃料电池控制单元,每个所述燃料电池控制单元均与所述能量综合管理模块连接,所述燃料电池控制单元包括燃料电池和燃料电池控制器,所述能量综合管理模块设置为对所述燃料电 池控制单元中的燃料电池进行控制;
    所述能量综合管理模块设置为确定燃料电池开启编号,并根据所述燃料电池开启编号控制开启对应的燃料电池;
    所述能量综合管理模块还设置为根据功率需求确定所述燃料电池的目标输出功率,并通过所述燃料电池控制器获取所述燃料电池的当前输出功率;判断所述当前输出功率与所述目标输出功率的差值是否在预设差值范围内;响应于所述当前输出功率与所述目标输出功率的差值在预设差值范围内的判断结果,通过控制与所述能量综合管理模块相连的DC/DC变换器以维持所述燃料电池的输出功率;响应于所述当前输出功率与所述目标输出功率的差值不在所述预设差值范围内的判断结果,通过控制与所述能量综合管理模块相连的DC/DC变换器以调节所述燃料电池的输出功率至所述目标输出功率;
    所述能量综合管理模块还设置为确定燃料电池关闭编号,并根据所述燃料电池关闭编号控制关闭对应的燃料电池。
PCT/CN2021/103234 2020-09-16 2021-06-29 混合电力推进系统、启动方法及控制方法 WO2022057371A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010974435.1 2020-09-16
CN202010973271.0A CN112249291B (zh) 2020-09-16 2020-09-16 一种船用燃料电池单元的控制方法及混合电力推进系统
CN202010974435.1A CN112224372B (zh) 2020-09-16 2020-09-16 一种混合电力推进系统及其启动方法
CN202010973271.0 2020-09-16

Publications (1)

Publication Number Publication Date
WO2022057371A1 true WO2022057371A1 (zh) 2022-03-24

Family

ID=80776438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103234 WO2022057371A1 (zh) 2020-09-16 2021-06-29 混合电力推进系统、启动方法及控制方法

Country Status (1)

Country Link
WO (1) WO2022057371A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115140288A (zh) * 2022-06-29 2022-10-04 上海海事大学 混合动力船舶的能量管理方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140036508A (ko) * 2012-09-17 2014-03-26 대우조선해양 주식회사 잠수함의 연료전지 시스템
CN107697256A (zh) * 2017-08-23 2018-02-16 广州发展瑞华新能源电动船有限公司 一种纯电动船的动力集成系统
CN108556672A (zh) * 2018-05-25 2018-09-21 中车青岛四方机车车辆股份有限公司 一种燃料电池混合动力系统的控制方法及系统
CN110682832A (zh) * 2019-10-21 2020-01-14 上海捷氢科技有限公司 一种燃料电池汽车的混动运行方法及装置
CN110789403A (zh) * 2019-11-07 2020-02-14 奇瑞汽车股份有限公司 汽车的电源控制方法、装置及存储介质
CN111274713A (zh) * 2020-03-09 2020-06-12 西南交通大学 动车组多堆燃料电池系统剩余使用寿命一致性控制方法
CN210881698U (zh) * 2019-11-07 2020-06-30 安徽伯华氢能源科技有限公司 一种燃料电池与锂电池混合电力系统
CN112208737A (zh) * 2020-09-16 2021-01-12 中船动力研究院有限公司 一种混合电力推进系统
CN112224372A (zh) * 2020-09-16 2021-01-15 中船动力研究院有限公司 一种混合电力推进系统及其启动方法
CN112224373A (zh) * 2020-09-16 2021-01-15 中船动力研究院有限公司 一种船用燃料电池单元的控制方法及混合电力推进系统
CN112238790A (zh) * 2020-09-16 2021-01-19 中船动力研究院有限公司 一种船用蓄电池单元的控制方法及混合电力推进系统
CN112249291A (zh) * 2020-09-16 2021-01-22 中船动力研究院有限公司 一种船用燃料电池单元的控制方法及混合电力推进系统

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140036508A (ko) * 2012-09-17 2014-03-26 대우조선해양 주식회사 잠수함의 연료전지 시스템
CN107697256A (zh) * 2017-08-23 2018-02-16 广州发展瑞华新能源电动船有限公司 一种纯电动船的动力集成系统
CN108556672A (zh) * 2018-05-25 2018-09-21 中车青岛四方机车车辆股份有限公司 一种燃料电池混合动力系统的控制方法及系统
CN110682832A (zh) * 2019-10-21 2020-01-14 上海捷氢科技有限公司 一种燃料电池汽车的混动运行方法及装置
CN110789403A (zh) * 2019-11-07 2020-02-14 奇瑞汽车股份有限公司 汽车的电源控制方法、装置及存储介质
CN210881698U (zh) * 2019-11-07 2020-06-30 安徽伯华氢能源科技有限公司 一种燃料电池与锂电池混合电力系统
CN111274713A (zh) * 2020-03-09 2020-06-12 西南交通大学 动车组多堆燃料电池系统剩余使用寿命一致性控制方法
CN112208737A (zh) * 2020-09-16 2021-01-12 中船动力研究院有限公司 一种混合电力推进系统
CN112224372A (zh) * 2020-09-16 2021-01-15 中船动力研究院有限公司 一种混合电力推进系统及其启动方法
CN112224373A (zh) * 2020-09-16 2021-01-15 中船动力研究院有限公司 一种船用燃料电池单元的控制方法及混合电力推进系统
CN112238790A (zh) * 2020-09-16 2021-01-19 中船动力研究院有限公司 一种船用蓄电池单元的控制方法及混合电力推进系统
CN112249291A (zh) * 2020-09-16 2021-01-22 中船动力研究院有限公司 一种船用燃料电池单元的控制方法及混合电力推进系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115140288A (zh) * 2022-06-29 2022-10-04 上海海事大学 混合动力船舶的能量管理方法
CN115140288B (zh) * 2022-06-29 2024-04-26 上海海事大学 混合动力船舶的能量管理方法

Similar Documents

Publication Publication Date Title
CN112208737B (zh) 一种混合电力推进系统
CN112224372B (zh) 一种混合电力推进系统及其启动方法
CN112249291B (zh) 一种船用燃料电池单元的控制方法及混合电力推进系统
JP6050780B2 (ja) 車両利用無停電電源装置システム
CN112224373B (zh) 一种船用燃料电池单元的控制方法及混合电力推进系统
US6787259B2 (en) Secondary power source for use in a back-up power system
US6882129B2 (en) Battery pack for a battery-powered vehicle
CN110758708A (zh) 一种舰船燃料电池混合推进系统和能量控制方法
KR102249662B1 (ko) 선박용 통합전력제어관리시스템
CN110816313B (zh) 电动汽车动力系统的整车能量管理方法及车辆
US9651927B2 (en) Power supply control system and power supply control method
CN113335140A (zh) 控制方法、混合动力系统、车辆和可读存储介质
WO2010042118A1 (en) Building with multiple power generation sources enabled by an elevator system
CN112238790B (zh) 一种船用蓄电池单元的控制方法及混合电力推进系统
CN114290916A (zh) 一种氢燃料混合动力重型卡车能量管理方法及系统
JP2013162686A (ja) 電力供給システム
CN115102153A (zh) 一种变电站站用电光氢储微电网及其控制方法
WO2022057371A1 (zh) 混合电力推进系统、启动方法及控制方法
CN102197561B (zh) 特别是在飞机中的电能量供给系统
CN114498847A (zh) 混合供电系统及其能源调度方法、控制器和交通工具
CN112829607B (zh) 混合动力系统控制方法、系统、存储介质、设备及轨道车辆
US11451085B2 (en) Fuel cell and battery backup power sources within power systems
KR20220165977A (ko) 마이크로그리드 ems 운전 장치 및 방법
CN112564253A (zh) 新能源游艇绿色能源系统及能源匹配管理方法
CN112339963A (zh) 一种直流组网船舶电力推进系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21868200

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21868200

Country of ref document: EP

Kind code of ref document: A1