WO2022057168A1 - 猪粪生物油的制备方法以及猪粪制生物沥青和应用 - Google Patents

猪粪生物油的制备方法以及猪粪制生物沥青和应用 Download PDF

Info

Publication number
WO2022057168A1
WO2022057168A1 PCT/CN2021/070763 CN2021070763W WO2022057168A1 WO 2022057168 A1 WO2022057168 A1 WO 2022057168A1 CN 2021070763 W CN2021070763 W CN 2021070763W WO 2022057168 A1 WO2022057168 A1 WO 2022057168A1
Authority
WO
WIPO (PCT)
Prior art keywords
pig manure
bio
asphalt
oil
particles
Prior art date
Application number
PCT/CN2021/070763
Other languages
English (en)
French (fr)
Inventor
张久鹏
王玲
王慧
吕磊
景宇飞
王瑞林
周维锋
贺文栋
张明亮
张宏飞
Original Assignee
长安大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长安大学 filed Critical 长安大学
Publication of WO2022057168A1 publication Critical patent/WO2022057168A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B1/00Production of fats or fatty oils from raw materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L95/00Compositions of bituminous materials, e.g. asphalt, tar, pitch
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B1/00Production of fats or fatty oils from raw materials
    • C11B1/02Pretreatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/74Recovery of fats, fatty oils, fatty acids or other fatty substances, e.g. lanolin or waxes

Definitions

  • the invention belongs to the technical field of asphalt materials for road engineering, and relates to a preparation method of pig manure bio-oil, bio-asphalt made from pig manure and application thereof.
  • the main sources of bio-oil are plant-based bio-oil obtained by thermal cracking liquefaction process and animal manure-based bio-oil obtained by high-pressure liquefaction process.
  • the thermal cracking liquefaction process is an instantaneous process, the time is extremely short, and the reaction time is generally only a few seconds. Compared with the high-pressure liquefaction process, the thermal cracking liquefaction process is more efficient and convenient.
  • the present invention provides a method for preparing pig manure bio-oil, which solves the pollution problem caused by pig manure solid waste, realizes high value-added utilization of pig manure, has important environmental protection and economic value, and is simple Easy to operate, efficient and convenient, and low cost of raw materials.
  • the present invention obtains pig manure-made bio-asphalt based on pig manure bio-oil instead of petroleum asphalt, realizes the substitution of petroleum asphalt by sustainable road construction materials, and solves the problem of shortage of asphalt resources caused by the depletion of petroleum resources.
  • the road performance is better, and it has a good application and promotion prospect.
  • a preparation method of pig manure bio-oil comprising the steps:
  • Pig manure particles are obtained after pretreatment of pig manure
  • a thermal cracking liquefaction process is used to thermally crack and liquefy the preheated pig manure particles to obtain pig manure bio-oil.
  • the pretreatment process of the pig manure in the step 1) is that after the pig manure is dried at a temperature of 85-100° C., it is pulverized to obtain pig manure particles.
  • the particle size of the pig manure particles is 0.5-2 mm.
  • the thermal cracking and liquefaction process of the preheated pig manure particles in the step 2) is that the preheated pig manure particles pass through the fluidized bed reactor from bottom to top under the action of nitrogen, and the preheated pig manure particles pass through the fluidized bed reactor in an oxygen-free environment.
  • the preheated pig manure particles and the quartz stone in the fluidized bed reactor are heated and preheated.
  • thermal cracking and liquefaction reaction occurs, and the generated gas is driven by nitrogen to enter the two-stage cyclone separation device.
  • the solid product biochar entrained in the gas is separated and deposited, and the remaining gas passes through the first-stage condenser, the second-stage condenser and the third-stage condenser in turn to obtain pig manure bio-oil.
  • the temperature of the thermal cracking liquefaction reaction is 400-600° C., and the time is 1-2 s.
  • a pig manure bio-asphalt comprises base asphalt and pig manure bio-oil; the pig manure bio-oil is prepared by the preparation method described in any of the above.
  • the mass of the pig manure bio-oil accounts for 5% to 20% of the total mass of the pig manure bio-asphalt.
  • the mass of the pig manure bio-oil accounts for 15% of the total mass of the bio-asphalt made from pig manure.
  • the present invention proposes to process pig manure with thermal cracking liquefaction process to obtain pig manure bio-oil; the raw material of the present invention adopts pig manure solid waste, and fully recycles and utilizes renewable resources, which has good economic and social benefits.
  • the prepared pig manure bio-asphalt can partially replace petroleum asphalt for road paving, and the pig manure bio-oil can improve the stability of the pig manure bio-asphalt, so that the pig manure bio-asphalt has excellent performance. High temperature performance and resistance to deformation, green environmental protection, energy saving and emission reduction.
  • the method of thermally cracking and liquefying pig manure obtained by the present invention obtains pig manure bio-oil, and further makes pig manure bio-asphalt, which is simple and easy to operate, efficient and convenient, low cost of raw materials, and better road performance, in order to save resources and protect The environment and recycling of waste have opened up new methods and have good application and promotion prospects.
  • Figure 1 is a graph showing the results of the rutting factor of unaged pig manure bio-asphalt samples obtained under different conditions with a cracking time of 1 s and different temperatures;
  • Fig. 2 is the rutting factor result graph of the unaged rutting factor of pig manure bio-asphalt samples obtained under different conditions of cracking time 2s and temperature;
  • Figure 3 shows the results of the rutting factor after short-term RTFO aging of pig manure bio-asphalt samples obtained under different conditions with a cracking time of 1s and different temperatures;
  • Figure 4 is a graph showing the results of rutting factor after short-term RTFO aging of pig manure bio-asphalt samples obtained under different conditions with a cracking time of 2s and different temperatures;
  • Figure 5 is a graph showing the fatigue factor results of PAV samples obtained from pig manure bio-asphalt samples after long-term aging with a cracking time of 1 s and different temperatures;
  • Figure 6 is a graph showing the fatigue factor results of PAV samples obtained from pig manure bio-asphalt samples after long-term aging with a cracking time of 2 s and different temperatures.
  • the preparation method of pig manure bio-oil comprises the following steps:
  • Pig manure particles are obtained after pretreatment of pig manure
  • a thermal cracking liquefaction process is used to thermally crack and liquefy the preheated pig manure particles to obtain pig manure bio-oil.
  • the pretreatment process of the pig manure in step 1) is that after the pig manure is dried at a temperature of 85-100° C., it is pulverized to obtain pig manure particles.
  • the particle size of pig manure particles is 0.5 to 2 mm.
  • the thermal cracking and liquefaction process of the preheated pig manure particles in step 2) is that the preheated pig manure particles pass through the fluidized bed reactor from bottom to top under the action of nitrogen, and in an oxygen-free environment
  • the preheated pig manure particles and the quartz stone in the fluidized bed reactor are heated and preheated.
  • thermal cracking and liquefaction reaction occurs.
  • the generated gas is driven by nitrogen and enters the two-stage cyclone separation device. After the two-stage separation, the solid product biochar entrained in the gas is separated and deposited, and the remaining gas passes through the first-stage condensation device, the second-stage condensation device and the third-stage condensation device in turn to obtain pig manure bio-oil.
  • the temperature of the thermal cracking liquefaction reaction is 400-600°C, and the time is 1-2s.
  • the pig manure bio-asphalt provided by the present invention includes base asphalt and pig manure bio-oil; the pig manure bio-oil is prepared by the preparation method described in any one of the above.
  • the quality of the pig manure bio-oil provided by the invention accounts for 5% to 20% of the total mass of the pig manure bio-asphalt.
  • the mass of swine manure bio-oil accounts for 15% of the total mass of swine manure-made bio-asphalt.
  • the invention also provides an application of the pig manure bio-oil in the pig manure-made bio-asphalt in improving the stability of the pig manure-made bio-asphalt.
  • the preparation method of pig manure bio-oil comprises the following steps:
  • the pig manure is dried at a temperature of 100°C and pulverized to a powdery pig manure particle with a diameter of 2mm;
  • thermal cracking and liquefaction The specific process of thermal cracking and liquefaction is as follows: under the action of nitrogen, the preheated pig manure particles pass through the fluidized bed reactor from bottom to top, and the pig manure particles and the fluidized bed reactor in an oxygen-free environment.
  • the quartz stone inside is rapidly heated and preheated to 400°C at a heating rate of 1000°C/s.
  • thermal cracking and liquefaction reaction occurs in 1s, and the generated gas (the composition of the gas includes CO).
  • the pig manure bio-asphalt includes base asphalt and pig manure bio-oil; the pig manure bio-oil is prepared by a thermal cracking liquefaction process.
  • the mass of pig manure bio-oil accounts for 5% of the total mass of pig manure bio-asphalt.
  • the pig manure bio-asphalt is stirred by an X-type blade mixer, and the 140°C base asphalt and the 90°C preheated pig manure bio-oil are stirred at a reaction temperature of 130°C at a speed of 3000 r/min for 30 minutes. prepared.
  • the preparation method of pig manure bio-oil comprises the following steps:
  • the pig manure is dried at a temperature of 90°C and pulverized to powdery pig manure particles with a diameter of less than 0.5mm;
  • the specific process of thermal cracking and liquefaction in this embodiment is as follows: under the action of nitrogen, the dehydrated and preheated pig manure particles quickly pass through the fluidized bed reactor from bottom to top.
  • the quartz stone in the bed reactor is rapidly heated and preheated to 400°C at a heating rate of 1000°C/s.
  • the composition includes CO, H 2 , CH 4 and other composite gases) driven by nitrogen into the two-stage cyclone separation device, the solid product biochar entrained in the gas is separated and deposited in the two-stage cyclone separation device, and the remaining gas is subsequently passed through a cyclone separation device.
  • the primary condenser, the secondary condenser and the tertiary condenser separate the pig manure bio-oil and the uncondensed non-condensable gas.
  • the bio-asphalt made from pig manure includes base asphalt and pig manure bio-oil; the pig manure bio-oil is prepared by a thermal cracking liquefaction process.
  • the mass of pig manure bio-oil accounts for 20% of the total mass of pig manure bio-asphalt.
  • the preparation method of pig manure bio-oil comprises the following steps:
  • the pig manure is dried at a temperature of 100°C, and pulverized to powdery pig manure particles below 2mm in diameter;
  • the specific process of thermal cracking and liquefaction is as follows: under the action of nitrogen, the dehydrated and preheated pig manure particles quickly pass through the fluidized bed reactor from bottom to top.
  • the quartz stone in the chemical bed reactor is rapidly heated and preheated to 450°C at a heating rate of 1000°C/s.
  • thermal cracking and liquefaction reaction occurs within 1s, and the generated gas (in the gas)
  • the composition of carbon dioxide including CO, H 2 , CH 4 and other composite gases
  • the primary condenser, secondary condenser and tertiary condenser separate the pig manure bio-oil and uncondensed non-condensable gas.
  • the bio-asphalt made from pig manure includes base asphalt and pig manure bio-oil; the pig manure bio-oil is prepared by a thermal cracking liquefaction process.
  • the mass of pig manure bio-oil accounts for 12% of the total mass of pig manure bio-asphalt.
  • the preparation method of pig manure bio-oil comprises the following steps:
  • the pig manure is dried at a temperature of 100°C, and pulverized to powdery pig manure particles below 2mm in diameter;
  • the specific process of thermal cracking and liquefaction is as follows: under the action of nitrogen, the dehydrated and preheated pig manure particles quickly pass through the fluidized bed reactor from bottom to top.
  • the quartz stone in the chemical bed reactor is rapidly heated and preheated to 450 °C at a heating rate of 1000 °C/s.
  • the bio-asphalt made from pig manure includes base asphalt and pig manure bio-oil; the pig manure bio-oil is prepared by a thermal cracking liquefaction process.
  • the mass of pig manure bio-oil accounts for 15% of the total mass of pig manure bio-asphalt.
  • the preparation method of pig manure bio-oil comprises the following steps:
  • the pig manure is dried at a temperature of 100°C, and pulverized to powdery pig manure particles below 2mm in diameter;
  • the specific process of thermal cracking and liquefaction in this embodiment is as follows: under the action of nitrogen, the dehydrated and preheated pig manure particles quickly pass through the fluidized bed reactor from bottom to top.
  • the quartz stone in the bed reactor is rapidly heated and preheated to 500 °C at a heating rate of 1000 °C/s.
  • the composition includes CO, H 2 , CH 4 and other composite gases) driven by nitrogen into the two-stage cyclone separation device, the solid product biochar entrained in the gas is separated and deposited in the two-stage cyclone separation device, and the remaining gas is subsequently passed through a cyclone separation device.
  • the primary condenser, the secondary condenser and the tertiary condenser separate the pig manure bio-oil and the uncondensed non-condensable gas.
  • the pig manure bio-asphalt includes base asphalt and pig manure bio-oil; the pig manure bio-oil is prepared by a thermal cracking liquefaction process.
  • the mass of pig manure bio-oil accounts for 15% of the total mass of pig manure bio-asphalt.
  • the preparation method of pig manure bio-oil comprises the following steps:
  • the pig manure is dried at a temperature of 100°C, and pulverized to powdery pig manure particles below 2mm in diameter;
  • the specific process of thermal cracking and liquefaction in this embodiment is as follows: under the action of nitrogen, the dehydrated and preheated pig manure particles quickly pass through the fluidized bed reactor from bottom to top.
  • the quartz stone in the bed reactor is rapidly heated and preheated to 500°C at a heating rate of 1000°C/s.
  • the composition includes CO, H 2 , CH 4 and other composite gases) driven by nitrogen into the two-stage cyclone separation device, the solid product biochar entrained in the gas is separated and deposited in the two-stage cyclone separation device, and the remaining gas is subsequently passed through a cyclone separation device.
  • the primary condenser, the secondary condenser and the tertiary condenser separate the pig manure bio-oil and the uncondensed non-condensable gas.
  • the pig manure bio-asphalt includes base asphalt and pig manure bio-oil; the pig manure bio-oil is prepared by a thermal cracking liquefaction process.
  • the mass of pig manure bio-oil accounts for 8% of the total mass of pig manure bio-asphalt.
  • the preparation method of pig manure bio-oil comprises the following steps:
  • the pig manure is dried at a temperature of 100°C, and pulverized to powdery pig manure particles below 2mm in diameter;
  • the specific process of thermal cracking and liquefaction in this embodiment is as follows: under the action of nitrogen, the dehydrated and preheated pig manure particles quickly pass through the fluidized bed reactor from bottom to top.
  • the quartz stone in the bed reactor is rapidly heated and preheated to 550°C at a heating rate of 1000°C/s.
  • the composition includes CO, H 2 , CH 4 and other composite gases) driven by nitrogen into the two-stage cyclone separation device, the solid product biochar entrained in the gas is separated and deposited in the two-stage cyclone separation device, and the remaining gas is subsequently passed through a cyclone separation device.
  • the primary condenser, the secondary condenser and the tertiary condenser separate the pig manure bio-oil and the uncondensed non-condensable gas.
  • the bio-asphalt made from pig manure includes base asphalt and pig manure bio-oil; the pig manure bio-oil is prepared by a thermal cracking liquefaction process.
  • the mass of pig manure bio-oil accounts for 15% of the total mass of pig manure bio-asphalt.
  • the preparation method of pig manure bio-oil comprises the following steps:
  • the pig manure is dried at a temperature of 100°C, and pulverized to powdery pig manure particles below 2mm in diameter;
  • the specific process of thermal cracking and liquefaction in this embodiment is as follows: under the action of nitrogen, the dehydrated and preheated pig manure particles quickly pass through the fluidized bed reactor from bottom to top.
  • the quartz stone in the bed reactor is rapidly heated and preheated to 550°C at a heating rate of 1000°C/s.
  • the composition includes CO, H 2 , CH 4 and other composite gases) driven by nitrogen into the two-stage cyclone separation device, the solid product biochar entrained in the gas is separated and deposited in the two-stage cyclone separation device, and the remaining gas is subsequently passed through a cyclone separation device.
  • the primary condenser, the secondary condenser and the tertiary condenser separate the pig manure bio-oil and the uncondensed non-condensable gas.
  • the bio-asphalt made from pig manure includes base asphalt and pig manure bio-oil; the pig manure bio-oil is prepared by a thermal cracking liquefaction process.
  • the mass of pig manure bio-oil accounts for 20% of the total mass of pig manure bio-asphalt.
  • the preparation method of pig manure bio-oil comprises the following steps:
  • the pig manure is dried at a temperature of 100°C, and pulverized to powdery pig manure particles below 2mm in diameter;
  • the specific process of thermal cracking and liquefaction in this embodiment is as follows: under the action of nitrogen, the dehydrated and preheated pig manure particles quickly pass through the fluidized bed reactor from bottom to top.
  • the quartz stone in the bed reactor is rapidly heated and preheated to 600°C at a heating rate of 1000°C/s.
  • thermal cracking and liquefaction reaction occurs in 1s, and the generated gas (the gas in the gas)
  • the composition includes CO, H 2 , CH 4 and other composite gases) driven by nitrogen into the two-stage cyclone separation device, the solid product biochar entrained in the gas is separated and deposited in the two-stage cyclone separation device, and the remaining gas is subsequently passed through a cyclone separation device.
  • the primary condenser, the secondary condenser and the tertiary condenser separate the pig manure bio-oil and the uncondensed non-condensable gas.
  • the pig manure bio-asphalt includes base asphalt and pig manure bio-oil; the pig manure bio-oil is prepared by a thermal cracking liquefaction process.
  • the mass of pig manure bio-oil accounts for 5% of the total mass of pig manure bio-asphalt.
  • the preparation method of pig manure bio-oil comprises the following steps:
  • the pig manure is dried at a temperature of 100°C, and pulverized to powdery pig manure particles below 2mm in diameter;
  • the specific process of thermal cracking and liquefaction in this embodiment is as follows: under the action of nitrogen, the dehydrated and preheated pig manure particles quickly pass through the fluidized bed reactor from bottom to top.
  • the quartz stone in the bed reactor is rapidly heated and preheated to 600°C at a heating rate of 1000°C/s.
  • the composition includes CO, H 2 , CH 4 and other composite gases) driven by nitrogen into the two-stage cyclone separation device, the solid product biochar entrained in the gas is separated and deposited in the two-stage cyclone separation device, and the remaining gas is subsequently passed through a cyclone separation device.
  • the primary condenser, the secondary condenser and the tertiary condenser separate the pig manure bio-oil and the uncondensed non-condensable gas.
  • the pig manure bio-asphalt includes base asphalt and pig manure bio-oil; the pig manure bio-oil is prepared by a thermal cracking liquefaction process.
  • the mass of pig manure bio-oil accounts for 15% of the total mass of pig manure bio-asphalt.
  • Test group Bio-asphalt made from pig manure obtained in Example 1 to Example 10 of the present invention
  • Comparative group 1 technical indicators of 70# matrix asphalt, as shown in Table 2;
  • Comparison group 2 construction technical requirements of road asphalt, as shown in Table 2;
  • Test method The performance indicators such as penetration, softening point and ductility of 10 groups of pig manure bio-asphalt provided by the test group were tested according to the industry standard of the People's Republic of China JTGE20-2011 using conventional test methods in the field. The test results are shown in Table 1.
  • Example Pyrolysis temperature/°C response time/s Penetration/0.1mm Softening point/°C Elongation/cm 1 400 1 59 51.0 97.3 2 400 2 60 50.6 99.2 3 450 1 60 50.6 99.5 4 450 2 62 50.2 99.9 5 500 1 64 50.1 100.1 6 500 2 65 50.0 100.9 7 550 1 66 49.7 101.6 8 550 2 66 49.5 101.8 9 600 1 67 47.7 102.1 10 600 2 68 47.3 102.5
  • the softening points of Examples 1-8 are between 49.5-51 (higher than the softening point of 70# base asphalt is 48.9), and the softening points of Example 9 and Example 10 are 47.7 and 47.3 respectively (lower than 70#).
  • the softening point of the base asphalt is 48.9); but the average softening point of the pig manure bio-asphalt prepared by the present invention is 49.67 (higher than the softening point of 70# base asphalt), which shows that compared with ordinary asphalt and 70# base asphalt, using this
  • the pig manure bio-asphalt prepared by the cracking method of the invention has excellent high temperature stability.
  • Test group pig manure bio-asphalt samples obtained from implementation 1 to example 10 of the present invention
  • Comparative group 1 matrix asphalt sample
  • Test process Fatigue test is performed on the test group and the control group, and the unaged rutting factor G*. of the sample is obtained respectively. sin ⁇ (KPa), rutting factor G*. after short-term aging of RTFO sin ⁇ (KPa) and fatigue factor G*. after long-term aging of PAV sin ⁇ (KPa), the results are shown in Figure 1-6.
  • the pig manure bio-asphalt prepared from pig manure bio-oil has the best performance, with excellent high temperature performance and resistance to deformation, and its fatigue performance and low temperature crack resistance are not good. significantly decreased.
  • the pig manure bio-asphalt obtained by the thermal cracking liquefaction process provided by the invention has excellent three performance indicators, excellent high temperature performance and deformation resistance, and can be widely used in roads, railways, aviation, construction, agriculture and water conservancy projects. , industry and other industries.
  • the preparation method is simple and easy to operate, efficient and convenient, low cost of raw materials, better road performance, resource saving, environment protection, waste recycling, and has good application and promotion prospects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Civil Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Treatment Of Sludge (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

一种猪粪生物油的制备方法,包括如下步骤:1)猪粪经过预处理后得到猪粪颗粒;2)猪粪颗粒预热后,采用热裂解液化工艺对预热后的猪粪颗粒进行热裂解液化,得到猪粪生物油。一种猪粪制生物沥青,包括基质沥青和猪粪生物油. 所述的猪粪制生物沥青中猪粪生物油在改善猪粪制生物沥青稳定性方面的应用。

Description

猪粪生物油的制备方法以及猪粪制生物沥青和应用 技术领域
本发明属于道路工程沥青材料技术领域,涉及一种猪粪生物油的制备方法以及猪粪制生物沥青和应用。
背景技术
随着经济以及公路事业的发展,沥青的消耗量不断增加,而路用沥青胶结料的主要来源是石油,据统计,现在的石油需求及消费趋势不断上升,而世界上已探明的石油储量只够几十年之用,因此,石油面临着供求失衡的危机,这迫使研究者寻找更多石油沥青的代替品。
目前,生猪养殖产业向规模化和精细化的方向升级,大规模的生猪养殖面临的一个问题就是大量的猪粪如何处理,如何提高猪粪固体废弃物循环利用价值,实现猪粪的高附加值利用,是研究人员一直探索的问题。
近年来,道路研究人员发现猪粪可以通过特殊工艺变成生物油,替代石油沥青用于沥青路面的铺筑。这样既解决了猪粪固体废弃物堆积造成的环境污染问题,又实现了可持续筑路材料对石油沥青的替代,解决了石油资源枯竭带来的石油沥青资源紧缺问题。
但目前已有的生物沥青研究中,生物油来源主要有热裂解液化工艺得到的植物基生物油和高压液化工艺得到的动物粪便基生物油,采取高压液化工艺一般反应物的反应时间在10-45分钟之间,而热裂解液化工艺是一个瞬间完成的过程,时间极短,反应时间一般只需几秒,相比于高压液化工艺,热裂解液化工艺更加高效便利。
发明内容
针对现有技术存在的问题,本发明提供一种猪粪生物油的制备方法,解决猪粪固体废弃物带来的污染问题,实现猪粪的高附加值利用,具有重要的环保和经济价值,简单易操作、高效便利、原料成本低廉。
同时,本发明基于猪粪生物油替代石油沥青得到猪粪制生物沥青实现可持续筑路材料对石油沥青的替代,解决石油资源枯竭带来的沥青资源紧缺问题。用于道路铺装时,路用性能更好,具有良好的应用推广前景。
为了实现上述目的,本发明采用的技术方案是:
一种猪粪生物油的制备方法,包括如下步骤:
1)猪粪经过预处理后得到猪粪颗粒;
2)猪粪颗粒预热后,采用热裂解液化工艺对预热后的猪粪颗粒进行热裂解液化,得到猪粪生物油。
进一步的,所述步骤1)中对猪粪的预处理过程是,猪粪在85~100℃的温度条件下烘干后,粉碎得到猪粪颗粒。
进一步的,所述猪粪颗粒的粒径为0.5~2mm。
进一步的,所述步骤2)中对预热后的猪粪颗粒的热裂解液化过程是,预热后的猪粪颗粒在氮气的作用下由下至上通过流化床反应器,在无氧环境下预热后的猪粪颗粒与流化床反应器内的石英石升温预热,在升温预热的过程中发生热裂解液化反应,生成的气体在氮气的带动下进入两级旋风分离装置,经两级分离后,夹带在气体中的固体产物生物炭分离沉积出来,剩余气体依次经过一级冷凝装置、二级冷凝装置和三级冷凝装置,分离得到猪粪生物油。
进一步的,所述热裂解液化反应的温度为400~600℃,时间为1~2s。
一种猪粪制生物沥青,包括基质沥青和猪粪生物油;所述猪粪生物油是 上述任一项所述的制备方法制备的。
进一步的,所述猪粪生物油的质量占猪粪制生物沥青总质量的5%~20%。
进一步的,所述猪粪生物油质量占猪粪制生物沥青总质量的15%。
一种猪粪制生物沥青中猪粪生物油在改善猪粪制生物沥青稳定性方面的应用。
本发明的有益效果是
1、本发明提出用热裂解液化工艺对猪粪进行处理得到猪粪生物油;本发明的原料采用猪粪固体废弃物,充分循环利用再生资源,具有良好的经济和社会效益。
2、本发明工艺明确,制备的猪粪制生物沥青可以部分取代石油沥青用于道路铺筑上,猪粪生物油可以改善猪粪制生物沥青的稳定性,使得猪粪制生物沥青具备优良的高温性能和抵抗变形能力,绿色环保、节能减排。
3、本发明提供的热裂解液化猪粪的方法得到猪粪生物油,进一步制成猪粪制生物沥青,简单易操作、高效便利、原料成本低廉、路用性能更好,为节约资源、保护环境和循环利用废弃物开辟了新方法,具有良好的应用推广前景。
附图说明
图1为裂解时间1s,温度不同条件下得到的猪粪制生物沥青试样未老化的车辙因子结果图;
图2为裂解时间2s,温度不同条件下得到的猪粪制生物沥青试样未老化 的车辙因子结果图;
图3为裂解时间1s,温度不同条件下得到的猪粪制生物沥青试样RTFO短期老化后的车辙因子结果图;
图4为裂解时间2s,温度不同条件下得到的猪粪制生物沥青试样RTFO短期老化后的车辙因子结果图;
图5为裂解时间1s,温度不同条件下得到的猪粪制生物沥青试样PAV长期老化后的疲劳因子结果图;
图6为裂解时间2s,温度不同条件下得到的猪粪制生物沥青试样PAV长期老化后的疲劳因子结果图。
具体实施方式
现结合附图以及实施例对本发明做详细的说明。
本发明提供的猪粪生物油的制备方法,包括如下步骤:
1)猪粪经过预处理后得到猪粪颗粒;
2)猪粪颗粒预热后,采用热裂解液化工艺对预热后的猪粪颗粒进行热裂解液化,得到猪粪生物油。
本发明中,步骤1)中对猪粪的预处理过程是,猪粪在85~100℃的温度条件下烘干后,粉碎得到猪粪颗粒。猪粪颗粒的粒径为0.5~2mm。
本发明中,步骤2)中对预热后的猪粪颗粒的热裂解液化过程是,预热后的猪粪颗粒在氮气的作用下由下至上通过流化床反应器,在无氧环境下预热后的猪粪颗粒与流化床反应器内的石英石升温预热,在升温预热的过程中发生热裂解液化反应,生成的气体在氮气的带动下进入两级旋风分离装置,经 两级分离后,夹带在气体中的固体产物生物炭分离沉积出来,剩余气体依次经过一级冷凝装置、二级冷凝装置和三级冷凝装置,分离得到猪粪生物油。
热裂解液化反应的温度为400~600℃,时间为1~2s。
本发明提供的猪粪制生物沥青,包括基质沥青和猪粪生物油;猪粪生物油是通过上述任意一项所述的制备方法制备的。
本发明提供的猪粪生物油的质量占猪粪制生物沥青总质量的5%~20%。
优选地,猪粪生物油质量占猪粪制生物沥青总质量的15%。
本发明还提供了一种猪粪制生物沥青中猪粪生物油在改善猪粪制生物沥青稳定性方面的应用。
实施例1
本实施例中,猪粪生物油的制备方法包括以下步骤:
1)猪粪在100℃的温度条件下烘干,粉碎至直径2mm粉末状猪粪颗粒;
2)对脱水粉碎处理后的猪粪颗粒进行预热,并在温度400℃和1s反应时间条件下,对预热后的猪粪颗粒进行热裂解液化得到猪粪生物油。
热裂解液化的具体过程是:经过脱水粉碎处理且预热后的猪粪颗粒在氮气作用下,从下至上快速通过流化床反应器,在无氧环境下猪粪颗粒与流化床反应器内的石英石以1000℃/s的升温速率迅速升温预热至400℃,猪粪颗粒在快速升温预热的过程中,1s就发生热裂解液化反应,生成的气体(气体内的组成包括CO、H 2、CH 4等复合气体)在氮气的带动下进入两级旋风分离装置,夹带在气体中的固体产物生物炭在两级旋风分离装置中被分离沉积,剩余气体后续经过一级冷凝装置、二级冷凝装置和三级冷凝装置将猪粪生物油和未冷凝的不凝性气体分离出来。
本实施例中,猪粪制生物沥青包括基质沥青和猪粪生物油;猪粪生物油是通过热裂解液化工艺制备的。猪粪生物油的质量占猪粪制生物沥青总质量的5%。
本实施例中,猪粪制生物沥青是采用X型叶片搅拌机搅拌,将140℃基质沥青与90℃预热的猪粪生物油,在130℃的反应温度下,以转速3000r/min,搅拌30min制备得到。
实施例2
本实施例中,猪粪生物油的制备方法包括以下步骤:
1)猪粪在90℃的温度条件下烘干,粉碎至直径0.5mm以下粉末状猪粪颗粒;
2)对脱水粉碎处理后的猪粪颗粒进行预热,并在温度400℃和2s反应时间条件下,对预热后的猪粪颗粒进行热裂解液化得到猪粪生物油。
本实施例热裂解液化的具体过程是:经过脱水粉碎处理且预热后的猪粪颗粒在氮气作用下,从下至上快速通过流化床反应器,在无氧环境下猪粪颗粒与流化床反应器内的石英石以1000℃/s的升温速率迅速升温预热至400℃,猪粪颗粒在快速升温预热的过程中,2s就发生热裂解液化反应,生成的气体(气体内的组成包括CO、H 2、CH 4等复合气体)在氮气的带动下进入两级旋风分离装置,夹带在气体中的固体产物生物炭在两级旋风分离装置中被分离沉积,剩余气体后续经过一级冷凝装置、二级冷凝装置和三级冷凝装置将猪粪生物油和未冷凝的不凝性气体分离出来。
本实施例中,猪粪制生物沥青包括基质沥青和猪粪生物油;猪粪生物油是通过热裂解液化工艺制备的。猪粪生物油的质量占猪粪制生物沥青总质量 的20%。
实施例3
本实施例中,猪粪生物油的制备方法包括以下步骤:
1)猪粪在100℃的温度条件下烘干,粉碎至直径2mm以下粉末状猪粪颗粒;
2)对脱水粉碎处理后的猪粪颗粒进行预热,并在温度450℃和1s反应时间条件下,对预热后的猪粪颗粒进行热裂解液化得到猪粪生物油。
本实施例,热裂解液化的具体过程是:经过脱水粉碎处理且预热后的猪粪颗粒在氮气作用下,从下至上快速通过流化床反应器,在无氧环境下猪粪颗粒与流化床反应器内的石英石以1000℃/s的升温速率迅速升温预热至450℃,猪粪颗粒在快速升温预热的过程中,1s就发生热裂解液化反应,生成的气体(气体内的组成包括CO、H 2、CH 4等复合气体)在氮气的带动下进入两级旋风分离装置,夹带在气体中的固体产物生物炭在两级旋风分离装置中被分离沉积,剩余气体后续经过一级冷凝装置、二级冷凝装置和三级冷凝装置将猪粪生物油和未冷凝的不凝性气体分离出来。
本实施例中,猪粪制生物沥青包括基质沥青和猪粪生物油;猪粪生物油是通过热裂解液化工艺制备的。猪粪生物油的质量占猪粪制生物沥青总质量的12%。
实施例4
本实施例中,猪粪生物油的制备方法包括以下步骤:
1)猪粪在100℃的温度条件下烘干,粉碎至直径2mm以下粉末状猪粪颗粒;
2)对脱水粉碎处理后的猪粪颗粒进行预热,并在温度450℃和2s反应时间条件下,对预热后的猪粪颗粒进行热裂解液化得到猪粪生物油。
本实施例,热裂解液化的具体过程是:经过脱水粉碎处理且预热后的猪粪颗粒在氮气作用下,从下至上快速通过流化床反应器,在无氧环境下猪粪颗粒与流化床反应器内的石英石以1000℃/s的升温速率迅速升温预热至450℃,猪粪颗粒在快速升温预热的过程中,2s就发生热裂解液化反应,生成的气体(气体内的组成包括CO、H 2、CH 4等复合气体)在氮气的带动下进入两级旋风分离装置,夹带在气体中的固体产物生物炭在两级旋风分离装置中被分离沉积,剩余气体后续经过一级冷凝装置、二级冷凝装置和三级冷凝装置将猪粪生物油和未冷凝的不凝性气体分离出来。
本实施例中,猪粪制生物沥青包括基质沥青和猪粪生物油;猪粪生物油是通过热裂解液化工艺制备的。猪粪生物油的质量占猪粪制生物沥青总质量的15%。
实施例5
本实施例中,猪粪生物油的制备方法包括以下步骤:
1)猪粪在100℃的温度条件下烘干,粉碎至直径2mm以下粉末状猪粪颗粒;
2)对脱水粉碎处理后的猪粪颗粒进行预热,并在温度500℃和1s反应时间条件下,对预热后的猪粪颗粒进行热裂解液化得到猪粪生物油。
本实施例热裂解液化的具体过程是:经过脱水粉碎处理且预热后的猪粪颗粒在氮气作用下,从下至上快速通过流化床反应器,在无氧环境下猪粪颗粒与流化床反应器内的石英石以1000℃/s的升温速率迅速升温预热至500℃,猪粪颗粒在快速升温预热的过程中,1s就发生热裂解液化反应,生成的气体(气体内的组成包括CO、H 2、CH 4等复合气体)在氮气的带动下进入两级旋风分离装置,夹带在气体中的固体产物生物炭在两级旋风分离装置中被分离沉 积,剩余气体后续经过一级冷凝装置、二级冷凝装置和三级冷凝装置将猪粪生物油和未冷凝的不凝性气体分离出来。
本实施例中,猪粪制生物沥青包括基质沥青和猪粪生物油;猪粪生物油是通过热裂解液化工艺制备的。猪粪生物油的质量占猪粪制生物沥青总质量的15%。
实施例6
本实施例中,猪粪生物油的制备方法包括以下步骤:
1)猪粪在100℃的温度条件下烘干,粉碎至直径2mm以下粉末状猪粪颗粒;
2)对脱水粉碎处理后的猪粪颗粒进行预热,并在温度500℃和2s反应时间条件下,对预热后的猪粪颗粒进行热裂解液化得到猪粪生物油。
本实施例热裂解液化的具体过程是:经过脱水粉碎处理且预热后的猪粪颗粒在氮气作用下,从下至上快速通过流化床反应器,在无氧环境下猪粪颗粒与流化床反应器内的石英石以1000℃/s的升温速率迅速升温预热至500℃,猪粪颗粒在快速升温预热的过程中,2s就发生热裂解液化反应,生成的气体(气体内的组成包括CO、H 2、CH 4等复合气体)在氮气的带动下进入两级旋风分离装置,夹带在气体中的固体产物生物炭在两级旋风分离装置中被分离沉积,剩余气体后续经过一级冷凝装置、二级冷凝装置和三级冷凝装置将猪粪生物油和未冷凝的不凝性气体分离出来。
本实施例中,猪粪制生物沥青包括基质沥青和猪粪生物油;猪粪生物油是通过热裂解液化工艺制备的。猪粪生物油的质量占猪粪制生物沥青总质量的8%。
实施例7
本实施例中,猪粪生物油的制备方法包括以下步骤:
1)猪粪在100℃的温度条件下烘干,粉碎至直径2mm以下粉末状猪粪颗粒;
2)对脱水粉碎处理后的猪粪颗粒进行预热,并在温度550℃和1s反应时间条件下,对预热后的猪粪颗粒进行热裂解液化得到猪粪生物油。
本实施例热裂解液化的具体过程是:经过脱水粉碎处理且预热后的猪粪颗粒在氮气作用下,从下至上快速通过流化床反应器,在无氧环境下猪粪颗粒与流化床反应器内的石英石以1000℃/s的升温速率迅速升温预热至550℃,猪粪颗粒在快速升温预热的过程中,1s就发生热裂解液化反应,生成的气体(气体内的组成包括CO、H 2、CH 4等复合气体)在氮气的带动下进入两级旋风分离装置,夹带在气体中的固体产物生物炭在两级旋风分离装置中被分离沉积,剩余气体后续经过一级冷凝装置、二级冷凝装置和三级冷凝装置将猪粪生物油和未冷凝的不凝性气体分离出来。
本实施例中,猪粪制生物沥青包括基质沥青和猪粪生物油;猪粪生物油是通过热裂解液化工艺制备的。猪粪生物油的质量占猪粪制生物沥青总质量的15%。
实施例8
本实施例中,猪粪生物油的制备方法包括以下步骤:
1)猪粪在100℃的温度条件下烘干,粉碎至直径2mm以下粉末状猪粪颗粒;
2)对脱水粉碎处理后的猪粪颗粒进行预热,并在温度550℃和2s反应时间条件下,对预热后的猪粪颗粒进行热裂解液化得到猪粪生物油。
本实施例热裂解液化的具体过程是:经过脱水粉碎处理且预热后的猪粪颗粒在氮气作用下,从下至上快速通过流化床反应器,在无氧环境下猪粪颗 粒与流化床反应器内的石英石以1000℃/s的升温速率迅速升温预热至550℃,猪粪颗粒在快速升温预热的过程中,2s就发生热裂解液化反应,生成的气体(气体内的组成包括CO、H 2、CH 4等复合气体)在氮气的带动下进入两级旋风分离装置,夹带在气体中的固体产物生物炭在两级旋风分离装置中被分离沉积,剩余气体后续经过一级冷凝装置、二级冷凝装置和三级冷凝装置将猪粪生物油和未冷凝的不凝性气体分离出来。
本实施例中,猪粪制生物沥青包括基质沥青和猪粪生物油;猪粪生物油是通过热裂解液化工艺制备的。猪粪生物油的质量占猪粪制生物沥青总质量的20%。
实施例9
本实施例中,猪粪生物油的制备方法包括以下步骤:
1)猪粪在100℃的温度条件下烘干,粉碎至直径2mm以下粉末状猪粪颗粒;
2)对脱水粉碎处理后的猪粪颗粒进行预热,并在温度600℃和1s反应时间条件下,对预热后的猪粪颗粒进行热裂解液化得到猪粪生物油。
本实施例热裂解液化的具体过程是:经过脱水粉碎处理且预热后的猪粪颗粒在氮气作用下,从下至上快速通过流化床反应器,在无氧环境下猪粪颗粒与流化床反应器内的石英石以1000℃/s的升温速率迅速升温预热至600℃,猪粪颗粒在快速升温预热的过程中,1s就发生热裂解液化反应,生成的气体(气体内的组成包括CO、H 2、CH 4等复合气体)在氮气的带动下进入两级旋风分离装置,夹带在气体中的固体产物生物炭在两级旋风分离装置中被分离沉积,剩余气体后续经过一级冷凝装置、二级冷凝装置和三级冷凝装置将猪粪生物油和未冷凝的不凝性气体分离出来。
本实施例中,猪粪制生物沥青包括基质沥青和猪粪生物油;猪粪生物油是通过热裂解液化工艺制备的。猪粪生物油的质量占猪粪制生物沥青总质量的5%。
实施例10
本实施例中,猪粪生物油的制备方法包括以下步骤:
1)猪粪在100℃的温度条件下烘干,粉碎至直径2mm以下粉末状猪粪颗粒;
2)对脱水粉碎处理后的猪粪颗粒进行预热,并在温度600℃和2s反应时间条件下,对预热后的猪粪颗粒进行热裂解液化得到猪粪生物油。
本实施例热裂解液化的具体过程是:经过脱水粉碎处理且预热后的猪粪颗粒在氮气作用下,从下至上快速通过流化床反应器,在无氧环境下猪粪颗粒与流化床反应器内的石英石以1000℃/s的升温速率迅速升温预热至600℃,猪粪颗粒在快速升温预热的过程中,2s就发生热裂解液化反应,生成的气体(气体内的组成包括CO、H 2、CH 4等复合气体)在氮气的带动下进入两级旋风分离装置,夹带在气体中的固体产物生物炭在两级旋风分离装置中被分离沉积,剩余气体后续经过一级冷凝装置、二级冷凝装置和三级冷凝装置将猪粪生物油和未冷凝的不凝性气体分离出来。
本实施例中,猪粪制生物沥青包括基质沥青和猪粪生物油;猪粪生物油是通过热裂解液化工艺制备的。猪粪生物油的质量占猪粪制生物沥青总质量的15%。
为了进一步说明本发明制备的猪粪制生物沥青性能的优越性,进行以下验证。
试验1
试验组:本发明实施1~实施例10得到的猪粪制生物沥青
对比组1:70#基质沥青的技术指标,如表2所示;
对比组2:道路沥青的施工技术要求,如表2所示;
试验方法:采用本领域常规测试方法及按照中华人民共和国行业标准JTGE20-2011测试,试验组提供的10组猪粪制生物沥青的针入度、软化点以及延度等性能指标。测试结如表1所示。
表1不同热裂解条件下猪粪制生物沥青的指标结果
实施例 裂解温度/℃ 反应时间/s 针入度/0.1mm 软化点/℃ 延度/cm
1 400 1 59 51.0 97.3
2 400 2 60 50.6 99.2
3 450 1 60 50.6 99.5
4 450 2 62 50.2 99.9
5 500 1 64 50.1 100.1
6 500 2 65 50.0 100.9
7 550 1 66 49.7 101.6
8 550 2 66 49.5 101.8
9 600 1 67 47.7 102.1
10 600 2 68 47.3 102.5
表2 70#基质沥青技术指标和道路沥青的施工技术要求
Figure PCTCN2021070763-appb-000001
Figure PCTCN2021070763-appb-000002
对比表1,表2的结果可以得出:
1)本发明制备的猪粪制生物沥青,其中,实施例1的针入度/0.1mm为59,比道路沥青的施工技术要求(针入度/0.1mm为60~80)的略低;除此之外,本发明实施例1制备的猪粪制生物沥青其他性能、实施例2-10制备的猪粪制生物沥青的所有性能均满足道路沥青的技术要求;
2)本发明实施例1-10提供的猪粪制生物沥青,在25℃时的针入度均低于70#基质沥青的针入度,这说明相比于普通沥青和70#基质沥青,采用本发明裂解方法制备的猪粪制生物沥青具有优良的抵抗变形能力;
3)实施例1-8的软化点在49.5-51之间(高于70#基质沥青的软化点为48.9),实施例9、实施例10的软化点分别为47.7和47.3(低于70#基质沥青的软化点48.9);但是本发明制备的猪粪制生物沥青平均软化点为49.67(高于70#基质沥青的软化点),这说明相比于普通沥青和70#基质沥青,采用本发明裂解方法制备的猪粪制生物沥青具有优良的高温稳定性。
试验2
试验组:本发明实施1~实施例10得到的猪粪制生物沥青试样
对比组1:基质沥青试样;
试验过程:对试验组和对比组进行疲劳试验,分别得到试样的未老化的车辙因子G*﹒sinδ(KPa)、RTFO短期老化后的车辙因子G*﹒sinδ(KPa)以及PAV长期老化后的疲劳因子G*﹒sinδ(KPa),其结果如图1-6所示。
参见图1-6可以发现,随着生物油热解温度的升高和反应时间的延长, 生物沥青的高温稳定性逐渐降低;在相同的热解温度下,延长反应时间可以适当地提高粘合剂的低温抗裂性;同时猪粪生物油的添加降低了生物沥青的疲劳性能和低温抗裂性,因此,本实施例1-10提供的猪粪制生物沥青的高温稳定性要比基质沥青的高温稳定性更好。尤其是当热解温度550℃和反应时间1s下生产的猪粪生物油制备的猪粪制生物沥青性能最好,具有优良的高温性能和抵抗变形能力,且其疲劳性能、低温抗裂性能未有明显降低。
采用本发明提供的热裂解液化工艺得到的猪粪制生物沥青,三大性能指标优良,具有优良的高温性能和抵抗变形能力,可广泛应用于道路、铁路、航空、建筑业、农业、水利工程、工业等各行业。本发明制备简单易操作,高效便利,原料成本低廉,路用性能更好,节约资源,保护环境,循环利用废弃物,具有良好的应用推广前景。

Claims (9)

  1. 一种猪粪生物油的制备方法,其特征在于,所述制备方法包括如下步骤:
    1)猪粪经过预处理后得到猪粪颗粒;
    2)猪粪颗粒预热后,采用热裂解液化工艺对预热后的猪粪颗粒进行热裂解液化,得到猪粪生物油。
  2. 根据权利要求1所述的猪粪生物油的制备方法,其特征在于:所述步骤1)中对猪粪的预处理过程是,猪粪在85~100℃的温度条件下烘干后,粉碎得到猪粪颗粒。
  3. 根据权利要求2所述的猪粪生物油的制备方法,其特征在于:所述猪粪颗粒的粒径为0.5~2mm。
  4. 根据权利要求1所述的猪粪生物油的制备方法,其特征在于:所述步骤2)中对预热后的猪粪颗粒的热裂解液化过程是,
    预热后的猪粪颗粒在氮气的作用下由下至上通过流化床反应器,在无氧环境下预热后的猪粪颗粒与流化床反应器内的石英石升温预热,在升温预热的过程中发生热裂解液化反应,生成的气体在氮气的带动下进入两级旋风分离装置,经两级分离后,夹带在气体中的固体产物生物炭分离沉积出来,剩余气体依次经过一级冷凝装置、二级冷凝装置和三级冷凝装置,分离得到猪粪生物油。
  5. 根据权利要求4所述的猪粪生物油的制备方法,其特征在于:所述热裂解液化反应的温度为400~600℃,时间为1~2s。
  6. 一种猪粪制生物沥青,其特征在于:所述猪粪制生物沥青包括基质沥青和猪粪生物油;所述猪粪生物油是由权利要求1-5任一项所述的制备方法制备的。
  7. 根据权利要求6所述的猪粪制生物沥青,其特征在于:所述猪粪生物油质量占猪粪制生物沥青总质量的5%~20%。
  8. 根据权利要求7所述的猪粪制生物沥青,其特征在于:所述猪粪生物油质量占猪粪制生物沥青总质量的15%。
  9. 一种如权利要求6所述的猪粪制生物沥青中猪粪生物油在改善猪粪制生物沥青稳定性方面的应用。
PCT/CN2021/070763 2020-09-21 2021-01-08 猪粪生物油的制备方法以及猪粪制生物沥青和应用 WO2022057168A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010995488.1A CN112063442A (zh) 2020-09-21 2020-09-21 猪粪生物油的制备方法以及猪粪制生物沥青和应用
CN202010995488.1 2020-09-21

Publications (1)

Publication Number Publication Date
WO2022057168A1 true WO2022057168A1 (zh) 2022-03-24

Family

ID=73680804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070763 WO2022057168A1 (zh) 2020-09-21 2021-01-08 猪粪生物油的制备方法以及猪粪制生物沥青和应用

Country Status (2)

Country Link
CN (1) CN112063442A (zh)
WO (1) WO2022057168A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112063442A (zh) * 2020-09-21 2020-12-11 长安大学 猪粪生物油的制备方法以及猪粪制生物沥青和应用
CN114015463B (zh) * 2021-09-27 2024-03-22 山西省交通科技研发有限公司 一种木基生物质的高值化利用及其制备生物沥青的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211212A (ja) * 2006-02-13 2007-08-23 Livestock Research Inst Council Of Agriculture Executive Yuan 畜糞をバイオ燃料油に転化する方法とその反応槽構造
CN105154123A (zh) * 2015-07-13 2015-12-16 河南科技大学 一种生物质热裂解制备生物油系统
CN205839509U (zh) * 2016-05-19 2016-12-28 山西省交通科学研究院 一种经济适用型农村公路路面结构
CN106336673A (zh) * 2016-08-25 2017-01-18 深圳市市政设计研究院有限公司 一种生物油复配纳米硅藻土改性沥青及其制备方法
CN110577848A (zh) * 2019-09-09 2019-12-17 湖南农业大学 一种以猪粪为原料制备高品质生物油的方法
CN112063442A (zh) * 2020-09-21 2020-12-11 长安大学 猪粪生物油的制备方法以及猪粪制生物沥青和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101899315B (zh) * 2010-07-14 2012-11-28 青岛大学 一种生物质热裂解制取生物油的装置
US9637615B2 (en) * 2012-09-21 2017-05-02 North Carolina Agricultural And Technical State University Preparation and uses of bio-adhesives

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211212A (ja) * 2006-02-13 2007-08-23 Livestock Research Inst Council Of Agriculture Executive Yuan 畜糞をバイオ燃料油に転化する方法とその反応槽構造
CN105154123A (zh) * 2015-07-13 2015-12-16 河南科技大学 一种生物质热裂解制备生物油系统
CN205839509U (zh) * 2016-05-19 2016-12-28 山西省交通科学研究院 一种经济适用型农村公路路面结构
CN106336673A (zh) * 2016-08-25 2017-01-18 深圳市市政设计研究院有限公司 一种生物油复配纳米硅藻土改性沥青及其制备方法
CN110577848A (zh) * 2019-09-09 2019-12-17 湖南农业大学 一种以猪粪为原料制备高品质生物油的方法
CN112063442A (zh) * 2020-09-21 2020-12-11 长安大学 猪粪生物油的制备方法以及猪粪制生物沥青和应用

Also Published As

Publication number Publication date
CN112063442A (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
WO2022057168A1 (zh) 猪粪生物油的制备方法以及猪粪制生物沥青和应用
CN104650937B (zh) 一种以低变质粉煤、重质油、焦油渣为原料制备型焦的方法
CN104629798A (zh) 一种油煤混合加氢炼制技术及设备
CN101591819B (zh) 一种利用煤直接液化残渣制备的沥青基碳纤维及其制备方法
CN102199434B (zh) 一种利用微波快速热解煤直接液化残渣的方法
CN106701133A (zh) 一种低变质粉煤、沥青、焦油渣粉碎后成型干馏方法
CN103723728A (zh) 活性炭及利用煤直接液化残渣制备活性炭的方法
Qi et al. Structure evolution of lignite char in step pyrolysis and its combustion reactivity
Wang et al. Preparation of formed coke product as a coke substitute using a solid waste fuel: Trimethylbenzene improvement on coal tar pitch
CN102190898B (zh) 一种常温改性道路沥青的制备方法
CN103044939B (zh) 一种煤沥青制备的道路沥青及其制备方法
CN104987738A (zh) 废弃橡胶改性沥青
CN112080314A (zh) 一种改性生物沥青及其制备方法
CN106495157A (zh) 半焦热量的回收利用系统以及回收利用方法
CN105950227A (zh) 一种热解油气的处理系统及处理方法
US11952540B2 (en) Method and apparatus for hydrocracking mineralized refuse pyrolysis oil
CN109355086A (zh) 一种废旧轮胎生产燃料油、焦炭的方法
Zhang Review of coal tar preparation and processing technology
CN114736699A (zh) 一种利用工业固废热解炭化产物制备替代燃料的方法以及该替代燃料的应用
CN112824456B (zh) 一种改性道路沥青材料及其制备方法
Liu et al. Metal sulfide assisted coal catalytic hydrogenated microwave pyrolysis
CN112391201A (zh) 乙烯裂解焦油与环烷基稠油或其渣油混炼的方法
CN103468285A (zh) 粉煤热解中低温煤焦油制取燃料油的方法
CN206266228U (zh) 半焦热量的回收利用系统
CN106221846A (zh) 一种含有谷壳的生物质燃料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21868009

Country of ref document: EP

Kind code of ref document: A1