WO2022057160A1 - 一种聚阴离子锌盐水凝胶电解质及锌电池体系 - Google Patents

一种聚阴离子锌盐水凝胶电解质及锌电池体系 Download PDF

Info

Publication number
WO2022057160A1
WO2022057160A1 PCT/CN2020/142449 CN2020142449W WO2022057160A1 WO 2022057160 A1 WO2022057160 A1 WO 2022057160A1 CN 2020142449 W CN2020142449 W CN 2020142449W WO 2022057160 A1 WO2022057160 A1 WO 2022057160A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
polyanionic
hydrogel electrolyte
organic
zinc salt
Prior art date
Application number
PCT/CN2020/142449
Other languages
English (en)
French (fr)
Inventor
赵金保
曾静
丛建龙
Original Assignee
厦门大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门大学 filed Critical 厦门大学
Publication of WO2022057160A1 publication Critical patent/WO2022057160A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/58Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine
    • C08F220/585Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine and containing other heteroatoms, e.g. 2-acrylamido-2-methylpropane sulfonic acid [AMPS]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/34Monomers containing two or more unsaturated aliphatic radicals
    • C08F212/36Divinylbenzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/58Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of chemical power sources, and in particular relates to a polyanion zinc hydrogel electrolyte and a zinc battery system.
  • aqueous zinc-based batteries are considered the most promising candidates because of the unique advantages of zinc metal anodes, such as low redox potential (-0.76V relative to standard hydrogen electrodes), High theoretical capacity (820mAh g -1 and 5855mAh cm -3 ), good compatibility with aqueous solutions, high safety, and environmental friendliness.
  • severe dendrite formation and side reactions such as hydrogen evolution reaction, zincate formation, etc. ) in aqueous ZnSO4 lead to poor cycle life and low Coulombic efficiency, which have been limiting the commercial application of Zn-based batteries.
  • the purpose of the present invention is to overcome the deficiencies of the prior art, and provide a polyanionic zinc hydrogel electrolyte and a zinc battery system, which solves the problem of inhibiting zinc dendrites and side reactions in the above-mentioned background technology.
  • a polyanionic zinc hydrogel electrolyte which is prepared from organic monomers, zinc salts, cross-linking agents and initiators through a polymerization reaction; wherein, The concentration of the organic monomer is 0.1-10 mol/L, and the amount-concentration ratio of the organic monomer and the zinc salt is 0.1:1-10:1;
  • the zinc salt is a soluble zinc salt;
  • the organic monomer contains a carbon-carbon double bond, and contains at least one group of a sulfonic acid group, an imide group, a sulfonimide group, a carboxylic acid group, and a boronic acid group , the H in this group is replaced by zinc ions in the polymerization reaction to form organic acid zinc salt monomers with double bonds.
  • the second technical solution adopted by the present invention to solve the technical problem is to provide a zinc battery system, which includes a zinc-containing electrode and the above-mentioned polyanion zinc hydrogel electrolyte.
  • the zinc ions can be uniformly deposited and stripped on the surface of the zinc negative electrode, and the zinc branch is effectively suppressed.
  • the growth of crystals is beneficial to prolong the cycle life of the battery;
  • the polyanionic zinc hydrogel electrolyte of this scheme is prepared by in-situ cross-linking and curing in a solution environment, and a large amount of solvent (water) is retained in the electrolyte system to achieve high ionic conductivity;
  • the electrolyte of this scheme can be widely used in the zinc battery system, and the preparation process is simple, the raw materials are readily available, the cost is low, and it is safe and reliable.
  • Example 1 is an optical photograph of the polyanionic zinc hydrogel electrolyte prepared in Example 1;
  • Figure 2 is a comparison of the polarization voltage curves of the zinc symmetric battery in Example 1 and Comparative Example 1 (current density 0.5A/cm 2 );
  • Figure 3 is a comparison of the cycle performance of the zinc-copper half-cells in Example 1 and Comparative Example 1 (current density 0.5A/g);
  • Example 4 is a comparison of the cycle performance of the zinc-vanadium pentoxide full battery in Example 1 and Comparative Example 1 (current density 0.5 A/g).
  • the zinc salt is zinc chloride, zinc acetate, zinc carbonate, zinc nitrate, zinc hydroxide, zinc perchlorate, basic zinc carbonate, zinc trifluoromethanesulfonate or fluorine At least one of zinc borate.
  • the crosslinking agent includes borax, boric acid, glutaraldehyde, epichlorohydrin, divinylbenzene, diisocyanate, N,N-methylenebisacrylamide, polyethylene Diol (diol) diacrylate.
  • the mass concentration ratio of the crosslinking agent to the organic monomer is 0.01:100 to 5:100.
  • the initiator includes lauroyl peroxide, cumene hydroperoxide, dicyclohexyl peroxydicarbonate, potassium persulfate, sodium persulfate, ammonium persulfate, azo Diisobutyronitrile, azobisisoheptanenitrile, ketoglutaric acid, tert-butyl hydroperoxide/sodium metabisulfite.
  • the mass concentration ratio of the initiator to the organic monomer is 0.01:100 to 5:100.
  • the organic monomers are 2-acrylamide-2-methylpropanesulfonic acid (AMPS) and acrylic acid (AA).
  • AMPS 2-acrylamide-2-methylpropanesulfonic acid
  • AA acrylic acid
  • a zinc battery system includes a zinc primary battery or a secondary battery, the negative electrode of the zinc-containing electrode is zinc, and the positive electrode includes zinc, copper, vanadium pentoxide, air, manganese dioxide, Prussian Blue and its derivatives.
  • the present embodiment is a polyanionic zinc hydrogel electrolyte, and the preparation method is as follows:
  • AMPS is used as the organic monomer
  • AMPS structural formula
  • the H of the sulfonic acid group is replaced by the zinc ion in the zinc carbonate
  • the organic acid zinc salt monomer with double bond is prepared, and its structural formula is as follows:
  • FIG. 1 is an optical photograph of the polyanionic zinc hydrogel electrolyte prepared in Example 1, and it can be seen that the prepared electrolyte is in a typical hydrogel state.
  • the test results show that the zinc symmetric battery can be stably cycled for more than 350h, effectively inhibiting the growth of zinc dendrites, and has good cycle stability; the zinc-copper half-cell can run stably for 250 cycles at a current density of 1.0mA/cm 2 , the Coulombic efficiency is as high as 98.9%, indicating that the side reactions are effectively suppressed; the zinc-vanadium pentoxide full cell can run stably for 200 cycles at a current density of 0.5A/g, with a capacity retention rate of 82.4%.
  • the zinc-air battery was assembled by using the polyanionic zinc hydrogel electrolyte, zinc foil and air cathode in this example, and the obtained zinc-air battery could achieve 1000 charge-discharge cycles, and the discharge platform was maintained at about 1.5V.
  • Example 3 The difference between Example 3 and Example 1 is:
  • the zinc-manganese dioxide battery was assembled with the polyanion zinc salt gel electrolyte of the present embodiment, the zinc foil and the manganese dioxide positive electrode.
  • the retention rate was 92.3%.
  • Example 4 The difference between Example 4 and Example 1 is:
  • the zinc-Prussian blue battery was assembled by using the polyanionic zinc hydrogel electrolyte of the present embodiment with the zinc foil and the Prussian blue analog positive electrode.
  • the obtained zinc-Prussian blue battery can be cycled for 500 cycles at a current density of 0.5A/g, and the capacity The retention rate was 87.1%.
  • the ZnSO 4 electrolyte of this comparative example was used to assemble a zinc symmetric battery, a zinc-copper half-cell and a zinc-vanadium pentoxide full battery, respectively.
  • Figure 2 shows the performance comparison of the zinc symmetric battery assembled with the hydrogel electrolyte prepared in Example 1 (both positive and negative electrodes are zinc foil) and the zinc symmetric battery assembled with the 2.0 mol/L ZnSO 4 electrolyte prepared in Comparative Example 1 , the measured time-voltage curve (current density 0.5mA/cm 2 ). It can be seen from Figure 2 that when the current density is 0.5mA/ cm2 , the zinc symmetric battery using the ZnSO4 electrolyte shows an increase in polarization after 120 hours, and then a short circuit occurs. The zinc symmetric battery can be stably cycled for more than 350 h, effectively inhibiting the growth of zinc dendrites, and has good cycling stability.
  • Figure 3 shows the performance of the zinc-copper half-cell assembled with the hydrogel electrolyte prepared in Example 1 and the zinc-copper half-cell assembled with the 2.0 mol/L ZnSO 4 electrolyte prepared in Comparative Example 1, and the battery using the ZnSO 4 electrolyte After 25 cycles, the Coulombic efficiency drops sharply, while the zinc-copper half-cell using polyanionic zinc hydrogel electrolyte can run stably for 250 cycles at a current density of 1.0 mA/ cm2 , and the Coulombic efficiency is as high as 98.9%, indicating that the side reactions are obtained effectively suppressed.
  • Figure 4 shows that the hydrogel electrolyte prepared in Example 1 is loaded into a zinc-vanadium pentoxide battery (the negative electrode is zinc foil, and the positive electrode is vanadium pentoxide) and the 2.0mol/L ZnSO 4 electrolysis prepared in Comparative Example 1.
  • the zinc-vanadium pentoxide full battery assembled in liquid, the measured capacity retention rate and the change of cycle number (current density 0.5A/g). It can be seen from Figure 4 that the battery with ZnSO4 electrolyte experienced rapid capacity fading, while the zinc-vanadium pentoxide full cell with polyanionic zinc hydrogel electrolyte can achieve a high current density of 0.5 A/g. Stable operation for 200 laps, the capacity retention rate is 82.4%.
  • the invention discloses a polyanion zinc salt gel electrolyte and a zinc battery system.
  • the electrolyte is an organic acid zinc salt polymer, which is prepared from an organic monomer, a zinc salt, a crosslinking agent and an initiator through a polymerization reaction; wherein , the concentration of the organic monomer is 0.1-10 mol/L, and the ratio of the amount and concentration of the organic monomer and the zinc salt is 0.1:1-10:1; the organic monomer contains carbon-carbon double bonds and contains sulfonic acid at least one group selected from acid group, imide group, sulfonimide group, carboxylic acid group and boronic acid group; the zinc salt is a soluble zinc salt.
  • the zinc battery system adopts polyanion zinc hydrogel electrolyte, and by fixing the anions in the electrolyte, the occurrence of side reactions is reduced, the growth of zinc dendrites is inhibited, and the electrochemical performance and cycle stability of the zinc battery system are improved. Industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

一种聚阴离子锌盐水凝胶电解质及锌电池体系,该电解质为有机酸锌盐聚合物,由有机物单体、锌盐、交联剂和引发剂经聚合反应制备而成;其中,所述有机物单体的浓度为0.1~10mol/L,有机物单体和锌盐的物质的量浓度比值为0.1:1~10:1;所述有机物单体含有碳碳双键,并含有磺酸基、酰亚胺基、磺酰亚胺基、羧酸基、硼酸基中的至少一种基团;所述锌盐为可溶性锌盐。该锌电池体系采用聚阴离子锌盐水凝胶电解质,通过固定电解液中的阴离子,减少副反应的发生,抑制锌枝晶的生长,实现锌电池体系的电化学性能和循环稳定性的提升。

Description

一种聚阴离子锌盐水凝胶电解质及锌电池体系 技术领域
本发明属于化学电源技术领域,具体涉及一种聚阴离子锌盐水凝胶电解质及锌电池体系。
背景技术
近年来,锂离子电池(LIBs)由于其出色的电化学性能而被广泛用于便携式电子和电动汽车。然而,由易燃有机电解质引起的安全问题驱使研究人员开发LIBs的替代品。在各种下一代储能系统中,水性锌基电池被认为是最有前途的候选者,因为锌金属阳极具有独特的优势,例如低氧化还原电势(相对于标准氢电极为-0.76V),理论容量高(820mAh g -1和5855mAh cm -3),与水溶液的相容性好,安全性高,对环境友好。然而,ZnSO 4水溶液中严重的枝晶形成和副反应(如析氢反应,锌酸盐的生成等)导致循环寿命差和库仑效率低,这一直限制了锌基电池的商业应用。
为了解决这些问题,研究人员提出了很多策略来抑制枝晶的形成和减轻副反应。构造一种可以调节离子传输的修饰层是抑制树枝状晶体形成的有效方法,包括TiO 2层,纳米多孔CaCO 3层,多功能增白剂层,沸石咪唑盐骨架(ZIF-8)层等。此外,也有许多关于缓解副反应的策略被报道,例如使用Zn(CF 3SO 3) 2电解质代替ZnSO 4电解质,使用“盐包水”电解质,引入电解质添加剂,采用有机电解质,固态电解质。
但是,现有的策略大多只侧重锌枝晶的抑制和副反应的缓解的某一方面,性能的改善较为有限。为了获得长寿命的锌基电池,应同时考虑抑制锌枝晶和缓解副反应,实现锌电极的高度可逆性。
发明内容
本发明的目的在于克服现有技术的不足之处,提供了一种聚阴离子锌盐水凝胶电解质及锌电池体系,解决了上述背景技术中锌枝晶和副反应的抑制问题。
本发明解决其技术问题所采用的技术方案之一是:提供了一种聚阴离子锌盐水凝胶电解质,由有机物单体、锌盐、交联剂和引发剂经聚合反应制备而成;其中,所述有机物单体的浓度为0.1~10mol/L,有机物单体和锌盐的物质的量浓度比值为0.1:1~10:1;
所述锌盐为可溶性锌盐;所述有机物单体含有碳碳双键,并含有磺酸基、酰亚胺基、磺酰亚胺基、羧酸基、硼酸基中的至少一种基团,该基团中的H在聚合反应中被锌离子取代,形成带双键的有机酸锌盐单体。
本发明解决其技术问题所采用的技术方案之二是:提供了一种锌电池体系,包括含锌电极和上述聚阴离子锌盐水凝胶电解质。
本技术方案与背景技术相比,它具有如下优点:
1.本方案通过聚阴离子链上的阴离子对锌离子的限域作用,以及聚阴离子电解质没有浓差极化的固有特点,使得锌离子可以在锌负极表面均匀沉积和剥离,有效抑制了锌枝晶的生长,有利于延长电池的循环寿命;
2.本方案通过将聚阴离子固定在锌盐水凝胶电解质的主链上,限制了阴离子的自由运动,减少了与锌负极表面的自由接触,有效的抑制了副反应的发生;
3.本方案聚阴离子锌盐水凝胶电解质在制备中采用溶液环境中被原位交联固化的方法,电解质体系中保留了大量的溶剂(水),实现了高离子电导率;
4.本方案的电解质可以广泛应用于锌电池体系中,且制备工艺简单,原料易得,成本低,安全可靠。
附图说明
图1为实施例1制备的聚阴离子锌盐水凝胶电解质的光学照片;
图2为实施例1与对比例1中锌对称电池的极化电压曲线的对比(电流密度0.5A/cm 2);
图3为实施例1与对比例1中锌铜半电池的循环性能的对比(电流密度0.5A/g);
图4为实施例1与对比例1中锌-五氧化二钒全电池的循环性能的对比(电流密度0.5A/g)。
具体实施方式
在本发明一较佳实施例中,所述锌盐为氯化锌、醋酸锌、碳酸锌、硝酸锌、氢氧化锌、高氯酸锌、碱式碳酸锌、三氟甲烷磺酸锌或氟硼酸锌中的至少一种。
在本发明一较佳实施例中,所述交联剂包括硼砂、硼酸、戊二醛、环氧氯丙烷、二乙烯基苯、二异氰酸酯、N,N-亚甲基双丙烯酰胺、聚乙二醇(二醇)二丙烯酸酯。所述交联剂与有机物单体的物质的量浓度比为0.01:100~5:100。
在本发明一较佳实施例中,所述引发剂包括过氧化月桂酰、异丙苯过氧化氢、过氧化二碳酸二环己酯、过硫酸钾、过硫酸钠、过硫酸铵、偶氮二异丁腈、偶氮二异庚腈、酮戊二酸、叔丁基过氧化氢/焦亚硫酸钠。所述引发剂与有机物单体的物质的量浓度比为0.01:100~5:100。
在本发明一较佳实施例中,所述有机物单体为2-丙烯酰胺-2-甲基丙磺酸(AMPS)、丙烯酸(AA)。
在本发明一较佳实施例中,一种锌电池体系包括锌一次电池或二次电池,含锌电极的负极为锌,正极包括锌、铜、五氧化二钒、空气、二氧化锰、普鲁士蓝及其衍生物。
实施例1
本实施例一种聚阴离子锌盐水凝胶电解质,制备方法如下:
在30℃条件下,将13.6gAMPS完全溶解于80mL去离子水中。然后加入5g碳酸锌,溶解均匀后,待用。将0.5g二乙烯基苯和二异氰酸酯、0.1g酮戊二酸溶解于80mL去离子水中,γ射线辐照1h,得到聚阴离子锌盐水凝胶电解液。
本实施例中,采用AMPS作为有机物单体,AMPS(结构式
Figure PCTCN2020142449-appb-000001
)中磺酸基的H被碳酸锌中的锌离子取代,制备得到带双键的有机酸锌盐单体,其结构式如下:
Figure PCTCN2020142449-appb-000002
该带双键的有机酸锌盐单体聚合后形成的聚合物,其阴离子链处于聚合物的骨架上,对锌离子起到限域作用,同时限制了阴离子的自由运动,减少了与锌负极表面的自由接触。图1为实施例1中制备的聚阴离子锌盐水凝胶电解质的光学照片,可以看到制备的电解质为典型的水凝胶状。
以本实施例制备的聚阴离子锌盐水凝胶电解质,分别组装锌对称电池、锌铜半电池和锌-五氧化二钒全电池,进行相关性能测试:
测试结果显示锌对称电池可以稳定循环超过350h,有效地抑制了锌枝晶的生长, 具有较好的循环稳定性;锌铜半电池可以在1.0mA/cm 2的电流密度条件下稳定运行250圈,库伦效率高达98.9%,说明副反应得到了有效地抑制;锌-五氧化二钒全电池可以在0.5A/g的电流密度下,稳定运行200圈,容量保持率为82.4%。
实施例2
实施例2与实施例1的区别在于:
在80℃条件下,将10gAMPS完全溶解于100mL去离子水中。然后加入5.26g氯化锌,溶解均匀后,待用。将5g硼酸,5.26g氯化锌、0.1g偶氮二异丁腈溶解于100mL去离子水中,100℃加热下2h,得到聚阴离子锌盐水凝胶电解液。
将本实施例聚阴离子锌盐水凝胶电解液与锌箔、空气正极组装锌空电池,所得锌空气电池可以实现1000次充放电循环,放电平台保持在1.5V左右。
实施例3
实施例3与实施例1的区别在于:
在70℃条件下,将7.6gAMPS完全溶解于20mL去离子水中。然后加入3g硫酸锌,溶解均匀后,待用。将1g二乙烯基苯溶解于20mL去离子水中,紫外光下反应0.5h,得到聚阴离子锌盐水凝胶电解液。
将本实施例聚阴离子锌盐水凝胶电解液与锌箔、二氧化锰正极组装锌-二氧化锰电池,所得锌-二氧化锰电池可以在0.1A/g的电流密度下循环200圈,容量保持率为92.3%。
实施例4
实施例4与实施例1的区别在于:
在70℃条件下,将6gAMPS完全溶解于40mL去离子水中。然后加入1g高氯酸锌,溶解均匀后,待用。将1g N,N-亚甲基双丙烯酰胺、0.3g过硫酸钾溶解于40mL去离子水中,100℃加热3h,得到聚阴离子锌盐水凝胶电解液。
将本实施例聚阴离子锌盐水凝胶电解液与锌箔、普鲁士蓝类似物正极组装锌-普鲁士蓝电池,所得锌-普鲁士蓝电池在可以在0.5A/g的电流密度下循环500圈,容量保持率为87.1%。
对比例1
将32.2g的ZnSO 4溶解于100mL去离子水中,搅拌5h,之后静置24h。得到2.0mol/L的ZnSO 4电解液。
将本对比例ZnSO 4电解液分别组装锌对称电池、锌铜半电池和锌-五氧化二钒全电池。
图2为实施例1中制备的水凝胶电解质装入锌对称电池(正极和负极均为锌箔)和对比例1中制备的2.0mol/L的ZnSO 4电解液组装的锌对称电池性能对比,测得的时间电压曲线(电流密度0.5mA/cm 2)。由图2可以看出电流密度为0.5mA/cm 2时,采用ZnSO 4电解液的锌对称电池在120小时后出现极化增大现象,之后发生短路,而采用聚阴离子锌盐水凝胶电解质的锌对称电池可以稳定循环超过350h,有效地抑制了锌枝晶的生长,具有较好的循环稳定性。
图3为实施例1中制备的水凝胶电解质装入锌铜半电池和对比例1中制备的2.0mol/L的ZnSO 4电解液组装的锌铜半电池性能,采用ZnSO 4电解液的电池在25圈以后库伦效率急剧下降,而采用聚阴离子锌盐水凝胶电解质的锌铜半电池可以在1.0mA/cm 2的电流密度条件下稳定运行250圈,库伦效率高达98.9%,说明副反应得到了有效地抑制。
图4为实施例1中制备的水凝胶电解质装入锌-五氧化二钒电池(负极为锌箔,正极为五氧化二钒)和对比例1中制备的2.0mol/L的ZnSO 4电解液组装的锌-五氧化二钒全电池,测得的容量保持率与循环圈数的变化(电流密度0.5A/g)。由图4可以看出,采用ZnSO 4电解液的电池发生了快速的容量衰减,而采用聚阴离子锌盐水凝胶电解质的锌-五氧化二钒全电池可以在0.5A/g的电流密度下,稳定运行200圈,容量保持率为82.4%。
由此可见,采用聚阴离子锌盐水凝胶电解质的锌电池具有广阔的应用前景。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
工业实用性
本发明公开了一种聚阴离子锌盐水凝胶电解质及锌电池体系,该电解质为有机酸锌盐聚合物,由有机物单体、锌盐、交联剂和引发剂经聚合反应制备而成;其中,所述有机物单体的浓度为0.1~10mol/L,有机物单体和锌盐的物质的量浓度比值为0.1:1~10:1;所述有机物单体含有碳碳双键,并含有磺酸基、酰亚胺基、磺酰亚胺基、羧酸基、硼酸基中的至少一种基团;所述锌盐为可溶性锌盐。该锌电池体系采用聚阴离子锌盐水凝胶电解质,通过固定电解液中的阴离子,减少副反应的发生,抑制锌枝 晶的生长,实现锌电池体系的电化学性能和循环稳定性的提升,具有工业实用性。

Claims (12)

  1. 一种聚阴离子锌盐水凝胶电解质,其特征在于:由有机物单体、锌盐、交联剂和引发剂经聚合反应制备而成;所述锌盐为可溶性锌盐;所述有机物单体含有碳碳双键,并含有磺酸基、酰亚胺基、磺酰亚胺基、羧酸基、硼酸基中的至少一种基团,该基团中的H在聚合反应中被锌离子取代,形成带双键的有机酸锌盐单体;所述有机酸锌盐单体聚合后形成聚阴离子锌盐水凝胶;其中,所述有机物单体的浓度为0.1~10mol/L,有机物单体和锌盐的物质的量浓度比值为0.1:1~10:1。
  2. 根据权利要求1所述的一种聚阴离子锌盐水凝胶电解质,其特征在于:所述有机物单体为2-丙烯酰胺-2-甲基丙磺酸或丙烯酸。
  3. 根据权利要求1或2所述的一种聚阴离子锌盐水凝胶电解质,其特征在于:采用AMPS作为有机物单体,AMPS结构式:
    Figure PCTCN2020142449-appb-100001
  4. 根据权利要求1或2所述的一种聚阴离子锌盐水凝胶电解质,其特征在于:
    制备得到所述带双键的有机酸锌盐单体,其结构式如下:
    Figure PCTCN2020142449-appb-100002
  5. 根据权利要求1所述的一种聚阴离子锌盐水凝胶电解质,其特征在于:所述锌盐为氯化锌、醋酸锌、碳酸锌、硝酸锌、氢氧化锌、高氯酸锌、碱式碳酸锌、三氟甲 烷磺酸锌或氟硼酸锌中的至少一种。
  6. 根据权利要求1所述的一种聚阴离子锌盐水凝胶电解质,其特征在于:所述交联剂包括硼砂、硼酸、戊二醛、环氧氯丙烷、二乙烯基苯、二异氰酸酯、N,N-亚甲基双丙烯酰胺、聚乙二醇(二醇)二丙烯酸酯。
  7. 根据权利要求1所述的一种聚阴离子锌盐水凝胶电解质,其特征在于:所述交联剂与有机物单体的物质的量浓度比为0.01:100~5:100。
  8. 根据权利要求1所述的一种聚阴离子锌盐水凝胶电解质,其特征在于:所述引发剂包括过氧化月桂酰、异丙苯过氧化氢、过氧化二碳酸二环己酯、过硫酸钾、过硫酸钠、过硫酸铵、偶氮二异丁腈、偶氮二异庚腈、酮戊二酸、叔丁基过氧化氢/焦亚硫酸钠。
  9. 根据权利要求1所述的一种聚阴离子锌盐水凝胶电解质,其特征在于:所述引发剂与有机物单体的物质的量浓度比为0.01:100~5:100。
  10. 一种锌电池体系,其特征在于:包括含锌电极和如权利要求1~6任一项所述聚阴离子锌盐水凝胶电解质。
  11. 根据权利要求8所述的一种锌电池体系,其特征在于:所述含锌电极的负极为锌,正极包括锌、铜、五氧化二钒、空气、二氧化锰、普鲁士蓝及其衍生物。
  12. 根据权利要求8所述的一种锌电池体系,其特征在于:包括锌一次电池或二次电池。
PCT/CN2020/142449 2020-09-18 2020-12-31 一种聚阴离子锌盐水凝胶电解质及锌电池体系 WO2022057160A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010987630.8A CN114195935B (zh) 2020-09-18 2020-09-18 一种聚阴离子锌盐水凝胶电解质及锌电池体系
CN202010987630.8 2020-09-18

Publications (1)

Publication Number Publication Date
WO2022057160A1 true WO2022057160A1 (zh) 2022-03-24

Family

ID=80645074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/142449 WO2022057160A1 (zh) 2020-09-18 2020-12-31 一种聚阴离子锌盐水凝胶电解质及锌电池体系

Country Status (2)

Country Link
CN (1) CN114195935B (zh)
WO (1) WO2022057160A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114976298A (zh) * 2022-06-29 2022-08-30 华中科技大学 诱导水系锌离子电池锌(002)晶面优先暴露的方法及应用
CN115036589A (zh) * 2022-07-04 2022-09-09 福州大学 一种锌离子二次电池凝胶电解质及其制备方法和应用
CN115275399A (zh) * 2022-08-30 2022-11-01 北京理工大学长三角研究院(嘉兴) 电解液及使用其的水系锌离子电池
CN115894788A (zh) * 2022-11-09 2023-04-04 电子科技大学长三角研究院(湖州) 一种多功能凝胶聚合物电解质及其制备方法
CN117855629A (zh) * 2023-12-01 2024-04-09 天津大学 单离子导电柔性水凝胶电解质及其制备方法和在锌离子电池中的应用
CN117855631A (zh) * 2024-03-05 2024-04-09 浙江瀚为科技有限公司 一种钒基水系锌离子电池及其多元电解液制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114824278A (zh) * 2022-05-24 2022-07-29 北京大学深圳研究生院 Sei膜反应液、锌负极的改性方法以及改性锌负极
CN114853942B (zh) * 2022-05-31 2023-12-15 西北工业大学宁波研究院 用于锌锰电池的水凝胶电解质及其制备方法、锌锰电池及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106117412A (zh) * 2016-06-27 2016-11-16 中国科学院长春应用化学研究所 网状交联聚丙烯酸锌的合成方法及其合成物的用法
CN110085925A (zh) * 2019-04-29 2019-08-02 中南大学 一种水系锌离子电池电解质膜及其制备和应用方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6190101B2 (ja) * 2011-08-23 2017-08-30 株式会社日本触媒 ゲル電解質又は負極合剤、及び、該ゲル電解質又は負極合剤を使用した電池
JP6556086B2 (ja) * 2015-09-25 2019-08-07 積水化成品工業株式会社 ハイドロゲルシート及びその製造方法
CN110444822A (zh) * 2019-08-15 2019-11-12 哈尔滨工业大学 一种一体化准固态锌离子电池的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106117412A (zh) * 2016-06-27 2016-11-16 中国科学院长春应用化学研究所 网状交联聚丙烯酸锌的合成方法及其合成物的用法
CN110085925A (zh) * 2019-04-29 2019-08-02 中南大学 一种水系锌离子电池电解质膜及其制备和应用方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114976298A (zh) * 2022-06-29 2022-08-30 华中科技大学 诱导水系锌离子电池锌(002)晶面优先暴露的方法及应用
CN115036589A (zh) * 2022-07-04 2022-09-09 福州大学 一种锌离子二次电池凝胶电解质及其制备方法和应用
CN115275399A (zh) * 2022-08-30 2022-11-01 北京理工大学长三角研究院(嘉兴) 电解液及使用其的水系锌离子电池
CN115275399B (zh) * 2022-08-30 2024-05-28 北京理工大学长三角研究院(嘉兴) 电解液及使用其的水系锌离子电池
CN115894788A (zh) * 2022-11-09 2023-04-04 电子科技大学长三角研究院(湖州) 一种多功能凝胶聚合物电解质及其制备方法
CN115894788B (zh) * 2022-11-09 2023-09-15 电子科技大学长三角研究院(湖州) 一种多功能凝胶聚合物电解质及其制备方法
CN117855629A (zh) * 2023-12-01 2024-04-09 天津大学 单离子导电柔性水凝胶电解质及其制备方法和在锌离子电池中的应用
CN117855631A (zh) * 2024-03-05 2024-04-09 浙江瀚为科技有限公司 一种钒基水系锌离子电池及其多元电解液制备方法
CN117855631B (zh) * 2024-03-05 2024-05-24 浙江瀚为科技有限公司 一种钒基水系锌离子电池及其多元电解液制备方法

Also Published As

Publication number Publication date
CN114195935A (zh) 2022-03-18
CN114195935B (zh) 2023-07-04

Similar Documents

Publication Publication Date Title
WO2022057160A1 (zh) 一种聚阴离子锌盐水凝胶电解质及锌电池体系
WO2021047085A1 (zh) 一种中性锌锰二次电池及电解液
CN109509901B (zh) 一种碱性锌铁液流电池
CN105336952A (zh) 一种钠锌双离子可充电电池
CN111600041B (zh) 一种提高水系锌锰电池工作电压的电解液及其应用
CN112635698B (zh) 一种锌二次电池的负极极片及其制备方法和用途
CN112599892A (zh) 一种锌-空气电池用高稳定性凝胶电解质及其制备方法
CN114447446A (zh) 一种水系锌离子电池添加剂及其制备的电解液及应用
CN114824278A (zh) Sei膜反应液、锌负极的改性方法以及改性锌负极
CN112242571B (zh) 一种用于保护锌离子电池电极的电解液及锌离子电池
CN113314773A (zh) 一种水系锌离子电池电解质及其制备方法和应用
WO2023185944A1 (zh) 一种无游离溶剂分子的电解质体系及其制作方法和应用
CN115064651B (zh) 一种双功能保护层改性锌负极及其制备方法
CN112952172A (zh) 一种碱性铁镍液流电池
CN115020827A (zh) 一种水系锌离子电池准固态电解质及其制备方法与应用
CN114447445A (zh) 一种水系锌离子电池电解液制备及其应用
CN109980226B (zh) 一种具有聚酰胺光亮剂层的锌负极及其制备方法和应用
CN117855631B (zh) 一种钒基水系锌离子电池及其多元电解液制备方法
WO2022247808A1 (zh) 水系氯离子电池
CN113224395B (zh) 水系酸性锌锰电池
US20240105925A1 (en) Solid-state lithium metal battery based on in-situ polymerization
KR20240009265A (ko) 브롬 착화제 및 금속이온 첨가제를 포함하는 아연-브롬 수계 전지용 전해액 및 이를 포함하는 아연-브롬 무흐름 수계 전지
CN117832483A (zh) 静态锌溴电池及其正极和适配的电解液
Mishra et al. Zinc‐Cerium Hybrid Redox Flow Batteries
CN117133554A (zh) 一种低温抗冻双网络水凝胶电解质及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954013

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20954013

Country of ref document: EP

Kind code of ref document: A1