WO2022057123A1 - 双曝气好氧颗粒污泥-膜生物反应器耦合装置及其应用 - Google Patents

双曝气好氧颗粒污泥-膜生物反应器耦合装置及其应用 Download PDF

Info

Publication number
WO2022057123A1
WO2022057123A1 PCT/CN2020/136847 CN2020136847W WO2022057123A1 WO 2022057123 A1 WO2022057123 A1 WO 2022057123A1 CN 2020136847 W CN2020136847 W CN 2020136847W WO 2022057123 A1 WO2022057123 A1 WO 2022057123A1
Authority
WO
WIPO (PCT)
Prior art keywords
aeration
membrane
pipe
tank
reaction zone
Prior art date
Application number
PCT/CN2020/136847
Other languages
English (en)
French (fr)
Inventor
吴传栋
钟云娜
孙国胜
赵焱
高新磊
刘源
Original Assignee
广东粤海水务投资有限公司
哈尔滨工业大学水资源国家工程研究中心有限公司
广东粤海水务股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东粤海水务投资有限公司, 哈尔滨工业大学水资源国家工程研究中心有限公司, 广东粤海水务股份有限公司 filed Critical 广东粤海水务投资有限公司
Publication of WO2022057123A1 publication Critical patent/WO2022057123A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2203/00Apparatus and plants for the biological treatment of water, waste water or sewage
    • C02F2203/006Apparatus and plants for the biological treatment of water, waste water or sewage details of construction, e.g. specially adapted seals, modules, connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention relates to a double-aerated aerobic granular sludge-membrane bioreactor coupling device and application thereof, belonging to the technical field of sewage treatment.
  • the MBR process has high energy consumption, is prone to fouling, and requires regular replacement of membrane modules, which has always been an unavoidable problem in the application of this process.
  • the membrane tank adopts high-concentration and low-load operation mode, and uses a large amount of aeration to flush the membrane wire to reduce the fouling of the membrane pores by substances such as extracellular polymer (EPS), and a high-pressure pump is also required to provide the transmembrane pressure difference. Therefore, the reason for the high energy consumption of the MBR process is the aeration and scouring measures to reduce the fouling of the membrane holes and the high-pressure pump that provides the pressure difference.
  • membrane materials with better anti-fouling performance are generally developed from the material aspect. With the continuous maturity of the aerobic granular sludge process, it provides a new direction for the research of MBR membrane fouling control.
  • the aerobic granular sludge process is considered to be one of the most promising biological wastewater treatment technologies. Because of its dense granular structure and the functions of removing organic matter, nitrogen and phosphorus, the EPS produced on its surface is significantly less than that of flocculent sludge. If the MBR membrane module is placed in the mixed solution of aerobic granular sludge, the fouling of the membrane pores will be greatly reduced. At the same time, since the aerobic granular sludge process still needs secondary precipitation to complete the separation of mud and water, the MBR membrane replaces the secondary sedimentation tank, and the effluent quality is better. The two can complement each other's advantages to reduce membrane pollution and improve effluent quality.
  • the present invention provides a double-aerated aerobic granular sludge-membrane bioreactor coupling device and its application.
  • the device of the present invention couples the aerobic granular sludge and the MBR reactor through ingenious design. , not only can make full use of aerobic granular sludge to efficiently remove organic pollutants in sewage, reduce the membrane pollution of MBR, but also can completely separate aerobic granular sludge from the membrane biological reaction zone, without affecting each other, fully ensure aerobic
  • the different aeration intensity and aeration volume requirements of granular sludge and MBR membrane modules solve the problem of inconsistent aeration intensity requirements when aerobic granular sludge and MBR process are combined.
  • the technical scheme of the present invention is:
  • a double-aerated aerobic granular sludge-membrane bioreactor coupling device comprising a water inlet pipe, a lower shell, a first aeration component, an upper shell, a sedimentation tank, a membrane biological reaction tank, a second aeration component, a water outlet pipe; an inlet water pump is arranged on the water inlet pipe;
  • the lower shell includes an outer cylinder and an inner cylinder sleeved in the outer cylinder, the top of the outer cylinder is open, the bottom of the outer cylinder is communicated with the water inlet pipe, and the outer cylinder and the inner cylinder In between is the lower outer reaction zone, the top and bottom of the inner cylinder are open, and the inner chamber of the inner cylinder is the lower inner reaction zone; the first aeration component is used for aeration in the lower inner reaction zone; There is a sedimentation tank, and the upper upflow area is between the upper shell and the sedimentation tank.
  • the sedimentation tank is provided with a membrane biological reaction tank, the upper downflow area between the sedimentation tank and the membrane biological reaction tank, and the sedimentation area at the bottom of the sedimentation tank , the bottom of the sedimentation tank is communicated with the outer cylinder through a return pipe;
  • the membrane biological reaction tank includes a membrane tank body, the membrane tank body is composed of a porous plate, and a membrane assembly is arranged in the membrane tank body; the second aeration assembly is used for The surface of the membrane module is aerated and washed, one end of the water outlet pipe is communicated with the inner cavity of the membrane module, the other end is communicated with the clear water pool, and an outlet pump is arranged on the water outlet pipe.
  • the first aeration assembly includes an aeration head, a first aeration pipe, a first aeration valve and a first blower, the aeration head is located at the bottom of the inner cylinder, and the aeration head is connected to the first aeration pipe through the first aeration pipe.
  • the first blower is connected, and the first aeration pipe is provided with a first aeration valve.
  • the aeration rate of the aeration head is adjusted according to the dissolved oxygen concentration in the lower inner reaction zone, and the dissolved oxygen concentration is maintained at 1.2-2.3 mg/L.
  • the second aeration assembly includes a nano-aeration disk, a second aeration pipe, a second aeration valve and a second blower, the nano-aeration disk is located below the membrane assembly, and the nano-aeration disk passes through the second aeration plate.
  • the air pipe is connected with the second blower, and the second aeration pipe is provided with a second aeration valve.
  • the aeration rate of the nano-aeration disc is 0.25-0.5 m 3 /h ⁇ m 2 membrane area.
  • the coupling device further includes an automatic controller, and the inlet water pump, the outlet water pump, the first blower and the second blower are all electrically connected to the automatic controller.
  • the outlet water pump is set as a two-way centrifugal pump
  • the bottom of the outer cylinder is further provided with a mud discharge port which is communicated with a mud discharge pipe
  • a mud discharge valve is provided on the mud discharge pipe.
  • the top of the settling tank is provided with a triangular weir.
  • the height of the connection between the return pipe and the outer cylinder does not exceed 1/3 of the height of the outer cylinder
  • the cross-sectional area of the upper up-flow zone is 4 times the cross-sectional area of the lower inner reaction zone
  • the cross-sectional area of the lower inner reaction zone is The same cross-sectional area as the lower outer reaction zone.
  • the specific steps are: turn on the inlet water pump and the outlet water pump, the sewage enters the lower outer reaction zone through the water inlet pipe, and under the action of the first aeration component, the sewage inlet water enters the lower inner reaction zone.
  • the flow area increases, the flow velocity slows down, the granular sludge settles to the lower outer reaction zone, and the bubbles aggregate into large bubbles Drive the sewage containing flocculent sludge to continue to rise.
  • the sedimentation zone is returned to the lower outer reaction zone through the return pipe, and under the action of air stripping at the bottom of the lower outer reaction zone, the lower outer reaction zone and the lower inner reaction zone form a cycle to separate most of the flocculent sludge sewage. It enters the membrane biological reaction zone through the body of the membrane tank. Under the aeration action of the second aeration module, the membrane module vibrates to reduce membrane pollution. , the pollutants in the sewage and a small amount of flocculent sludge are trapped outside the membrane, and the effluent flows into the clean water tank.
  • the present invention has the following advantages:
  • the device of the present invention couples the aerobic granular sludge with the MBR reactor through a clever design, not only can make full use of the aerobic granular sludge to efficiently remove organic pollutants in the sewage, reduce the membrane pollution of the MBR, but also make good use of the aerobic granular sludge to efficiently remove the organic pollutants in the sewage.
  • the oxygen granular sludge is completely separated from the membrane biological reaction zone and does not affect each other, which fully guarantees the different aeration intensities, aeration volume requirements and respective operating process conditions of the aerobic granular sludge and MBR membrane modules.
  • the device of the present invention performs double aeration by arranging a first aeration assembly and a second aeration assembly, wherein the first aeration assembly can provide oxygen and hydraulic shear force required for the formation and reaction of aerobic granular sludge , the second aeration component can provide a larger aeration intensity required for membrane scouring, strengthen membrane shaking and scouring, and alleviate membrane fouling, thereby avoiding the difference in aeration intensity between aerobic granular sludge and membrane bioreactors .
  • the present invention can realize the continuous operation of the lower gas stripping reaction zone (lower outer reaction zone and inner reaction zone).
  • the present invention realizes the hydraulic continuity of the combination of the two treatment processes through structural innovation, forming an integrated
  • the optimized coupling device saves more space.
  • Fig. 1 is the structural representation of the present invention
  • Figure 2 is a top view of the present invention
  • Figure 3 is a side view of a settling tank
  • a double-aerated aerobic granular sludge-membrane bioreactor coupling device includes a water inlet pipe 10, a lower casing 20, a first aeration component, an upper casing 40, and a settling tank 42.
  • the water inlet pipe 10 is provided with an inlet pump;
  • the lower casing 20 includes an outer cylinder 21 and an inner cylinder 24 sleeved in the outer cylinder 21, the outer cylinder 21 is open at the top, and the bottom of the outer cylinder 21 is communicated with the water inlet pipe 10,
  • the lower outer reaction zone 23 Between the outer cylinder 21 and the inner cylinder 24 is the lower outer reaction zone 23, the top and bottom of the inner cylinder 24 are open, and the inner cavity of the inner cylinder 24 is the lower inner reaction zone 25, wherein the cross-sectional area of the lower inner reaction zone 25 is the same as the lower outer reaction zone 25.
  • the cross-sectional area of the reaction zone 23 is the same; the first aeration assembly is used for aeration in the lower inner reaction zone 25, and the first aeration assembly includes an aeration head 31, a first aeration pipe 32, and a first aeration valve With the first blower 33, the aeration head 31 is located at the bottom of the inner cylinder 24, and the aeration head 31 is connected with the first blower 33 through the first aeration pipe 32, wherein the aeration rate of the aeration head 31 is based on the lower inner reaction zone 25.
  • the dissolved oxygen concentration is adjusted, and the dissolved oxygen concentration is maintained at 1.2-2.3 mg/L.
  • the first aeration pipe 32 is provided with a first aeration valve; the upper casing 40 is provided with a sedimentation tank 42, and the upper Between the body 40 and the settling tank 42 is the upper up-flow zone 41, wherein the cross-sectional area of the upper up-flow zone 41 is 4 times the cross-sectional area of the lower inner reaction zone 25, and the settling tank 42 is provided with a membrane biological reaction tank, Between the sedimentation tank 42 and the membrane biological reaction tank is the upper downflow zone 43, the top of the sedimentation tank is provided with a triangular weir 48, and the bottom of the sedimentation tank 42 is a sedimentation zone 44, wherein the sedimentation zone 44 is conical, and the bottom of the sedimentation tank 42 passes through a return pipe 60 is communicated with the outer cylinder 21, wherein the return pipe 60 is provided with a return valve (not shown in the figure), and the return flow can be controlled by adjusting the return valve, and the height of the connection between the return pipe 60 and the outer cylinder 21 does not exceed the outer
  • the membrane bioreactor includes a membrane pond body 45, and the membrane pond body 45 is composed of perforated plates, wherein the part of the bottom of the membrane pond body in contact with the nano-aeration disc is not perforated, and the membrane pond body 45 has no perforations.
  • the second aeration module is used to aerate the surface of the membrane module 47, and the second aeration module includes a nano-aeration disc 51, a first Two aeration pipes 52, a second aeration valve and a second blower 53, the nano-aeration disk 51 is located below the membrane module 47, and the nano-aeration disk 51 is connected to the second blower 53 through the second aeration pipe 52, wherein the nano-aeration disk 51 is connected to the second blower 53 through the second aeration pipe 52.
  • the aeration rate of the aeration plate 51 is 0.25-0.5 m 3 /h ⁇ m 2 membrane area
  • the second aeration valve is provided on the second aeration pipe 52
  • one end of the water outlet pipe 70 is connected to the inner part of the membrane module 47 .
  • the cavity is communicated, and the other end is communicated with the clear water pool 80, and the outlet pipe 70 is provided with an outlet pump.
  • the inlet water pump, the outlet water pump, the first blower 33 and the second blower 53 are all electrically connected to the automatic controller 90; in order to enable the device to have a backwash function, the outlet water pump is set to be bidirectional
  • the bottom of the outer cylinder 21 is also provided with a mud discharge port 22 that communicates with a mud discharge pipe, and a mud discharge valve (not shown in the figure) is provided on the mud discharge pipe.
  • the operation cycle is set as T on the automatic controller 90.
  • the inlet water pump and the outlet water pump are turned on, and the sludge discharge valve is closed.
  • the sewage enters the lower outer reaction zone 23 through the water inlet pipe 10, and the first blower 33 is turned on.
  • An aeration valve adjusts the amount of aeration. Under the action of air lift, the influent sewage enters the lower inner reaction zone 25 and ascends upward.
  • the area increases, the flow velocity slows down, the granular sludge settles to the lower outer reaction zone 23, and the bubbles aggregate into large bubbles to drive the sewage containing the flocculent sludge to continue to rise, and after rising to the top of the upper upflow zone 41, the bubbles are released,
  • the sewage containing flocculent sludge overflows into the upper downflow zone 43 through the triangular weir 48, and most of the flocculent sludge in the sewage settles into the sedimentation zone 44 and returns to the lower outer reaction zone 23 through the return pipe 60, Under the action of air stripping at the bottom of the lower outer reaction zone 23, the lower outer reaction zone 23 and the lower inner reaction zone 25 form a cycle, and the sewage from which most of the flocculent sludge is separated passes through the membrane tank body 45 and enters the membrane biological reaction zone 46,
  • the second blower 53 is turned on.
  • the membrane module 47 vibrates to reduce membrane pollution.
  • the pollutants and a small amount of flocculent sludge are trapped outside the membrane, and the effluent flows into the clear water tank 80.
  • the inlet water pump and the first blower 33 are turned off, and the sludge discharge valve is opened.
  • the outlet water pump is switched to the rotation direction, and water is pumped from the clean water tank 80 to carry out the membrane assembly 47. Backwashing, the mud is discharged through the mud discharge port during backwashing.
  • the above method is used to treat sewage, wherein the COD concentration of the raw water is 200mg/L, the ammonia nitrogen concentration is 30mg/L, the total nitrogen concentration is 40mg/L, and the total phosphorus concentration is 5mg/L.
  • the membrane bioreactor adopts PVDF hollow fiber. membrane with a membrane area of 2m 2 .
  • the initial value of the aeration volume of the first blower is 5L/min, which is adjusted according to the influent concentration and dissolved oxygen concentration to keep the dissolved oxygen concentration at about 2.0mg/L.
  • the aeration volume of the second blower is 15L/min, which provides the flushing air volume for the membrane module 47 .
  • the ammonia nitrogen in the effluent is less than 1mg/L, the total nitrogen is less than 10mg/L, and the total residence time is 6h. It can be seen that, without adding a carbon source, the sewage can be treated to the quasi-surface IV (except total nitrogen) standard by using the device of the present invention.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种双曝气好氧颗粒污泥-膜生物反应器耦合装置及其应用,属于污水处理技术领域。本装置包括进水管(10)、外筒(21)、内筒(24)、第一曝气组件、上壳体(40)、沉降槽(42)、膜池本体(45)、第二曝气组件、出水管(70);外筒(21)与内筒(24)之间为下部外反应区(23),内筒(24)内腔为下部内反应区(25);第一曝气组件用于向下部内反应区(25)内曝气;上壳体(40)与沉降槽(42)之间为上部升流区(41),沉降槽(42)与膜生物反应池之间为上部降流区(43),沉降槽(42)底部为沉淀区(44),沉降槽(42)底部通过回流管(60)与外筒(21)相连;膜池本体(45)由多孔板组成,膜池本体(45)内设有膜组件(47);第二曝气组件用于对膜组件(47)表面进行曝气冲刷,出水管(70)的两端分别与膜组件(47)的内腔和清水池(80)相连通。本装置可充分保证好氧颗粒污泥和MBR膜组件(47)的不同曝气强度和曝气量需求。

Description

双曝气好氧颗粒污泥-膜生物反应器耦合装置及其应用 技术领域
本发明涉及一种双曝气好氧颗粒污泥-膜生物反应器耦合装置及其应用,属于污水处理技术领域。
背景技术
伴随着城市化的发展及人口密集程度加剧,生活污水大量排放到自然水体,引起水环境质量恶化,尤其是生活污水中氮磷的超量排放导致水体严重缺氧,导致水生生态环境破坏,也是城市黑臭水体的重要诱因。近年来污水处理技术不断发展,在传统活性污泥法基础上,A2/O、SBR、氧化沟及其改良工艺得到广泛应用。为了适应不断提高的污水处理标准,膜生物反应器(MBR)工艺在膜材料的发展基础上,凭借良好的出水水质、节省占地面积等优势,逐渐成为了污水处理主流工艺之一。
MBR工艺能耗高,容易产生污堵,需要定期更换膜组件,一直是该工艺应用过程中不可避免的问题。一般膜池采用高浓度、低负荷运行方式,配合采用大曝气量冲刷膜丝来减少胞外聚合物(EPS)等物质对膜孔的污堵,也需要高压泵来提供跨膜压差,因此MBR工艺能耗较高的原因在于减少膜孔污堵的曝气冲刷措施以及提供压差的高压泵。在MBR膜污染有研究中,一般会从材料方面开发抗污染性能更好的膜材。随着好氧颗粒污泥工艺的不断成熟,给MBR膜污染控制有研究提供了新的方向。
好氧颗粒污泥工艺被认为是最有前途的废水生物处理技术之一,因其密实的颗粒结构,同时具备去除有机物、脱氮除磷的功能,其表面产生的EPS明显少于絮状污泥,如将MBR膜组件置于好氧颗粒污泥的混合液中,必将大幅减少膜孔的污堵。同时,由于好氧颗粒污泥工艺仍然需要二次沉淀来完成泥水分离,由MBR膜取代二沉池,出水水质更优,二者可优势互补,达到降低膜污染,提高出水水质的目的。
但在好氧颗粒污泥工艺的应用过程中仍然存在培养周期长、长期运行稳定性难以保证等难题,由于MBR工艺需要大曝气量来冲刷膜丝,好氧颗粒污泥在较高的曝气强度下容易破碎,在好氧颗粒污泥与MBR工艺的组合工艺中也存在曝 气量需求不一致的问题,因此开发一种新型的好氧颗粒污泥-膜生物反应器耦合装置具有重要意义。
发明内容
针对现有技术中的问题,本发明提供一种双曝气好氧颗粒污泥-膜生物反应器耦合装置及其应用,本发明装置通过巧妙的设计将好氧颗粒污泥与MBR反应器耦合,不仅可以充分利用好氧颗粒污泥高效去除污水中的有机污染物,降低MBR的膜污染,而且还可以使好氧颗粒污泥与膜生物反应区完全分开,互不影响,充分保证好氧颗粒污泥和MBR膜组件的不同曝气强度和曝气量需求,解决了好氧颗粒污泥与MBR工艺组合时的曝气强度需求不一致的问题。
为实现以上技术目的,本发明的技术方案是:
一种双曝气好氧颗粒污泥-膜生物反应器耦合装置,包括进水管、下壳体、第一曝气组件、上壳体、沉降槽、膜生物反应池、第二曝气组件、出水管;所述进水管上设有进水泵;所述下壳体包括外筒和套设在外筒内的内筒,外筒顶部开口,外筒底部与进水管相连通,外筒与内筒之间为下部外反应区,内筒顶部和底部均开口,内筒内腔为下部内反应区;所述第一曝气组件用于向下部内反应区内曝气;所述上壳体内设有沉降槽,上壳体与沉降槽之间为上部升流区,所述沉降槽内设有膜生物反应池,沉降槽与膜生物反应池之间为上部降流区,沉降槽底部为沉淀区,沉降槽底部通过回流管与外筒相连通;所述膜生物反应池包括膜池本体,膜池本体由多孔板组成,膜池本体内设有膜组件;所述第二曝气组件用于对膜组件表面进行曝气冲刷,所述出水管的一端与膜组件的内腔相连通,另一端与清水池相连通,出水管上设有出水泵。
作为优选方案,所述第一曝气组件包括曝气头、第一曝气管、第一曝气阀门和第一鼓风机,曝气头位于内筒底部,曝气头通过第一曝气管与第一鼓风机相连,第一曝气管上设有第一曝气阀门。
作为进一步优选方案,所述曝气头的曝气速率根据下部内反应区中的溶解氧浓度进行调整,溶解氧浓度保持在1.2~2.3mg/L。
作为优选方案,所述第二曝气组件包括纳米曝气盘、第二曝气管、第二曝气阀门和第二鼓风机,纳米曝气盘位于膜组件下方,纳米曝气盘通过第二曝气管与第二鼓风机相连,第二曝气管上设有第二曝气阀门。
作为进一步优选方案,所述纳米曝气盘的曝气速率在0.25~0.5m 3/h·m 2膜面积。
作为优选方案,所述耦合装置还包括自动控制器,进水泵、出水泵、第一鼓风机和第二鼓风机均与自动控制器电连接。
作为优选方案,所述出水泵设置为双向离心泵,所述外筒底部还设有与排泥管相连通的排泥口,排泥管上设有排泥阀门。
作为优选方案,所述沉降槽顶部设有三角堰。
作为优选方案,所述回流管与外筒连接处的高度不超过外筒高度的1/3,上部升流区的截面积是下部内反应区截面积的4倍,下部内反应区的截面积与下部外反应区的截面积相同。
采用上述耦合装置在污水处理上的应用,具体步骤为:开启进水泵、出水泵,污水经进水管进入下部外反应区中,在第一曝气组件的作用下,污水进水进入下部内反应区内上行,当含有颗粒污泥和絮状污泥的污水上行至上部升流区后,过流面积增大,水流流速放缓,颗粒污泥沉降至下部外反应区,气泡聚合成大气泡带动含有絮状污泥的污水继续上升,上升至上部升流区的顶部后,气泡释放,含有絮状污泥的污水溢流进入上部降流区,污水中的大部分絮状污泥沉降至沉淀区内并通过回流管回流降落至下部外反应区中,在下部外反应区底部气提的作用下,下部外反应区与下部内反应区形成循环,分离出大部分絮状污泥的污水穿过膜池本体进入膜生物反应区,在第二曝气组件的曝气作用下,膜组件发生抖动以减少膜污染,在出水泵的作用下,污水透过膜组件中的膜丝完成出水,污水中的污染物及少量絮状污泥被截留在膜丝外,出水流入清水池中。
从以上描述可以看出,本发明具备以下优点:
(1)本发明装置通过巧妙的设计将好氧颗粒污泥与MBR反应器耦合,不仅可以充分利用好氧颗粒污泥高效去除污水中的有机污染物,降低MBR的膜污染,还可以使好氧颗粒污泥与膜生物反应区完全分开,互不影响,充分保证好氧颗粒污泥和MBR膜组件的不同曝气强度、曝气量需求和各自的运行工艺条件。
(2)本发明装置通过设置第一曝气组件和第二曝气组件进行双曝气,其中,第一曝气组件可以提供好氧颗粒污泥形成和反应所需的氧气及水力剪切力,第二 曝气组件可以提供膜冲刷所需的较大的曝气强度,强化膜抖动和冲刷,缓解膜污染,从而可以避免好氧颗粒污泥与膜生物反应器在曝气强度方面的差异。
(3)本发明可以实现下部气提式反应区(下部外反应区和内反应区)的连续运行。
(4)相比现有技术中将好氧颗粒污泥与膜生物反应器串联拼接的组合方式,本发明通过结构上的创新实现了两种处理工艺组合在水力上的连续性,构成了一体化的耦合装置,且更加节省占地。
附图说明
图1是本发明的结构示意图;
图2是本发明的顶视图;
图3为沉降槽的侧视图;
附图标记:
10.进水管、20.下壳体、21.外筒、22.排泥口、23.下部外反应区、24.内筒、25.下部内反应区、31.曝气头、32.第一曝气管、33.第一鼓风机、40.上壳体、41.上部升流区、42.沉降槽、43.上部降流区、44.沉淀区、45.膜池本体、46.膜生物反应区、47.膜组件、48.三角堰、51.纳米曝气盘、52.第二曝气管、53.第二鼓风机、60.回流管、70.出水管、80.清水池、90.自动控制器
具体实施方式
结合图1至图3,详细说明本发明的一个具体实施例,但不对本发明的权利要求做任何限定。
如图1至图3所示,一种双曝气好氧颗粒污泥-膜生物反应器耦合装置,包括进水管10、下壳体20、第一曝气组件、上壳体40、沉降槽42、膜生物反应池、第二曝气组件、出水管70;
所述进水管10上设有进水泵;所述下壳体20包括外筒21和套设在外筒21内的内筒24,外筒21顶部开口,外筒21底部与进水管10相连通,外筒21与内筒24之间为下部外反应区23,内筒24顶部和底部均开口,内筒24内腔为下部内反应区25,其中,下部内反应区25的截面积与下部外反应区23的截面积相同;所述第一曝气组件用于向下部内反应区25内曝气,第一曝气组件包括曝气头31、第一曝气管32、第一曝气阀门和第一鼓风机33,曝气头31位于内筒 24底部,曝气头31通过第一曝气管32与第一鼓风机33相连,其中,曝气头31的曝气速率根据下部内反应区25中的溶解氧浓度进行调整,溶解氧浓度保持在1.2~2.3mg/L,第一曝气管32上设有第一曝气阀门;所述上壳体40内设有沉降槽42,上壳体40与沉降槽42之间为上部升流区41,其中,上部升流区41的截面积是下部内反应区25截面积的4倍,所述沉降槽42内设有膜生物反应池,沉降槽42与膜生物反应池之间为上部降流区43,沉降槽顶部设有三角堰48,沉降槽42底部为沉淀区44,其中,沉淀区44为锥形,沉降槽42底部通过回流管60与外筒21相连通,其中,回流管60上设有回流阀(图中未示出),通过调节回流阀可控制回流量,回流管60与外筒21连接处的高度不超过外筒21高度的1/3;所述膜生物反应池包括膜池本体45,膜池本体45由多孔板组成,其中,膜池本体底部与纳米曝气盘接触的部分没有穿孔,膜池本体45内为膜生物反应区46,膜池本体45内设有膜组件47;所述第二曝气组件用于对膜组件47表面进行曝气冲刷,第二曝气组件包括纳米曝气盘51、第二曝气管52、第二曝气阀门和第二鼓风机53,纳米曝气盘51位于膜组件47下方,纳米曝气盘51通过第二曝气管52与第二鼓风机53相连,其中,纳米曝气盘51的曝气速率在0.25~0.5m 3/h·m 2膜面积,第二曝气管52上设有第二曝气阀门,所述出水管70的一端与膜组件47的内腔相连通,另一端与清水池80相连通,出水管70上设有出水泵。
其中,为了实现装置的自动化运行,所述进水泵、出水泵、第一鼓风机33和第二鼓风机53均与自动控制器90电连接;为了使装置具有反冲洗功能,所述出水泵设置为双向离心泵,所述外筒21底部还设有与排泥管相连通的排泥口22,排泥管上设有排泥阀门(图中未示出)。
采用上述装置对污水进行处理的过程如下:
在自动控制器90上设置运行周期为T,在周期开始时,开启进水泵、出水泵,关闭排泥阀,污水经进水管10进入下部外反应区23中,开启第一鼓风机33,通过第一曝气阀门调整曝气量,在气提作用下,污水进水进入下部内反应区25内上行,当含有颗粒污泥和絮状污泥的污水上行至上部升流区41后,过流面积增大,水流流速放缓,颗粒污泥沉降至下部外反应区23,气泡聚合成大气泡带动含有絮状污泥的污水继续上升,上升至上部升流区41的顶部后,气泡释放,含有絮状污泥的污水经三角堰48溢流进入上部降流区43,污水中的大部分絮状污泥沉降至沉淀区44内并通过回流管60回流降落至下部外反应区23中,在下 部外反应区23底部气提的作用下,下部外反应区23与下部内反应区25形成循环,分离出大部分絮状污泥的污水穿过膜池本体45进入膜生物反应区46,开启第二鼓风机53,在纳米曝气盘51的曝气作用下,膜组件47发生抖动以减少膜污染,在出水泵的作用下,污水透过膜组件47中的膜丝完成出水,污水中的污染物及少量絮状污泥被截留在膜丝外,出水流入清水池80中。
周期结束后,关闭进水泵、第一鼓风机33,打开排泥阀,待膜生物反应区46内的液面降低后,将出水泵切换转动方向,从清水池80中抽清水对膜组件47进行反洗,反洗时通过排泥口进行排泥。
采用上述方法对污水进行处理,其中,原水的COD浓度为200mg/L,氨氮浓度为30mg/L,总氮浓度为40mg/L,总磷浓度为5mg/L,膜生物反应器采用PVDF中空纤维膜,膜面积为2m 2。鼓风机一的曝气量初始值为5L/min,根据进水浓度和溶解氧浓度调整,保持溶解氧浓度在2.0mg/L左右。鼓风机二的曝气量为15L/min,为膜组件47提供冲洗风量。装置稳定运行30天后,出水氨氮稳定低于1mg/L,总氮稳定低于10mg/L,总的停留时间在6h。由此可知,在不投加碳源的情况下,采用本发明装置可将污水处理达到准地表IV类(总氮除外)标准。
可以理解的是,以上关于本发明的具体描述,仅用于说明本发明而并非受限于本发明实施例所描述的技术方案。本领域的普通技术人员应当理解,仍然可以对本发明进行修改或等同替换,以达到相同的技术效果;只要满足使用需要,都在本发明的保护范围之内。

Claims (10)

  1. 一种双曝气好氧颗粒污泥-膜生物反应器耦合装置,其特征在于,包括进水管、下壳体、第一曝气组件、上壳体、沉降槽、膜生物反应池、第二曝气组件、出水管;所述进水管上设有进水泵;所述下壳体包括外筒和套设在外筒内的内筒,外筒顶部开口,外筒底部与进水管相连通,外筒与内筒之间为下部外反应区,内筒顶部和底部均开口,内筒内腔为下部内反应区;所述第一曝气组件用于向下部内反应区内曝气;所述上壳体内设有沉降槽,上壳体与沉降槽之间为上部升流区,所述沉降槽内设有膜生物反应池,沉降槽与膜生物反应池之间为上部降流区,沉降槽底部为沉淀区,沉降槽底部通过回流管与外筒相连通;所述膜生物反应池包括膜池本体,膜池本体由多孔板组成,膜池本体内设有膜组件;所述第二曝气组件用于对膜组件表面进行曝气冲刷,所述出水管的一端与膜组件的内腔相连通,另一端与清水池相连通,出水管上设有出水泵。
  2. 如权利要求1所述的耦合装置,其特征在于,所述第一曝气组件包括曝气头、第一曝气管、第一曝气阀门和第一鼓风机,曝气头位于内筒底部,曝气头通过第一曝气管与第一鼓风机相连,第一曝气管上设有第一曝气阀门。
  3. 如权利要求2所述的耦合装置,其特征在于,所述曝气头的曝气速率根据下部内反应区中的溶解氧浓度进行调整,溶解氧浓度保持在1.2~2.3mg/L。
  4. 如权利要求1所述的耦合装置,其特征在于,所述第二曝气组件包括纳米曝气盘、第二曝气管、第二曝气阀门和第二鼓风机,纳米曝气盘位于膜组件下方,纳米曝气盘通过第二曝气管与第二鼓风机相连,第二曝气管上设有第二曝气阀门。
  5. 如权利要求4所述的耦合装置,其特征在于,所述纳米曝气盘的曝气速率在0.25~0.5m 3/h·m 2膜面积。
  6. 如权利要求1所述的耦合装置,其特征在于,还包括自动控制器,进水泵、出水泵、第一鼓风机和第二鼓风机均与自动控制器电连接。
  7. 如权利要求1所述的耦合装置,其特征在于,所述出水泵设置为双向离心泵,所述外筒底部还设有与排泥管相连通的排泥口,排泥管上设有排泥阀门。
  8. 如权利要求1所述的耦合装置,其特征在于,所述沉降槽顶部设有三角堰。
  9. 如权利要求1所述的耦合装置,其特征在于,所述回流管与外筒连接处的高度不超过外筒高度的1/3,所述上部升流区的截面积是下部内反应区截面积的4倍,下部内反应区的截面积与下部外反应区的截面积相同。
  10. 采用权利要求1所述的耦合装置在污水处理上的应用,其特征在于,具体步骤为:开启进水泵、出水泵,污水经进水管进入下部外反应区中,在第一曝气组件的作用下,污水进水进入下部内反应区内上行,当含有颗粒污泥和絮状污泥的污水上行至上部升流区后,过流面积增大,水流流速放缓,颗粒污泥沉降至下部外反应区,气泡聚合成大气泡带动含有絮状污泥的污水继续上升,上升至上部升流区的顶部后,气泡释放,含有絮状污泥的污水溢流进入上部降流区,污水中的大部分絮状污泥沉降至沉淀区内并通过回流管回流降落至下部外反应区中,在下部外反应区底部气提的作用下,下部外反应区与下部内反应区形成循环,分离出大部分絮状污泥的污水穿过膜池本体进入膜生物反应区,在第二曝气组件的曝气作用下,膜组件发生抖动以减少膜污染,在出水泵的作用下,污水透过膜组件中的膜丝完成出水,污水中的污染物及少量絮状污泥被截留在膜丝外,出水流入清水池中。
PCT/CN2020/136847 2020-09-18 2020-12-16 双曝气好氧颗粒污泥-膜生物反应器耦合装置及其应用 WO2022057123A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010987199.7A CN111977786B (zh) 2020-09-18 2020-09-18 双曝气好氧颗粒污泥-膜生物反应器耦合装置及其应用
CN202010987199.7 2020-09-18

Publications (1)

Publication Number Publication Date
WO2022057123A1 true WO2022057123A1 (zh) 2022-03-24

Family

ID=73450837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136847 WO2022057123A1 (zh) 2020-09-18 2020-12-16 双曝气好氧颗粒污泥-膜生物反应器耦合装置及其应用

Country Status (2)

Country Link
CN (1) CN111977786B (zh)
WO (1) WO2022057123A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114890536A (zh) * 2022-04-01 2022-08-12 水木清环(北京)环保科技有限公司 一种处理城市污水自生动态膜生物反应器
CN114920420A (zh) * 2022-04-28 2022-08-19 东南大学 一种处理分散式农村生活污水用移动床生物膜反应器
CN115849556A (zh) * 2022-12-14 2023-03-28 中国石油化工股份有限公司 一种耦合型好氧颗粒污泥批处理反应器
CN116143293A (zh) * 2023-03-31 2023-05-23 重庆大学 一种零能耗分隔式菌藻共生环形反应器
CN116589079A (zh) * 2023-04-19 2023-08-15 知和环保科技有限公司 一种利用微纳米气泡培养好氧颗粒污泥及其应用方法
CN117105444A (zh) * 2023-10-25 2023-11-24 广东晋合环境科技有限公司 一种给排水用智能曝气装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111977786B (zh) * 2020-09-18 2021-08-27 广东粤海水务投资有限公司 双曝气好氧颗粒污泥-膜生物反应器耦合装置及其应用
CN112939206A (zh) * 2021-01-28 2021-06-11 南开大学 一种气提双循环-连续流颗粒污泥反应器及采用该反应器处理污水的方法
CN114735903B (zh) * 2022-06-13 2022-09-02 金科环境股份有限公司 一种污水总氮去除装置及其运行方法
CN115304160A (zh) * 2022-07-18 2022-11-08 北京城市排水集团有限责任公司 一种高氨氮废水厌氧氨氧化颗粒污泥快速培养方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1974439A (zh) * 2006-12-07 2007-06-06 江南大学 一种在膜生物反应器中抑制膜污染的方法
CN102838205A (zh) * 2012-08-31 2012-12-26 乐金电子研发中心(上海)有限公司 外置式连续流好氧颗粒污泥膜生物反应器
CN104003513A (zh) * 2014-06-19 2014-08-27 郑州大学 一种好氧颗粒污泥反应池-生物膜污水处理系统
US20150336826A1 (en) * 2012-04-03 2015-11-26 Haskoningdhv Nederland B.V. Hybrid wastewater treatment
CN109231435A (zh) * 2018-10-30 2019-01-18 重庆大学产业技术研究院 一种一体化强化好氧颗粒污泥膜生物反应器系统
CN111977786A (zh) * 2020-09-18 2020-11-24 广东粤海水务投资有限公司 双曝气好氧颗粒污泥-膜生物反应器耦合装置及其应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1935689A (zh) * 2006-10-19 2007-03-28 北京科技大学 气提式内循环膜生物反应器处理污水装置及其方法
CN201065361Y (zh) * 2007-06-12 2008-05-28 山东大学 一体化好氧颗粒污泥膜生物反应器
CN104556550B (zh) * 2014-04-09 2016-06-29 高吁萍 一种高效低能延缓膜污染mbr装置及其方法
WO2017126745A1 (ko) * 2016-01-18 2017-07-27 두산중공업 주식회사 입상 활성 슬러지와 막 생물반응기를 포함하는 수처리 장치 및 이를 사용한 수처리 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1974439A (zh) * 2006-12-07 2007-06-06 江南大学 一种在膜生物反应器中抑制膜污染的方法
US20150336826A1 (en) * 2012-04-03 2015-11-26 Haskoningdhv Nederland B.V. Hybrid wastewater treatment
CN102838205A (zh) * 2012-08-31 2012-12-26 乐金电子研发中心(上海)有限公司 外置式连续流好氧颗粒污泥膜生物反应器
CN104003513A (zh) * 2014-06-19 2014-08-27 郑州大学 一种好氧颗粒污泥反应池-生物膜污水处理系统
CN109231435A (zh) * 2018-10-30 2019-01-18 重庆大学产业技术研究院 一种一体化强化好氧颗粒污泥膜生物反应器系统
CN111977786A (zh) * 2020-09-18 2020-11-24 广东粤海水务投资有限公司 双曝气好氧颗粒污泥-膜生物反应器耦合装置及其应用

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114890536A (zh) * 2022-04-01 2022-08-12 水木清环(北京)环保科技有限公司 一种处理城市污水自生动态膜生物反应器
CN114920420A (zh) * 2022-04-28 2022-08-19 东南大学 一种处理分散式农村生活污水用移动床生物膜反应器
CN115849556A (zh) * 2022-12-14 2023-03-28 中国石油化工股份有限公司 一种耦合型好氧颗粒污泥批处理反应器
CN116143293A (zh) * 2023-03-31 2023-05-23 重庆大学 一种零能耗分隔式菌藻共生环形反应器
CN116589079A (zh) * 2023-04-19 2023-08-15 知和环保科技有限公司 一种利用微纳米气泡培养好氧颗粒污泥及其应用方法
CN117105444A (zh) * 2023-10-25 2023-11-24 广东晋合环境科技有限公司 一种给排水用智能曝气装置
CN117105444B (zh) * 2023-10-25 2024-01-12 广东晋合环境科技有限公司 一种给排水用智能曝气装置

Also Published As

Publication number Publication date
CN111977786A (zh) 2020-11-24
CN111977786B (zh) 2021-08-27

Similar Documents

Publication Publication Date Title
WO2022057123A1 (zh) 双曝气好氧颗粒污泥-膜生物反应器耦合装置及其应用
CN102553450B (zh) 一种预防分置式mbr平板膜污染的方法
CN101033100A (zh) 复合流曝气生物滤池处理废水的方法及装置
CN108002660A (zh) 深度废水处理系统以及污水处理方法
CN100567172C (zh) 斜板分置式膜生物反应器
CN202881057U (zh) 一种多功能污水处理装置
CN211111605U (zh) 一种缓解膜污染的膜生物反应装置
CN101781055A (zh) 造纸废水的处理方法
CN201003005Y (zh) 复合流曝气生物滤池处理废水的装置
CN103626291B (zh) 内循环式膜生物反应器
CN216614156U (zh) 一种上滤板气浮升降式曝气生物滤池
CN206985970U (zh) 一种利用粉末活性炭改善生化及深度处理污水的系统
CN109650652A (zh) 生化池mbbr工艺耦合反硝化深床滤池脱氮除磷系统及方法
CN209583901U (zh) 生化池mbbr工艺耦合反硝化深床滤池脱氮除磷系统
CN204162573U (zh) 一种污水处理系统
CN209815900U (zh) 一种多功能景观水体的治理装置反冲洗过滤系统
CN208856982U (zh) 一种节能mbr组件
CN201172631Y (zh) 一种用于污水处理mbr工艺的大通量低压膜组件
CN100545096C (zh) 用于污水处理mbr工艺的大通量低压膜组件
CN205045882U (zh) 一种mbr平板膜处理系统
CN116495899B (zh) 一种膜软化及除硬除硅装置
CN103896454B (zh) 水处理集成装置
CN107777840A (zh) 一种处理地下水中苯系物的方法
CN217247007U (zh) 一种交替循环式过滤池
CN220413049U (zh) 一种续批式罐型膜生物反应器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20953978

Country of ref document: EP

Kind code of ref document: A1