WO2022056977A1 - 一种直线电机推力波动的抑制方法、相关设备和介质 - Google Patents

一种直线电机推力波动的抑制方法、相关设备和介质 Download PDF

Info

Publication number
WO2022056977A1
WO2022056977A1 PCT/CN2020/121048 CN2020121048W WO2022056977A1 WO 2022056977 A1 WO2022056977 A1 WO 2022056977A1 CN 2020121048 W CN2020121048 W CN 2020121048W WO 2022056977 A1 WO2022056977 A1 WO 2022056977A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
linear motor
mapping relationship
position data
test
Prior art date
Application number
PCT/CN2020/121048
Other languages
English (en)
French (fr)
Inventor
陈敏
郭顺
王洪兴
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(南京)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2022056977A1 publication Critical patent/WO2022056977A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors

Definitions

  • the invention relates to the technical field of linear motors, in particular to a method for suppressing thrust fluctuations of linear motors, related equipment and media.
  • a linear motor is a transmission device that directly converts electrical energy into linear motion mechanical energy without any intermediate conversion mechanism. It can be regarded as a rotating electrical machine which is cut radially and developed into a plane.
  • the thrust fluctuation of the linear motor is one of the main defects in its application, because the thrust fluctuation is the cause of the motor vibration and noise, especially when running at low speed, it may also cause resonance and affect the use effect.
  • a method for suppressing thrust fluctuation of a linear motor including:
  • mapping relationship between the positioning detection current and the position data corresponding to the positioning force of the linear motor includes that the mover of the linear motor is at different positions under the positioning force.
  • mapping relationship between the test detection current caused by the test force and the position data the mapping relationship between the thrust of the linear motor and the operating current, and the mapping relationship between the positioning detection current and the position data corresponding to the positioning force, it is obtained by The mapping relationship between the current and the position data corresponding to the thrust fluctuation caused by the test current value;
  • mapping relationship between the current and the position data corresponding to the thrust fluctuation caused by the test current value obtain the mapping relationship between the test compensation current and the position data corresponding to the thrust fluctuation caused by the preset operating current value;
  • mapping relationship between the positioning detection current corresponding to the positioning force and the position data and the mapping relationship between the test compensation current and the position data corresponding to the thrust fluctuation caused by the preset operating current value are stored in the control system of the linear motor , so as to calculate the compensation value of the operating current proportional to the thrust fluctuation of the linear motor, so as to suppress the thrust fluctuation.
  • obtaining the mapping relationship between the positioning detection current corresponding to the positioning force of the linear motor and the position data includes:
  • the mover of the linear motor is controlled to move at a constant speed, the current values of the linear motor corresponding to the mover at different positions during the movement are collected, and the corresponding positioning force is obtained.
  • the mapping relationship between the positioning detection current and the position data is obtained.
  • the acquisition of the mapping relationship between the test detection current and the position data caused by the test force under the horizontal installation of the linear motor includes:
  • the mover of the linear motor is controlled to move at a constant speed under the action of the load with the test force, and the straight lines corresponding to different positions of the mover during the movement are collected.
  • the current value of the motor is obtained, and the mapping relationship between the test detection current caused by the test force and the position data is obtained.
  • mapping relationship between the test detection current and position data caused by the test force, the mapping relationship between the thrust of the linear motor and the operating current, and the positioning detection current and position data corresponding to the positioning force is obtained, including:
  • the test current value corresponding to the test force is obtained
  • the test detection current corresponding to each position data is subtracted from the positioning detection current.
  • the current and the test current value corresponding to the test force obtain each thrust fluctuation current value corresponding to the each position data;
  • mapping relationship between the respective thrust fluctuation current values and the respective position data is used as the mapping relationship between the current and the position data corresponding to the thrust fluctuation caused by the test current value.
  • mapping relationship between the positioning detection current corresponding to the positioning force and the position data and the mapping relationship between the test compensation current and the position data corresponding to the thrust fluctuation caused by the preset operating current value are stored in the database.
  • the method further includes:
  • mapping relationship between the positioning detection current corresponding to the positioning force and the position data and the mapping relationship between the test compensation current and the position data corresponding to the thrust fluctuation caused by the preset operating current value determine the corresponding value of the preset operating current.
  • the mapping relationship between the compensation current and the position data according to the mapping relationship between the compensation current and the position data corresponding to the preset operating current value, the current compensation value corresponding to the operating current value is obtained;
  • the operating current of the linear motor is controlled to be adjusted to a target current value, and the target current value is the sum of the current compensation value and the operating current value.
  • mapping relationship between the positioning detection current corresponding to the positioning force and the position data and the mapping relationship between the test compensation current and the position data corresponding to the thrust fluctuation caused by the preset operating current value determine the predetermined value.
  • Set the mapping relationship between the compensation current corresponding to the operating current value and the position data including:
  • each position data under different operating currents is The corresponding test compensation current is added to the positioning detection current to obtain each compensation current value corresponding to each position data;
  • mapping relationship between the respective compensation current values and the respective position data is used as the mapping relationship between the compensation current corresponding to the preset operating current value and the position data.
  • a method for suppressing thrust fluctuation of a linear motor including:
  • test current Ia the test detection current value I′ aX and the positioning compensation current value I0x
  • obtain the positioning detection current I0x corresponding to the positioning force F0 of the linear motor at different positions x of the mover of the linear motor including:
  • a driving force F 0 ′ equal to and opposite to the positioning force F0 is applied to the linear motor, the mover of the linear motor is controlled to move at a constant speed, and the positioning detection current I0x corresponding to the mover at different positions x is detected.
  • a device for suppressing thrust fluctuation of a linear motor comprising:
  • the acquisition module is used to acquire the mapping relationship between the positioning detection current and the position data corresponding to the positioning force of the linear motor, and the mapping relationship between the positioning detection current corresponding to the positioning force and the position data includes the positional force of the linear motor under the positioning force.
  • the acquisition module is also used to acquire the mapping relationship between the test detection current and the position data caused by the test force when the linear motor is installed horizontally; acquire the mapping relationship between the thrust of the linear motor and the operating current;
  • Processing module for:
  • mapping relationship between the test detection current caused by the test force and the position data the mapping relationship between the thrust of the linear motor and the operating current, and the mapping relationship between the positioning detection current and the position data corresponding to the positioning force, it is obtained by The mapping relationship between the current and the position data corresponding to the thrust fluctuation caused by the test current value;
  • mapping relationship between the current and the position data corresponding to the thrust fluctuation caused by the test current value obtain the mapping relationship between the test compensation current and the position data corresponding to the thrust fluctuation caused by the preset operating current value;
  • the processing module is further configured to store the mapping relationship between the positioning detection current corresponding to the positioning force and the position data and the mapping relationship between the test compensation current and the position data corresponding to the thrust fluctuation caused by the preset operating current value.
  • the control system of the linear motor is used to calculate the compensation value of the operating current proportional to the thrust fluctuation of the linear motor, so as to suppress the thrust fluctuation.
  • a linear motor including a linear motor component and a control system, wherein the control system includes the reference data obtained as described in the first aspect and any possible implementation manner thereof, including the positioning detection corresponding to the positioning force
  • the control system is used to calculate the thrust with the linear motor based on the reference data
  • the compensation value of the operating current fluctuates proportionally, and the compensation value is used to compensate the operating current to suppress the thrust fluctuation.
  • a computer storage medium having stored one or more instructions, the one or more instructions being adapted to be loaded and executed by a processor as described above in the first aspect and any one thereof Steps of possible implementations.
  • the beneficial effect of the present invention is: by testing the mapping relationship between the current and the position data when the linear motor is installed horizontally, under no-load and under the load of force, the current and position data can be converted into the current and position data under a specific current.
  • the mapping relationship is obtained by interpolating and compensating the mapping relationship to obtain the mapping relationship between the test compensation current and the position data corresponding to the thrust fluctuation caused by the preset operating current value, and the mapping relationship between the positioning detection current corresponding to the positioning force and the position data is the same as the above
  • the mapping relationship between the test compensation current and the position data corresponding to the thrust fluctuation caused by the preset operating current value is stored in the control system of the linear motor, and the mapping relationship can be used to compensate any operating current when the linear motor is working, so that the final linear The fluctuation of motor output thrust is more comprehensively and effectively suppressed.
  • FIG. 1 is a schematic flowchart of a method for suppressing thrust fluctuation of a linear motor provided by the present invention
  • FIG. 2 is a schematic flowchart of another method for suppressing thrust fluctuation of a linear motor provided by the present invention
  • FIG. 3 is a schematic structural diagram of a device for suppressing thrust fluctuation of a linear motor provided by the present invention.
  • the linear motor mentioned in the embodiments of the present invention is a transmission device that directly converts electrical energy into linear motion mechanical energy without any intermediate conversion mechanism. It can be regarded as a rotating electrical machine which is cut radially and developed into a plane. Linear motors are also called linear motors, linear motors, linear motors, push rod motors, etc.
  • the side derived from the stator is called the primary
  • the side derived from the mover (rotor) is called the secondary.
  • the primary and secondary are manufactured to different lengths to ensure that the coupling between the primary and secondary remains unchanged over the required travel range.
  • Linear motors can be either short primary and long secondary, or long primary and short secondary. Considering the manufacturing cost and operating cost, take a linear induction motor as an example: when the primary winding is connected to the AC power supply, a traveling wave magnetic field will be generated in the air gap, and the secondary will induce electromotive force and generate current under the cutting of the traveling wave magnetic field. , the current interacts with the magnetic field in the air gap to generate electromagnetic thrust.
  • FIG. 1 is a schematic flowchart of a method for suppressing thrust fluctuation of a linear motor provided by an embodiment of the present invention.
  • the method may include:
  • mapping relationship between the positioning detection current corresponding to the positioning force of the linear motor and the position data is obtained, and the mapping relationship between the positioning detection current corresponding to the positioning force and the position data includes the position corresponding to the mover of the linear motor at different positions under the positioning force. current value.
  • the executive body of the embodiment of the present invention may be a linear motor thrust fluctuation suppression device, and the linear motor thrust fluctuation suppression device can suppress the thrust fluctuation generated by the linear motor, or in other words, can establish a thrust fluctuation suppression device for the linear motor.
  • the device for suppressing the thrust fluctuation of the linear motor may be a system including a linear motor, or may be an electronic device, and the electronic device may be a terminal device, including but not limited to laptop computers, tablet computers, etc. such as other portable devices or desktop computers.
  • the mapping relationship between the positioning detection current corresponding to the positioning force of the linear motor and the position data can be expressed as a positioning force curve of the linear motor, which can be obtained according to actual test statistics or simulation tests.
  • the foregoing step 101 may specifically include:
  • the mover of the linear motor is controlled to move at a constant speed, the current values of the linear motor corresponding to the mover at different positions during the movement are collected, and the positioning detection current corresponding to the positioning force is obtained. Mapping relationship with location data.
  • the linear motor when the linear motor is installed horizontally and has no load, the linear motor can be controlled to move the corresponding position stroke at a constant speed and slowly, and its current and position information can be detected during this process.
  • the detected current value is exactly
  • the current value corresponding to the positioning force at a specific position (X) is obtained, namely I 0X .
  • the relationship between the thrust and the current of the linear motor is a kind of characteristic parameter of the linear motor, which can be obtained by simulation according to the test or the information stored in the linear motor, which is not limited here.
  • the above-mentioned acquisition of the mapping relationship between the test detection current and the position data caused by the test force under the horizontal installation of the linear motor includes:
  • the mover of the linear motor is controlled to move at a constant speed under the action of the load with the test force, and the data of the linear motor corresponding to the mover at different positions during the moving process are collected.
  • Current value obtain the above-mentioned mapping relationship between the test detection current caused by the test force and the position data.
  • the moving speed of the mover at this time is the same as the moving speed of the mover in step 101 .
  • the above-mentioned test force can be set as required, for example, a load with a specific force Fa can be used for testing.
  • a constant force load F a is added to the above-mentioned linear motor, and then the linear motor is controlled to move the corresponding position stroke at a constant speed and slowly, and its current and position information are detected during this process, and the detected current value is just right I' aX is obtained as the current value corresponding to the test force at a specific position (X).
  • mapping relationship between the test detection current and the position data caused by the test force the mapping relationship between the thrust of the linear motor and the operating current, and the mapping relationship between the positioning detection current and the position data corresponding to the positioning force, obtain the mapping relationship between the test current and the position data.
  • the mapping relationship between the current and the position data corresponding to the thrust fluctuation caused by the current value is obtained.
  • the current value corresponding to the thrust fluctuation caused by a specific current can be deduced, so that the linear motor can be subsequently operated at any current at any current. Thrust fluctuation suppression.
  • the above step 103 specifically includes:
  • the test current value corresponding to the test force is obtained
  • the test detection current corresponding to each position data is subtracted from the positioning detection current and the position data.
  • the test current value corresponding to the test force is obtained, and each thrust fluctuation current value corresponding to the above-mentioned each position data is obtained;
  • mapping relationship between the respective thrust fluctuation current values and the respective position data is used as the mapping relationship between the current corresponding to the thrust fluctuation caused by the test current value and the position data.
  • the test force is used to simulate the thrust in the linear motor in the experimental stage. Therefore, the test current value corresponding to the test force can be obtained according to the mapping relationship between the thrust of the linear motor and the operating current, and then deduced.
  • the influence of the thrust fluctuation caused by the positioning force needs to be removed, so as to obtain the mapping relationship between the current and the position data corresponding to the thrust fluctuation caused only by the specific test current value.
  • the test current value I a corresponding to the thrust Fa is obtained by calculation.
  • mapping relationship between the current and position data corresponding to the thrust fluctuation caused by the test current value obtain the mapping relationship between the test compensation current and the position data corresponding to the thrust fluctuation caused by the preset operating current value.
  • the current corresponding to the thrust fluctuation caused by the operating current can be determined Mapping relationship with location data.
  • the compensation value of the operating current proportional to the thrust fluctuation of the linear motor is calculated to suppress the thrust fluctuation.
  • mapping relationship between the positioning detection current corresponding to the positioning force and the position data, and the mapping relationship between the test compensation current and the position data corresponding to the thrust fluctuation caused by the preset operating current value can be integrated into the preset operating current value.
  • the mapping relationship between the corresponding compensation current and the position data that is, including the current compensation for the thrust fluctuation caused by the positioning force and the operating current, is stored in the control system of the linear motor.
  • the present invention converts the mapping relationship between the current and the position data under a specific current by testing the mapping relationship between the current and the position data when the linear motor is installed horizontally, under no-load and under the load of force, and converts it into the mapping relationship between the current and the position data under a specific current.
  • the mapping relationship interpolation compensation obtains the mapping relationship between the test compensation current and the position data corresponding to the thrust fluctuation caused by the preset operating current value, and the mapping relationship between the positioning detection current corresponding to the positioning force and the position data and the above-mentioned preset operating current
  • the mapping relationship between the test compensation current and the position data corresponding to the thrust fluctuation caused by the linear motor is stored in the control system of the linear motor, and the compensation value of the operating current proportional to the thrust fluctuation of the linear motor can be calculated, which can be used when the linear motor is working.
  • the mapping relationship compensates for any operating current, and at the same time suppresses the thrust fluctuation caused by the positioning force and the thrust fluctuation caused by the operating current, so that the final linear motor output thrust fluctuation can be suppressed more comprehensively and effectively.
  • FIG. 2 is a schematic flowchart of another method for suppressing thrust fluctuations of a linear motor provided by an embodiment of the present invention. As shown in FIG. 2 , the method can be performed after the steps in the embodiment shown in FIG. 1 , and is used as an application manner for obtaining data in the embodiment shown in FIG. 1 .
  • the method includes:
  • the executive body of the embodiment of the present invention may be a linear motor thrust fluctuation suppression device, and the linear motor thrust fluctuation suppression device can suppress the thrust fluctuation generated by the linear motor.
  • the linear motor can implement the implementation of the present invention. steps in the example. It can also be a linear motor including a linear motor component and a control system, wherein the control system includes the mapping relationship between the positioning detection current and the position data corresponding to the positioning force obtained by the method in the embodiment shown in FIG. 1 and a preset operating current.
  • the mapping relationship between the test compensation current and the position data corresponding to the thrust fluctuation caused by the value of the The thrust fluctuation of the motor is proportional to the compensation value of the operating current, and the compensation value is used to compensate the operating current.
  • the device for suppressing the thrust fluctuation of the linear motor may be a system including a linear motor, or may be an electronic device, and the electronic device may be a terminal device, including but not limited to laptop computers, tablet computers, etc. Such as other portable devices or desktop computers, including software emulation in this case to perform the steps in the embodiments of the present invention.
  • the compensation current value corresponding to the thrust fluctuation generated by the linear motor under the influence of any operating current can be obtained, and the thrust fluctuation can be suppressed by means of pre-compensation.
  • the predetermined mapping relationship is determined.
  • Set the mapping relationship between the compensation current corresponding to the operating current value and the position data including:
  • the current value corresponding to each position data caused by The current corresponding to the thrust fluctuation is added to the above-mentioned positioning detection current to obtain each compensation current value corresponding to each of the above-mentioned position data;
  • mapping relationship between the respective compensation current values and the respective position data is used as the mapping relationship between the compensation current corresponding to the preset operating current value and the position data.
  • mapping relationship between the positioning detection current corresponding to the positioning force and the position data is expressed as I 0X
  • mapping relationship between the current and the position data corresponding to the thrust fluctuation caused by the preset current value I b is expressed as I bX .
  • the positioning detection current I 0x corresponding to the positioning force F 0 of the linear motor at different positions x of the mover of the linear motor is obtained;
  • test force Fa is applied to the linear motor and the test current Ia corresponding to the test force Fa is adjusted to control the uniform motion of the vibrator of the linear motor to detect the test corresponding to the mover of the above-mentioned linear motor at different positions x.
  • the above-mentioned acquisition of the positioning detection current I0x corresponding to the positioning force F0 of the linear motor at different positions x of the mover of the linear motor includes:
  • a driving force F 0 ′ opposite to the positioning force F0 is applied to the linear motor, the mover of the linear motor is controlled to move at a constant speed, and the positioning detection current I0x corresponding to the mover at different positions x is detected.
  • the motor can be controlled to move the corresponding position.
  • the obtained data set uses the interpolation method as the compensation value of the operating current. This method can be used to a certain extent.
  • the thrust fluctuation of the linear motor is suppressed. But only the thrust fluctuations caused by the positioning force of the linear motor are compensated.
  • the amplitude change of the operating current is also an important factor affecting the thrust fluctuation of the linear motor. If this factor is not compensated and corrected, it will eventually affect the output thrust effect of the linear motor, so that the thrust fluctuation has not been effectively suppressed.
  • the mapping relationship between the positioning detection current corresponding to the positioning force of the linear motor and the position data is obtained, and the mapping relationship between the positioning detection current corresponding to the positioning force and the position data includes the mover of the linear motor under the positioning force.
  • the mapping relationship between the test detection current and the position data caused by the test force of the linear motor under the horizontal installation obtains the mapping relationship between the thrust and operating current of the linear motor, according to the above test
  • the mapping relationship between the test detection current and position data caused by the force, the mapping relationship between the thrust of the linear motor and the operating current, and the mapping relationship between the positioning detection current and the position data corresponding to the positioning force obtain the thrust fluctuation caused by the test current value
  • the mapping relationship between the corresponding current and position data, and then according to the mapping relationship between the current and position data corresponding to the thrust fluctuation caused by the test current value, the test compensation current corresponding to the thrust fluctuation caused by the preset operating current value is obtained.
  • mapping relationship with the position data then the mapping relationship between the positioning detection current corresponding to the positioning force and the position data and the mapping relationship between the test compensation current and the position data corresponding to the thrust fluctuation caused by the above-mentioned preset operating current value are stored in the above-mentioned mapping relationship.
  • the control system of the linear motor is used to calculate the compensation value of the operating current proportional to the thrust fluctuation of the above-mentioned linear motor.
  • the mapping relationship can be used to compensate any operating current when the linear motor is working, and the thrust caused by the positioning force can be compensated at the same time.
  • the thrust fluctuation caused by the fluctuation and operating current is suppressed, so that the final linear motor output thrust fluctuation can be more comprehensively and effectively suppressed.
  • the embodiment of the present invention further discloses a device for suppressing the thrust fluctuation of the linear motor.
  • the device 300 for suppressing the thrust fluctuation of the linear motor includes:
  • the acquisition module 310 is used to acquire the mapping relationship between the positioning detection current and the position data corresponding to the positioning force of the linear motor, and the mapping relationship between the positioning detection current corresponding to the positioning force and the position data includes the mover of the linear motor under the positioning force. Current values corresponding to different positions;
  • the above-mentioned obtaining module 310 is also used to obtain the mapping relationship between the test detection current and the position data caused by the test force of the above-mentioned linear motor when the linear motor is installed horizontally; and to obtain the mapping relationship between the thrust and the operating current of the above-mentioned linear motor;
  • the processing module 320 is used for:
  • the test current value is obtained.
  • mapping relationship between the current and the position data corresponding to the thrust fluctuation caused by the test current value the mapping relationship between the test compensation current and the position data corresponding to the thrust fluctuation caused by the preset operating current value is obtained;
  • the above-mentioned processing module 320 is further configured to store the mapping relationship between the positioning detection current corresponding to the positioning force and the position data and the mapping relationship between the test compensation current and the position data corresponding to the thrust fluctuation caused by the above-mentioned preset operating current value.
  • the control system of the linear motor is used to calculate the compensation value of the operating current proportional to the thrust fluctuation of the linear motor, so as to suppress the thrust fluctuation.
  • the device 300 for suppressing the thrust fluctuation of the linear motor further includes a compensation module 330 and a control module 340; wherein:
  • the obtaining module 310 is further configured to obtain the operating current value of the linear motor
  • the compensation module 330 is configured to determine the preset according to the mapping relationship between the positioning detection current corresponding to the positioning force and the position data and the mapping relationship between the test compensation current and the position data corresponding to the thrust fluctuation caused by the preset operating current value. the mapping relationship between the compensation current corresponding to the operating current value and the position data; and obtaining the current compensation value corresponding to the above-mentioned operating current value according to the mapping relationship between the compensation current corresponding to the preset operating current value and the position data;
  • the control module 340 is configured to control the operating current of the linear motor to be adjusted to a target current value, where the target current value is the sum of the current compensation value and the operating current value.
  • the above compensation module 330 is specifically used for:
  • the current value corresponding to each position data is added to the positioning detection current to obtain each compensation current value corresponding to the each position data;
  • mapping relationship between the respective compensation current values and the respective position data is used as the mapping relationship between the compensation current corresponding to the preset operating current value and the position data.
  • each step involved in the method shown in FIG. 1 and FIG. 2 may be performed by each module in the apparatus 300 for suppressing thrust fluctuation of a linear motor shown in FIG. 3 , which is not repeated here. Repeat.
  • the device 300 for suppressing the thrust fluctuation of a linear motor in the embodiment of the present invention, can obtain the mapping relationship between the positioning detection current corresponding to the positioning force of the linear motor and the position data, and the positioning detection current corresponding to the positioning force.
  • the mapping relationship with the position data includes the current values corresponding to different positions of the mover of the linear motor under the positioning force, and the mapping relationship between the test detection current and the position data caused by the test force under the horizontal installation of the linear motor is obtained.
  • mapping relationship of the thrust and operating current of the above-mentioned linear motor according to the mapping relationship of the above-mentioned test detection current and position data caused by the test force, the mapping relationship of the thrust of the above-mentioned linear motor and the operating current, and the corresponding positioning of the above-mentioned positioning force Detect the mapping relationship between current and position data, obtain the mapping relationship between current and position data corresponding to the thrust fluctuation caused by the test current value, and then according to the above-mentioned mapping relationship between the current and position data corresponding to the thrust fluctuation caused by the test current value , obtain the mapping relationship between the test compensation current and the position data corresponding to the thrust fluctuation caused by the preset operating current value, and then use the mapping relationship between the positioning detection current corresponding to the positioning force and the position data and the above-mentioned preset operating current value to cause
  • the mapping relationship between the test compensation current and the position data corresponding to the thrust fluctuation of the linear motor is stored in the control system of the linear motor, so as to be used
  • embodiments of the present invention further provide a linear motor.
  • the linear motor includes at least a linear motor component and a control system.
  • the control system includes reference data obtained by the method of the embodiment shown in FIG. 1 , and the reference data includes the mapping relationship and preset of the positioning detection current corresponding to the positioning force and the position data.
  • the mapping relationship between the test compensation current and the position data corresponding to the thrust fluctuation caused by the operating current value of and use the compensation value to compensate the operating current, which can suppress the thrust fluctuation more comprehensively and effectively.
  • Embodiments of the present invention further provide a computer storage medium (Memory), where the computer storage medium is a memory device in a terminal, used to store programs and data.
  • the computer storage medium here may include both a built-in storage medium in the terminal, and certainly also an extended storage medium supported by the terminal.
  • the computer storage medium provides storage space, and the storage space stores the operating system of the terminal.
  • one or more instructions suitable for being loaded and executed by the processor are also stored in the storage space, and these instructions may be one or more computer programs (including program codes).
  • the computer storage medium here can be a high-speed RAM memory, or a non-volatile memory (non-volatile memory), such as at least one disk memory; optionally, it can also be at least one memory located far away from the aforementioned processor. computer storage media.
  • one or more instructions stored in the computer storage medium can be loaded and executed by the processor to implement the corresponding steps in the foregoing embodiment; in specific implementation, one or more instructions in the computer storage medium can be configured by The processor loads and executes any steps of the method in FIG. 1 and/or FIG. 2 , which will not be repeated here.
  • the disclosed systems, devices and methods may be implemented in other manners.
  • the division of the module is only for one logical function division.
  • multiple modules or components may be combined or integrated into another system, or some features may be ignored or not implement.
  • the shown or discussed mutual coupling, or direct coupling, or communication connection may be through some interfaces, indirect coupling or communication connection of devices or modules, and may be in electrical, mechanical or other forms.
  • Modules described as separate components may or may not be physically separated, and components shown as modules may or may not be physical modules, that is, they may be located in one place, or may be distributed to multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted over a computer-readable storage medium.
  • the computer instructions can be sent from one website site, computer, server, or data center to another by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.)
  • wire e.g. coaxial cable, fiber optic, digital subscriber line (DSL)
  • wireless e.g., infrared, wireless, microwave, etc.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media.
  • the available media may be read-only memory (ROM), or random access memory (RAM), or magnetic media, such as floppy disks, hard disks, magnetic tapes, magnetic disks, or optical media, such as, A digital versatile disc (DVD), or a semiconductor medium, for example, a solid state disk (SSD) and the like.
  • ROM read-only memory
  • RAM random access memory
  • magnetic media such as floppy disks, hard disks, magnetic tapes, magnetic disks, or optical media, such as, A digital versatile disc (DVD), or a semiconductor medium, for example, a solid state disk (SSD) and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Linear Motors (AREA)

Abstract

一种直线电机推力波动的抑制方法、相关设备和介质,其中方法包括:获取直线电机的定位力对应的定位检测电流与位置数据的映射关系(101),获取直线电机在水平安装下,由测试力引起的测试检测电流和位置数据的映射关系(102);推导出获得由测试电流值引起的推力波动所对应的电流与位置数据的映射关系(103),再根据由测试电流值引起的推力波动所对应的电流与位置数据的映射关系获得预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系(104);将定位检测电流与位置数据的映射关系和预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系存储于直线电机,以用于计算与直线电机的推力波动成正比的操作电流的补偿值(105)。

Description

一种直线电机推力波动的抑制方法、相关设备和介质 技术领域
本发明涉及直线电机技术领域,尤其涉及一种直线电机推力波动的抑制方法、相关设备和介质。
背景技术
直线电机是一种将电能直接转换成直线运动机械能,而不需要任何中间转换机构的传动装置。它可以看成是一台旋转电机按径向剖开,并展成平面而成。
直线电机的推力波动是其应用方面的主要缺陷之一,因为推力波动是电机振动与噪音产生的原因,特别是在低速运行时,还可能引起共振,影响使用效果。
在直线电机的设计中,减小推力波动是其主要目标之一,常用的方法有:控制电机移动相应的位置,通过采集此间的电流和位置信息,根据采集到的数据集计算操作电流的补偿值,但是该方式仅能够补偿直线电机由于定位力而引起的推力波动,在电机结构中还存在其他各种因素引起的推力波动,未得到有效抑制。
发明内容
基于此,有必要针对上述问题,提供一种直线电机推力波动的抑制方法、相关设备和介质,用于解决直线电机中产生的推力波动无法得到有效抑制,影响直线电机工作效果的问题。
本发明的技术方案如下:
一方面,提供了一种直线电机推力波动的抑制方法,包括:
获取直线电机的定位力对应的定位检测电流与位置数据的映射关系,所述定位力对应的定位检测电流与位置数据的映射关系包括在所述定位力下所述直线电机的动子在不同位置所对应的电流值;
获取所述直线电机在水平安装下,由测试力引起的测试检测电流和位置数据的映射关系;获取所述直线电机的推力与操作电流的映射关系;
根据所述由测试力引起的测试检测电流和位置数据的映射关系、所述直线 电机的推力与操作电流的映射关系,以及所述定位力对应的定位检测电流与位置数据的映射关系,获得由测试电流值引起的推力波动所对应的电流与位置数据的映射关系;
根据所述由测试电流值引起的推力波动所对应的电流与位置数据的映射关系,获得预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系;
将所述定位力对应的定位检测电流与位置数据的映射关系和所述预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系存储于所述直线电机的控制系统,以用于计算与所述直线电机的推力波动成正比的操作电流的补偿值,以实现抑制推力波动。
可选的,所述获取直线电机的定位力对应的定位检测电流与位置数据的映射关系,包括:
在所述直线电机水平安装的情况下,控制所述直线电机的动子匀速移动,采集移动过程中所述动子在不同位置所对应的所述直线电机的电流值,获得所述定位力对应的定位检测电流与位置数据的映射关系。
可选的,所述获取所述直线电机在水平安装下,由测试力引起的测试检测电流和位置数据的映射关系,包括:
在所述直线电机水平安装的情况下,控制所述直线电机的动子在带所述测试力的负载的作用下匀速移动,采集移动过程中所述动子在不同位置所对应的所述直线电机的电流值,获得所述由测试力引起的测试检测电流和位置数据的映射关系。
可选的,所述根据所述由测试力引起的测试检测电流和位置数据的映射关系、所述直线电机的推力与操作电流的映射关系,以及所述定位力对应的定位检测电流与位置数据的映射关系,获得由测试电流值引起的推力波动所对应的电流与位置数据的映射关系,包括:
根据所述直线电机的推力与操作电流的映射关系,获得所述测试力所对应的测试电流值;
根据所述由测试力引起的测试检测电流和位置数据的映射关系和所述定位力对应的定位检测电流与位置数据的映射关系,将各个位置数据所对应的测试检测电流减去所述定位检测电流和所述测试力所对应的测试电流值,获得所 述各个位置数据所对应的各个推力波动电流值;
将所述各个推力波动电流值与所述各个位置数据的映射关系作为所述测试电流值引起的推力波动所对应的电流与位置数据的映射关系。
可选的,所述将所述定位力对应的定位检测电流与位置数据的映射关系和所述预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系存储于所述直线电机的控制系统之后,所述方法还包括:
获取所述直线电机的操作电流值;
根据所述定位力对应的定位检测电流与位置数据的映射关系和所述预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系,确定预设操作电流值所对应的补偿电流与位置数据的映射关系;根据所述预设操作电流值所对应的补偿电流与位置数据的映射关系,获得所述操作电流值对应的电流补偿值;
控制所述直线电机的操作电流调整为目标电流值,所述目标电流值为所述电流补偿值与所述操作电流值之和。
可选的,所述根据所述定位力对应的定位检测电流与位置数据的映射关系和所述预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系,确定预设操作电流值所对应的补偿电流与位置数据的映射关系,包括:
根据所述定位力对应的定位检测电流与位置数据的映射关系和所述预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系,将不同操作电流下各个位置数据对应的测试补偿电流与所述定位检测电流相加,获得所述各个位置数据所对应的各个补偿电流值;
将所述各个补偿电流值与所述各个位置数据的映射关系作为所述预设操作电流值所对应的补偿电流与位置数据的映射关系。
另一方面,提供了一种直线电机推力波动的抑制方法,包括:
在所述直线电机水平安装时,获取所述直线电机的动子在不同位置x与所述直线电机的定位力F0对应的定位检测电流I0x;
在所述直线电机水平安装时,向直线电机施加测试力Fa并调整测试力Fa对应的测试电流Ia以控制该直线电机的振子匀速运动,检测所述直线电机的动子在不同位置x对应的测试检测电流值I′ aX,测试力Fa与测试电流Ia满足: Fa=m*Ke*Ia,m为电机相数,Ke为电机的反动电势常数;
根据所述测试电流Ia、测试检测电流值I′ aX以及所述定位补偿电流值I0x,获得与所述测试电流Ia引起的推力波动所对应的测试补偿电流值Iax,I aX=I′ aX-I a-I 0X
提供驱动电流Ib;根据所述驱动电流Ib与所述测试电流Ia、以及测试补偿电流值Iax获得与所述驱动电流Ib对应的补偿电流值Ibx,Ibx=Ib/Ia*Iax;
根据所述补偿电流值Ibx、及所述定位补偿电流值I0x调整所述驱动电流Ib获取目标驱动电流I′ b=I b+I bX+I 0X,由所述目标驱动电流I′ b驱动所述直线电机以实现抑制推力波动。
可选的,获取所述直线电机的动子在不同位置x与所述直线电机的定位力F0对应的定位检测电流I0x,包括:
向所述直线电机施加与所述定位力F0等大反向的驱动力F 0′,控制所述直线电机的动子匀速运动,检测所述动子在不同位置x对应的定位检测电流I0x。
另一方面,提供了一种直线电机推力波动的抑制装置,包括:
获取模块,用于获取直线电机的定位力对应的定位检测电流与位置数据的映射关系,所述定位力对应的定位检测电流与位置数据的映射关系包括在所述定位力下所述直线电机的动子在不同位置所对应的电流值;
所述获取模块还用于,获取所述直线电机在水平安装下,由测试力引起的测试检测电流和位置数据的映射关系;获取所述直线电机的推力与操作电流的映射关系;
处理模块,用于:
根据所述由测试力引起的测试检测电流和位置数据的映射关系、所述直线电机的推力与操作电流的映射关系,以及所述定位力对应的定位检测电流与位置数据的映射关系,获得由测试电流值引起的推力波动所对应的电流与位置数据的映射关系;
根据所述由测试电流值引起的推力波动所对应的电流与位置数据的映射关系,获得预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系;
所述处理模块还用于,将所述定位力对应的定位检测电流与位置数据的映射关系和所述预设的操作电流值引起的推力波动所对应的测试补偿电流与位 置数据的映射关系存储于所述直线电机的控制系统,以用于计算与所述直线电机的推力波动成正比的操作电流的补偿值,以实现抑制推力波动。
另一方面,提供了一种直线电机,包括直线电机部件和控制系统,所述控制系统包括如上述第一方面及其任一种可能的实现方式获得的参考数据,包括定位力对应的定位检测电流与位置数据的映射关系和预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系,所述控制系统用于基于所述参考数据计算与所述直线电机的推力波动成正比的操作电流的补偿值,并使用所述补偿值对所述操作电流进行补偿,以抑制推力波动。
另一方面,提供了一种计算机存储介质,所述计算机存储介质存储有一条或多条指令,所述一条或多条指令适于由处理器加载并执行如上述第一方面及其任一种可能的实现方式的步骤。
本发明的有益效果在于:通过分别测试直线电机在水平安装时,空载和带力负载情况下移动期望行程时的电流与位置数据的映射关系,折算成某一具体电流下的电流与位置数据的映射关系,将该映射关系插值补偿获得预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系,将定位力对应的定位检测电流与位置数据的映射关系和上述预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系存储于直线电机的控制系统,可以在直线电机工作时利用该映射关系对任意操作电流进行补偿,使最终直线电机输出推力的波动得到更全面有效的抑制。
附图说明
图1为本发明提供的一种直线电机推力波动的抑制方法的流程示意图;
图2为本发明提供的另一种直线电机推力波动的抑制方法的流程示意图;
图3为本发明提供的一种直线电机推力波动的抑制装置的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其 他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本发明实施例中提到的直线电机是一种将电能直接转换成直线运动机械能,而不需要任何中间转换机构的传动装置。它可以看成是一台旋转电机按径向剖开,并展成平面而成。直线电机也称线性电机、线性马达、直线马达、推杆马达等。
一般由定子演变而来的一侧称为初级,由动子(转子)演变而来的一侧称为次级。在实际应用时,将初级和次级制造成不同的长度,以保证在所需行程范围内初级与次级之间的耦合保持不变。直线电机可以是短初级长次级,也可以是长初级短次级。考虑到制造成本、运行费用,以直线感应电动机为例:当初级绕组通入交流电源时,便在气隙中产生行波磁场,次级在行波磁场切割下,将感应出电动势并产生电流,该电流与气隙中的磁场相作用就产生电磁推力。
本申请实施例中涉及到的直线电机的位置数据、位置信息或者位置移动等术语,均可以理解为是针对直线电机的动子,即该动子的移动、位置等。
下面结合本发明实施例中的附图对本发明实施例进行描述。
请参阅图1,图1是本发明实施例提供的一种直线电机推力波动的抑制方法的流程示意图。该方法可包括:
获取直线电机的定位力对应的定位检测电流与位置数据的映射关系,上述定位力对应的定位检测电流与位置数据的映射关系包括在上述定位力下上述直线电机的动子在不同位置所对应的电流值。
本发明实施例的执行主体可以为一种直线电机推力波动的抑制装置,该直线电机推力波动的抑制装置可以对直线电机产生的推力波动进行抑制,或者说,可以为直线电机建立推力波动抑制的模型。在可选的实施方式中,上述直线电机推力波动的抑制装置可以为包括直线电机的系统,也可以为电子设备,上述电子设备可以为终端设备,包括但不限于诸如膝上型计算机、平板计算机之类的其它便携式设备或者台式计算机。
在永磁电机中,即使定子绕组没有激励,也存在电磁转矩,此电磁转矩称之为定位力矩,或者是齿槽转矩/磁阻转矩。其中,该直线电机的定位力对应的定位检测电流与位置数据的映射关系可以表示为直线电机的定位力曲线,可以根据实际测试统计或者仿真测试获得。
在一种可选的实施方式中,上述步骤101具体可包括:
在上述直线电机水平安装的情况下,控制上述直线电机的动子匀速移动,采集上述移动过程中上述动子在不同位置所对应的上述直线电机的电流值,获得上述定位力对应的定位检测电流与位置数据的映射关系。
具体的,可以在直线电机水平安装、空载的情况下,控制该直线电机匀速、缓慢地移动相应的位置行程,并在此过程中检测到其电流和位置信息,检测到的电流值正好为特定位置(X)下的定位力所对应的电流值,即获得I 0X
102、获取上述直线电机在水平安装下,由测试力引起的测试检测电流和位置数据的映射关系;获取上述直线电机的推力与操作电流的映射关系。
其中,直线电机推力与电流的关系是直线电机的一类特征参数,可以是根据测试获得仿真获得的,也可以是直线电机中存储的信息,此处不做限制。
在一种可选的实施方式中,上述获取上述直线电机在水平安装下,由测试力引起的测试检测电流和位置数据的映射关系,包括:
在上述直线电机水平安装的情况下,控制所述直线电机的动子在带所述测试力的负载的作用下匀速移动,采集上述移动过程中上述动子在不同位置所对应的上述直线电机的电流值,获得上述由测试力引起的测试检测电流和位置数据的映射关系。优选此时动子的移动速度与步骤101中动子的移动速度相同。
上述测试力可以根据需要设置,比如可以使用特定带力F a的负载进行测试。具体的,给上述直线电机添加某一恒定力负载F a,然后再控制直线电机匀速、缓慢地移动相应的位置行程,并在此过程中检测到其电流和位置信息,检 测到的电流值正好为特定位置(X)下的该测试力所对应的电流值,即获得I′ aX
103、根据上述由测试力引起的测试检测电流和位置数据的映射关系、上述直线电机的推力与操作电流的映射关系,以及上述定位力对应的定位检测电流与位置数据的映射关系,获得由测试电流值引起的推力波动所对应的电流与位置数据的映射关系。
本申请实施例中根据前述测得的映射关系和直线电机的推力与操作电流的映射关系,可以推导出以特定电流引起的推力波动对应的电流值,以后续在任意电流下进行该直线电机的推力波动抑制。
在一种实施方式中,上述步骤103具体包括:
根据上述直线电机的推力与操作电流的映射关系,获得上述测试力所对应的测试电流值;
根据上述由测试力引起的测试检测电流和位置数据的映射关系和上述定位力对应的定位检测电流与位置数据的映射关系,将各个位置数据所对应的测试检测电流减去上述定位检测电流和所述测试力所对应的测试电流值,获得上述各个位置数据所对应的各个推力波动电流值;
将上述各个推力波动电流值与上述各个位置数据的映射关系作为上述测试电流值引起的推力波动所对应的电流与位置数据的映射关系。
本申请实施例中通过测试力在实验阶段中模拟直线电机中的推力,因此可以根据该直线电机的推力与操作电流的映射关系,获得该测试力所对应的测试电流值,再进行推导。
本申请实施例中需要去除定位力引起的推力波动的影响,以获得仅由特定的测试电流值引起的推力波动所对应的电流与位置数据的映射关系。具体的,根据上述直线电机的推力和电流之间的关系,计算得到推力F a对应的测试电流值I a。如此根据获得的映射关系进行推导可以得到特定电流I a引起的推力波动对应的电流值,为I aX=I′ aX-I a-I 0X
104、根据上述由测试电流值引起的推力波动所对应的电流与位置数据的映射关系,获得预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系。
本申请实施例中根据上述由测试电流值引起的推力波动所对应的电流与位置数据的映射关系,可以推导计算得到任意电流值I b引起的推力波动对应的 电流-位置数据,为I bX,即可以作为上述预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系,用于直线电机控制系统。可以是先根据已有对应关系获得多组由不同电流值引起的推力波动所对应的电流-位置数据,再进行整合获得的。具体的,任意电流I b引起的推力波动对应的电流与位置数据的映射关系,为I bX=I b/I a·I aX
通过该预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系,可以在已知该直线电机的操作电流时,确定由该操作电流引起的推力波动所对应的电流与位置数据的映射关系。
105、将上述定位力对应的定位检测电流与位置数据的映射关系和上述预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系存储于上述直线电机的控制系统,以用于计算与上述直线电机的推力波动成正比的操作电流的补偿值,以实现抑制推力波动。
在获得定位力对应的定位检测电流与位置数据的映射关系,和预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系之后,可以整合为预设操作电流值所对应的补偿电流与位置数据的映射关系,即包括了对定位力和操作电流引起的推力波动的电流补偿,存储在直线电机的控制系统中。
具体的,可以将I b0X=I bX+I 0X作为相应的电流与位置的映射数据集(即上述预设操作电流值所对应的补偿电流与位置数据的映射关系),插值进入直线电机控制系统,用于计算操作电流的补偿值,来抑制直线电机中定位力和操作电流引起的推力波动。
本发明通过分别测试直线电机在水平安装时,空载和带力负载情况下移动期望行程时的电流与位置数据的映射关系,折算成某一具体电流下的电流与位置数据的映射关系,将该映射关系插值补偿获得预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系,将定位力对应的定位检测电流与位置数据的映射关系和上述预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系存储于直线电机的控制系统,可以计算与直线电机的推力波动成正比的操作电流的补偿值,可以在直线电机工作时利用该映射关系对任意操作电流进行补偿,同时对定位力引起的推力波动和操作电流引起的推力波动进行了抑制,使最终直线电机输出推力的波动得到更全面 有效的抑制。
为了更清楚地说明本发明实施例中的技术方案,可以参阅图2,图2是本发明实施例提供的另一种直线电机推力波动的抑制方法的流程示意图。如图2所示,该方法可以在图1所示实施例中的步骤之后执行,并作为图1所示实施例获得数据的一种应用方式。该方法包括:
201、获取直线电机的操作电流值。
202、根据定位力对应的定位检测电流与位置数据的映射关系和预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系,确定预设操作电流值所对应的补偿电流与位置数据的映射关系;根据上述预设操作电流值所对应的补偿电流与位置数据的映射关系,获得上述操作电流值对应的电流补偿值。
203、控制上述直线电机的操作电流调整为目标电流值,上述目标电流值为上述电流补偿值与上述操作电流值之和。
本发明实施例的执行主体可以为一种直线电机推力波动的抑制装置,该直线电机推力波动的抑制装置可以对直线电机产生的推力波动进行抑制,具体的,其中的直线电机可以执行本发明实施例中的步骤。还可以为一种包括直线电机部件和控制系统的直线电机,其中控制系统包括如图1所示实施例中方法获得的定位力对应的定位检测电流与位置数据的映射关系和预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系,该控制系统可以基于上述映射关系,整合出预设操作电流值所对应的补偿电流与位置数据的映射关系,以计算与直线电机的推力波动成正比的操作电流的补偿值,并使用补偿值对操作电流进行补偿。
在可选的实施方式中,上述直线电机推力波动的抑制装置可以为包括直线电机的系统,也可以为电子设备,上述电子设备可以为终端设备,包括但不限于诸如膝上型计算机、平板计算机之类的其它便携式设备或者台式计算机,在此种情形中包括软件仿真方式执行本发明实施例中的步骤。
在图1所示实施例步骤的基础上,可以获得直线电机在任意操作电流影响下产生的推力波动对应的补偿电流值,通过预先补偿的方式来抑制推力波动。
在一种实施方式中,上述根据上述定位力对应的定位检测电流与位置数据的映射关系和上述预设的操作电流值引起的推力波动所对应的测试补偿电流 与位置数据的映射关系,确定预设操作电流值所对应的补偿电流与位置数据的映射关系,包括:
根据上述定位力对应的定位检测电流与位置数据的映射关系和上述预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系,将各个位置数据对应的电流值引起的推力波动所对应的电流,与上述定位检测电流相加,获得上述各个位置数据所对应的各个补偿电流值;
将上述各个补偿电流值与上述各个位置数据的映射关系作为上述预设操作电流值所对应的补偿电流与位置数据的映射关系。
其中,定位力对应的定位检测电流与位置数据的映射关系表示为I 0X,预设电流值I b引起的推力波动所对应的电流与位置数据的映射关系表示为I bX
可以将I b0X=I bX+I 0X,作为完整的补偿电流计算规则,计算操作电流的补偿值,具体来说,该直线电机运行时,针对任意操作电流值I b,可以根据预设操作电流值所对应的补偿电流与位置数据的映射关系计算出电流补偿值I b0X,在具体位置X补偿特定的电流补偿值I b0X,则最终电机实际运行的电流I′ b=I b+I b0X
在一种可选的实施方式中,在所述直线电机水平安装时,获取所述直线电机的动子在不同位置x与所述直线电机的定位力F 0对应的定位检测电流I 0x
可以在上述直线电机水平安装时,向直线电机施加测试力Fa并调整测试力Fa对应的测试电流Ia以控制该直线电机的振子匀速运动,检测上述直线电机的动子在不同位置x对应的测试检测电流值I′ aX,其中,测试力Fa与测试电流Ia满足:Fa=m*Ke*Ia,m为电机相数,Ke为电机的反动电势常数。
可选的,上述获取所述直线电机的动子在不同位置x与所述直线电机的定位力F0对应的定位检测电流I0x,包括:
向上述直线电机施加与上述定位力F0等大反向的驱动力F 0′,控制上述直线电机的动子匀速运动,检测所述动子在不同位置x对应的定位检测电流I0x。
再根据上述测试电流Ia、测试检测电流值I′ aX以及上述定位补偿电流值I0x,获得与上述测试电流Ia引起的推力波动所对应的测试补偿电流值Iax,具体可以表示为:I aX=I′ aX-I a-I 0X
在直线电机的实际应用时,可以提供驱动电流Ib,再根据上述驱动电流Ib与上述测试电流Ia、以及测试补偿电流值Iax获得与上述驱动电流Ib对应 的补偿电流值Ibx=Ib/Ia*Iax。然后根据上述补偿电流值Ibx、及上述定位补偿电流值I0x调整上述驱动电流Ib获取目标驱动电流I′ b=I b+I bX+I 0X,由上述目标驱动电流I′ b驱动上述直线电机,可以抑制直线电机的推力波动。
在考虑定位力引起的推力波动抑制时,可以控制电机移动相应的位置,通过采集此间的电流和位置信息,将得到的数据集使用插值的方法作为操作电流的补偿值,这种方法可以一定程度上抑制直线电机的推力波动。但是仅补偿了直线电机由于定位力而引起的推力波动。在直线电机中,操作电流的幅值变化也是影响直线电机推力波动的一个重要原因,若不对此因素进行补偿校正,将最终影响直线电机输出推力效果,使其推力波动仍未得到有效抑制。
而本发明实施例通过获取直线电机的定位力对应的定位检测电流与位置数据的映射关系,上述定位力对应的定位检测电流与位置数据的映射关系包括在上述定位力下上述直线电机的动子在不同位置所对应的电流值,获取上述直线电机在水平安装下,由测试力引起的测试检测电流和位置数据的映射关系;获取上述直线电机的推力与操作电流的映射关系,根据上述由测试力引起的测试检测电流和位置数据的映射关系、上述直线电机的推力与操作电流的映射关系,以及上述定位力对应的定位检测电流与位置数据的映射关系,获得由测试电流值引起的推力波动所对应的电流与位置数据的映射关系,再根据上述由测试电流值引起的推力波动所对应的电流与位置数据的映射关系,获得预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系,然后将上述定位力对应的定位检测电流与位置数据的映射关系和上述预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系存储于上述直线电机的控制系统,以用于计算与上述直线电机的推力波动成正比的操作电流的补偿值,可以在直线电机工作时利用该映射关系对任意操作电流进行补偿,同时对定位力引起的推力波动和操作电流引起的推力波动进行了抑制,使最终直线电机输出推力的波动得到更全面有效的抑制。
基于上述直线电机推力波动的抑制方法实施例的描述,本发明实施例还公开了一种直线电机推力波动的抑制装置。请参见图3,直线电机推力波动的抑制装置300包括:
获取模块310,用于获取直线电机的定位力对应的定位检测电流与位置数据的映射关系,上述定位力对应的定位检测电流与位置数据的映射关系包括在 上述定位力下上述直线电机的动子在不同位置所对应的电流值;
上述获取模块310还用于,获取上述直线电机在水平安装下,由测试力引起的测试检测电流和位置数据的映射关系;获取上述直线电机的推力与操作电流的映射关系;
处理模块320,用于:
根据上述由测试力引起的测试检测电流和位置数据的映射关系、上述直线电机的推力与操作电流的映射关系,以及上述定位力对应的定位检测电流与位置数据的映射关系,获得由测试电流值引起的推力波动所对应的电流与位置数据的映射关系;
根据上述由测试电流值引起的推力波动所对应的电流与位置数据的映射关系,获得预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系;
上述处理模块320还用于,将上述定位力对应的定位检测电流与位置数据的映射关系和上述预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系存储于上述直线电机的控制系统,以用于计算与上述直线电机的推力波动成正比的操作电流的补偿值,以实现抑制推力波动。
可选的,上述直线电机推力波动的抑制装置300还包括补偿模块330和控制模块340;其中:
上述获取模块310还用于,获取上述直线电机的操作电流值;
上述补偿模块330,用于根据上述定位力对应的定位检测电流与位置数据的映射关系和上述预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系,确定预设操作电流值所对应的补偿电流与位置数据的映射关系;以及根据所述预设操作电流值所对应的补偿电流与位置数据的映射关系,获得上述操作电流值对应的电流补偿值;
上述控制模块340,用于控制上述直线电机的操作电流调整为目标电流值,上述目标电流值为上述电流补偿值与上述操作电流值之和。
可选的,上述补偿模块330具体用于:
根据所述定位力对应的定位检测电流与位置数据的映射关系和所述预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系,将各个位置数据对应的电流值引起的推力波动所对应的电流,与所述定位检测 电流相加,获得所述各个位置数据所对应的各个补偿电流值;
将所述各个补偿电流值与所述各个位置数据的映射关系作为所述预设操作电流值所对应的补偿电流与位置数据的映射关系。
根据本发明的一个实施例,图1和图2所示的方法所涉及的各个步骤均可以是由图3所示的直线电机推力波动的抑制装置300中的各个模块执行的,此处不再赘述。
本发明实施例中的直线电机推力波动的抑制装置300,直线电机推力波动的抑制装置300可以获取直线电机的定位力对应的定位检测电流与位置数据的映射关系,上述定位力对应的定位检测电流与位置数据的映射关系包括在上述定位力下上述直线电机的动子在不同位置所对应的电流值,获取上述直线电机在水平安装下,由测试力引起的测试检测电流和位置数据的映射关系;获取上述直线电机的推力与操作电流的映射关系,根据上述由测试力引起的测试检测电流和位置数据的映射关系、上述直线电机的推力与操作电流的映射关系,以及上述定位力对应的定位检测电流与位置数据的映射关系,获得由测试电流值引起的推力波动所对应的电流与位置数据的映射关系,再根据上述由测试电流值引起的推力波动所对应的电流与位置数据的映射关系,获得预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系,然后将上述定位力对应的定位检测电流与位置数据的映射关系和上述预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系存储于上述直线电机的控制系统,以用于计算与上述直线电机的推力波动成正比的操作电流的补偿值,可以在直线电机工作时利用该映射关系对任意操作电流进行补偿,同时对定位力引起的推力波动和操作电流引起的推力波动进行了抑制,使最终直线电机输出推力的波动得到更全面有效的抑制。
基于上述方法实施例以及装置实施例的描述,本发明实施例还提供一种直线电机。该直线电机至少包括直线电机部件和控制系统,该控制系统包括如图1所示实施例的方法获得的参考数据,该参考数据包括定位力对应的定位检测电流与位置数据的映射关系和预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系,该控制系统可以用于基于所述参考数据,计算与该直线电机部件的推力波动成正比的操作电流的补偿值,并使用该补偿值对该操作电流进行补偿,可以更全面有效地抑制推力波动。
本发明实施例还提供了一种计算机存储介质(Memory),上述计算机存储介质是终端中的记忆设备,用于存放程序和数据。可以理解的是,此处的计算机存储介质既可以包括终端中的内置存储介质,当然也可以包括终端所支持的扩展存储介质。计算机存储介质提供存储空间,该存储空间存储了终端的操作系统。并且,在该存储空间中还存放了适于被处理器加载并执行的一条或多条的指令,这些指令可以是一个或一个以上的计算机程序(包括程序代码)。需要说明的是,此处的计算机存储介质可以是高速RAM存储器,也可以是非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器;可选的还可以是至少一个位于远离前述处理器的计算机存储介质。
在一个实施例中,可由处理器加载并执行计算机存储介质中存放的一条或多条指令,以实现上述实施例中的相应步骤;具体实现中,计算机存储介质中的一条或多条指令可以由处理器加载并执行图1和/或图2中方法的任意步骤,此处不再赘述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本发明所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,该模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。所显示或讨论的相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本发明实施例的流程或功能。该计 算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者通过该计算机可读存储介质进行传输。该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是只读存储器(read-only memory,ROM),或随机存储存储器(random access memory,RAM),或磁性介质,例如,软盘、硬盘、磁带、磁碟、或光介质,例如,数字通用光盘(digital versatile disc,DVD)、或者半导体介质,例如,固态硬盘(solid state disk,SSD)等。

Claims (11)

  1. 一种直线电机推力波动的抑制方法,其特征在于,包括:
    获取直线电机的定位力对应的定位检测电流与位置数据的映射关系,所述定位力对应的定位检测电流与位置数据的映射关系包括在所述定位力下所述直线电机的动子在不同位置所对应的电流值;
    获取所述直线电机在水平安装下,由测试力引起的测试检测电流和位置数据的映射关系;获取所述直线电机的推力与操作电流的映射关系;
    根据所述由测试力引起的测试检测电流和位置数据的映射关系、所述直线电机的推力与操作电流的映射关系,以及所述定位力对应的定位检测电流与位置数据的映射关系,获得由测试电流值引起的推力波动所对应的电流与位置数据的映射关系;
    根据所述由测试电流值引起的推力波动所对应的电流与位置数据的映射关系,获得预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系;
    将所述定位力对应的定位检测电流与位置数据的映射关系和所述预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系存储于所述直线电机的控制系统,以用于计算与所述直线电机的推力波动成正比的操作电流的补偿值,以实现抑制推力波动。
  2. 根据权利要求1所述的直线电机推力波动的抑制方法,其特征在于,所述获取直线电机的定位力对应的定位检测电流与位置数据的映射关系,包括:
    在所述直线电机水平安装的情况下,控制所述直线电机的动子匀速移动,采集移动过程中所述动子在不同位置所对应的所述直线电机的电流值,获得所述定位力对应的定位检测电流与位置数据的映射关系。
  3. 根据权利要求1所述的直线电机推力波动的抑制方法,其特征在于,所述获取所述直线电机在水平安装下,由测试力引起的测试检测电流和位置数据的映射关系,包括:
    在所述直线电机水平安装的情况下,控制所述直线电机的动子在带所述测试力的负载的作用下匀速移动,采集移动过程中所述动子在不同位置所对应的所述直线电机的电流值,获得所述由测试力引起的测试检测电流和位置数据的映射关系。
  4. 根据权利要求1-3任一项所述的直线电机推力波动的抑制方法,其特征在于,所述根据所述由测试力引起的测试检测电流和位置数据的映射关系、所述直线电机的推力与操作电流的映射关系,以及所述定位力对应的定位检测电流与位置数据的映射关系,获得由测试电流值引起的推力波动所对应的电流与位置数据的映射关系,包括:
    根据所述直线电机的推力与操作电流的映射关系,获得所述测试力所对应的测试电流值;
    根据所述由测试力引起的测试检测电流和位置数据的映射关系和所述定位力对应的定位检测电流与位置数据的映射关系,将各个位置数据所对应的测试检测电流减去所述定位检测电流和所述测试力所对应的测试电流值,获得所述各个位置数据所对应的各个推力波动电流值;
    将所述各个推力波动电流值与所述各个位置数据的映射关系作为所述测试电流值引起的推力波动所对应的电流与位置数据的映射关系。
  5. 根据权利要求1-3任一项所述的直线电机推力波动的抑制方法,其特征在于,所述将所述定位力对应的定位检测电流与位置数据的映射关系和所述预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系存储于所述直线电机的控制系统之后,所述方法还包括:
    获取所述直线电机的操作电流值;
    根据所述定位力对应的定位检测电流与位置数据的映射关系和所述预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系,确定预设操作电流值所对应的补偿电流与位置数据的映射关系;根据所述预设操作电流值所对应的补偿电流与位置数据的映射关系,获得所述操作电流值对应的电流补偿值;
    控制所述直线电机的操作电流调整为目标电流值,所述目标电流值为所述电流补偿值与所述操作电流值之和。
  6. 根据权利要求5所述的直线电机推力波动的抑制方法,其特征在于,所述根据所述定位力对应的定位检测电流与位置数据的映射关系和所述预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系,确定预设操作电流值所对应的补偿电流与位置数据的映射关系,包括:
    根据所述定位力对应的定位检测电流与位置数据的映射关系和所述预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系,将不同操作电流下各个位置数据对应的测试补偿电流与所述定位检测电流相加,获得所述各个位置数据所对应的各个补偿电流值;
    将所述各个补偿电流值与所述各个位置数据的映射关系作为所述预设操作电流值所对应的补偿电流与位置数据的映射关系。
  7. 一种直线电机推力波动的抑制装置,其特征在于,包括:
    获取模块,用于获取直线电机的定位力对应的定位检测电流与位置数据的映射关系,所述定位力对应的定位检测电流与位置数据的映射关系包括在所述定位力下所述直线电机的动子在不同位置所对应的电流值;
    所述获取模块还用于,获取所述直线电机在水平安装下,由测试力引起的测试检测电流和位置数据的映射关系;获取所述直线电机的推力与操作电流的映射关系;
    处理模块,用于:
    根据所述由测试力引起的测试检测电流和位置数据的映射关系、所述直线电机的推力与操作电流的映射关系,以及所述定位力对应的定位检测电流与位置数据的映射关系,获得由测试电流值引起的推力波动所对应的电流与位置数据的映射关系;
    根据所述由测试电流值引起的推力波动所对应的电流与位置数据的映射关系,获得预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系;
    所述处理模块还用于,将所述定位力对应的定位检测电流与位置数据的映射关系和所述预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系存储于所述直线电机的控制系统,以用于计算与所述直线电机的推力波动成正比的操作电流的补偿值,以实现抑制推力波动。
  8. 一种直线电机,其特征在于,包括直线电机部件和控制系统,所述控制系统包括如权利要求1-6任一项所述方法获得的参考数据,包括定位力对应的定位检测电流与位置数据的映射关系和预设的操作电流值引起的推力波动所对应的测试补偿电流与位置数据的映射关系,所述控制系统用于基于所述参考数据计算与所述直线电机的推力波动成正比的操作电流的补偿值,并使用所述补偿值对所述操作电流进行补偿,以抑制推力波动。
  9. 一种存储介质,存储有计算机指令程序,其特征在于,所述计算机指令程序被处理器执行时,使得所述处理器执行如权利要求1至6中任一项所述方法的步骤。
  10. 一种直线电机推力波动的抑制方法,其特征在于,包括:
    在所述直线电机水平安装时,获取所述直线电机的动子在不同位置x与所述直线电机的定位力F 0对应的定位检测电流I 0x
    在所述直线电机水平安装时,向直线电机施加测试力F a并调整测试力F a对应的测试电流I a以控制该直线电机的振子匀速运动,检测所述直线电机的动子在不同位置x对应的测试检测电流值I′ aX,测试力F a与测试电流I a满足:F a=m*Ke*I a,m为电机相数,Ke为电机的反动电势常数;
    根据所述测试电流I a、测试检测电流值I′ aX以及所述定位补偿电流值I 0x,获得与所述测试电流I a引起的推力波动所对应的测试补偿电流值I ax,I aX=I′ aX-I a-I 0X
    提供驱动电流I b;根据所述驱动电流I b与所述测试电流I a、以及测试补偿电流值I ax获得与所述驱动电流I b对应的补偿电流值I bx,I bx=I b/I a*I ax
    根据所述补偿电流值I bx、及所述定位补偿电流值I 0x调整所述驱动电流I b获取目标驱动电流I′ b=I b+I bX+I 0X,由所述目标驱动电流I′ b驱动所述直线电机 以实现抑制推力波动。
  11. 根据权利要求10所述的直线电机推力波动的抑制方法,其特征在于,获取所述直线电机的动子在不同位置x与所述直线电机的定位力F 0对应的定位检测电流I 0x,包括:
    向所述直线电机施加与所述定位力F 0等大反向的驱动力F 0′,控制所述直线电机的动子匀速运动,检测所述动子在不同位置x对应的定位检测电流I 0x
PCT/CN2020/121048 2020-09-21 2020-10-15 一种直线电机推力波动的抑制方法、相关设备和介质 WO2022056977A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010994544.XA CN112234890B (zh) 2020-09-21 2020-09-21 一种直线电机推力波动的抑制方法、相关设备和介质
CN202010994544.X 2020-09-21

Publications (1)

Publication Number Publication Date
WO2022056977A1 true WO2022056977A1 (zh) 2022-03-24

Family

ID=74108018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121048 WO2022056977A1 (zh) 2020-09-21 2020-10-15 一种直线电机推力波动的抑制方法、相关设备和介质

Country Status (2)

Country Link
CN (1) CN112234890B (zh)
WO (1) WO2022056977A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060170888A1 (en) * 2005-01-31 2006-08-03 Canon Kabushiki Kaisha Moving control apparatus and moving control method
CN1897453A (zh) * 2006-06-13 2007-01-17 上海微电子装备有限公司 一种提高永磁直线电机运动精度的方法
CN104201964A (zh) * 2014-09-12 2014-12-10 东南大学 一种磁通切换直线电机速度脉动抑制方法
CN104796061A (zh) * 2014-03-18 2015-07-22 珍妮科学股份公司 用于铁芯直线电机的力校准、力计算和力限制的方法
CN109617485A (zh) * 2018-12-04 2019-04-12 南京工程学院 一种基于Tabu和DOB的永磁直线电机推力波动复合抑制方法
CN110504880A (zh) * 2019-07-24 2019-11-26 东南大学盐城新能源汽车研究院 一种磁通切换永磁直线电机干扰观测前馈补偿控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060170888A1 (en) * 2005-01-31 2006-08-03 Canon Kabushiki Kaisha Moving control apparatus and moving control method
CN1897453A (zh) * 2006-06-13 2007-01-17 上海微电子装备有限公司 一种提高永磁直线电机运动精度的方法
CN104796061A (zh) * 2014-03-18 2015-07-22 珍妮科学股份公司 用于铁芯直线电机的力校准、力计算和力限制的方法
CN104201964A (zh) * 2014-09-12 2014-12-10 东南大学 一种磁通切换直线电机速度脉动抑制方法
CN109617485A (zh) * 2018-12-04 2019-04-12 南京工程学院 一种基于Tabu和DOB的永磁直线电机推力波动复合抑制方法
CN110504880A (zh) * 2019-07-24 2019-11-26 东南大学盐城新能源汽车研究院 一种磁通切换永磁直线电机干扰观测前馈补偿控制方法

Also Published As

Publication number Publication date
CN112234890A (zh) 2021-01-15
CN112234890B (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
Nakao et al. Suppressing pulsating torques: Torque ripple control for synchronous motors
Boesing et al. Exploring a vibration synthesis process for the acoustic characterization of electric drives
JP5332400B2 (ja) 電動機のトルク脈動抑制装置および抑制方法
JP2011176953A (ja) 回転電気機械のトルクリプル抑制制御装置および制御方法
KR101393765B1 (ko) 토크 리플 저감을 위한 모델 기반 외란 관측기
Deng et al. Improved speed sensorless vector control algorithm of induction motor based on long cable
TW201710924A (zh) 以多項式估測感應機參數之方法
Guedes et al. Differential evolution applied to line-connected induction motors stator fault identification
Caruso et al. A rotor flux and speed observer for sensorless single-phase induction motor applications
WO2022056977A1 (zh) 一种直线电机推力波动的抑制方法、相关设备和介质
WO2022056981A1 (zh) 一种直线电机推力波动的抑制方法、相关设备和介质
WO2022057010A1 (zh) 一种直线电机推力波动的抑制方法、相关设备和介质
Nakao et al. Torque ripple control for synchronous motors using instantaneous torque estimation
WO2022056976A1 (zh) 一种直线电机推力波动的抑制方法、相关设备和介质
JP5488044B2 (ja) 回転電気機械のトルクリプル抑制制御装置および制御方法
KR101916430B1 (ko) 모터의 고장 진단 방법
TWI819454B (zh) 馬達參數估算方法及裝置
US20230178990A1 (en) System and method for automated tuning/configuring of a power system stabilizer (pss) in a digital excitation control system
CN113131818B (zh) 一种霍尔传感器安装误差辨识方法、装置及电机控制系统
KR20180112629A (ko) 유도전동기의 약계자 제어 방법
Linares‐Flores et al. Robust sensorless low‐speed trajectory tracking for a permanent magnet synchronous motor: An extended state observer based backstepping control approach
Klausnitzer et al. Quick cogging torque calculation for electronically commutated motors considering combinations of deviant and flawless magnets
Aymen et al. BFO control tuning of a PMSM high speed drive
Aree An analytical approach for calculating critical voltage-sag removal time of induction motors using manufacturer technical data
TW201323902A (zh) 感應機參數估測方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953834

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20953834

Country of ref document: EP

Kind code of ref document: A1