WO2022056888A1 - 一种信道信息上报方法和装置 - Google Patents

一种信道信息上报方法和装置 Download PDF

Info

Publication number
WO2022056888A1
WO2022056888A1 PCT/CN2020/116342 CN2020116342W WO2022056888A1 WO 2022056888 A1 WO2022056888 A1 WO 2022056888A1 CN 2020116342 W CN2020116342 W CN 2020116342W WO 2022056888 A1 WO2022056888 A1 WO 2022056888A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam quality
quantization
mapping relationship
quality information
information
Prior art date
Application number
PCT/CN2020/116342
Other languages
English (en)
French (fr)
Inventor
管鹏
陈雷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080104167.6A priority Critical patent/CN116134791A/zh
Priority to PCT/CN2020/116342 priority patent/WO2022056888A1/zh
Publication of WO2022056888A1 publication Critical patent/WO2022056888A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks

Definitions

  • the present application relates to communication technologies, and in particular, to a method and apparatus for reporting channel information.
  • the access network device can send one or more reference signals to the terminal device through one or more transmission beams, so that the terminal device can determine one or more channel information according to the one or more reference signals , and report one or more channel information to the access network device.
  • the terminal device In order to save overhead, in the existing solution, the terminal device generally needs to quantify one or more channel information before reporting it. For example, for the beam quality in the channel information, the terminal device can measure one or more reference signals to obtain one or more beam qualities, and quantify the one or more beam qualities before reporting.
  • the quantization process of the channel information is related to the quantization step size. Since the quantization step size in the existing solution is relatively large, the terminal device has a problem of excessive quantization error when quantizing the channel information. Therefore, how to reduce the quantization error is an urgent problem to be solved.
  • the present application provides a method and device for reporting channel information, which can reduce quantization errors.
  • a method for reporting channel information including:
  • the first beam quality is obtained by measuring the reference signal from the access network device, and the at least two beam quality information is based on at least two quantization methods Determining the quality of the first beam by performing at least two quantifications;
  • the at least two beam quality information is sent to the access network device.
  • the method further includes:
  • the first information sent by the access network device is received, so that the terminal device can use at least two quantization methods to quantize the same beam quality at least twice, so that the quantization errors are diversified, thereby improving the The quantization accuracy reduces the quantization error.
  • the at least two beam quality information includes first beam quality information and second beam quality information
  • the first beam quality information is obtained after quantization according to the first beam quality and a first preset offset
  • the second beam quality information is obtained after quantization according to the first beam quality
  • the first beam quality information is obtained after quantization according to the differential beam quality and the second preset offset
  • the second beam quality information is obtained after quantization according to the differential beam quality
  • the differential beam quality is the difference between the beam quality that needs to be reported by absolute value quantization and the first beam quality.
  • the first beam quality information is obtained after quantization according to the first beam quality and the first preset offset
  • the second beam quality information is obtained after quantization according to the first beam quality.
  • the beam quality is obtained by measuring one reference signal from the access network device, or the beam quality greater than the threshold among multiple beam qualities obtained by measuring multiple reference signals from the access network device, such as the maximum beam quality , that is, the first beam quality is the beam quality that needs to be reported using absolute value quantization.
  • the first beam quality information is obtained after quantization according to the differential beam quality and the second preset offset
  • the second beam quality information is obtained after quantization according to the differential beam quality.
  • the first beam quality is any beam quality among the multiple beam qualities except the beam quality greater than the threshold, for example, any beam quality except the largest beam quality among the multiple beam qualities, that is, the first beam quality is the one that requires differential quantization The reported beam quality.
  • multiple reference signals are in one-to-one correspondence with multiple beam qualities.
  • the terminal device measures three reference signals to obtain three beam qualities.
  • the threshold may be configured by a terminal device, or configured by an access network device, or pre-specified by a protocol, which is not limited here.
  • the at least two beam quality information includes first beam quality information and second beam quality information
  • the first beam quality information is obtained according to the first beam quality and the first mapping relationship
  • the second beam quality information is obtained according to the first beam quality and the second mapping relationship
  • the first beam quality information is obtained according to the differential beam quality and the third mapping relationship
  • the second beam quality information is obtained according to the differential beam quality and the fourth mapping relationship.
  • the differential beam quality is the difference between the beam quality that needs to be reported by absolute value quantization and the first beam quality.
  • the first beam quality information is obtained according to the first beam quality and the first mapping relationship
  • the second beam quality information is obtained according to the first beam quality and the second mapping relationship.
  • the first beam quality is The beam quality that is obtained by measuring one reference signal from the access network device, or the beam quality of multiple beam qualities obtained by measuring multiple reference signals from the access network device is greater than the threshold, such as the maximum beam quality, that is, the first beam quality.
  • a beam quality is the beam quality that needs to be reported using absolute value quantization.
  • the first beam quality information is obtained according to the differential beam quality and the third mapping relationship
  • the second beam quality information is obtained according to the differential beam quality and the fourth mapping relationship.
  • the first beam quality is multiple. Any beam quality except the beam quality greater than the threshold, for example, any beam quality except the largest beam quality among the multiple beam qualities, that is, the first beam quality is the beam that needs to be reported by differential quantization quality.
  • the first mapping relationship, the second mapping relationship, the third mapping relationship, and the fourth mapping relationship may be, for example, a mapping relationship table, which is not limited herein.
  • the first mapping relationship includes multiple first reported values and multiple first quantization ranges corresponding to the multiple first reported values one-to-one
  • the The second mapping relationship includes multiple second reported values and multiple second quantization ranges corresponding to the multiple second reported values one-to-one
  • the first mapping relationship corresponds to the same reported value in the second mapping relationship different quantization ranges
  • each first quantization range in the first mapping relationship is determined according to each corresponding second quantization range and a third preset offset in the second mapping relationship
  • the third mapping The relationship includes a plurality of third reported values and a plurality of third quantization ranges corresponding to the plurality of third reported values one-to-one
  • the fourth mapping relationship includes a plurality of fourth reported values and the plurality of fourth reported values Reported values correspond to multiple fourth quantization ranges one-to-one, the same reported value in the third mapping relationship and the fourth mapping relationship corresponds to different quantization ranges
  • each third quantization range in the third mapping relationship is based on Each
  • the first mapping relationship includes a one-to-one correspondence between multiple first reported values and the multiple first quantization ranges
  • the second mapping relationship includes the multiple second reported values and A one-to-one correspondence between the plurality of second quantization ranges
  • the third mapping relationship includes a one-to-one correspondence between a plurality of third reported values and the plurality of third quantization ranges
  • the fourth The mapping relationship includes a one-to-one correspondence between the plurality of fourth reported values and the plurality of fourth quantization ranges.
  • the method further includes:
  • the terminal device supports the use of the at least two quantization methods to perform the same beam quality that needs to be reported.
  • the method further includes:
  • the terminal device supports the use of the at least two quantization methods to perform the same beam quality that needs to be reported.
  • the first information is further used to indicate one or more of the following: the first preset offset, the second preset offset, the The third preset offset and the fourth preset offset.
  • the sending the at least two beam quality information to the access network device includes:
  • the at least two beam quality information is sent to the access network device in at least two times.
  • a method for reporting channel information including:
  • Receive at least two beam quality information sent by the terminal device the at least two beam quality information is determined according to the first beam quality, the first beam quality is obtained by measuring the reference signal, the at least two beam quality information
  • the quality information is determined by performing at least two quantizations on the quality of the first beam according to at least two quantization methods
  • a measurement value corresponding to the first beam quality is determined according to the at least two beam quality information.
  • the at least two beam quality information includes first beam quality information and second beam quality information
  • the first beam quality information is obtained after quantization according to the first beam quality and a first preset offset
  • the second beam quality information is obtained after quantization according to the first beam quality
  • the first beam quality information is obtained after quantization according to the differential beam quality and the second preset offset
  • the second beam quality information is obtained after quantization according to the differential beam quality
  • the differential beam quality is the difference between the beam quality that needs to be reported by absolute value quantization and the first beam quality.
  • the first beam quality information is obtained after quantization according to the first beam quality and the first preset offset
  • the second beam quality information is obtained after quantization according to the first beam quality.
  • the beam quality is obtained by measuring one reference signal from the access network device, or the beam quality greater than the threshold among multiple beam qualities obtained by measuring multiple reference signals from the access network device, such as the maximum beam quality , that is, the first beam quality is the beam quality that needs to be reported using absolute value quantization.
  • the first beam quality information is obtained after quantization according to the differential beam quality and the second preset offset
  • the second beam quality information is obtained after quantization according to the differential beam quality.
  • the first beam quality is any beam quality except the largest beam quality among the multiple beam qualities, for example, any beam quality other than the largest beam quality among the multiple beam qualities, that is, the first beam quality needs to be reported by differential quantization beam quality.
  • multiple reference signals are in one-to-one correspondence with multiple beam qualities.
  • the terminal device measures three reference signals to obtain three beam qualities.
  • the threshold may be configured by a terminal device, or configured by an access network device, or pre-specified by a protocol, which is not limited here.
  • the at least two beam quality information includes first beam quality information and second beam quality information
  • the first beam quality information is obtained according to the first beam quality and the first mapping relationship
  • the second beam quality information is obtained according to the first beam quality and the second mapping relationship
  • the first beam quality information is obtained according to the differential beam quality and the third mapping relationship
  • the second beam quality information is obtained according to the differential beam quality and the fourth mapping relationship.
  • the differential beam quality is the difference between the beam quality that needs to be reported by absolute value quantization and the first beam quality.
  • the first beam quality information is obtained according to the first beam quality and the first mapping relationship
  • the second beam quality information is obtained according to the first beam quality and the second mapping relationship.
  • the first beam quality is The beam quality that is obtained by measuring one reference signal from the access network device, or the beam quality of multiple beam qualities obtained by measuring multiple reference signals from the access network device is greater than the threshold, such as the maximum beam quality, that is, the first beam quality.
  • a beam quality is the beam quality that needs to be reported using absolute value quantization.
  • the first beam quality information is obtained according to the differential beam quality and the third mapping relationship
  • the second beam quality information is obtained according to the differential beam quality and the fourth mapping relationship.
  • the first beam quality is multiple. Any beam quality except the beam quality greater than the threshold, for example, any beam quality except the largest beam quality among the multiple beam qualities, that is, the first beam quality is the beam that needs to be reported by differential quantization quality.
  • the first mapping relationship, the second mapping relationship, the third mapping relationship, and the fourth mapping relationship may be, for example, a mapping relationship table, which is not limited herein.
  • the first mapping relationship includes multiple first reported values and multiple first quantization ranges one-to-one corresponding to the multiple first reported values
  • the The second mapping relationship includes multiple second reported values and multiple second quantization ranges corresponding to the multiple second reported values one-to-one
  • the first mapping relationship corresponds to the same reported value in the second mapping relationship different quantization ranges
  • each first quantization range in the first mapping relationship is determined according to each corresponding second quantization range and a third preset offset in the second mapping relationship
  • the third mapping The relationship includes a plurality of third reported values and a plurality of third quantization ranges corresponding to the plurality of third reported values one-to-one
  • the fourth mapping relationship includes a plurality of fourth reported values and the plurality of fourth reported values Reported values correspond to multiple fourth quantization ranges one-to-one, the same reported value in the third mapping relationship and the fourth mapping relationship corresponds to different quantization ranges
  • each third quantization range in the third mapping relationship is based on Each
  • the first mapping relationship includes a one-to-one correspondence between multiple first reported values and the multiple first quantization ranges
  • the second mapping relationship includes the multiple second reported values and A one-to-one correspondence between the plurality of second quantization ranges
  • the third mapping relationship includes a one-to-one correspondence between a plurality of third reported values and the plurality of third quantization ranges
  • the fourth The mapping relationship includes a one-to-one correspondence between the plurality of fourth reported values and the plurality of fourth quantization ranges.
  • the determining a measurement value corresponding to the first beam quality according to the at least two beam quality information includes:
  • the quantization range corresponding to the third beam quality information is determined according to the third beam quality information and the fifth mapping relationship, or is determined according to the third beam quality information and the sixth mapping relationship; the The fifth mapping relationship is determined according to the quantization precision supported by the terminal device and the first preset offset, and the sixth mapping relationship is determined according to the quantization precision supported by the terminal device and the third preset offset offset is determined.
  • the fifth mapping relationship includes multiple fifth measurement values and multiple fifth quantization ranges corresponding to the multiple fifth measurement values one-to-one
  • the sixth mapping relationship includes multiple sixth measurements value and multiple sixth quantization ranges one-to-one corresponding to the multiple sixth measurement values
  • the quantization precision supported by the terminal device is the difference between the maximum value and the minimum value of any quantization range in the fifth mapping relationship.
  • the fifth mapping relationship includes a one-to-one correspondence between the plurality of fifth measurement values and the plurality of fifth quantization ranges
  • the sixth mapping relationship includes the plurality of sixth measurements A one-to-one correspondence between values and the plurality of sixth quantization ranges.
  • the fifth mapping relationship and the sixth mapping relationship may be, for example, a mapping relationship table, which is not limited herein.
  • the first beam quality is obtained by measuring one reference signal from the access network device, or a beam quality greater than a threshold among multiple beam qualities obtained by measuring multiple reference signals from the access network device , such as the maximum beam quality, that is, the first beam quality is the beam quality that needs to be reported by absolute value quantization.
  • the access network device needs to determine the measurement value corresponding to the quality of the first beam according to the fifth mapping relationship or the sixth mapping relationship.
  • the corresponding relationship is determined by the quantization accuracy supported by the terminal device and the preset offset, so that the access network device can reduce the measurement value according to the multiple beam quality information corresponding to the same beam quality. quantization error.
  • the determining a measurement value corresponding to the first beam quality according to the at least two beam quality information includes:
  • the quantization range corresponding to the fourth beam quality information is determined according to the fourth beam quality information and the seventh mapping relationship, or is determined according to the fourth beam quality information and the eighth mapping relationship; the The seventh mapping relationship is determined according to the quantization precision supported by the terminal device and the second preset offset, and the eighth mapping relationship is determined according to the quantization precision supported by the terminal device and the fourth preset offset The offset is determined; the fifth beam quality information is obtained by quantizing the beam quality reported by the absolute value quantization as required, or, according to the at least two quantization methods, the absolute value quantization report needs to be used The beam quality is obtained after at least two quantizations.
  • the seventh mapping relationship includes multiple seventh measurement values and multiple seventh quantization ranges corresponding to the multiple seventh measurement values one-to-one
  • the eighth mapping relationship includes multiple eighth measurements value and multiple eighth quantization ranges one-to-one corresponding to the multiple eighth measurement values
  • the quantization precision supported by the terminal device is the difference between the maximum value and the minimum value of any quantization range in the seventh mapping relationship.
  • the seventh mapping relationship includes a one-to-one correspondence between the plurality of seventh measurement values and the plurality of seventh quantization ranges
  • the eighth mapping relationship includes the plurality of eighth measurements A one-to-one correspondence between values and the plurality of eighth quantization ranges.
  • the seventh mapping relationship and the eighth mapping relationship may be, for example, a mapping relationship table, which is not limited herein.
  • the first beam quality is any one of the multiple beam qualities except the beam quality greater than the threshold, that is, the first beam quality is the beam quality that needs to be reported by differential quantization.
  • the access network device needs to determine the measurement value corresponding to the quality of the first beam according to the seventh mapping relationship or the eighth mapping relationship.
  • the fifth beam quality information is obtained by quantizing the beam quality reported by absolute value quantization as required, or, according to the at least two quantization methods, performing at least on the beam quality that needs to be reported by the absolute value quantization. obtained after two quantifications.
  • the fifth beam quality information is obtained after quantizing the beam quality that needs to be reported by the absolute value quantization at least twice according to the at least two quantization methods, that is, the fifth beam quality information is correct.
  • the at least two reference beam quality information is obtained after averaging or weighted averaging or filtering, and the at least two reference beam quality information is obtained by performing at least two quantization methods on the beam quality that needs to be reported by the absolute value quantization. Determined by two quantifications.
  • the corresponding relationship is determined by the quantization accuracy supported by the terminal device and the preset offset, so that the access network device can reduce the measurement value according to the multiple beam quality information corresponding to the same beam quality. quantization error.
  • the method before the receiving at least two beam quality information sent by the terminal device, the method further includes:
  • the method further includes:
  • the terminal device supports using the at least two quantization methods to perform at least the same beam quality that needs to be reported.
  • the method further includes:
  • the terminal device supports using the at least two quantization methods to perform at least the same beam quality that needs to be reported. The ability to quantize twice and the quantization precision supported by the terminal device.
  • the first information is further used to indicate one or more of the following: the first preset offset, the second preset offset, the The third preset offset and the fourth preset offset.
  • a communication device is provided, the device is a chip or a terminal device including a chip, the device includes a processing module and a transceiver module,
  • the processing module is configured to determine at least two beam quality information according to a first beam quality, where the first beam quality is obtained by measuring a reference signal from an access network device, and the at least two beam quality information is determined by performing at least two quantizations on the first beam quality according to at least two quantization methods;
  • the transceiver module is configured to send the at least two beam quality information to the access network device.
  • the transceiver module is configured to receive the first information sent by the access network device before determining at least two beam quality information according to the first beam quality, and the first information uses for instructing the terminal device to use the at least two quantization methods to perform at least two quantizations on the same beam quality that needs to be reported.
  • the at least two beam quality information includes first beam quality information and second beam quality information
  • the first beam quality information is obtained after quantization according to the first beam quality and a first preset offset
  • the second beam quality information is obtained after quantization according to the first beam quality
  • the first beam quality information is obtained after quantization according to the differential beam quality and the second preset offset
  • the second beam quality information is obtained after quantization according to the differential beam quality
  • the differential beam quality is the difference between the beam quality that needs to be reported by absolute value quantization and the first beam quality.
  • the at least two beam quality information includes first beam quality information and second beam quality information
  • the first beam quality information is obtained according to the first beam quality and the first mapping relationship
  • the second beam quality information is obtained according to the first beam quality and the second mapping relationship
  • the first beam quality information is obtained according to the differential beam quality and the third mapping relationship
  • the second beam quality information is obtained according to the differential beam quality and the fourth mapping relationship.
  • the differential beam quality is the difference between the beam quality that needs to be reported by absolute value quantization and the first beam quality.
  • the first mapping relationship includes multiple first reported values and multiple first quantization ranges one-to-one corresponding to the multiple first reported values
  • the second mapping relationship includes A plurality of second reported values and a plurality of second quantization ranges corresponding to the plurality of second reported values one-to-one, the same reported value in the first mapping relationship and the second mapping relationship corresponds to different quantization ranges
  • Each first quantization range in the first mapping relationship is determined according to each corresponding second quantization range and a third preset offset in the second mapping relationship; or, the third mapping relationship includes a plurality of first quantization ranges.
  • the fourth mapping relationship includes a plurality of fourth reported values and a one-to-one correspondence with the plurality of fourth reported values a plurality of fourth quantization ranges, the same reported value in the third mapping relationship and the fourth mapping relationship corresponds to different quantization ranges, and each third quantization range in the third mapping relationship is based on the fourth mapping relationship
  • the respective fourth quantization ranges and fourth preset offsets corresponding to the relationship are determined.
  • the transceiver module before determining at least two beam quality information according to the first beam quality, is further configured to send first capability information to the access network device, the first The capability information is used to indicate one or more of the following: the terminal device supports the capability of using the at least two quantization methods to quantize the same beam quality to be reported at least twice, the quantization precision supported by the terminal device, the first preset offset, the second preset offset, the third preset offset and the fourth preset offset.
  • the transceiver module before determining at least two beam quality information according to the first beam quality, is further configured to send second capability information to the access network device, the second The capability information is used to indicate one or more of the following: the terminal device supports the capability of using the at least two quantization methods to quantize the same beam quality to be reported at least twice and the quantization precision supported by the terminal device.
  • the first information is further used to indicate one or more of the following: the first preset offset, the second preset offset, the third preset offset shift and the fourth preset offset.
  • the transceiver module when sending the at least two beam quality information to the access network device, is configured to send the at least two beam quality information to the access network device in at least two times Two beam quality information.
  • a communication device is provided, the device is a chip or an access network device including a chip, the device includes a transceiver module and a processing module,
  • the transceiver module is configured to receive at least two beam quality information sent by the terminal device, the at least two beam quality information is determined according to the first beam quality, and the first beam quality is obtained by measuring the reference signal , the at least two beam quality information is determined by performing at least two quantizations on the first beam quality according to at least two quantization methods;
  • the processing module is configured to determine a measurement value corresponding to the first beam quality according to the at least two beam quality information.
  • the at least two beam quality information includes first beam quality information and second beam quality information
  • the first beam quality information is obtained after quantization according to the first beam quality and a first preset offset
  • the second beam quality information is obtained after quantization according to the first beam quality
  • the first beam quality information is obtained after quantization according to the differential beam quality and the second preset offset
  • the second beam quality information is obtained after quantization according to the differential beam quality
  • the differential beam quality is the difference between the beam quality that needs to be reported by absolute value quantization and the first beam quality.
  • the at least two beam quality information includes first beam quality information and second beam quality information
  • the first beam quality information is obtained according to the first beam quality and the first mapping relationship
  • the second beam quality information is obtained according to the first beam quality and the second mapping relationship
  • the first beam quality information is obtained according to the differential beam quality and the third mapping relationship
  • the second beam quality information is obtained according to the differential beam quality and the fourth mapping relationship.
  • the differential beam quality is the difference between the beam quality that needs to be reported by absolute value quantization and the first beam quality.
  • the first mapping relationship includes multiple first reported values and multiple first quantization ranges one-to-one corresponding to the multiple first reported values
  • the second mapping relationship includes A plurality of second reported values and a plurality of second quantization ranges corresponding to the plurality of second reported values one-to-one, the same reported value in the first mapping relationship and the second mapping relationship corresponds to different quantization ranges
  • Each first quantization range in the first mapping relationship is determined according to each corresponding second quantization range and a third preset offset in the second mapping relationship; or, the third mapping relationship includes a plurality of first quantization ranges.
  • the fourth mapping relationship includes a plurality of fourth reported values and a one-to-one correspondence with the plurality of fourth reported values a plurality of fourth quantization ranges, the same reported value in the third mapping relationship and the fourth mapping relationship corresponds to different quantization ranges, and each third quantization range in the third mapping relationship is based on the fourth mapping relationship
  • the respective fourth quantization ranges and fourth preset offsets corresponding to the relationship are determined.
  • the processing module is configured to:
  • the quantization range corresponding to the third beam quality information is determined according to the third beam quality information and the fifth mapping relationship, or is determined according to the third beam quality information and the sixth mapping relationship; the The fifth mapping relationship is determined according to the quantization precision supported by the terminal device and the first preset offset, and the sixth mapping relationship is determined according to the quantization precision supported by the terminal device and the third preset offset offset is determined.
  • the fifth mapping relationship includes a plurality of fifth measurement values and a plurality of fifth quantization ranges corresponding to the plurality of fifth measurement values one-to-one
  • the sixth mapping relationship includes Multiple sixth measurement values and multiple sixth quantization ranges one-to-one corresponding to the multiple sixth measurement values
  • the quantization precision supported by the terminal device is the maximum value of any one of the quantization ranges in the fifth mapping relationship
  • the processing module is configured to:
  • the quantization range corresponding to the fourth beam quality information is determined according to the fourth beam quality information and the seventh mapping relationship, or is determined according to the fourth beam quality information and the eighth mapping relationship; the The seventh mapping relationship is determined according to the quantization precision supported by the terminal device and the second preset offset, and the eighth mapping relationship is determined according to the quantization precision supported by the terminal device and the fourth preset offset The offset is determined; the fifth beam quality information is obtained by quantizing the beam quality reported by the absolute value quantization as required, or, according to the at least two quantization methods, the beam quality that needs to be reported by the absolute value quantization The mass is obtained after at least two quantifications.
  • the seventh mapping relationship includes a plurality of seventh measurement values and a plurality of seventh quantization ranges corresponding to the plurality of seventh measurement values one-to-one
  • the eighth mapping relationship includes Multiple eighth measurement values and multiple eighth quantization ranges one-to-one corresponding to the multiple eighth measurement values
  • the quantization precision supported by the terminal device is the maximum value of any one of the quantization ranges in the seventh mapping relationship
  • the transceiver module before receiving the at least two beam quality information sent by the terminal device, is further configured to send first information to the terminal device, where the first information is used to instruct the terminal.
  • the device uses the at least two quantization methods to perform at least two quantizations on the same beam quality that needs to be reported.
  • the transceiver module is further used for
  • the terminal device supports using the at least two quantization methods to perform at least the same beam quality that needs to be reported.
  • the transceiver module is further used for
  • the terminal device supports using the at least two quantization methods to perform at least the same beam quality that needs to be reported. The ability to quantize twice and the quantization precision supported by the terminal device.
  • the first information is used to indicate one or more of the following: a first preset offset and a second preset offset, the third preset offset and the first preset offset Four preset offsets.
  • a communication device is provided, the device is a chip or a terminal device including a chip, and includes a processor, an input interface and an output interface, and the input interface is used for receiving communication from other communication devices other than the communication device.
  • the output interface is used for outputting information to other communication devices other than the communication device, and the processor executes the computer program stored in the memory to implement the method according to any one of the first aspect.
  • a communication device is provided, the device is a chip or an access network device including a chip, and includes a processor, an input interface, and an output interface, and the input interface is used to receive other information from other than the communication device.
  • a computer program product which, when a computer reads and executes the computer program product, causes the computer to execute the method to implement any one of the first aspect or the second aspect.
  • a computer-readable storage medium is provided, and a computer program is stored in the computer-readable storage medium, and when the computer program is executed, any one of the first aspect or the second aspect is implemented. method.
  • a communication system includes the above-mentioned terminal device, and/or the above-mentioned access network device.
  • FIG. 1 is an infrastructure of a communication system provided by an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a method for reporting channel information provided by an embodiment of the present application
  • FIG. 3 is a schematic flowchart of another method for reporting channel information provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a simplified terminal device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a simplified access network device according to an embodiment of the present application.
  • At least one (a) of a, b, or c may represent: a, b, c, ab, ac, bc, or abc, where a, b, and c may be single or multiple .
  • the singular expressions "a”, “an”, “the”, “above”, “the” and “the” are intended to also include such expressions as “one or more” unless the context clearly dictates otherwise. to the contrary.
  • the ordinal numbers such as “first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the order, sequence, priority or priority of multiple objects. Importance.
  • references to "one embodiment” or “some embodiments” or the like described in the embodiments of the present application mean that a particular feature, structure or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically emphasized otherwise.
  • the terms “including”, “including”, “having” and their variants mean “including but not limited to” unless specifically emphasized otherwise.
  • the embodiment of the beam in the New Radio (New Radio, NR) protocol may be referred to as a spatial domain filter (spatial domain filter), a spatial filter (spatial filter) or a spatial parameter (spatial parameter).
  • the beam used to transmit the signal may be called the transmission beam (transmission beam, Tx beam), the spatial domain transmission filter (spatial domain transmission filter) or the spatial transmission parameter; the beam used to receive the signal may be called the receive beam ( reception beam, Rx beam), spatial domain receive filter or spatial RX parameter.
  • the transmitting beam may refer to the distribution of signal strength in different directions in space after the signal is transmitted by the antenna
  • the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space.
  • the beams may be wide beams, or narrow beams, or other types of beams.
  • the beamforming technique may be beamforming or other techniques.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, or a hybrid digital/analog beamforming technology. Different beams can be considered as different resources. The same information or different information can be sent through different beams.
  • multiple beams with the same or similar communication characteristics are regarded as one beam.
  • One or more antenna ports may be included in a beam for transmitting data channels, control channels, sounding signals, etc.
  • One or more antenna ports forming a beam can also be viewed as a set of antenna ports.
  • the beam refers to the transmission beam of the network device.
  • each beam of the network device corresponds to a resource, so the index of the resource can be used to uniquely identify the beam corresponding to the resource.
  • the channel information may include one or more of the following: beam quality, channel quality indicator (CQI), precoding matrix indicator (PMI), layer indicator (LI), rank indicator ( rank indicator, RI), delay spread (delay spread), Doppler spread (doppler spread), Doppler shift (doppler shift), average delay (average delay), average gain, spatial Rx parameters).
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • LI layer indicator
  • rank indicator rank indicator
  • RI rank indicator
  • delay spread delay spread
  • Doppler spread Doppler spread
  • Doppler shift Doppler shift
  • average delay average delay
  • average gain average gain
  • spatial Rx parameters spatial Rx parameters
  • the beam quality may be one of the following: reference signal receiving power (RSRP), reference signal receiving quality (RSRQ), or signal to interference plus noise ratio (signal to interference plus noise ratio, SINR).
  • RSRP reference signal receiving power
  • RSRQ reference signal receiving quality
  • SINR signal to interference plus noise ratio
  • Spatial reception parameters may include one or more of the following: angle of arrival (AOA), average AOA, AOA spread, angle of departure (AOD), average angle of departure AOD, AOD spread, receive antenna space Correlation parameters, transmission antenna spatial correlation parameters.
  • AOA angle of arrival
  • AOA spread angle of departure
  • AOD angle of departure
  • AOD spread angle of departure
  • receive antenna space Correlation parameters transmission antenna spatial correlation parameters.
  • the object that needs to be reported by absolute value quantization in the embodiment of the present application is not limited to the beam quality in the channel information, but may also be other information in the channel information except the beam quality.
  • differential quantization needs to be reported.
  • the object of is not limited to the beam quality, but can also be other information in the channel information except the beam quality, which is not limited here.
  • the beam quality information is determined by quantifying the beam quality. For example, for reference signal receiving power (RSRP), if the terminal device only needs to report the RSRP of one reference signal, or the largest one of the RSRPs of multiple reference signals reported by the terminal device, the beam quality information is correct. RSRP was determined quantitatively. For other RSRPs except the maximum RSRP among the RSRPs of multiple reference signals reported by the terminal device, the beam quality information is determined by quantifying the differential RSRP, where the differential RSRP may be, for example, the maximum RSRP and the RSRP except the maximum RSRP. difference between.
  • RSRP reference signal receiving power
  • Absolute value quantification i.e. quantifying the measured value.
  • the RSRP measurement value is -100dBm
  • the beam quality information corresponding to the quantization result is RSRP_57, if it is used according to the requirements of the 3GPP standard protocol TS 38.214 v16.2.0 7 bits are used to report RSRP, which is 0111001.
  • Differential quantization which quantifies the difference between two measurements. For example, if the quality of the two beams is -105.5dBm and -100dBm respectively, taking the maximum value of -100dBm as a reference, the differential RSRP corresponding to -105.5dBm is -5.5dB, that is, the difference between -105.5dBm and -100dBm, According to the 3GPP standard protocol TS 38.133 v16.1.0 table 10.1.6.1-2, the beam quality information corresponding to the quantization result after the terminal equipment quantizes the -5.5dB differential RSRP is DIFFRSRP_2. If 4 bits are used to report the differential RSRP according to the requirements of the 3GPP standard protocol TS 38.214 v16.2.0, it is 0010.
  • the access network device can send configuration information to the terminal device, where the configuration information includes resource configuration information and reporting configuration information.
  • the resource configuration information includes one or more resource sets, each resource set includes one or more downlink signal resources, and each downlink signal resource corresponds to one beam.
  • Downlink signals include: channel state information reference signal (CSI-RS), cell-specific reference signal (CS-RS), UE-specific reference signal (user equipment specific reference signal, US-RS) , demodulation reference signal (demodulation reference signal, DMRS), and synchronization signal/physical broadcast channel block (synchronization signal/physical broadcast channel block, SS/PBCH block).
  • CSI-RS channel state information reference signal
  • CS-RS cell-specific reference signal
  • UE-specific reference signal user equipment specific reference signal, US-RS
  • demodulation reference signal demodulation reference signal
  • DMRS demodulation reference signal
  • SS/PBCH block synchronization signal/physical broadcast channel block
  • the SS/PBCH block may be referred to as a synchronization signal block (synchron
  • the reporting configuration information includes at least one of the following: the resource identifier of the downlink signal that the terminal device needs to report, the number of beam qualities that the terminal device needs to report, and the like.
  • the reporting configuration information further includes an identifier of the resource configuration information, so as to indicate which resource configured by the resource configuration information is used by the terminal device to measure the reference signal.
  • the access network device may send one or more reference signals to the terminal device through one or more transmission beams.
  • the terminal device receives one or more reference signals through one or more receive beams.
  • One or more reference signals received by the terminal device are measured to obtain one or more beam qualities.
  • the terminal equipment can report the beam quality.
  • the terminal device may report according to the configuration information, for example, report the beam quality according to the number of beam qualities that the terminal device needs to report.
  • the access network device can select a beam suitable for data transmission according to the beam quality and scheduling policy reported by the terminal device and indicate it to the terminal device.
  • the terminal device may report all or part of the beam qualities of all measured beam qualities to the access network device according to the configuration of the access network device. For example, the terminal device measures three beam qualities. beam quality, the terminal equipment reports the two beam qualities to the access network equipment. In another implementation manner, the terminal device may report beam qualities greater than the threshold value among the measured beam qualities to the access network device. For example, the terminal device measures three beam qualities, of which two beam qualities are greater than the threshold If the limit value is set, the terminal equipment reports the quality of the two beams to the access network equipment.
  • the terminal device can use the beam quality with the best quality as a reference value, and use differential quantization to quantify the remaining beam qualities except the reference value before reporting.
  • bit width bit width corresponding to RSRP (RSRP with the best quality) is 7
  • bit width corresponding to differential RSRP (differential RSRP) is 4, that is, differential reporting is required.
  • the corresponding bit width of RSRP is 4. It can be understood that the specific value of the bit width is not limited in this application.
  • Table 1 Bit width involved in reporting beam quality
  • the terminal equipment adopts absolute value quantization to use 7 bits for reporting.
  • the RSRP with the best quality is -100dBm, and with reference to Table 3, it can be determined that the beam quality information corresponding to -100dBm is RSRP_57, and RSRP_57 is represented as 0111001 in binary bits.
  • the corresponding quantization step size is 1dB.
  • the terminal device can quantify the difference between each beam quality among the other beam qualities and the best beam quality, that is, quantify each beam quality among the other beam qualities.
  • the beam quality is differentially quantized to report using 4 bits.
  • the best quality RSRP1 is -100dBm
  • RSRP2 is -105.5dBm
  • RSRP3 is -110dBm.
  • the difference between RSRP2 and RSRP1 is -5.5dB
  • the difference between RSRP3 and RSRP1 is -11dB.
  • the corresponding quantization range of DIFFRSRP_1 is: -2 ⁇ RSRP>-4; the corresponding quantization range of DIFFRSRP_2 is: -4 ⁇ RSRP>-6; the corresponding quantization range of DIFFRSRP_3 is:- 6 ⁇ RSRP>-8; the corresponding quantization range of DIFFRSRP_4 is: -8 ⁇ RSRP>-10; the corresponding quantization range of DIFFRSRP_5 is: -10 ⁇ RSRP>-12. That is, the quantization steps are all 2dB.
  • the quantization range in which -5.5dB falls is -4 ⁇ RSRP>-6, that is, the beam quality information corresponding to RSRP2 is DIFFRSRP_2, and DIFFRSRP_2 is expressed in binary bits as 0010; the quantization range in which -11dB falls is -10 ⁇ RSRP>-12, that is, the beam quality information corresponding to RSRP2 is DIFFRSRP_5, and DIFFRSRP_5 is represented as 0101 in binary bits.
  • the quantization process of beam quality is related to the quantization step size.
  • the quality of the beam with the best quality is -80dBm
  • the quality of one beam in the other beam qualities is -84.1dBm
  • the quality of the other beam quality is -85.9dBm.
  • the difference between -84.1dBm and -80dBm is -4.1dBm
  • the difference between -84.1dBm and -85.9dBm is -5.9dB.
  • an embodiment of the present application proposes a method for reporting channel information to solve the above problem, and the embodiments of the present application are described in detail below.
  • the technical solutions of the embodiments of the present application can be applied to long term evolution (long term evolution, LTE) architecture, the fifth generation mobile communication technology (5th generation mobile networks, 5G), the 4.5 generation mobile communication technology (the 4.5 generation mobile communication technology) networks, 4.5G), wireless local area networks (WLAN) systems, etc.
  • LTE long term evolution
  • 5G fifth generation mobile networks
  • 4.5 generation mobile communication technology the 4.5 generation mobile communication technology
  • WLAN wireless local area networks
  • FIG. 1 is an infrastructure of a communication system provided by an embodiment of the present application.
  • the communication system may include a terminal device 10 and an access network device 11 , and the terminal device 10 may communicate with the access network device 11 .
  • the terminal device 10 may be a chip, or may be a user equipment including a chip. Further, the terminal device 10 is an entity on the user side for receiving a signal, or sending a signal, or receiving a signal and sending a signal. The terminal device 10 is used to provide one or more of a voice service and a data connectivity service to the user. It can be understood that when the terminal device 10 is a chip, the chip may include a processor and an interface. When the terminal device 10 is a user equipment including a chip, the terminal device 10 may be a device that includes a wireless transceiver function and can cooperate with an access network device to provide a communication service for the user.
  • the terminal device 10 may refer to a user equipment (user equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a terminal, a wireless communication device, a user agent or user device.
  • UE user equipment
  • an access terminal a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a terminal, a wireless communication device, a user agent or user device.
  • the terminal device 10 may also be a drone, an internet of things (IoT) device, a station in WLAN (station, ST), a cellular phone (cellular phone), a smart phone (smart phone), a cordless phone, wireless data Cards, tablet computers, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistant (PDA) devices, laptop computers (laptop computer) ), machine type communication (MTC) terminals, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices (also known as wearable smart devices) , virtual reality (VR) terminal, augmented reality (AR) terminal, wireless terminal in industrial control (industrial control), wireless terminal in unmanned driving (self driving), remote medical (remote medical) Wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • IoT internet of things
  • WLAN station in WLAN
  • ST wireless cellular phone
  • smart phone smart phone
  • the terminal device 10 may also be a device to device (device to device, D2D) device, such as an electricity meter, a water meter, and the like.
  • the terminal device 10 may also be a terminal in a 5G system or a terminal in a next-generation communication system, which is not limited in this embodiment of the present application.
  • the access network device 11 may be a chip for communicating with the terminal device 10 , or may be a device including a chip for communicating with the terminal device 10 .
  • the access network device 11 is an entity on the network side for sending a signal, or receiving a signal, or sending a signal and receiving a signal. It can be understood that when the access network device 11 is a chip, the chip may include a processor and an interface.
  • the access network device 11 may be a device deployed in a radio access network (RAN) to provide a wireless communication function for the terminal device 10, for example, it may be a device for transmitting and receiving point (transmission reception point, TRP), base station, various forms of control nodes.
  • RAN radio access network
  • the access network equipment may be various forms of macro base station, micro base station (also called small cell), relay station, access point (AP), radio network controller (RNC), Node B (node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseBand unit, BBU), transmission point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP), mobile switching center), etc., can also be the antenna panel of the base station.
  • the control node can connect to multiple base stations, and configure resources for multiple terminals covered by multiple base stations.
  • the names of devices with base station functions may vary.
  • it can be an evolved base station (evolutional node B, eNB or eNodeB) in an LTE system, a wireless controller in a cloud radio access network (CRAN) scenario, or a 5G network (new radio nodeB, gNB), or the access network device 11 may be a relay station, an access point, a vehicle-mounted device, a wearable device, a network-side device in a network after 5G, or a network device in a future evolved PLMN network, etc.
  • the specific name of the access network equipment is not limited in this application.
  • the channel information reporting method provided by the embodiments of the present application may be applicable to various system architectures.
  • the infrastructure and service scenarios of the communication system described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
  • Those of ordinary skill in the art know that, With the evolution of the communication system architecture and the emergence of new service scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • FIG. 2 is a schematic flowchart of a method for reporting channel information provided by the embodiment of the present application.
  • the terminal device in FIG. 2 is the terminal device 10 in FIG. 1
  • the access network device in FIG. 2 is the access network device 11 in FIG. 1 .
  • the method includes but is not limited to the following steps:
  • the terminal device determines at least two beam quality information according to the first beam quality.
  • the first beam quality may include one of the following: reference signal receiving power (RSRP), reference signal receiving quality (RSRQ), or signal to interference plus noise ratio (signal to interference plus noise). ratio, SINR).
  • RSRP reference signal receiving power
  • RSRQ reference signal receiving quality
  • SINR signal to interference plus noise ratio
  • the first beam quality is obtained by measuring a reference signal from the access network device, and the at least two beam quality information is determined by quantizing the first beam quality at least twice according to at least two quantization methods.
  • the terminal device determines at least two beam quality information according to the first beam quality, including: the terminal device quantizes the first beam quality at least twice according to at least two quantization methods in an alternate manner, and determines at least two beams. quality information. That is, the terminal device may first use one quantization method to quantify the quality of the first beam, and then use another quantization method to quantify the quality of the first beam, and which quantization method should be used by the terminal device first to quantize the quality of the first beam , in this application, without limitation.
  • the at least two quantization methods include a first quantization method and a second quantization method.
  • the first quantization method and the second quantization method are different, and the terminal device adopts an alternate method to perform at least on the first beam quality according to the at least two quantization methods.
  • Quantizing twice to determine at least two beam quality information comprising: the terminal device quantizing the first beam quality according to the first quantization method, and determining the first beam quality information in the at least two beam quality information; the terminal device quantizing the first beam quality information according to the second quantization method; The first beam quality is quantized in the manner, and the second beam quality information in the at least two beam quality information is determined.
  • the order in which the terminal device determines the first beam quality information and the second beam quality information is not limited.
  • the terminal device may also quantify the first beam quality according to the second quantization method to determine the second beam quality information, and then quantize the first beam quality according to the first quantization method to determine the first beam quality information.
  • the first quantization method is determined according to the second quantization method and the first preset offset, or determined according to the second quantization method and the second preset offset, or determined according to the second quantization method and the third preset offset. determined by the offset, or determined according to the second quantization mode and the fourth preset offset.
  • the second quantization manner is the manner in which the terminal device quantifies the beam quality in the existing solution. That is, the second quantization method includes absolute value quantization or differential quantization.
  • the first beam quality is obtained by measuring a reference signal from an access network device, or a beam with multiple beam qualities greater than a threshold among multiple beam qualities obtained by measuring multiple reference signals from an access network device Quality, such as the maximum beam quality, that is, the first beam quality is the beam quality that needs to be reported by absolute value quantization, and the second quantization method is absolute value quantization; if the first beam quality is the beam quality divided by the beam quality greater than the threshold Any beam quality other than the beam quality, for example, any beam quality other than the maximum beam quality among the multiple beam qualities, that is, the first beam quality is the beam quality that needs to be reported by differential quantization, and the second quantization method is differential quantify.
  • the threshold may be configured by a terminal device, or configured by an access network device, or pre-specified by a protocol, which is not limited here.
  • the second quantization method is absolute value quantization; if the first beam quality is differential RSRP, the second quantization method is differential quantization.
  • the beam quality information other than the first beam quality information and the second beam quality information in the at least two beam quality information can refer to the first beam quality information or the first beam quality information.
  • the second beam quality information is not limited here.
  • the rules for performing quantization according to different quantization methods in an alternating manner may be called regular dithering.
  • regular dithering is just a name, which is not limited in this application.
  • the quantization method can also be randomly selected by the terminal device, and this method is more suitable for the principle of random jitter noise.
  • the terminal device quantizes the first beam quality at least twice according to at least two quantization methods, and determines at least two pieces of beam quality information, including: the terminal device determines, according to the first probability, to use the first quantization method to quantize the first beam quality , obtain the first beam quality information in the at least two beam quality information; the terminal device determines to use the second quantization method to quantize the first beam quality according to the second probability, and obtains the second beam quality information in the at least two beam quality information .
  • the first probability and the second probability may be the same or different, and the specific magnitudes of the first probability and the second probability are not limited herein. It can be understood that, in this application, the first probability may also be called an offset probability. Of course, the offset probability is just a name, which is not limited in this application.
  • the terminal device determines that the first quantization mode is quantization mode 1 according to a probability of 50%, and the terminal device determines that the second quantization mode is quantization mode 2 according to a 50% probability, and quantization mode 1 is different from quantization mode 2. .
  • the first information sent by the access network device is received, so that the terminal device uses at least two quantization methods to quantize the same beam quality at least twice, so as to diversify the quantization errors.
  • the at least two beam quality information includes first beam quality information and second beam quality information, the first beam quality information is obtained after quantization according to the first beam quality and the first preset offset, and the second beam quality information is obtained after quantization.
  • the quality information is obtained after quantization according to the first beam quality; or, the first beam quality information is obtained after quantization according to the differential beam quality and the second preset offset, and the second beam quality information is obtained according to the differential beam quality obtained after quantification.
  • the differential beam quality is the difference between the beam quality that needs to be reported by absolute value quantization and the first beam quality.
  • the first beam quality information is obtained after quantization according to the first beam quality and the first preset offset
  • the second beam quality information is obtained after quantization according to the first beam quality.
  • the beam quality is obtained by measuring one reference signal from the access network device, or the beam quality greater than the threshold among multiple beam qualities obtained by measuring multiple reference signals from the access network device, such as the maximum beam quality , that is, the first beam quality is the beam quality that needs to be reported using absolute value quantization.
  • the first beam quality information is obtained after quantization according to the differential beam quality and the second preset offset
  • the second beam quality information is obtained after quantization according to the differential beam quality.
  • the first beam quality It is any beam quality among the multiple beam qualities except the beam quality greater than the threshold, such as any beam quality except the largest beam quality among the multiple beam qualities, that is, the first beam quality is the one that needs to be reported by differential quantization beam quality.
  • multiple reference signals are in one-to-one correspondence with multiple beam qualities.
  • the terminal device measures three reference signals to obtain three beam qualities.
  • the first beam quality information is obtained by querying the second mapping relationship according to the first beam quality and the first preset offset; the second The beam quality information is obtained by querying the second mapping relationship according to the first beam quality, that is, the second beam quality information is obtained after the terminal equipment quantizes the first beam quality in the existing solution. It can be understood that the first beam quality information and the second beam quality information may be different reported values in the second mapping relationship.
  • the second mapping relationship includes multiple second reported values and multiple second quantization ranges corresponding to the multiple second reported values one-to-one, or the second mapping relationship includes one second reported value and the first reported value.
  • a second quantification range corresponding to the second reported value is not limited here.
  • the second mapping relationship includes a one-to-one correspondence between multiple second reported values and multiple second quantization ranges, or the second mapping relationship includes a second reported value and a second quantization range.
  • the corresponding relationship is not limited here.
  • the second mapping relationship may be, for example, a mapping relationship table, which is not limited herein.
  • the second mapping relationship is the first table.
  • the first table can be, for example, Table 10.1.6.1-1 in the standard protocol TS38.133: SS-RSRP and CSI-RSRP measurement report mapping (SS-RSRP and CSI-RSRP measurement report mapping), Table 10.1.16.1 -1: SS-SINR and CSI-RSRP measurement report mapping (SS-SINR and CSI-RSRP measurement report mapping), or other tables, please refer to the standard protocol TS38.133 for details, which is not limited here.
  • the first beam quality information is obtained by querying the fourth mapping relationship according to the first beam quality and the second preset offset; the second beam quality The quality information is obtained by querying the fourth mapping relationship according to the first beam quality, that is, the second beam quality information is obtained after the terminal equipment quantizes the first beam quality in the existing solution. It can be understood that the first beam quality information and the second beam quality information may be different reported values in the fourth mapping relationship.
  • the fourth mapping relationship includes multiple fourth reported values and multiple fourth quantization ranges corresponding to the multiple fourth reported values one-to-one, or the fourth mapping relationship includes one fourth reported value and the fourth reported value.
  • a fourth quantization range corresponding to the four reported values is not limited here.
  • the fourth mapping relationship includes a one-to-one correspondence between multiple fourth reported values and multiple fourth quantization ranges, or, the fourth mapping relationship includes a fourth reported value and a fourth quantization range.
  • the corresponding relationship is not limited here.
  • the fourth mapping relationship may be, for example, a mapping relationship table, which is not limited herein.
  • the fourth mapping relationship is the second table.
  • the second table may be, for example, Table 10.1.6.1-2 in the standard protocol TS38.133: Differential SS-RSRP and CSI-RSRP measurement report (for L1 report) mapping (Differential SS-RSRP and CSI-RSRP measurement ( for L1 reporting)report mapping), Table 10.1.16.1-2: Differential SS-SINR and CSI-SINR measurement(for L1 reporting)report mapping) or other forms, for details, please refer to the standard protocol TS38.133, which is not limited here.
  • the beam quality information other than the first beam quality information and the second beam quality information in the at least two beam quality information can refer to the first beam quality information or the first beam quality information.
  • the second beam quality information is not limited here.
  • it is specifically the reported value in which table of the standard protocol TS38.133, and may also refer to the first beam quality information or the second beam quality information, which is not limited here.
  • the first beam quality is the beam quality that needs to be reported by absolute value quantization
  • the first beam quality is -99 dBm
  • the first preset offset is 0.5 dB
  • the quality information is RSRP_57 (-99.5dBm minus 0.5dB is -99dBm)
  • the second beam quality information is RSRP_58.
  • the first beam quality is the beam quality that needs to be reported by differential quantization
  • the maximum beam quality is -100 dBm
  • the first beam quality is -105.5 dBm
  • the differential beam quality is -5.5 dB
  • the second preset offset is -5.5 dB.
  • the shift is 1dB.
  • the first beam quality information is DIFFRSRP_3 (-5.5dB minus 1dB is -6.5dB)
  • the second beam quality information is DIFFRSRP_2.
  • the at least two beam quality information includes first beam quality information and second beam quality information, the first beam quality information is obtained according to the first beam quality and the first mapping relationship, and the second beam quality information is obtained according to the first beam quality information.
  • a beam quality and a second mapping relationship are obtained; or, the first beam quality information is obtained according to the differential beam quality and the third mapping relationship, and the second beam quality information is obtained according to the differential beam quality and the fourth mapping relationship.
  • the first beam quality information is obtained according to the first beam quality and the first mapping relationship
  • the second beam quality information is obtained according to the first beam quality and the second mapping relationship.
  • the first beam quality is The beam quality that is obtained by measuring one reference signal from the access network device, or the beam quality of multiple beam qualities obtained by measuring multiple reference signals from the access network device is greater than the threshold, such as the maximum beam quality, that is, the first beam quality.
  • a beam quality is the beam quality that needs to be reported using absolute value quantization.
  • the first beam quality information is obtained according to the differential beam quality and the third mapping relationship
  • the second beam quality information is obtained according to the differential beam quality and the fourth mapping relationship.
  • the first beam quality is multiple. Any beam quality except the beam quality greater than the threshold, such as any beam quality except the largest beam quality among the multiple beam qualities, that is, the first beam quality is the beam quality that needs to be reported by differential quantization .
  • the first mapping relationship includes a plurality of first reported values and a plurality of first quantification ranges corresponding to the first reported values one-to-one, or the first mapping relationship includes a first reported value and a first reported value and the first reported value.
  • a first quantification range corresponding to a reported value is not limited here.
  • the first mapping relationship includes a one-to-one correspondence between multiple first reported values and multiple first quantization ranges, or the first mapping relationship includes a first reported value and a first quantization range.
  • the corresponding relationship is not limited here.
  • the same reported value in the first mapping relationship and the second mapping relationship corresponds to different quantization ranges, and each first quantization range in the first mapping relationship is based on the corresponding second quantization ranges and third quantization ranges in the second mapping relationship.
  • the preset offset is determined.
  • the first mapping relationship may be, for example, a mapping relationship table, which is not limited herein.
  • the third mapping relationship includes multiple third reported values and multiple third quantization ranges corresponding to the multiple third reported values one-to-one, or the third mapping relationship includes one third reported value and the third reported value.
  • a third quantification range corresponding to the three reported values is not limited here.
  • the third mapping relationship includes a one-to-one correspondence between multiple third reported values and multiple third quantization ranges, or, the third mapping relationship includes a third reported value and a third quantization range.
  • the corresponding relationship is not limited here.
  • the same reported value in the third mapping relationship and the fourth mapping relationship corresponds to different quantization ranges, and each third quantization range in the third mapping relationship is based on each fourth quantization range and the fourth corresponding in the fourth mapping relationship.
  • the preset offset is determined.
  • the third mapping relationship may be, for example, a mapping relationship table, which is not limited herein.
  • the first beam quality information is a reported value obtained by querying the first mapping relationship according to the first beam quality; the second beam quality information is based on The quality of the first beam is a reported value obtained by querying the second mapping relationship.
  • the first beam quality is the beam quality that needs to be reported by differential quantization
  • the first beam quality information is the reported value obtained by querying the third mapping relationship according to the first beam quality; the second beam quality information is based on the first beam quality, The reported value obtained by querying the fourth mapping relationship.
  • the third preset offset is 0.5dB.
  • the first reported value and the second reported value are The values are all RSRP_57, the first quantization range is -100 ⁇ RSRP ⁇ -99, and the second quantization range is -100+0.5 ⁇ RSRP ⁇ -99+0.5, that is, -99.5 ⁇ RSRP ⁇ -98.5; if the first reported value and The second reported values are all RSRP_58, the first quantization range is -99 ⁇ RSRP ⁇ -98, and the second quantization range is -99+0.5 ⁇ RSRP ⁇ -98+0.5, that is, -98.5 ⁇ RSRP ⁇ -97.5.
  • the first beam quality is the beam quality that needs to be reported by differential quantization
  • the fourth preset offset is 1 dB
  • the third reported value and the fourth reported value are is DIFFRSRP_1
  • the third quantization range is -2 ⁇ RSRP>-4
  • the fourth quantization range is -2+1 ⁇ RSRP>-4+1, that is, -1 ⁇ RSRP>-3
  • the third reported value and the fourth reported value are The values are all DIFFRSRP_2
  • the third quantization range is -4 ⁇ RSRP>-6
  • the fourth quantization range is -4+1 ⁇ RSRP>-6+1, that is, -3 ⁇ RSRP>-5.
  • the terminal device sends at least two beam quality information to the access network device, and correspondingly, the access network device receives the at least two beam quality information sent by the terminal device.
  • sending the at least two beam quality information to the access network device by the terminal device includes: dividing the terminal device to send the at least two beam quality information to the access network device at least twice.
  • the access network device receives at least two beam quality information sent by the terminal device at least twice.
  • the terminal device sends one beam quality information of at least two beam quality information to the access network device each time. That is, for different beam quality information corresponding to the same beam quality, the terminal equipment needs to report to the access network equipment multiple times. For example, for two beam quality information, the terminal equipment is divided into two or four times to report to the access network equipment. It can be understood that the number of times the terminal device reports the beam quality information to the access network device may be greater than or equal to the type of the quantization method, and the number of times the terminal device reports the beam quality information to the access network device may be, for example, 2 or a multiple of 2.
  • the terminal device may report to the access network device twice or four times.
  • the terminal device sends the first beam quality information and the second beam quality information to the access network device twice, that is, the terminal device first sends the first beam quality information to the access network device, and then sends the first beam quality information to the access network device.
  • the second beam quality information The sequence in which the terminal device sends the first beam quality information and the second beam quality information to the access network device is not limited here.
  • the terminal device sends the first beam quality information and the second beam quality information to the access network device four times, that is, the terminal device first sends the first beam quality information to the access network device, and then sends the first beam quality information to the access network device.
  • the second beam quality information then, the terminal device sends the first beam quality information to the access network device, and finally, the terminal device sends the second beam quality information to the access network device.
  • the sequence in which the terminal device sends the first beam quality information and the second beam quality information to the access network device is not limited here.
  • the terminal device may also send, to the access network device, the identifier of the resource of the downlink signal that the terminal device needs to report.
  • CSI-RS resource #1 is represented by binary bits as 0001
  • CSI-RS resource #2 is represented by binary bits as 0010, and so on.
  • the access network device determines a measurement value corresponding to the first beam quality according to the at least two beam quality information.
  • the access network device determines the measurement value corresponding to the first beam quality according to the at least two beam quality information, including: the access network device determines the third beam quality information according to the at least two beam quality information; the access network device determines the third beam quality information according to the at least two beam quality information; The device determines the measurement value corresponding to the first beam quality according to the quantization range corresponding to the third beam quality information.
  • the access network device determines the third beam quality information according to the at least two beam quality information, including: the access network device determines the third beam quality information according to an average value or a weighted average value of the at least two beam quality information .
  • the access network device determines the third beam quality information according to the at least two beam quality information, including: the access network device filters the at least two beam quality information to determine the third beam quality information. Three beam quality information.
  • the quantization range corresponding to the third beam quality information is determined according to the third beam quality information and the fifth mapping relationship, or is determined according to the third beam quality information and the sixth mapping relationship.
  • the first beam quality is obtained by measuring a reference signal from the access network device, or a beam quality greater than a threshold among multiple beam qualities obtained by measuring multiple reference signals from the access network device , such as the maximum beam quality, that is, the first beam quality is the beam quality that needs to be reported by absolute value quantization.
  • the access network device needs to determine the measurement value corresponding to the quality of the first beam according to the fifth mapping relationship or the sixth mapping relationship.
  • the fifth mapping relationship is determined according to the quantization accuracy supported by the terminal device and the first preset offset, or, according to the quantization accuracy and the first preset offset that can be improved by the terminal device on the basis of the first quantization accuracy. Set the offset to be determined.
  • the first quantization precision is the quantization precision supported by the terminal device in the existing solution.
  • the first quantization precision is 1dBm; in combination with Table 2, for differential RSRP, the first quantization precision is 2dB.
  • the first quantization accuracy is 0.5dB; for differential SINR, the first quantization accuracy is 1dB.
  • the quantization precision that can be improved by the terminal device on the basis of the first quantization precision is the difference between the first quantization precision and the quantization precision supported by the terminal device.
  • the fifth mapping relationship is determined according to the quantization precision, the first preset offset, and the second mapping relationship supported by the terminal device, or according to the quantization that the terminal device can improve on the basis of the first quantization precision.
  • the accuracy, the first preset offset and the second mapping relationship are determined.
  • the sixth mapping relationship is determined according to the quantization accuracy supported by the terminal device and the third preset offset, or according to the quantization accuracy and the third preset offset that can be improved by the terminal device on the basis of the first quantization accuracy. Move ok.
  • the sixth mapping relationship is determined according to the quantization precision, the third preset offset, and the second mapping relationship supported by the terminal device, or according to the quantization that the terminal device can improve on the basis of the first quantization precision.
  • the precision, the third preset offset and the second mapping relationship are determined.
  • the fifth mapping relationship includes a plurality of fifth measurement values and a plurality of fifth quantization ranges corresponding to the plurality of fifth measurement values one-to-one, or the fifth mapping relationship includes a fifth measurement value and the fifth measurement value and the fifth measurement value.
  • a fifth quantization range corresponding to the five measurement values is not limited here.
  • the fifth mapping relationship includes a one-to-one correspondence between a plurality of fifth measurement values and a plurality of fifth quantization ranges, or, the fifth mapping relationship includes a correspondence between a fifth measurement value and a fifth quantization range. relationship, which is not limited here.
  • the sixth mapping relationship includes multiple sixth measurement values and multiple sixth quantization ranges corresponding to the multiple sixth measurement values one-to-one, or the sixth mapping relationship includes one sixth measurement value and the sixth measurement value and the sixth measurement value.
  • Six measurement values correspond to a sixth quantification range, which is not limited here.
  • the sixth mapping relationship includes a one-to-one correspondence between a plurality of sixth measurement values and a plurality of sixth quantization ranges, or, the sixth mapping relationship includes a correspondence between a sixth measurement value and a sixth quantization range. relationship, which is not limited here.
  • the fifth mapping relationship and the sixth mapping relationship may be, for example, a mapping relationship table, which is not limited herein.
  • the quantization precision supported by the terminal device is the difference between the maximum value and the minimum value of any quantization range in the fifth mapping relationship or the difference between the maximum value and the minimum value of any quantization range in the sixth mapping relationship.
  • RSRP_57 corresponds to -100 ⁇ RSRP ⁇ -99.5
  • RSRP_57.5 corresponds to -99.5 ⁇ RSRP ⁇ -99
  • RSRP_58 corresponds to -99 ⁇ RSRP ⁇ -98.5.
  • the difference between the maximum value and the minimum value is 0.5, that is, the quantization precision supported by the terminal device is 0.5dB.
  • the quantization range corresponding to the third beam quality information is the corresponding measurement value A in the fifth mapping relationship. , or the quantization range corresponding to the measurement value B in the sixth mapping relationship.
  • the third beam quality information is the same as the measurement value A, or the third beam quality information is closest to the measurement value A; the third beam quality information is the same as the measurement value B, or the third beam quality information is closest to the measurement value B.
  • the access network device can determine RSRP_57.5 according to the average value of RSRP_57 and RSRP_58. Combining with Table 8, it can be seen that the corresponding quantization range is -99.5 ⁇ RSRP ⁇ -99.
  • the access network equipment for the first time reported by the terminal equipment is 0111001, that is, RSRP_57
  • the beam quality information received by the access network equipment for the second time reported by the terminal equipment is 0111010, that is, RSRP_58
  • the access network equipment The beam quality information that the device receives for the third time reported by the terminal device is 0111001, that is, RSRP_57.
  • the average of RSRP_57, RSRP_58 and RSRP_57 is RSRP_57.3.
  • Table 8 it can be seen that RSRP_57.3 is the closest to RSRP_57.5.
  • the access network device determines the quantization range of RSRP_57.3, it can use the quantization range corresponding to RSRP_57.5 as the quantization range corresponding to RSRP_57.3, that is, the quantization range corresponding to RSRP_57.3 is -99.5 ⁇ RSRP ⁇ -99 .
  • the corresponding relationship is determined by the quantization precision supported by the terminal device and the preset offset, so that the access network device can reduce the measurement value according to the multiple beam quality information corresponding to the same beam quality. quantization error.
  • the access network device determines the measurement value corresponding to the first beam quality according to the at least two beam quality information, including: the access network device determines the fourth beam quality information according to the at least two beam quality information; the access network device determines the fourth beam quality information according to the at least two beam quality information; The device determines a measurement value corresponding to the first beam quality according to the quantization range corresponding to the fourth beam quality information and the fifth beam quality information.
  • the access network device determines the fourth beam quality information according to the at least two beam quality information, including: the access network device determines the fourth beam quality information according to an average value or a weighted average value of the at least two beam quality information .
  • the access network device determines the fourth beam quality information according to the at least two beam quality information, including: the access network device filters the at least two beam quality information to determine the fourth beam quality information. Quad beam quality information.
  • the quantization range corresponding to the fourth beam quality information is determined according to the fourth beam quality information and the seventh mapping relationship, or is determined according to the fourth beam quality information and the eighth mapping relationship.
  • the first beam quality is any one of the multiple beam qualities except the beam quality greater than the threshold, for example, any one of the multiple beam qualities except the largest beam quality, that is, the first beam quality.
  • a beam quality is the beam quality that needs to be reported by differential quantization.
  • the access network device needs to determine the measurement value corresponding to the quality of the first beam according to the seventh mapping relationship or the eighth mapping relationship.
  • the seventh mapping relationship is determined according to the quantization accuracy supported by the terminal device and the second preset offset, or, according to the quantization accuracy that the terminal device can improve on the basis of the first quantization accuracy and the second preset offset. Set the offset to be determined.
  • the seventh mapping relationship is determined according to the quantization precision, the second preset offset, and the fourth mapping relationship supported by the terminal device, or, according to the quantization that can be improved by the terminal device on the basis of the first quantization precision.
  • the precision, the second preset offset and the fourth mapping relationship are determined.
  • the eighth mapping relationship is determined according to the quantization accuracy supported by the terminal device and the fourth preset offset, or according to the quantization accuracy and the fourth preset offset that can be improved by the terminal device on the basis of the first quantization accuracy. Move ok.
  • the eighth mapping relationship is determined according to the quantization accuracy supported by the terminal device, the fourth preset offset, and the fourth mapping relationship of the standard protocol, or, based on the first quantization accuracy that the terminal device can improve.
  • the quantization precision, the fourth preset offset and the fourth mapping relationship are determined.
  • the seventh mapping relationship includes multiple seventh measurement values and multiple seventh quantization ranges that are in one-to-one correspondence with the multiple seventh measurement values, or the seventh mapping relationship includes one seventh measurement value and A seventh quantization range corresponding to the seventh measurement value is not limited herein.
  • the seventh mapping relationship includes a one-to-one correspondence between multiple seventh measurement values and multiple seventh quantization ranges.
  • the seventh mapping relationship may also include a seventh measurement value and a seventh quantization range. The corresponding relationship is not limited here.
  • the eighth mapping relationship includes multiple eighth measurement values and multiple eighth quantization ranges corresponding to the multiple eighth measurement values one-to-one, or the eighth mapping relationship includes an eighth measurement value and the eighth measurement value and the eighth measurement value.
  • Eight measurement values correspond to an eighth quantization range, which is not limited here.
  • the eighth mapping relationship includes a one-to-one correspondence between multiple eighth measurement values and multiple eighth quantization ranges.
  • the eighth mapping relationship may also include an eighth measurement value and an eighth quantization range. The corresponding relationship is not limited here.
  • the quantization precision supported by the terminal device is the difference between the maximum value and the minimum value of any quantization range in the seventh mapping relationship or the difference between the maximum value and the minimum value of any quantization range in the eighth mapping relationship.
  • the seventh mapping relationship and the eighth mapping relationship may be, for example, a mapping relationship table, which is not limited herein.
  • DIFFRSRP_0.5 corresponds to -1 ⁇ RSRP>-2
  • DIFFRSRP_1 corresponds to -2 ⁇ RSRP>-3
  • DIFFRSRP_1.5 corresponds to -3 ⁇ RSRP>-4
  • DIFFRSRP_2 Corresponds to -4 ⁇ RSRP>-5
  • DIFFRSRP_2.5 corresponds to -5 ⁇ RSRP>-6.
  • -1 ⁇ RSRP>-2 the difference between the maximum value and the minimum value is 1, that is, the quantization precision supported by the terminal device is 1dB.
  • the quantization range corresponding to the fourth beam quality information is the corresponding measurement value C in the seventh mapping relationship. , or the quantization range corresponding to the measurement value D in the eighth mapping relationship.
  • the fourth beam quality information is the same as the measurement value C, or, the fourth beam quality information is closest to the measurement value C; the fourth beam quality information is the same as the measurement value D, or, the fourth beam quality information is closest to the measurement value D.
  • the beam quality information received by the access network equipment for the first time reported by the terminal equipment is 0010, that is, DIFFRSRP_2, and the beam quality information received by the access network equipment for the second time reported by the terminal equipment is 0011.
  • the access network device can determine DIFFRSRP_2.5 according to the average value of DIFFRSRP_2 and DIFFRSRP_3.
  • the corresponding quantification range is -5 ⁇ RSRP>-6.
  • the beam quality information received by the access network equipment for the first time reported by the terminal equipment is 0010, that is, DIFFRSRP_2, and the beam quality information received by the access network equipment for the second time reported by the terminal equipment is 0011, that is, DIFFRSRP_3, and the access network equipment
  • the beam quality information reported by the receiving terminal device for the third time is 0010, that is, DIFFRSRP_2.
  • the average value of DIFFRSRP_2, DIFFRSRP_3, and DIFFRSRP_2 is DIFFRSRP_2.3. Combining with Table 10, it can be seen that DIFFRSRP_2.3 is the closest to DIFFRSRP_2.5.
  • the access network device when determining the quantization range of DIFFRSRP_2.3, can use the quantization range corresponding to DIFFRSRP_2.5 as the quantization range corresponding to DIFFRSRP_2.3 , that is, the quantization range corresponding to DIFFRSRP_2.3 is -5 ⁇ RSRP>-6.
  • the fifth beam quality information is obtained by quantizing the beam quality reported by absolute value quantization as required, or obtained by performing at least two quantization on the beam quality that needs to be reported by absolute value quantization according to at least two quantization methods. .
  • the fifth beam quality information is obtained after performing at least two quantizations on the beam quality that needs to be reported by absolute value quantization according to at least two quantization methods, that is, the fifth beam quality information is the quality of the at least two reference beams.
  • the information is obtained by averaging or weighted averaging or filtering, and the at least two reference beam quality information is determined by performing at least two quantizations on the beam quality that needs to be reported by absolute value quantization according to at least two quantization methods.
  • the at least two reference beam quality information may refer to the method for determining the first beam quality information or the second beam quality information when the first beam quality is the beam quality that needs to be reported by absolute value quantization, which will not be repeated here. .
  • the corresponding relationship is determined by the quantization accuracy supported by the terminal device and the preset offset, so that the access network device can reduce the measurement value according to the multiple beam quality information corresponding to the same beam quality. quantization error.
  • FIG. 3 is a schematic flowchart of another method for reporting channel information provided by an embodiment of the present application.
  • the terminal device in FIG. 3 is the terminal device 10 in FIG. 1
  • the access network device in FIG. 3 is the access network device 11 in FIG. 1 .
  • the method includes but is not limited to the following steps:
  • the terminal device sends the first capability information to the access network device, and correspondingly, the access network device receives the first capability information sent by the terminal device.
  • the terminal device may send the first capability information to the access network device when accessing the network.
  • sending the first capability information by the terminal device to the access network device includes: the terminal device receives an instruction for requesting capability information sent by the access network device; and the terminal device sends an instruction to the access network device according to the instruction for requesting capability information.
  • the network device sends the first capability information.
  • the first capability information is used to indicate one or more of the following: the terminal device supports the capability of performing at least two quantizations on the same beam quality that needs to be reported using at least two quantization methods, the quantization precision supported by the terminal device, The first preset offset, the second preset offset, the third preset offset, and the fourth preset offset, or the first capability information is used to indicate one or more of the following: the terminal device supports the use of at least two The ability of quantizing the same beam quality to be reported at least twice by a quantization method, the quantization accuracy that can be improved by the terminal device on the basis of the first quantization accuracy, the first preset offset, the second preset offset, the first preset offset Three preset offsets and a fourth preset offset.
  • the quantization accuracy that the terminal device can improve is the difference between the first quantization accuracy and the quantization accuracy supported by the terminal device, and the first quantization accuracy is the quantization accuracy supported by the terminal device in the existing solution. precision.
  • the first capability information is used to indicate one or more of the following first preset offset, second preset offset, third preset offset, and fourth preset offset, that is, the first preset The offset, the second preset offset, the third preset offset, and the fourth preset offset are configured by the terminal device. It can be understood that the first preset offset and the third preset offset may be the same or different, and the second preset offset and the fourth preset offset may be the same or different, which are not limited herein.
  • the first capability information can be used to indicate any one of the first preset offset and the third preset offset;
  • the first capability information may be used to indicate any one of the second preset offset and the fourth preset offset, which is not limited in this application.
  • the first capability information may be a first radio resource control (radio resource control, RRC) information element (information element, IE).
  • RRC radio resource control
  • the first RRC IE is used to indicate one or more of the following: the ability of the terminal equipment to support at least two quantizations of the same beam quality that needs to be reported by using at least two quantization methods, the quantization accuracy supported by the terminal equipment, the first The preset offset, the second preset offset, the third preset offset, and the fourth preset offset, or the first RRC IE is used to indicate one or more of the following: the terminal device supports the use of at least two kinds of quantization method to quantize the same beam quality to be reported at least twice, the quantization accuracy that the terminal device can improve based on the first quantization accuracy, the first preset offset, the second preset offset, and the third preset offset. set offset and fourth preset offset.
  • RRC radio resource control
  • the first capability information includes a first field, where the first field is used to indicate a quantization precision supported by the terminal device or a quantization precision that can be improved by the terminal device on the basis of the first quantization precision.
  • the first field is DitheringDifferentialRSRP (DitheringDifferential RSRP) or DitheringDifferentialSINR (DitheringDifferential SINR).
  • the value of the first field is the quantization accuracy supported by the terminal device, such as ⁇ 1dB, 0.5dB ⁇ , that is, the quantization accuracy supported by the terminal device is 1dB or 0.5dB; or, the value of the first field is The quantization precision that the terminal device can improve on the basis of the first quantization precision, for example, ⁇ 1dB, 1.5dB ⁇ , that is, the quantization precision that the terminal device can improve on the basis of the first quantization precision is 1dB or 1.5dB.
  • the first RRC IE includes the first field.
  • the terminal device may process the first field and the value of the first field in the form of ASN.1 pseudocode in the standard.
  • ASN.1 pseudocode in the standard.
  • the first capability information in step 301 may be replaced by the second capability information, that is, the terminal device sends the second capability information to the access network device, and correspondingly, the access network device receives the second capability sent by the terminal device. information, which is not limited here.
  • the second capability information is used to indicate one or more of the following: the terminal equipment supports the ability to quantize the same beam quality to be reported at least twice by using the at least two quantization methods and the quantization precision supported by the terminal equipment, Or, the second capability information is used to indicate at least one or more of the following: the terminal device supports the capability of using at least two quantization methods to quantize the same beam quality that needs to be reported at least twice; The quantification accuracy that the device can improve. That is, the second capability information is not used to indicate the first preset offset, the second preset offset, the third preset offset and the fourth preset offset.
  • the second capability information may be a second RRC IE, and the second RRC IE is sent by the terminal device to the access network device.
  • the second RRC IE is used to indicate one or more of the following: the ability of the terminal device to support at least two quantizations of the same beam quality that needs to be reported using at least two quantization methods and the quantization accuracy supported by the terminal device, or
  • the first RRC IE is used to indicate one or more of the following: the ability of the terminal device to support at least two quantizations of the same beam quality that needs to be reported by using at least two quantization methods, and the ability of the terminal device to quantify the same beam quality to be reported at least twice based on the first quantization accuracy. Improved quantization accuracy.
  • the second capability information includes a second field, where the second field is used to indicate a quantization precision supported by the terminal device or a quantization precision that can be improved by the terminal device on the basis of the first quantization precision.
  • the second field may be the same field as the first field, or a different field, which is not limited herein.
  • the second RRC IE includes a second field.
  • the access network device sends the first information to the terminal device, and correspondingly, the terminal device receives the first information sent by the access network device.
  • the first information is used to indicate one or more of the following: the terminal device uses at least two quantization methods to quantize the same beam quality to be reported at least twice and the quantization precision used by the terminal device.
  • the quantization accuracy used by the terminal device is determined according to the quantization accuracy supported by the terminal device, or determined according to the quantization accuracy that the terminal device can improve on the basis of the first quantization accuracy.
  • the quantization precision used by the terminal device is one of the quantization precisions supported by the terminal device. For example, if the quantization precision supported by the terminal equipment is 1dB or 0.5dB, then the quantization precision used by the terminal equipment may be 0.5dB.
  • the first information is a third RRC IE
  • the third RRC IE is sent by the access network device to the terminal device
  • the third RRC IE is used to indicate one or more of the following: the terminal device adopts at least two quantization methods. Perform at least two quantizations on the same beam quality that needs to be reported and the quantization accuracy used by the terminal equipment.
  • the first information includes a third field
  • the third field is used to indicate one or more of the following: the terminal device uses at least two quantization methods to perform at least two quantizations on the same beam quality that needs to be reported and the terminal device uses at least two quantization methods. Quantization accuracy.
  • the third RRC IE includes a third field.
  • the access network device may process the third field and the value of the third field in the form of ASN.1 pseudocode in the standard.
  • ASN.1 pseudocode in the standard.
  • EnableDitheringdifferentialRSRP ENUMERATED ⁇ 1dB,0.5dB ⁇ ; or,
  • EnableDitheringdifferentialSINR ENUMERATED ⁇ 0.5dB,0.25dB ⁇ .
  • the first information in step 301 is replaced with second capability information, that is, the terminal device sends the second capability information to the access network device, at this time, the first information is also used to indicate one or more of the following: Types: first preset offset, second preset offset, third preset offset, and fourth preset offset.
  • the first preset offset, the second preset offset, the third preset offset, and the fourth preset offset are configured by the access network device.
  • the first information can be used to indicate any one of the first preset offset and the third preset offset; the second When the preset offset and the fourth preset offset are the same, the first information may be used to indicate any one of the second preset offset and the fourth preset offset, which is not limited in this application.
  • the first preset offset, the second preset offset, the third preset offset, and the fourth preset offset may also be specified by the protocol, which are not specified here. make restrictions.
  • the first information is further used to indicate resource configuration information and report configuration information.
  • the resource configuration information includes one or more resource sets, and each resource set includes one or more downlink signal resources.
  • Downlink signals include: channel state information reference signal (CSI-RS), cell-specific reference signal (CS-RS), UE-specific reference signal (user equipment specific reference signal, US-RS) ), demodulation reference signal (DMRS), and synchronization signal/physical broadcast channel block (SS/PBCH block).
  • the SS/PBCH block may be referred to as a synchronization signal block (synchronization signal block, SSB).
  • the reporting configuration information includes the resource identifier of the downlink signal that the terminal device needs to report, the number of beam qualities that the terminal device needs to report, the reference signal that the terminal device needs to measure, and the channel that the terminal device carries when reporting the beam quality information.
  • the CSI-RS resource set includes 16 CSI-RS resources, namely CSI-RS resources #0, #1, ..., #15; the terminal equipment needs to report 3 CRIs and the corresponding RSRP, and the terminal equipment reports the beam quality information
  • the channel carried at the time is the physical uplink control channel (physical uplink control channel, PUCCH) or the physical uplink shared channel (physical uplink shared channel, PUSCH).
  • step 202 the terminal device reports the beam quality using the existing scheme, and the method for reporting the beam quality in the existing scheme will not be repeated here.
  • the access network device sends one or more reference signals to the terminal device, and correspondingly, the terminal device receives one or more reference signals sent by the access network device.
  • the reference signal includes one of the following: a synchronization signal block (synchronization signal block, SSB) and a channel state reference signal (channel state information reference signal, CSI-RS) and the like.
  • a synchronization signal block synchronization signal block, SSB
  • a channel state reference signal channel state information reference signal, CSI-RS
  • the terminal device measures one or more reference signals to obtain a first beam quality among the one or more beam qualities.
  • One or more beam qualities may be one of the following: reference signal receiving power (RSRP), reference signal receiving quality (RSRQ), or signal to interference plus noise ratio (signal to interference plus noise ratio). plus noise ratio, SINR).
  • RSRP reference signal receiving power
  • RSRQ reference signal receiving quality
  • SINR signal to interference plus noise ratio
  • the terminal device quantizes the first beam quality at least twice according to the at least two quantization manners, and determines at least two beam quality information.
  • step 305 is similar to step 201 in FIG. 2 , and details are not described here.
  • Steps 306 to 307 are the same as steps 202 to 203 in FIG. 2 , and details are not described here.
  • the first quantization precision is a
  • the number of times the terminal device reports the beam quality information to the access network device is M
  • the terminal device sends the at least two beam quality information to the access network device in M times, that is, it can be implemented.
  • N times the improvement of quantization accuracy.
  • the quantization accuracy can be increased to a/N.
  • the first preset offset is n1
  • the second preset offset is n2
  • the third preset offset is n3
  • the fourth preset offset is n4
  • the first probability is p.
  • M, N, n1, n2, n3, n4, p satisfy one or more of the following relationships: M is greater than or equal to N, p is equal to 1/M, n1 is less than or equal to a/N, n2 is less than or equal to a/N, n3 is less than or equal to a/N, and n4 is less than or equal to a/N.
  • M, N, n1, n2, n3, n4, and p may be configured by the base station, or reported by the terminal device, or predefined by the protocol, which is not limited herein.
  • the quantization accuracy may be a linear value, or a value expressed in logarithmic form, such as dB, or dBm.
  • the quantization precision is a value expressed in logarithmic form, increasing by N times means increasing the value expressed in logarithmic form by N times, rather than increasing its corresponding linear value by N times. That is to say, in this application, the quantization accuracy is increased from 2dB to 1dB, that is, the quantization accuracy is increased by 2 times.
  • the solution provided by the present application has been introduced above mainly from the perspective of interaction between various devices. It can be understood that, in order to realize the above-mentioned functions, the above-mentioned implementing devices include corresponding hardware structures and/or software modules for executing the various functions. Those skilled in the art should easily realize that the present application can be implemented in hardware or in the form of a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the terminal device or the access network device may be divided into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation.
  • FIG. 4 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 400 can be applied to the method shown in FIG. 2 above.
  • the communication device 400 includes a processing module 401 and a transceiver module 402 .
  • the processing module 401 may be one or more processors, and the transceiver module 402 may be a transceiver or a communication interface.
  • the communication apparatus may be used to implement the terminal equipment or access network equipment involved in any of the above method embodiments, or to implement the functions of the equipment involved in any of the above method embodiments. For example, the communication device terminal equipment or access network equipment.
  • the device or network function can be either a network element in a hardware device, a software function running on dedicated hardware, or a virtualized function instantiated on a platform (eg, a cloud platform).
  • the communication apparatus 400 may further include a storage module 403 for storing program codes and data of the communication apparatus 400 .
  • the communication apparatus when used as a terminal device or a chip applied in the terminal device, and performs the steps performed by the terminal device in the foregoing method embodiments.
  • the transceiver module 402 is used for supporting communication with access network equipment and the like, and specifically performs the sending and/or receiving actions performed by the terminal equipment in FIG. 4 , which will not be repeated here.
  • the terminal device is supported to perform one or more of steps 202, 301, and/or other processes for the techniques described herein.
  • the processing module 401 may be configured to support the communication apparatus 400 to perform the processing actions in the foregoing method embodiments, and details are not described herein.
  • the end device is enabled to perform step 201, and/or other processes for the techniques described herein.
  • the transceiver module 402 is used to support communication with terminal equipment and the like, and specifically performs the sending and/or receiving actions performed by the access network equipment in FIG. 4 , which will not be repeated here.
  • a supporting access network device performs step 302, and/or other processes for the techniques described herein.
  • the processing module 401 may be configured to support the communication apparatus 400 to perform the processing actions in the foregoing method embodiments, and details are not described herein.
  • the supporting access network device performs step 203, and/or other processes for the techniques described herein.
  • the transceiver module 402 may be an interface, a pin, a circuit, or the like.
  • the interface can be used to input data to be processed to the processor, and can output the processing result of the processor to the outside.
  • the interface can be a general purpose input output (GPIO) interface, which can communicate with multiple peripheral devices (such as a display (LCD), a camera (camara), a radio frequency (RF) module, an antenna, etc. )connect.
  • GPIO general purpose input output
  • peripheral devices such as a display (LCD), a camera (camara), a radio frequency (RF) module, an antenna, etc.
  • the interface is connected to the processor through a bus.
  • the processing module 401 may be a processor, and the processor may execute the computer-executed instructions stored in the storage module, so that the chip executes the method involved in the embodiment of FIG. 2 or FIG. 3 .
  • the processor may include a controller, an arithmetic unit and a register.
  • the controller is mainly responsible for instruction decoding, and sends control signals for operations corresponding to the instructions.
  • the arithmetic unit is mainly responsible for performing fixed-point or floating-point arithmetic operations, shift operations, and logical operations, and can also perform address operations and conversions.
  • Registers are mainly responsible for saving register operands and intermediate operation results temporarily stored during instruction execution.
  • the hardware architecture of the processor may be an application specific integrated circuits (ASIC) architecture, a microprocessor without interlocked piped stages architecture (MIPS) architecture, advanced reduced instructions Set machine (advanced RISC machines, ARM) architecture or network processor (network processor, NP) architecture and so on.
  • ASIC application specific integrated circuits
  • MIPS microprocessor without interlocked piped stages architecture
  • ARM advanced reduced instructions Set machine
  • NP network processor
  • the storage module may be a storage module in the chip, such as a register, a cache, and the like.
  • the storage module can also be a storage module located outside the chip, such as read only memory (Read Only Memory, ROM) or other types of static storage devices that can store static information and instructions, random access memory (Random Access Memory, RAM), etc. .
  • processors and the interface can be implemented by hardware design, software design, or a combination of software and hardware, which is not limited here.
  • FIG. 5 is a schematic structural diagram of a simplified terminal device according to an embodiment of the present application.
  • the terminal device takes a mobile phone as an example.
  • the terminal device includes at least one processor, and may also include a radio frequency circuit, an antenna, and an input and output device.
  • the processor may be used to process communication protocols and communication data, and may also be used to control terminal equipment, execute software programs, and process data of software programs.
  • the terminal device may also include a memory, which is mainly used for storing software programs and data. These related programs can be loaded into the memory when the communication device leaves the factory, or can be loaded into the memory when needed later.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal equipment may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 5 only one memory and processor are shown in FIG. 5 . In an actual end device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the antenna and radio frequency circuit with a transceiver function can be regarded as the receiving unit and the sending unit of the terminal device (also collectively referred to as a transceiver unit), and the processor with a processing function can be regarded as the processing unit of the terminal device .
  • the terminal device includes a receiving module 31 , a processing module 32 and a sending module 33 .
  • the receiving module 31 may also be called a receiver, a receiver, a receiving circuit, and the like
  • the sending module 33 may also be called a transmitter, a transmitter, a transmitting circuit, and the like.
  • the processing module 32 may also be referred to as a processor, a processing board, a processing device, or the like.
  • the processing module 32 is configured to perform the functions of the terminal device in the embodiment shown in FIG. 2 or FIG. 3 .
  • FIG. 6 is a schematic structural diagram of a simplified access network device according to an embodiment of the present application.
  • the access network equipment includes a radio frequency signal transceiving and converting part and a 42 part, and the radio frequency signal transceiving and converting part further includes a receiving module 41 part and a sending module 43 part (also collectively referred to as a transceiver module).
  • the radio frequency signal transceiver and conversion part is mainly used for the transmission and reception of radio frequency signals and the conversion of radio frequency signals and baseband signals; the 42 part is mainly used for baseband processing and control of access network equipment.
  • the receiving module 41 may also be called a receiver, a receiver, a receiving circuit, and the like
  • the sending module 43 may also be called a transmitter, a transmitter, a transmitter, a transmitting circuit, and the like.
  • Part 42 is usually the control center of the access network device, which can usually be called a processing module, and is used to control the access network device to perform the steps performed by the access network device in the above-mentioned FIG. 2 or FIG. 3 .
  • a processing module is usually the control center of the access network device, which can usually be called a processing module, and is used to control the access network device to perform the steps performed by the access network device in the above-mentioned FIG. 2 or FIG. 3 .
  • the 42 part may include one or more single boards, and each single board may include one or more processors and one or more memories, and the processors are used to read and execute programs in the memories to implement baseband processing functions and access control of network equipment. If there are multiple boards, each board can be interconnected to increase processing capacity. As an optional implementation manner, one or more processors may be shared by multiple boards, or one or more memories may be shared by multiple boards, or one or more processors may be shared by multiple boards at the same time. device.
  • the sending module 43 is configured to perform the function of the access network device in the embodiment shown in FIG. 2 or FIG. 3 .
  • the present application also provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed, the method in any of the possible implementation manners of FIG. 2 or FIG. 3 is implemented.
  • the present application also provides a computer program product, which, when the computer reads and executes the computer program product, causes the computer to execute the method in any of the possible implementations as shown in FIG. 2 or FIG. 3 .
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the division of the unit is only a logical function division, and there may be other division methods in actual implementation, for example, multiple units or components may be combined or integrated into another system, or some features may be ignored, or not implement.
  • the shown or discussed mutual coupling, or direct coupling, or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • Units described as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the procedures or functions according to the embodiments of the present application are generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted over a computer-readable storage medium.
  • the computer instructions can be sent from one website site, computer, server, or data center to another by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.)
  • wire e.g. coaxial cable, fiber optic, digital subscriber line (DSL)
  • wireless e.g., infrared, wireless, microwave, etc.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes one or more available media integrated.
  • the available media may be read-only memory (ROM), or random access memory (RAM), or magnetic media, such as floppy disks, hard disks, magnetic tapes, magnetic disks, or optical media, such as, A digital versatile disc (DVD), or a semiconductor medium, for example, a solid state disk (SSD) and the like.
  • ROM read-only memory
  • RAM random access memory
  • magnetic media such as floppy disks, hard disks, magnetic tapes, magnetic disks, or optical media, such as, A digital versatile disc (DVD), or a semiconductor medium, for example, a solid state disk (SSD) and the like.

Abstract

本申请提供了一种信道信息上报方法和装置,该方法包括:根据第一波束质量,确定至少两个波束质量信息,所述第一波束质量是对来自接入网设备的参考信号进行测量得到的,所述至少两个波束质量信息是根据至少两种量化方式对所述第一波束质量进行至少两次量化确定的;向所述接入网设备发送所述至少两个波束质量信息。实施本申请实施例,能够降低量化误差。

Description

一种信道信息上报方法和装置 技术领域
本申请涉及通信技术,尤其涉及一种信道信息上报方法和装置。
背景技术
一般来说,为了获知信道信息,接入网设备可以通过一个或多个发送波束发送一个或多个参考信号给终端设备以使得终端设备可以根据一个或多个参考信号确定一个或多个信道信息,并将一个或多个信道信息上报给接入网设备。为了节省开销,在现有方案中,一般需要终端设备将一个或多个信道信息进行量化后再进行上报。如,针对信道信息中的波束质量,终端设备可以对一个或多个参考信号进行测量,得到一个或多个波束质量,并将一个或多个波束质量进行量化后再进行上报。
然而,信道信息的量化过程与量化步长有关,由于现有方案中量化步长较大,导致终端设备在对信道信息进行量化时出现量化误差过大的问题。因此,如何降低量化误差是个亟待解决的问题。
发明内容
本申请提供了一种信道信息上报方法和装置,能够降低量化误差。
第一方面,提供一种信道信息上报方法,包括:
根据第一波束质量,确定至少两个波束质量信息,所述第一波束质量是对来自接入网设备的参考信号进行测量得到的,所述至少两个波束质量信息是根据至少两种量化方式对所述第一波束质量进行至少两次量化确定的;
向所述接入网设备发送所述至少两个波束质量信息。
可以看出,上述技术方案中,通过采用至少两种量化方式对同一波束质量进行至少两次量化,使得量化误差多样化,从而提高了量化精度,降低了量化误差。
结合第一方面,在一种可能的实施方式中,在所述根据第一波束质量,确定至少两个波束质量信息之前,所述方法还包括:
接收所述接入网设备发送的第一信息,所述第一信息用于指示终端设备采用所述至少两种量化方式对需要上报的同一波束质量进行至少两次量化。
可以看出,上述技术方案中,接收接入网设备发送的第一信息,以使得终端设备可以采用至少两种量化方式对同一波束质量进行至少两次量化,使得量化误差多样化,从而提高了量化精度,降低了量化误差。
结合第一方面,在一种可能的实施方式中,所述至少两个波束质量信息包括第一波束质量信息和第二波束质量信息;
所述第一波束质量信息为根据所述第一波束质量和第一预设偏移进行量化后得到的,所述第二波束质量信息为根据所述第一波束质量进行量化后得到的;或,
所述第一波束质量信息为根据差分波束质量和第二预设偏移进行量化后得到的,所述第二波束质量信息为根据所述差分波束质量进行量化后得到的。
其中,所述差分波束质量为需要采用绝对值量化上报的波束质量与所述第一波束质量之间的差值。
可选的,第一波束质量信息为根据第一波束质量和第一预设偏移进行量化后得到的,第 二波束质量信息为根据第一波束质量进行量化后得到的,此时,第一波束质量是对来自接入网设备的一个参考信号进行测量得到的,或对来自接入网设备的多个参考信号进行测量得到的多个波束质量中大于阈值的波束质量,如最大的波束质量,即第一波束质量为需要采用绝对值量化上报的波束质量。
可选的,第一波束质量信息为根据差分波束质量和第二预设偏移进行量化后得到的,第二波束质量信息为根据差分波束质量进行量化后得到的,此时,第一波束质量是多个波束质量中除大于阈值的波束质量之外的任意一个波束质量,如,多个波束质量中除最大的波束质量之外的任意一个波束质量,即第一波束质量为需要采用差分量化上报的波束质量。
可选的,多个参考信号与多个波束质量一一对应,如,终端设备对3个参考信号进行测量,可以得到3个波束质量。
可选的,该阈值可以由终端设备配置、或接入网设备配置、或协议预先规定的,在此不做限制。
可以看出,上述技术方案中,通过采用至少两种量化方式对同一波束质量进行至少两次量化,使得量化误差多样化。
结合第一方面,在一种可能的实施方式中,所述至少两个波束质量信息包括第一波束质量信息和第二波束质量信息;
所述第一波束质量信息为根据所述第一波束质量和第一映射关系得到的,所述第二波束质量信息为根据所述第一波束质量和第二映射关系得到的;或,
所述第一波束质量信息为根据差分波束质量和第三映射关系得到的,所述第二波束质量信息为根据所述差分波束质量和第四映射关系得到的。
其中,所述差分波束质量为需要采用绝对值量化上报的波束质量与所述第一波束质量之间的差值。
可选的,第一波束质量信息为根据第一波束质量和第一映射关系得到的,第二波束质量信息为根据第一波束质量和第二映射关系得到的,此时,第一波束质量是对来自接入网设备的一个参考信号进行测量得到的,或对来自接入网设备的多个参考信号进行测量得到的多个波束质量中大于阈值的波束质量,如最大的波束质量,即第一波束质量为需要采用绝对值量化上报的波束质量。
可选的,第一波束质量信息为根据差分波束质量和第三映射关系得到的,第二波束质量信息为根据差分波束质量和第四映射关系得到的,此时,第一波束质量是多个波束质量中除大于阈值的波束质量之外的任意一个波束质量,如,多个波束质量中除最大的波束质量之外的任意一个波束质量,即第一波束质量为需要采用差分量化上报的波束质量。
可选的,第一映射关系、第二映射关系、第三映射关系和第四映射关系例如可以为映射关系表,在此不做限制。
可以看出,上述技术方案中,通过采用至少两种量化方式对同一波束质量进行至少两次量化,使得量化误差多样化。
结合第一方面,在一种可能的实施方式中,所述第一映射关系包括多个第一上报值以及与所述多个第一上报值一一对应的多个第一量化范围,所述第二映射关系包括多个第二上报值以及与所述多个第二上报值一一对应的多个第二量化范围,所述第一映射关系和所述第二映射关系中同一上报值对应不同的量化范围,所述第一映射关系中各个第一量化范围是根据所述第二映射关系中对应的各个第二量化范围和第三预设偏移确定的;或,所述第三映射关 系包括多个第三上报值以及与所述多个第三上报值一一对应的多个第三量化范围,所述第四映射关系包括多个第四上报值以及与所述多个第四上报值一一对应的多个第四量化范围,所述第三映射关系和所述第四映射关系中同一上报值对应不同的量化范围,所述第三映射关系中各个第三量化范围是根据所述第四映射关系中对应的各个第四量化范围和第四预设偏移确定的。
可选的,所述第一映射关系包括多个第一上报值和所述多个第一量化范围之间一一对应的关系,所述第二映射关系包括所述多个第二上报值和所述多个第二量化范围之间一一对应的关系,所述第三映射关系包括多个第三上报值和所述多个第三量化范围之间一一对应的关系,所述第四映射关系包括所述多个第四上报值和所述多个第四量化范围之间一一对应的关系。
结合第一方面,在一种可能的实施方式中,所述根据第一波束质量,确定至少两个波束质量信息之前,所述方法还包括:
向所述接入网设备发送第一能力信息,所述第一能力信息用于指示以下一种或多种:所述终端设备支持采用所述至少两种量化方式对需要上报的同一波束质量进行至少两次量化的能力、所述终端设备所支持的量化精度、所述第一预设偏移、所述第二预设偏移、所述第三预设偏移和所述第四预设偏移。
结合第一方面,在一种可能的实施方式中,所述根据第一波束质量,确定至少两个波束质量信息之前,所述方法还包括:
向所述接入网设备发送第二能力信息,所述第二能力信息用于指示以下一种或多种:所述终端设备支持采用所述至少两种量化方式对需要上报的同一波束质量进行至少两次量化的能力和所述终端设备所支持的量化精度。
结合第一方面,在一种可能的实施方式中,所述第一信息还用于指示以下一种或多种:所述第一预设偏移、所述第二预设偏移、所述第三预设偏移和所述第四预设偏移。
结合第一方面,在一种可能的实施方式中,所述向所述接入网设备发送所述至少两个波束质量信息,包括:
分成至少两次向所述接入网设备发送所述至少两个波束质量信息。
可以看出,上述技术方案中,避免了一次向接入网设备发送至少两个波束质量信息时导致的比特位宽增加的问题,从而节省了开销。
第二方面,提供一种信道信息上报方法,包括:
接收终端设备发送的至少两个波束质量信息,所述至少两个波束质量信息是根据第一波束质量确定的,所述第一波束质量是对参考信号进行测量得到的,所述至少两个波束质量信息是根据至少两种量化方式对所述第一波束质量进行至少两次量化确定的;
根据所述至少两个波束质量信息,确定所述第一波束质量对应的测量值。
可以看出,上述技术方案中,通过采用至少两种量化方式对同一波束质量进行至少两次量化,使得量化误差多样化,从而提高了量化精度,降低了量化误差。
结合第二方面,在一种可能的实施方式中,所述至少两个波束质量信息包括第一波束质量信息和第二波束质量信息;
所述第一波束质量信息为根据所述第一波束质量和第一预设偏移进行量化后得到的,所述第二波束质量信息为根据所述第一波束质量进行量化后得到的;或,
所述第一波束质量信息为根据差分波束质量和第二预设偏移进行量化后得到的,所述第二波束质量信息为根据所述差分波束质量进行量化后得到的。
其中,所述差分波束质量为需要采用绝对值量化上报的波束质量与所述第一波束质量之间的差值。
可选的,第一波束质量信息为根据第一波束质量和第一预设偏移进行量化后得到的,第二波束质量信息为根据第一波束质量进行量化后得到的,此时,第一波束质量是对来自接入网设备的一个参考信号进行测量得到的,或对来自接入网设备的多个参考信号进行测量得到的多个波束质量中大于阈值的波束质量,如最大的波束质量,即第一波束质量为需要采用绝对值量化上报的波束质量。
可选的,第一波束质量信息为根据差分波束质量和第二预设偏移进行量化后得到的,第二波束质量信息为根据差分波束质量进行量化后得到的,此时,第一波束质量是多个波束质量中除最大的波束质量之外的任意一个波束质量,如,多个波束质量中除最大的波束质量之外的任意一个波束质量,即第一波束质量为需要采用差分量化上报的波束质量。
可选的,多个参考信号与多个波束质量一一对应,如,终端设备对3个参考信号进行测量,可以得到3个波束质量。
可选的,该阈值可以由终端设备配置、或接入网设备配置、或协议预先规定的,在此不做限制。
可以看出,上述技术方案中,通过采用至少两种量化方式对同一波束质量进行至少两次量化,使得量化误差多样化。
结合第二方面,在一种可能的实施方式中,所述至少两个波束质量信息包括第一波束质量信息和第二波束质量信息;
所述第一波束质量信息为根据所述第一波束质量和第一映射关系得到的,所述第二波束质量信息为根据所述第一波束质量和第二映射关系得到的;或,
所述第一波束质量信息为根据差分波束质量和第三映射关系得到的,所述第二波束质量信息为根据所述差分波束质量和第四映射关系得到的。
其中,所述差分波束质量为需要采用绝对值量化上报的波束质量与所述第一波束质量之间的差值。
可选的,第一波束质量信息为根据第一波束质量和第一映射关系得到的,第二波束质量信息为根据第一波束质量和第二映射关系得到的,此时,第一波束质量是对来自接入网设备的一个参考信号进行测量得到的,或对来自接入网设备的多个参考信号进行测量得到的多个波束质量中大于阈值的波束质量,如最大的波束质量,即第一波束质量为需要采用绝对值量化上报的波束质量。
可选的,第一波束质量信息为根据差分波束质量和第三映射关系得到的,第二波束质量信息为根据差分波束质量和第四映射关系得到的,此时,第一波束质量是多个波束质量中除大于阈值的波束质量之外的任意一个波束质量,如,多个波束质量中除最大的波束质量之外的任意一个波束质量,即第一波束质量为需要采用差分量化上报的波束质量。
可选的,第一映射关系、第二映射关系、第三映射关系和第四映射关系例如可以为映射关系表,在此不做限制。
可以看出,上述技术方案中,通过采用至少两种量化方式对同一波束质量进行至少两次量化,使得量化误差多样化。
结合第二方面,在一种可能的实施方式中,所述第一映射关系包括多个第一上报值以及与所述多个第一上报值一一对应的多个第一量化范围,所述第二映射关系包括多个第二上报值以及与所述多个第二上报值一一对应的多个第二量化范围,所述第一映射关系和所述第二映射关系中同一上报值对应不同的量化范围,所述第一映射关系中各个第一量化范围是根据所述第二映射关系中对应的各个第二量化范围和第三预设偏移确定的;或,所述第三映射关系包括多个第三上报值以及与所述多个第三上报值一一对应的多个第三量化范围,所述第四映射关系包括多个第四上报值以及与所述多个第四上报值一一对应的多个第四量化范围,所述第三映射关系和所述第四映射关系中同一上报值对应不同的量化范围,所述第三映射关系中各个第三量化范围是根据所述第四映射关系中对应的各个第四量化范围和第四预设偏移确定的。
可选的,所述第一映射关系包括多个第一上报值和所述多个第一量化范围之间一一对应的关系,所述第二映射关系包括所述多个第二上报值和所述多个第二量化范围之间一一对应的关系,所述第三映射关系包括多个第三上报值和所述多个第三量化范围之间一一对应的关系,所述第四映射关系包括所述多个第四上报值和所述多个第四量化范围之间一一对应的关系。
结合第二方面,在一种可能的实施方式中,所述根据所述至少两个波束质量信息,确定所述第一波束质量对应的测量值,包括:
根据所述至少两个波束质量信息,确定第三波束质量信息;
根据所述第三波束质量信息对应的量化范围,确定所述第一波束质量对应的测量值;
其中,所述第三波束质量信息对应的量化范围是根据所述第三波束质量信息和第五映射关系确定的,或,根据所述第三波束质量信息和第六映射关系确定的;所述第五映射关系是根据所述终端设备所支持的量化精度和所述第一预设偏移确定的,所述第六映射关系根据所述终端设备所支持的量化精度和所述第三预设偏移确定的。
可选的,所述第五映射关系包括多个第五测量值以及与所述多个第五测量值一一对应的多个第五量化范围,所述第六映射关系包括多个第六测量值以及与所述多个第六测量值一一对应的多个第六量化范围,所述终端设备所支持的量化精度为所述第五映射关系中任意一个量化范围的最大值与最小值的差值或所述第六映射关系中任意一个量化范围的最大值与最小值的差值。
可选的,所述第五映射关系包括所述多个第五测量值和所述多个第五量化范围之间一一对应的关系,所述第六映射关系包括所述多个第六测量值和所述多个第六量化范围之间一一对应的关系。
可选的,第五映射关系和第六映射关系例如可以为映射关系表,在此不做限制。
可选的,第一波束质量是对来自接入网设备的一个参考信号进行测量得到的,或对来自接入网设备的多个参考信号进行测量得到的多个波束质量中大于阈值的波束质量,如最大的波束质量,即第一波束质量为需要采用绝对值量化上报的波束质量。在这种情况下,接入网设备需要根据第五映射关系或第六映射关系来确定第一波束质量对应的测量值。
可以看出,上述技术方案中,通过终端设备所支持的量化精度和预设偏移确定对应关系,从而使得接入网设备可以根据同一波束质量对应的多个波束质量信息在确定测量值时降低量化误差。
结合第二方面,在一种可能的实施方式中,所述根据所述至少两个波束质量信息,确定 所述第一波束质量对应的测量值,包括:
根据所述至少两个波束质量信息,确定第四波束质量信息;
根据所述第四波束质量信息对应的量化范围和第五波束质量信息,确定所述第一波束质量对应的测量值;
其中,所述第四波束质量信息对应的量化范围是根据所述第四波束质量信息和第七映射关系确定的,或,根据所述第四波束质量信息和第八映射关系确定的;所述第七映射关系是根据所述终端设备所支持的量化精度和所述第二预设偏移确定的,所述第八映射关系根据所述终端设备所支持的量化精度和所述第四预设偏移确定的;所述第五波束质量信息是根据需要采用所述绝对值量化上报的波束质量进行量化后得到的,或,根据所述至少两种量化方式对需要采用所述绝对值量化上报的波束质量进行至少两次量化后得到的。
可选的,所述第七映射关系包括多个第七测量值以及与所述多个第七测量值一一对应的多个第七量化范围,所述第八映射关系包括多个第八测量值以及与所述多个第八测量值一一对应的多个第八量化范围,所述终端设备所支持的量化精度为所述第七映射关系中任意一个量化范围的最大值与最小值的差值或所述第八映射关系中任意一个量化范围的最大值与最小值的差值。
可选的,所述第七映射关系包括所述多个第七测量值和所述多个第七量化范围之间一一对应的关系,所述第八映射关系包括所述多个第八测量值和所述多个第八量化范围之间一一对应的关系。
可选的,所述第七映射关系和所述第八映射关系例如可以为映射关系表,在此不做限制。
可选的,第一波束质量是多个波束质量中除大于阈值的波束质量之外的任意一个波束质量,即第一波束质量为需要采用差分量化上报的波束质量。在这种情况下,接入网设备需要根据第七映射关系或第八映射关系来确定第一波束质量对应的测量值。
可选的,第五波束质量信息是根据需要采用绝对值量化上报的波束质量进行量化后得到的,或,根据所述至少两种量化方式对需要采用所述绝对值量化上报的波束质量进行至少两次量化后得到的。
可选的,第五波束质量信息是根据所述至少两种量化方式对需要采用所述绝对值量化上报的波束质量进行至少两次量化后得到的,即,所述第五波束质量信息是对至少两个参考波束质量信息进行平均或加权平均或滤波后得到的,所述至少两个参考波束质量信息是根据所述至少两种量化方式对需要采用所述绝对值量化上报的波束质量进行至少两次量化确定的。
可以看出,上述技术方案中,通过终端设备所支持的量化精度和预设偏移确定对应关系,从而使得接入网设备可以根据同一波束质量对应的多个波束质量信息在确定测量值时降低量化误差。
结合第二方面,在一种可能的实施方式中,所述接收终端设备发送的至少两个波束质量信息之前,所述方法还包括:
向所述终端设备发送第一信息,所述第一信息用于指示终端设备采用所述至少两种量化方式对需要上报的同一波束质量进行至少两次量化。
结合第二方面,在一种可能的实施方式中,所述方法还包括:
接收所述终端设备发送的第一能力信息,所述第一能力信息用于指示以下一种或多种:所述终端设备支持采用所述至少两种量化方式对需要上报的同一波束质量进行至少两次量化的能力、所述终端设备所支持的量化精度、所述第一预设偏移、所述第二预设偏移、所述第 三预设偏移和所述第四预设偏移。
结合第二方面,在一种可能的实施方式中,所述方法还包括:
接收所述终端设备发送的第二能力信息,所述第二能力信息用于指示以下一种或多种:所述终端设备支持采用所述至少两种量化方式对需要上报的同一波束质量进行至少两次量化的能力和所述终端设备所支持的量化精度。
结合第二方面,在一种可能的实施方式中,所述第一信息还用于指示以下一种或多种:所述第一预设偏移、所述第二预设偏移、所述第三预设偏移和所述第四预设偏移。
第三方面,提供一种通信装置,所述装置为芯片或包括芯片的终端设备,所述装置包括处理模块和收发模块,
所述处理模块,用于根据第一波束质量,确定至少两个波束质量信息,所述第一波束质量是对来自接入网设备的参考信号进行测量得到的,所述至少两个波束质量信息是根据至少两种量化方式对所述第一波束质量进行至少两次量化确定的;
所述收发模块,用于向所述接入网设备发送所述至少两个波束质量信息。
在一种可能的实施方式中,所述收发模块,用于在根据第一波束质量,确定至少两个波束质量信息之前接收所述接入网设备发送的第一信息,所述第一信息用于指示终端设备采用所述至少两种量化方式对需要上报的同一波束质量进行至少两次量化。
在一种可能的实施方式中,所述至少两个波束质量信息包括第一波束质量信息和第二波束质量信息;
所述第一波束质量信息为根据所述第一波束质量和第一预设偏移进行量化后得到的,所述第二波束质量信息为根据所述第一波束质量进行量化后得到的;或,
所述第一波束质量信息为根据差分波束质量和第二预设偏移进行量化后得到的,所述第二波束质量信息为根据所述差分波束质量进行量化后得到的。
其中,所述差分波束质量为需要采用绝对值量化上报的波束质量与所述第一波束质量之间的差值。
在一种可能的实施方式中,所述至少两个波束质量信息包括第一波束质量信息和第二波束质量信息;
所述第一波束质量信息为根据所述第一波束质量和第一映射关系得到的,所述第二波束质量信息为根据所述第一波束质量和第二映射关系得到的;或,
所述第一波束质量信息为根据差分波束质量和第三映射关系得到的,所述第二波束质量信息为根据所述差分波束质量和第四映射关系得到的。
其中,所述差分波束质量为需要采用绝对值量化上报的波束质量与所述第一波束质量之间的差值。
在一种可能的实施方式中,所述第一映射关系包括多个第一上报值以及与所述多个第一上报值一一对应的多个第一量化范围,所述第二映射关系包括多个第二上报值以及与所述多个第二上报值一一对应的多个第二量化范围,所述第一映射关系和所述第二映射关系中同一上报值对应不同的量化范围,所述第一映射关系中各个第一量化范围是根据所述第二映射关系中对应的各个第二量化范围和第三预设偏移确定的;或,所述第三映射关系包括多个第三上报值以及与所述多个第三上报值一一对应的多个第三量化范围,所述第四映射关系包括多个第四上报值以及与所述多个第四上报值一一对应的多个第四量化范围,所述第三映射关系 和所述第四映射关系中同一上报值对应不同的量化范围,所述第三映射关系中各个第三量化范围是根据所述第四映射关系中对应的各个第四量化范围和第四预设偏移确定的。
在一种可能的实施方式中,在根据第一波束质量,确定至少两个波束质量信息之前,所述收发模块,还用于向所述接入网设备发送第一能力信息,所述第一能力信息用于指示以下一种或多种:所述终端设备支持采用所述至少两种量化方式对需要上报的同一波束质量进行至少两次量化的能力、所述终端设备所支持的量化精度、所述第一预设偏移、所述第二预设偏移、所述第三预设偏移和所述第四预设偏移。
在一种可能的实施方式中,在根据第一波束质量,确定至少两个波束质量信息之前,所述收发模块,还用于向所述接入网设备发送第二能力信息,所述第二能力信息用于指示以下一种或多种:所述终端设备支持采用所述至少两种量化方式对需要上报的同一波束质量进行至少两次量化的能力和所述终端设备所支持的量化精度。
在一种可能的实施方式中,所述第一信息还用于指示以下一种或多种:所述第一预设偏移、所述第二预设偏移、所述第三预设偏移和所述第四预设偏移。
在一种可能的实施方式中,在向所述接入网设备发送所述至少两个波束质量信息时,所述收发模块,用于分成至少两次向所述接入网设备发送所述至少两个波束质量信息。
第四方面,提供一种通信装置,所述装置为芯片或包括芯片的接入网设备,所述装置包括收发模块和处理模块,
所述收发模块,用于接收终端设备发送的至少两个波束质量信息,所述至少两个波束质量信息是根据第一波束质量确定的,所述第一波束质量是对参考信号进行测量得到的,所述至少两个波束质量信息是根据至少两种量化方式对所述第一波束质量进行至少两次量化确定的;
所述处理模块,用于根据所述至少两个波束质量信息,确定所述第一波束质量对应的测量值。
在一种可能的实施方式中,所述至少两个波束质量信息包括第一波束质量信息和第二波束质量信息;
所述第一波束质量信息为根据所述第一波束质量和第一预设偏移进行量化后得到的,所述第二波束质量信息为根据所述第一波束质量进行量化后得到的;或,
所述第一波束质量信息为根据差分波束质量和第二预设偏移进行量化后得到的,所述第二波束质量信息为根据所述差分波束质量进行量化后得到的。
其中,所述差分波束质量为需要采用绝对值量化上报的波束质量与所述第一波束质量之间的差值。
在一种可能的实施方式中,所述至少两个波束质量信息包括第一波束质量信息和第二波束质量信息;
所述第一波束质量信息为根据所述第一波束质量和第一映射关系得到的,所述第二波束质量信息为根据所述第一波束质量和第二映射关系得到的;或,
所述第一波束质量信息为根据差分波束质量和第三映射关系得到的,所述第二波束质量信息为根据所述差分波束质量和第四映射关系得到的。
其中,所述差分波束质量为需要采用绝对值量化上报的波束质量与所述第一波束质量之间的差值。
在一种可能的实施方式中,所述第一映射关系包括多个第一上报值以及与所述多个第一上报值一一对应的多个第一量化范围,所述第二映射关系包括多个第二上报值以及与所述多个第二上报值一一对应的多个第二量化范围,所述第一映射关系和所述第二映射关系中同一上报值对应不同的量化范围,所述第一映射关系中各个第一量化范围是根据所述第二映射关系中对应的各个第二量化范围和第三预设偏移确定的;或,所述第三映射关系包括多个第三上报值以及与所述多个第三上报值一一对应的多个第三量化范围,所述第四映射关系包括多个第四上报值以及与所述多个第四上报值一一对应的多个第四量化范围,所述第三映射关系和所述第四映射关系中同一上报值对应不同的量化范围,所述第三映射关系中各个第三量化范围是根据所述第四映射关系中对应的各个第四量化范围和第四预设偏移确定的。
在一种可能的实施方式中,在根据所述至少两个波束质量信息,确定所述第一波束质量对应的测量值时,所述处理模块,用于
根据所述至少两个波束质量信息,确定第三波束质量信息;
根据所述第三波束质量信息对应的量化范围,确定所述第一波束质量对应的测量值;
其中,所述第三波束质量信息对应的量化范围是根据所述第三波束质量信息和第五映射关系确定的,或,根据所述第三波束质量信息和第六映射关系确定的;所述第五映射关系是根据所述终端设备所支持的量化精度和所述第一预设偏移确定的,所述第六映射关系根据所述终端设备所支持的量化精度和所述第三预设偏移确定的。
在一种可能的实施方式中,所述第五映射关系包括多个第五测量值以及与所述多个第五测量值一一对应的多个第五量化范围,所述第六映射关系包括多个第六测量值以及与所述多个第六测量值一一对应的多个第六量化范围,所述终端设备所支持的量化精度为所述第五映射关系中任意一个量化范围的最大值与最小值的差值或所述第六映射关系中任意一个量化范围的最大值与最小值的差值。
在一种可能的实施方式中,在根据所述至少两个波束质量信息,确定所述第一波束质量对应的测量值时,所述处理模块,用于
根据所述至少两个波束质量信息,确定第四波束质量信息;
根据所述第四波束质量信息对应的量化范围和第五波束质量信息,确定所述第一波束质量对应的测量值;
其中,所述第四波束质量信息对应的量化范围是根据所述第四波束质量信息和第七映射关系确定的,或,根据所述第四波束质量信息和第八映射关系确定的;所述第七映射关系是根据所述终端设备所支持的量化精度和所述第二预设偏移确定的,所述第八映射关系根据所述终端设备所支持的量化精度和所述第四预设偏移确定的;所述第五波束质量信息是根据需要采用绝对值量化上报的波束质量进行量化后得到的,或,根据所述至少两种量化方式对需要采用所述绝对值量化上报的波束质量进行至少两次量化后得到的。
在一种可能的实施方式中,所述第七映射关系包括多个第七测量值以及与所述多个第七测量值一一对应的多个第七量化范围,所述第八映射关系包括多个第八测量值以及与所述多个第八测量值一一对应的多个第八量化范围,所述终端设备所支持的量化精度为所述第七映射关系中任意一个量化范围的最大值与最小值的差值或所述第八映射关系中任意一个量化范围的最大值与最小值的差值。
在一种可能的实施方式中,在接收终端设备发送的至少两个波束质量信息之前,所述收发模块,还用于向所述终端设备发送第一信息,所述第一信息用于指示终端设备采用所述至 少两种量化方式对需要上报的同一波束质量进行至少两次量化。
在一种可能的实施方式中,所述收发模块,还用于
接收所述终端设备发送的第一能力信息,所述第一能力信息用于指示以下一种或多种:所述终端设备支持采用所述至少两种量化方式对需要上报的同一波束质量进行至少两次量化的能力、所述终端设备所支持的量化精度、所述第一预设偏移、所述第二预设偏移、所述第三预设偏移和所述第四预设偏移。
在一种可能的实施方式中,所述收发模块,还用于
接收所述终端设备发送的第二能力信息,所述第二能力信息用于指示以下一种或多种:所述终端设备支持采用所述至少两种量化方式对需要上报的同一波束质量进行至少两次量化的能力和所述终端设备所支持的量化精度。
在一种可能的实施方式中,所述第一信息用于指示以下一种或多种:第一预设偏移和第二预设偏移、所述第三预设偏移和所述第四预设偏移。
第五方面,提供一种通信装置,所述装置为芯片或包括芯片的终端设备,包括处理器、输入接口和输出接口,所述输入接口用于接收来自所述通信装置之外的其它通信装置的信息,所述输出接口用于向所述通信装置之外的其它通信装置输出信息,所述处理器执行存储器中存储的计算机程序实现如第一方面任一项所述的方法。
第六方面,提供一种通信装置,所述装置为芯片或包括芯片的接入网设备,包括处理器、输入接口和输出接口,所述输入接口用于接收来自所述通信装置之外的其它通信装置的信息,所述输出接口用于向所述通信装置之外的其它通信装置输出信息,所述处理器执行存储器中存储的计算机程序实现如第二方面任一项所述的方法。
第七方面,提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行实现如第一方面或第二方面任一项所述的方法。
第八方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,当所述计算机程序被运行时,实现如第一方面或第二方面任一项所述的方法。
第九方面,提供一种通信系统,该通信系统包括上述终端设备,和/或,上述接入网设备。
附图说明
下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
其中:
图1为本申请实施例提供的通信系统的基础架构;
图2为本申请实施例提供的一种信道信息上报方法的流程示意图;
图3为本申请实施例提供的又一种信道信息上报方法的流程示意图;
图4为本申请实施例提供的一种通信装置的结构示意图;
图5为本申请实施例提供的一种简化的终端设备的结构示意图;
图6为本申请实施例提供的一种简化的接入网设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
需要理解的是,本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一种(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一种(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
在本申请实施例中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
下面对本申请所涉及到的一些通信术语或名词进行解释说明。
1、波束(beam)
波束在新空口(New Radio,NR)协议中的体现可以称为空域滤波器(spatial domainfilter)、空间滤波器(spatial filter)或空间参数(spatial parameter)。用于发送信号的波束可以称为发送波束(transmission beam,Tx beam)、空域发送滤波器(spatial domain transmission filter)或空间发射参数(spatial transmissionparameter);用于接收信号的波束可以称为接收波束(reception beam,Rx beam)、空域接收滤波器(spatial domain receive filter)或空间接收参数(spatial RXparameter)。
发送波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。
应理解,上文列举的NR协议中对于波束的体现仅为示例,不应对本申请构成任何限定。本申请并不排除在未来的协议中定义其他的术语来表示相同或相似的含义的可能。
此外,波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束赋形技术或者其他技术。波束赋形技术具体可以为数字波束赋形技术、模拟波束赋形技术或者混合数字/模拟波束赋形技术等。不同的波束可以认为是不同的资源。通过不同的波束可以发送相同的信息或者不同的信息。
可选地,将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束内可以包括一个或多个天线端口,用于传输数据信道、控制信道和探测信号等。形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。
在本申请实施例中,若未做出特别说明,波束是指网络设备的发送波束。在波束测量中,网络设备的每一个波束对应一个资源,因此可以以资源的索引来唯一标识该资源对应的波束。
2、信道信息
信道信息可以包括以下一种或多种:波束质量、信道质量指示(channel quality indicator,CQI)、预编码矩阵指示符(precoding matrix indicator,PMI)、层指示(layer indicator,LI)、秩指示(rank indicator,RI)、时延扩展(delay spread)、多普勒扩展(doppler spread)、多普勒频移(doppler shift)、平均时延(average delay)、平均增益、空间接收参数(spatial Rx parameters)。
其中,波束质量可以为以下一种:参考信号接收功率(reference signal receiving power,RSRP)、参考信号接收质量(reference signal receiving quality,RSRQ)或信号与干扰加噪声比(signal to interference plus noise ratio,SINR)。
空间接收参数可以包括以下的一种或多种:到达角(angle of arrival,AOA)、平均AOA、AOA扩展、离开角(angle of departure,AOD)、平均离开角AOD、AOD扩展、接收天线空间相关性参数、发送天线空间相关性参数。
可选的,本申请实施例中需要采用绝对值量化上报的对象不限于信道信息中波束质量,还可以为信道信息中除波束质量之外的其他信息,本申请实施例中需要采用差分量化上报的对象不限于波束质量,还可以为信道信息中除波束质量之外的其他信息,在此不做限制。
3、波束质量信息
波束质量信息是对波束质量进行量化确定的。如,针对参考信号接收功率(reference signal receiving power,RSRP),如果终端设备只需上报一个参考信号的RSRP,或者对于终端设备上报的多个参考信号的RSRP中最大的一个,波束质量信息是对RSRP进行量化确定的。对于终端设备上报的多个参考信号的RSRP中除最大RSRP之外的其他RSRP,波束质量信息是对差分RSRP进行量化确定的,其中,差分RSRP例如可以为最大RSRP与除最大RSRP之外的RSRP之间的差值。
4、绝对值量化和差分量化
绝对值量化,即量化测量值。例如,根据3GPP标准协议TS 38.133 v16.1.0表格10.1.6.1-1,如果RSRP测量值为-100dBm,其量化结果对应的波束质量信息为RSRP_57,若根据3GPP标准协议TS 38.214 v16.2.0的要求使用7个比特进行上报RSRP,即为0111001。
差分量化,即量化两个测量值之间的差值。例如,如果两个波束质量分别为-105.5dBm与-100dBm,以其中最大值-100dBm为参考,-105.5dBm对应的差分RSRP为-5.5dB,即-105.5dBm与-100dBm之间的差值,根据3GPP标准协议TS 38.133 v16.1.0表格10.1.6.1-2,终端设备对-5.5dB的差分RSRP进行量化后其量化结果对应的波束质量信息为DIFFRSRP_2。若根据3GPP标准协议TS 38.214 v16.2.0的要求使用4个比特进行上报差分RSRP,即为0010。
上述内容简要阐述了本申请实施例所涉及的部分名词(或术语)的含义,为更好地理解本申请实施例的提供的信道信息上报方法,下面将对本申请实施例提供的信道信息上报方法的系统架构和/或应用场景进行说明。可理解的,本申请实施例描述的场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。
为了便于理解本申请,在此介绍本申请实施例涉及的相关技术知识。
一般来说,接入网设备可以向终端设备发送配置信息,该配置信息包括资源配置信息和上报配置信息。其中,资源配置信息包括一个或多个资源集合,每一个资源集合包括一个或多个下行信号的资源,每个下行信号的资源对应一个波束。下行信号包括:信道状态信息参考信号(channel state informationreference signal,CSI-RS)、小区专用参考信号(cell specific  reference signal,CS-RS)、UE专用参考信号(user equipment specific reference signal,US-RS)、解调参考信号(demodulation reference signal,DMRS)、以及同步信号/物理广播信道块(synchronization signal/physical broadcast channel block,SS/PBCH block)。其中,SS/PBCH block可以简称为同步信号块(synchronization signal block,SSB)。上报配置信息包括以下至少一种:终端设备需要上报下行信号的资源标识、终端设备需要上报的波束质量的数目等。另外,上报配置信息还包括资源配置信息的标识,以指示终端设备基于哪一个资源配置信息所配置的资源来测量参考信号。
进一步的,接入网设备可以通过一个或多个发送波束发送一个或多个参考信号给终端设备。终端设备通过一个或多个接收波束接收一个或多个参考信号。终端设备接收到的一个或多个参考信号进行测量,得到一个或多个波束质量。然后,终端设备可以上报波束质量。在一种可能的方式中,终端设备可以根据配置信息进行上报,比如,根据终端设备需要上报的波束质量的数目上报波束质量。最后,接入网设备可以根据终端设备上报的波束质量和调度策略等选择适合数据传输的波束并指示给该终端设备。
需要说明的是,在一种实现方式中,终端设备可以按照接入网设备的配置上报测量得到的所有波束质量中的全部或者部分波束质量给接入网设备,例如,终端设备测量得到3个波束质量,则终端设备上报这2个波束质量给接入网设备。在另一种实现方式中,终端设备可以上报测量得到的波束质量中大于门限值的波束质量给接入网设备,例如,终端设备测量得到3个波束质量,其中,2个波束质量大于门限值,则终端设备上报这2个波束质量给接入网设备。
其次,当上报的波束质量的数量大于1个时,终端设备可以将质量最好的波束质量作为参考值,并采用差分量化对除参考值之外的其余波束质量进行量化后上报。
进一步的,终端设备在上报量化后的波束质量时,可以涉及到不同的比特位宽。示例性的,参见表1,在表1中,RSRP(质量最好的RSRP)对应的比特位宽(bitwidth)为7,差分RSRP(differential RSRP)对应的比特位宽为4,即需要差分上报的RSRP对应的比特位宽为4。可以理解的,比特位宽的具体数值,在本申请中不做限制。
表1:上报波束质量时涉及到的比特位宽
字段(field) 比特位宽
RSRP 7
differential RSRP 4
可以理解的,针对质量最好的波束质量,终端设备采用绝对值量化,以使用7个比特进行上报。如质量最好的RSRP为-100dBm,结合表3,可以确定-100dBm对应的波束质量信息为RSRP_57,RSRP_57以二进制比特表示为0111001。另外,针对质量最好的波束质量,其对应的量化步长为1dB。针对除质量最好的波束质量之外的其他波束质量,终端设备可以根据其他波束质量中每个波束质量与质量最好的波束质量之间的差值进行量化,即对其他波束质量中每个波束质量采用差分量化,以使用4个比特进行上报。如,质量最好的RSRP1为-100dBm,RSRP2为-105.5dBm,RSRP3为-110dBm。那么,RSRP2与RSRP1之间的差值为-5.5dB,RSRP3与RSRP1之间的差值为-11dB。进一步的,参见表2,在表2中,DIFFRSRP_1对应的量化范围为:-2≥ΔRSRP>-4;DIFFRSRP_2对应的量化范围为:-4≥ΔRSRP>-6;DIFFRSRP_3对应的量化范围为:-6≥ΔRSRP>-8;DIFFRSRP_4对应的量化范围为:-8≥ΔRSRP>-10;DIFFRSRP_5对应的量化范围为:-10≥ΔRSRP>-12。即,量化步长均为2dB。结合表 2,可以看出,-5.5dB落入的量化范围为-4≥ΔRSRP>-6,即RSRP2对应的波束质量信息为DIFFRSRP_2,DIFFRSRP_2以二进制比特表示为0010;-11dB落入的量化范围为-10≥ΔRSRP>-12,即RSRP2对应的波束质量信息为DIFFRSRP_5,DIFFRSRP_5以二进制比特表示为0101。
表2:上报值和量化范围之间的对应关系(截取自标准协议TS38.133表格)
Figure PCTCN2020116342-appb-000001
综上,可以看出,波束质量的量化过程与量化步长有关。如,质量最好的波束质量为-80dBm,其他波束质量中某个波束质量为-84.1dBm,其他波束质量中另一个波束质量为-85.9dBm。那么,-84.1dBm与-80dBm之间的差值为-4.1dBm,-84.1dBm与-85.9dBm之间的差值为-5.9dB,结合表2,可以看出,-4.1dB和-5.9dB落入的量化范围均为-4≥ΔRSRP>-6,即终端设备向接入网设备上报的均为DIFFRSRP_2。同时,接入网设备在根据量化步长和质量最好的波束质量对DIFFRSRP_2解析时,由于DIFFRSRP_2对应的-4≥ΔRSRP>-6,针对-84.1dBm和-85.9dBm,接入网设备可以确定其对应的均为-84dBm至-86dBm。而-86dBm和-84.1dBm之间相差1.9dB,-84dBm和-85.9dBm相差1.9dB。可以看出,针对一个波束质量,终端设备在量化时或接入网设备在解析时最大可以接近2dB的误差。因此,如何降低量化误差是个亟待解决的问题。
基于此,本申请实施例提出一种信道信息上报方法以解决上述问题,下面对本申请实施例进行详细介绍。
应理解,本申请实施例的技术方案可以应用于长期演进(long term evolution,LTE)架构、第五代移动通信技术(5th generation mobile networks,5G)、第4.5代移动通信技术(the 4.5generation mobile networks,4.5G)、无线局域网(wireless local area networks,WLAN)系统等等。本申请实施例的技术方案还可以应用于未来其它的通信系统,例如6G通信系统等,在未来通信系统中,可能保持功能相同,但名称可能会改变。
参见图1,图1为本申请实施例提供的通信系统的基础架构。如图1所示,该通信系统可以包括终端设备10和接入网设备11,终端设备10可以与接入网设备11进行通信。
其中,终端设备10可以是芯片,也可以是包括芯片的用户设备。进一步的,终端设备10是用户侧的一种用于接收信号,或者,发送信号,或者,接收信号和发送信号的实体。终端设备10用于向用户提供语音服务和数据连通性服务中的一种或多种。可以理解的,当终端设备10为芯片时,该芯片可以包括处理器和接口。当终端设备10为包括芯片的用户设备时,终端设备10可以为包含无线收发功能、且可以与接入网设备配合为用户提供通讯服务的设备。具体地,终端设备10可以指用户设备(user equipment,UE)、接入终端、用户单元、用户站、 移动站、移动台、远方站、远程终端、移动设备、终端、无线通信设备、用户代理或用户装置。终端设备10也可以是无人机、物联网(internet of things,IoT)设备、WLAN中的站点(station,ST)、蜂窝电话(cellular phone)、智能电话(smart phone)、无绳电话、无线数据卡、平板型电脑、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)设备、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备(也可以称为穿戴式智能设备)、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。终端设备10也可以是设备到设备(device to device,D2D)设备,例如,电表、水表等。终端设备10还可以为5G系统中的终端,也可以为下一代通信系统中的终端,本申请实施例对此不作限定。
接入网设备11可以是用于与终端设备10进行通信的芯片,也可以是用于与终端设备10进行通信的包括芯片的设备。接入网设备11为网络侧的一种用于发送信号,或者,接收信号,或者,发送信号和接收信号的实体。可以理解的,当接入网设备11为芯片时,该芯片可以包括处理器和接口。当接入网设备11为包括芯片的设备时,接入网设备11可以为部署在无线接入网(radio access network,RAN)中为终端设备10提供无线通信功能的装置,例如可以为传输接收点(transmission reception point,TRP)、基站、各种形式的控制节点。例如,网络控制器、无线控制器、云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器等。具体的,接入网设备可以为各种形式的宏基站,微基站(也称为小站),中继站,接入点(access point,AP)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseBand unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心)等,也可以为基站的天线面板。控制节点可以连接多个基站,并为多个基站覆盖下的多个终端配置资源。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同。例如,可以是LTE系统中的演进型基站(evolutional node B,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,还可以是5G中的(new radio nodeB,gNB),或者该接入网设备11可以为中继站、接入点、车载设备、可穿戴设备以及5G之后的网络中的网络侧设备或未来演进的PLMN网络中的网络设备等,本申请对接入网设备的具体名称不作限定。
此外,本申请实施例提供的信道信息上报方法可适用于多种系统架构。本申请实施例描述的通信系统的基础架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着通信系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合图1以波束质量的上报为例描述本申请实施例,参见图2,图2为本申请实施 例提供的一种信道信息上报方法的流程示意图。其中,图2中的终端设备为图1中的终端设备10,图2中的接入网设备为图1中的接入网设备11。如图2所示,该方法包括但不限于以下步骤:
201、终端设备根据第一波束质量,确定至少两个波束质量信息。
其中,第一波束质量可以包括以下一种:参考信号接收功率(reference signal receiving power,RSRP)、参考信号接收质量(reference signal receiving quality,RSRQ)或信号与干扰加噪声比(signal to interference plus noise ratio,SINR)。
可选的,第一波束质量是对来自接入网设备的参考信号进行测量得到的,至少两个波束质量信息是根据至少两种量化方式对第一波束质量进行至少两次量化确定的。
可选的,终端设备根据第一波束质量,确定至少两个波束质量信息,包括:终端设备采用交替的方式根据至少两种量化方式对第一波束质量进行至少两次量化,确定至少两个波束质量信息。即,终端设备可以先采用一种量化方式对第一波束质量进行量化,再采用另一种量化方式对第一波束质量进行量化,终端设备具体先采用哪种量化方式对第一波束质量进行量化,在本申请中,不做限制。
可选的,至少两种量化方式包括第一量化方式和第二量化方式,第一量化方式和第二量化方式不同,终端设备采用交替的方式根据至少两种量化方式对第一波束质量进行至少两次量化,确定至少两个波束质量信息,包括:终端设备根据第一量化方式对第一波束质量进行量化,确定至少两个波束质量信息中的第一波束质量信息;终端设备根据第二量化方式对第一波束质量进行量化,确定至少两个波束质量信息中的第二波束质量信息。可以理解的,终端设备确定第一波束质量信息和第二波束质量信息的先后顺序不做限制。例如,终端设备也可以先根据第二量化方式对第一波束质量进行量化,确定第二波束质量信息,再根据第一量化方式对第一波束质量进行量化,确定第一波束质量信息。
其中,第一量化方式是根据第二量化方式和第一预设偏移确定的,或根据第二量化方式和第二预设偏移确定的,或根据第二量化方式和第三预设偏移确定的,或根据第二量化方式和第四预设偏移确定的。可以理解的,第二量化方式为现有方案中终端设备对波束质量进行量化的方式。即第二量化方式包括绝对值量化或差分量化。
可选的,若第一波束质量是对来自接入网设备的一个参考信号进行测量得到的,或对来自接入网设备的多个参考信号进行测量得到的多个波束质量中大于阈值的波束质量,如最大的波束质量,即第一波束质量为需要采用绝对值量化上报的波束质量,第二量化方式为绝对值量化;若第一波束质量是多个波束质量中除大于阈值的波束质量之外的任意一个波束质量,如,多个波束质量中除大于最大的波束质量之外的任意一个波束质量,即第一波束质量为需要采用差分量化上报的波束质量,第二量化方式为差分量化。
可选的,该阈值可以由终端设备配置、或接入网设备配置、或协议预先规定的,在此不做限制。
示例性的,若第一波束质量为RSRP,第二量化方式为绝对值量化;若第一波束质量为差分RSRP,第二量化方式为差分量化。
可选的,至少两个波束质量信息中除第一波束质量信息和第二波束质量信息之外的波束质量信息,其具体是根据哪种量化方式得到的,可以参考第一波束质量信息或第二波束质量信息,在此不做限制。
进一步的,采用交替的方式根据不同的量化方式进行量化的规则,可以称为规则抖动 (regular dithering),当然规则抖动只是一个名称,本申请对其不做限制。可选的,也可以由终端设备随机选择量化方式,这种方法更贴合随机抖动噪声原理。例如,终端设备根据至少两种量化方式对第一波束质量进行至少两次量化,确定至少两个波束质量信息,包括:终端设备根据第一概率确定采用第一量化方式对第一波束质量进行量化,得到至少两个波束质量信息中的第一波束质量信息;终端设备根据第二概率确定采用第二量化方式对第一波束质量进行量化,得到至少两个波束质量信息中的第二波束质量信息。其中,第一概率和第二概率可以相同或不同,且第一概率和第二概率的具体大小,在此不做限制。可以理解的,在本申请中,第一概率又可以称为偏移概率,当然偏移概率只是一个名称,本申请对其不做限制。
示例性的,终端设备根据50%的概率确定第一次的量化方式为量化方式1,终端设备根据50%的概率确定第二次的量化方式为量化方式2,量化方式1与量化方式2不同。
可以看出,上述技术方案中,接收接入网设备发送的第一信息,以使得终端设备采用至少两种量化方式对同一波束质量进行至少两次量化,使得量化误差多样化。
可选的,至少两个波束质量信息包括第一波束质量信息和第二波束质量信息,第一波束质量信息为根据第一波束质量和第一预设偏移进行量化后得到的,第二波束质量信息为根据第一波束质量进行量化后得到的;或,第一波束质量信息为根据差分波束质量和第二预设偏移进行量化后得到的,第二波束质量信息为根据差分波束质量进行量化后得到的。
其中,差分波束质量为需要采用绝对值量化上报的波束质量与所述第一波束质量之间的差值。
可选的,第一波束质量信息为根据第一波束质量和第一预设偏移进行量化后得到的,第二波束质量信息为根据第一波束质量进行量化后得到的,此时,第一波束质量是对来自接入网设备的一个参考信号进行测量得到的,或对来自接入网设备的多个参考信号进行测量得到的多个波束质量中大于阈值的波束质量,如最大的波束质量,即第一波束质量为需要采用绝对值量化上报的波束质量。
可选的,第一波束质量信息为根据差分波束质量和第二预设偏移进行量化后得到的,第二波束质量信息为根据差分波束质量进行量化后得到的,此时,第一波束质量是多个波束质量中除大于阈值的波束质量之外的任意一个波束质量,如多个波束质量中除最大的波束质量之外的任意一个波束质量即第一波束质量为需要采用差分量化上报的波束质量。
可选的,多个参考信号与多个波束质量一一对应,如,终端设备对3个参考信号进行测量,可以得到3个波束质量。
可选的,若第一波束质量为需要采用绝对值量化上报的波束质量,第一波束质量信息为根据第一波束质量和第一预设偏移,从第二映射关系查询得到的;第二波束质量信息为根据第一波束质量,从第二映射关系查询得到的,即第二波束质量信息是现有方案中终端设备对第一波束质量进行量化后得到的。可以理解的,第一波束质量信息和第二波束质量信息可以为第二映射关系中不同的上报值。
可选的,第二映射关系包括多个第二上报值以及与多个第二上报值一一对应的多个第二量化范围,或,第二映射关系包括一个第二上报值以及与该第二上报值对应的一个第二量化范围,在此不做限制。
可选的,第二映射关系包括多个第二上报值和多个第二量化范围之间一一对应的关系,或,第二映射关系包括一个第二上报值与一个第二量化范围之间的对应关系,在此不做限制。
可选的,第二映射关系例如可以为映射关系表,在此不做限制。
可选的,第二映射关系为第一表格。其中,第一表格例如可以为标准协议TS38.133中的Table 10.1.6.1-1:SS-RSRP和CSI-RSRP的测量报告映射(SS-RSRP and CSI-RSRP measurement report mapping)、Table 10.1.16.1-1:SS-SINR和CSI-RSRP的测量报告映射(SS-SINR and CSI-RSRP measurement report mapping),或其他表格,具体可以参见标准协议TS38.133,在此不做限制。
可选的,若第一波束质量为需要采用差分量化上报的波束质量,第一波束质量信息为根据第一波束质量和第二预设偏移,从第四映射关系查询得到的;第二波束质量信息为根据第一波束质量,从第四映射关系查询得到的,即第二波束质量信息是现有方案中终端设备对第一波束质量进行量化后得到的。可以理解的,第一波束质量信息和第二波束质量信息可以为第四映射关系中不同的上报值。
可选的,第四映射关系包括多个第四上报值以及与多个第四上报值一一对应的多个第四量化范围,或,第四映射关系包括一个第四上报值以及与该第四上报值对应的一个第四量化范围,在此不做限制。
可选的,第四映射关系包括多个第四上报值和多个第四量化范围之间一一对应的关系,或,第四映射关系包括一个第四上报值和一个第四量化范围之间的对应关系,在此不做限制。
可选的,第四映射关系例如可以为映射关系表,在此不做限制。
可选的,第四映射关系为第二表格。其中,第二表格例如可以为标准协议TS38.133中的Table 10.1.6.1-2:差分SS-RSRP和CSI-RSRP的测量报告(针对L1报告)映射(Differential SS-RSRP and CSI-RSRP measurement(for L1 reporting)report mapping)、Table 10.1.16.1-2:差分SS-SINR和CSI-SINR的测量报告(针对L1报告)映射(Differential SS-SINR and CSI-SINR measurement(for L1 reporting)report mapping)或其他表格,具体可以参见标准协议TS38.133,在此不做限制。
可选的,至少两个波束质量信息中除第一波束质量信息和第二波束质量信息之外的波束质量信息,其具体是根据哪种量化方式得到的,可以参考第一波束质量信息或第二波束质量信息,在此不做限制。另外,其具体是标准协议TS38.133的哪个表格中的上报值,也可以参考第一波束质量信息或第二波束质量信息,在此不做限制。
示例性的,若第一波束质量为需要采用绝对值量化上报的波束质量,第一波束质量为-99dBm,第一预设偏移为0.5dB,则结合表3,可以看出,第一波束质量信息为RSRP_57(-99dBm减去0.5dB为-99.5dBm),第二波束质量信息为RSRP_58。
表3:上报值和量化范围之间的对应关系(截取自标准协议TS38.133表格)
Figure PCTCN2020116342-appb-000002
示例性的,若第一波束质量为需要采用差分量化上报的波束质量,最大的波束质量为-100dBm,第一波束质量为-105.5dBm,则差分波束质量为-5.5dB,第二预设偏移为1dB,结合表2,可以看出,第一波束质量信息为DIFFRSRP_3(-5.5dB减去1dB为-6.5dB),第二波束质量信息为DIFFRSRP_2。
可以看出,上述技术方案中,通过采用至少两种量化方式对同一波束质量进行至少两次量化,使得量化误差多样化。
可选的,至少两个波束质量信息包括第一波束质量信息和第二波束质量信息,第一波束质量信息为根据第一波束质量和第一映射关系得到的,第二波束质量信息为根据第一波束质量和第二映射关系得到的;或,第一波束质量信息为根据差分波束质量和第三映射关系得到的,第二波束质量信息为根据差分波束质量和第四映射关系得到的。
可选的,第一波束质量信息为根据第一波束质量和第一映射关系得到的,第二波束质量信息为根据第一波束质量和第二映射关系得到的,此时,第一波束质量是对来自接入网设备的一个参考信号进行测量得到的,或对来自接入网设备的多个参考信号进行测量得到的多个波束质量中大于阈值的波束质量,如最大的波束质量,即第一波束质量为需要采用绝对值量化上报的波束质量。
可选的,第一波束质量信息为根据差分波束质量和第三映射关系得到的,第二波束质量信息为根据差分波束质量和第四映射关系得到的,此时,第一波束质量是多个波束质量中除大于阈值的波束质量之外的任意一个波束质量,如多个波束质量中除最大的波束质量之外的任意一个波束质量,即第一波束质量为需要采用差分量化上报的波束质量。
可选的,第一映射关系包括多个第一上报值以及与多个第一上报值一一对应的多个第一量化范围,或,第一映射关系包括一个第一上报值以及与该第一上报值对应的一个第一量化范围,在此不做限制。
可选的,第一映射关系包括多个第一上报值和多个第一量化范围之间一一对应的关系,或,第一映射关系包括一个第一上报值和一个第一量化范围之间的对应关系,在此不做限制。
可选的,第一映射关系和第二映射关系中同一上报值对应不同的量化范围,第一映射关系中各个第一量化范围是根据第二映射关系中对应的各个第二量化范围和第三预设偏移确定的。
可选的,第一映射关系例如可以为映射关系表,在此不做限制。
可选的,第三映射关系包括多个第三上报值以及与多个第三上报值一一对应的多个第三量化范围,或,第三映射关系包括一个第三上报值以及与该第三上报值对应的一个第三量化范围,在此不做限制。
可选的,第三映射关系包括多个第三上报值和多个第三量化范围之间一一对应的关系,或,第三映射关系包括一个第三上报值和一个第三量化范围之间的对应关系,在此不做限制。
可选的,第三映射关系和第四映射关系中同一上报值对应不同的量化范围,第三映射关系中各个第三量化范围是根据第四映射关系中对应的各个第四量化范围和第四预设偏移确定的。
可选的,第三映射关系例如可以为映射关系表,在此不做限制。
可选的,若第一波束质量为需要采用绝对值量化上报的波束质量,第一波束质量信息为根据第一波束质量,从第一映射关系查询得到的上报值;第二波束质量信息为根据第一波束质量,从第二映射关系查询得到的上报值。若第一波束质量为需要采用差分量化上报的波束质量,第一波束质量信息为根据第一波束质量,从第三映射关系查询得到的上报值;第二波束质量信息为根据第一波束质量,从第四映射关系查询得到的上报值。
示例性的,若第一波束质量为需要采用绝对值量化上报的波束质量,第三预设偏移为0.5dB,参见表4和表5,可以看出,若第一上报值和第二上报值均为RSRP_57,第一量化范 围为-100≤RSRP<-99,第二量化范围为-100+0.5≤RSRP<-99+0.5,即-99.5≤RSRP<-98.5;若第一上报值和第二上报值均为RSRP_58,第一量化范围为-99≤RSRP<-98,第二量化范围为-99+0.5≤RSRP<-98+0.5,即-98.5≤RSRP<-97.5。
表4:第一映射关系
多个第一上报值 多个第一量化范围 单位(unit)
··· ··· ···
RSRP_57 -99.5≤RSRP<-98.5- dBm
RSRP_58 -98.5≤RSRP<-97.5- dBm
··· ··· ···
表5:第二映射关系
多个第二上报值 多个第二量化范围 单位(unit)
··· ··· ···
RSRP_57 100≤RSRP<-99 dBm
RSRP_58 99≤RSRP<-98 dBm
··· ··· ···
示例性的,若第一波束质量为需要采用差分量化上报的波束质量,若第四预设偏移为1dB,参见表6和表7,可以看出,若第三上报值和第四上报值为DIFFRSRP_1,第三量化范围为-2≥ΔRSRP>-4,第四量化范围-2+1≥ΔRSRP>-4+1,即-1≥ΔRSRP>-3;若第三上报值和第四上报值均为DIFFRSRP_2,第三量化范围为-4≥ΔRSRP>-6,第四量化范围-4+1≥ΔRSRP>-6+1,即-3≥ΔRSRP>-5。
表6:第三映射关系
多个第三上报值 多个第三量化范围 单位(unit)
··· ··· ···
DIFFRSRP_1 -2≥ΔRSRP>-4 dB
DIFFRSRP_2 -4≥ΔRSRP>-6 dB
··· ··· ···
表7:第四映射关系
多个第四上报值 多个第四量化范围 单位(unit)
··· ··· ···
DIFFRSRP_1 -1≥ΔRSRP>-3 dB
DIFFRSRP_2 -3≥ΔRSRP>-5 dB
··· ··· ···
可以看出,上述技术方案中,通过采用至少两种量化方式对同一波束质量进行至少两次量化,使得量化误差多样化。
202、终端设备向接入网设备发送至少两个波束质量信息,相应的,接入网设备接收终端设备发送的至少两个波束质量信息。
可选的,终端设备向接入网设备发送至少两个波束质量信息,包括:终端设备分成至少两次向接入网设备发送该至少两个波束质量信息。相应的,接入网设备分成至少两次接收终端设备发送的至少两个波束质量信息。
需要说明的,可选的,在本申请实施例中,终端设备每次向接入网设备发送至少两个波束质量信息中的一个波束质量信息。即,针对同一波束质量对应的不同波束质量信息,终端设备需要多次向接入网设备进行上报,例如,两个波束质量信息,终端设备分成两次或四次向接入网设备进行上报。可以理解的,终端设备向接入网设备上报波束质量信息的次数可以大于或等于量化方式的种类,终端设备向接入网设备上报波束质量信息的次数例如可以为2或2的倍数,在此不做限制。如,终端设备根据两种量化方式对某个波束质量进行两次量化,那么终端设备可以分成两次或四次向接入网设备进行上报。
示例性的,终端设备分两次向接入网设备发送第一波束质量信息和第二波束质量信息,即终端设备先向接入网设备发送第一波束质量信息,再向接入网设备发送第二波束质量信息其中,终端设备向接入网设备发送第一波束质量信息和第二波束质量信息的先后顺序,在此不做限制。
示例性的,终端设备分四次向接入网设备发送第一波束质量信息和第二波束质量信息,即终端设备先向接入网设备发送第一波束质量信息,再向接入网设备发送第二波束质量信息,接着,终端设备再向接入网设备发送第一波束质量信息,最后,终端设备再向接入网设备发送第二波束质量信息。其中,终端设备向接入网设备发送第一波束质量信息和第二波束质量信息的先后顺序,在此不做限制。
可选的,终端设备还可以向接入网设备发送终端设备需要上报的下行信号的资源的标识。如,CSI-RS资源#1、以二进制比特表示为0001;CSI-RS资源#2、以二进制比特表示为0010等。
203、接入网设备根据至少两个波束质量信息,确定第一波束质量对应的测量值。
可选的,接入网设备根据至少两个波束质量信息,确定第一波束质量对应的测量值,包括:接入网设备根据至少两个波束质量信息,确定第三波束质量信息;接入网设备根据第三波束质量信息对应的量化范围,确定第一波束质量对应的测量值。
可选的,接入网设备根据至少两个波束质量信息,确定第三波束质量信息,包括:接入网设备根据至少两个波束质量信息的平均值或加权平均值,确定第三波束质量信息。另外,在另一种可能的实施方式中,接入网设备根据至少两个波束质量信息,确定第三波束质量信息,包括:接入网设备对至少两个波束质量信息进行滤波,以确定第三波束质量信息。
其中,第三波束质量信息对应的量化范围是根据第三波束质量信息和第五映射关系确定的,或,根据第三波束质量信息和第六映射关系确定的。
可选的,第一波束质量是对来自接入网设备的一个参考信号进行测量得到的,或对来自接入网设备的多个参考信号进行测量得到的多个波束质量中大于阈值的波束质量,如最大的波束质量,即第一波束质量为需要采用绝对值量化上报的波束质量。在这种情况下,接入网设备需要根据第五映射关系或第六映射关系来确定第一波束质量对应的测量值。
可选的,第五映射关系是根据终端设备所支持的量化精度和第一预设偏移确定的,或,根据在第一量化精度的基础上终端设备所能提高的量化精度和第一预设偏移确定的。
其中,第一量化精度为现有方案中终端设备所支持的量化精度,如,结合表3,针对RSRP,第一量化精度为1dBm;结合表2,针对差分RSRP,第一量化精度为2dB。又如,针对SINR,第一量化精度为0.5dB;针对差分SINR,第一量化精度为1dB。
其中,在第一量化精度的基础上终端设备所能提高的量化精度为第一量化精度和终端设备所支持的量化精度的差值。
可选的,第五映射关系是根据终端设备所支持的量化精度、第一预设偏移和第二映射关系确定的,或,根据在第一量化精度的基础上终端设备所能提高的量化精度、第一预设偏移和第二映射关系确定的。
可选的,第六映射关系根据终端设备所支持的量化精度和第三预设偏移确定的,或根据在第一量化精度的基础上终端设备所能提高的量化精度和第三预设偏移确定的。
可选的,第六映射关系是根据终端设备所支持的量化精度、第三预设偏移和第二映射关系确定的,或,根据在第一量化精度的基础上终端设备所能提高的量化精度、第三预设偏移和第二映射关系确定的。
可选的,第五映射关系包括多个第五测量值以及与多个第五测量值一一对应的多个第五量化范围,或,第五映射关系包括一个第五测量值以及与该第五测量值对应的一个第五量化范围,在此不做限制。
可选的,第五映射关系包括多个第五测量值和多个第五量化范围之间一一对应的关系,或,第五映射关系包括一个第五测量值和一个第五量化范围的对应关系,在此不做限制。
可选的,第六映射关系包括多个第六测量值以及与多个第六测量值一一对应的多个第六量化范围,或,第六映射关系包括一个第六测量值以及与该第六测量值对应的一个第六量化范围,在此不做限制。
可选的,第六映射关系包括多个第六测量值和多个第六量化范围之间一一对应的关系,或,第六映射关系包括一个第六测量值和一个第六量化范围的对应关系,在此不做限制。
可选的,第五映射关系和第六映射关系例如可以为映射关系表,在此不做限制。
可选的,终端设备所支持的量化精度为第五映射关系中任意一个量化范围的最大值与最小值的差值或第六映射关系中任意一个量化范围的最大值与最小值的差值。
示例性的,参见表8,可以看出,RSRP_57与-100≤RSRP<-99.5对应;RSRP_57.5与-99.5≤RSRP<-99对应;RSRP_58与-99≤RSRP<-98.5对应。进一步的,如-100≤RSRP<-99.5,其最大值和最小值的差值为0.5,即,终端设备所支持的量化精度为0.5dB。
表8:第五映射关系
多个第五测量值 多个第五量化范围 单位(unit)
··· ··· ···
RSRP_57 -100≤RSRP<-99.5 dBm
RSRP_57.5 -99.5≤RSRP<-99 dBm
RSRP_58 -99≤RSRP<-98.5 dBm
··· ··· ···
可选的,若接入网设备根据至少两个波束质量信息的平均值或加权平均值,确定第三波束质量信息,第三波束质量信息对应的量化范围为第五映射关系中测量值A对应的量化范围,或第六映射关系中测量值B对应的量化范围。其中,第三波束质量信息与测量值A相同,或,第三波束质量信息最接近测量值A;第三波束质量信息与测量值B相同,或,第三波束质量信息最接近测量值B。
示例性的,参见表9,可以看出,接入网设备接收终端设备第1次上报的波束质量信息为0111001,即RSRP_57,接入网设备接收终端设备第2次上报的波束质量信息为0111010,即RSRP_58,那么,接入网设备根据RSRP_57和RSRP_58的平均值,可以确定RSRP_57.5。结合表8,可以看出,其对应的量化范围为-99.5≤RSRP<-99。
表9:两次上报的波束质量信息及其均值
第1次上报 第2次上报 均值
0111001 0111010 RSRP_57.5
示例性的,若接入网设备接收终端设备第1次上报的波束质量信息为0111001,即RSRP_57,接入网设备接收终端设备第2次上报的波束质量信息为0111010,即RSRP_58,接入网设备接收终端设备第3次上报的波束质量信息为0111001,即RSRP_57。那么,RSRP_57、RSRP_58和RSRP_57的平均值为RSRP_57.3。结合表8,可以看出,RSRP_57.3最接近RSRP_57.5。因此,接入网设备在确定RSRP_57.3的量化范围时,可以将RSRP_57.5对应的量化范围作为RSRP_57.3对应的量化范围,即RSRP_57.3对应的量化范围为-99.5≤RSRP<-99。
可以看出,上述技术方案中,通过终端设备所支持的量化精度和预设偏移确定对应关系,从而使得接入网设备可以根据同一波束质量对应的多个波束质量信息在确定测量值时降低量化误差。
可选的,接入网设备根据至少两个波束质量信息,确定第一波束质量对应的测量值,包括:接入网设备根据至少两个波束质量信息,确定第四波束质量信息;接入网设备根据第四波束质量信息对应的量化范围和第五波束质量信息,确定第一波束质量对应的测量值。
可选的,接入网设备根据至少两个波束质量信息,确定第四波束质量信息,包括:接入网设备根据至少两个波束质量信息的平均值或加权平均值,确定第四波束质量信息。另外,在另一种可能的实施方式中,接入网设备根据至少两个波束质量信息,确定第四波束质量信息,包括:接入网设备对至少两个波束质量信息进行滤波,以确定第四波束质量信息。
其中,第四波束质量信息对应的量化范围是根据第四波束质量信息和第七映射关系确定的,或,根据第四波束质量信息和第八映射关系确定的。
可选的,第一波束质量是多个波束质量中除大于阈值的波束质量之外的任意一个波束质量,如,多个波束质量中除最大的波束质量之外的任意一个波束质量,即第一波束质量为需要采用差分量化上报的波束质量。在这种情况下,接入网设备需要根据第七映射关系或第八映射关系来确定第一波束质量对应的测量值。
可选的,第七映射关系是根据终端设备所支持的量化精度和第二预设偏移确定的,或,根据在第一量化精度的基础上终端设备所能提高的量化精度和第二预设偏移确定的。
可选的,第七映射关系是根据终端设备所支持的量化精度、第二预设偏移和第四映射关系确定的,或,根据在第一量化精度的基础上终端设备所能提高的量化精度、第二预设偏移和第四映射关系确定的。
可选的,第八映射关系根据终端设备所支持的量化精度和第四预设偏移确定的,或根据在第一量化精度的基础上终端设备所能提高的量化精度和第四预设偏移确定的。
可选的,第八映射关系是根据终端设备所支持的量化精度、第四预设偏移和标准协议第四映射关系确定的,或,根据在第一量化精度的基础上终端设备所能提高的量化精度、第四预设偏移和第四映射关系确定的。
可选的,第七映射关系包括多个第七测量值以及与多个第七测量值之间一一对应的多个第七量化范围,或,第七映射关系包括一个第七测量值以及与该第七测量值对应的一个第七量化范围,在此不做限制。
可选的,第七映射关系包括多个第七测量值和多个第七量化范围之间一一对应的关系,当然,第七映射关系也可以包括一个第七测量值和一个第七量化范围的对应关系,在此不做 限制。
可选的,第八映射关系包括多个第八测量值以及与多个第八测量值一一对应的多个第八量化范围,或,第八映射关系包括一个第八测量值以及与该第八测量值对应的一个第八量化范围,在此不做限制。
可选的,第八映射关系包括多个第八测量值和多个第八量化范围之间一一对应的关系,当然,第八映射关系也可以包括一个第八测量值和一个第八量化范围的对应关系,在此不做限制。
可选的,终端设备所支持的量化精度为第七映射关系中任意一个量化范围的最大值与最小值的差值或第八映射关系中任意一个量化范围的最大值与最小值的差值。
可选的,第七映射关系和第八映射关系例如可以为映射关系表,在此不做限制。
示例性的,参见表10,可以看出,DIFFRSRP_0.5与-1≥ΔRSRP>-2对应;DIFFRSRP_1与-2≥ΔRSRP>-3对应;DIFFRSRP_1.5与-3≥ΔRSRP>-4对应;DIFFRSRP_2与-4≥ΔRSRP>-5对应;DIFFRSRP_2.5与-5≥ΔRSRP>-6对应。进一步的,如-1≥ΔRSRP>-2,其最大值和最小值的差值为1,即,终端设备所支持的量化精度为1dB。
表10:第七映射关系
第七测量值 第七量化范围 单位(unit)
··· ··· ···
DIFFRSRP_0.5 -1≥ΔRSRP>-2 dB
DIFFRSRP_1 -2≥ΔRSRP>-3 dB
DIFFRSRP_1.5 -3≥ΔRSRP>-4 dB
DIFFRSRP_2 -4≥ΔRSRP>-5 dB
DIFFRSRP_2.5 -5≥ΔRSRP>-6 dB
··· ··· ···
可选的,若接入网设备根据至少两个波束质量信息的平均值或加权平均值,确定第四波束质量信息,第四波束质量信息对应的量化范围为第七映射关系中测量值C对应的量化范围,或第八映射关系中测量值D对应的量化范围。其中,第四波束质量信息与测量值C相同,或,第四波束质量信息最接近测量值C;第四波束质量信息与测量值D相同,或,第四波束质量信息最接近测量值D。
示例性的,参见表11,可以看出,接入网设备接收终端设备第1次上报的波束质量信息为0010,即DIFFRSRP_2,接入网设备接收终端设备第2次上报的波束质量信息为0011,即DIFFRSRP_3,那么,接入网设备根据DIFFRSRP_2和DIFFRSRP_3的平均值,可以确定DIFFRSRP_2.5。结合表10,可以看出,其对应的量化范围为-5≥ΔRSRP>-6。
表11:两次上报的波束质量信息及其均值
第1次上报 第2次上报 均值
0010 0011 DIFFRSRP_2.5
可以理解的,接入网设备接收终端设备第1次上报的波束质量信息为0010,即DIFFRSRP_2,接入网设备接收终端设备第2次上报的波束质量信息为0011,即DIFFRSRP_3,接入网设备接收终端设备第3次上报的波束质量信息为0010,即DIFFRSRP_2,那么,DIFFRSRP_2、DIFFRSRP_3和DIFFRSRP_2的平均值为DIFFRSRP_2.3。结合表10,可以看出,DIFFRSRP_2.3最接近DIFFRSRP_2.5,因此,接入网设备在确定DIFFRSRP_2.3的量化 范围时,可以将DIFFRSRP_2.5对应的量化范围作为DIFFRSRP_2.3对应的量化范围,即DIFFRSRP_2.3对应的量化范围为-5≥ΔRSRP>-6。
其中,第五波束质量信息是根据需要采用绝对值量化上报的波束质量进行量化后得到的,或,根据至少两种量化方式对需要采用绝对值量化上报的波束质量进行至少两次量化后得到的。
可以理解的,第五波束质量信息是根据至少两种量化方式对需要采用绝对值量化上报的波束质量进行至少两次量化后得到的,即,第五波束质量信息是对至少两个参考波束质量信息进行平均或加权平均或滤波后得到的,至少两个参考波束质量信息是根据至少两种量化方式对需要采用绝对值量化上报的波束质量进行至少两次量化确定的。
可选的,至少两个参考波束质量信息,可以参考第一波束质量为需要采用绝对值量化上报的波束质量时,第一波束质量信息或第二波束质量信息的确定方式,在此不再赘述。
可以看出,上述技术方案中,通过终端设备所支持的量化精度和预设偏移确定对应关系,从而使得接入网设备可以根据同一波束质量对应的多个波束质量信息在确定测量值时降低量化误差。
下面结合图1以波束质量的上报为例描述本申请实施例,参见图3,图3为本申请实施例提供的又一种信道信息上报方法的流程示意图。其中,图3中的终端设备为图1中的终端设备10,图3中的接入网设备为图1中的接入网设备11。如图3所示,该方法包括但不限于以下步骤:
301、终端设备向接入网设备发送第一能力信息,相应的,接入网设备接收终端设备发送的第一能力信息。
可选的,终端设备可以在入网时向接入网设备发送第一能力信息。
可选的,终端设备向接入网设备发送第一能力信息,包括:终端设备接收接入网设备发送的用于请求能力信息的指令;终端设备根据用于请求能力信息的指令,向接入网设备发送第一能力信息。
可选的,第一能力信息用于指示以下一种或多种:终端设备支持采用至少两种量化方式对需要上报的同一波束质量进行至少两次量化的能力、终端设备所支持的量化精度、第一预设偏移、第二预设偏移、第三预设偏移和第四预设偏移,或,第一能力信息用于指示以下一种或多种:终端设备支持采用至少两种量化方式对需要上报的同一波束质量进行至少两次量化的能力、在第一量化精度的基础上终端设备所能提高的量化精度、第一预设偏移、第二预设偏移、第三预设偏移和第四预设偏移。其中,在第一量化精度的基础上终端设备所能提高的量化精度为第一量化精度和终端设备所支持的量化精度的差值,第一量化精度为现有方案中终端设备所支持的量化精度。
可选的,第一能力信息用于指示以下一种或多种第一预设偏移、第二预设偏移、第三预设偏移和第四预设偏移,即第一预设偏移、第二预设偏移、第三预设偏移和第四预设偏移是终端设备配置的。可以理解的,第一预设偏移和第三预设偏移可以相同或不同,第二预设偏移和第四预设偏移可以相同或不同,在此不做限制。当然,为了节省开销,在第一预设偏移和第三预设偏移相同时,第一能力信息可以用于指示第一预设偏移和第三预设偏移中的任意一个;第二预设偏移和第四预设偏移相同时,第一能力信息可以用于指示第二预设偏移和第四预设偏移中的任意一个,在本申请中,不做限制。
可选的,第一能力信息可以为第一无线资源控制(radio resource control,RRC)信息单元(information element,IE)。可以理解的,第一RRC IE为终端设备发送给接入网设备的。其中,第一RRC IE用于指示以下一种或多种:终端设备支持采用至少两种量化方式对需要上报的同一波束质量进行至少两次量化的能力、终端设备所支持的量化精度、第一预设偏移、第二预设偏移、第三预设偏移和第四预设偏移,或,第一RRC IE用于指示以下一种或多种:终端设备支持采用至少两种量化方式对需要上报的同一波束质量进行至少两次量化的能力、在第一量化精度的基础上终端设备所能提高的量化精度、第一预设偏移、第二预设偏移、第三预设偏移和第四预设偏移。
可选的,第一能力信息包括第一字段,第一字段用于指示终端设备支持的量化精度或在第一量化精度的基础上终端设备所能提高的量化精度。如,第一字段为DitheringDifferentialRSRP(抖动差分RSRP)或DitheringDifferentialSINR(抖动差分SINR)。进一步的,第一字段的取值为终端设备所支持的量化精度,如,{1dB,0.5dB},即终端设备所支持的量化精度为1dB或0.5dB;或,第一字段的取值为在第一量化精度的基础上终端设备所能提高的量化精度,如,{1dB,1.5dB},即在第一量化精度的基础上终端设备所能提高的量化精度为1dB或1.5dB。
可选的,第一RRC IE包括第一字段。
可选的,终端设备可以采用标准中ASN.1伪代码形式对第一字段和第一字段的取值进行处理。如:
DitheringDifferentialRSRP ENUMERATED{1dB,0.5dB};或,
DitheringDifferentialSINR ENUMERATED{0.5dB,0.25dB}。
可选的,步骤301中的第一能力信息可以被第二能力信息替换,即,终端设备向接入网设备发送第二能力信息,相应的,接入网设备接收终端设备发送的第二能力信息,在此不做限制。
其中,第二能力信息用于指示以下一种或多种:终端设备支持采用所述至少两种量化方式对需要上报的同一波束质量进行至少两次量化的能力和终端设备所支持的量化精度,或,第二能力信息用于指示以下至少一种或多种:终端设备支持采用至少两种量化方式对需要上报的同一波束质量进行至少两次量化的能力和在第一量化精度的基础上终端设备所能提高的量化精度。即,第二能力信息不用于指示第一预设偏移、第二预设偏移、第三预设偏移和第四预设偏移。
可选的,第二能力信息可以为第二RRC IE,第二RRC IE为终端设备发送给接入网设备的。其中,第二RRC IE用于指示以下一种或多种:终端设备支持采用至少两种量化方式对需要上报的同一波束质量进行至少两次量化的能力和终端设备所支持的量化精度,或,第一RRC IE用于指示以下一种或多种:终端设备支持采用至少两种量化方式对需要上报的同一波束质量进行至少两次量化的能力和在第一量化精度的基础上终端设备所能提高的量化精度。
可选的,第二能力信息包括第二字段,第二字段用于指示终端设备支持的量化精度或在第一量化精度的基础上终端设备所能提高的量化精度。其中,第二字段可以与第一字段为同一字段,或不同字段,在此不做限制。
可选的,第二RRC IE包括第二字段。
302、接入网设备向终端设备发送第一信息,相应的,终端设备接收接入网设备发送的第一信息。
可选的,第一信息用于指示以下一种或多种:终端设备采用至少两种量化方式对需要上报的同一波束质量进行至少两次量化和终端设备使用的量化精度。
可选的,终端设备使用的量化精度是根据终端设备所支持的量化精度确定的,或根据在第一量化精度的基础上终端设备所能提高的量化精度确定的。
示例性的,终端设备使用的量化精度为终端设备所支持的量化精度中的一个量化精度。如,终端设备所支持的量化精度为1dB或0.5dB,那么,终端设备使用的量化精度可以为0.5dB。
可选的,第一信息为第三RRC IE,第三RRC IE为接入网设备向终端设备发送的,第三RRC IE用于指示以下一种或多种:终端设备采用至少两种量化方式对需要上报的同一波束质量进行至少两次量化和终端设备使用的量化精度。
可选的,第一信息包括第三字段,第三字段用于指示以下一种或多种:终端设备采用至少两种量化方式对需要上报的同一波束质量进行至少两次量化和终端设备使用的量化精度。
可选的,第三RRC IE包括第三字段。
可选的,接入网设备可以采用标准中ASN.1伪代码形式对第三字段和第三字段的取值进行处理。如:
EnableDitheringdifferentialRSRP ENUMERATED{enabled};或,
EnableDitheringdifferentialSINR ENUMERATED{enabled}。
又如:
EnableDitheringdifferentialRSRP ENUMERATED{1dB,0.5dB};或,
EnableDitheringdifferentialSINR ENUMERATED{0.5dB,0.25dB}。
可选的,若步骤301中的第一能力信息替换为第二能力信息,即,终端设备向接入网设备发送第二能力信息,此时,第一信息还用于指示以下一种或多种:第一预设偏移、第二预设偏移、第三预设偏移和第四预设偏移。第一预设偏移、第二预设偏移、第三预设偏移和第四预设偏移是接入网设备配置的。当然,为了节省开销,在第一预设偏移和第三预设偏移相同时,第一信息可以用于指示第一预设偏移和第三预设偏移中的任意一个;第二预设偏移和第四预设偏移相同时,第一信息可以用于指示第二预设偏移和第四预设偏移中的任意一个,在本申请中,不做限制。
可以理解的,在一种可能的实施方式中,第一预设偏移、第二预设偏移、第三预设偏移和第四预设偏移也可以是协议规定的,在此不做限制。
可选的,第一信息还用于指示资源配置信息和上报配置信息。其中,资源配置信息包括一个或多个资源集合,每一个资源集合包括一个或多个下行信号的资源。下行信号包括:信道状态信息参考信号(channel state information reference signal,CSI-RS)、小区专用参考信号(cell specific reference signal,CS-RS)、UE专用参考信号(user equipment specific reference signal,US-RS)、解调参考信号(demodulation reference signal,DMRS)、以及同步信号/物理广播信道块(synchronization signal/physical broadcast channel block,SS/PBCH block)。其中,SS/PBCH block可以简称为同步信号块(synchronization signal block,SSB)。上报配置信息包括终端设备需要上报下行信号资源标识、终端设备需要上报的波束质量的数目、终端设备需要进行测量的参考信号、终端设备上报波束质量信息时所承载的信道等。
如,CSI-RS资源集合包括16个CSI-RS资源,分别是CSI-RS资源#0,#1,…,#15;终端设备需要上报3个CRI和对应的RSRP,终端设备上报波束质量信息时所承载的信道为物理上行控制信道(physical uplink control channel,PUCCH)或物理上行共享信道中(physical  uplink shared channel,PUSCH)。
可选的,若步骤202未执行,终端设备即采用现有方案上报波束质量,关于现有方案上报波束质量的方式,在此不加赘述。
303、接入网设备向终端设备发送一个或多个参考信号,相应的,终端设备接收接入网设备发送的一个或多个参考信号。
其中,参考信号包括以下一种:同步信号块(synchronization signal block,SSB)和信道状态参考信号(channel state information reference signal,CSI-RS)等。
304、终端设备对一个或多个参考信号进行测量,得到一个或多个波束质量中的第一波束质量。
其中,一个或多个波束质量可以为以下一种:参考信号接收功率(reference signal receiving power,RSRP)、参考信号接收质量(reference signal receiving quality,RSRQ)或信号与干扰加噪声比(signal to interference plus noise ratio,SINR)。
305、终端设备根据至少两种量化方式对第一波束质量进行至少两次量化,确定至少两个波束质量信息。
其中,步骤305与图2步骤201类似,在此不加赘述。
306-307,与图2步骤202-203相同,在此不加赘述。
可以看出,上述技术方案中,通过采用至少两种量化方式对同一波束质量进行至少两次量化,使得量化误差多样化,从而提高了量化精度,降低了量化误差。
可选的,若第一量化精度为a,终端设备向接入网设备上报波束质量信息的次数为M,终端设备分成M次向接入网设备发送该至少两个波束质量信息,即可以实现N倍量化精度的提升。换句话来说,可以将量化精度提高到a/N。进一步的,若第一预设偏移为n1,第二预设偏移为n2,第三预设偏移为n3,第四预设偏移为n4,第一概率为p。M、N、n1、n2、n3、n4、p满足以下一种或多种关系:M大于或等于N,p等于1/M,n1小于或等于a/N,n2小于或等于a/N,n3小于或等于a/N,n4小于或等于a/N。其中,M、N、n1、n2、n3、n4、p中的一个或多个都可以是基站配置的、或终端设备上报的、或者协议预定义的,在此不做限制。
需要说明的,在本申请中,量化精度可以是线性值,或以对数形式表示的数值,例如dB,或者dBm。当量化精度是以对数形式表示的数值时,提升N倍指对数形式表示的数值提升N倍,而不是指其对应的线性值提升N倍。也就是说,本申请中,量化精度从2dB提升到1dB,即量化精度提升2倍。
上述主要从各个设备之间交互的角度对本申请提供的方案进行了介绍。可以理解的是,上述实现各设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的模块及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端设备或接入网设备进行功能模块的划分,例 如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中,上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的模块的情况下,参见图4,图4为本申请实施例提供的一种通信装置的结构示意图。该通信装置400可应用于上述图2所示的方法中,如图4所示,该通信装置400包括:处理模块401和收发模块402。处理模块401可以是一个或多个处理器,收发模块402可以是收发器或者通信接口。该通信装置可用于实现上述任一方法实施例中涉及终端设备或接入网设备,或用于实现上述任一方法实施例中涉及设备的功能。例如,该通信装置终端设备或接入网设备。该设备或者网络功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。可选的,该通信装置400还可以包括存储模块403,用于存储通信装置400的程序代码和数据。
示例性的,当该通信装置作为终端设备或为应用于终端设备中的芯片,并执行上述方法实施例中由终端设备执行的步骤。收发模块402,用于支持与接入网设备等之间的通信,具体执行图4中由终端设备执行的发送和/或接收的动作,在此不加赘述。例如支持终端设备执行步骤202、步骤301中的一个或多个步骤,和/或用于本文中所描述的技术的其他过程。处理模块401可用于支持通信装置400执行上述方法实施例中的处理动作,在此不加赘述。例如,支持终端设备执行步骤201,和/或用于本文所描述的技术的其它过程。
示例性的,当该通信装置作为接入网设备或为应用于接入网设备中的芯片,并执行上述方法实施例中由接入网设备执行的步骤。收发模块402,用于支持与终端设备等之间的通信,具体执行图4中由接入网设备执行的发送和/或接收的动作,在此不加赘述。例如支持接入网设备执行步骤302,和/或用于本文中所描述的技术的其他过程。处理模块401可用于支持通信装置400执行上述方法实施例中的处理动作,在此不加赘述。例如,支持接入网设备执行步骤203,和/或用于本文所描述的技术的其它过程。
在一种可能的实施方式中,当通信装置为芯片时,收发模块402可以是接口、管脚或电路等。接口可用于输入待处理的数据至处理器,并可以向外输出处理器的处理结果。具体实现中,接口可以是通用输入输出(general purpose input output,GPIO)接口,可以和多个外围设备(如显示器(LCD)、摄像头(camara)、射频(radio frequency,RF)模块、天线等等)连接。接口通过总线与处理器相连。
处理模块401可以是处理器,该处理器可以执行存储模块存储的计算机执行指令,以使该芯片执行图2或图3实施例涉及的方法。
进一步的,处理器可以包括控制器、运算器和寄存器。示例性的,控制器主要负责指令译码,并为指令对应的操作发出控制信号。运算器主要负责执行定点或浮点算数运算操作、移位操作以及逻辑操作等,也可以执行地址运算和转换。寄存器主要负责保存指令执行过程中临时存放的寄存器操作数和中间操作结果等。具体实现中,处理器的硬件架构可以是专用集成电路(application specific integrated circuits,ASIC)架构、无互锁管道阶段架构的微处理器(microprocessor without interlocked piped stages architecture,MIPS)架构、进阶精简指令集机器(advanced RISC machines,ARM)架构或者网络处理器(network processor,NP)架构等等。处理器可以是单核的,也可以是多核的。
该存储模块可以为该芯片内的存储模块,如寄存器、缓存等。存储模块也可以是位于芯片外部的存储模块,如只读存储器(Read Only Memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(Random Access Memory,RAM)等。
需要说明的,处理器、接口各自对应的功能既可以通过硬件设计实现,也可以通过软件设计来实现,还可以通过软硬件结合的方式来实现,这里不作限制。
图5为本申请实施例提供的一种简化的终端设备的结构示意图。便于理解和图示方便,图5中,终端设备以手机作为例子。如图5所示,终端设备包括至少一个处理器,还可以包括射频电路、天线以及输入输出装置。其中,处理器可用于对通信协议以及通信数据进行处理,还可以用于对终端设备进行控制,执行软件程序,处理软件程序的数据等。该终端设备还可以包括存储器,存储器主要用于存储软件程序和数据,这些涉及的程序可以在该通信装置出厂时即装载再存储器中,也可以在后期需要的时候再装载入存储器。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图5中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的接收单元和发送单元(也可以统称为收发单元),将具有处理功能的处理器视为终端设备的处理单元。如图5所示,终端设备包括接收模块31、处理模块32和发送模块33。接收模块31也可以称为接收器、接收机、接收电路等,发送模块33也可以称为发送器、发射器、发射机、发射电路等。处理模块32也可以称为处理器、处理单板、处理装置等。
例如,处理模块32用于执行图2或图3所示实施例中终端设备的功能。
图6为本申请实施例提供的一种简化的接入网设备的结构示意图。接入网设备包括射频信号收发及转换部分以及42部分,该射频信号收发及转换部分又包括接收模块41部分和发送模块43部分(也可以统称为收发模块)。射频信号收发及转换部分主要用于射频信号的收发以及射频信号与基带信号的转换;42部分主要用于基带处理,对接入网设备进行控制等。接收模块41也可以称为接收器、接收机、接收电路等,发送模块43也可以称为发送器、发射器、发射机、发射电路等。42部分通常是接入网设备的控制中心,通常可以称为处理模块,用于控制接入网设备执行上述图2或图3中关于接入网设备所执行的步骤。具体可参见上述相关部分的描述。
42部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器,处理器用于读取和执行存储器中的程序以实现基带处理功能以及对接入网设备的控制。若存在多个单板,各个单板之间可以互联以增加处理能力。作为一中可选的实施方式,也可 以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,针对于接入网设备,发送模块43用于执行图2或图3所示实施例中接入网设备的功能。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当该计算机程序被运行时,实现如图2或图3任一可能的实现方式中的方法。本申请还提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行实现如图2或图3任一可能的实现方式中的方法。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。所显示或讨论的相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者通过该计算机可读存储介质进行传输。该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是只读存储器(read-only memory,ROM),或随机存储存储器(random access memory,RAM),或磁性介质,例如,软盘、硬盘、磁带、磁碟、或光介质,例如,数字通用光盘(digital versatile disc,DVD)、或者半导体介质,例如,固态硬盘(solid state disk,SSD)等。

Claims (44)

  1. 一种信道信息上报方法,其特征在于,包括:
    根据第一波束质量,确定至少两个波束质量信息,所述第一波束质量是对来自接入网设备的参考信号进行测量得到的,所述至少两个波束质量信息是根据至少两种量化方式对所述第一波束质量进行至少两次量化确定的;
    向所述接入网设备发送所述至少两个波束质量信息。
  2. 根据权利要求1所述的方法,其特征在于,在所述根据第一波束质量,确定至少两个波束质量信息之前,所述方法还包括:
    接收所述接入网设备发送的第一信息,所述第一信息用于指示终端设备采用所述至少两种量化方式对需要上报的同一波束质量进行至少两次量化。
  3. 根据权利要求1或2所述方法,其特征在于,所述至少两个波束质量信息包括第一波束质量信息和第二波束质量信息;
    所述第一波束质量信息为根据所述第一波束质量和第一预设偏移进行量化后得到的,所述第二波束质量信息为根据所述第一波束质量进行量化后得到的;或,
    所述第一波束质量信息为根据差分波束质量和第二预设偏移进行量化后得到的,所述第二波束质量信息为根据所述差分波束质量进行量化后得到的,其中,所述差分波束质量为需要采用绝对值量化上报的波束质量与所述第一波束质量之间的差值。
  4. 根据权利要求1或2所述方法,其特征在于,所述至少两个波束质量信息包括第一波束质量信息和第二波束质量信息;
    所述第一波束质量信息为根据所述第一波束质量和第一映射关系得到的,所述第二波束质量信息为根据所述第一波束质量和第二映射关系得到的;或,
    所述第一波束质量信息为根据差分波束质量和第三映射关系得到的,所述第二波束质量信息为根据所述差分波束质量和第四映射关系得到的,其中,所述差分波束质量为需要采用绝对值量化上报的波束质量与所述第一波束质量之间的差值。
  5. 根据权利要求4所述方法,其特征在于,
    所述第一映射关系包括多个第一上报值以及与所述多个第一上报值一一对应的多个第一量化范围,所述第二映射关系包括多个第二上报值以及与所述多个第二上报值一一对应的多个第二量化范围,所述第一映射关系和所述第二映射关系中同一上报值对应不同的量化范围,所述第一映射关系中各个第一量化范围是根据所述第二映射关系中对应的各个第二量化范围和第三预设偏移确定的;或,
    所述第三映射关系包括多个第三上报值以及与所述多个第三上报值一一对应的多个第三量化范围,所述第四映射关系包括多个第四上报值以及与所述多个第四上报值一一对应的多个第四量化范围,所述第三映射关系和所述第四映射关系中同一上报值对应不同的量化范围,所述第三映射关系中各个第三量化范围是根据所述第四映射关系中对应的各个第四量化范围和第四预设偏移确定的。
  6. 根据权利要求3-5任意一项所述方法,其特征在于,所述根据第一波束质量,确定至少两个波束质量信息之前,所述方法还包括:
    向所述接入网设备发送第一能力信息,所述第一能力信息用于指示以下至少一种:所述终端设备支持采用所述至少两种量化方式对需要上报的同一波束质量进行至少两次量化的能力、所述终端设备所支持的量化精度、所述第一预设偏移、所述第二预设偏移、所述第三预设偏移和所述第四预设偏移。
  7. 根据权利要求3-5任意一项所述方法,其特征在于,所述根据第一波束质量,确定至少两个波束质量信息之前,所述方法还包括:
    向所述接入网设备发送第二能力信息,所述第二能力信息用于指示以下一种或多种:所述终端设备支持采用所述至少两种量化方式对需要上报的同一波束质量进行至少两次量化的能力和所述终端设备所支持的量化精度。
  8. 根据权利要求7所述方法,其特征在于,所述第一信息还用于指示以下至少一种:所述第一预设偏移、所述第二预设偏移、所述第三预设偏移和所述第四预设偏移。
  9. 根据权利要求1所述方法,其特征在于,所述向所述接入网设备发送所述至少两个波束质量信息,包括:
    分成至少两次向所述接入网设备发送所述至少两个波束质量信息。
  10. 一种信道信息上报方法,其特征在于,包括:
    接收终端设备发送的至少两个波束质量信息,所述至少两个波束质量信息是根据第一波束质量确定的,所述第一波束质量是对参考信号进行测量得到的,所述至少两个波束质量信息是根据至少两种量化方式对所述第一波束质量进行至少两次量化确定的;
    根据所述至少两个波束质量信息,确定所述第一波束质量对应的测量值。
  11. 根据权利要求10所述的方法,其特征在于,所述至少两个波束质量信息包括第一波束质量信息和第二波束质量信息;
    所述第一波束质量信息为根据所述第一波束质量和第一预设偏移进行量化后得到的,所述第二波束质量信息为根据所述第一波束质量进行量化后得到的;或,
    所述第一波束质量信息为根据差分波束质量和第二预设偏移进行量化后得到的,所述第二波束质量信息为根据所述差分波束质量进行量化后得到的,其中,所述差分波束质量为需要采用绝对值量化上报的波束质量与所述第一波束质量之间的差值。
  12. 根据权利要求10所述的方法,其特征在于,所述至少两个波束质量信息包括第一波束质量信息和第二波束质量信息;
    所述第一波束质量信息为根据所述第一波束质量和第一映射关系得到的,所述第二波束质量信息为根据所述第一波束质量和第二映射关系得到的;或,
    所述第一波束质量信息为根据差分波束质量和第三映射关系得到的,所述第二波束质量信息为根据所述差分波束质量和第四映射关系得到的,其中,所述差分波束质量为需要采用 绝对值量化上报的波束质量与所述第一波束质量之间的差值。
  13. 根据权利要求12所述的方法,其特征在于,所述第一映射关系包括多个第一上报值以及与所述多个第一上报值一一对应的多个第一量化范围,所述第二映射关系包括多个第二上报值以及与所述多个第二上报值一一对应的多个第二量化范围,所述第一映射关系和所述第二映射关系中同一上报值对应不同的量化范围,所述第一映射关系中各个第一量化范围是根据所述第二映射关系中对应的各个第二量化范围和第三预设偏移确定的;或,
    所述第三映射关系包括多个第三上报值以及与所述多个第三上报值一一对应的多个第三量化范围,所述第四映射关系包括多个第四上报值以及与所述多个第四上报值一一对应的多个第四量化范围,所述第三映射关系和所述第四映射关系中同一上报值对应不同的量化范围,所述第三映射关系中各个第三量化范围是根据所述第四映射关系中对应的各个第四量化范围和第四预设偏移确定的。
  14. 根据权利要求11-13任意一项所述的方法,其特征在于,所述根据所述至少两个波束质量信息,确定所述第一波束质量对应的测量值,包括:
    根据所述至少两个波束质量信息,确定第三波束质量信息;
    根据所述第三波束质量信息对应的量化范围,确定所述第一波束质量对应的测量值;
    其中,所述第三波束质量信息对应的量化范围是根据所述第三波束质量信息和第五映射关系确定的,或,根据所述第三波束质量信息和第六映射关系确定的;所述第五映射关系是根据所述终端设备所支持的量化精度和所述第一预设偏移确定的,所述第六映射关系根据所述终端设备所支持的量化精度和所述第三预设偏移确定的。
  15. 根据权利要求14所述方法,其特征在于,所述第五映射关系包括多个第五测量值以及与所述多个第五测量值一一对应的多个第五量化范围,所述第六映射关系包括多个第六测量值以及与所述多个第六测量值一一对应的多个第六量化范围,所述终端设备所支持的量化精度为所述第五映射关系中任意一个量化范围的最大值与最小值的差值或所述第六映射关系中任意一个量化范围的最大值与最小值的差值。
  16. 根据权利要求11-13任意一项所述方法,其特征在于,所述根据所述至少两个波束质量信息,确定所述第一波束质量对应的测量值,包括:
    根据所述至少两个波束质量信息,确定第四波束质量信息;
    根据所述第四波束质量信息对应的量化范围和第五波束质量信息,确定所述第一波束质量对应的测量值;
    其中,所述第四波束质量信息对应的量化范围是根据所述第四波束质量信息和第七映射关系确定的,或,根据所述第四波束质量信息和第八映射关系确定的;所述第七映射关系是根据所述终端设备所支持的量化精度和所述第二预设偏移确定的,所述第八映射关系根据所述终端设备所支持的量化精度和所述第四预设偏移确定的;所述第五波束质量信息是根据需要采用所述绝对值量化上报的波束质量进行量化后得到的,或,根据所述至少两种量化方式对需要采用所述绝对值量化上报的波束质量进行至少两次量化后得到的。
  17. 根据权利要求16所述的方法,其特征在于,所述第七映射关系包括多个第七测量值以及与所述多个第七测量值一一对应的多个第七量化范围,所述第八映射关系包括多个第八测量值以及与所述多个第八测量值一一对应的多个第八量化范围,所述终端设备所支持的量化精度为所述第七映射关系中任意一个量化范围的最大值与最小值的差值或所述第八映射关系中任意一个量化范围的最大值与最小值的差值。
  18. 根据权利要求10所述的方法,其特征在于,所述接收终端设备发送的至少两个波束质量信息之前,所述方法还包括:
    向所述终端设备发送第一信息,所述第一信息用于指示终端设备采用所述至少两种量化方式对需要上报的同一波束质量进行至少两次量化。
  19. 根据权利要求11-18任意一项所述的方法,其特征在于,所述方法还包括:
    接收所述终端设备发送的第一能力信息,所述第一能力信息用于指示以下一种或多种:所述终端设备支持采用所述至少两种量化方式对需要上报的同一波束质量进行至少两次量化的能力、所述终端设备所支持的量化精度、第一预设偏移第二预设偏移、第三预设偏移和第四预设偏移。
  20. 根据权利要求11-18任意一项所述的方法,其特征在于,所述方法还包括:
    接收所述终端设备发送的第二能力信息,所述第二能力信息用于指示以下一种或多种:所述终端设备支持采用所述至少两种量化方式对需要上报的同一波束质量进行至少两次量化的能力和所述终端设备所支持的量化精度。
  21. 根据权利要求20所述的方法,其特征在于,所述第一信息用于指示以下一种或多种:第一预设偏移、第二预设偏移、第三预设偏移和第四预设偏移。
  22. 一种通信装置,其特征在于,所述装置包括处理模块和收发模块,
    所述处理模块,用于根据第一波束质量,确定至少两个波束质量信息,所述第一波束质量是对来自接入网设备的参考信号进行测量得到的,所述至少两个波束质量信息是根据至少两种量化方式对所述第一波束质量进行至少两次量化确定的;
    所述收发模块,用于向所述接入网设备发送所述至少两个波束质量信息。
  23. 根据权利要求22所述的装置,其特征在于,
    所述收发模块,用于在根据第一波束质量,确定至少两个波束质量信息之前接收所述接入网设备发送的第一信息,所述第一信息用于指示终端设备采用所述至少两种量化方式对需要上报的同一波束质量进行至少两次量化。
  24. 根据权利要求22或23所述的装置,其特征在于,所述至少两个波束质量信息包括第一波束质量信息和第二波束质量信息;
    所述第一波束质量信息为根据所述第一波束质量和第一预设偏移进行量化后得到的,所述第二波束质量信息为根据所述第一波束质量进行量化后得到的;或,
    所述第一波束质量信息为根据差分波束质量和第二预设偏移进行量化后得到的,所述第二波束质量信息为根据所述差分波束质量进行量化后得到的,其中,所述差分波束质量为需要采用绝对值量化上报的波束质量与所述第一波束质量之间的差值。
  25. 根据权利要求22或23所述的装置,其特征在于,所述至少两个波束质量信息包括第一波束质量信息和第二波束质量信息;
    所述第一波束质量信息为根据所述第一波束质量和第一映射关系得到的,所述第二波束质量信息为根据所述第一波束质量和第二映射关系得到的;或,
    所述第一波束质量信息为根据差分波束质量和第三映射关系得到的,所述第二波束质量信息为根据所述差分波束质量和第四映射关系得到的,其中,所述差分波束质量为需要采用绝对值量化上报的波束质量与所述第一波束质量之间的差值。
  26. 根据权利要求25所述的装置,其特征在于,所述第一映射关系包括多个第一上报值以及与所述多个第一上报值一一对应的多个第一量化范围,所述第二映射关系包括多个第二上报值以及与所述多个第二上报值一一对应的多个第二量化范围,所述第一映射关系和所述第二映射关系中同一上报值对应不同的量化范围,所述第一映射关系中各个第一量化范围是根据所述第二映射关系中对应的各个第二量化范围和第三预设偏移确定的;或,
    所述第三映射关系包括多个第三上报值以及与所述多个第三上报值一一对应的多个第三量化范围,所述第四映射关系包括多个第四上报值以及与所述多个第四上报值一一对应的多个第四量化范围,所述第三映射关系和所述第四映射关系中同一上报值对应不同的量化范围,所述第三映射关系中各个第三量化范围是根据所述第四映射关系中对应的各个第四量化范围和第四预设偏移确定的。
  27. 根据权利要求24-26任意一项所述的装置,其特征在于,在根据第一波束质量,确定至少两个波束质量信息之前,所述收发模块,还用于向所述接入网设备发送第一能力信息,所述第一能力信息用于指示以下至少一种:所述终端设备支持采用所述至少两种量化方式对需要上报的同一波束质量进行至少两次量化的能力、所述终端设备所支持的量化精度、所述第一预设偏移、所述第二预设偏移、所述第三预设偏移和所述第四预设偏移。
  28. 根据权利要求24-26任意一项所述的装置,其特征在于,在根据第一波束质量,确定至少两个波束质量信息之前,所述收发模块,还用于向所述接入网设备发送第二能力信息,所述第二能力信息用于指示以下一种或多种:所述终端设备支持采用所述至少两种量化方式对需要上报的同一波束质量进行至少两次量化的能力和所述终端设备所支持的量化精度。
  29. 根据权利要求28所述的装置,其特征在于,所述第一信息还用于指示以下至少一种:所述第一预设偏移、所述第二预设偏移、所述第三预设偏移和所述第四预设偏移。
  30. 根据权利要求22所述的装置,其特征在于,在向所述接入网设备发送所述至少两个波束质量信息时,所述收发模块,用于分成至少两次向所述接入网设备发送所述至少两个波束质量信息。
  31. 一种通信装置,其特征在于,所述装置包括收发模块和处理模块,
    所述收发模块,用于接收终端设备发送的至少两个波束质量信息,所述至少两个波束质量信息是根据第一波束质量确定的,所述第一波束质量是对参考信号进行测量得到的,所述至少两个波束质量信息是根据至少两种量化方式对所述第一波束质量进行至少两次量化确定的;
    所述处理模块,用于根据所述至少两个波束质量信息,确定所述第一波束质量对应的测量值。
  32. 根据权利要求31所述的装置,其特征在于,所述至少两个波束质量信息包括第一波束质量信息和第二波束质量信息;
    所述第一波束质量信息为根据所述第一波束质量和第一预设偏移进行量化后得到的,所述第二波束质量信息为根据所述第一波束质量进行量化后得到的;或,
    所述第一波束质量信息为根据差分波束质量和第二预设偏移进行量化后得到的,所述第二波束质量信息为根据所述差分波束质量进行量化后得到的,其中,所述差分波束质量为需要采用绝对值量化上报的波束质量与所述第一波束质量之间的差值。
  33. 根据权利要求31所述的装置,其特征在于,所述至少两个波束质量信息包括第一波束质量信息和第二波束质量信息;
    所述第一波束质量信息为根据所述第一波束质量和第一映射关系得到的,所述第二波束质量信息为根据所述第一波束质量和第二映射关系得到的;或,
    所述第一波束质量信息为根据差分波束质量和第三映射关系得到的,所述第二波束质量信息为根据所述差分波束质量和第四映射关系得到的,其中,所述差分波束质量为需要采用绝对值量化上报的波束质量与所述第一波束质量之间的差值。
  34. 根据权利要求33所述的装置,其特征在于,所述第一映射关系包括多个第一上报值以及与所述多个第一上报值一一对应的多个第一量化范围,所述第二映射关系包括多个第二上报值以及与所述多个第二上报值一一对应的多个第二量化范围,所述第一映射关系和所述第二映射关系中同一上报值对应不同的量化范围,所述第一映射关系中各个第一量化范围是根据所述第二映射关系中对应的各个第二量化范围和第三预设偏移确定的;或,
    所述第三映射关系包括多个第三上报值以及与所述多个第三上报值一一对应的多个第三量化范围,所述第四映射关系包括多个第四上报值以及与所述多个第四上报值一一对应的多个第四量化范围,所述第三映射关系和所述第四映射关系中同一上报值对应不同的量化范围,所述第三映射关系中各个第三量化范围是根据所述第四映射关系中对应的各个第四量化范围和第四预设偏移确定的。
  35. 根据权利要求32-34任意一项所述的装置,其特征在于,在根据所述至少两个波束质量信息,确定所述第一波束质量对应的测量值时,所述处理模块,用于
    根据所述至少两个波束质量信息,确定第三波束质量信息;
    根据所述对应的量化范围,确定所述第一波束质量对应的测量值;
    其中,所述第三波束质量信息对应的量化范围是根据所述第三波束质量信息和第五映射关系确定的,或,根据所述第三波束质量信息和第六映射关系确定的;所述第五映射关系是根据所述终端设备所支持的量化精度和所述第一预设偏移确定的,所述第六映射关系根据所述终端设备所支持的量化精度和所述第三预设偏移确定的。
  36. 根据权利要求35所述的装置,其特征在于,所述第五映射关系包括多个第五测量值以及与所述多个第五测量值一一对应的多个第五量化范围,所述第六映射关系包括多个第六测量值以及与所述多个第六测量值一一对应的多个第六量化范围,所述终端设备所支持的量化精度为所述第五映射关系中任意一个量化范围的最大值与最小值的差值或所述第六映射关系中任意一个量化范围的最大值与最小值的差值。
  37. 根据权利要求32-34任意一项所述的装置,其特征在于,在根据所述至少两个波束质量信息,确定所述第一波束质量对应的测量值时,所述处理模块,用于
    根据所述至少两个波束质量信息,确定第四波束质量信息;
    根据所述第四波束质量信息对应的量化范围和第五波束质量信息,确定所述第一波束质量对应的测量值;
    其中,所述第四波束质量信息对应的量化范围是根据所述第四波束质量信息和第七映射关系确定的,或,根据所述第四波束质量信息和第八映射关系确定的;所述第七映射关系是根据所述终端设备所支持的量化精度和所述第二预设偏移确定的,所述第八映射关系根据所述终端设备所支持的量化精度和所述第四预设偏移确定的;所述第五波束质量信息是根据需要采用所述绝对值量化上报的波束质量进行量化后得到的,或,根据所述至少两种量化方式对需要采用所述绝对值量化上报的波束质量进行至少两次量化后得到的。
  38. 根据权利要求37所述的装置,其特征在于,所述第七映射关系包括多个第七测量值以及与所述多个第七测量值一一对应的多个第七量化范围,所述第八映射关系包括多个第八测量值以及与所述多个第八测量值一一对应的多个第八量化范围,所述终端设备所支持的量化精度为所述第七映射关系中任意一个量化范围的最大值与最小值的差值或所述第八映射关系中任意一个量化范围的最大值与最小值的差值。
  39. 根据权利要求31所述的装置,其特征在于,在接收终端设备发送的至少两个波束质量信息之前,所述收发模块,还用于向所述终端设备发送第一信息,所述第一信息用于指示终端设备采用所述至少两种量化方式对需要上报的同一波束质量进行至少两次量化。
  40. 根据权利要求32-39所述的装置,其特征在于,所述收发模块,还用于接收所述终端设备发送的第一能力信息,所述第一能力信息用于指示以下一种或多种:所述终端设备支持采用所述至少两种量化方式对需要上报的同一波束质量进行至少两次量化的能力、所述终端设备所支持的量化精度、第一预设偏移、第二预设偏移、第三预设偏移和第四预设偏移。
  41. 根据权利要求32-39所述的装置,其特征在于,所述收发模块,还用于接收所述终端设备发送的第二能力信息,所述第二能力信息用于指示以下一种或多种:所述终端设备支 持采用所述至少两种量化方式对需要上报的同一波束质量进行至少两次量化的能力和所述终端设备所支持的量化精度。
  42. 根据权利要求41所述的装置,其特征在于,所述第一信息用于指示以下一种或多种:第一预设偏移、第二预设偏移、第三预设偏移和第四预设偏移。
  43. 一种通信装置,其特征在于,包括处理器,所述处理器执行存储器中存储的计算机程序实现如权利要求1-9或10-21任一项所述的方法。
  44. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,当所述计算机程序被运行时,实现如权利要求1-9或10-21任一项所述的方法。
PCT/CN2020/116342 2020-09-19 2020-09-19 一种信道信息上报方法和装置 WO2022056888A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080104167.6A CN116134791A (zh) 2020-09-19 2020-09-19 一种信道信息上报方法和装置
PCT/CN2020/116342 WO2022056888A1 (zh) 2020-09-19 2020-09-19 一种信道信息上报方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/116342 WO2022056888A1 (zh) 2020-09-19 2020-09-19 一种信道信息上报方法和装置

Publications (1)

Publication Number Publication Date
WO2022056888A1 true WO2022056888A1 (zh) 2022-03-24

Family

ID=80777362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116342 WO2022056888A1 (zh) 2020-09-19 2020-09-19 一种信道信息上报方法和装置

Country Status (2)

Country Link
CN (1) CN116134791A (zh)
WO (1) WO2022056888A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024041419A1 (zh) * 2022-08-23 2024-02-29 维沃移动通信有限公司 信息传输方法、装置、终端及网络侧设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090215401A1 (en) * 2008-02-04 2009-08-27 Samsung Electronics Co., Ltd. Apparatus and method for determining channel quality indicator (CQI) using beamforming in multi-antenna system
CN103782558A (zh) * 2011-09-08 2014-05-07 高通股份有限公司 用于发送和接收量化质量反馈的设备
CN108665067A (zh) * 2018-05-29 2018-10-16 北京大学 用于深度神经网络频繁传输的压缩方法及系统
EP3522387A1 (en) * 2016-09-30 2019-08-07 ZTE Corporation Method and device for scanning and switching wave beam

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090215401A1 (en) * 2008-02-04 2009-08-27 Samsung Electronics Co., Ltd. Apparatus and method for determining channel quality indicator (CQI) using beamforming in multi-antenna system
CN103782558A (zh) * 2011-09-08 2014-05-07 高通股份有限公司 用于发送和接收量化质量反馈的设备
EP3522387A1 (en) * 2016-09-30 2019-08-07 ZTE Corporation Method and device for scanning and switching wave beam
CN108665067A (zh) * 2018-05-29 2018-10-16 北京大学 用于深度神经网络频繁传输的压缩方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE: "Consideration on the physical aspects for NTN", 3GPP DRAFT; R1-1910366 CONSIDERATION ON THE PHYSICAL ASPECTS FOR NTN, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 4 October 2019 (2019-10-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051808175 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024041419A1 (zh) * 2022-08-23 2024-02-29 维沃移动通信有限公司 信息传输方法、装置、终端及网络侧设备

Also Published As

Publication number Publication date
CN116134791A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
US11139945B2 (en) Communication method, terminal, and network device for determining a beam for an uplink channel
US11431453B2 (en) Reference signal transmission method, and apparatus
US11064499B2 (en) Communication method and apparatus
WO2020199066A1 (zh) 功率控制方法及相关装置
WO2021017739A1 (zh) 测量上报的方法与装置
EP3902180A1 (en) Quasi-co-location indication method and apparatus
WO2021072735A1 (en) Network node, terminal device and methods therein for data transmission using beamforming
WO2022056888A1 (zh) 一种信道信息上报方法和装置
WO2020001343A1 (zh) 一种通信方法及装置
WO2021062766A1 (zh) 一种干扰测量上报的方法和通信装置
WO2021204253A1 (zh) 一种波束训练方法及装置
WO2020134945A1 (zh) 资源上报的方法及装置
WO2021017893A1 (zh) 波束测量方法及装置
WO2019028923A1 (zh) 一种功率控制方法及相关设备
WO2019095794A1 (zh) 一种传输信道质量信息的方法和装置
WO2021004475A1 (zh) 一种通信方法及装置
WO2021203869A1 (zh) 准共址关系管理方法及装置
WO2022193908A1 (zh) 一种通信方法及装置
WO2019001314A1 (zh) 一种控制信道发送方法及装置
WO2021244386A1 (zh) 一种信号传输的方法及其相关设备
WO2024093638A1 (zh) 一种信息处理的方法和装置
WO2022247483A1 (zh) 一种信道信息上报方法及相关装置
WO2023273969A1 (zh) 资源测量方法和通信装置
WO2021207968A1 (zh) 信号传输方法及装置
WO2024093906A1 (zh) 一种上行发送功率确定的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20953746

Country of ref document: EP

Kind code of ref document: A1