WO2022054438A1 - インパクト回転工具、トルク算出方法及びプログラム - Google Patents

インパクト回転工具、トルク算出方法及びプログラム Download PDF

Info

Publication number
WO2022054438A1
WO2022054438A1 PCT/JP2021/027876 JP2021027876W WO2022054438A1 WO 2022054438 A1 WO2022054438 A1 WO 2022054438A1 JP 2021027876 W JP2021027876 W JP 2021027876W WO 2022054438 A1 WO2022054438 A1 WO 2022054438A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
impact
unit
tightening
rotary tool
Prior art date
Application number
PCT/JP2021/027876
Other languages
English (en)
French (fr)
Inventor
政憲 中本
弘明 村上
亜紀子 本田
公孝 小沢
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US18/043,686 priority Critical patent/US20230271306A1/en
Priority to EP21866398.7A priority patent/EP4212284A4/en
Priority to CN202180050187.4A priority patent/CN115956014A/zh
Publication of WO2022054438A1 publication Critical patent/WO2022054438A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B21/00Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
    • B25B21/02Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose with means for imparting impact to screwdriver blade or nut socket
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B23/00Details of, or accessories for, spanners, wrenches, screwdrivers
    • B25B23/14Arrangement of torque limiters or torque indicators in wrenches or screwdrivers
    • B25B23/147Arrangement of torque limiters or torque indicators in wrenches or screwdrivers specially adapted for electrically operated wrenches or screwdrivers
    • B25B23/1475Arrangement of torque limiters or torque indicators in wrenches or screwdrivers specially adapted for electrically operated wrenches or screwdrivers for impact wrenches or screwdrivers

Definitions

  • the present disclosure generally relates to an impact rotary tool, a torque calculation method and a program, and more specifically, a torque calculation for calculating a tightening torque of an impact rotary tool and an impact rotary tool that generate a pulsed impact force from the power of a drive source.
  • the present invention relates to a method and a program for causing one or more processors to execute a torque calculation method.
  • Patent Document 1 the number of impacts applied to the output shaft by the impact mechanism is counted, and when the counted number of impacts reaches the shutoff impact number, the rotation of the motor (drive source) is stopped. Is described.
  • the present disclosure has been made in view of the above reasons, and an object of the present invention is to provide an impact rotary tool, a torque calculation method, and a program capable of accurately calculating the tightening torque when tightening fasteners.
  • the impact rotary tool includes a drive source, an impact force generating unit, an output shaft, a torque measuring unit, and a torque calculating unit.
  • the impact force generating unit generates a pulsed impact force from the power of the drive source.
  • the output shaft transmits an impact force to the tip tool.
  • the torque measuring unit measures the torque applied to the output shaft.
  • the torque calculation unit calculates the tightening torque based on the torque measured by the torque measurement unit.
  • the torque waveform of the torque measured by the torque measuring unit includes a plurality of peak values during one impact
  • the torque calculating unit is the largest peak among one or more peak values after the second.
  • the tightening torque is calculated based on the value.
  • the torque calculation method includes a measurement step and a calculation step.
  • the measurement step the torque applied to the output shaft of the impact rotary tool is measured.
  • the impact rotary tool generates a pulsed impact force from the power of a drive source and transmits the impact force from the output shaft to the tip tool.
  • the calculation step when a plurality of peak values are included in the torque waveform of the torque measured by the measurement step during one impact, the maximum peak value among one or more peak values after the second is used. The tightening torque is calculated based on this.
  • the program according to one aspect of the present disclosure is a program for causing one or more processors to execute the above torque calculation method.
  • FIG. 1 is a schematic view of an impact rotary tool according to an embodiment.
  • FIG. 2 is a block diagram of the impact rotary tool of the same as above.
  • FIG. 3 is a graph showing a graph showing the relationship between the torque waveform and the rotation angle of the output shaft in the same impact rotary tool.
  • FIG. 4 is a flowchart of the torque calculation process performed by the impact rotary tool of the same as above.
  • FIG. 5 is a flowchart of the selection process performed by the impact rotary tool of the same as above.
  • FIG. 6 is a flowchart of the cutoff frequency determination process performed by the impact rotary tool of the same as above.
  • FIG. 7 is a diagram showing a graph showing a torque waveform in the same impact rotary tool.
  • the impact rotary tool 1 operates by power (electric power or the like) from a power source such as a battery pack 10. Specifically, the motor 2 to which electric power is supplied from the battery pack 10 rotates, and the rotational driving force is transmitted to the output shaft 8.
  • a tip tool such as a driver bit 9 is attached to the output shaft 8
  • the impact rotary tool 1 attaches a fastener (for example, a screw or the like) to a work (working object) to be worked. be able to.
  • the impact rotary tool 1 of the present embodiment has an impact mechanism 3 (impact force generation unit) that generates a pulse-shaped impact force.
  • the impact mechanism 3 applies an impact force in the rotational direction to the output shaft 8.
  • the output shaft 8 to which the impact force is applied transmits the impact force to the fastener.
  • the impact rotary tool 1 can apply a larger tightening torque to the fasteners.
  • an impact rotary tool 1 there are various types of tools such as an impact driver and an impact wrench.
  • the impact rotary tool 1 of the present embodiment is an impact driver capable of mounting the driver bit 9 on the output shaft 8.
  • the impact rotary tool 1 of the present embodiment includes a torque measuring unit 11 and a torque calculating unit 141.
  • the torque measuring unit 11 measures the torque applied to the output shaft 8.
  • the torque calculation unit 141 calculates the tightening torque based on the torque measured by the torque measurement unit 11.
  • the torque measuring unit 11 of the present embodiment measures the torque waveform of the torque applied to the output shaft 8 during each impact applied to the output shaft 8. Further, when the torque waveform measured by the torque measuring unit 11 includes a plurality of peak values, the torque calculation unit 141 of the present embodiment is based on the maximum peak value among the second and subsequent peak values of one or more. Calculate the tightening torque.
  • the impact rotary tool 1 of the present embodiment calculates the tightening torque based on the second and subsequent peak values, not the first peak value in which the torque is likely not transmitted to the tip tool in the torque waveform. , The accuracy of tightening torque calculation can be improved.
  • a rechargeable battery pack 10 is detachably attached to the impact rotary tool 1.
  • the impact rotary tool 1 of the present embodiment operates using the battery pack 10 as a power source. That is, the battery pack 10 is a power source that supplies a current for driving the motor 2.
  • the battery pack 10 is not a component of the impact rotary tool 1.
  • the impact rotary tool 1 may include a battery pack 10.
  • the battery pack 10 includes an assembled battery configured by connecting a plurality of secondary batteries (for example, a lithium ion battery) in series, and a case accommodating the assembled battery.
  • the impact rotary tool 1 includes a motor 2, an impact mechanism 3, an output shaft 8, a torque measuring unit 11, a rotation measuring unit 12, and a trigger volume 13.
  • the trigger volume 13 is an operation unit that receives an operation for controlling the rotation of the motor 2.
  • the on / off of the motor 2 can be switched by the operation of pulling the trigger volume 13. Further, the rotation speed of the motor 2 can be adjusted by the pull-in amount of the operation of pulling the trigger volume 13. The larger the pull-in amount, the faster the rotation speed of the motor 2.
  • the motor 2 is, for example, a brushless motor.
  • the motor 2 includes a rotating shaft 21, and converts the electric power supplied from the battery pack 10 into the rotational driving force of the rotating shaft 21.
  • the impact mechanism 3 generates a pulsed impact force from the power of the motor 2.
  • the impact mechanism 3 includes a drive shaft 31, a speed reducer 4, a hammer 5, an anvil 6, and a spring 7.
  • the drive shaft 31 is arranged between the motor 2 and the output shaft 8.
  • the speed reducer 4 decelerates the rotational driving force of the rotating shaft 21 of the motor 2 at a predetermined reduction ratio and transmits it to the driving shaft 31.
  • the hammer 5 moves with respect to the anvil 6 and receives power from the motor 2 to apply a rotational impact to the anvil 6.
  • the hammer 5 is movable with respect to the drive shaft 31 in the axial direction (front-back direction) of the drive shaft 31, and is rotatable with respect to the drive shaft 31. As the hammer 5 moves toward the anvil 6 or away from the anvil 6 along the axial direction of the drive shaft 31, the hammer 5 rotates with respect to the drive shaft 31. Further, the hammer 5 is rotatable with respect to the spring 7.
  • the anvil 6 is integrally formed with the output shaft 8.
  • the anvil 6 faces the hammer 5 in the axial direction of the drive shaft 31.
  • the drive shaft 31, the hammer 5, and the anvil 6 rotate integrally.
  • the spring 7 is sandwiched between the speed reducer 4 and the hammer 5.
  • the spring 7 of the present embodiment is, for example, a conical spring.
  • the spring 7 applies a force (forward) toward the output shaft 8 to the hammer 5 in the direction along the axial direction of the drive shaft 31.
  • the movement of the hammer 5 in the axial direction of the drive shaft 31 in the direction approaching the anvil 6 is referred to as “the hammer 5 moves forward”. Further, in the following, the movement of the hammer 5 in the axial direction of the drive shaft 31 in the direction away from the anvil 6 is referred to as “the hammer 5 retracts”.
  • the striking operation is started. That is, as the load torque increases, the component force in the direction of retracting the hammer 5 among the forces generated between the hammer 5 and the anvil 6 also increases.
  • the load torque becomes equal to or higher than a predetermined value
  • the hammer 5 retracts while compressing the spring 7.
  • the hammer 5 rotates while retreating.
  • the hammer 5 receives the returning force from the spring 7 and moves forward.
  • every time the drive shaft 31 rotates substantially half a turn the hammer 5 applies a rotational impact to the anvil 6.
  • the hammer 5 repeatedly gives an impact to the anvil 6. Due to the torque due to this impact, the fastening member such as a screw, a bolt, or a nut can be tightened more strongly than when there is no impact.
  • the output shaft 8 is equipped with a driver bit 9 as a tip tool.
  • the output shaft 8 transmits the rotational driving force transmitted from the drive shaft 31 to the driver bit 9.
  • the driver bit 9 is rotated.
  • the output shaft 8 transmits the rotational impact force (impact force) transmitted from the impact mechanism 3 to the driver bit 9.
  • the driver bit 9 is removable from the output shaft 8.
  • the tip tool such as the driver bit 9 is not included in the configuration of the impact rotary tool 1.
  • the tip tool may be included in the configuration of the impact rotary tool 1.
  • the torque measuring unit 11 is, for example, a magnetostrictive strain sensor capable of detecting torsional strain, and is a coil in which a change in magnetostriction according to the torsion of the shaft generated by applying torque to the output shaft 8 is installed in a non-rotating portion. A voltage signal proportional to the distortion is output to the control unit 14 described later.
  • the rotation measuring unit 12 is, for example, a rotary encoder, and outputs the rotation angle of the output shaft 8 as a digital signal to the control unit 14.
  • the impact rotary tool 1 of the present embodiment further includes a control unit 14, a storage unit 15, and a communication unit 16.
  • the storage unit 15 is composed of, for example, a semiconductor memory.
  • the storage unit 15 stores the torque information 151 and the setting information 152.
  • the torque information 151 includes information on the tightening torque when the impact rotary tool 1 tightens the fasteners.
  • the setting information 152 includes, for example, information on one or a plurality of work procedures, information on a target torque associated with the work procedure, and the like.
  • the "target torque" referred to in the present disclosure is the target of the tightening torque when mounting the fastener.
  • the communication unit 16 is a wireless communication system compliant with standards such as Wi-Fi (registered trademark), Bluetooth (registered trademark), ZigBee (registered trademark), or low power radio (specified low power radio) that does not require a license. Is adopted.
  • the communication unit 16 performs wireless communication with the setting terminal 100 described later, but may communicate with the setting terminal 100 by a wired communication method.
  • the control unit 14 includes a computer system having one or more processors and memories.
  • the processor of the computer system executes the program recorded in the memory of the computer system, at least a part of the functions of the control unit 14 are realized.
  • the program may be recorded in a memory, provided through a telecommunication line such as the Internet, or may be recorded and provided on a non-temporary recording medium such as a memory card.
  • control unit 14 has a torque calculation unit 141, a drive control unit 142, a notification control unit 143, and a reflection unit 144.
  • the torque calculation unit 141 performs a tightening torque calculation process for calculating the tightening torque based on the torque measured by the torque measuring unit 11. Specifically, the torque calculation unit 141 of the present embodiment calculates the tightening torque for each impact given to the output shaft 8 (see FIG. 1) by the impact mechanism 3 (see FIG. 1).
  • FIG. 3 shows a torque waveform G1 measured by the torque measuring unit 11 (see FIG. 2) and an output shaft 8 measured by the rotation measuring unit 12 (see FIG. 2) during one impact (see FIG. 1).
  • the graph which shows the relationship of the rotation angle G2 of is shown.
  • two peak values of the peak value P1 and the peak value P2 exist in the torque waveform.
  • the "peak value" as used in the present disclosure is a maximum value in the torque waveform, and means a value having a size equal to or larger than a predetermined value.
  • the torque calculation unit 141 of the present embodiment has one or more peak values after the second (peak value P2 in the example of FIG. 3).
  • the tightening torque is calculated based on the maximum peak value.
  • the timing of the first peak value is the timing at which the clearance (rotational backlash) between the output shaft 8, the tip tool and the fastener is filled. Therefore, it is highly possible that the torque is not transmitted to the fastening parts. Therefore, the torque calculation unit 141 does not calculate the tightening torque based on the first peak value.
  • the torque applied to the output shaft 8 at the time of the timing T10 is the actual tightening torque.
  • the timing T10 is near the timing T2 of the peak value P2 of the second and subsequent peaks M2 (second in the example of FIG. 3) in the torque waveform G1. That is, FIG. 3 shows that it is appropriate to calculate the tightening torque based on the peak value P2 of the second and subsequent peaks M2.
  • FIG. 3 shows that it is inappropriate to calculate the tightening torque based on the peak value P1 of the first peak M1.
  • the impact rotary tool 1 of the present embodiment is tightened based on the first peak value in which it is highly possible that the torque is not transmitted to the tip tool in the torque waveform measured during one impact.
  • the attached torque is not calculated. Therefore, the impact rotary tool 1 of the present embodiment can improve the accuracy of the tightening torque calculation.
  • the details of the tightening torque calculation process will be described in the column of "(4) Tightening torque calculation process".
  • the torque calculation unit 141 shown in FIG. 2 outputs information regarding the tightening torque calculated in the tightening torque calculation process to the drive control unit 142.
  • the drive control unit 142 controls the operation of the motor 2.
  • the drive control unit 142 of the present embodiment stops the motor 2 when the tightening torque calculated by the torque calculation unit 141 reaches the target torque.
  • the drive control unit 142 of the present embodiment determines whether or not the tightening torque calculated by the torque calculation unit 141 has reached the target torque based on the target torque included in the setting information 152 stored in the storage unit 15. judge.
  • the notification control unit 143 notifies the information regarding the tightening torque calculated by the torque calculation unit 141.
  • the notification control unit 143 of the present embodiment displays information on the tightening torque on the display unit 101 (notification unit) of the setting terminal 100 via the communication unit 16.
  • the notification control unit 143 may output information on the tightening torque from the speaker (notification unit) as voice.
  • the notification control unit 143 notifies the information regarding the tightening torque by using the display unit or the speaker included in the impact rotary tool 1. It is also good. Further, the notification control unit 143 may notify the work procedure, the target torque value corresponding to the work procedure, and the like.
  • the reflection unit 144 reflects the torque information 151 stored in the storage unit 15 in the setting related to the tightening of the fasteners of the impact rotary tool 1.
  • the reflection unit 144 reflects the past work data in the setting related to the tightening of the fastener.
  • the torque information 151 is associated with the type of fastening part, the target torque, and the number of impacts (impacts) when the tightening torque reaches the target torque
  • the impact rotary tool 1 is the fastening part. It is also possible to manage torque by managing the number of impacts according to the type and target torque. That is, the output of the motor 2 can be adjusted more appropriately according to the fastenered parts.
  • the past work data is reflected in the setting related to the tightening of the fastening parts, it is possible to reduce the time and effort for the operator to make the setting related to the tightening of the tightening parts.
  • the setting terminal 100 is an information terminal such as a personal computer (PC), a smartphone, or a tablet terminal. As shown in FIG. 2, the setting terminal 100 includes a display unit 101, an operation unit 102, a communication unit 103, and a control unit 104.
  • PC personal computer
  • the setting terminal 100 includes a display unit 101, an operation unit 102, a communication unit 103, and a control unit 104.
  • the communication unit 103 is a wireless communication conforming to a standard such as Wi-Fi (registered trademark), Bluetooth (registered trademark), ZigBee (registered trademark) or low power radio (specified low power radio) that does not require a license. Adopt the method.
  • the communication unit 103 performs wireless communication with the impact rotary tool 1, but may communicate with the impact rotary tool 1 by a wired communication method.
  • the display unit 101 and the operation unit 102 are, for example, a touch panel display integrally configured.
  • the display unit 101 of the present embodiment displays information on the tightening torque in response to an instruction from the notification control unit 143 of the impact rotary tool 1.
  • the control unit 104 includes a computer system having one or more processors and memories. When the processor of the computer system executes the program recorded in the memory of the computer system, at least a part of the functions of the control unit 104 are realized.
  • the program may be recorded in a memory, provided through a telecommunication line such as the Internet, or may be recorded and provided on a non-temporary recording medium such as a memory card.
  • the control unit 104 is configured to control the display unit 101, the operation unit 102, and the communication unit 103.
  • FIG. 4 is a flowchart showing the procedure of the tightening torque calculation process.
  • the torque calculation unit 141 performs the first filtering on the torque waveform of the torque measured by the torque measurement unit 11 (S1).
  • the torque calculation unit 141 cuts the noise of the high frequency component by using a low-pass filter having a predetermined cutoff frequency.
  • the predetermined cutoff frequency is a frequency higher than the cutoff frequency of the low-pass filter used in the second filtering described later.
  • the torque calculation unit 141 performs the first selection process (S2).
  • the first selection process is a process of selecting a peak value included in the torque waveform in order to determine the cutoff frequency of the low-pass filter used in the second filtering.
  • FIG. 5 is a flowchart of the first selection process (S2) and the second selection process (S5) described later.
  • the torque calculation unit 141 searches for a start point and an end point of the entire torque waveform (S11). Specifically, the torque calculation unit 141 searches for an inflection point from the first rising edge of the entire torque waveform as the start point of the entire torque waveform, and as the end point of the entire torque waveform, the last of the entire torque waveform. Search for inflection points from the fall.
  • the torque calculation unit 141 searches for the maximum peak value in the entire torque waveform, and provisionally selects the peak value (S12). In other words, the torque calculation unit 141 searches for the maximum maximum value in the entire torque waveform. Next, the torque calculation unit 141 searches for the start point and the end point of the mountain including the tentatively selected peak value (S13).
  • the "mountain" referred to in the present disclosure is a portion of the torque waveform that has a mountain shape (convex shape), and has a start point that is a rising point and an ending point that is a falling point, with the peak value as the apex. be.
  • the torque calculation unit 141 of the present embodiment searches for the start point and the end point of the mountain by searching for an inflection point adjacent to the tentatively selected peak value. Specifically, in the peak waveform, of the two inflection points adjacent to the tentatively selected peak value, the inflection point existing before the tentatively selected peak value is the start point of the mountain, and the tentatively selected peak. The inflection that exists after the value is the end point of the mountain.
  • the torque calculation unit 141 After searching for the start point and the end point of the mountain, the torque calculation unit 141 compares the start point of the entire torque waveform with the start point of the mountain and confirms the time difference (S14). When the time difference between the start point of the entire torque waveform and the start point of the mountain is equal to or greater than the threshold value Th1 (see FIG. 7) (Yes in S15), the torque calculation unit 141 indicates that the mountain including the tentatively selected peak value is the second and subsequent mountains. It is determined that there is (S16). "The second and subsequent mountains" means that it is not the first mountain. When the torque calculation unit 141 determines that the mountain including the tentatively selected peak value is the second and subsequent mountains, the torque calculation unit 141 determines the tentatively selected peak value as the maximum peak value (S17). When the torque calculation unit 141 determines the maximum peak value, the first selection process (S2) ends.
  • step S15 when the time difference between the start point of the entire torque waveform and the start point of the mountain is less than the threshold Th1 (No in S15), the torque calculation unit 141 sets the end point of the entire torque waveform and the end point of the mountain. The time difference is confirmed by comparison (S18). When the time difference between the end point of the entire torque waveform and the end point of the peak is less than the threshold value Th2 (Yes in S19), the torque calculation unit 141 indicates that only the peak including the tentatively selected peak value is in the torque waveform. It is determined that it exists in (S20). In other words, the torque calculation unit determines that the entire torque waveform is one peak.
  • the torque calculation unit 141 of the present embodiment calculates the tightening torque based on the one peak value.
  • the torque calculation unit 141 determines that the entire torque waveform is one peak, it determines the tentatively selected peak value as the maximum peak value (S17).
  • the torque calculation unit 141 determines the maximum peak value, the first selection process (S2) ends.
  • step S19 when the time difference between the end point of the entire torque waveform and the end point of the mountain is the threshold value Th2 or more, that is, when the time difference is not less than the threshold value Th2 (No in S19), the torque calculation unit 141 is provisionally It is determined that the mountain including the selected peak value is the first mountain (S21). When the mountain including the tentatively selected peak value is the first mountain, it is highly likely that it is inappropriate to calculate the tightening torque based on the tentatively selected peak value. Therefore, the torque calculation unit 141 excludes the tentatively selected peak value from the search candidates (S22), and searches for the maximum peak value again (S12). Then, the torque calculation unit 141 performs the first selection process (S2) until the maximum peak value is determined (S17). In the first selection process, the torque calculation unit 141 may determine the maximum peak value as "provisional determination of the maximum peak value".
  • FIG. 6 is a flowchart showing the procedure of the cutoff frequency determination process (S3).
  • the torque calculation unit 141 calculates the width of the mountain from the start point and the end point of the mountain including the maximum peak value (S31).
  • the "mountain width" as used in the present disclosure is the time from the rise to the fall of a mountain. In other words, it is the time from the start of the mountain to the end of the mountain. In addition, the "mountain width" roughly coincides with the half cycle of the mountain.
  • the torque calculation unit 141 determines the cutoff frequency based on the width of the mountain (S32). Specifically, the torque calculation unit 141 of the present embodiment determines the reciprocal of the width of the mountain as the cutoff frequency. This cutoff frequency is higher than the peak frequency. When the torque calculation unit 141 determines the cutoff frequency (S32), the torque calculation unit 141 ends the cutoff frequency determination process (S3).
  • the torque waveform is subjected to the second filtering (S4).
  • the second filtering may be performed on the torque waveform after the first filtering has been performed, or may be performed on the torque waveform in which the first filtering has not been performed.
  • the torque calculation unit 141 cuts the noise of the high frequency component at the cutoff frequency determined in the cutoff frequency determination process (S3) in the second filtering.
  • the cutoff frequency determined in the cutoff frequency determination process (S3) is a frequency lower than the cutoff frequency of the low-pass filter used in the first filtering.
  • the second selection process is a process of selecting a peak value that is a basis for calculating the tightening torque from the torque waveform after the second filtering. Since the second selection process (S5) is the same process as the first selection process (S2) described above, the description thereof will be omitted.
  • the torque calculation unit 141 determines the maximum peak value in the second selection process (S5), the torque calculation unit 141 calculates the tightening torque based on this peak value (S6).
  • the torque calculation unit 141 calculates the tightening torque (S6), the tightening torque calculation process ends.
  • FIG. 7 shows a graph showing the torque waveform of the torque measured by the torque measuring unit 11 during one impact.
  • the torque calculation unit 141 starts the first selection process (S2 in FIG. 4)
  • the torque calculation unit 141 searches for the start point P3 and the end point P10 of the entire torque waveform (S11 in FIG. 5).
  • the torque calculation unit 141 searches for the peak value P6 that is the maximum in the entire torque waveform, and tentatively selects the peak value P6 (S12 in FIG. 5).
  • the torque calculation unit 141 searches for the start point P5 and the end point P7 of the mountain M3 including the tentatively selected peak value P6 (S13 in FIG. 5). After searching for the start point P5 and the end point P7 of the mountain M3, the torque calculation unit 141 compares the start point P3 of the entire torque waveform with the start point P5 of the mountain M3 and confirms the time difference (T4-T3) (FIG. 5). S14). In the example of FIG.
  • the time difference (T4-T3) between the start point P3 of the entire torque waveform and the start point P5 of the mountain M3 is less than the threshold value Th1 (No in S15 of FIG. 5).
  • the torque calculation unit 141 compares the end point P10 of the entire torque waveform with the end point P7 of the mountain M3 to confirm the time difference (T9-T6) (S18 in FIG. 5).
  • the time difference (T9-T6) between the end point P10 of the entire torque waveform and the end point P7 of the mountain M3 is the threshold value Th2 or more (No in S19 of FIG. 5).
  • the torque calculation unit 141 determines that the mountain M3 including the peak value P6 is the first mountain (S21 in FIG. 5), and excludes the peak value P6 (S22 in FIG. 5).
  • the torque calculation unit 141 searches for the peak value P9 that is the largest in the entire torque waveform except for the peak value P6, and temporarily selects the peak value P9 (S12 in FIG. 5).
  • the torque calculation unit 141 searches for a start point P8 and an end point P10 of the mountain M2 including the peak value P9 (S13 in FIG. 5).
  • the torque calculation unit 141 compares the start point P3 of the entire torque waveform with the start point P8 of the mountain M4 and confirms the time difference (T7-T3) (FIG. 5). S14).
  • T7-T3 time difference
  • the torque calculation unit 141 has a peak value. It is determined that the mountain M4 including P9 is the second and subsequent mountains (S16 in FIG. 5). Then, the torque calculation unit 141 determines the tentatively selected peak value P9 as the maximum peak value (S17 in FIG. 5), and ends the first selection process (S2 in FIG. 4).
  • the torque calculation unit 141 starts the cutoff frequency determination process (S3 in FIG. 4).
  • the torque calculation unit 141 calculates the width W1 of the mountain M4 from the start point P8 and the end point P10 of the mountain M4 including the maximum peak value P9 (S31 in FIG. 6). Then, the torque calculation unit 141 determines the reciprocal of the width W1 of the mountain M4 as the cutoff frequency (S32 in FIG. 6), and ends the cutoff frequency determination process (S3 in FIG. 4).
  • the impact rotary tool 1 of the present embodiment includes an impact mechanism 3, an output shaft 8, a torque measuring unit 11, and a torque calculating unit 141.
  • the torque calculating unit 141 is the maximum peak value among the second and subsequent peak values of 1 or more.
  • the tightening torque is calculated based on.
  • the impact rotary tool 1 of the present embodiment does not calculate the tightening torque based on the first peak value at which it is highly possible that the torque is not transmitted to the tip tool, thereby improving the accuracy of the tightening torque calculation. Can be improved.
  • the torque calculation unit 141 of the present embodiment performs a process (second filtering) of cutting a frequency component higher than the peak frequency including the maximum peak value on the torque waveform, and then applies the tightening torque. calculate. By removing the high-frequency noise component superimposed on the torque waveform, the accuracy of tightening torque calculation can be further improved.
  • the torque calculation unit 141 of the present embodiment temporarily selects the maximum peak value included in the torque waveform (first selection process). Further, the torque calculation unit 141 of the present embodiment derives a cutoff frequency based on the width between the start point and the end point of the mountain including the tentatively selected peak value (cutoff frequency determination process), and performs the second filtering. The torque calculation unit (141) selects the maximum peak value included in the processed torque waveform (second selection process), and calculates the tightening torque based on the selected peak value. Tentatively select the maximum peak value once, perform the second filtering based on the width of the mountain including the peak value, and then tighten the tightening torque based on the maximum peak value selected from the torque waveform after the second filtering. Therefore, the accuracy of the tightening torque calculation can be further improved.
  • the torque calculation unit 141 of the present embodiment calculates the tightening torque based on the peak value.
  • the accuracy of the tightening torque calculation can be improved by calculating the tightening torque based on one peak value.
  • the impact rotary tool 1 of the present embodiment further includes a drive control unit 142.
  • the drive control unit 142 stops the motor 2 when the tightening torque calculated by the torque calculation unit 141 reaches the target torque. Therefore, the impact rotary tool 1 of the present embodiment can perform an appropriate tightening operation.
  • the impact rotary tool 1 of the present embodiment further includes a notification control unit 143.
  • a notification control unit 143 By notifying the notification control unit 143 of the information regarding the tightening torque calculated by the torque calculation unit 141, the operator or the like using the impact rotary tool 1 can confirm the tightening torque.
  • the notification control unit 143 of the present embodiment displays information on the tightening torque on the display unit 101 of the setting terminal 100.
  • An operator or the like can confirm information on the tightening torque by visually recognizing the display unit 101 even in noise, for example.
  • the impact rotary tool 1 of the present embodiment further includes a storage unit 15 and a reflection unit 144.
  • the reflection unit 144 can more appropriately adjust the output of the motor 2.
  • the function equivalent to that of the impact rotary tool 1 according to the above embodiment may be embodied by a torque calculation method, a (computer) program, a non-temporary recording medium on which the program is recorded, or the like.
  • the torque calculation method includes a measurement step and a calculation step. In the measurement step, the torque applied to the output shaft 8 of the impact rotary tool 1 is measured.
  • the impact rotary tool 1 generates a pulse-shaped impact force from the power of the motor 2 and transmits the impact force from the output shaft 8 to the tip tool (driver bit 9).
  • the program is a program for causing one or more processors to execute the above torque calculation method.
  • the impact rotary tool 1 is integrated in one housing.
  • the components of the impact rotary tool 1 may be distributed and provided in a plurality of housings.
  • the torque calculation unit 141 may be provided in a housing different from the housing in which the motor 2, the impact mechanism 3, and the like are provided.
  • the impact rotary tool 1 is an impact driver as an example.
  • the impact rotary tool 1 is not limited to the impact driver, and may be, for example, an impact wrench.
  • the impact rotary tool (1) includes a drive source (motor 2), an impact force generating unit (impact mechanism 3), an output shaft (8), and a torque measuring unit (1). 11) and a torque calculation unit (141) are provided.
  • the impact force generating unit generates a pulsed impact force from the power of the drive source.
  • the output shaft (8) transmits an impact force to the tip tool (driver bit 9).
  • the torque measuring unit (11) measures the torque applied to the output shaft (8).
  • the torque calculation unit (141) calculates the tightening torque based on the torque measured by the torque measurement unit (11).
  • the torque calculating unit (141) is one of the second and subsequent peak values of one or more.
  • the tightening torque is calculated based on the maximum peak value.
  • the tightening torque value is calculated based on the first peak value at which it is highly possible that the torque is not transmitted to the tip tool (driver bit 9). By not doing so, the tightening torque can be calculated accurately.
  • the torque calculation unit (141) cuts a frequency component higher than the peak frequency including the maximum peak value with respect to the torque waveform.
  • the tightening torque is calculated based on the maximum peak value included in the torque waveform after the above processing.
  • the accuracy of the tightening torque calculation can be further improved by removing the high-frequency noise component superimposed on the torque waveform.
  • the torque calculation unit (141) selects the maximum peak value included in the torque waveform.
  • the torque calculation unit (141) derives a cutoff frequency based on the width of the mountain, and performs the above processing using the cutoff frequency on the torque waveform.
  • the torque calculation unit (141) calculates the tightening torque based on the maximum peak value included in the torque waveform after the processing.
  • the maximum peak value is temporarily selected once, the above processing based on the width of the mountain including the peak value is performed on the torque waveform, and then the maximum selected from the processed torque waveforms. Since the tightening torque is calculated based on the peak value of, the accuracy of the tightening torque calculation can be further improved.
  • the torque calculation unit (141) has a peak value when the torque waveform contains one peak value. The tightening torque is calculated based on.
  • the tightening torque is calculated based on one peak value to calculate the tightening torque.
  • the accuracy can be improved.
  • the impact rotary tool (1) according to the fifth aspect further includes a drive control unit (142) in any one of the first to fourth aspects.
  • the drive control unit (142) stops the drive source (motor 2) when the tightening torque calculated by the torque calculation unit (141) reaches the target torque.
  • an appropriate tightening operation can be performed by stopping the drive source (motor 2) when the tightening torque calculated by the torque calculation unit (141) reaches the target torque.
  • the impact rotary tool (1) according to the sixth aspect further includes a notification control unit (143) in any one of the first to fifth aspects.
  • the notification control unit (143) notifies the information regarding the tightening torque calculated by the torque calculation unit (141).
  • the operator or the like using the impact rotary tool (1) can confirm the tightening torque.
  • the notification control unit (143) causes the display unit (101) to display information regarding the tightening torque.
  • the operator or the like can confirm the tightening torque even in the noise.
  • the impact rotary tool (1) according to the eighth aspect further includes a storage unit (15) and a reflection unit (144) in any one of the first to seventh aspects.
  • the storage unit (15) stores information regarding the tightening torque calculated by the torque calculation unit (141).
  • the reflection unit (144) reflects the information stored in the storage unit (15) in the setting related to the tightening of the work target.
  • the output of the drive source (motor 2) can be adjusted more appropriately. be able to.
  • Configurations other than the first aspect are not essential configurations for the impact rotary tool (1) and can be omitted as appropriate.
  • the torque calculation method includes a measurement step and a calculation step.
  • the measurement step the torque applied to the output shaft (8) in the impact rotary tool (1) is measured.
  • the impact rotary tool (1) generates a pulsed impact force from the power of the drive source and transmits the impact force from the output shaft (8) to the tip tool (driver bit 9).
  • the calculation step if the torque waveform of the torque measured by the measurement step during one impact contains multiple peak values, the tightening is based on the maximum peak value among the second and subsequent peak values of 1 or more. Calculate the attached torque.
  • the tightening torque value is calculated based on the first peak value at which it is highly possible that the torque is not transmitted to the tip tool (driver bit 9). By not doing so, the tightening torque can be calculated accurately.
  • the program according to the tenth aspect is a program for causing one or more processors to execute the torque calculation method according to the ninth aspect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Details Of Spanners, Wrenches, And Screw Drivers And Accessories (AREA)

Abstract

本開示の課題は、締結部品を締め付ける際の締付トルクを精度よく算出することである。インパクト回転工具(1)は、駆動源と、インパクト力発生部と、出力軸と、トルク測定部と、トルク算出部(141)とを備えている。インパクト力発生部は、駆動源の動力からパルス状のインパクト力を発生させる。出力軸は、インパクト力を先端工具に伝達する。トルク測定部(11)は、出力軸に加わるトルクを測定する。トルク算出部(141)は、1回のインパクト中にトルク測定部によって測定されるトルクのトルク波形に複数のピーク値が含まれる場合、2番目以降の1以上のピーク値のうちの最大のピーク値を基に締付トルクを算出する。

Description

インパクト回転工具、トルク算出方法及びプログラム
 本開示は、一般にインパクト回転工具、トルク算出方法及びプログラムに関し、より詳細には、駆動源の動力からパルス状のインパクト力を発生させるインパクト回転工具、インパクト回転工具の締付トルクを算出するトルク算出方法、及び、トルク算出方法を1以上のプロセッサに実行させるためのプログラムに関する。
 特許文献1には、インパクト機構が出力軸に加える衝撃(インパクト)の数をカウントすることにして、カウントした衝撃数がシャットオフ衝撃数になるとモータ(駆動源)の回転を停止させるインパクト回転工具が記載されている。
特開2018-89704号公報
 インパクト回転工具がネジ等の締結部品を締め付ける際の締付トルクを精度よく算出することが望まれている。
 本開示は上記事由に鑑みてなされており、締結部品を締め付ける際の締付トルクを精度よく算出することができるインパクト回転工具、トルク算出方法及びプログラムを提供することを目的とする。
 上記の課題を解決するために、本開示の一態様に係るインパクト回転工具は、駆動源と、インパクト力発生部と、出力軸と、トルク測定部と、トルク算出部とを備えている。前記インパクト力発生部は、前記駆動源の動力からパルス状のインパクト力を発生させる。前記出力軸は、インパクト力を先端工具に伝達する。前記トルク測定部は、前記出力軸に加わるトルクを測定する。前記トルク算出部は、前記トルク測定部によって測定される前記トルクに基づいて締付トルクを算出する。前記トルク算出部は、1回のインパクト中に前記トルク測定部によって測定される前記トルクのトルク波形に複数のピーク値が含まれる場合、2番目以降の1以上のピーク値のうちの最大のピーク値を基に前記締付トルクを算出する。
 本開示の一態様に係るトルク算出方法は、測定ステップと、算出ステップとを有する。前記測定ステップでは、インパクト回転工具における出力軸に加わるトルクを測定する。前記インパクト回転工具は、駆動源の動力からパルス状のインパクト力を発生させ前記インパクト力を前記出力軸から先端工具に伝達する。前記算出ステップでは、1回のインパクト中に前記測定ステップによって測定される前記トルクのトルク波形に複数のピーク値が含まれる場合、2番目以降の1以上のピーク値のうちの最大のピーク値を基に前記締付トルクを算出する。
 本開示の一態様に係るプログラムは、上記トルク算出方法を、1以上のプロセッサに実行させるためのプログラムである。
図1は、一実施形態に係るインパクト回転工具の概略図である。 図2は、同上のインパクト回転工具のブロック図である。 図3は、同上のインパクト回転工具におけるトルク波形と出力軸の回転角度の関係を表すグラフを示す図である。 図4は、同上のインパクト回転工具が行うトルク算出処理のフローチャートである。 図5は、同上のインパクト回転工具が行う選択処理のフローチャートである。 図6は、同上のインパクト回転工具が行うカットオフ周波数決定処理のフローチャートである。 図7は、同上のインパクト回転工具におけるトルク波形を表すグラフを示す図である。
 以下、本開示に関する好ましい実施形態について図面を参照しつつ詳細に説明する。なお、以下に説明する実施形態において互いに共通する要素には同一符号を付しており、共通する要素についての重複する説明は省略する。以下の実施形態は、本開示の様々な実施形態の一つに過ぎない。実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。本開示において説明する各図は、模式的な図であり、各図中の各構成要素の大きさ及び厚さのそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。
 (1)概要
 まず、本実施形態に係るインパクト回転工具1の概要について、図1及び図2を参照して説明する。以下の説明では、出力軸8に沿う方向を前後方向と規定する。モータ2からドライバビット9に向かう方向を「前方」と規定し、ドライバビット9からモータ2(駆動源)に向かう方向を「後方」と規定する。
 図1に示すように、インパクト回転工具1は、例えば電池パック10等の動力源からの動力(電力等)によって動作する。具体的には、電池パック10から電力が供給されたモータ2が回転し、出力軸8に回転駆動力が伝達される。この出力軸8に例えばドライバビット9等の先端工具が取り付けられている場合、インパクト回転工具1は、作業対象となるワーク(加工対象物)に対して、締結部品(例えば、ネジ等)を取り付けることができる。
 また、本実施形態のインパクト回転工具1は、パルス状のインパクト力を発生させるインパクト機構3(インパクト力発生部)を有している。インパクト機構3は、出力軸8の負荷トルクが所定レベルを超えると、出力軸8に回転方向のインパクト力を加える。インパクト力が加えられた出力軸8は、インパクト力を締結部品に伝達する。これにより、インパクト回転工具1は、締結部品に対して、より大きな締付トルクを与えることが可能である。このようなインパクト回転工具1としては、インパクトドライバやインパクトレンチ等の様々な種類の工具がある。本実施形態のインパクト回転工具1は、ドライバビット9を出力軸8に装着可能なインパクトドライバである。
 図2に示すように、本実施形態のインパクト回転工具1は、トルク測定部11と、トルク算出部141とを備えている。トルク測定部11は、出力軸8に加わるトルクを測定する。トルク算出部141は、トルク測定部11によって測定されるトルクに基づいて締付トルクを算出する。
 また、本実施形態のトルク測定部11は、出力軸8に加えられる各インパクト中に出力軸8に加えられるトルクのトルク波形を測定する。また、本実施形態のトルク算出部141は、トルク測定部11によって測定されるトルク波形に複数のピーク値が含まれる場合、2番目以降の1以上のピーク値のうちの最大のピーク値を基に締付トルクを算出する。
 本実施形態のインパクト回転工具1は、トルク波形において、先端工具にトルクが伝わっていない可能性が高い最初のピーク値ではなく、2番目以降のピーク値を基に締付トルクを算出することで、締付トルク算出の精度を向上させることができる。
 (2)インパクト回転工具の構成
 以下、本実施形態に係るインパクト回転工具1の詳細な構成について、図1~図3を参照して説明する。
 図1に示すように、インパクト回転工具1には、充電式の電池パック10が着脱可能に取り付けられる。本実施形態のインパクト回転工具1は、電池パック10を電源として動作する。すなわち、電池パック10は、モータ2を駆動する電流を供給する電源である。電池パック10は、インパクト回転工具1の構成要素ではない。ただし、インパクト回転工具1は、電池パック10を備えていてもよい。電池パック10は、複数の二次電池(例えば、リチウムイオン電池)を直列接続して構成された組電池と、組電池を収容したケースと、を備えている。
 図1に示すように、インパクト回転工具1は、モータ2と、インパクト機構3と、出力軸8と、トルク測定部11と、回転測定部12と、トリガボリューム13とを備えている。
 トリガボリューム13は、モータ2の回転を制御するための操作を受け付ける操作部である。トリガボリューム13を引く操作により、モータ2のオンオフを切替可能である。また、トリガボリューム13を引く操作の引込み量で、モータ2の回転速度を調整可能である。上記引込み量が大きいほど、モータ2の回転速度が速くなる。
 モータ2は、例えばブラシレスモータである。モータ2は、回転軸21を備えており、電池パック10から供給される電力を回転軸21の回転駆動力に変換する。
 インパクト機構3は、モータ2の動力からパルス状のインパクト力を発生させる。インパクト機構3は、駆動軸31と、減速機4と、ハンマ5と、アンビル6と、バネ7とを備えている。駆動軸31は、モータ2と出力軸8との間に配置されている。
 減速機4は、モータ2の回転軸21の回転駆動力を所定の減速比で減速して駆動軸31に伝達する。
 ハンマ5は、アンビル6に対して移動し、モータ2から動力を得てアンビル6に回転打撃(インパクト)を加える。ハンマ5は、駆動軸31に対して、駆動軸31の軸方向(前後方向)に移動可能であり、かつ、駆動軸31に対して回転可能である。ハンマ5が駆動軸31の軸方向に沿ってアンビル6に近づく向き又はアンビル6から遠ざかる向きに移動するのに伴って、ハンマ5が駆動軸31に対して回転する。また、ハンマ5は、バネ7に対して回転可能である。
 アンビル6は、出力軸8と一体に形成されている。アンビル6は、駆動軸31の軸方向においてハンマ5と対向している。インパクト機構3が打撃動作を行っていない場合には、駆動軸31と、ハンマ5と、アンビル6とが一体に回転する。
 バネ7は、減速機4とハンマ5との間に挟まれている。本実施形態のバネ7は、例えば円錐バネである。バネ7は、駆動軸31の軸方向に沿った方向において、出力軸8に向かう向き(前向き)の力を、ハンマ5に加えている。
 以下では、駆動軸31の軸方向においてハンマ5がアンビル6に近づく向きに移動することを、「ハンマ5が前進する」と称する。また、以下では、駆動軸31の軸方向においてハンマ5がアンビル6から遠ざかる向きに移動することを、「ハンマ5が後退する」と称す。
 インパクト機構3では、負荷トルクが所定値以上となると、打撃動作が開始される。すなわち、負荷トルクが大きくなってくると、ハンマ5とアンビル6との間で発生する力のうち、ハンマ5を後退させる向きの分力も大きくなってくる。負荷トルクが所定値以上となると、ハンマ5は、バネ7を圧縮させながら後退する。そして、ハンマ5は、後退しつつ回転する。その後、ハンマ5がバネ7からの復帰力を受けて前進する。そして、駆動軸31が略半回転するごとにハンマ5がアンビル6に回転打撃を加える。
 このように、インパクト機構3では、ハンマ5がアンビル6に繰り返しインパクトを与える。このインパクトによるトルクにより、インパクトが無い場合と比較して、ネジ、ボルト又はナット等の締結部材を強力に締め付けることができる。
 出力軸8は、先端工具としてのドライバビット9が装着される。出力軸8は、駆動軸31から伝達される回転駆動力を、ドライバビット9に伝達する。これにより、ドライバビット9が回転する。ドライバビット9が締結部材に当てられた状態でドライバビット9が回転することにより、締結部材を締め付ける又は緩めるといった作業が可能となる。また、出力軸8は、インパクト機構3から伝達される回転打撃力(インパクト力)を、ドライバビット9に伝達する。
 なお、ドライバビット9は、出力軸8に着脱可能である。本実施形態では、ドライバビット9等の先端工具は、インパクト回転工具1の構成に含まれていない。ただし、先端工具は、インパクト回転工具1の構成に含まれていてもよい。
 トルク測定部11は、例えばねじり歪みの検出が可能な磁歪式歪センサであり、出力軸8にトルクが加わることにより発生する軸の歪みに応じた透磁率の変化を非回転部分に設置したコイルで検出し、歪みに比例した電圧信号を、後述する制御部14に出力する。
 回転測定部12は、例えばロータリーエンコーダであり、出力軸8の回転角度をデジタル信号として、制御部14に出力する。
 図2に示すように、本実施形態のインパクト回転工具1は、制御部14と、記憶部15と、通信部16とを更に備える。
 記憶部15は、例えば、半導体メモリで構成されている。記憶部15は、トルク情報151と、設定情報152とを記憶している。トルク情報151は、インパクト回転工具1が締結部品を締め付けたときの締付トルクに関する情報等を含む。設定情報152は、例えば、1又は複数の作業手順の情報や、作業手順等に関連付けられた目標トルク等の情報を含む。本開示でいう「目標トルク」とは、締結部品を取り付ける際の締付トルクの目標である。
 通信部16は、例えば、Wi-Fi(登録商標)、Bluetooth(登録商標)、ZigBee(登録商標)又は免許を必要としない小電力無線(特定小電力無線)等の規格に準拠した無線通信方式を採用する。通信部16は、後述する設定端末100との間で無線通信を行うが、設定端末100との間で有線通信方式により通信を行ってもよい。
 制御部14は、1以上のプロセッサ及びメモリを有するコンピュータシステムを含んでいる。コンピュータシステムのメモリに記録されたプログラムを、コンピュータシステムのプロセッサが実行することにより、制御部14の少なくとも一部の機能が実現される。プログラムは、メモリに記録されていてもよいし、インターネット等の電気通信回線を通して提供されてもよく、メモリカード等の非一時的記録媒体に記録されて提供されてもよい。
 図2に示すように、制御部14は、トルク算出部141と、駆動制御部142と、通知制御部143と、反映部144とを有している。
 トルク算出部141は、トルク測定部11によって測定されるトルクに基づいて締付トルクを算出する締付トルク算出処理を行う。具体的には、本実施形態のトルク算出部141は、インパクト機構3(図1参照)が出力軸8(図1参照)に与えるインパクト毎の締付トルクを算出する。
 図3は、1回のインパクト中に、トルク測定部11(図2参照)によって測定されるトルク波形G1と、回転測定部12(図2参照)によって測定される出力軸8(図1参照)の回転角度G2の関係を表すグラフを示している。図3に示すように、各インパクト中のトルク波形G1に複数(図3の例では2つ)のピーク値が存在する場合がある。図3の例では、ピーク値P1及びピーク値P2の2つのピーク値がトルク波形に存在する。本開示でいう「ピーク値」とは、トルク波形における極大値であって、所定以上の大きさの値のことをいう。本実施形態のトルク算出部141は、1回のインパクト中に測定されるトルク波形に複数のピーク値が含まれる場合、2番目以降の1以上のピーク値(図3の例ではピーク値P2)のうちの最大のピーク値を基に締付トルクを算出する。トルク波形に複数のピーク値が含まれる場合、1番目のピーク値(図3の例ではピーク値P1)のタイミングは、出力軸8、先端工具及び締結部品間のクリアランス(回転ガタ)が埋まるタイミングであり、締結部品までトルクが伝達されていない可能性が高いタイミングである。このため、トルク算出部141は、1番目のピーク値を基にして締付トルクを算出しない。
 また、出力軸8が締付方向から逆方向に切り替わる点で、出力軸8にトルクが加わっている状態から出力軸8にトルクが加わっていない状態になる。図3の例では、タイミングT10において、出力軸8にトルクが加わっている状態から、出力軸8にトルクが加わっていない状態になっている。そして、タイミングT10の時点で出力軸8に加わっていたトルクが実際の締付トルクであると考えられる。ここで、タイミングT10は、トルク波形G1における2番目以降(図3の例では2番目)の山M2のピーク値P2のタイミングT2付近である。すなわち、図3は、2番目以降の山M2のピーク値P2を基に締付トルクを算出することが適切であることを示している。
 一方で、1番目の山M1におけるピーク値P1のタイミングT1では、回転角度G2が大きくなっている最中である。すなわち、図3は、1番目の山M1のピーク値P1を基に締付トルクを算出することが不適切であることを示している。
 以上のように、本実施形態のインパクト回転工具1は、1回のインパクト中に測定されるトルク波形において、先端工具にトルクが伝わっていない可能性が高い1番目のピーク値を基にして締付トルクを算出しない。そのため、本実施形態のインパクト回転工具1は、締付トルク算出の精度を向上させることができる。
 締付トルク算出処理の詳細については、「(4)締付トルク算出処理」の欄で説明する。図2に示すトルク算出部141は、締付トルク算出処理において算出した締付トルクに関する情報を、駆動制御部142に出力する。
 駆動制御部142は、モータ2の動作を制御する。本実施形態の駆動制御部142は、トルク算出部141によって算出される締付トルクが目標トルクに達したとき、モータ2を停止させる。本実施形態の駆動制御部142は、記憶部15に記憶される設定情報152に含まれる目標トルクに基づいて、トルク算出部141によって算出される締付トルクが目標トルクに達したか否かを判定する。
 通知制御部143は、トルク算出部141によって算出される締付トルクに関する情報を通知させる。本実施形態の通知制御部143は、通信部16を介して、締付トルクに関する情報を設定端末100の表示部101(通知部)に表示させる。なお、通知制御部143は、締付トルクに関する情報を、スピーカ(通知部)から音声として出力させてもよい。また、インパクト回転工具1が、通知部として表示部やスピーカを備えている場合、通知制御部143は、インパクト回転工具1が備える表示部やスピーカを用いて、締付トルクに関する情報を通知させてもよい。また、通知制御部143は、作業手順に関する通知や、作業手順に対応する目標トルク値等の通知を行ってもよい。
 反映部144は、記憶部15に記憶されているトルク情報151を、インパクト回転工具1の締結部品の締付に関する設定に反映させる。言い換えると、反映部144は、過去の作業データを、締結部品の締付に関する設定に反映させる。例えば、トルク情報151に、締結部品の種類と、目標トルクと、締付トルクが目標トルクに達したときのインパクト(打撃)数とが関連付けられている場合、インパクト回転工具1は、締結部品の種類及び目標トルクに応じて、インパクト数を管理することでも、トルク管理を行うことが可能である。すなわち、締結部品に応じて、モータ2の出力調整等をより適切に行うことができる。また、過去の作業データが締結部品の締付に関する設定に反映されるため、作業者が締付部品の締付に関する設定を行う手間を低減することができる。
 (3)設定端末の構成
 以下、本実施形態に係る設定端末100の詳細な構成について、図2を参照して説明する。
 設定端末100は、例えばパーソナルコンピュータ(PC)、スマートフォン、タブレット端末等の情報端末である。図2に示すように、設定端末100は、表示部101と、操作部102と、通信部103と、制御部104とを備えている。
 通信部103は、例えば、Wi-Fi(登録商標)、Bluetooth(登録商標)、ZigBee(登録商標)又は免許を必要としない小電力無線(特定小電力無線)等の規格に準拠した、無線通信方式を採用する。通信部103は、インパクト回転工具1との間で無線通信を行うが、インパクト回転工具1との間で有線通信方式により通信を行ってもよい。
 表示部101及び操作部102は、例えば、一体に構成されたタッチパネルディスプレイである。本実施形態の表示部101は、インパクト回転工具1の通知制御部143の指示に応じて、締付トルクに関する情報を表示する。
 制御部104は、1以上のプロセッサ及びメモリを有するコンピュータシステムを含んでいる。コンピュータシステムのメモリに記録されたプログラムを、コンピュータシステムのプロセッサが実行することにより、制御部104の少なくとも一部の機能が実現される。プログラムは、メモリに記録されていてもよいし、インターネット等の電気通信回線を通して提供されてもよく、メモリカード等の非一時的記録媒体に記録されて提供されてもよい。制御部104は、表示部101、操作部102及び通信部103を制御するように構成されている。
 (4)締付トルク算出処理
 以下、締付トルク算出処理(トルク算出方法)の詳細について、図4~図7を参照して説明する。
 図4は、締付トルク算出処理の手順を示すフローチャートである。まず、トルク算出部141は、トルク測定部11が測定したトルクのトルク波形に対して第1フィルタリングを行う(S1)。トルク算出部141は、第1フィルタリングにおいて、所定のカットオフ周波数を有するローパスフィルタを用いて高周波成分のノイズをカットする。ここで、所定のカットオフ周波数は、後述する第2フィルタリングで使用するローパスフィルタのカットオフ周波数よりも高い周波数である。
 次に、トルク算出部141は、第1選択処理を行う(S2)。第1選択処理は、第2フィルタリングで使用されるローパスフィルタのカットオフ周波数を決定するためにトルク波形に含まれるピーク値を選択する処理である。図5は、第1選択処理(S2)及び後述する第2選択処理(S5)のフローチャートである。トルク算出部141は、トルク波形全体の始点及び終点を探索する(S11)。具体的には、トルク算出部141は、トルク波形全体の始点として、トルク波形全体のうちの最初の立ち上がりから変曲点を探索し、トルク波形全体の終点として、トルク波形全体のうちの最後の立ち下がりから変曲点を探索する。次に、トルク算出部141は、トルク波形全体の中で最大となるピーク値を探索し、上記ピーク値を仮選択する(S12)。言い換えると、トルク算出部141は、トルク波形全体の中で最大の極大値を探索する。次に、トルク算出部141は、仮選択したピーク値を含む山の始点及び終点を探索する(S13)。本開示でいう「山」とは、トルク波形の中で山形(凸形)となる部分であり、ピーク値を頂点として、立ち上がりの点である始点及び立ち下がりの点である終点を有する部分である。本実施形態のトルク算出部141は、仮選択したピーク値と隣り合う変曲点を探索することにより、山の始点及び終点を探索する。具体的には、ピーク波形において、仮選択したピーク値と隣り合う2つの変曲点のうち、仮選択したピーク値よりも先に存在する変曲点が山の始点であり、仮選択したピーク値よりも後に存在する変曲点が山の終点である。
 トルク算出部141は、山の始点及び終点を探索した後、トルク波形全体の始点と、山の始点とを比較して時間差を確認する(S14)。トルク波形全体の始点及び山の始点の時間差が閾値Th1(図7参照)以上である場合(S15でYes)、トルク算出部141は、仮選択したピーク値を含む山が2番目以降の山であると判定する(S16)。「2番目以降の山」とは、1番目の山ではないということである。トルク算出部141は、仮選択したピーク値を含む山が2番目以降の山であると判定すると、仮選択したピーク値を最大のピーク値として決定する(S17)。トルク算出部141は、最大のピーク値を決定すると、第1選択処理(S2)を終了する。
 一方、ステップS15の処理において、トルク波形全体の始点及び山の始点の時間差が閾値Th1未満である場合(S15でNo)、トルク算出部141は、トルク波形全体の終点と、山の終点とを比較して時間差を確認する(S18)。トルク波形全体の終点及び山の終点の時間差が閾値Th2(図7参照)未満である場合(S19でYes)、トルク算出部141は、仮選択したピーク値を含む山のみが、トルク波形の中に存在すると判定する(S20)。言い換えると、トルク算出部は、トルク波形全体が1つの山であると判定する。本実施形態のトルク算出部141は、トルク波形において、ピーク値が1つしかない場合は、その1つのピーク値を基に締付トルクを算出する。トルク算出部141は、トルク波形全体が1つの山であると判定すると、仮選択したピーク値を最大のピーク値として決定する(S17)。トルク算出部141は、最大のピーク値を決定すると、第1選択処理(S2)を終了する。
 また、ステップS19の処理において、トルク波形全体の終点及び山の終点の時間差が閾値Th2以上である場合、すなわち、時間差が閾値Th2未満ではない場合(S19でNo)、トルク算出部141は、仮選択したピーク値を含む山が1番目の山であると判定する(S21)。仮選択されたピーク値を含む山が1番目の山である場合、仮選択されたピーク値を基にして締付トルクを算出することは不適切である可能性が高い。そこで、トルク算出部141は、仮選択したピーク値を探索候補から除外し(S22)、再び最大のピーク値を探索する(S12)。そして、トルク算出部141は、最大のピーク値を決定する(S17)まで、第1選択処理(S2)を行う。なお、第1選択処理において、トルク算出部141が最大のピーク値を決定することを、「最大のピーク値の仮決定」としてもよい。
 トルク算出部141は、第1選択処理を行うと(S2)、カットオフ周波数決定処理を行う(S3)。図6は、カットオフ周波数決定処理(S3)の手順を示すフローチャートである。トルク算出部141は、最大のピーク値を含む山の始点及び終点から、山の幅を算出する(S31)。本開示でいう「山の幅」とは、山の立ち上がりから立ち下がりまでの時間である。言い換えると、山の始点から山の終点までの時間である。また、「山の幅」は、山の半周期と概ね一致する。トルク算出部141は、山の幅を算出すると、山の幅に基づいてカットオフ周波数を決定する(S32)。具体的には、本実施形態のトルク算出部141は、山の幅の逆数をカットオフ周波数に決定する。このカットオフ周波数は、山の周波数よりも高い周波数である。トルク算出部141は、カットオフ周波数を決定すると(S32)、カットオフ周波数決定処理(S3)を終了する。
 トルク算出部141は、カットオフ周波数決定処理を行うと(S3)、トルク波形に対して第2フィルタリングを行う(S4)。なお、第2フィルタリングは、第1フィルタリングが行われた後のトルク波形に対して行われてもよいし、第1フィルタリングが行われていないトルク波形に対して行われてもよい。トルク算出部141は、第2フィルタリングにおいて、カットオフ周波数決定処理(S3)において決定したカットオフ周波数で、高周波成分のノイズをカットする。ここで、カットオフ周波数決定処理(S3)において決定されたカットオフ周波数は、第1フィルタリングで使用されるローパスフィルタのカットオフ周波数よりも低い周波数である。
 トルク算出部141は、第2フィルタリングを行うと(S4)、第2選択処理(S5)を行う。第2選択処理は、第2フィルタリング後のトルク波形から、締付トルクを算出する基となるピーク値を選択する処理である。第2選択処理(S5)は、上述した第1選択処理(S2)と同じ処理であるため、説明を省略する。トルク算出部141は、第2選択処理(S5)において最大のピーク値を決定すると、このピーク値を基に締付トルクを算出する(S6)。トルク算出部141は、締付トルクを算出すると(S6)、締付トルク算出処理を終了する。
 次に、図7を参照しつつ、第1選択処理及びカットオフ周波数決定処理を説明する。図7は、1回のインパクト中にトルク測定部11によって測定されるトルクのトルク波形を表すグラフを示している。トルク算出部141は、第1選択処理(図4のS2)を開始すると、トルク波形全体の始点P3及び終点P10を探索する(図5のS11)。次に、トルク算出部141は、トルク波形全体の中で最大となるピーク値P6を探索し、ピーク値P6を仮選択する(図5のS12)。なお、極大値P4は、トルク波形における極大値ではあるが、所定値未満の大きさの値であるため、本開示でいう「ピーク値」に含まれない。次に、トルク算出部141は、仮選択したピーク値P6を含む山M3の始点P5及び終点P7を探索する(図5のS13)。トルク算出部141は、山M3の始点P5及び終点P7を探索した後、トルク波形全体の始点P3と、山M3の始点P5とを比較して時間差(T4-T3)を確認する(図5のS14)。図7の例では、トルク波形全体の始点P3及び山M3の始点P5の時間差(T4-T3)は、閾値Th1未満である(図5のS15でNo)。次に、トルク算出部141は、トルク波形全体の終点P10と、山M3の終点P7とを比較して時間差(T9-T6)を確認する(図5のS18)。図7の例では、トルク波形全体の終点P10及び山M3の終点P7の時間差(T9-T6)は、閾値Th2以上である(図5のS19でNo)。そして、トルク算出部141は、ピーク値P6を含む山M3を1番目の山であると判定し(図5のS21)、ピーク値P6を除外する(図5のS22)。
 次に、トルク算出部141は、ピーク値P6を除いてトルク波形全体の中で最大となるピーク値P9を探索し、ピーク値P9を仮選択する(図5のS12)。次に、トルク算出部141は、ピーク値P9を含む山M2の始点P8及び終点P10を探索する(図5のS13)。トルク算出部141は、山M4の始点P8及び終点P10を探索した後、トルク波形全体の始点P3と、山M4の始点P8とを比較して時間差(T7-T3)を確認する(図5のS14)。図7の例では、トルク波形全体の始点P3及び山M4の始点P8の時間差(T7-T3)は、閾値Th1以上であるため(図5のS15でYes)、トルク算出部141は、ピーク値P9を含む山M4を2番目以降の山であると判定する(図5のS16)。そして、トルク算出部141は、仮選択したピーク値P9を最大ピーク値として決定し(図5のS17)、第1選択処理(図4のS2)を終了する。
 次に、トルク算出部141は、カットオフ周波数決定処理(図4のS3)を開始する。トルク算出部141は、最大のピーク値P9を含む山M4の始点P8及び終点P10から、山M4の幅W1を算出する(図6のS31)。そして、トルク算出部141は、山M4の幅W1の逆数をカットオフ周波数に決定し(図6のS32)、カットオフ周波数決定処理(図4のS3)を終了する。
 (5)作用効果
 上述のように、本実施形態のインパクト回転工具1は、インパクト機構3と、出力軸8と、トルク測定部11と、トルク算出部141とを備えている。トルク算出部141は、1回のインパクト中にトルク測定部11によって測定されるトルクのトルク波形に複数のピーク値が含まれる場合、2番目以降の1以上のピーク値のうちの最大のピーク値を基に締付トルクを算出する。これにより、本実施形態のインパクト回転工具1は、先端工具にトルクが伝わっていない可能性が高い1番目のピーク値を基にした締付トルクを算出しないことで、締付トルク算出の精度を向上させることができる。
 また、本実施形態のトルク算出部141は、トルク波形に対して、最大のピーク値を含む山の周波数よりも高い周波数成分をカットする処理(第2フィルタリング)を行った後に、締付トルクを算出する。トルク波形に重畳している高周波のノイズ成分を除去することで、締付トルク算出の精度をより向上させることができる。
 また、本実施形態のトルク算出部141は、トルク波形に含まれる最大のピーク値を仮選択する(第1選択処理)。また、本実施形態のトルク算出部141は、仮選択したピーク値を含む山の始点及び終点間の幅に基づいてカットオフ周波数を導出し(カットオフ周波数決定処理)、第2フィルタリングを行う。トルク算出部(141)は、処理後のトルク波形に含まれる最大のピーク値を選択し(第2選択処理)、選択したピーク値を基に締付トルクを算出する。一度最大のピーク値を仮選択し、そのピーク値を含む山の幅に基づいた第2フィルタリングを行った後で、第2フィルタリング後のトルク波形から選択した最大のピーク値を基に締付トルクを算出するため、締付トルク算出の精度をより向上させることができる。
 また、本実施形態のトルク算出部141は、トルク波形に含まれるピーク値が1つである場合、そのピーク値を基に締付トルクを算出する。トルク波形において、ピーク値が1つしかない場合は、1つのピーク値を基に締付トルクを算出することで、締付トルク算出の精度を向上させることができる。
 また、本実施形態のインパクト回転工具1は、駆動制御部142を更に備えている。駆動制御部142は、トルク算出部141によって算出される締付トルクが目標トルクに達したときモータ2を停止させる。そのため、本実施形態のインパクト回転工具1は、適切な締付動作を行うことができる。
 また、本実施形態のインパクト回転工具1は、通知制御部143を更に備えている。トルク算出部141によって算出される締付トルクに関する情報を通知制御部143が通知させることで、インパクト回転工具1を利用する作業者等が締付トルクを確認することができる。
 また、本実施形態の通知制御部143は、締付トルクに関する情報を、設定端末100の表示部101に表示させる。作業者等は、例えば騒音の中であっても、表示部101を視認することで締付トルクに関する情報を確認することができる。
 また、本実施形態のインパクト回転工具1は、記憶部15と反映部144とを更に備える。反映部144が、記憶部15に記憶されている締付トルクに関する情報を作業対象の締付に関する設定に反映させることで、モータ2の出力調整等をより適切に行うことができる。
 (6)変形例
 以下、実施形態の変形例を列挙する。以下の説明する変形例は、実施形態と適宜組み合わせて適用可能である。
 また、上記実施形態に係るインパクト回転工具1と同等の機能は、トルク算出方法、(コンピュータ)プログラム、又はプログラムを記録した非一時的記録媒体等で具現化されてもよい。一態様に係るトルク算出方法は、測定ステップと、算出ステップとを有する。測定ステップでは、インパクト回転工具1における出力軸8に加わるトルクを測定する。インパクト回転工具1は、モータ2の動力からパルス状のインパクト力を発生させ上記インパクト力を出力軸8から先端工具(ドライバビット9)に伝達する。算出ステップでは、1回のインパクト中に測定ステップによって測定されるトルクのトルク波形に複数のピーク値が含まれる場合、2番目以降の1以上のピーク値のうちの最大のピーク値を基に締付トルクを算出する。一態様に係るプログラムは、上記のトルク算出方法を、1以上のプロセッサに実行させるためのプログラムである。
 インパクト回転工具1が、1つの筐体内に集約されていることは必須の構成ではない。インパクト回転工具1の構成要素は、複数の筐体に分散されて設けられていてもよい。例えば、トルク算出部141が、モータ2やインパクト機構3等が設けられている筐体とは別の筐体に設けられていてもよい。
 上記実施形態では、インパクト回転工具1は、一例としてインパクトドライバである。しかし、インパクト回転工具1は、インパクトドライバに限らず、例えばインパクトレンチでもよい。
 (まとめ)
 以上説明したように、第1の態様に係るインパクト回転工具(1)は、駆動源(モータ2)と、インパクト力発生部(インパクト機構3)と、出力軸(8)と、トルク測定部(11)と、トルク算出部(141)とを備えている。インパクト力発生部は、駆動源の動力からパルス状のインパクト力を発生させる。出力軸(8)は、インパクト力を先端工具(ドライバビット9)に伝達する。トルク測定部(11)は、出力軸(8)に加わるトルクを測定する。トルク算出部(141)は、トルク測定部(11)によって測定されるトルクに基づいて締付トルクを算出する。トルク算出部(141)は、1回のインパクト中にトルク測定部(11)によって測定されるトルクのトルク波形に複数のピーク値が含まれる場合、2番目以降の1以上のピーク値のうちの最大のピーク値を基に締付トルクを算出する。
 この態様によれば、1回のインパクト中に測定されるトルク波形において、先端工具(ドライバビット9)にトルクが伝わっていない可能性が高い最初のピーク値を基にして締付トルク値を算出しないことで、締付トルクを精度よく算出することができる。
 第2の態様に係るインパクト回転工具(1)では、第1の態様において、トルク算出部(141)は、トルク波形に対して、最大のピーク値を含む山の周波数よりも高い周波数成分をカットする処理を行い、上記処理後のトルク波形に含まれる最大のピーク値を基に締付トルクを算出する。
 この態様によれば、トルク波形に重畳している高周波のノイズ成分を除去することで、締付トルク算出の精度をより向上させることができる。
 第3の態様に係るインパクト回転工具(1)では、第2の態様において、トルク算出部(141)は、トルク波形に含まれる最大のピーク値を選択する。トルク算出部(141)は、山の幅に基づいてカットオフ周波数を導出し、カットオフ周波数を用いた上記処理をトルク波形に対して行う。トルク算出部(141)は、上記処理後のトルク波形に含まれる最大のピーク値を基に締付トルクを算出する。
 この態様によれば、一度最大のピーク値を仮選択し、そのピーク値を含む山の幅に基づいた上記処理をトルク波形に対して行った後で、処理を行ったトルク波形から選択した最大のピーク値を基に締付トルクを算出するため、締付トルク算出の精度をより向上させることができる。
 第4の態様に係るインパクト回転工具(1)では、第1から第3のいずれかの態様において、トルク算出部(141)は、トルク波形に含まれるピーク値が1つである場合、ピーク値を基に締付トルクを算出する。
 この態様によれば、1回のインパクト中に測定されるトルク波形において、ピーク値が1つしかない場合は、1つのピーク値を基に締付トルクを算出することで、締付トルク算出の精度を向上させることができる。
 第5の態様に係るインパクト回転工具(1)は、第1から第4のいずれかの態様において、駆動制御部(142)を更に備える。駆動制御部(142)は、トルク算出部(141)によって算出される締付トルクが目標トルクに達したとき、駆動源(モータ2)を停止させる。
 この態様によれば、トルク算出部(141)によって算出される締付トルクが目標トルクに達したとき駆動源(モータ2)を停止することで、適切な締付動作を行うことができる。
 第6の態様に係るインパクト回転工具(1)は、第1から第5のいずれかの態様において、通知制御部(143)を更に備える。通知制御部(143)は、トルク算出部(141)によって算出される締付トルクに関する情報を通知させる。
 この態様によれば、トルク算出部(141)によって算出される締付トルクに関する情報を通知することで、インパクト回転工具(1)を利用する作業者等が締付トルクを確認することができる。
 第7の態様に係るインパクト回転工具(1)では、第6の態様において、通知制御部(143)は、締付トルクに関する情報を表示部(101)に表示させる。
 この態様によれば、締付トルクに関する情報を表示部(101)に表示させることで、騒音の中であっても作業者等が締付トルクを確認することができる。
 第8の態様に係るインパクト回転工具(1)は、第1から第7のいずれかの態様において、記憶部(15)と、反映部(144)と、を更に備える。記憶部(15)は、トルク算出部(141)によって算出される締付トルクに関する情報を記憶する。反映部(144)は、記憶部(15)に記憶されている情報を作業対象の締付に関する設定に反映させる。
 この態様によれば、トルク算出部(141)によって算出される締付トルクに関する情報を作業対象の締付に関する設定に反映させることで、駆動源(モータ2)の出力調整などをより適切に行うことができる。
 第1の態様以外の構成については、インパクト回転工具(1)に必須の構成ではなく、適宜省略可能である。
 第9の態様に係るトルク算出方法は、測定ステップと、算出ステップとを有する。測定ステップでは、インパクト回転工具(1)における出力軸(8)に加わるトルクを測定する。インパクト回転工具(1)は、駆動源の動力からパルス状のインパクト力を発生させ上記インパクト力を出力軸(8)から先端工具(ドライバビット9)に伝達する。算出ステップでは、1回のインパクト中に測定ステップによって測定されるトルクのトルク波形に複数のピーク値が含まれる場合、2番目以降の1以上のピーク値のうちの最大のピーク値を基に締付トルクを算出する。
 この態様によれば、1回のインパクト中に測定されるトルク波形において、先端工具(ドライバビット9)にトルクが伝わっていない可能性が高い最初のピーク値を基にして締付トルク値を算出しないことで、締付トルクを精度よく算出することができる。
 第10の態様に係るプログラムは、第9の態様に係るトルク算出方法を、1以上のプロセッサに実行させるためのプログラムである。
1 インパクト回転工具
2 モータ2(駆動源)
3 インパクト機構(インパクト力発生部)
8 出力軸
9 ドライバビット(先端工具)
11 トルク測定部
141 トルク算出部
142 駆動制御部
143 通知制御部
144 反映部
15 記憶部
101 表示部

Claims (10)

  1.  駆動源と、
     前記駆動源の動力からパルス状のインパクト力を発生させるインパクト力発生部と、
     前記インパクト力を先端工具に伝達する出力軸と、
     前記出力軸に加わるトルクを測定するトルク測定部と、
     前記トルク測定部によって測定される前記トルクに基づいて締付トルクを算出するトルク算出部と、
    を備え、
     前記トルク算出部は、1回のインパクト中に前記トルク測定部によって測定される前記トルクのトルク波形に複数のピーク値が含まれる場合、2番目以降の1以上のピーク値のうちの最大のピーク値を基に前記締付トルクを算出する、
     インパクト回転工具。
  2.  前記トルク算出部は、
      前記トルク波形に対して、前記最大のピーク値を含む山の周波数よりも高い周波数成分をカットする処理を行い、
      前記処理後の前記トルク波形に含まれる前記最大のピーク値を基に前記締付トルクを算出する、
     請求項1に記載のインパクト回転工具。
  3.  前記トルク算出部は、
      前記トルク波形に含まれる前記最大のピーク値を選択し、
      前記山の幅に基づいてカットオフ周波数を導出し、
      前記カットオフ周波数を用いた前記処理を前記トルク波形に対して行い、
      前記処理後の前記トルク波形に含まれる前記最大のピーク値を基に前記締付トルクを算出する、
     請求項2に記載のインパクト回転工具。
  4.  前記トルク算出部は、前記トルク波形に含まれるピーク値が1つである場合、前記ピーク値を基に前記締付トルクを算出する、
     請求項1から3のいずれか1項に記載のインパクト回転工具。
  5.  前記トルク算出部によって算出される前記締付トルクが目標トルクに達したとき、前記駆動源を停止させる駆動制御部、を更に備える、
     請求項1から4のいずれか1項に記載のインパクト回転工具。
  6.  前記トルク算出部によって算出される前記締付トルクに関する情報を通知させる通知制御部を、更に備える、
     請求項1から5のいずれか1項に記載のインパクト回転工具。
  7.  前記通知制御部は、前記締付トルクに関する情報を表示部に表示させる、
     請求項6に記載のインパクト回転工具。
  8.  前記トルク算出部によって算出される前記締付トルクに関する情報を記憶する記憶部と、
     前記記憶部に記憶されている前記情報を作業対象の締付に関する設定に反映させる反映部と、
    を更に備える、
     請求項1から7のいずれか1項に記載のインパクト回転工具。
  9.  駆動源の動力からパルス状のインパクト力を発生させ前記インパクト力を出力軸から先端工具に伝達するインパクト回転工具における前記出力軸に加わるトルクを測定する測定ステップと、
     1回のインパクト中に前記測定ステップによって測定される前記トルクのトルク波形に複数のピーク値が含まれる場合、2番目以降の1以上のピーク値のうちの最大のピーク値を基に締付トルクを算出する算出ステップと、
    を有するトルク算出方法。
  10.  請求項9に記載のトルク算出方法を、1以上のプロセッサに実行させるためのプログラム。
PCT/JP2021/027876 2020-09-11 2021-07-28 インパクト回転工具、トルク算出方法及びプログラム WO2022054438A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/043,686 US20230271306A1 (en) 2020-09-11 2021-07-28 Impact rotary tool, torque calculation method, and program
EP21866398.7A EP4212284A4 (en) 2020-09-11 2021-07-28 ROTARY IMPACT TOOL, TORQUE CALCULATION METHOD AND PROGRAM
CN202180050187.4A CN115956014A (zh) 2020-09-11 2021-07-28 冲击旋转工具、转矩计算方法和程序

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020153312A JP7403067B2 (ja) 2020-09-11 2020-09-11 インパクト回転工具、トルク算出方法及びプログラム
JP2020-153312 2020-09-11

Publications (1)

Publication Number Publication Date
WO2022054438A1 true WO2022054438A1 (ja) 2022-03-17

Family

ID=80632499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027876 WO2022054438A1 (ja) 2020-09-11 2021-07-28 インパクト回転工具、トルク算出方法及びプログラム

Country Status (5)

Country Link
US (1) US20230271306A1 (ja)
EP (1) EP4212284A4 (ja)
JP (1) JP7403067B2 (ja)
CN (1) CN115956014A (ja)
WO (1) WO2022054438A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023075720A (ja) * 2021-11-19 2023-05-31 パナソニックホールディングス株式会社 インパクト回転工具、インパクト回転工具システム、管理システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07246529A (ja) * 1994-03-10 1995-09-26 Nitto Seiko Co Ltd 自動部品締結機
JP2018089704A (ja) 2016-11-30 2018-06-14 パナソニックIpマネジメント株式会社 インパクト回転工具およびシャットオフ衝撃数の設定方法
JP2018122392A (ja) * 2017-01-31 2018-08-09 パナソニックIpマネジメント株式会社 インパクト回転工具

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4185701A (en) * 1975-05-19 1980-01-29 Sps Technologies, Inc. Tightening apparatus
JP6008319B2 (ja) * 2012-10-12 2016-10-19 パナソニックIpマネジメント株式会社 インパクト回転工具
CN115077996A (zh) 2021-03-15 2022-09-20 富佳生技股份有限公司 移液系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07246529A (ja) * 1994-03-10 1995-09-26 Nitto Seiko Co Ltd 自動部品締結機
JP2018089704A (ja) 2016-11-30 2018-06-14 パナソニックIpマネジメント株式会社 インパクト回転工具およびシャットオフ衝撃数の設定方法
JP2018122392A (ja) * 2017-01-31 2018-08-09 パナソニックIpマネジメント株式会社 インパクト回転工具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4212284A4

Also Published As

Publication number Publication date
CN115956014A (zh) 2023-04-11
US20230271306A1 (en) 2023-08-31
JP2022047409A (ja) 2022-03-24
JP7403067B2 (ja) 2023-12-22
EP4212284A1 (en) 2023-07-19
EP4212284A4 (en) 2024-03-20

Similar Documents

Publication Publication Date Title
JP6380924B2 (ja) インパクト回転工具の慣性モーメントの測定方法とその測定方法を用いたインパクト回転工具
EP2607020B1 (en) Rotary impact tool
JP6135925B2 (ja) インパクト回転工具及びインパクト回転工具用先端アタッチメント
WO2022054438A1 (ja) インパクト回転工具、トルク算出方法及びプログラム
JP6024974B2 (ja) インパクト回転工具
CN110636921B (zh) 电脉冲工具
JP2010173054A (ja) 電動工具およびモータの回転制御方法
CN110325323B (zh) 电动脉冲工具
WO2019198392A1 (ja) 信号処理装置及び電動工具
JP7436466B2 (ja) 電気パルス工具
JP2001246574A (ja) インパクト回転工具
JP7450221B2 (ja) インパクト工具、インパクト工具の制御方法及びプログラム
JP7442139B2 (ja) インパクト工具、インパクト工具の制御方法及びプログラム
JP7030755B2 (ja) 最適化されたリバウンドを伴うインパルス式締付け方法
JP7369994B2 (ja) インパクト工具
JP7262058B2 (ja) 電動工具
JP2012187695A (ja) 締付工具
WO2020261764A1 (ja) インパクト工具
JP2023075720A (ja) インパクト回転工具、インパクト回転工具システム、管理システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021866398

Country of ref document: EP

Effective date: 20230411