WO2022054137A1 - ソフトウェア無線機、低遅延音声伝送方法、および低遅延音声伝送用プログラム - Google Patents

ソフトウェア無線機、低遅延音声伝送方法、および低遅延音声伝送用プログラム Download PDF

Info

Publication number
WO2022054137A1
WO2022054137A1 PCT/JP2020/033993 JP2020033993W WO2022054137A1 WO 2022054137 A1 WO2022054137 A1 WO 2022054137A1 JP 2020033993 W JP2020033993 W JP 2020033993W WO 2022054137 A1 WO2022054137 A1 WO 2022054137A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
voice
communication
resources
software
Prior art date
Application number
PCT/JP2020/033993
Other languages
English (en)
French (fr)
Inventor
利文 宮城
一夫 大坂
博幸 古谷
仁 長谷川
隼人 福園
文昭 永瀬
優 小野
圭太 栗山
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/033993 priority Critical patent/WO2022054137A1/ja
Priority to JP2022548273A priority patent/JP7494921B2/ja
Publication of WO2022054137A1 publication Critical patent/WO2022054137A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission

Definitions

  • This disclosure relates to software defined radio, low delay audio transmission methods, and programs for low delay audio transmission, and is particularly suitable for transmitting audio signals with low delay along with digital data, software defined radio, low delay audio transmission.
  • the method and the program for low delay voice transmission are particularly suitable for transmitting audio signals with low delay along with digital data, software defined radio, low delay audio transmission.
  • Patent Document 1 discloses a data transfer system.
  • this data transfer system senses a deterioration in the quality of data transfer, it increases the compression ratio of streaming data and reduces the size of the transferred packet.
  • the size of the forwarded packet is reduced, there is more room for retransmission to send the previous packet.
  • the delay between the transmission of the data and the reception and reproduction of the data can be reduced.
  • the present disclosure uses resources available for both voice and data communication and, if necessary, allocates data communication resources to voice communication resources to ensure that voice signals are always low latency and high quality.
  • the first purpose is to provide a software radio for transmission in.
  • the present disclosure uses resources available for both voice communication and data communication, and allocates data communication resources to voice communication resources as needed to ensure that voice signals are always low-latency and low latency.
  • a second object is to provide a low-delay voice transmission method for high-quality transmission. Further, the present disclosure controls the resources available for both voice communication and data communication, and allocates the data communication resources to the voice communication resources as needed, so that the voice signal always has a low delay.
  • a third object is to provide a program for low-delay voice transmission for high-quality transmission.
  • the first aspect is a software radio, in order to achieve the above object, a hardware resource for wireless communication that can be reconfigured by changing the software, and a part of the hardware resource of an audio signal.
  • a memory containing software for supporting wireless communication and software for making the rest of the hardware resources compatible with digital data wireless communication, and the hardware using the software stored in the memory.
  • the control unit includes a control unit for reconstructing resources, and the control unit includes a process of configuring a voice communication resource responsible for wireless communication of a voice signal, a process of determining a line state of the voice signal, and a process based on the line state.
  • the process for detecting the deficiency of the voice communication resource and the resource that was not used as the voice communication resource are used for the voice so that the deficiency can be eliminated when the deficiency is detected. It is desirable to execute the reconfiguration process assigned to the communication resource.
  • the second aspect is a hardware resource for wireless communication that can be reconfigured by changing the software, software for making a part of the hardware resource compatible with wireless communication of a voice signal, and the hardware.
  • a low-delay voice transmission method using software for making the rest of the resources compatible with wireless communication of digital data comprising a control step of reconfiguring the hardware resource using the software.
  • the third aspect is a low-delay voice transmission program, and it is desirable that the computer includes a program for realizing the function of the software defined radio of the first aspect.
  • the hardware resource can be appropriately changed to a state suitable for realizing the desired communication by changing the software. Then, resources that have not been used as voice communication resources can be appropriately allocated as voice communication resources based on the line state of the voice signal, so that the voice signal is always transmitted with low delay and high quality. Can create a state of doing.
  • FIG. 1 is a diagram showing a configuration of software defined radio 10 according to the first embodiment of the present disclosure.
  • the software defined radio 10 includes hardware that can be reconfigured by software, and can change the frequency band and communication method used for wireless communication as needed.
  • the software defined radio 10 can be used, for example, as a base station for mobile communication.
  • the software defined radio 10 includes an FPGA (Field Programmable Gate Array) 12.
  • the FPGA 12 is a device that can program various logic circuit configurations by rewriting software.
  • the FPGA 12 functions as a baseband processing unit that processes a baseband signal transmitted by communication.
  • the FPGA 12 may be replaced with a general computer or a DSP (Digital Signal Processor).
  • the software defined radio 10 includes an AD / DA converter 14 and an RF front end unit 16.
  • the AD / DA converter 14 and the RF front end unit 16 process a high frequency signal between the communication antenna (not shown) and the FPGA 12.
  • the software defined radio 10 further includes a control unit 18.
  • the control unit 18 has various interfaces, a CPU, a memory, and the like built-in.
  • the control unit 18 controls the FPGA 12, the AD / DA converter 14, and the RF front end unit 16 by proceeding with processing according to a program stored in the memory. Specifically, the control unit 18 detects a communication state required for the software defined radio 10, and reconfigures the hardware corresponding to the state.
  • the software defined radio 10 sends and receives a plurality of signals on its wired side.
  • the signal on the wired side includes analog voice 1 to m and digital data 1 to n.
  • the analog voices 1 to m are analog voice signals.
  • the digital data 1 to n are digital data signals.
  • the software defined radio 10 sends and receives a plurality of radio signals on the radio side thereof.
  • These radio signals include a plurality of signals F1 to Fm for voice transmission and a plurality of signals F'1 to F'm for voice reception.
  • F1 to Fm and F'1 to F'm are analog radio signals belonging to different frequency bands.
  • an FDD (Frequency Division Duplex) communication method is adopted.
  • F1 and F'1 form a pair of a transmission frequency and a reception frequency.
  • the pairs (F1, F'1) to (Fm, F'm) correspond to the analog voices 1 to m, respectively.
  • the radio signal handled by the software defined radio 10 further includes a plurality of signals f1 to fn for data transmission and data reception. These signals f1 to fn are digital radio signals belonging to different frequency bands.
  • the FDD communication method is also used for the digital data transmission / reception signals f1 to fn.
  • the software defined radio 10 shown in FIG. 1 can modulate analog audio input from the wired side by an analog wireless method and transmit it by radio waves in the frequency band for audio transmission. Further, the radio wave received by the frequency band for voice reception on the wireless side can be demodulated by the analog wireless method and output to the wired side as analog voice. These transmissions are modulated and demodulated by an analog wireless method without being compressed by digital sampling or an audio codec, and are transmitted and received in a frequency band different from the frequency for digital data. In the example shown in FIG. 1, the audio input and the audio output are exchanged via the same terminal on the wired side, but they may be exchanged via different terminals.
  • the software defined radio 10 can further modulate digital data input from the wired side by a digital radio method and transmit it by radio waves in the data transmission frequency band. Further, the radio wave received by the frequency band for data reception on the wireless side can be demodulated by the digital wireless method and output as digital data to the wired side.
  • the frequency is divided between transmission and reception, but transmission / reception of digital data may be performed in the same frequency band by using a TDD (Time Division Duplex) method.
  • TDD Time Division Duplex
  • the software defined radio 10 of the present embodiment is characterized in that various resources such as a CPU and a memory are preferentially allocated to the input / output of analog voice rather than to the input / output of digital data. According to this feature, sufficient resources can always be provided for analog voice, and delay prevention and quality assurance can be continuously made possible for voice communication.
  • various resources such as a CPU and a memory are preferentially allocated to the input / output of analog voice rather than to the input / output of digital data.
  • FIG. 2 is a block diagram for explaining the function of the software defined radio 10 shown in FIG.
  • the software defined radio 10 includes an analog audio terminal 20.
  • An analog audio signal is input to the analog audio terminal 20 from an external device.
  • the input analog audio signal is provided to the analog modulation unit 22.
  • the analog modulation unit 22 modulates the input analog audio signal into an analog wireless system.
  • the modulated analog signal is provided to the radio wave transmission unit 26 via the line determination unit 24.
  • the signal received by the radio wave transmitting unit 26 is transmitted as a radio signal from the antenna 28.
  • the radio signal received by the antenna 28 is provided to the radio wave receiving unit 30.
  • the signal provided to the radio wave receiving unit 30 includes a signal received by the analog radio system. This signal is provided to the analog demodulation unit 32 via the line determination unit 24.
  • the analog demodulation unit 32 demodulates the analog radio system signal to generate an analog audio signal.
  • the generated analog audio signal is provided from the analog audio terminal 20 to an external device.
  • the software defined radio 10 also includes a digital data terminal 34.
  • a digital data signal is input to the digital data terminal 34 from an external device.
  • the input digital data signal is provided to the digital modulation unit 36.
  • the digital modulation unit 36 modulates the digital data signal into a digital wireless system.
  • the modulated digital data signal is transmitted as a radio signal from the antenna 28 by the radio wave transmission unit 26.
  • the signal received by the antenna 28 may include a digital radio signal. This signal is received by the radio wave receiving unit 30 and then provided to the digital demodulation unit 38. The digital demodulation unit 38 demodulates the received digital radio signal to generate a digital data signal. The generated digital data signal is provided to an external device from the digital data terminal 34.
  • the line determination unit 24 determines whether or not the analog audio signal is processed without excess or deficiency. Specifically, it is determined whether or not the available hardware resources such as CPU and memory and the resources in the available frequency band are allocated to the audio signals to be transmitted and received in just proportion. Then, when it is determined that the hardware resource is insufficient, a command for requesting an increase in the resource is issued to the resource control unit 40. On the other hand, if there is a hardware resource that is assigned to the audio signal but is not used, the resource control unit 40 is instructed to release the resource.
  • the resource control unit 40 preferentially allocates hardware resources to the analog modulation unit 22 and the analog demodulation unit 32 in response to a command from the line determination unit 24. That is, when the resource increase command is received from the line determination unit 24, the hardware resources allocated to the digital modulation unit 36 or the digital demodulation unit 38 are reconstructed by allocating them to the analog modulation unit 22 and the analog demodulation unit 32.
  • the line determination unit 24 requests the release of resources
  • the digital modulation unit 36 and the digital demodulation unit 38 allocate unused areas of the resources allocated to the analog modulation unit 22 and the analog demodulation unit 32 to the digital modulation unit 36 and the digital demodulation unit 38. Rebuild to release.
  • the line determination unit 24 determines that the frequency resource allocated to the audio signal is insufficient, the line determination unit 24 instructs the frequency control unit 42 to increase the frequency resource. Then, if there is an unused frequency band assigned to the audio signal, the frequency control unit 42 is instructed to release the frequency band.
  • the frequency control unit 42 secures a frequency band required for analog voice transmission in response to a command from the line determination unit 24. That is, when the resource increase command is received from the line determination unit 24, the frequency band assigned to the transmission / reception of analog voice is increased. When the line determination unit 24 commands the release of the frequency band, reconstruction is performed to allocate a part of the frequency band assigned to the analog voice to the digital signal.
  • FIG. 3 is a flowchart of processing executed by the control unit 18 of the software defined radio 10 in order to realize the above functions.
  • the software defined radio 10 first, analog voice communication and digital data communication are transmitted and received in different frequency bands (step 100). At this time, the hardware of the software defined radio 10 is appropriately allocated for analog voice communication and digital data communication.
  • step 102 it is next determined whether or not the resources for the voice line are insufficient. As a result, if no shortage is found, it is further determined whether or not there is an unused resource among the resources used for the voice line (step 104). If no unused resources are found, the analog voice and digital data communication is continued as it is.
  • step 106 reconstruction is performed to give priority to the voice line (step 106). Specifically, first, the hardware resources and frequency resources that are lacking in voice communication are identified. Then, among the resources allocated for digital data, the specified hardware and frequency band are transferred to the resources for voice communication. As a result, low-latency and high-quality voice communication is maintained thereafter.
  • step 104 After that, if the amount of analog voice communication decreases, unused resources will be generated among the resources allocated for voice communication. If such a situation occurs, it is determined in step 104 that there is an unused resource among the resources of the voice line. In this case, following step 104, a process of allocating unused resources for data communication is performed (step 108).
  • the software defined radio 10 of the present embodiment continuously performs low-delay and high-quality analog voice communication while effectively utilizing all communication resources regardless of the increase or decrease in communication resources required for analog voice. Can be provided.
  • a plurality of analog voices are uniformly prioritized, but the present disclosure is not limited to this.
  • priorities may be set for them. Further, it may be possible for the user to set the priority.
  • the control unit 18 determines hardware and frequency resource allocation according to the priority.
  • FIG. 4 is a diagram for explaining the configuration of the software defined radio 50 of the present embodiment.
  • the software defined radio 10 of the present embodiment can transmit and receive both analog voice 1 to m and digital data 1 to n as in the case of the first embodiment. Since the display related to the digital data 1 to n is the same as that in FIG. 1, it is omitted in FIG. Further, in FIG. 4, the same elements as those shown in FIG. 1 are designated by a common reference numeral, and the description thereof will be omitted or simplified.
  • the software defined radio 50 of this embodiment includes a control unit 52.
  • the control unit 52 is similar to the control unit 18 in the first embodiment in that it controls the FPGA 12, the AD / DA converter 14, and the RF front end unit 16. However, the control unit 52 is different from the control unit 18 in how to control them, which is a feature of the present embodiment.
  • FIG. 5 is a block diagram for explaining the function of the software defined radio 50 shown in FIG.
  • the configuration shown in FIG. 5 is the same as the configuration shown in FIG. 2, except that the line determination unit 24 is replaced with the line determination unit 54.
  • the same elements as those shown in FIG. 2 are designated by a common reference numeral and the description thereof will be omitted.
  • the line determination unit 54 in the present embodiment determines the signal-to-noise ratio (S / N) for each of the signals F'1 to F'm and F'p to F'q for voice reception including the spare. I'm watching. Then, the quality of each line is determined based on the (S / N), and if the signal has (S / N) below a predetermined threshold value, it is determined that the line quality has deteriorated.
  • the line determination unit 54 determines that any of the lines used for analog voice communication has deteriorated, the line determination unit 54 switches the communication of that line to the line judged to have the best quality among the spare lines. .. At this time, the communication partner is notified of the frequency after switching by a predetermined known method. As a result, in the software defined radio 50 of the present embodiment, when any analog voice communication is deteriorated, the line can be switched instantly to continue low delay and high quality voice communication.
  • FIG. 6 is a flowchart of the process executed by the control unit 52 in order to realize the above function.
  • first, analog voice communication and digital data communication are transmitted and received in different frequency bands (step 100). This process is the same as the process performed by the control unit 18 of the first embodiment (see FIG. 3).
  • step 110 it is determined whether or not quality deterioration is observed in any of the voice lines (step 110). As a result, if no quality deterioration is observed, the communication is continued as it is.
  • a line capable of providing high communication quality is continuously assigned to analog voice communication. Since a spare line is always held, the frequency utilization efficiency is lowered, but it is possible to continuously provide low-latency and high-quality voice communication.
  • Embodiment 3 Next, a third embodiment of the present disclosure will be described with reference to FIG. 7.
  • the software defined radio of the present embodiment can be realized by the hardware configuration shown in FIGS. 1 and 2 in the same manner as the software defined radio 10 of the first embodiment.
  • the software defined radio of the present embodiment can be realized by causing the control unit 18 shown in FIG. 2 to execute a routine according to the flowchart shown in FIG. 7 instead of the routine shown in FIG.
  • FIG. 7 is a flowchart of a routine executed by the control unit 18 in the present embodiment.
  • the flowchart shown in FIG. 7 substantially corresponds to a combination of the flowchart shown in FIG. 3 and the flowchart shown in FIG.
  • the same steps as those shown in FIGS. 3 or 6 are designated by a common reference numeral, and the description thereof will be omitted or simplified.
  • step 110 is inserted between step 102 and step 104. That is, in the flowchart shown in FIG. 7, if it is determined in step 102 that the resources for the voice line are not insufficient, then in step 110, it is determined whether or not the quality deterioration of the voice line is recognized. ..
  • step 104 it is determined whether or not there is an unused resource allocated to the voice line. On the other hand, if the quality of the voice line is deteriorated, the allocation is changed in step 106 to give priority to the voice line.
  • the communication resource used for the digital data is voice when the quality of the voice line is deteriorated in addition to the case where the resource shortage for the voice line is recognized. Assigned to the line. If the resources of the voice line become excessive, the resources are allocated for data communication to eliminate waste. Therefore, according to the software defined radio of the present embodiment, all of the following merits can be provided to the user. 1. 1. By preferentially allocating resources to the voice line, it is possible to continuously provide low-delay and high-quality voice communication even when the number of analog voice signals to be transmitted increases. 2. 2. When the quality of the voice line deteriorates, it is possible to continue high-quality voice communication with low delay by switching the line. 3. 3. Since a spare voice line is not prepared and resources for an excessive voice line are used as resources for data communication, it is possible to avoid a decrease in frequency utilization efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

デジタルデータと共に、常に低遅延で音声信号を伝送することのできるソフトウェア無線機を提供する。ソフトウェア無線機は、ソフトウェアの変更により再構成が可能な無線通信用のハードウェアリソースと、前記ハードウェアリソースの一部を音声信号の無線通信に対応させるためのソフトウェアと、前記ハードウェアリソースの残部をデジタルデータの無線通信に対応させるためのソフトウエアとを備える。音声信号の無線通信とデジタルデータの無線通信を別周波数で行う(ステップ100)。音声回線の不足が検知されたら(ステップ102)、その不足が解消されるように、デジタルデータの無線通信に割り当てられていたハードウェアリソースを音声通信用に割り当てる(ステップ106)。

Description

ソフトウェア無線機、低遅延音声伝送方法、および低遅延音声伝送用プログラム
 この開示は、ソフトウェア無線機、低遅延音声伝送方法、および低遅延音声伝送用プログラムに係り、特に、デジタルデータと共に、低遅延で音声信号を伝送する上で好適なソフトウェア無線機、低遅延音声伝送方法、および低遅延音声伝送用プログラムに関する。
 特許文献1には、データ転送システムが開示されている。このデータ転送システムは、データ転送の品質低下を感知すると、ストリーミングデータの圧縮率を高めて転送パケットのサイズを縮小する。転送パケットのサイズが縮小されれば、その前のパケットを送るための再送余裕が増す。その結果、データが送信されてから、そのデータが受信および再生されるまでの遅延を小さくすることができる。
特開2003-309541号公報
 特許文献1に記載のデータ転送システムで音声信号を伝送する場合、回線の品質が悪化すれば、音声信号の圧縮率が高められることになる。再生後の音声信号の品質は、伝送時の圧縮率が高いほど劣化し易い。このため、上述した従来のデータ伝送システムでは、回線の品質が悪化すると、音声の遅延は回避できるが、再生後の音声品質が劣化するという問題が生ずる。
 本開示は、音声通信とデータ通信の双方に利用可能なリソースを用いて、必要に応じて、データ通信のリソースを音声通信のリソースに割り当てることにより、音声信号を、常に、低遅延かつ高品質で伝送するソフトウェア無線機を提供することを第1の目的とする。
 また、本開示は、音声通信とデータ通信の双方に利用可能なリソースを用いて、必要に応じて、データ通信のリソースを音声通信のリソースに割り当てることにより、音声信号を、常に、低遅延かつ高品質で伝送するための低遅延音声伝送方法を提供することを第2の目的とする。
 更に、本開示は、音声通信とデータ通信の双方に利用可能なリソースを制御して、必要に応じて、データ通信のリソースを音声通信のリソースに割り当てることにより、音声信号を、常に、低遅延かつ高品質で伝送するための低遅延音声伝送用プログラムを提供することを第3の目的とする。
 第1の態様は、上記の目的を達成するため、ソフトウェア無線機であって、ソフトウェアの変更により再構成が可能な無線通信用のハードウェアリソースと、前記ハードウェアリソースの一部を音声信号の無線通信に対応させるためのソフトウェアと、前記ハードウェアリソースの残部をデジタルデータの無線通信に対応させるためのソフトウエアとを格納したメモリと、前記メモリに格納されているソフトウェアを用いて前記ハードウェアリソースを再構成する制御部とを備え、前記制御部は、音声信号の無線通信を担う音声用通信リソースを構成する処理と、前記音声信号の回線状態を判定する処理と、前記回線状態に基づいて、前記音声用通信リソースの不備を検知する処理と、前記不備が検知された場合に、その不備が解消されるように、前記音声用通信リソースとして用いられていなかったリソースを、前記音声用通信リソースに割り当てる再構成処理と、を実行することが望ましい。
 また、第2の態様は、ソフトウェアの変更により再構成が可能な無線通信用のハードウェアリソースと、前記ハードウェアリソースの一部を音声信号の無線通信に対応させるためのソフトウェアと、前記ハードウェアリソースの残部をデジタルデータの無線通信に対応させるためのソフトウエアと、を用いる低遅延音声伝送方法であって、前記ソフトウェアを用いて前記ハードウェアリソースを再構成する制御ステップを含み、前記制御ステップは、音声信号の無線通信を担う音声用通信リソースを構成するステップと、前記音声信号の回線状態を判定するステップと、前記回線状態に基づいて、前記音声用通信リソースの不備を検知するステップと、前記不備が検知された場合に、その不備が解消されるように、前記音声用通信リソースとして用いられていなかったリソースを、前記音声用通信リソースに割り当てる再構成ステップと、を含むことが望ましい。
 また、第3の態様は、低遅延音声伝送用プログラムであって、コンピュータに、第1の態様のソフトウェア無線機の機能を実現させるためのプログラムを含むことが望ましい。
 第1乃至第3の態様によれば、ソフトウェアの変更によりハードウェアリソースを、所望の通信の実現に適した状態に適宜変化させることができる。そして、音声用通信リソースとして用いられていなかったリソースを、音声信号の回線状態に基づいて、適宜、音声用通信リソースとして割り当てることができるため、音声信号を、常に、低遅延かつ高品質で伝送する状態を作り出すことができる。
本開示の実施の形態1のソフトウェア無線機の構成を示す図である。 図1に示すソフトウェア無線機の機能を説明するためのブロック図である。 図1に示すソフトウェア無線機で実行される処理の内容を説明するためのフローチャートである。 本開示の実施の形態2のソフトウェア無線機の構成を示す図である。 図4に示すソフトウェア無線機の機能を説明するためのブロック図である。 図4に示すソフトウェア無線機で実行される処理の内容を説明するためのフローチャートである。 本開示の実施の形態3のソフトウェア無線機で実行される処理の内容を説明するためのフローチャートである。
実施の形態1.
[実施の形態1の構成]
 図1は、本開示の実施の形態1のソフトウェア無線機10の構成を示す図である。ソフトウェア無線機10は、ソフトウェアによって再構成が可能なハードウェアを備えており、必要に応じて、無線通信に利用する周波数帯や通信方式を変更することができる。ソフトウェア無線機10は、例えば、移動体通信の基地局として用いることができる。
 図1に示すように、ソフトウェア無線機10は、FPGA(Field Programmable Gate Array)12を備えている。FPGA12は、ソフトウェアの書き換えにより、様々な論理回路の構成をプログラムできるデバイスである。ソフトウェア無線機10において、FPGA12は、通信により伝送されるベースバンド信号を処理するベースバンド処理部として機能する。FPGA12は、一般的なコンピュータやDSP(Digital Signal Processor)に置き換えてもよい。
 ソフトウェア無線機10は、AD/DAコンバータ14、並びにRFフロントエンド部16を備えている。AD/DAコンバータ14およびRFフロントエンド部16は、通信アンテナ(図示略)と、FPGA12との間で高周波信号を処理する。
 ソフトウェア無線機10は、更に、制御部18を備えている。制御部18は、各種のインターフェース、CPU、メモリ等を内蔵している。制御部18は、メモリ内に格納されているプログラムに沿って処理を進めることにより、FPGA12、AD/DAコンバータ14、およびRFフロントエンド部16を制御する。制御部18は、具体的には、ソフトウェア無線機10に要求される通信の状態を検知し、その状態に対応するハードウェアの再構成等を行う。
 図1に示すように、ソフトウェア無線機10は、その有線側において複数の信号を授受する。有線側の信号には、アナログ音声1~mと、デジタルデータ1~nとが含まれている。アナログ音声1~mは、アナログ形式の音声信号である。一方、デジタルデータ1~nは、デジタル形式のデータ信号である。
 ソフトウェア無線機10は、その無線側において、複数の無線信号を授受している。それらの無線信号には、音声送信用の複数の信号F1~Fmと、音声受信用の複数の信号F´1~F´mが含まれている。F1~FmおよびF´1~F´mは、夫々異なる周波数帯に属するアナログ無線方式の信号である。本実施形態ではFDD(Frequency Division Duplex)の通信方式が採られており、例えば、F1とF´1は、送信周波数と受信周波数の対を成している。FmとF´mについても同様である。そして、夫々の対(F1、F´1)~(Fm、F´m)は、アナログ音声1~mの夫々に対応している。
 ソフトウェア無線機10が扱う無線信号には、更に、データ送信用およびデータ受信用の複数の信号f1~fnが含まれている。これらの信号f1~fnは、夫々異なる周波数帯に属するデジタル無線方式の信号である。デジタルデータの送受信信号f1~fnについても、FDDの通信方式が採られている。
 図1に示すソフトウェア無線機10は、有線側から入力されたアナログ音声を、アナログ無線方式で変調して、音声送信用周波数帯の電波により送信することができる。また、無線側で音声受信用周波数帯により受信された電波を、アナログ無線方式で復調してアナログ音声として有線側に出力することができる。これらの伝送は、デジタルサンプリングや音声コーデック等で圧縮されることなく、アナログ無線方式で変復調され、かつ、デジタルデータ用の周波数とは別の周波数帯で送受信される。尚、図1に示す例では、有線側で音声入力と音声出力が同一端子を介して授受されているが、それらは別々の端子を介して授受してもよい。
 ソフトウェア無線機10は、更に、有線側から入力されたデジタルデータを、デジタル無線方式で変調してデータ送信用周波数帯の電波により送信することができる。更に、無線側でデータ受信用周波数帯により受信された電波を、デジタル無線方式で復調してデジタルデータとして有線側に出力することができる。尚、図1に示す例では、送信と受信で周波数が分割されているが、デジタルデータの送受信については、TDD(Time Division Duplex)の方式を用いて、同一周波数帯で行うこととしてもよい。
[実施の形態1の特徴] 
 本実施形態のソフトウェア無線機10は、CPUやメモリなどの各種リソースを、デジタルデータの入出力に対するよりもアナログ音声の入出力に対して優先的に割り当てる点に特徴を有している。この特徴によれば、アナログ音声に対して常に十分なリソースを与えることができ、音声通信に関して、遅延の防止と品質の確保とを、持続的に可能にすることができる。以下、図2および図3を参照して、上記の特徴に関わる事項を詳細に説明する。
 図2は、図1に示すソフトウェア無線機10の機能を説明するためのブロック図である。図2に示すように、ソフトウェア無線機10は、アナログ音声端子20を備えている。アナログ音声端子20には、外部機器よりアナログ音声信号が入力される。入力されたアナログ音声信号は、アナログ変調部22に提供される。
 アナログ変調部22は、入力されたアナログ音声信号をアナログ無線方式に変調する。変調されたアナログ信号は、回線判定部24を介して電波送信部26に提供される。電波送信部26が受けた信号は、アンテナ28から無線信号として送信される。
 アンテナ28によって受信された無線信号は、電波受信部30に提供される。電波受信部30に提供される信号には、アナログ無線方式で受信された信号が含まれる。この信号は、回線判定部24を介してアナログ復調部32に提供される。アナログ復調部32は、アナログ無線方式の信号を復調してアナログ音声信号を生成する。生成されたアナログ音声信号は、アナログ音声端子20から外部の機器に提供される。
 ソフトウェア無線機10は、また、デジタルデータ端子34を備えている。デジタルデータ端子34には、外部機器からデジタルデータ信号が入力される。入力されたデジタルデータ信号は、デジタル変調部36に提供される。デジタル変調部36は、そのデジタルデータ信号をデジタル無線方式に変調する。変調されたデジタルデータ信号は、電波送信部26により、アンテナ28から無線信号として送信される。
 アンテナ28によって受信される信号には、デジタル無線方式の信号が含まれることがある。この信号は、電波受信部30によって受信された後、デジタル復調部38に提供される。デジタル復調部38は、受信したデジタル無線方式の信号を復調して、デジタルデータ信号を生成する。生成されたデジタルデータ信号は、デジタルデータ端子34から外部の機器に提供される。
 回線判定部24は、アナログ音声信号が過不足なく処理されているか否かを判定する。具体的には、利用能なCPUやメモリ等のハードウェアリソース、並びに利用可能な周波数帯のリソースが、送受信するべき音声信号に対して過不足なく割り当てられているか否かを判定する。そして、ハードウェアリソースの不足を判定すると、リソース制御部40に向けて、リソースの増加を要求する指令を発する。一方、音声信号に割り当てられているが使用されていないハードウェアリソースが存在する場合は、そのリソースの解放をリソース制御部40に指示する。
 リソース制御部40は、回線判定部24からの指令に応じて、アナログ変調部22およびアナログ復調部32に、優先的にハードウェアリソースを割り当てる。つまり、回線判定部24からリソース増加指令を受けると、デジタル変調部36またはデジタル復調部38に割り当てられていたハードウェアリソースを、アナログ変調部22およびアナログ復調部32に割り当てる再構築を行う。また、回線判定部24からリソースの解放が要求された場合は、アナログ変調部22およびアナログ復調部32に割り当てられていたリソースのうち不使用の領域を、デジタル変調部36およびデジタル復調部38に解放するための再構築を行う。
 同様に、回線判定部24は、音声信号に割り当てられている周波数リソースの不足を判定すると、周波数制御部42に、周波数リソースの増加を指令する。そして、音声信号に割り当てられた不使用の周波数帯が存在する場合は、その周波数帯の解放を周波数制御部42に指示する。
 周波数制御部42は、回線判定部24からの指令に応じて、アナログ音声の伝送に必要な周波数帯を確保する。つまり、回線判定部24からリソース増加指令を受けると、アナログ音声の送受信に割り当てる周波数帯を増やす。また、回線判定部24から周波数帯の解放が指令された場合は、アナログ音声に割り当てられている周波数帯の一部をデジタル信号に割り当てるための再構築を行う。
 図3は、上記の機能を実現するためにソフトウェア無線機10の制御部18が実行する処理のフローチャートである。図3に示すように、ソフトウェア無線機10では、先ず、アナログ音声の通信と、デジタルデータの通信とが、夫々別の周波数帯で送受信される(ステップ100)。この際、ソフトウェア無線機10のハードウェアは、アナログ音声の通信用と、デジタルデータの通信用とに適宜配分されている。
 図3に示すルーチンでは、次に、音声回線用のリソースが不足しているか否かが判別される(ステップ102)。その結果、不足が認められなければ、更に、音声回線用に用いられているリソースのうちに不使用のリソースが存在するか否かが判別される(ステップ104)。そして、不使用のリソースが認められなかった場合は、そのままの状態でアナログ音声とデジタルデータの通信が継続される。
 他方、上記ステップ102において、音声回線用のリソース不足が認められた場合は、音声回線を優先するための再構築が行われる(ステップ106)。具体的には、先ず、音声通信において不足しているハードウェアリソースと周波数リソースとが特定される。次いで、デジタルデータ用に割り当てられていたリソースのうち、特定されたハードウェアおよび周波数帯が、音声通信用のリソースに振り替えられる。その結果、以後、低遅延かつ高品質な音声通信が維持される。
 その後アナログ音声の通信量が減れば、音声通信に割り当てられたリソースの中に、不使用のリソースが発生する。このような状況が生じれば、上記ステップ104において、音声回線のリソース中に不使用のリソースが存在すると判定される。この場合、ステップ104に続いて、不使用のリソースをデータ通信用に割り当てる処理が行われる(ステップ108)。
 以上の処理によれば、アナログ音声の通信とデジタルデータの通信とを並行して行いつつ、必要に応じて、アナログ音声の通信に優先的に通信リソースを割り当てることができる。また、上記の処理によれば、アナログ音声の通信リソースに無駄が生じれば、不使用のリソースをデジタルデータに割り当てることで、その無駄を排除することができる。このため、本実施形態のソフトウェア無線機10は、アナログ音声に必要な通信リソースの増減に関わらず、全ての通信リソースを有効に活用しつつ、低遅延かつ高品質なアナログ音声通信を継続的に提供することができる。
[実施の形態1の変形例]
 ところで、上述した実施の形態1では、複数のアナログ音声を一律に優先の対象としているが、本開示はこれに限定されるものではない。複数のアナログ音声を通信する場合、それらに優先順位を設けることとしてもよい。更に、ユーザによる優先順位の設定を可能としてもよい。複数のアナログ音声に関して優先順位が設けられる場合、制御部18は、その優先順位に従って、ハードウェアおよび周波数のリソース割り当てを決定する。
実施の形態2.
 次に、図4乃至図6を参照して本開示の実施の形態2について説明する。
 図4は、本実施形態のソフトウェア無線機50の構成を説明するための図である。本実施形態のソフトウェア無線機10は、実施の形態1の場合と同様に、アナログ音声1~mと、デジタルデータ1~nの双方を送受信することができる。デジタルデータ1~nに関する表示は、図1と同様であるため、図4においては省略する。また、図4において、図1に示す要素と同一の要素については、共通する符号を付してその説明を省略または簡略する
 本実施形態のソフトウェア無線機50は、制御部52を備えている。制御部52は、FPGA12、AD/DAコンバータ14およびRFフロントエンド部16を制御する点において実施の形態1における制御部18と同様である。但し、制御部52は、それらをどのように制御するかの点において制御部18と異なっており、その点が本実施形態における特徴である。
[実施の形態2の特徴] 
 図4において、ソフトウェア無線機50の無線側には、音声送信用の信号F1~Fmに加えて、予備の音声送信用の信号Fp~Fqが示されている。その下方には、音声受信用の信号F´1~F´mに加えて、予備の音声受信用の信号F´p~F´qが示されている。つまり、本実施形態において、制御部52は、音声通信用に、予備のリソースを割り当てて、予備の周波数帯での通信が可能な状態を予め準備することとしている。
 図5は、図4に示すソフトウェア無線機50の機能を説明するためのブロック図である。図5に示す構成は、回線判定部24が回線判定部54に置き換えられている点を除いて、図2に示す構成と同様である。以下、図5に示す要素のうち、図2に示す要素と同一の要素については、共通する符号を付してその説明を省略する。
 本実施形態における回線判定部54は、予備を含めた全ての音声受信用の信号F´1~F´mおよびF´p~F´qの夫々につき、信号対雑音比 (S/N)を監視している。そして、夫々の回線の品質を、その(S/N)に基づいて判断し、(S/N)が所定の閾値を下回った信号については、その回線品質が劣化したと判定する。
 また、回線判定部54は、アナログ音声の通信に使用中の回線の何れかについて劣化を判定すると、その回線の通信を、予備の回線の中で最も品質が良いと判断されている回線に切り替える。この際、通信の相手には、予め定めてある既知の手法により、切り替え後の周波数を通知する。これにより、本実施形態のソフトウェア無線機50では、何れかのアナログ音声の通信に劣化が生じた場合に、瞬時に回線を切り替えて、低遅延かつ高品質な音声通信を継続することができる。
 図6は、上記の機能を実現するために制御部52が実行する処理のフローチャートである。図6に示すルーチンでは、先ず、アナログ音声の通信と、デジタルデータの通信とが、夫々別の周波数帯で送受信される(ステップ100)。この処理は、実施の形態1の制御部18で実施される処理と同様である(図3参照)。
 次に、何れかの音声回線において品質の劣化が認められるか否かが判別される(ステップ110)。その結果、品質劣化が認められないければ、そのままの状態で通信が継続される。
 一方、何れかの音声回線について品質の劣化が認められる場合は、その回線が、予備の回線中で最も(S/N)の優れた回線に切り替えられる(ステップ112)。回線の切り替えにより不使用の状態となった回線は、以後、予備の音声回線となる。
 以上の処理が繰り返されることにより、本実施形態では、高い通信品質を提供できる回線が持続的にアナログ音声の通信に割り当てられる。予備の回線を常に保有することから、周波数の利用効率は低下するが、低遅延かつ高品質な音声通信を継続的に提供することが可能である。
実施の形態3.
 次に、図7を参照して本開示の実施の形態3について説明する。
 本実施形態のソフトウェア無線機は、実施の形態1のソフトウェア無線機10と同様に、図1および図2に示すハードウェア構成により実現することができる。そして、本実施形態のソフトウェア無線機は、図2に示す制御部18に、上記図3に示すルーチンに代えて、図7に示すフローチャートに沿ったルーチンを実行させることにより実現することができる。
[実施の形態3の特徴]
 図7は、本実施形態において制御部18が実行するルーチンのフローチャートである。図7に示すフローチャートは、実質的には、図3に示すフローチャートと図6に示すフローチャートとを組み合わせたものに相当する。尚、図7において、図3または図6に示すステップと同一のステップについては、共通する符号を付してその説明を省略または簡略する。
 図7に示すフローチャートは、ステップ102とステップ104との間にステップ110が挿入されている点を除いて、図3に示すフローチャートと同様である。すなわち、図7に示すフローチャートでは、ステップ102において音声回線用のリソースが不足していないと判別されると、次に、ステップ110において、音声回線の品質劣化が認められるか否かが判別される。
 そして、音声回線の品質劣化が認められないと判定された場合は、次にステップ104において、音声回線に割り当てられた不使用のリソースが存在するかが判別される。他方、音声回線の品質劣化が認められた場合は、ステップ106において、音声回線を優先するための割り当て変更が行われる。
 図7に示すルーチンによれば、音声回線用のリソースの不足が認められた場合に加えて、音声回線の品質劣化が認められた場合にも、デジタルデータ用に用いられていた通信リソースが音声回線に割り当てられる。そして、音声回線のリソースが過剰になれば、そのリソースがデータ通信用に割り当てられて無駄の解消が図られる。このため、本実施形態のソフトウェア無線機によれば、下記のメリットの全てをユーザに提供することができる。
 1.音声回線に優先的にリソースを割り当てることで、送信するべきアナログ音声信号が増大した場合にも、低遅延かつ高品質な音声通信を持続的に提供することができる。
 2.音声回線の品質が劣化した場合に、回線を切り替えることで低遅延かつ高品質な音声通信を継続することができる。
 3.予備の音声回線を準備せず、かつ、過剰な音声回線用のリソースがデータ通信用のリソースとされるため、周波数利用効率の低下を避けることができる。
10、50 ソフトウェア無線機
18、52 制御部
24、54 回線判定部
40 リソース制御部
42 周波数制御部

Claims (8)

  1.  ソフトウェアの変更により再構成が可能な無線通信用のハードウェアリソースと、
     前記ハードウェアリソースの一部を音声信号の無線通信に対応させるためのソフトウェアと、前記ハードウェアリソースの残部をデジタルデータの無線通信に対応させるためのソフトウエアとを格納したメモリと、
     前記メモリに格納されているソフトウェアを用いて前記ハードウェアリソースを再構成する制御部とを備え、
     前記制御部は、
     音声信号の無線通信を担う音声用通信リソースを構成する処理と、
     前記音声信号の回線状態を判定する処理と、
     前記回線状態に基づいて、前記音声用通信リソースの不備を検知する処理と、
     前記不備が検知された場合に、その不備が解消されるように、前記音声用通信リソースとして用いられていなかったリソースを、前記音声用通信リソースに割り当てる再構成処理と、
     を実行するソフトウェア無線機。
  2.  前記回線状態は、前記音声信号の回線の不足を含み、
     前記音声用通信リソースとして用いられていなかったリソースは、前記デジタルデータの無線通信に割り当てられていたリソースを含み、
     前記再構成処理は、前記音声信号の回線の不足が認められた場合に、その不足が解消されるように、前記デジタルデータの回線に割り当てられていたリソースを、前記音声信号の回線に割り当てる処理を含む請求項1に記載のソフトウェア無線機。
  3.  前記制御部は、
     前記音声信号の回線中に不使用の回線が存在するか否かを判定する処理と、
     前記不使用の音声回線が認められる場合に、当該音声回線に割り当てられていたハードウェアリソースを前記デジタルデータの回線に解放する処理と、
     を更に実行する請求項2に記載のソフトウェア無線機。
  4.  前記制御部は、
     前記音声信号の無線通信に使用が可能な予備の回線を構成する処理を更に実行し、
     前記回線状態は、前記音声信号の回線の通信品質を含み、
     前記音声用通信リソースとして用いられていなかったリソースは、前記予備の回線に割り当てられていたリソースを含み、
     前記再構成処理は、前記音声信号の回線の品質劣化が認められた場合に、当該回線を前記予備の回線に切り替える処理を含む請求項1に記載のソフトウェア無線機。
  5.  前記予備の回線は複数構成されており、
     前記制御部は、
     複数の前記予備の回線の夫々について通信品質を検知する処理を更に実行し、
     前記音声信号の回線の品質劣化が認められた場合に、当該回線を、前記予備の回線のうち最も通信品質の良い回線に切り替える請求項4に記載のソフトウェア無線機。
  6.  前記制御部は、
     前記音声信号の無線通信に使用が可能な予備の回線を構成する処理を更に実行し、
     前記回線状態は、前記音声信号の回線の通信品質を含み、
     前記音声用通信リソースとして用いられていなかったリソースは、前記デジタルデータの無線通信に割り当てられていたリソースを含み、
     前記再構成処理は、前記音声信号の回線の品質劣化が認められた場合に、その品質劣化が解消されるように、前記デジタルデータの回線に割り当てられていたリソースを、前記音声信号の回線に割り当てる処理を含む請求項1乃至3の何れか1項に記載のソフトウェア無線機。
  7.  ソフトウェアの変更により再構成が可能な無線通信用のハードウェアリソースと、前記ハードウェアリソースの一部を音声信号の無線通信に対応させるためのソフトウェアと、前記ハードウェアリソースの残部をデジタルデータの無線通信に対応させるためのソフトウエアと、を用いる低遅延音声伝送方法であって、
     前記ソフトウェアを用いて前記ハードウェアリソースを再構成する制御ステップを含み、
     前記制御ステップは、
     音声信号の無線通信を担う音声用通信リソースを構成するステップと、
     前記音声信号の回線状態を判定するステップと、
     前記回線状態に基づいて、前記音声用通信リソースの不備を検知するステップと、
     前記不備が検知された場合に、その不備が解消されるように、前記音声用通信リソースとして用いられていなかったリソースを、前記音声用通信リソースに割り当てる再構成ステップと、
     を含む低遅延音声伝送方法。
  8.  コンピュータに、請求項1乃至6の何れか1項に記載のソフトウェア無線機の機能を実現させるためのプログラムを含む低遅延音声伝送用プログラム。
     
PCT/JP2020/033993 2020-09-08 2020-09-08 ソフトウェア無線機、低遅延音声伝送方法、および低遅延音声伝送用プログラム WO2022054137A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/033993 WO2022054137A1 (ja) 2020-09-08 2020-09-08 ソフトウェア無線機、低遅延音声伝送方法、および低遅延音声伝送用プログラム
JP2022548273A JP7494921B2 (ja) 2020-09-08 2020-09-08 ソフトウェア無線機、低遅延音声伝送方法、および低遅延音声伝送用プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/033993 WO2022054137A1 (ja) 2020-09-08 2020-09-08 ソフトウェア無線機、低遅延音声伝送方法、および低遅延音声伝送用プログラム

Publications (1)

Publication Number Publication Date
WO2022054137A1 true WO2022054137A1 (ja) 2022-03-17

Family

ID=80631401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033993 WO2022054137A1 (ja) 2020-09-08 2020-09-08 ソフトウェア無線機、低遅延音声伝送方法、および低遅延音声伝送用プログラム

Country Status (2)

Country Link
JP (1) JP7494921B2 (ja)
WO (1) WO2022054137A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002335186A (ja) * 2001-01-25 2002-11-22 Toshiba Corp 複数の無線通信システムに対応可能な無線通信装置
JP2003309541A (ja) * 2002-04-15 2003-10-31 Sony Corp データ転送システム、データ転送装置及びデータ転送方法、並びにコンピュータ・プログラム
JP2007150767A (ja) * 2005-11-28 2007-06-14 Kyocera Corp 通信装置、通信システム及び通信方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002335186A (ja) * 2001-01-25 2002-11-22 Toshiba Corp 複数の無線通信システムに対応可能な無線通信装置
JP2003309541A (ja) * 2002-04-15 2003-10-31 Sony Corp データ転送システム、データ転送装置及びデータ転送方法、並びにコンピュータ・プログラム
JP2007150767A (ja) * 2005-11-28 2007-06-14 Kyocera Corp 通信装置、通信システム及び通信方法

Also Published As

Publication number Publication date
JPWO2022054137A1 (ja) 2022-03-17
JP7494921B2 (ja) 2024-06-04

Similar Documents

Publication Publication Date Title
US11184144B2 (en) Adaptive operational full-duplex and half-duplex FDD modes in wireless networks
US10715219B2 (en) Apparatus and methods for transmission and reception of data in multi-antenna systems
JP7309003B2 (ja) 無線通信ネットワークの適応帯域幅利用方法及び装置
US11089645B2 (en) Resource scheduling method and apparatus, and base station
JP6934952B2 (ja) データ伝送方法、リソーススケジューリング方法、装置、端末およびネットワーク側機器
US9313825B2 (en) Multi-mode handheld apparatus
WO2013184971A1 (en) Methods and apparatus for mitigating interference in aggressive from factor designs
JP2006094005A (ja) マルチバンド移動通信システムおよび送信機
JP5829469B2 (ja) 集積回路システム
WO2019137299A1 (zh) 通信的方法和通信设备
WO2022054137A1 (ja) ソフトウェア無線機、低遅延音声伝送方法、および低遅延音声伝送用プログラム
US20210168187A1 (en) Apparatus, system and method of communicating audio traffic over a bluetooth link
US20230217474A1 (en) Supplementary Uplink Sul Configuration Method and Apparatus
WO2010024335A1 (ja) 無線基地局装置及び無線通信方法
EP2255444B1 (en) Software defined radio
JP2021532656A (ja) セミパーシステントグラント上りリンク伝送のための方法、端末機器及びネットワーク側機器
US20080146163A1 (en) Diversity control of multi-mode communication devices
US20230028973A1 (en) Apparatus, system, and method of time-sensitive communication via a multi user (mu) multiple-input-multiple-output (mimo) (mu-mimo) transmission
WO2022054138A1 (ja) ソフトウェア無線機、回線品質劣化回避方法、および回線品質劣化回避用プログラム
CN115734355A (zh) 一种通信方法及装置
CN117156504A (zh) 无线通信方法、设备和存储介质
JP2017103545A (ja) 無線通信システム、基地局装置及び無線通信方法
WO2012108042A1 (ja) 応答方法、通信システム及び通信装置
JP2007208337A (ja) 無線基地局装置及び無線端末装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953205

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022548273

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20953205

Country of ref document: EP

Kind code of ref document: A1