WO2022053044A1 - 天线结构及电子设备 - Google Patents

天线结构及电子设备 Download PDF

Info

Publication number
WO2022053044A1
WO2022053044A1 PCT/CN2021/117979 CN2021117979W WO2022053044A1 WO 2022053044 A1 WO2022053044 A1 WO 2022053044A1 CN 2021117979 W CN2021117979 W CN 2021117979W WO 2022053044 A1 WO2022053044 A1 WO 2022053044A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
sub
antenna structure
frequency band
groove
Prior art date
Application number
PCT/CN2021/117979
Other languages
English (en)
French (fr)
Inventor
黄红坤
于西
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022053044A1 publication Critical patent/WO2022053044A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure

Definitions

  • the present application belongs to the field of communication technologies, and in particular relates to an antenna structure and an electronic device.
  • the purpose of the embodiments of the present application is to provide an antenna structure and an electronic device, which can solve the problem of poor isolation between radiators included in the antenna structure.
  • an embodiment of the present application provides an antenna structure, including: a first radiator, a second radiator, and a third radiator, the first radiator is provided with a first radiator for accessing a first feed signal a first feeding point, the second radiator is provided with a second feeding point for accessing the second feeding signal, and the difference between the working frequency bands of the first radiator and the second radiator is less than A preset value, the first radiator and the second radiator are spaced apart or connected to the opposite ends, and the first radiator and the second radiator are both grounded, the third radiator and the The first radiator is coupled and connected.
  • an embodiment of the present application provides an electronic device, including the antenna structure described in the first aspect.
  • the third radiator since the third radiator is coupled to the first radiator, the third radiator introduces a new distributed parameter coupling path to the entire antenna structure, and the distributed parameter coupling path can be coupled with the first radiator.
  • the distributed parameter coupling paths generated between the radiation signals of the first radiator and the second radiator cancel each other out at least a part, thereby weakening the coupling effect between the radiation signals of the first radiator and the second radiator, and improving the performance of the first radiator and the second radiator. Isolation between the second radiators.
  • FIG. 1 is one of the schematic structural diagrams of an antenna structure provided by an embodiment of the present application.
  • FIG 2 is one of the schematic diagrams of the isolation and reflection coefficient of an antenna structure provided by an embodiment of the present application.
  • FIG. 3 is a second schematic structural diagram of an antenna structure provided by an embodiment of the present application.
  • FIG 4 is the second schematic diagram of the isolation and reflection coefficient of an antenna structure provided by an embodiment of the present application.
  • FIG. 5 is a third schematic structural diagram of an antenna structure provided by an embodiment of the present application.
  • FIG. 6 is a fourth schematic structural diagram of an antenna structure provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a filter circuit in an antenna structure provided by an embodiment of the present application.
  • FIG. 8 is a fifth schematic structural diagram of an antenna structure provided by an embodiment of the present application.
  • FIG. 9 is a sixth schematic structural diagram of an antenna structure provided by an embodiment of the present application.
  • FIG. 10 is a seventh schematic structural diagram of an antenna structure provided by an embodiment of the present application.
  • FIG. 11 is an eighth schematic structural diagram of an antenna structure provided by an embodiment of the present application.
  • FIG. 12 is a ninth schematic structural diagram of an antenna structure provided by an embodiment of the present application.
  • FIG. 13 is a tenth schematic structural diagram of an antenna structure provided by an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and distinguish between “first”, “second”, etc.
  • the objects are usually of one type, and the number of objects is not limited.
  • the first object may be one or more than one.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • the antenna structure includes: a first radiator 10 , a second radiator 20 and a third radiator 30 .
  • the first radiator The body 10 is provided with a first feeding point for accessing the first feeding signal
  • the second radiator 20 is provided with a second feeding point for accessing the second feeding signal
  • the first radiating The difference between the operating frequency bands of the body 10 and the second radiator 20 is less than a preset value, the first radiator 10 and the opposite ends of the second radiator 20 are spaced apart or connected, and the first radiator 10 and the second radiator 20 are both grounded, and the third radiator 30 and the first radiator 10 are coupled and connected.
  • the difference between the working frequency bands of the first radiator 10 and the second radiator 20 is smaller than the preset value, that is, when the working frequencies (or working frequency bands) of the first radiator 10 and the second radiator 20 are the same or similar
  • a strong distribution parameter coupling will occur between the first radiator 10 and the second radiator 20, that is, when the first radiator 10 and the second radiator 20 radiate signals, the first radiator
  • the distribution parameters which can be understood as at least one of the parameters such as capacitance parameters and inductance parameters
  • the isolation degree of the radiator 20 is poor, and in this embodiment of the present application, the third radiator 30 is included, and the third radiator 30 and the first radiator 10 are coupled and connected, so that the third radiator 30 can also provide a new The distributed parameter coupling path of the The coupling effect between the radiation signals of the second radiator 20 improves the isolation degree between the first radiator 10 and the second radiator 20 .
  • the third radiator 30 can also generate resonance, thereby enhancing the bandwidth of the entire antenna structure and improving the radiation efficiency of the entire antenna structure.
  • the preset value is 300MHZ. It can also be understood as: the difference between the working frequency bands of the first radiator 10 and the second radiator 20 is in the range of 0 to 300MHZ, and the isolation between the first radiator 10 and the second radiator 20 is relatively high. Poor, the third radiator 30 needs to be added to improve the isolation between the first radiator 10 and the second radiator 20 .
  • the abscissa in FIG. 2 represents the working frequency
  • the ordinate represents the ratio (for example, the ratio of attenuation)
  • S1, 2 and S2, 1 both represent the distance between the first radiator 10 and the second radiator 20
  • S1, 1 and S2, 2 represent the reflection coefficients of the first radiator 10 and the second radiator 20 respectively.
  • the isolation reaches about -13dB, while in the prior art, it is generally - It is about 6dB (that is, the isolation degree is about -6dB when there is no third radiator 30 ). It can be seen that the isolation degree of the first radiator 10 and the second radiator 20 in this embodiment is better.
  • the lengths of the first radiator 10 and the second radiator 20 may be 1/4 wavelength or 3/4 wavelength of their working frequency band (which can also be understood as the signal radiated by them), so that the first radiator 10 can be increased in length. and the radiation effect of the second radiator 20 .
  • the lengths of the first radiator 10 and the second radiator 20 can also be adjusted according to the surrounding environment and the medium in the antenna structure.
  • the above-mentioned medium can be used to load a signal to a radiator (eg, the first radiator 10 or the second radiator 20 ) in the antenna structure.
  • the length of the third radiator 30 may be 1/2 wavelength or 1 times the wavelength of its working frequency band, so that the radiation effect of the third radiator 30 can be further improved.
  • the length of the third radiator 30 can also be adjusted according to the surrounding environment and the medium in the antenna structure.
  • the manufacturing methods of the first radiator 10, the second radiator 20 and the third radiator 30 are not limited here.
  • the above-mentioned radiators may use Flexible Printed Circuit (FPC), metal frame, plastic die-cast metal, plastic embedded metal sheet, suspended metal parts that come with electronic equipment (such as suspended metal buttons, suspended camera decorations) and other structures, of course, you can also It is obtained directly by laser direct structuring technology (Laser Direct Structuring, LDS) or printing direct structuring technology (Printed Direct Structure, PDS).
  • FPC Flexible Printed Circuit
  • LDS Laser Direct Structuring
  • PDS Print Direct Structure
  • the antenna structure may further include a first feed source 11 and a second feed source 21, and the first feed source 11 may be connected to the first radiator to provide the first feed signal to the first radiator 10.
  • the second feed source 21 may be connected to the second radiator 20 to provide the second feed signal to the second radiator 20 .
  • the first feed source 11 may be directly electrically connected to the first radiator 10
  • the second feed source 21 may be directly electrically connected to the second radiator 20 .
  • the first feed source 11 and the second feed source 21 can transmit signals to the first radiator 10 and the second radiator 20 respectively, so that the first radiator 10 and the second radiator 20 radiate signals.
  • the first feed 11 can be electrically connected to the first radiator 10 through the first matching circuit 12
  • the second feed 21 can be connected to the second radiator 10 through the second matching circuit 22
  • the radiator 20 is electrically connected.
  • the first matching circuit 12 and the second matching circuit 22 can be respectively used to adjust the impedance in the circuit, so as to improve the bandwidth and total radiation efficiency of the entire antenna structure.
  • the grounding or grounding plate 100 in the embodiment of the present application may refer to a printed circuit board, a metal casing, and a metal component inside the electronic device of the electronic device at least one of the other structures.
  • the opposite ends of the first radiator 10 and the second radiator 20 are arranged at intervals, for example, the first end of the first radiator 10 and the first end of the second radiator 20 are arranged at intervals , at this time, the first end of the first radiator 10 and the first end of the second radiator 20 may be grounded respectively.
  • the grounding manner of the first end of the first radiator 10 and the first end of the second radiator 20 is not limited here, for example: the first end of the first radiator 10 and the first end of the second radiator 20
  • the terminals may be grounded through conductive connections, respectively.
  • the conductive connector can also play a supporting role for the first radiator 10 and the second radiator 20 .
  • the opposite ends of the first radiator 10 and the second radiator 20 are connected.
  • the first end of the first radiator 10 and the second radiator 20 The first end is connected, at this time, the first end of the first radiator 10 and the second end of the second radiator 20 can be grounded through the third conductive connection member 200, so that the third conductive connection member 200 can strengthen the first radiator 10 and the grounding performance of the second radiator 20 , and at the same time, the third conductive connector 200 can also play a supporting role for the first radiator 10 and the second radiator 20 .
  • the first radiator 10 and the second radiator 20 may be fixedly connected as two separate radiators, of course, the first radiator 10 and the second radiator
  • the 20 can also be an integrally formed structure, that is, the first radiator 10 and the second radiator 20 are two adjacent parts of the same radiator.
  • the positional relationship between the third radiator 30 and the first radiator 10 is not limited here.
  • the third radiator 30 and the first radiator 10 may be located on the same horizontal plane.
  • the third radiator 30 It can also be located in the same straight line direction on the same horizontal plane as the first radiator 10 .
  • the third radiator 30 may also be partially located between the first radiator 10 and the ground plane 100 , that is, the vertical projection of the third radiator 30 on the ground plane 100 and the vertical projection of the first radiator 10 on the ground plane 100 Projections can be partially coincident.
  • first radiator 10 may also be partially located between the third radiator 30 and the ground plane 100 .
  • the vertical projection of the third radiator 30 on the ground plane 100 is the same as the vertical projection of the first radiator 10 on the ground plane 100 .
  • Vertical projections can be partially coincident.
  • the position of the third radiator 30 is different, and the degree of adjustment of the isolation degree between the first radiator 10 and the second radiator 20 is also different. The degree of isolation between the first radiator 10 and the second radiator 20 is adjusted.
  • the antenna structure further includes a fourth radiator 40 , and the fourth radiator 40 is coupled and connected to the second radiator 20 .
  • the fourth radiator 40 can also refer to the corresponding description of the third radiator 30, and details are not repeated here, and the positional relationship between the fourth radiator 40 and the second radiator 20 can refer to the third radiator The description of the positional relationship between 30 and the first radiator 10 is not repeated here.
  • the antenna structure further includes the fourth radiator 40, that is, the distributed parameter coupling path generated by the fourth radiator 40 can also cancel at least a part of the distributed parameter coupling path between the first radiator 10 and the second radiator 20, so that The isolation of the entire antenna structure can be further enhanced, the working bandwidth of the entire antenna structure can also be increased, and the radiation efficiency of the entire antenna structure can be improved.
  • the isolation in this embodiment reaches about -23 dB. Compared with the prior art, it can be seen that the isolation of the antenna structure is further enhanced.
  • the third radiator 30 and the fourth radiator 40 may be provided at the same time, or only one may be provided separately, which is not specifically limited herein.
  • the antenna structure further includes a first ground plate 101 , the third radiator 30 and all the At least one of the fourth radiators 40 is insulated from the first ground plate 101 .
  • the isolation effect between the third radiator 30 and the fourth radiator 40 and the first ground plate 101 can be enhanced, so that the radiation performance of the third radiator 30 and the fourth radiator 40 can be further enhanced.
  • At least one of the third radiator 30 and the fourth radiator 40 is suspended relative to the first grounding plate 101 , so that the third radiator 30 and the fourth radiator 40 can be strengthened from the first ground plate 101 .
  • the isolation effect between the ground planes 101 is suppressed.
  • At least one of the third radiator 30 and the fourth radiator 40 is grounded.
  • the flexibility and diversity of the arrangement of the third radiator 30 and the fourth radiator 40 are enhanced, and at the same time, the grounding performance of the entire antenna structure is also enhanced.
  • the number of the grounding points of the third radiator 30 and the fourth radiator 40 and the setting positions are not limited here, for example, the number of the grounding points of the third radiator 30 and the fourth radiator 40 may be one , the ground point of the third radiator 30 may be one end away from the first radiator 10 (ie the second end of the third radiator 30 ), and similarly, the ground point of the fourth radiator 40 may be away from the second radiator 20 one end (ie, the second end of the fourth radiator 40 ). At this time, the length from the first end to the second end of the third radiator 30 and the fourth radiator 40 may be 1/4 wavelength of the working frequency band thereof.
  • grounding points of the third radiator 30 and the fourth radiator 40 may also be multiple, and the above-mentioned grounding points may be end positions or mid-point positions, or the like. In this way, the grounding performance of the third radiator 30 and the fourth radiator 40 can be enhanced by grounding the plurality of ground points.
  • the shapes of the third radiator 30 and the fourth radiator 40 are not limited herein.
  • the third radiator 30 and the fourth radiator 40 may both be rectangular radiators.
  • the four radiators 40 can also be other shaped radiators (eg, U-shaped radiators or V-shaped radiators).
  • the third radiator 30 and the fourth radiator 40 may also include two sub-radiators, and one end of one sub-radiator is vertically connected to one end of the other sub-radiator.
  • At least one of the third radiator 30 and the fourth radiator 40 is grounded through a filter circuit 60 .
  • both the third radiator 30 and the fourth radiator 40 can pass through two current paths (the current paths may Expressing the direction of energy transfer in space) work, refer to FIG. 6 for details, the third radiator 30 can work through two current paths C1 and C2, and the fourth radiator 40 can work through two current paths C3 and C4, and different The operating frequency bands of the current paths can be different. In this way, not only the operating frequency band of the antenna structure is increased, but also the distributed parameter coupling path formed by the above-mentioned multiple current paths and the distributed parameter coupling path generated between the first radiator 10 and the second radiator 20 can be used to cancel, thereby enhancing the the isolation of the entire antenna structure.
  • the specific structure of the filter circuit 60 is not limited herein.
  • the filter circuit 60 may include capacitors and inductors, and multiple capacitors and inductors may be connected in series or in parallel as required.
  • the filter circuit 60 includes a first capacitor 61 , a second capacitor 62 and an inductor 63 , the first end of the first capacitor 61 and the first end of the inductor 63 terminals are electrically connected, the second terminal of the first capacitor 61 and the second terminal of the inductor 63 are electrically connected, and the second terminal of the first capacitor 61 and the second terminal of the inductor 63 are both connected to the The second capacitor 62 is electrically connected.
  • the filter circuit in this embodiment can present conduction characteristics to the radiation signal in the low frequency band.
  • the third radiator 30 and the fourth radiator 40 work in the low frequency band, they can work through C2 and C4; and the filter circuit The radiated signal in the high frequency band can be blocked.
  • the third radiator 30 and the fourth radiator 40 work in the high frequency band, they can work through C1 and C3.
  • the third radiator 30 and the fourth radiator 40 can be controlled to work in a high frequency band or a low frequency band, and the third radiator 30 and the fourth radiator 40 can be controlled to work in a high frequency band or a low frequency band. 40 flexible and intelligent control methods.
  • the high frequency band and the low frequency band are only a relative concept.
  • the high frequency band is usually 3MHz to 30MHz
  • the low frequency band is usually 30kHz to 300kHz.
  • the above values are only examples, not specific limitations.
  • the antenna structure further includes a second ground plate 102;
  • the antenna structure further includes a first conductive connector 201 , two ends of the third radiator 30 are respectively connected with the first conductive connector 201 to form a first groove structure 301 , and the first conductive connector 201 connected to the second ground plate 102, the opening of the first groove structure 301 faces the second ground plate 102; and/or,
  • the antenna structure further includes a second conductive connector 202 , two ends of the fourth radiator 40 are respectively connected with the second conductive connector 202 to form a second groove structure 401 , and the second conductive connector 202 Connected to the second ground plate 102 , the opening of the second groove structure 401 faces the second ground plate 102 .
  • the third radiator 30 is connected with the two first conductive connectors 201 to form the first groove structure 301 , that is to say, both ends of the third radiator 30 can be respectively connected to one first conductive connector 201 .
  • the second groove structure 401 is formed by connecting the fourth radiator 40 with two second conductive connectors 202 , that is, two ends of the fourth radiator 40 are respectively connected to one second conductive connector 202 .
  • the first groove structure 301 and the second groove structure 401 can be used as radiators to radiate radiated signals, which further enhances the diversity of types of radiators included in the entire antenna structure. It should be noted that, the lengths of the first groove structure 301 and the second groove structure 401 may also be 1/2 wavelength of their operating frequency bands.
  • first groove structure 301 and the second groove structure 401 may also be filled with an insulating medium, so that the above-mentioned insulating medium can constitute a dielectric resonant antenna, thereby further enhancing the diversity of the types of radiators included in the antenna structure, and at the same time , and can also enhance the radiation effect of the antenna structure.
  • the antenna structure further includes a third ground plate 103;
  • the third radiator 30 is insulated from the third ground plate 103, and the third radiator 30 is a radiator including a first accommodating groove 302.
  • One end of the first radiator 10 (for example: The second end) is disposed in the first accommodating groove 302 and is insulated from the inner wall of the first accommodating groove 302; and/or,
  • the fourth radiator 40 is insulated from the third ground plate 103, and the fourth radiator 40 is a radiator including a second accommodating groove 402.
  • One end of the second radiator 20 (for example: The second end) is disposed in the second accommodating groove 402 and is insulated from the inner wall of the second accommodating groove 402 .
  • the third radiator 30 and the fourth radiator 40 may both be U-shaped radiators, and the first accommodating groove 302 and the second accommodating groove 402 are respectively accommodating grooves included in the U-shaped radiator.
  • the first end of the first radiator 10 and the first end of the second radiator 20 may be opposite ends, or the two may be connected.
  • both the third radiator 30 and the fourth radiator 40 are bent radiators, and the third radiator 30 can half surround the first radiator 10 and the fourth radiator 40 can half surround the second radiator 20.
  • both ends of the third radiator 30 are coupled with the first radiator 10 respectively, and both ends of the fourth radiator 40 are coupled with the second radiator 20 respectively, the coupling effect is enhanced, and the overall Isolation of the antenna structure.
  • the working bandwidth of the antenna structure can also be increased, and the radiation effect can be enhanced.
  • the antenna structure further includes a fifth radiator 50, the fifth radiator 50 is coupled and connected to the first radiator 10 and the second radiator 20, respectively, and the The fifth radiator 50 is coupled and connected to the third radiator 30 and the fourth radiator 40 respectively.
  • both ends of the fifth radiator 50 can be coupled and connected to both ends of the third radiator 30 and the fourth radiator 4 respectively, and the fifth radiator 50 can be connected to the first radiator 10 as a whole. It is coupled and connected to the second radiator 20 .
  • the fifth radiator 50 is coupled and connected to the first radiator 10 and the second radiator 20 respectively, and the fifth radiator 50 is coupled to the third radiator 30 and the fourth radiator 40 respectively, so, see FIG. 10.
  • the spatial coupling paths C5, C6 and C7 are newly added, so that the coupling effect between the first radiator 10 and the second radiator 20 can be further reduced, that is, the isolation of the entire antenna structure is further enhanced, and the entire antenna is improved.
  • the radiative efficiency of the structure since the fifth radiator 50 is coupled and connected to the first radiator 10 and the second radiator 20 respectively, and the fifth radiator 50 is coupled to the third radiator 30 and the fourth radiator 40 respectively, so, see FIG. 10.
  • the spatial coupling paths C5, C6 and C7 are newly added, so that the coupling effect between the first radiator 10 and the second radiator 20 can be further reduced, that is, the isolation of the entire antenna structure is further enhanced, and the entire antenna is improved.
  • the radiative efficiency of the structure since the fifth radiator 50 is coupled and connected to the first radiator 10 and the second radiator 20 respectively, and the fifth radiator
  • the length of the third radiator 30 and the fourth radiator 40 can be half the wavelength of their working frequency band, and the length of the fifth radiator 50 can be based on actual needs and the length of the first radiator 10, the second radiator 20.
  • the distance between the third radiator 30 and the fourth radiator 40 is adjusted, and the specific value is not limited here.
  • the fifth radiator 50 is grounded. In this way, since the antenna structure includes the fifth radiator 50, the operating frequency band of the entire antenna structure can be increased. Meanwhile, since the fifth radiator 50 is grounded, the grounding performance of the fifth radiator 50 is enhanced.
  • the fifth radiator 50 may include two sub-radiators, and the two sub-radiators are connected to each other, and the connection between the two sub-radiators may be grounded through a third conductive connector 200, and the third conductive connector 200 may The third conductive connector 200 connected to the first radiator 10 and the second radiator 20 is the same connector.
  • the above two sub-radiators may be integrally formed, and of course, the above two sub-radiators may also be connected in a detachable manner.
  • the third radiator 30 includes a first sub-radiator 31 , a first filter sub-circuit 32 and a second sub-radiator 33 .
  • the radiator 31 is electrically connected to the second sub-radiator 33 through the first filter sub-circuit 32; and/or,
  • the fourth radiator 40 includes a third sub-radiator 41 , a second filter sub-circuit 42 and a fourth sub-radiator 43 .
  • the third sub-radiator 41 communicates with the first filter sub-circuit 42 through the second filter sub-circuit 42 .
  • the four sub-radiators 43 are electrically connected.
  • the third radiator 30 includes the first filter sub-circuit 32
  • the fourth radiator 40 includes the second filter sub-circuit 42
  • the first filter sub-circuit 32 and the second filter sub-circuit 42 present the radiation signal of the low frequency band
  • the conduction characteristic that is, when the third radiator 30 and the fourth radiator 40 work in the low frequency band, the first filter subcircuit 32 and the second filter subcircuit 42 can pass the radiation signal of the low frequency band, so that the third radiation
  • the overall lengths of the body 30 and the fourth radiator 40 both participate in radiation; at the same time, the first filter sub-circuit 32 and the second filter sub-circuit 42 have blocking characteristics for high-frequency radiation signals, and the third radiator 30 and the fourth radiator
  • the first filter subcircuit 32 and the second filter subcircuit 42 can prevent the radiation signal of the high frequency band from passing through, so that a part of the length of the third radiator 30 and the fourth radiator 40 can participate in the radiation ( For example: the first sub-radiator 31 and the third sub-radi
  • the low frequency band and the high frequency band in the embodiments of the present application are relative.
  • the first radiator 10 works in the first frequency band
  • the second radiator 20 works in the second frequency band.
  • the first frequency band may be referred to as a low frequency band
  • the second frequency band may be referred to as a high frequency band.
  • the first frequency band is higher than the second frequency band
  • the first frequency band may be referred to as a high frequency band
  • the second frequency band may be referred to as a low frequency band.
  • the first filter sub-circuit 32 and the second filter sub-circuit 42 may both include capacitors and inductors, and the specific connection methods are not limited here, for example: the first filter For the specific structures of the sub-circuit 32 and the second filtering sub-circuit 42, reference may be made to the structure of the filtering circuit 60 in the foregoing embodiment, and details are not repeated here.
  • the third radiator 30 includes a fifth sub-radiator 34 and a sixth sub-radiator 35 that are electrically connected to each other, the fifth sub-radiator 34 works in the first frequency band, and the The sixth sub-radiator 35 operates in a second frequency band, and the first frequency band is different from the second frequency band; and/or,
  • the fourth radiator 40 includes a seventh sub-radiator 44 and an eighth sub-radiator 45 that are electrically connected to each other, the seventh sub-radiator 44 works in the third frequency band, and the eighth sub-radiator 45 works in the third frequency band.
  • the fourth frequency band, the third frequency band and the fourth frequency band are different.
  • the first frequency band and the second frequency band can be different frequency bands
  • the third frequency band and the fourth frequency band can be different frequency bands.
  • two current paths C8 and C9 work, and the two current paths C8 and C9 respectively represent energy transmission in different frequency bands; and the operating frequency bands of the seventh sub-radiator 44 and the eighth sub-radiator 45 are different, Then it has two current paths of C10 and C11 to work, and the two current paths of C10 and C11 respectively represent the energy transmission of different frequency bands; thus further increasing the working bandwidth of the entire antenna structure, and at the same time, it can further improve the isolation of the antenna structure.
  • Spend is another current paths of C10 and C11 work, and the two current paths of C10 and C11 respectively represent the energy transmission of different frequency bands; thus further increasing the working bandwidth of the entire antenna structure, and at the same time, it can further improve the isolation of the antenna structure.
  • the relationship between the first frequency band and the third frequency band, the second frequency band and the fourth frequency band is not limited here, for example: as an optional implementation manner, the difference between the first frequency band and the third frequency band is less than a predetermined Set the value, the difference between the second frequency band and the fourth frequency band is less than the preset value, the preset value can refer to the relevant description in the above embodiment, that is, the preset value can be less than 300MHZ, at this time, it means that the first frequency band and the third frequency band are The same or similar frequency bands, the second frequency band and the fourth frequency band are the same or similar frequency bands.
  • the isolation between the first radiator 10 and the second radiator 20 can be further enhanced Spend.
  • the fifth radiator 50 includes two sub-radiators, the isolation between the two sub-radiators can also be enhanced.
  • the first frequency band and the fourth frequency band are the same or similar frequency bands
  • the second frequency band and the third frequency band are the same or similar frequency bands
  • other expressions can be Please refer to the above-mentioned related expressions, which will not be repeated here.
  • the fifth sub-radiator 34 may include a first part and a second part
  • the sixth sub-radiator 35 can be a linear radiator
  • the first part can be arranged opposite to the sixth sub-radiator 35
  • the two ends of the second part can be respectively connected to the first part and the sixth sub-radiator 35 (for example: the middle position) fixed connection
  • the first part, the second part and the sixth sub-radiator 35 can be connected to form a radiator accommodating groove
  • the second end of the first radiator 10 can be accommodated in the radiator accommodating groove
  • the second end of the first radiator 10 is spaced apart from the inner wall of the radiator accommodating groove.
  • the structure and connection relationship of the seventh sub-radiator 44 and the eighth sub-radiator 45 included in the fourth radiator 40 can also refer to the above-mentioned related expressions of the fifth sub-radiator 34 and the sixth sub-radiator 35, The details are not repeated here.
  • the antenna structure further includes a fourth ground plate 104;
  • the third radiator 30 is a ring-shaped radiator including a first cavity 303 , and the third radiator 30 is connected with the fourth conductive connection member 203 to form a third groove structure 304 , and the fourth conductive connection The component 203 is connected to the fourth ground plate 104, and the opening of the third groove structure 304 faces the fourth ground plate 104; and/or,
  • the fourth radiator 40 is a ring-shaped radiator including a second cavity 403, and the fourth radiator 40 is connected with the fifth conductive connecting member 204 to form a fourth groove structure 404, and the fourth conductive connection
  • the component 203 is connected to the fourth ground plate 104 , and the opening of the fourth groove structure 404 faces the fourth ground plate 104 .
  • the third radiator 30 is connected with the two fourth conductive connectors 203 to form a third groove structure 304, that is to say: both ends of the third radiator 30 are connected to a fourth conductive connector 203 respectively;
  • the fourth radiator 40 is connected with the two fifth conductive connectors 204 to form a fourth groove structure 404 , that is, two ends of the fourth radiator 40 are respectively connected to one fifth conductive connector 204 .
  • the length of the first cavity 303 may be greater than the length of the third groove structure 304 , and the width of the first cavity 303 may be smaller than the width of the third groove structure 304 .
  • the length of the second cavity 403 may be greater than the length of the fourth groove structure 404 , and the width of the second cavity 403 may be smaller than the width of the fourth groove structure 404 .
  • two current paths C12 and C13 can be formed between the third radiator 30 and the fourth ground plate 104 , and the lengths of the two current paths are different, and the different current paths can be Working in different frequency bands (that is, for energy transmission in different frequency bands), in this way, the working bandwidth of the entire antenna structure is increased, and the isolation of the entire antenna structure can be further enhanced; similarly, the fourth radiator 40 and the fourth radiator Two current paths C14 and C15 can be formed between the ground plates 104, and the lengths of the two current paths are not the same, and different current paths can work in different frequency bands, thus increasing the working bandwidth of the entire antenna structure, At the same time, the isolation of the entire antenna structure can be further enhanced.
  • the shapes and sizes of the third radiator 30 and the fourth radiator 40 and materials, etc. may all be the same, that is, the third radiator 30 and the fourth radiator 40 may be symmetrically disposed with respect to the third conductive connection member 200 .
  • the third radiator 30 and the fourth radiator 40 can make the degree of cancellation of the distribution parameter coupling paths generated between the radiation signals of the first radiator 10 and the second radiator 20 equal or similar (that is, relatively uniform), Thereby, the isolation degree of the first radiator 10 and the second radiator 20 is further enhanced.
  • grounding plate 100 the first grounding plate 101 , the second grounding plate 102 , the third grounding plate 103 and the fourth grounding plate 104 in this application document are expressions in different embodiments.
  • the ground plane 100, the first ground plane 101, the second ground plane 102, the third ground plane 103, and the fourth ground plane 104 may represent the same ground plane.
  • an embodiment of the present application further provides an electronic device, including the antenna structure in the foregoing embodiment.
  • the electronic device provided in this embodiment includes the antenna structure in the above-mentioned embodiment, it has the same beneficial technical effect as the above-mentioned embodiment, and the specific structure of the antenna structure can refer to the corresponding description in the above-mentioned embodiment, which is omitted here. Repeat.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

本申请公开了一种天线结构及电子设备,属于通信技术领域。天线结构包括:第一辐射体、第二辐射体和第三辐射体,第一辐射体上设置有用于接入第一馈电信号的第一馈电点,第二辐射体上设置有用于接入第二馈电信号的第二馈电点,第一辐射体和第二辐射体的工作频段的差值小于预设值,第一辐射体与第二辐射体的相对端间隔或者连接,且第一辐射体和第二辐射体均接地,第三辐射体和第一辐射体耦合连接。

Description

天线结构及电子设备
相关申请的交叉引用
本申请主张在2020年9月14日在中国提交的中国专利申请号No.202010963641.2的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种天线结构及电子设备。
背景技术
随着通信技术的发展,电子设备上可以实现的功能越来越多,因此,对于天线结构的要求也越来越高,在实现本申请过程中,发明人发现现有技术中至少存在如下问题:天线结构可以实现的功能越多,会导致天线结构包括的多个辐射体经常处于相同或者相近的工作频率,从而导致天线结构内包括的辐射体之间的隔离度较差。
发明内容
本申请实施例的目的是提供一种天线结构及电子设备,能够解决天线结构内包括的辐射体之间的隔离度较差的问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本申请实施例提供了一种天线结构,包括:第一辐射体、第二辐射体和第三辐射体,所述第一辐射体上设置有用于接入第一馈电信号的第一馈电点,所述第二辐射体上设置有用于接入第二馈电信号的第二馈电点,所述第一辐射体和所述第二辐射体的工作频段的差值小于预设值,所述第一辐射体与所述第二辐射体的相对端间隔或者连接,且所述第一辐射体和所述第二辐射体均接地,所述第三辐射体和所述第一辐射体耦合连接。
第二方面,本申请实施例提供了一种电子设备,包括第一方面中所述的天线结构。
在本申请实施例中,由于第三辐射体与第一辐射体耦合连接,这样,第 三辐射体给整个天线结构引入了一个新的分布参数耦合路径,该分布参数耦合路径可以与第一辐射体和第二辐射体的辐射信号之间产生的分布参数耦合路径相互抵消至少一部分,从而减弱了第一辐射体和第二辐射体的辐射信号之间的耦合作用,提高了第一辐射体和第二辐射体之间的隔离度。
附图说明
图1是本申请实施例提供一种天线结构的结构示意图之一;
图2是本申请实施例提供一种天线结构的隔离度以及反射系数的示意图之一;
图3是本申请实施例提供一种天线结构的结构示意图之二;
图4是本申请实施例提供一种天线结构的隔离度以及反射系数的示意图之二;
图5是本申请实施例提供一种天线结构的结构示意图之三;
图6是本申请实施例提供一种天线结构的结构示意图之四;
图7是本申请实施例提供一种天线结构的中滤波电路的结构示意图;
图8是本申请实施例提供一种天线结构的结构示意图之五;
图9是本申请实施例提供一种天线结构的结构示意图之六;
图10是本申请实施例提供一种天线结构的结构示意图之七;
图11是本申请实施例提供一种天线结构的结构示意图之八;
图12是本申请实施例提供一种天线结构的结构示意图之九;
图13是本申请实施例提供一种天线结构的结构示意图之十。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据 在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的天线结构及电子设备进行详细地说明。
参见图1,本申请实施例提供一种天线结构的结构示意图,如图1所示,天线结构包括:第一辐射体10、第二辐射体20和第三辐射体30,所述第一辐射体10上设置有用于接入第一馈电信号的第一馈电点,所述第二辐射体20上设置有用于接入第二馈电信号的第二馈电点,所述第一辐射体10和所述第二辐射体20的工作频段的差值小于预设值,所述第一辐射体10与所述第二辐射体20的相对端间隔或者连接,且所述第一辐射体10和所述第二辐射体20均接地,所述第三辐射体30和所述第一辐射体10耦合连接。
其中,本申请实施例的工作原理可以参见以下表述:
由于第一辐射体10和第二辐射体20的工作频段的差值小于预设值,也就是说当第一辐射体10和第二辐射体20的工作频率(或者说工作频段)相同或者相近时,此时第一辐射体10和第二辐射体20之间会产生较强的分布参数耦合,也就是说:第一辐射体10和第二辐射体20在辐射信号时,第一辐射体10和第二辐射体20的辐射信号之间会产生耦合作用,从而产生一部分分布参数(可以理解为电容参数和电感参数等参数中的至少一种),即导致第一辐射体10和第二辐射体20的隔离度较差,而本申请实施例中由于包括第三辐射体30,且第三辐射体30和第一辐射体10耦合连接,这样,第三辐射体30同样可以提供一个新的分布参数耦合路径,即该分布参数耦合路径可以与第一辐射体10和第二辐射体20的辐射信号之间产生的分布参数耦合路径相互抵消至少一部分,从而减弱了第一辐射体10和第二辐射体20的辐射信号之间的耦合作用,提高了第一辐射体10和第二辐射体20之间的隔离度。同时,第三辐射体30还可以产生谐振,从而增强了整个天线结构的带宽,提升了整个天线结构的辐射效率。
作为一种可选的实施方式,所述预设值为300MHZ。也可以理解为:第一辐射体10和第二辐射体20的工作频段的差值位于0到300MHZ这一范围内,此时第一辐射体10和第二辐射体20之间的隔离度较差,需要增加第三辐射体30以改善第一辐射体10和第二辐射体20之间的隔离度。
例如:参见图2,图2中横坐标表示工作频率,纵坐标表示比值(例如可以为衰减的比值),S1,2和S2,1均表示第一辐射体10和第二辐射体20之间的隔离度,S1,1和S2,2分别表示第一辐射体10和第二辐射体20的反射系数,由图2中可知,隔离度达到了-13dB左右,而现有技术中一般为-6dB左右(也就是说:无第三辐射体30时隔离度为-6dB左右),由此可见,本实施方式中第一辐射体10和第二辐射体20的隔离度较好。
其中,第一辐射体10和第二辐射体20的长度可以为其工作频段(也可以理解为其辐射的信号)的1/4波长或者3/4波长,这样,可以提高第一辐射体10和第二辐射体20的辐射效果。当然,第一辐射体10和第二辐射体20的长度也可以根据周围环境以及天线结构中的介质进行调整。上述介质可以用于向天线结构中的辐射体(例如:第一辐射体10或者第二辐射体20)加载信号。
而第三辐射体30的长度可以为其工作频段的1/2波长或者1倍波长,这样,也可以进一步提高第三辐射体30的辐射效果。当然,第三辐射体30的长度同样可以根据周围环境以及天线结构中的介质进行调整。
其中,第一辐射体10、第二辐射体20和第三辐射体30的制造方式在此不做限定,例如:当本实施例中的天线结构应用于电子设备中时,上述辐射体可以采用柔性电路板(Flexible Printed Circuit,FPC)、金属边框、塑胶压铸金属、塑胶内嵌金属片、电子设备自带的悬浮金属部件(比如悬浮金属按键、悬浮摄像头装饰件)等结构,当然,还可以直接通过激光直接成型技术(Laser Direct Structuring,LDS)或者印刷直接成型技术(Printed Direct Structure,PDS)制取得到。
需要说明的是,天线结构还可以包括第一馈源11和第二馈源21,第一馈源11可以与第一辐射体连接,以向第一辐射体10提供第一馈电信号,第二馈源21可以与第二辐射体20连接,以向第二辐射体20提供第二馈电信号。
其中,作为一种可选的实施方式,第一馈源11可以直接与第一辐射体10电连接,第二馈源21可以直接与第二辐射体20电连接。这样,可以缩短整个天线结构中的电连接线路的长度。而上述第一馈源11和第二馈源21可以分别向第一辐射体10和第二辐射体20传输信号,以使第一辐射体10和第二辐射体20辐射信号。
作为另一种可选的实施方式,参见图1,第一馈源11可以通过第一匹配电路12与第一辐射体10电连接,第二馈源21可以通过第二匹配电路22与第二辐射体20电连接。而第一匹配电路12和第二匹配电路22可以分别用于调节电路中的阻抗,从而用于提升整个天线结构的带宽和总辐射效率。
其中,当天线结构应用于电子设备中时,本申请实施例中的接地或者接地板100(参见图1)可以指的是电子设备的印制电路板、金属壳体和电子设备内部的金属部件等结构中的至少一种。
其中,作为一种可选的实施方式,第一辐射体10和第二辐射体20的相对端间隔设置,如第一辐射体10的第一端与第二辐射体20的第一端间隔设置,此时,第一辐射体10的第一端和第二辐射体20的第一端可以分别接地。
当然,第一辐射体10的第一端和第二辐射体20的第一端的接地方式在此不做限定,例如:第一辐射体10的第一端和第二辐射体20的第一端可以分别通过导电连接件接地。这样,导电连接件在增强第一辐射体10和第二辐射体20的接地性能的同时,还可以对第一辐射体10和第二辐射体20起到支撑作用。
其中,作为另一种可选的实施方式,第一辐射体10和第二辐射体20的相对端连接,例如:参见图1,第一辐射体10的第一端与第二辐射体20的第一端连接,此时第一辐射体10的第一端和第二辐射体20的第二端可以通过第三导电连接件200接地,这样,第三导电连接件200可以增强第一辐射体10和第二辐射体20的接地性能,同时,第三导电连接件200还可以对第一辐射体10和第二辐射体20起到支撑作用。
另外,第一辐射体10和第二辐射体20连接时,第一辐射体10和第二辐射体20可以为单独的两个辐射体固定连接,当然,第一辐射体10和第二辐射体20也可以为一体成型结构,即第一辐射体10和第二辐射体20为同一个 辐射体的相邻两个部分。
其中,第三辐射体30和第一辐射体10之间的位置关系在此不做限定,例如:第三辐射体30可以和第一辐射体10位于同一水平面上,当然,第三辐射体30还可以与第一辐射体10位于同一水平面上的同一直线方向上。
另外,第三辐射体30还可以部分位于第一辐射体10与接地平面100之间,即第三辐射体30在接地平面100上的垂直投影与第一辐射体10在接地平面100上的垂直投影可以部分重合。
另外,第一辐射体10还可以部分位于第三辐射体30与接地平面100之间,同样,第三辐射体30在接地平面100上的垂直投影与第一辐射体10在接地平面100上的垂直投影可以部分重合。
需要说明的是,第三辐射体30的位置不同,对第一辐射体10和第二辐射体20之间隔离度的调整程度也不相同,可以根据需要调整第三辐射体30的位置,以对第一辐射体10和第二辐射体20之间的隔离度进行调整。
可选地,参见图3,所述天线结构还包括第四辐射体40,所述第四辐射体40与所述第二辐射体20耦合连接。
其中,第四辐射体40也可以参见上述第三辐射体30的相应表述,具体在此不再赘述,而第四辐射体40与第二辐射体20之间的位置关系可以参见第三辐射体30与第一辐射体10之间的位置关系的表述,也在此不再赘述。
这样,由于天线结构还包括第四辐射体40,即第四辐射体40产生的分布参数耦合路径同样可以抵消第一辐射体10和第二辐射体20之间分布参数耦合路径的至少一部分,从而可以进一步增强整个天线结构的隔离度,同时还可以增加整个天线结构的工作带宽,提高整个天线结构的辐射效率。
参见图4,具体可以参见图2中的相应表述,本实施方式中的隔离度达到了-23dB左右,与现有技术相比,可见进一步增强了天线结构的隔离度。
需要说明的是,第三辐射体30和第四辐射体40可以同时设置,也可以只单独设置一个,具体在此不做限定。
当第三辐射体30和第四辐射体40同时设置时,作为一种可选的实施方式,参见图3,所述天线结构还包括第一接地板101,所述第三辐射体30和所述第四辐射体40中至少一者与所述第一接地板101绝缘设置。这样,可以 增强第三辐射体30和第四辐射体40与第一接地板101之间的隔离效果,从而可以进一步增强第三辐射体30和第四辐射体40辐射性能。
作为一种可选的实施方式,第三辐射体30和第四辐射体40中至少一者相对第一接地板101悬空设置,这样,可以增强第三辐射体30和第四辐射体40与第一接地板101之间的隔离效果。
可选地,参见图5,所述第三辐射体30和所述第四辐射体40中至少一者接地。这样,增强了第三辐射体30和第四辐射体40设置方式的灵活性和多样性,同时,还增强了整个天线结构的接地性能。
其中,第三辐射体30和第四辐射体40的接地点的个数以及设置位置在此不做限定,例如:第三辐射体30和第四辐射体40的接地点的个数可以为一个,第三辐射体30的接地点可以为远离第一辐射体10的一端(即第三辐射体30的第二端),同样,第四辐射体40的接地点可以为远离第二辐射体20的一端(即第四辐射体40的第二端)。而此时,第三辐射体30和第四辐射体40的第一端到第二端的长度可以为其工作频段的1/4波长。
当然,第三辐射体30和第四辐射体40的接地点的个数也可以为多个,且上述接地点可以为端点位置或者中点位置等。这样,通过多个接地点接地,可以增强第三辐射体30和第四辐射体40的接地性能。
另外,第三辐射体30和第四辐射体40的形状在此不做限定,例如:第三辐射体30和第四辐射体40可以均为长方形辐射体,当然,第三辐射体30和第四辐射体40还可以为其他形状辐射体(如U形辐射体或者V形辐射体)。
当然,第三辐射体30和第四辐射体40还可以包括两个子辐射体,且一个子辐射体的一端与另一个子辐射体的一端垂直连接。
可选地,所述第三辐射体30和所述第四辐射体40中至少一者通过滤波电路60接地。
其中,参见图6,当第三辐射体30和第四辐射体40均通过滤波电路60接地时,此时第三辐射体30和第四辐射体40均可以通过两条电流路径(电流路径可以表述在空间中能量的传递方向)工作,具体参见图6,第三辐射体30可以通过C1和C2两条电流路径工作,第四辐射体40可以通过C3和C4两条电流路径工作,而不同的电流路径的工作频段可以不同。这样,既增加 了天线结构的工作频段,也可以利用上述多条电流路径形成的分布参数耦合路径与第一辐射体10和第二辐射体20之间产生的分布参数耦合路径进行抵消,从而增强了整个天线结构的隔离度。
其中,滤波电路60的具体结构在此不做限定,滤波电路60可以包括电容和电感,且根据需要可以将多个电容与电感进行串联或者并联。
作为一种可选的实施方式,参见图7,所述滤波电路60包括第一电容61、第二电容62和电感63,所述第一电容61的第一端和所述电感63的第一端电连接,所述第一电容61的第二端和所述电感63的第二端电连接,且所述第一电容61的第二端和所述电感63的第二端均与所述第二电容62电连接。
这样,本实施方式中的滤波电路可以对低频段的辐射信号呈现导通特性,当第三辐射体30和第四辐射体40工作在低频段的时候,可以通过C2和C4工作;而滤波电路可以对高频段的辐射信号呈现阻断特性,当第三辐射体30和第四辐射体40工作在高频段的时候,可以通过C1和C3工作。
因此,本实施方式中可以通过控制不同的电流路径处于工作状态,从而控制第三辐射体30和第四辐射体40工作于高频段或者低频段,增强对第三辐射体30和第四辐射体40的控制方式的灵活性和智能化程度。
需要说明的是,高频段和低频段只是一个相对的概念,例如:高频段通常为3MHz~30MHz,低频段通常为30kHz~300kHz,当然,上述数值只是举例说明,并不具体限定。
可选地,参见图8,所述天线结构还包括第二接地板102;
所述天线结构还包括第一导电连接件201,所述第三辐射体30的两端分别与所述第一导电连接件201连接形成第一凹槽结构301,所述第一导电连接件201与所述第二接地板102连接,所述第一凹槽结构301的开口朝向所述第二接地板102;和/或,
所述天线结构还包括第二导电连接件202,所述第四辐射体40的两端分别与所述第二导电连接件202连接形成第二凹槽结构401,所述第二导电连接件202与所述第二接地板102连接,所述第二凹槽结构401的开口朝向所述第二接地板102。
需要说明的是,第三辐射体30与两个第一导电连接件201连接形成第一 凹槽结构301,也就是说:第三辐射体30的两端可以分别连接一个第一导电连接件201。
同理,第二凹槽结构401为:第四辐射体40与两个第二导电连接件202连接形成,即第四辐射体40的两端分别连接一个第二导电连接件202。
其中,本实施方式中,第一凹槽结构301和第二凹槽结构401可以作为辐射体对辐射信号进行辐射,这样,进一步增强了整个天线结构包括的辐射体的种类的多样性。需要说明的是,第一凹槽结构301和第二凹槽结构401的长度同样可以为其工作频段的1/2波长。
另外,第一凹槽结构301和第二凹槽结构401内还可以填充有绝缘介质,这样,上述绝缘介质可以构成介质谐振天线,从而进一步增强天线结构包括的辐射体的种类的多样性,同时,还可以增强天线结构的辐射效果。
可选地,参见图9,所述天线结构还包括第三接地板103;
所述第三辐射体30与所述第三接地板103绝缘设置,且所述第三辐射体30为包括第一容置槽302的辐射体,所述第一辐射体10的一端(例如:第二端)设置于所述第一容置槽302内,且与所述第一容置槽302的内壁绝缘设置;和/或,
所述第四辐射体40与所述第三接地板103绝缘设置,且所述第四辐射体40为包括第二容置槽402的辐射体,所述第二辐射体20的一端(例如:第二端)设置于所述第二容置槽402内,且与所述第二容置槽402的内壁绝缘设置。
其中,第三辐射体30和第四辐射体40可以均为U形辐射体,而第一容置槽302和第二容置槽402则分别为U形辐射体包括的容置槽。而第一辐射体10的第一端与第二辐射体20的第一端可以为相对端,或者上述两者连接。
也就是说:第三辐射体30和第四辐射体40均为折弯的辐射体,且第三辐射体30可以半环绕第一辐射体10,第四辐射体40可以半环绕第二辐射体20。
这样,由于第三辐射体30的两端均分别与第一辐射体10耦合,第四辐射体40的两端均分别与第二辐射体20耦合,从而增强了耦合效果,进而进一步提高了整个天线结构的隔离度。同时,还可以增加天线结构的工作带宽, 增强辐射效果。
可选地,参见图10,所述天线结构还包括第五辐射体50,所述第五辐射体50分别与所述第一辐射体10和所述第二辐射体20耦合连接,且所述第五辐射体50分别与所述第三辐射体30和所述第四辐射体40耦合连接。
需要说明的是,所述第五辐射体50的两端可以分别与第三辐射体30和第四辐射体4的两端耦合连接,而第五辐射体50可以整体分别与第一辐射体10和第二辐射体20耦合连接。
其中,由于第五辐射体50分别与第一辐射体10和第二辐射体20耦合连接,且第五辐射体50分别与第三辐射体30和第四辐射体40耦合连接,这样,参见图10,新增了空间耦合路径C5、C6和C7,从而可以进一步降低第一辐射体10和第二辐射体20之间的耦合作用,即进一步增强了整个天线结构的隔离度,改善了整个天线结构的辐射效率。
其中,第三辐射体30和第四辐射体40的长度可以为其工作频段的1/2波长,而第五辐射体50的长度可以根据实际需求以及与第一辐射体10、第二辐射体20、第三辐射体30和第四辐射体40之间的距离进行调整,具体取值在此不做限定。
可选地,参见图11,所述第五辐射体50接地。这样,由于天线结构包括第五辐射体50,从而可以增加整个天线结构的工作频段。同时,由于第五辐射体50接地,从而增强了第五辐射体50的接地性能。
其中,第五辐射体50可以包括两个子辐射体,且上述两个子辐射体相互连接,上述两个子辐射体的连接处可以通过第三导电连接件200接地,而该第三导电连接件200可以与第一辐射体10和第二辐射体20连接的第三导电连接件200为同一连接件。
需要说明的是,上述两个子辐射体可以为一体成型结构,当然,上述两个子辐射体之间也可以为可拆卸连接的方式。
但是由于第五辐射体50接地,从而同样会出现由于上述两个子辐射体具有共同的回地路径带来的强耦合现象,从而导致隔离度较差的问题。
为此,作为一种可选的实施方式,参见图11,所述第三辐射体30包括第一子辐射体31、第一滤波子电路32和第二子辐射体33,所述第一子辐射体 31通过所述第一滤波子电路32与所述第二子辐射体33电连接;和/或,
所述第四辐射体40包括第三子辐射体41、第二滤波子电路42和第四子辐射体43,所述第三子辐射体41通过所述第二滤波子电路42与所述第四子辐射体43电连接。
这样,由于第三辐射体30包括第一滤波子电路32,第四辐射体40包括第二滤波子电路42,而第一滤波子电路32和第二滤波子电路42对低频段的辐射信号呈现导通特性,即第三辐射体30和第四辐射体40工作在低频段时,第一滤波子电路32和第二滤波子电路42可以供低频段的辐射信号通过,从而可以使得第三辐射体30和第四辐射体40的整体长度均参与辐射;同时,第一滤波子电路32和第二滤波子电路42对高频段的辐射信号具有阻断特征,第三辐射体30和第四辐射体40工作在高频段时,第一滤波子电路32和第二滤波子电路42可以阻止高频段的辐射信号通过,从而可以使得第三辐射体30和第四辐射体40的一部分长度参与辐射(例如:可以为第一子辐射体31和第三子辐射体41参与辐射)。通过上述原理,改善了整个天线结构的隔离度,拓展了天线结构的工作带宽,同时还增强了辐射信号辐射方式的灵活性。
需要说明的是,本申请实施例中的低频段和高频段都是相对而言的,例如:第一辐射体10工作在第一频段,第二辐射体20工作在第二频段,若第一频段低于第二频段,则第一频段可以被称作为低频段,第二频段可以被称作为高频段。相应的,若第一频段高于第二频段,则第一频段可以被称作为高频段,第二频段可以被称作为低频段。
另外,需要说明的是,作为一种可选的实施方式,第一滤波子电路32和第二滤波子电路42可以均包括电容和电感,具体连接方式在此不做限定,例如:第一滤波子电路32和第二滤波子电路42的具体结构可以参见上述实施例中的滤波电路60的结构,具体在此不再赘述。
可选地,参见图12,所述第三辐射体30包括相互电连接的第五子辐射体34和第六子辐射体35,所述第五子辐射体34工作在第一频段,所述第六子辐射体35工作在第二频段,所述第一频段和所述第二频段不同;和/或,
所述第四辐射体40包括相互电连接的第七子辐射体44和第八子辐射体45,所述第七子辐射体44工作在第三频段,所述第八子辐射体45工作在第 四频段,所述第三频段和所述第四频段不同。
其中,第一频段和第二频段可以为不同的频段,第三频段和第四频段可以为不同的频段,这样,由于第五子辐射体34和第六子辐射体35的工作频段不同,则参见图12,具有C8和C9两条电流路径工作,且C8和C9两条电流路径分别表示不同的频段的能量传输;且第七子辐射体44和第八子辐射体45的工作频段不同,则其具有C10和C11两条电流路径工作,且C10和C11两条电流路径分别表示不同的频段的能量传输;从而进一步增加了整个天线结构的工作带宽,同时,还可以进一步改善天线结构的隔离度。
另外,第一频段和第三频段,第二频段和第四频段之间的关系在此不做限定,例如:作为一种可选的实施方式,第一频段和第三频段的差值小于预设值,第二频段和第四频段的差值小于预设值,预设值可以参见上述实施例中的相关表述,即预设值可以小于300MHZ,此时表示第一频段和第三频段为相同或者相近频段,第二频段和第四频段为相同或者相近频段。这样,通过设置第五子辐射体34、第六子辐射体35、第七子辐射体44和第八子辐射体,从而可以进一步增强第一辐射体10和第二辐射体20之间的隔离度。当然,当第五辐射体50包括两个子辐射体时,也可以增强上述两个子辐射体之间的隔离度。
需要说明的是,另外一种可选的实施方式与上述实施方式的差别在于:第一频段和第四频段为相同或者相近频段,第二频段和第三频段为相同或者相近频段,其他表述可以参见上述的有关表述,在此不再赘述。
其中,第五子辐射体34和第六子辐射体35的具体结构和连接关系在此不做限定,作为一种可选的实施方式,第五子辐射体34可以包括第一部分和第二部分,第六子辐射体35可以为线形辐射体,则第一部分可以与第六子辐射体35相对设置,而第二部分的两端可以分别与第一部分和第六子辐射体35(例如:中间位置)固定连接,且第一部分、第二部分和第六子辐射体35可以连接形成辐射体容置槽,而第一辐射体10的第二端可以容置于辐射体容置槽内,且第一辐射体10的第二端与辐射体容置槽的内壁间隔设置。
同理,第四辐射体40中包括的第七子辐射体44和第八子辐射体45的结构和连接关系也可以参见上述第五子辐射体34和第六子辐射体35的相关表 述,具体在此不再赘述。
可选地,参见图13,所述天线结构还包括第四接地板104;
所述第三辐射体30为包括第一腔体303的环状辐射体,且所述第三辐射体30与第四导电连接件203连接形成第三凹槽结构304,所述第四导电连接件203与所述第四接地板104连接,所述第三凹槽结构304的开口朝向所述第四接地板104;和/或,
所述第四辐射体40为包括第二腔体403的环状辐射体,且所述第四辐射体40与第五导电连接件204连接形成第四凹槽结构404,所述第四导电连接件203与所述第四接地板104连接,所述第四凹槽结构404的开口朝向所述第四接地板104。
需要说明的是,第三辐射体30与两个第四导电连接件203连接形成第三凹槽结构304,也就是说:第三辐射体30的两端分别连接一个第四导电连接件203;同理,第四辐射体40与两个第五导电连接件204连接形成第四凹槽结构404,也就是说:第四辐射体40的两端分别连接一个第五导电连接件204。
其中,第一腔体303的长度可以大于第三凹槽结构304的长度,而第一腔体303的宽度可以小于第三凹槽结构304的宽度。同理,第二腔体403的长度可以大于第四凹槽结构404的长度,而第二腔体403的宽度可以小于第四凹槽结构404的宽度。
本实施方式中,参见图13,第三辐射体30与第四接地板104之间可以形成C12和C13两个电流路径,且上述两个电流路径的长度并不相同,而不同的电流路径可以工作在不同的频段(即用于不同频段的能量传输),这样,增加了整个天线结构的工作带宽,同时还可以进一步增强整个天线结构的隔离度;同理,第四辐射体40与第四接地板104之间可以形成C14和C15两个电流路径,且上述两个电流路径的长度并不相同,而不同的电流路径可以工作在不同的频段,这样,增加了整个天线结构的工作带宽,同时还可以进一步增强整个天线结构的隔离度。
需要说明的是,在本申请文件中,从图1、图3、图5、图6以及图8-13所示的实施例中,第三辐射体30和第四辐射体40的形状、尺寸和材料等可以均相同,也就是说,第三辐射体30和第四辐射体40可以关于第三导电连 接件200对称设置。这样,可以使得第三辐射体30和第四辐射体40对第一辐射体10和第二辐射体20的辐射信号之间产生的分布参数耦合路径的抵消程度相同或者相近(即较为均匀),从而进一步增强第一辐射体10和第二辐射体20的隔离度。
另外,本申请文件中的接地板100、第一接地板101、第二接地板102、第三接地板103和第四接地板104为在不同的实施方式中的表述,当各个实施方式中的结构集合在一个实施方式中时,接地板100、第一接地板101、第二接地板102、第三接地板103和第四接地板104可以表示同一个接地板。
可选地,本申请实施例还提供一种电子设备,包括上述实施例中的天线结构。由于本实施例提供的电子设备包括上述实施例中的天线结构,因此具有与上述实施例相同的有益技术效果,而天线结构的具体结构可以参见上述实施例中的相应表述,具体在此不再赘述。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (15)

  1. 一种天线结构,包括:第一辐射体、第二辐射体和第三辐射体,所述第一辐射体上设置有用于接入第一馈电信号的第一馈电点,所述第二辐射体上设置有用于接入第二馈电信号的第二馈电点,所述第一辐射体和所述第二辐射体的工作频段的差值小于预设值,所述第一辐射体与所述第二辐射体的相对端间隔或者连接,且所述第一辐射体和所述第二辐射体均接地,所述第三辐射体和所述第一辐射体耦合连接。
  2. 根据权利要求1所述的天线结构,还包括第四辐射体,所述第四辐射体与所述第二辐射体耦合连接。
  3. 根据权利要求2所述的天线结构,其中,所述天线结构还包括第一接地板,所述第三辐射体和所述第四辐射体中至少一者与所述第一接地板绝缘设置。
  4. 根据权利要求2所述的天线结构,其中,所述第三辐射体和所述第四辐射体中至少一者接地。
  5. 根据权利要求3所述的天线结构,其中,所述第三辐射体和所述第四辐射体中至少一者通过滤波电路接地。
  6. 根据权利要求2所述的天线结构,还包括第二接地板;
    所述天线结构还包括第一导电连接件,所述第三辐射体的两端分别与所述第一导电连接件连接形成第一凹槽结构,所述第一导电连接件与所述第二接地板连接,所述第一凹槽结构的开口朝向所述第二接地板;和/或,
    所述天线结构还包括第二导电连接件,所述第四辐射体的两端分别与所述第二导电连接件连接形成第二凹槽结构,所述第二导电连接件与所述第二接地板连接,所述第二凹槽结构的开口朝向所述第二接地板。
  7. 根据权利要求2所述的天线结构,还包括第三接地板;
    所述第三辐射体与所述第三接地板绝缘设置,且所述第三辐射体为包括第一容置槽的辐射体,所述第一辐射体的一端设置于所述第一容置槽内,且与所述第一容置槽的内壁绝缘设置;和/或,
    所述第四辐射体与所述第三接地板绝缘设置,且所述第四辐射体为包括 第二容置槽的辐射体,所述第二辐射体的一端设置于所述第二容置槽内,且与所述第二容置槽的内壁绝缘设置。
  8. 根据权利要求2所述的天线结构,还包括第五辐射体,所述第五辐射体分别与所述第一辐射体和所述第二辐射体耦合连接,且所述第五辐射体分别与所述第三辐射体和所述第四辐射体耦合连接。
  9. 根据权利要求8所述的天线结构,其中,所述第五辐射体接地。
  10. 根据权利要求9所述的天线结构,其中,所述第三辐射体包括第一子辐射体、第一滤波子电路和第二子辐射体,所述第一子辐射体通过所述第一滤波子电路与所述第二子辐射体电连接;和/或,
    所述第四辐射体包括第三子辐射体、第二滤波子电路和第四子辐射体,所述第三子辐射体通过所述第二滤波子电路与所述第四子辐射体电连接。
  11. 根据权利要求9所述的天线结构,其中,所述第三辐射体包括相互电连接的第五子辐射体和第六子辐射体,所述第五子辐射体工作在第一频段,所述第六子辐射体工作在第二频段,所述第一频段和所述第二频段不同;和/或,
    所述第四辐射体包括相互电连接的第七子辐射体和第八子辐射体,所述第七子辐射体工作在第三频段,所述第八子辐射体工作在第四频段,所述第三频段和所述第四频段不同。
  12. 根据权利要求2所述的天线结构,还包括第四接地板;
    所述第三辐射体为包括第一腔体的环状辐射体,且所述第三辐射体与第四导电连接件连接形成第三凹槽结构,所述第四导电连接件与所述第四接地板连接,所述第三凹槽结构的开口朝向所述第四接地板;和/或,
    所述第四辐射体为包括第二腔体的环状辐射体,且所述第四辐射体与第五导电连接件连接形成第四凹槽结构,所述第四导电连接件与所述第四接地板连接,所述第四凹槽结构的开口朝向所述第四接地板。
  13. 根据权利要求1所述的天线结构,其中,所述第一辐射体和所述第二辐射体的相对端连接,且所述第一辐射体和所述第二辐射体均通过第三导电连接件接地。
  14. 根据权利要求1所述的天线结构,其中,所述预设值为300MHZ。
  15. 一种电子设备,包括权利要求1至14中任一项所述的天线结构。
PCT/CN2021/117979 2020-09-14 2021-09-13 天线结构及电子设备 WO2022053044A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010963641.2A CN111987433A (zh) 2020-09-14 2020-09-14 天线结构及电子设备
CN202010963641.2 2020-09-14

Publications (1)

Publication Number Publication Date
WO2022053044A1 true WO2022053044A1 (zh) 2022-03-17

Family

ID=73450487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117979 WO2022053044A1 (zh) 2020-09-14 2021-09-13 天线结构及电子设备

Country Status (2)

Country Link
CN (1) CN111987433A (zh)
WO (1) WO2022053044A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114824759A (zh) * 2022-04-25 2022-07-29 Oppo广东移动通信有限公司 天线组件、电子设备及其控制方法
CN114843779A (zh) * 2022-06-13 2022-08-02 深圳汉阳天线设计有限公司 一种具有高隔离度的双天线结构及设计方法
WO2024103936A1 (zh) * 2022-11-17 2024-05-23 Oppo广东移动通信有限公司 电子设备

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111987433A (zh) * 2020-09-14 2020-11-24 维沃移动通信有限公司 天线结构及电子设备
CN112736461B (zh) * 2020-12-28 2023-06-09 Oppo广东移动通信有限公司 天线装置及电子设备
CN116780184B (zh) * 2021-01-22 2024-07-05 华为技术有限公司 一种电子设备
CN112909544B (zh) * 2021-02-08 2023-03-28 歌尔科技有限公司 一种电子设备及其多天线系统
KR20230035859A (ko) * 2021-09-06 2023-03-14 삼성전자주식회사 안테나를 포함하는 전자 장치
CN113809522B (zh) * 2021-09-10 2023-11-07 Oppo广东移动通信有限公司 天线组件及电子设备
CN114079148A (zh) * 2021-11-01 2022-02-22 Oppo广东移动通信有限公司 天线组件和终端设备
CN114300840B (zh) * 2022-01-21 2024-05-28 维沃移动通信有限公司 电子设备
CN117832832A (zh) * 2022-09-29 2024-04-05 华为终端有限公司 天线及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107634314A (zh) * 2016-07-19 2018-01-26 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
CN109378586A (zh) * 2018-11-28 2019-02-22 英业达科技有限公司 多馈入天线
CN109980364A (zh) * 2019-02-28 2019-07-05 华为技术有限公司 一种天线模块、天线装置以及终端设备
CN111987433A (zh) * 2020-09-14 2020-11-24 维沃移动通信有限公司 天线结构及电子设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108281766A (zh) * 2018-01-19 2018-07-13 广东欧珀移动通信有限公司 天线装置及电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107634314A (zh) * 2016-07-19 2018-01-26 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
CN109378586A (zh) * 2018-11-28 2019-02-22 英业达科技有限公司 多馈入天线
CN109980364A (zh) * 2019-02-28 2019-07-05 华为技术有限公司 一种天线模块、天线装置以及终端设备
CN111987433A (zh) * 2020-09-14 2020-11-24 维沃移动通信有限公司 天线结构及电子设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114824759A (zh) * 2022-04-25 2022-07-29 Oppo广东移动通信有限公司 天线组件、电子设备及其控制方法
CN114824759B (zh) * 2022-04-25 2023-11-03 Oppo广东移动通信有限公司 天线组件、电子设备及其控制方法
CN114843779A (zh) * 2022-06-13 2022-08-02 深圳汉阳天线设计有限公司 一种具有高隔离度的双天线结构及设计方法
WO2024103936A1 (zh) * 2022-11-17 2024-05-23 Oppo广东移动通信有限公司 电子设备

Also Published As

Publication number Publication date
CN111987433A (zh) 2020-11-24

Similar Documents

Publication Publication Date Title
WO2022053044A1 (zh) 天线结构及电子设备
CN102918712B (zh) 天线装置
JP7239743B2 (ja) アンテナユニット及び端末機器
CN109509962B (zh) 一种用于5g手机终端的双频mimo天线结构
US8890763B2 (en) Multiantenna unit and communication apparatus
TWI606641B (zh) 天線結構及應用該天線結構之無線通訊裝置
US9748661B2 (en) Antenna for achieving effects of MIMO antenna
US11637361B2 (en) Antenna structure and wireless communication device
WO2022048512A1 (zh) 天线结构和电子设备
CN109687129A (zh) 一种滤波天线阵列
TWI765599B (zh) 天線結構與電子裝置
US10505251B2 (en) Cable for coupling a coaxial line to a strip-line including a coupling ground plane for reducing passive intermodulation interference in the cable
WO2023138324A1 (zh) 一种天线结构、电子设备及无线网络系统
JP2014121014A (ja) アンテナ装置
CN113540792B (zh) 天线结构、终端和终端的处理方法
WO2022134785A1 (zh) 一种天线和通信设备
JP6241782B2 (ja) 逆f平面アンテナ及びアンテナ装置
US20070103260A1 (en) Low-pass filter
KR100779407B1 (ko) 메타머터리얼을 이용한 초소형 이중 대역 안테나
WO2022095981A1 (zh) 多频段融合天线组件
CN215732211U (zh) 天线装置及电子设备
WO2023273604A1 (zh) 天线模组及电子设备
WO2024139403A1 (zh) 功能组件和电子设备
US11158958B2 (en) Dual band antenna
CN110994143B (zh) 一种天线结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21866096

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 13.02.2024)