WO2022053003A1 - 一种rrc连接释放的方法及装置 - Google Patents

一种rrc连接释放的方法及装置 Download PDF

Info

Publication number
WO2022053003A1
WO2022053003A1 PCT/CN2021/117557 CN2021117557W WO2022053003A1 WO 2022053003 A1 WO2022053003 A1 WO 2022053003A1 CN 2021117557 W CN2021117557 W CN 2021117557W WO 2022053003 A1 WO2022053003 A1 WO 2022053003A1
Authority
WO
WIPO (PCT)
Prior art keywords
rrc connection
terminal
message
network device
lte
Prior art date
Application number
PCT/CN2021/117557
Other languages
English (en)
French (fr)
Inventor
张明镇
袁锴
赵连义
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US18/044,934 priority Critical patent/US20230345581A1/en
Publication of WO2022053003A1 publication Critical patent/WO2022053003A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/34Selective release of ongoing connections
    • H04W76/36Selective release of ongoing connections for reassigning the resources associated with the released connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/34Selective release of ongoing connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/38Connection release triggered by timers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications, and in particular, to a method and apparatus for releasing an RRC connection.
  • the RRC state of the terminal includes two kinds of RRC idle state (RRC_IDLE) and RRC connected state (RRC_CONNECTED).
  • RRC_IDLE RRC idle state
  • RRC_CONNECTED RRC connected state
  • the terminal introduces the RRC inactive state (RRC_INACTIVE) based on the RRC idle state and the RRC connected state.
  • RRC_INACTIVE the RRC inactive state
  • the air interface behavior of the terminal in the RRC inactive state and the RRC idle state is basically the same. Therefore, the terminal in the RRC inactive state and the RRC idle state have the same energy saving effect, that is, the terminal saves power compared with the terminal in the RRC connected state. consumption.
  • the base station may send an RRC connection release message to the terminal to initiate an RRC connection release process.
  • the terminal can release the RRC connection and transfer from the RRC connected state to the RRC idle state or the RRC inactive state.
  • the base station configures an inactivity timer for the terminal, and the duration is generally set to 10s or 20s. If the base station detects that there is service transmission, it restarts the timer, and if no service transmission is detected, the timer times out. Expiration of the inactivity timer will trigger the base station to send an RRC connection release message to the terminal, and the terminal will enter the RRC release process after receiving the RRC connection release message.
  • the terminal is always in the RRC connection state and cannot enter the release process, resulting in high power consumption of the terminal.
  • the embodiments of the present application provide a method and apparatus for releasing an RRC connection by radio resource control, which can enable a terminal to actively trigger the release of an RRC connection, so as to reduce the power consumption of the terminal.
  • the present application provides a method for releasing a radio resource control RRC connection, which is applied to a system including a terminal and a network device. There is a first RRC connection between the terminal and the network device, and the first RRC connection is used for the terminal and the network. Data transfer between devices, the method includes:
  • the terminal confirms that the first RRC connection is to be released, the local resources of the first RRC connection are released, and the second RRC connection is established with the network device;
  • the terminal sends the registration message to the network device through the second RRC connection, where the registration message is used to register with the network device and indicate that the terminal has no service requirements on the second RRC connection;
  • the network device After receiving the registration message sent by the terminal, the network device releases the local resources of the first RRC connection and the local resources of the second RRC connection, and sends the first RRC connection release message and the second RRC connection release message to the terminal.
  • the terminal can actively trigger the network device to release the wireless air interface resources, that is, the terminal can actively release the local RRC connection resources after confirming that the RRC connection is to be released, and send a registration message to the network device to complete the synchronization of the RRC status between the terminal and the network device, and finally complete the The release of the RRC connection is beneficial to reduce the power consumption of the terminal.
  • the method further includes: the terminal receives the second RRC connection release message, and in response to the second RRC connection release message, releases the local resources of the second RRC connection.
  • releasing the local resources of the first RRC connection and establishing the second RRC connection with the network device includes:
  • a second RRC connection with the network device is established.
  • the network device after receiving the registration message sent by the terminal, releases the local resources of the first RRC connection and the local resources of the second RRC connection, and sends the first RRC connection release message and the second RRC connection to the terminal Release messages, including:
  • the network device After receiving the registration message sent by the terminal, the network device detects that the first RRC connection is a residual resource, releases the local resources of the first RRC connection, and sends a first RRC connection release message to the terminal;
  • the network device confirms that the terminal has no service requirements on the second RRC connection according to the registration message and the connection management state maintained by the network device for the terminal is idle, releases the local resources of the second RRC connection and sends a second RRC connection release message to the terminal.
  • the terminal confirming to release the first RRC connection includes: the terminal confirming to release the first RRC connection by detecting that no service data is transmitted within the first time period, or the terminal uses machine learning to predict to confirm that the first RRC connection is to be released. In this way, the terminal can accurately determine the time when the terminal service transmission ends as soon as possible by judging the end of the service data transmission, and then release the RRC connection as soon as possible to achieve the purpose of reducing the power consumption of the terminal.
  • the first duration is the duration of the terminal according to the service scenario type device. In this way, setting the first duration according to the type of the service scenario can further reduce the power consumption of the terminal.
  • the service scenario type includes at least one of the following: bright screen and WIFI not connected, screen off and WIFI not connected, WIFI connected, or sleep mode.
  • the first duration is a duration set by the terminal according to application programs of different service data types. In this way, the requirements of different applications for data transmission delay are considered, and the first duration is set according to different requirements, which can not only reduce the power consumption of the terminal, but also prevent the terminal from releasing the RRC connection in advance and affecting the user experience.
  • the terminal when the terminal confirms that the first RRC connection is to be released, the terminal does not receive the first RRC connection release message sent by the network device.
  • the registration message in a new air interface NR independent networking system, is a registration request message; in a long-term evolution LTE system, the registration message is a tracking area update request message.
  • the terminal when the terminal confirms that the first RRC connection is to be released, the terminal releases the local resources of the first RRC connection, and establishes a second RRC connection with the network device, including:
  • the RRC layer of the terminal When the terminal confirms to release the first RRC connection, the RRC layer of the terminal performs local RRC resource release, and sends a resource release indication message to layers 1 and 2 of the terminal, and sends a second message to the non-access stratum of the terminal, the second The message triggers the non-access stratum of the terminal to generate a registration message;
  • the terminal and the network device establish a second RRC connection.
  • the first RRC connection is the first RRC connection of LTE, and the first RRC connection of LTE is used for data transmission of the terminal on the LTE side;
  • the terminal and the network has an RRC connection of NR, and the RRC connection of NR is used for data transmission of the terminal on the NR side;
  • the registration message is a tracking area update request message;
  • the second RRC connection is the second RRC connection of LTE.
  • the terminal when the terminal confirms that the first RRC connection is to be released, the terminal releases the local resources of the first RRC connection, and establishes a second RRC connection with the network device ,include:
  • the terminal confirms that the first RRC connection of LTE is to be released and there is no RRC connection of NR, releases the local resources of the first RRC connection of LTE, and establishes the second RRC connection of LTE with the network device.
  • the method before the terminal confirms that the first RRC connection of LTE is to be released and there is no RRC connection of NR, the method includes:
  • the terminal When the terminal confirms that the RRC connection of the NR is to be released, it sends a third message to the network device, where the third message is used to instruct the network device to release the RRC connection of the NR;
  • the network device receives the third message, responds to the third message, releases the local resources on the network device side of the RRC connection of the NR, and sends the fourth message to the terminal;
  • the terminal receives the fourth message, and in response to the fourth message, releases local resources on the terminal side of the RRC connection of the NR.
  • the terminal can release the RRC connection in steps, first releasing the RRC connection of NR, and then releasing the RRC connection of LTE, so as to finally achieve the purpose of reducing the power consumption of the terminal.
  • releasing the local resources of the first RRC connection of LTE, and establishing the second RRC connection of LTE with the network device includes:
  • the RRC layer on the LTE side of the terminal performs local RRC resource release, and sends a resource release indication message to Layer 1 and Layer 2 on the LTE side of the terminal, and sends a second message to the non-access stratum of the terminal, the second message triggers the terminal's
  • the non-access stratum generates a registration message
  • the terminal and the network device establish a second RRC connection of LTE.
  • the terminal when the terminal confirms that the first RRC connection is to be released, the terminal releases the local resources of the first RRC connection, and establishes a second RRC connection with the network device, including:
  • the terminal When the terminal confirms to release the first RRC connection of LTE and the RRC connection of NR, it releases the local resources of the first RRC connection of LTE and the local resources of the RRC connection of NR, and establishes the second RRC connection of LTE with the network device.
  • the network device after receiving the registration message sent by the terminal, releases the local resources of the first RRC connection and the local resources of the second RRC connection, and sends the first RRC connection release message and the second RRC connection to the terminal Release messages, including:
  • the network device After receiving the registration message sent by the terminal, the network device releases the local resources of the first RRC connection of LTE, the RRC connection of NR and the local resources of the second RRC connection of LTE, and sends the first RRC connection release message of LTE and the local resources of the second RRC connection of LTE to the terminal.
  • the second RRC connection release message of LTE After receiving the registration message sent by the terminal, the network device releases the local resources of the first RRC connection of LTE, the RRC connection of NR and the local resources of the second RRC connection of LTE, and sends the first RRC connection release message of LTE and the local resources of the second RRC connection of LTE to the terminal.
  • the second RRC connection release message of LTE The second RRC connection release message of LTE.
  • the terminal when the terminal can confirm that the RRC connections of LTE and NR are released at the same time, the RRC connections of LTE and NR are released at the same time, and finally the purpose of reducing the power consumption of the terminal is achieved.
  • Another aspect of the present application provides a method for a terminal to release an RRC connection, where a first RRC connection exists between the terminal and a network device, and the first RRC connection is used for data transmission between the terminal and the network device, and the method includes :
  • the terminal When the terminal confirms that the first RRC connection is to be released, it releases the local resources of the first RRC connection, and establishes a second RRC connection with the network device;
  • the terminal sends the registration message to the network device through the second RRC connection, where the registration message is used to register with the network device and indicate that the terminal has no service requirements on the second RRC connection;
  • the terminal can actively trigger the network device to release the wireless air interface resources, that is, after the terminal confirms to release the RRC connection, it actively releases the local RRC connection resource and sends a registration message to the network device to complete the synchronization of the RRC status between the terminal and the network device.
  • the release of the RRC connection is beneficial to reduce the power consumption of the terminal.
  • the method further includes: the terminal receives a second RRC connection release message sent by the network device, where the second RRC connection release message is generated by the network device based on the received registration message; the terminal responds to the second RRC connection release message Release message to release local resources of the second RRC connection.
  • releasing the local resources of the first RRC connection and establishing the second RRC connection with the network device includes:
  • a second RRC connection with the network device is established.
  • the terminal confirming that the first RRC connection is to be released includes: when the terminal detects that no service data is transmitted within the first period of time, confirming that the first RRC connection is to be released, or the terminal uses machine learning prediction to confirm that the first RRC connection is to be released. Confirm that the first RRC connection is to be released. In this way, the terminal can accurately determine the time when the terminal service transmission ends as soon as possible by judging the end of the service data transmission, and then release the RRC connection as soon as possible to achieve the purpose of reducing the power consumption of the terminal.
  • the first duration is the duration of the terminal according to the service scenario type device. In this way, setting the first duration according to the type of the service scenario can further reduce the power consumption of the terminal.
  • the service scenario type includes at least one of the following: bright screen and WIFI not connected, screen off and WIFI not connected, WIFI connected, or sleep mode.
  • the first duration is a duration set by the terminal according to applications of different service types. In this way, the requirements of different applications for data transmission delay are considered, and the first duration is set according to different requirements, which can not only reduce the power consumption of the terminal, but also prevent the terminal from releasing the RRC connection in advance and affecting the user experience.
  • the terminal when the terminal confirms that the first RRC connection is to be released, the terminal does not receive the first RRC connection release message sent by the network device.
  • the registration message in a new air interface NR independent networking system, is a registration request message; in a long-term evolution LTE system, the registration message is a tracking area update request message.
  • the terminal when the terminal confirms that the first RRC connection is to be released, the terminal releases the local resources of the first RRC connection, and establishes a second RRC connection with the network device, including:
  • the RRC layer of the terminal When the terminal confirms to release the first RRC connection, the RRC layer of the terminal performs local RRC resource release, and sends a resource release indication message to layers 1 and 2 of the terminal, and sends a second message to the non-access stratum of the terminal, the second The message triggers the non-access stratum of the terminal to generate a registration message;
  • the terminal establishes a second RRC connection with the network device.
  • the terminal when the terminal confirms that the first RRC connection is to be released, the terminal releases the local resources of the first RRC connection, and establishes a second RRC connection with the network device, including:
  • the terminal confirms that the first RRC connection of LTE is to be released and there is no RRC connection of NR, releases the local resources of the first RRC connection of LTE, and establishes the second RRC connection of LTE with the network device.
  • the method before the terminal confirms that the first RRC connection of LTE is to be released and there is no RRC connection of the NR, the method further includes:
  • the terminal When the terminal confirms that the RRC connection of the NR is to be released, it sends a third message to the network device, and the third message is used to instruct the network device to release the RRC connection of the NR;
  • the terminal receives the fourth message sent by the network device, responds to the fourth message, and releases the local resources of the RRC connection of the NR.
  • the terminal can release the RRC connection in steps, first releasing the RRC connection of NR, and then releasing the RRC connection of LTE, so as to finally achieve the purpose of reducing the power consumption of the terminal.
  • releasing the local resources of the first RRC connection of LTE, and establishing the second RRC connection with the network device including:
  • the RRC layer on the LTE side of the terminal performs local RRC resource release, and sends a resource release indication message to Layer 1 and Layer 2 on the LTE side of the terminal, and sends a second message to the non-access stratum of the terminal, the second message triggers the terminal's
  • the non-access stratum generates a registration message
  • the terminal establishes a second LTE RRC connection with the network device.
  • the terminal when the terminal confirms that the first RRC connection is to be released, the local resources of the first RRC connection are released, and a second RRC connection is established with the network device, including: the terminal confirming that the first RRC connection of LTE is to be released and During the RRC connection of the NR, the local resources of the first RRC connection of the LTE and the local resources of the RRC connection of the NR are released, and the second RRC connection of the LTE with the network device is established.
  • the terminal when the terminal can confirm that the RRC connections of LTE and NR are released at the same time, the RRC connections of LTE and NR are released at the same time, and finally the purpose of reducing the power consumption of the terminal is achieved.
  • the apparatus includes a processor, the processor is coupled with a memory, and reads instructions in the memory and causes the apparatus to execute the method described in the first aspect according to the instructions.
  • the device is a terminal or a chip.
  • Another aspect of the present application provides a computer program product containing instructions, when the computer program product is run on a terminal, the terminal causes the terminal to execute the method described in the first aspect.
  • Another aspect of the present application provides a computer-readable storage medium, including instructions, which, when the instructions are executed on a terminal, cause the terminal to execute the method described in the first aspect.
  • the apparatus for reducing power consumption is set on a terminal, and includes: an identification unit for identifying a service scenario type of the terminal, and for identifying an application of service data Program type; a judging unit for judging whether the service data transmission of the terminal is over; a signaling sending unit for sending a NAS message to a network device when it is detected that the terminal does not transmit service data within a first period of time
  • the signaling receiving unit is used to receive the RRC connection release message sent by the network device; the release unit is used to detect that the transmission of service data is not carried out in the first time length, and the terminal releases the RRC connection, and also uses The RRC connection release is performed after receiving the RRC connection release message sent by the network device.
  • FIG. 1A is a schematic diagram of a wireless communication architecture provided by an embodiment of the present application.
  • FIG. 1B is a wireless access protocol system provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a mobile communication system provided by an embodiment of the present application.
  • Fig. 3A is the method for RRC connection release of the related art provided by the prior art
  • FIG. 3B is a flow chart of an RRC connection release method provided by an embodiment of the present application.
  • 4A is a general flow chart of RRC connection release under the independent networking of the NR system provided by the embodiment of the present application;
  • FIG. 4B is a general process of RRC connection release of the LTE system provided by the embodiment of the present application.
  • 4C is a schematic structural diagram of three modes under the NSA networking of option 3 series provided by the embodiment of the application;
  • 4D is a schematic diagram of a protocol stack under the NSA networking of option 3 series provided by the embodiment of the present application;
  • FIG. 4E is a process of RRC connection release under option3x mode NSA networking provided by an embodiment of the application.
  • FIG. 4F is another process of RRC connection release under the option3x mode NSA networking provided by the embodiment of the application.
  • FIG. 5 is a flowchart of setting a first duration according to a service scenario type by a terminal according to an embodiment of the present application
  • FIG. 6 is a flowchart of a terminal setting a first duration according to an application to which service data belongs, according to an embodiment of the present application
  • FIG. 7A is a schematic diagram of user state transition under the independent networking of the NR system provided by the embodiment of the present application.
  • 7B is a flow chart of the principle that a terminal actively triggers the RRC connection release under the independent networking of the NR system provided by the embodiment of the application;
  • FIG. 8A is a schematic diagram of a user state transition of an LTE system provided by an embodiment of the present application.
  • 8B is a flowchart of the principle that a terminal of an LTE system actively triggers RRC connection release according to an embodiment of the present application
  • FIG. 9 is a schematic diagram of the overall steps in which a terminal actively triggers an RRC connection release according to an embodiment of the present application.
  • FIG. 10A is a process for restoring a normal service of a terminal when the network device does not take effect of the solution according to the embodiment of the present application, provided by an embodiment of the present application;
  • FIG. 10B is another process of restoring a normal service of a terminal when the network device does not take effect of the solution of the embodiment of the present application provided by the embodiment of the present application;
  • FIG. 11 is a structural block diagram of an RRC connection release apparatus provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • plural refers to two or more.
  • “And/or”, which describes the association relationship of the associated objects, means that there can be three kinds of relationships, for example, A and/or B, which can mean that A exists alone, A and B exist at the same time, and B exists alone.
  • the character “/” generally indicates that the associated objects are an "or" relationship.
  • the wireless communication architecture mainly includes an application (Application, APP) layer, a non-access stratum (NAS), a radio resource control (Radio Resource Control, RRC) layer, and a layer 2 (Layer 2, L2), layer one (Layer 1, L1).
  • the application layer relies on the services provided by L2 and L1 to receive and send user plane data.
  • the NAS layer and the RRC layer rely on the services provided by L2 and L1 to receive and send control plane signaling.
  • the functions of the application layer are deployed in the application processor of the terminal; the functions of the non-access layer, the radio resource control layer, the layer 2 and the layer 1 are deployed in the baseband processor of the terminal.
  • the wireless access protocol system (also called the wireless access layer) is divided into three layers, the first layer is the physical layer (PHY), and the second layer includes the medium access control (MAC) sublayer, the wireless link Control (RLC) sublayer and Packet Data Convergence Protocol (PDCP) sublayer, and layer three is the RRC layer.
  • the physical layer is the bottom layer of the wireless access system, which takes the transmission channel as the interface and provides services to the upper layer.
  • RRC layer the upper layer of the control plane of the radio access protocol, mainly responsible for the control layer 1 and layer 2 to complete the air interface resource transmission, relying on the lower layer services to complete the RRC connection control function, and provide information transmission services for the NAS layer.
  • PDCP sublayer It belongs to the second layer of the radio access protocol system, and processes Radio Resource Management (RRC) messages of the control plane and Internet Protocol (IP) packets of the user plane.
  • RRC Radio Resource Management
  • IP Internet Protocol
  • the PDCP sublayer has functions such as packet encryption and decryption, integrity protection and verification, and packet header decompression.
  • RLC sublayer It belongs to the second layer of the radio access protocol system and is located between the PDCP sublayer and the MAC sublayer.
  • the RLC sublayer communicates with the PDCP sublayer through SAP (Service Access Point), and communicates with the MAC sublayer through logical channels.
  • SAP Service Access Point
  • the RLC sublayer includes transparent mode, non-acknowledged mode and acknowledged mode.
  • NAS layer It is located in the upper layer of the wireless access protocol system, that is, the protocol layer where the terminal uses the wireless access layer (Access stratum, AS) to communicate with the core network equipment.
  • the messages of the NAS layer are independent of the following AS layer protocol structure to a certain extent. .
  • RRC connected state also known as service state
  • service state when the terminal completes camping in the cell and completes the random access procedure (establishing an RRC connection), the terminal enters the RRC connected state. If the terminal in the RRC connection state does not transmit data with the base station for a long time, the base station will send a message to the terminal to release the RRC connection with the terminal. When the terminal is in the RRC connection state, it will continuously monitor the data of the control channel of the base station, which causes the terminal to be in a high power consumption state.
  • RRC idle state After the terminal in the RRC connected state receives the RRC release message sent by the base station, the terminal will disconnect the RRC connection with the base station and enter the RRC idle state.
  • the power consumption of the terminal when it is in the RRC idle state is very low, so releasing the RRC connection of the terminal can reduce the power consumption of the terminal.
  • RRC inactive state refers to a new RRC state introduced by the NR system in order to reduce the power consumption of the terminal and reduce the delay of the system.
  • RRC inactive state When the terminal is in the RRC inactive state, the RRC connection between the terminal and the base station is disconnected, but the base station and the core network are in a connected state, which simplifies the process for the terminal to restore the RRC connected state.
  • the behavior of the wireless air interface when the terminal is in the RRC inactive state and in the RRC idle state is the same, so the RRC inactive state also helps the terminal to save power consumption.
  • Application Processor refers to the processor used in the terminal to run the operating system and application programs.
  • Baseband Processor Also known as a baseband chip (modem), the application processor AP and the baseband chip modem communicate through a shared memory (share memory).
  • shared memory shared memory
  • the application processor AP and the baseband processor BP may be integrated into one processor.
  • the mobile communication system may be a long term evolution (Long Term Evolution, LTE) system or a fifth-generation mobile communication technology 5G new radio (new radio, NR) system, or a machine to machine communication (Machine To Machine, M2M) system , it can also be the sixth-generation communication system that evolves in the future.
  • the mobile communication system includes: a base station 220, a terminal 240, and a core network device 260, wherein the base station 220 and the core network device 260 may be collectively referred to as a network device.
  • the base station 220 can be used to convert the received radio frame and the IP packet to each other, and can also coordinate the attribute management of the air interface.
  • the base station 220 may be an evolution base station (eNB, evolution Node B) in LTE, or a base station with a centralized and distributed architecture adopted in the 5G system.
  • the base station 220 may also be an access point (Access Point, AP), a transmission node (Trans Point, TRP), a central unit (Central Unit, CU) or other network entities, and may include some or all of the functions of the above network entities Function.
  • base station 220 also includes relay stations, which are stations that receive transmissions of data and/or other information from upstream stations and send transmissions of data and/or other information to downstream stations.
  • a relay station may also be a terminal that provides relay transmission for other terminals.
  • a relay station may also be referred to as a repeater.
  • the mobile communication system 200 may be a heterogeneous system including different types of base stations (e.g., macros, picos, femtos, repeaters, etc.). These different types of base stations may have different transmit power levels, different coverage areas, and different interference effects. For example, macro stations may have high transmit power levels (eg, 20 watts), while pico stations, femto stations, and repeaters may have lower transmit power levels (eg, 1 watt).
  • base stations e.g., macros, picos, femtos, repeaters, etc.
  • These different types of base stations may have different transmit power levels, different coverage areas, and different interference effects.
  • macro stations may have high transmit power levels (eg, 20 watts)
  • pico stations, femto stations, and repeaters may have lower transmit power levels (eg, 1 watt).
  • the base station 220 and the terminal 240 establish a wireless connection through a wireless air interface.
  • the wireless air interface may be a wireless air interface based on the LTE standard, or the wireless air interface may be a wireless air interface based on a 5G standard, for example, the wireless air interface is NR, or the wireless air interface may also be a next-generation mobile communication network technology based on 5G Standard wireless air interface.
  • Terminal 240 may be a device that provides voice and/or data communications to a user.
  • the terminal may communicate with one or more core network devices 260 via a radio access network (Radio Access Network, RAN) provided by the base station 220 .
  • the terminal 240 may be a mobile terminal, such as a mobile phone and a computer having a mobile terminal, for example, may be a portable, pocket-sized, hand-held, computer-built, or vehicle-mounted mobile device.
  • the base station 220 may be configured to communicate with the terminal 240 through the wireless interface 230 under the control of a network device controller (not shown in FIG. 2 ).
  • the network device controller may be a part of the core network device 260 , or may be integrated into the base station 220 .
  • the base station 220 may transmit information or user data to the core network device 260 through the interface 250 (eg, the S1 interface).
  • the base station 220 and the base station 220 may also communicate with each other through an interface (eg, an X2 interface, not shown in FIG. 2 ).
  • the wireless communication system 200 shown in FIG. 2 is only for illustrating the technical solutions of the present application more clearly, and does not constitute a limitation on the present application.
  • Those skilled in the art know that with the evolution of the network architecture and new services When a scenario occurs, the technical solutions provided in this application are also applicable to similar technical problems.
  • the terminal needs to initiate an RRC connection to enter the RRC_CONNECTED state when there is a service requirement.
  • the terminal will receive the RRC connection release message sent by the base station and transfer to the RRC_IDLE state or RRC_INACTIVE state in order to save power. Triggering the terminal from the RRC_CONNECTED state to the RRC_IDLE state or the RRC_INACTIVE state has the following solutions:
  • the base station maintains an inactivity timer for the terminal, the name of the timer is InactivityTimer, and the timer starts running immediately after the terminal successfully accesses. If the base station detects that the terminal has service data transmission, it restarts the inactivity timer corresponding to the terminal. If the base station does not detect service data transmission of the terminal within the timer duration of the inactivity timer, the inactivity timer corresponding to the terminal expires, and the base station sends an RRC connection release message to the terminal. According to the data obtained from the actual network, the inactivity timer is generally set to a time of 10 to 20s.
  • the base station decides to release the RRC connection of the terminal by judging that the service transmission of the terminal ends.
  • the base station processes each terminal in the same way, and does not consider different service scenarios of the terminals. For example, the terminal is in a screen-off scenario. At this time, the terminal may receive a small amount of data after a long time interval, and the data transmission time may be less than 1s, but the terminal still has to wait for a period of time to receive the RRC connection release message, resulting in extra power consumption.
  • the embodiments of the present application provide a method for reducing the power consumption of a terminal. Specifically, the method is implemented by actively triggering the RRC connection release by the terminal, and differentiated processing is performed on different service scenarios of the terminal. The power consumption of the terminal can be saved.
  • the flow of the RRC connection release method provided by the embodiment of the present application is shown in FIG. 3B .
  • the method is applied to a system including a terminal and a network device.
  • the terminal when the terminal confirms that the first RRC connection is to be released, the terminal releases the local resources of the first RRC connection, and establishes a second RRC connection with the network device. Specifically, the terminal may confirm that the first RRC connection is to be released by detecting that no service data is transmitted within the first time period, or may confirm that the first RRC connection is to be released by means of machine learning prediction.
  • the terminal sends a registration message to the network device through the second RRC connection, where the registration message is used to register with the network device and indicate that the terminal has no service requirement on the second RRC connection.
  • the registration message is a registration request message; in the LTE system, the registration message is a tracking area update request message.
  • the network device After receiving the registration message sent by the terminal, the network device releases the local resources of the first RRC connection and the local resources of the second RRC connection, and sends the first RRC connection release message and the second RRC connection release message to the terminal. Since the terminal releases the first RRC connection in advance, the terminal cannot receive the first RRC connection release message.
  • the terminal receives the second RRC connection release message, and releases the local resources of the second RRC connection in response to the second RRC connection release message.
  • FIG. 4A is the specific processing flow corresponding to the standalone (Standalone, SA) networking scenario in the NR system
  • FIG. 4B is the specific processing flow corresponding to the LTE system.
  • the RRC connection release method provided by the embodiment of the present application includes:
  • the function of detecting no data transmission can be implemented by using the TTI (Transmission time interval, transmission time interval, generally 1ms in the LTE system, and generally 0.5ms in the NR system) of the PDCP sublayer of the terminal L2.
  • the PDCP sublayer of the terminal performs service data transmission detection every N TTIs (that is, a certain duration), and if no service data transmission is detected, a no-data transmission indication message is sent to the RRC layer of the terminal.
  • the RRC layer of the terminal receives the no-data transmission indication message, it records the current time stamp, and judges whether it is a continuously received non-data transmission according to the difference between the current time stamp and the time stamp when the no-data transmission indication message was received last time.
  • the data transmission indication message that is, judging whether the time difference between two adjacent received no data transmission indication messages is N TTIs, and a certain time difference should be considered in the judgment process.
  • N TTIs time difference between two adjacent received no data transmission indication messages
  • M time difference between two adjacent received no data transmission indication messages
  • the value of M can be calculated by the first duration.
  • the first duration is 20s.
  • the RRC layer of the terminal confirms that the terminal does not transmit service data within the first duration, and the PDCP sublayer of the terminal L2 does not need to use the first duration.
  • the function of no data transmission detection may also be implemented by starting a no data transmission detection timer in the PDCP sublayer of the terminal L2.
  • the PDCP sublayer of the terminal L2 creates and starts a no-data transmission detection timer according to the first duration (that is, a certain duration).
  • the first duration can be set to 20s.
  • the PDCP sublayer of the terminal L2 If the PDCP sublayer of the terminal L2 does not detect service data transmission within the time period of the no-data transmission detection timer, the no-data transmission detection timer expires, and the PDCP sublayer of the terminal L2 sends a no-data transmission indication message to the RRC of the terminal Floor. After the RRC layer of the terminal receives the no-data transmission indication message, it can confirm that the terminal does not transmit service data within the first time period. In the implementation manner of creating and starting the no-data transmission detection timer in the PDCP sublayer of the terminal L2, the PDCP sublayer of the terminal L2 uses the first duration to create the no-data transmission detection timer, and the RRC layer of the terminal does not need to use the first duration .
  • the RRC layer of the terminal confirms that the terminal does not transmit service data within the first time period according to the received no-data transmission indication, and executes the release of the local resources of the first RRC connection, including releasing the resources of the RRC layer of the terminal, and Send a resource release indication message to L2 and L1 of the terminal to release the corresponding RRC resources.
  • the RRC layer of the terminal After the RRC layer of the terminal receives the L2 and L1 resource release completion instructions of the terminal, the RRC layer of the terminal sends a second message, such as a connection error indication message, to the NAS layer of the terminal.
  • the RRC layer of the terminal may send the second message to the NAS layer of the terminal while performing the release of the local resources of the first RRC connection.
  • the RRC layer of the terminal may perform release of the local resources of the first RRC connection after sending the second message to the NAS layer of the terminal. It should be noted that, when the terminal performs the release of the local resources of the first RRC connection, it does not receive the first RRC connection release message sent by the network device.
  • the NAS layer of the terminal after receiving the connection error indication message, sets the NAS connection management state maintained by the terminal to the IDLE state, and initiates a corresponding NAS process, that is, sends a registration message to the RRC layer of the terminal.
  • the NAS layer of the terminal After receiving the connection error indication message, changes the connection management (Connection Management, CM) state from the CM-CONNECTED state to the CM-IDLE state, and sends a registration request (Registration Request) message (that is, the registration message).
  • CM Connection Management
  • the RRC layer of the terminal to be sent to the air interface through the RRC layer of the terminal, wherein the Follow-on request field in the registration request message is set to 0;
  • the NAS layer of the terminal Packet System) connection management (EPS Connection Management, ECM) state is changed from ECM-CONNECTED state to ECM-IDLE state, and a Tracking Area Update Request message (ie, a registration message) is sent to the RRC layer of the terminal to It is sent to the air interface through the RRC layer of the terminal, and the Active Flag field in the tracking area update request message is set to 0.
  • ECM Packet System
  • the RRC layer of the terminal detects that the local resources of the first RRC connection have been released, and triggers a process for establishing the second RRC connection.
  • the registration message is a registration request message; for the LTE system, the registration message is a tracking area update request message.
  • the RRC connection establishment process includes: the RRC layer of the terminal sends an RRC connection establishment request message to the network device, the network device sends the RRC establishment message to the RRC layer of the terminal after receiving the RRC connection establishment request message, and the RRC layer of the terminal receives the RRC establishment message. Then send the RRC establishment complete message to the network device.
  • the RRC layer of the terminal sends the received registration message to the network device through the newly established second RRC connection.
  • the network device detects that the first RRC connection is a residual resource, releases the local resources of the first RRC connection, and sends a first RRC connection release message to the terminal.
  • the network device includes a core network and a base station. The core network recognizes that the residual context of the terminal is not released according to the new user identity allocated by the base station to the terminal, and sends a context release request message to the base station.
  • the base station releases the residual resources on the base station side after receiving the context release request message, and simultaneously releases the first RRC connection by sending a first RRC connection release message to the RRC layer of the terminal through the first RRC connection. Since the terminal has released the local resources of the first RRC connection in advance, the terminal cannot receive the first RRC connection release message.
  • the base station gNB nodeB
  • the base station gNB allocates a new user identity RAN UE NGAP ID2 to the terminal and notifies the AMF entity of the core network.
  • the AMF entity of the core network detects that RAN UE NGAP ID1 and RAN UE NGAP ID2 correspond to the same terminal, then recognizes that the residual context of the terminal is not released, and sends a context release request message to the base station gNB, and the base station gNB receives the context release. After the request message, the residual resources corresponding to the RAN UE NGAP ID1 on the gNB side of the base station are released, and the first RRC connection release message is sent to the terminal at the same time.
  • the base station eNB allocates the user identity eNB UE S1AP ID1 to the terminal and notifies the MME (mobility management entity) of the core network.
  • the base station eNB allocates a new user identity eNB UE S1AP ID2 to the terminal and notifies the MME of the core network.
  • the MME of the core network detects that the RAN UE NGAP ID1 and the RAN UE NGAP ID2 correspond to the same terminal, then recognizes that the residual context of the terminal is not released, and sends a context release request message to the base station eNB, and the base station eNB receives the context release request. After the message, the residual resources corresponding to the RAN UE NGAP ID1 on the eNB side of the base station are released, and the first RRC connection release message is sent to the terminal at the same time.
  • the terminal and the network device continue to complete the corresponding NAS process.
  • the network device sends a Registration Accept (Registration Accept) message to the NAS layer of the terminal.
  • the NAS layer of the terminal After the NAS layer of the terminal receives the registration accept message, it sends a Registration Complete message to the network device;
  • the network device After receiving the tracking area update accept message, the NAS layer of the terminal sends a Tracking Area Update Complete (Tracking Area Update Complete) message to the network device.
  • the terminal After receiving the second RRC connection release message sent by the network device, the terminal releases the second RRC connection. Specifically, the network device maintains the connection management state for the terminal as the IDLE state, and detects that the registration message indicates that the terminal has no service requirements on the second RRC connection, and sends a second RRC connection release message to the RRC layer of the terminal.
  • the NAS procedure in step S406 depends on the RRC connection, so the RRC connection can be released only after the corresponding NAS procedure is completed.
  • the RAN UE NGAP ID2 is the user identity newly allocated by the base station gNB for the terminal.
  • the network device maintains the connection management state for the user corresponding to the RAN UE NGAP ID2 as CM-IDLE state.
  • the network device detects that the Follow-on request field in the registration message is 0, that is, the registration message indicates that the terminal has no service requirements on the second RRC connection, and sends the second RRC connection release message to the RRC layer of the terminal to release the new establishment.
  • the eNB UE S1AP ID2 is the user identity newly allocated by the base station eNB for the terminal, and the user corresponding to the user identity has not completed the tracking area update, so the network equipment is the eNB UE S1AP ID2 corresponds to the user maintenance
  • the connection management state is ECM-IDLE state.
  • the network device detects that the Active Flag field in the tracking area update request message is 0, that is, the tracking area update request message indicates that the terminal has no service requirements on the second RRC connection, and sends the second RRC connection release message to the RRC layer of the terminal to release the newly established second RRC connection.
  • the RRC layer of the terminal sets the second RRC connection release flag after sending the registration message to the network device in step S405.
  • the terminal completes the corresponding NAS process in step S406, that is, after the terminal sends a registration complete message or a tracking area update complete message to the network device, according to the second RRC connection release flag, the terminal immediately releases the local resources of the second RRC connection, and It is not necessary to release the local resources of the second RRC connection after receiving the second RRC connection release message sent by the network device.
  • the NR system In addition to the standalone (Standalone, SA) networking scenario shown in FIG. 4A , the NR system also has a non-standalone (Non-Standalone, NSA) networking scenario.
  • NSA non-standalone
  • the option 3 series contains three modes, namely option3, option3a and option3x.
  • the dotted line in the figure represents the connection of the control plane, and the solid line represents the connection of the user plane.
  • the NSA networking of option 3 series is a dual-connection architecture, and the terminal can use the wireless resources of the LTE base station and the NR base station at the same time in the connected state.
  • the NSA networking of option 3 series uses the LTE core network, in which the anchor point of the control plane is LTE, that is to say, the signaling of the control plane is transmitted through the LTE system, and the NR system only adds a secondary cell group (Secondary cell group).
  • Cell Group, SCG Cell Group
  • the NR base station can send control plane signaling to the terminal through the LTE base station through this connection.
  • the LTE base station and the NR base station have a user plane connection with the LTE core network at the same time.
  • the NR base station can establish an independent bearer for data transmission.
  • there is a user plane connection between the LTE base station and the LTE core network and the NR base station establishes a user plane connection with the LTE base station through the X2 interface.
  • the PDCP entity carried by the SCG added by the base station for the terminal is established on the side of the LTE base station. After receiving the data from the LTE core network, the PDCP entity can forward or offload the data to the RLC entity of the NR base station through the X2 interface.
  • the LTE base station and the NR base station have a user plane connection with the LTE core network at the same time, and the NR base station establishes a user plane connection with the LTE base station through the X2 interface.
  • the PDCP entity carried by the SCG added by the base station for the terminal is established on the side of the NR base station. After receiving the data from the LTE core network, the PDCP entity can forward or offload the data to the RLC entity of the LTE base station through the X2 interface.
  • the terminal supports LTE connection and NR connection on the air interface, so the functions of the radio access layer of LTE and NR must be realized at the same time.
  • LTE and NR there are two versions of LTE and NR in the RRC layer, L2 (including PDCP sublayer, RLC sublayer, and MAC sublayer) and L1 of the terminal.
  • the first RRC connection of LTE exists between the terminal and the network device, and the first RRC connection of LTE is used for data transmission of the terminal on the LTE side, and the data includes service data and signaling data;
  • an NR RRC connection exists between the terminal and the network device, and the NR RRC connection is used for data transmission of the terminal on the NR side, and the data includes service data and signaling data.
  • the RRC connection of the NR is an RRC connection established by the terminal to establish the SCG bearer, and the PDCP entity of the SCG bearer is established on the NR side of the terminal.
  • the PDCP sublayers on the LTE side of the terminal and the NR side send a data transmission indication (including an indication of data transmission and an indication of no data transmission) to the RRC layer of the LTE side of the terminal.
  • a data transmission indication including an indication of data transmission and an indication of no data transmission
  • N TTIs are fixed for one detection.
  • the PDCP sublayer When detecting data transmission, the PDCP sublayer sends a data transmission indication to the RRC layer on the LTE side of the terminal; when detecting no data transmission, the PDCP sublayer sends a data transmission indication to the RRC layer on the LTE side of the terminal.
  • the RRC layer on the LTE side of the terminal maintains a flag for each of the PDCP sublayers on the LTE side of the terminal and the PDCP sublayer on the NR side, which are Flag_Lte and Flag_Nr respectively, and the initial values are both False.
  • the RRC layer on the LTE side of the terminal continuously receives M times of no data transmission instructions sent by the PDCP sublayer on the LTE side of the terminal, and sets Flag_Lte to True, indicating that the terminal does not transmit service data on the LTE side within the first time period; the terminal LTE Once the RRC layer on the side receives the data transmission indication sent by the PDCP sublayer on the LTE side of the terminal, it sets Flag_Lte to False.
  • the maintenance method for Flag_Nr by the RRC layer on the LTE side of the terminal is similar to the maintenance method for Flag_Lte. Only when the flags Flag_Lte and Flag_Nr are both True, the RRC layer on the LTE side of the terminal can confirm that the terminal does not transmit service data within the first time period.
  • the RRC layer on the LTE side of the terminal confirms that the terminal does not transmit service data within the first time period according to the received data transmission indication, and then executes the release of the local resources of the first RRC connection of the LTE, including releasing the RRC layer of the terminal. resources, and send an LTE resource release indication message to notify L2 and L1 on the LTE side of the terminal to release the corresponding RRC resources, and send an NR RRC connection release indication message to notify the RRC layer on the NR side of the terminal to release the local NR RRC resources.
  • the RRC layer on the NR side of the terminal After receiving the NR RRC connection release indication message, the RRC layer on the NR side of the terminal performs local NR RRC resource release, and sends an NR resource release indication message to notify the L2 and L1 on the NR side of the terminal to release the corresponding RRC resources. After receiving the NR resource release completion indication of L2 and L1 on the NR side of the terminal, the RRC layer on the NR side of the terminal sends the NR RRC connection release completion indication to the RRC layer on the LTE side of the terminal.
  • the RRC layer on the LTE side of the terminal After the RRC layer on the LTE side of the terminal receives the resource release completion indication of L2 and L1 on the LTE side of the terminal and the NR RRC connection release completion indication sent by the RRC layer on the NR side of the terminal, the RRC layer on the LTE side of the terminal sends a second message, such as Connection error indication message, to the NAS layer of the terminal.
  • the RRC layer on the LTE side of the terminal may send a connection error indication message to the NAS layer on the LTE side of the terminal while performing the release of the local resources of the first RRC connection of the LTE.
  • the RRC layer on the LTE side of the terminal may release the local resources of the first RRC connection of the LTE after sending the connection error indication message to the NAS layer on the LTE side of the terminal. It should be noted that, when the terminal performs the release of the local resources of the first RRC connection of the LTE, it does not receive the first RRC connection release message of the LTE.
  • the NAS layer of the terminal sets the ECM state of the terminal from the ECM-CONNECTED state to the ECM-IDLE state, and sends a tracking area update request message to the RRC layer on the LTE side of the terminal, so as to pass the LTE
  • the RRC layer on the side sends to the LTE air interface, and the Active Flag field in the tracking area update request message is filled with 0.
  • the RRC layer on the LTE side of the terminal detects that the local resources of the first RRC connection of the LTE have been released, and initiates the process of establishing the second RRC connection of the LTE.
  • the specific description of the RRC connection establishment process has been given in step S404 of FIG. 4A/4B, and details are not repeated here.
  • the RRC layer on the LTE side of the terminal sends the tracking area update request message to the core network of the LTE through the second RRC connection of the LTE.
  • the LTE core network recognizes that the terminal has a residual context that has not been released, so it sends a context release request to the LTE base station (not shown in the figure), and the LTE base station releases the residual resources on the LTE base station side after receiving the context release request.
  • the interface sends a SGNB release request message (SGNB RELEASE REQUEST) to the NR base station to release the residual NR RRC resources of the terminal.
  • SGNB RELEASE REQUEST SGNB RELEASE REQUEST
  • the NR base station After the NR base station completes the release of the residual RRC resources, it sends a SGNB release response message (SGNB RELEASE ACKNOWLEDGE) to the LTE base station.
  • SGNB RELEASE ACKNOWLEDGE SGNB RELEASE ACKNOWLEDGE
  • the LTE base station After receiving the SGNB release response message sent by the NR base station, the LTE base station sends the first RRC connection release message of the LTE to the air interface of the LTE. Since the terminal has released the local resources of the first RRC connection of the LTE in advance, the terminal cannot receive the first RRC connection release message of the LTE.
  • the LTE core network sends a tracking area update accept message to the NAS layer of the terminal.
  • the NAS layer of the terminal After receiving the tracking area update accept message, the NAS layer of the terminal sends the tracking area update complete message to the core network of LTE.
  • the terminal after receiving the second RRC connection release message of LTE sent by the LTE base station, the terminal releases the second RRC connection of LTE.
  • the connection management state maintained by the LTE core network for the terminal is ECM-IDLE state, and it is detected that the Active Flag field in the tracking area update request message is 0, and a context release request message is sent to the LTE base station (not shown in the figure) .
  • the LTE base station After receiving the context release request message, the LTE base station sends an LTE second RRC connection release message to the RRC layer of the terminal to release the newly established LTE second RRC connection, thereby achieving the purpose of power saving.
  • the tracking area update process in step S416 depends on the RRC connection, so the RRC connection can be released only after the tracking area update process is completed.
  • the reason why the connection management state maintained by the LTE core network for the terminal is the ECM-IDLE state is given in step S407 and will not be repeated here.
  • the RRC layer on the NR side of the terminal sends a third message, such as an SCG failure message (SCGFailureInformation), to the network device to notify the network device to release the SCG bearer.
  • SCGFailureInformation SCG failure message
  • the LTE base station sends an SGNB release request message (SGNB RELEASE REQUEST) through the X2 interface to notify the NR base station to release the RRC resources corresponding to the SCG bearer of the terminal.
  • the RRC layer of the LTE base station After receiving the SGNB release response message (SGNB RELEASE ACKNOWLEDGE) sent by the NR base station, the RRC layer of the LTE base station sends a fourth message, such as the NR RRC connection release message, to the RRC layer of the terminal LTE side to release the NR RRC connection, that is, release the NR RRC connection.
  • a fourth message such as the NR RRC connection release message
  • SCG bearer of the terminal The specific function of detecting no data transmission can be implemented by the method given in step S401 in FIG. 4A/4B , which will not be repeated here.
  • the RRC layer on the LTE side of the terminal detects that the current terminal does not have an SCG bearer (the SCG bearer has been released in step 421), that is, there is no RRC connection of NR, Executing the release of the local resources of the first RRC connection of the LTE includes releasing the resources of the RRC layer on the LTE side of the terminal, and sending an RRC resource release indication message to L1 and L2 on the LTE side of the terminal to release the corresponding RRC resources.
  • the RRC layer on the LTE side of the terminal After the RRC layer on the LTE side of the terminal receives the RRC resource release completion indication of L2 and L1 on the LTE side of the terminal, the RRC layer on the LTE side of the terminal sends a second message, such as a connection error indication message, to the NAS layer of the terminal.
  • a second message such as a connection error indication message
  • the specific function of detecting no data transmission can be implemented by the method given in step S401 in FIG. 4A/4B , which will not be repeated here. It should be noted that if the RRC layer on the LTE side of the terminal detects that there is an SCG bearer in the current terminal when receiving the no data transmission indication sent by the PDCP sublayer on the LTE side of the terminal, the operation of this step is not performed.
  • the RRC layer on the LTE side of the terminal may send a connection error indication message to the NAS layer on the LTE side of the terminal while performing the release of the local resources of the first RRC connection of the LTE.
  • the RRC layer on the LTE side of the terminal may release the local resources of the first RRC connection of the LTE after sending the connection error indication message to the NAS layer on the LTE side of the terminal. It should be noted that, when the terminal performs the release of the local resources of the first RRC connection of the LTE, it does not receive the first RRC connection release message of the LTE.
  • the NAS layer of the terminal sets the ECM state of the terminal from the ECM-CONNECTED state to the ECM-IDLE state, and sends a tracking area update request message to the RRC layer on the LTE side of the terminal, so as to pass the LTE terminal
  • the RRC layer on the side sends to the LTE air interface, and the Active Flag field in the tracking area update request message is filled with 0.
  • the RRC layer on the LTE side of the terminal After receiving the tracking area update request message, the RRC layer on the LTE side of the terminal detects that the local resources of the first RRC connection of the LTE have been released, and initiates a process of establishing the second RRC connection of the LTE.
  • the specific description of the RRC connection establishment process has been given in step S404 of FIG. 4A/4B, and details are not repeated here.
  • the RRC layer on the LTE side of the terminal sends the tracking area update request message to the core network of the LTE through the second RRC connection of the LTE.
  • the LTE core network recognizes that the terminal has a residual context that has not been released, and therefore sends a context release request to the LTE base station (not shown in the figure).
  • the specific description of the method for identifying the residual context of the terminal by the core network of LTE is given in step S405 of FIG. 4A/4B, and details are not repeated here.
  • the LTE base station After receiving the context request message, the LTE base station detects that the terminal does not currently have an SCG bearer (the SCG bearer has been released in step 421), releases the residual resources on the side of the LTE base station, and simultaneously sends the first RRC connection release message of LTE to the terminal. Since the terminal has released the local resources of the first RRC connection of the LTE in advance, the terminal cannot receive the first RRC connection release message of the LTE.
  • the terminal and the network device complete the tracking area update process.
  • the LTE core network sends a tracking area update accept message to the NAS layer of the terminal.
  • the NAS layer of the terminal After receiving the tracking area update accept message, the NAS layer of the terminal sends the tracking area update complete message to the core network of LTE.
  • the terminal releases the second RRC connection of LTE.
  • the connection management state maintained by the LTE core network for the terminal is the ECM-IDLE state, and it is detected that the Active Flag in the tracking area update request message is 0, and a context release request message is sent to the LTE base station (not shown in the figure).
  • the LTE base station After receiving the context release request message, the LTE base station sends an LTE second RRC connection release message to the RRC layer of the terminal to release the newly established LTE second RRC connection, thereby achieving the purpose of power saving.
  • the tracking area update process in step S426 depends on the RRC connection, so the RRC connection can be released only after the tracking area update process is completed. The reason why the ECM connection management state of the terminal is the ECM-IDLE state is given a specific description in step S407, and will not be repeated here.
  • Figure 4E and Figure 4F show two embodiments in the NSA networking mode of option 3x, in which Figure 4E adopts the method of releasing the RRC connection of LTE and NR at the same time, that is, when the terminal detects that neither LTE nor NR has data transmission Then, the RRC connection of LTE and NR is simultaneously released through the tracking area update process; Figure 4F adopts the method of releasing the RRC connection in steps, that is, when the terminal detects that there is no data transmission in the NR, it actively reports an abnormal message to request to release the RRC of the NR. connection, and then when it is detected that there is no data transmission in LTE, the RRC connection of LTE is released through the process of tracking area update.
  • the terminal rather than the base station determines whether the terminal service transmission ends, so that the time at which the terminal service transmission ends can be determined as soon as possible and accurately.
  • the terminal can release the local RRC connection after determining that the service transmission ends, and initiate a corresponding NAS procedure to establish a new RRC connection.
  • the network device sends an RRC connection release message to the terminal according to the instruction of the NAS message and the standard protocol procedure to release the new RRC connection. In this way, the terminal can quickly release the RRC connection after the service transmission ends, which reduces the power consumption of the terminal.
  • the network device in the embodiment of the present application uses a standard protocol process, which does not require additional adaptation, and only needs to be modified on one side of the terminal. Therefore, it can be used quickly and flexibly.
  • the terminal performs data transmission service detection according to a fixed duration, and the differentiation of service scenarios of the terminal is not considered.
  • the following provides an embodiment of setting the no-data transmission detection duration (ie, the first duration) according to different service scenarios of the terminal.
  • the specific embodiment process is shown in Figure 5, and the specific process includes:
  • the application processor AP of the terminal acquires the service scenario type of the current terminal, and sends the service scenario type to the RRC layer of the terminal.
  • the application processor AP of the terminal may send the service scenario type to the RRC layer of the terminal through an AT (Attention) instruction.
  • the state of the screen can be obtained by calling the isScreenOn interface, and the connection state of the Wifi can be obtained by calling the isWifiConnected interface.
  • the service scenario types of the terminal include screen off and WIFI not connected, bright screen and WIFI not connected, WIFI connected and sleep mode. For example, if the screen is off through the isScreenOn interface, and it is not connected to Wifi through the isWifiConnected interface, then the service scenario type of the terminal is off-screen and the WIFI is not connected. It is obtained through the isScreenOn interface that the screen is on, and it is obtained through the isWifiConnected interface that it is not connected to Wifi. At this time, the service scenario type of the terminal is bright screen and WIFI is not connected. If the connection to Wifi is obtained through the isWifiConnected interface, then the service scenario type of the terminal at this time is WIFI connection.
  • the judgment of sleep mode mainly uses ambient light, near light, motion stillness, and also considers factors such as screen off and lock screen duration. Judging by the historical records, the probability of the user being in sleep mode at the current moment is very high. At the same time, it is judged by the current ambient light that the lights are off, and the probability that the user is in sleep mode is also very high. According to the above two probabilities, it is comprehensively judged whether the user is in sleep mode. For example, when the probability exceeds 90%, it is considered as sleep mode. It should be noted that the above-mentioned judgment of the sleep mode takes into account the factors of off-screen and other factors.
  • the terminal in the sleep mode must be in the off-screen state, but the terminal in the off-screen state is not necessarily in the sleep mode.
  • other methods may also be used to obtain the type of the service scenario, which is not limited in this embodiment of the present application.
  • the RRC layer of the terminal after receiving the service scenario type, sends a parameter configuration message to the PDCP sublayer of the terminal L2.
  • the parameter configuration message may be the service scenario type received by the RRC layer of the terminal, or may be the first duration obtained by the RRC layer of the terminal through the service scenario type.
  • the RRC layer of the terminal obtains the first duration by looking up a table.
  • the RRC layer of the terminal may also obtain the first duration by calling a sub-function, and the sub-function receives the service scenario type as an input parameter.
  • the PDCP sublayer of the terminal L2 after receiving the parameter configuration message, the PDCP sublayer of the terminal L2 starts a no-data transmission detection timer. If the parameter configuration message received by the PDCP sublayer of the terminal L2 is of the service scenario type, the PDCP sublayer of the terminal L2 can obtain the first duration by looking up a table or calling a subfunction, and then start the no-data transmission detection timing according to the duration device. If the parameter configuration message received by the PDCP sublayer of the terminal L2 is the first duration, the PDCP sublayer of the terminal L2 directly starts the no-data transmission detection timer according to the duration.
  • the PDCP sublayer of the terminal L2 sends a no-data transmission indication message to the RRC layer of the terminal.
  • the RRC layer of the terminal After receiving the no-data transmission indication message, the RRC layer of the terminal performs local RRC resource release, and sends a resource release indication message to L2 and L1 of the terminal to release the corresponding RRC resources.
  • the RRC layer of the terminal After the RRC layer of the terminal receives the L2 and L1 resource release completion instructions of the terminal, the RRC layer of the terminal sends a second message, such as a connection error indication message, to the NAS layer of the terminal.
  • steps S503 to S504 can also be implemented in the manner of TTI interruption given in step S401 in FIG. 4 , that is, the service transmission state is detected by the TTI interruption of the PDCP sublayer of the terminal L2, when the RRC layer of the terminal is continuous.
  • a resource release indication message is sent to L1 and L2 of the terminal to release the corresponding RRC resources.
  • the RRC layer of the terminal does not need to send a parameter configuration message to the PDCP sublayer of the terminal L2, and the RRC layer of the terminal directly obtains the first duration through the service scenario type to confirm that the terminal is in the first time. There is no service data transmission within the duration.
  • the RRC layer of the terminal receives the resource release completion indication of L2 and L1 of the terminal, it sends a connection error indication message to the NAS layer of the terminal.
  • step S501 after identifying the specific service scenario type, the application processor AP of the terminal obtains the first duration according to the service scenario type, and then directly starts the no data transmission detection timer according to the first duration to perform no data transmission. detection.
  • the specific process is shown in Figure 6, including:
  • the application processor AP of the terminal detects the service scenario type of the current terminal.
  • the application processor AP of the terminal obtains the first duration according to the detected service scenario type, and specifically the duration of the no-data transmission detection timer may be obtained by looking up a table or calling a sub-function.
  • the application processor AP of the terminal starts a no-data transmission detection timer according to the acquired first duration, and if data transmission is detected, restarts the no-data transmission detection timer; specifically, the application of the terminal in the Android system
  • the processor AP can obtain the number of bytes received by the terminal through the interface TrafficStats.getMobileRxBytes, and obtain the number of bytes sent by the terminal through the interface TrafficStats.getMobileTxBytes. When the number of bytes sent and received is zero, the terminal has no data transmission.
  • the application processor AP of the terminal sends an indication of no data transmission to the RRC layer of the terminal.
  • the application processor AP of the terminal may send the no data transmission indication to the RRC layer of the terminal through an AT command.
  • the RRC layer of the terminal after receiving the no-data transmission indication message, performs local RRC resource release, and sends a resource release indication message to notify L1 and L2 of the terminal to release corresponding RRC resources.
  • the RRC layer of the terminal After the RRC layer of the terminal receives the resource release completion indication of L2 and L1 of the terminal, it sends a second message, such as a connection error indication message, to the NAS layer of the terminal.
  • the processing after the NAS layer of the terminal receives the connection error indication message is the same as the processing in the embodiment given in FIG. 4 , and details are not described herein again.
  • the terminal application processor AP may also send the duration to the RRC layer of the terminal or the PDCP sublayer of the terminal L2 to complete the function of detecting no data transmission.
  • the specific implementation is similar to that described above, the difference is that the function of detecting no data transmission is performed by different modules of the terminal.
  • the terminal may also directly obtain the first duration through the state of the device, and then use different modules of the terminal to complete the function of detecting no data transmission.
  • the first duration of the terminal is determined according to different service scenarios, so that differentiated processing of different service scenarios of the terminal can be realized, so that the terminal can save more power.
  • Tables 1.1, 1.2, and 1.3 show the configuration of the first duration in three typical business scenarios.
  • Table 1.1 shows the first duration configuration of sleep mode and WIFI connection mode.
  • sleep mode the terminal only periodically processes heartbeat packets or receives small packets of applications such as a single WeChat. After the terminal RRC connection is established, it only takes a short time to complete the reception of service data. At this time, the terminal can A request to actively release the RRC connection is initiated before the network side inactivity timer expires, which can save at least 90% of the power (assuming that the terminal has no data transmission timer for 2 seconds, and the network side inactivity timer is configured to 20 seconds) .
  • the network side inactivity timer here is the inactivity timer maintained by the base station for the terminal in FIG. 3A .
  • the terminal mainly transmits data on the WIFI connection, and the cellular is basically not used, so the setting of the first duration can be consistent with the setting of the sleep mode.
  • Table 1.2 shows the first duration configuration of the screen off and WIFI not connected mode. Considering that the user's behavior when the terminal is on and the screen is off will last for a period of time, you can set the first duration of the terminal to the middle, for example, set it to 12 seconds (the typical duration of the inactivity timer on the network side is 20 seconds). Bell).
  • Table 1.3 shows the first duration configuration of the bright screen and WIFI not connected mode.
  • the terminal When the terminal is on, the user is using cellular data intermittently most of the time.
  • the first duration should be set to a larger value, for example, set to 24 seconds (the network side inactivity timer).
  • a typical configuration for duration is 20 seconds).
  • the embodiments of the present application perform differentiated processing on service data of different application programs of the terminal.
  • the application program in the terminal corresponds to a unique user identity identifier (UID) on the AP side of the application processor.
  • the application in the terminal will establish a socket connection with the network before data transmission with the network, and the terminal records the mapping table of UID and IP quintuple (source address, source port number, destination address, destination port number, protocol type).
  • the application processor AP of the terminal receives or sends a data packet, it parses the IP packet header, finds the UID according to the IP quintuple and the saved mapping table of UID and IP quintuple, and then determines the application corresponding to the data packet. program.
  • Table 2 gives examples of the first duration corresponding to some typical applications.
  • the first duration can be set to be slightly longer than the network side inactivity timer. , for example, set to 24 seconds (the typical configuration of the network side inactivity timer duration is 20 seconds).
  • the application processor AP of the terminal recognizes that there is a data packet of the NetEase news client, because the user browsing news is a sudden service, the first duration of the terminal can be configured in the middle, for example, set to 12 seconds (the network side does not A typical configuration for the activity timer duration is 20 seconds).
  • the first duration of the terminal can be configured to be shorter. , for example, set to 2 seconds (the typical configuration of the network side inactivity timer duration is 20 seconds).
  • the application processor AP of the terminal can divide the application programs into three types, namely, type A, type B, and type C, and respectively create three corresponding timers, and the initial states of the timers are all stopped states.
  • the A-type application corresponds to the shortest first duration, for example, the duration is 2s;
  • the B-type application corresponds to the medium first duration, for example, the duration is 12s;
  • the C-type application corresponds to the longest first duration, such as the duration for 24s.
  • the application processor AP of the terminal identifies the application program to which it belongs according to the data packet, and then obtains the type of the corresponding application program according to the application program.
  • the application processor AP of the terminal sends an indication of no data transmission to the RRC layer of the terminal. In an optional implementation manner, the application processor AP of the terminal may send the no data transmission indication to the RRC layer of the terminal through an AT command.
  • the processing performed by the RRC layer of the terminal after receiving the no-data transmission indication message is the same as the processing in the embodiment given in FIG. 4 , and details are not described herein again.
  • the function of completing no data transmission detection according to the application type can be completed in different modules of the terminal.
  • the application type can be sent to the RRC layer of the terminal.
  • the RRC layer of the terminal completes the detection of no data transmission.
  • the requirements of different applications on the time delay of data transmission are considered, and the first duration is set according to different requirements, so as to prevent the terminal from releasing the RRC connection in advance and affecting the user's experience.
  • the terminal confirms that the RRC connection is to be released through data transmission detection, and the terminal may also use other methods to confirm that the RRC connection is to be released. For example, machine learning is used to predict whether the terminal needs to release the RRC connection.
  • the specific terminal uses the identified application type, device status, and recorded different application scenarios and historical information of data transmission under different device status to guess that the terminal is in the next segment. Whether there is data transfer in time. If the terminal predicts that there will be no data transmission in the next period of time, the decision needs to release the RRC connection, and then the method of the embodiment of the present application is used to trigger the process of releasing the RRC connection.
  • the user state corresponding to the terminal is divided into a registration management (Registration Mangement, RM) state and a connection management (Connection Mangement, CM) state.
  • the NR system adds an RRC Inactive state to the RRC state, so that the network can quickly restore the connection of the terminal when it needs to transmit data, while taking into account the need for power saving.
  • the specific user state transition is shown in FIG. 7A , and the user's registration management state is transitioned by means of registration and de-registration.
  • the transition of the user's connection management state includes the establishment and release of the connection between the terminal and the base station (that is, the establishment and release of the RRC connection), and the establishment and release of the connection between the base station and the core network (that is, the establishment and release of the N2 and N3 connections), where
  • the connection between the base station gNB and the AMF of the core network is an N2 connection
  • the connection between the base station gNB and the UPF (User Plane Function) of the core network is an N3 connection.
  • the main process of triggering the RRC connection release by the terminal of the NR system in the embodiment of the present application is shown in FIG. 7B :
  • the terminal performs initial registration with the network to obtain authorization to receive the service.
  • the terminal needs to register with the network to obtain authorization to receive services, start mobility tracking and reachability.
  • the terminal in the RM-Deregistered state, the CM-IDLE state and the RRC-IDLE state initiates a registration process, and the NAS layer of the terminal sends an initial registration request message to the RRC layer of the terminal.
  • the RRC layer of the terminal After the RRC layer of the terminal receives the initial registration request message, it initiates the first RRC connection establishment procedure (ie, the random access procedure).
  • the AMF entity of the core network completes the registration process together with the terminal.
  • the terminal enters the RM-Registered state, the CM-CONNECTED state and the RRC-CONNECTED state.
  • the terminal executes the release of the local resources of the first RRC connection and sends a message to notify the NAS layer of the terminal.
  • the RRC layer of the terminal executes the release of the local resources of the first RRC connection, including releasing the resources of the RRC layer of the terminal, and sending a resource release indication message to L1 and L2 of the terminal to release the corresponding RRC resources.
  • the RRC layer of the terminal sends a second message, such as a connection error indication message, to the NAS layer of the terminal.
  • the RRC layer of the terminal may send a connection error indication message to the NAS layer of the terminal while performing the release of the local resources of the first RRC connection.
  • the RRC layer of the terminal may perform release of the local resources of the first RRC connection after sending a connection error indication message to the NAS layer of the terminal. It should be noted that, when the terminal performs the release of the local resources of the first RRC connection, it does not receive the first RRC connection release message sent by the network device.
  • the NAS layer of the terminal sets the CM state of the terminal from the CM-CONNECTED state to the CM-IDLE state, and sends a registration request message to the RRC layer of the terminal. Since the terminal has released the local resources of the first RRC connection in advance at this time, the RRC layer of the terminal will initiate the process of establishing the second RRC connection. After the second RRC connection is established, the base station gNB allocates a new user identity RAN UE NGAP ID2 to the terminal and sends it to the AMF entity of the core network together with the registration request message.
  • the connection management state maintained by the network device for the user corresponding to the RAN UE NGAP ID2 is CM-IDLE state.
  • the AMF entity of the core network detects that RAN UE NGAP ID1 and RAN UE NGAP ID2 correspond to the same terminal, so the AMF entity of the core network sends a context release request message corresponding to RAN UE NGAP ID1 to the base station gNB, and the base station gNB receives the context release request message After the request message, the residual resources on the gNB side of the base station are released, and at the same time, the first RRC connection corresponding to the RAN UE NGAP ID1 is released by sending the first RRC connection release message through the first RRC connection. Since the terminal has released the local resources of the first RRC connection in advance at this time, the terminal cannot receive the first RRC connection release message. At the same time, the AMF entity of the core network completes the registration process together with the terminal after receiving the initial registration request of the terminal.
  • the base station gNB after receiving the context release request corresponding to the RAN UE NGAP ID2 user identity sent by the AMF entity of the core network, the base station gNB sends a second RRC connection release message to the RRC layer of the terminal. Specifically, the AMF entity of the core network detects that the Follow-on request field in the registration request message is 0, and the AMF entity of the core network is the connection management state CM-IDLE state maintained by the user corresponding to the RAN UE NGAP ID2.
  • the AMF entity of the core network detects that the Follow-on request field in the registration request message is 0, which indicates that the terminal has no service requirements on the second RRC connection, and the AMF entity of the core network is RAN UE NGAP ID2
  • the connection management state maintained by the corresponding user is in the CM-IDLE state
  • a context release request message corresponding to the RAN UE NGAP ID2 will be issued to instruct the base station gNB to release the second RRC connection newly established by the terminal, thus achieving the purpose of power saving .
  • the registration request message sent by the terminal must contain the registration type information element.
  • the registration type information element contains two fields, respectively follow-on request (FOR) and 5GS registration type value, occupying a total of 4 bits. shown in Table 3.
  • the field follow-on request(FOR) occupies 1 bit.
  • the value of 0 means that there is no subsequent request waiting, and the value of 1 means that there is a subsequent request waiting.
  • the field 5GS registration type value occupies 3 bits, mainly as follows: values, as shown in Table 4.
  • Bit 3 2 1 meaning 0 0 1 initial registration 0 1 0 mobility registration updating 0 1 1 periodic registration updating 1 0 0 emergency registration 1 1 1 Reserved
  • the value of 5GS registration type value is "001", which means that the registration message is an initial registration message; the value of "010” means that the registration message is a mobility registration message; the value of "011” means that the registration message is a periodic registration message. ; The value of "100” indicates that the registration message is an emergency registration message; the value of "111" and other values are reserved and have not been used.
  • step S703 of Fig. 7B the NAS layer of the terminal sends a registration request message to the network device, wherein the Follow-on request in the registration message is filled with 0, which means that there is no subsequent request to wait, that is, the RRC connection can be released; 5GS registration type value can be filled in If it is "010" or "011", it means that a mobility registration request or periodic registration request is sent.
  • the AMF of the core network detects that the Follow-on request in the registration request sent by the terminal in the CM-IDLE state is 0, it will send a context release request to the base station gNB, and then the base station gNB will release the RRC connection.
  • the registration request sent by the terminal in step S703 must also include the 5GS mobile identity information element, and the 5GS mobile identity information element may be SUCI (Subscription Concealed Identifier), 5G-GUTI (5G Global Unique Temporary Identifier), or IMEI (International Mobile Equipment). Identity) and other terminal unique identifiers.
  • the 5GS mobile identity information element may be SUCI (Subscription Concealed Identifier), 5G-GUTI (5G Global Unique Temporary Identifier), or IMEI (International Mobile Equipment). Identity) and other terminal unique identifiers.
  • SUCI Subscribe Concealed Identifier
  • 5G-GUTI 5G Global Unique Temporary Identifier
  • IMEI International Mobile Equipment
  • the user state corresponding to the terminal is divided into an EPS Mobility Management (EPS Mobility Management, EMM) state and an EPS Connection Management (EPS Connection Management, ECM) state.
  • EPS Mobility Management EMM
  • ECM EPS Connection Management
  • FIG. 8A The specific transition of the user state is shown in FIG. 8A , and the transition of the user mobility management state is performed by means of attaching and detaching.
  • the user's connection management state is converted through signaling at the NAS layer.
  • FIG. 8B The main process of triggering the RRC connection release by the terminal of the LTE system in the embodiment of the present application is shown in FIG. 8B :
  • the terminal performs initial attachment to the network to obtain authorization to receive the service.
  • the terminal can obtain the service of the network only after completing the attachment.
  • the terminal in the EMM-Deregistered, ECM-IDLE and RRC-IDLE states initiates an attach procedure, and the NAS layer of the terminal sends an attach request message to the RRC layer of the terminal.
  • the RRC layer of the terminal After receiving the attach request message, the RRC layer of the terminal initiates the first RRC connection establishment process (that is, the random access process).
  • the base station eNB allocates the eNB UE S1AP ID1 to the terminal and sends it to the core together with the attach request message.
  • MME Mobility Management Entity
  • the MME of the core network completes the attach procedure together with the terminal.
  • the terminal enters the EMM-Registered, ECM-CONNECTED, and RRC-CONNECTED states.
  • the terminal executes the release of the local resources of the first RRC connection and sends a message to notify the NAS layer of the terminal.
  • the RRC layer of the terminal executes the release of the local resources of the first RRC connection, including releasing the resources of the RRC layer of the terminal, and sending a resource release indication message
  • the corresponding RRC resources are released to L1 and L2 of the terminal.
  • the RRC layer of the terminal sends a second message, such as a connection error indication message, to the NAS layer of the terminal.
  • the RRC layer of the terminal may send a connection error indication message to the NAS layer of the terminal while performing the release of the local resources of the first RRC connection.
  • the RRC layer of the terminal may perform the release of the local resources of the first RRC connection after sending the connection error indication message to the NAS layer of the terminal. It should be noted that, when the terminal performs the release of the local resources of the first RRC connection, it does not receive the first RRC connection release message sent by the network device.
  • the terminal initiates a Tracking Area Update (TAU) process.
  • TAU Tracking Area Update
  • the NAS layer of the terminal sets the ECM state of the terminal from the ECM-CONNECTED state to the ECM-IDLE state, and sends a tracking area update request message to the RRC layer of the terminal. Since the RRC layer of the terminal has released the local resources of the first RRC connection in advance at this time, the RRC layer of the terminal will initiate the process of establishing the second RRC connection.
  • the base station eNB allocates the eNB UE S1AP ID2 to the terminal and sends it to the MME of the core network together with the tracking area update request message.
  • the network equipment maintains the connection management state for the user corresponding to the eNB UE S1AP ID2 is ECM-IDLE state .
  • the MME of the core network detects that the eNB UE S1AP ID1 and the eNB UE S1AP ID2 correspond to the same terminal, so the MME of the core network will send the context release request message corresponding to the eNB UE S1AP ID1 to the base station eNB, and the base station eNB receives the context release request After the message, the residual resources on the eNB side of the base station are released, and at the same time, the first RRC connection corresponding to the eNB UE S1AP ID1 is released by sending the first RRC connection release message through the first RRC connection. Since the terminal has released the local resources of the first RRC connection in advance at this time, the terminal cannot receive the RRC connection release message. At the same time, after receiving the tracking area update request message of the terminal, the MME of the core network completes the tracking area update process together with the terminal.
  • the base station eNB after receiving the context release request message corresponding to the eNB UE S1AP ID2 user identity sent by the MME of the core network, the base station eNB sends a second RRC connection release message to the RRC layer of the terminal.
  • the MME of the core network detects that the Active Flag field in the tracking area update message is 0, which indicates that the terminal has no service requirements on the second RRC connection, and the MME of the core network maintains the connection management status for the user corresponding to the eNB UE S1AP ID2 is: ECM-IDLE state.
  • the MME of the core network detects that the Active Flag field in the tracking area update message is 0 and the MME of the core network is in the ECM-IDLE state
  • the connection management state maintained by the MME of the core network for the user corresponding to the eNB UE S1AP ID2 is in the ECM-IDLE state, and sends the eNB
  • the context release request message corresponding to the UE S1AP ID2 instructs the base station eNB to release the second RRC connection newly established by the terminal, thereby achieving the purpose of power saving.
  • the tracking area update request message sent by the terminal must contain the EPS update type information element.
  • the EPS update type information element contains two fields, namely Active Flag and EPS update type value, occupying 4 bits in total, as shown in the table. 5 shown.
  • the field Active Flag occupies 1 bit.
  • the value of 0 represents the request without bearer establishment, and the value of 1 represents the request with bearer establishment.
  • the field EPS update type value occupies 3 bits, and mainly includes the following values. , as shown in Table 5.
  • Bit 3 2 1 meaning 0 0 0 TA updating 0 0 1 combined TA/LA updating 0 1 0 combined TA/LA updating with IMSI attach 0 1 1 periodic updating 1 0 0 unused; shall be interpreted as "TA updating”, if received by the network. 1 0 1 unused; shall be interpreted as "TA updating", if received by the network.
  • EPS update type value is "000", which means that the type of the tracking area update message is a conventional tracking area update; the value of "001" means that the type of the tracking area update message is a joint TA and LA tracking area update; A value of "010” indicates that the type of the tracking area update message is a tracking area update with joint TA and LA attached to IMST; a value of "011” indicates that the type of the tracking area update message is periodic tracking area update; other values are not used.
  • the NAS layer of the terminal sends a tracking area update message to the network device after receiving the connection error indication, where the Active Flag is filled in as 0, which means that there is no request to establish a bearer, and the RRC connection can be released; the EPS update type value can be Fill in "000", "001", "010” or "011".
  • the MME of the core network detects that the Active Flag in the tracking area update request sent by the terminal in the ECM-IDLE state is 0, and sends a context release request to the base station eNB, and then the base station eNB releases the RRC connection.
  • the tracking area update message sent by the terminal must also contain the EPS mobile identity information element.
  • the EPS mobile identity information element can be IMSI (International Mobile Subscriber Identity), GUTI (Globally Unique Temporary UE Identity) or IMEI (International Mobile Equipment Identity), Represents the unique identifier of the terminal.
  • IMSI International Mobile Subscriber Identity
  • GUTI Globally Unique Temporary UE Identity
  • IMEI International Mobile Equipment Identity
  • both the terminal and the network device newly establish the second RRC connection.
  • the network device may have changed compared with the network device connected when the terminal has the first RRC connection, including changes in the base station device and the core network device. For example, both the base station equipment and the core network equipment have changed, or only the base station equipment has changed.
  • the terminal when only the base station equipment changes, the terminal establishes a second RRC connection with the new base station equipment, and the core network equipment detects that the terminal has residual resources when it receives the registration request message.
  • a context release request message will be sent to the old base station to request to release the resources of the first RRC connection; when both the base station equipment and the core network equipment change, the terminal establishes a second RRC connection with the new base station equipment, and the new core network equipment
  • the device When the device receives the registration request message, it will send a message to the old core network device to obtain the terminal information.
  • the base station sends a context release request message to request to release the resources of the first RRC connection.
  • the terminal does not release the local RRC connection resources after completing the no-data transmission detection, and still uses the first RRC connection to send a registration request message or a tracking area request update message to the network device, then the state maintained by the network device for the terminal user is still It is in the CM-CONNECTED state or ECM-CONNECTED state. According to the standard protocol, even if the network device detects that the terminal does not need to establish a bearer or does not request to wait, it will not send an RRC connection release message to the terminal, which cannot achieve the purpose of releasing the RRC connection.
  • the embodiment of the present application provides a method for releasing a radio resource control RRC connection.
  • the terminal releases the local RRC connection resources, resulting in inconsistent RRC states maintained by the terminal and the network, and then triggers the corresponding RRC connection.
  • the NAS process is to establish a new RRC connection and send a NAS message to the network device to indicate that the terminal has no service requirements on the new RRC connection.
  • the network device sends an RRC connection release message to the terminal release according to the NAS message sent by the terminal and the standard protocol process.
  • a new RRC connection is created, and in the process, the network device identifies and releases the local resources of the original RRC connection, so as to save power.
  • the terminal will release the RRC connection unilaterally, and at this time, the RRC state maintained by the terminal and the RRC state maintained by the network are inconsistent. If the solutions in the embodiments of the present application do not finally take effect due to network reasons, and the RRC state maintained by the terminal and the RRC state maintained by the network are still inconsistent, there are two possible processes for the network to send data to the terminal.
  • One of the processes is as follows: As shown in Figure 10A, it specifically includes:
  • the network device detects that the terminal is in an uplink out-of-synchronization state.
  • the RRC state maintained by the network device for the terminal is the RRC connection state.
  • the L2 of the wireless access protocol layer of the network device will periodically send TA MCE (Timing Advance MAC Control Element) to the terminal. Since the terminal has released the RRC resources, the terminal cannot reply the ACK (Acknowledgement) corresponding to the TA MCE to the network device if it cannot receive the TA MCE, and the network device will detect that the terminal is out of synchronization in the uplink.
  • TA MCE Transmission Advance MAC Control Element
  • the network device notifies the terminal to perform uplink resynchronization.
  • the L2 of the wireless access protocol layer of the network device will send the PDCCH Order to the terminal to notify the terminal to perform uplink resynchronization. If the uplink resynchronization is successful, the terminal re-establishes the RRC connection to restore the service; if the uplink resynchronization fails, then enter step S1003.
  • the network device after the terminal fails to resynchronize, the network device will switch to paging the terminal in the RRC-IDLE state, and the terminal will re-establish an RRC connection with the network device after receiving the paging message from the network device.
  • Figure 10B Another possible process is shown in Figure 10B, which specifically includes:
  • the network device detects that the RLC reaches the maximum number of retransmissions, sends an RRC connection release message to the terminal, releases RRC resources of the network device, and then transitions the RRC state maintained by the network device to the RRC-IDLE state.
  • the RLC of the terminal is configured in the AM mode (Acknowledgement Mode)
  • the data sent by the network device to the terminal needs to be confirmed at the RLC layer. If the confirmation is not received, the network device will retransmit the RLC layer.
  • the RLC layer of the network device reaches the maximum number of retransmissions, the RRC connection release process will be triggered.
  • the network device paging the terminal in the RRC-IDLE state, and the terminal establishes an RRC connection with the network device after receiving the paging message of the network device.
  • FIG. 11 shows a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • the terminal includes: a processor 1101 , a receiver 1102 , a transmitter 1103 , a memory 1104 , and a bus 1105 .
  • the processor 1101 includes one or more processing cores, and the processor 1101 executes various functional applications and information processing by running software programs and modules.
  • the receiver 1102 and the transmitter 1103 may be implemented as a communication component, which may be a baseband chip.
  • the memory 1104 is connected to the processor 1101 through the bus 1105 .
  • the memory 1104 may be configured to store at least one program instruction, and the processor 1101 may be configured to execute the at least one program instruction, so as to implement the technical solutions of the foregoing embodiments.
  • the implementation principle and technical effect thereof are similar to the related embodiments of the above method, and are not repeated here.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which can implement or
  • a general purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SS), etc., or may also be a volatile memory (volatile memory), for example Random-access memory (RAM).
  • Memory is, without limitation, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing program instructions and/or data.
  • the methods provided by the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • When implemented in software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable apparatus.
  • the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL), or wireless (eg, infrared, wireless, microwave, etc.)
  • a readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains an integration of one or more available media.
  • the available media can be magnetic media (eg, floppy disks, hard disks, magnetic tapes) ), optical media (eg, digital video disc (DWD), or semiconductor media (eg, SSD), etc.).
  • the embodiments of the present application provide a computer program product, which enables the terminal to execute the technical solutions in the foregoing embodiments when the computer program product runs on a terminal.
  • the implementation principle and technical effect thereof are similar to those of the above-mentioned related embodiments, which will not be repeated here.
  • the embodiments of the present application provide a computer-readable storage medium, on which program instructions are stored, and when the program instructions are executed by a terminal, the terminal executes the technical solutions of the foregoing embodiments.
  • the implementation principle and technical effect thereof are similar to those of the above-mentioned related embodiments, which will not be repeated here.
  • An embodiment of the present application provides an apparatus for releasing radio resources to control an RRC connection, and the apparatus may be a terminal or a chip.
  • the device When the device is a chip, it may be a System-on-a-Chip (SoC) main chip or a baseband modem (modem) chip, and the chip can be used in a terminal.
  • SoC System-on-a-Chip
  • modem baseband modem
  • the apparatus When the apparatus is a terminal, it may also be referred to as user equipment (user equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, wireless communication device, user agent, or user device.
  • the apparatus includes a processor, which is configured to be coupled with the memory, and read instructions in the memory and execute the technical solutions in the foregoing embodiments, such as the method embodiments, according to the instructions.
  • the memory can be integrated in the processor or independent of the processor.
  • the memory includes a cache, which can store frequently accessed data/instructions.
  • FIG. 12 shows an RRC connection release apparatus provided by an embodiment of the present application.
  • the RRC connection release apparatus may implement the technical solutions in the above embodiments, such as method embodiments, through software, hardware, or a combination of the two. part or all of it.
  • the apparatus includes: an identification unit 1201 , a judgment unit 1202 , a signaling sending unit 1203 and a releasing unit 1204 .
  • the identification unit 1201 is used to identify the service scenario type of the terminal, the service scenario type includes sleep mode, off-screen mode and bright-screen mode, etc., and is also used to identify the application type described in the service data, such as the low-latency service type applications, etc.
  • the judging unit 1202 is configured to judge whether the service data transmission of the terminal ends, which may be implemented by starting a timer or interrupting the TTI.
  • the signaling sending unit 1203 when detecting that the terminal does not transmit service data within the first time period, sends a NAS message to the network device, instructing the network device to release wireless air interface resources in the NAS message, and then triggering the network device to release the RRC of the terminal connect.
  • the signaling receiving unit 1204 is configured to receive the RRC connection release message sent by the network device.
  • the releasing unit 1205 when detecting that the terminal does not transmit service data within the first time period, the terminal releases the local RRC connection. It is also used to receive the RRC connection release message sent by the network device to perform the release of the RRC connection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种无线资源控制RRC连接释放的方法及装置,涉及通信领域。该方法应用于终端,终端和网络设备存在第一RRC连接,该第一RRC连接用于终端和网络设备之间的数据传输,包括:首先终端确认要释放第一RRC连接时,释放第一RRC连接的本地资源,并和网络设备建立第二RRC连接;接着终端通过第二RRC连接向网络设备发送注册消息,该注册消息用于向网络设备注册并指示终端在第二RRC连接上无业务需求;终端接收到网络设备发送的第二RRC连接释放请求,响应该第二RRC连接释放请求,释放第二RRC连接的本地资源。采用这种方法,终端可以主动触发网络释放无线空口资源,完成RRC连接的释放,有利于降低终端的功耗。

Description

一种RRC连接释放的方法及装置
本申请要求在2020年9月11日提交中国国家知识产权局、申请号为202010956218.X的中国专利申请的优先权,发明名称为“一种RRC连接释放的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种RRC连接释放的方法及装置。
背景技术
在长期演进(Long Term Evolution,LTE)系统中,从无线资源控制(Radio Resource Control,RRC)角度进行划分,终端的RRC状态包括RRC空闲态(RRC_IDLE)和RRC连接态(RRC_CONNECTED)两种。当终端没有业务时,终端处于RRC空闲态。当终端有业务时,终端需要转入RRC连接态来进行数据传输。相比RRC连接态,终端处于RRC空闲态更加节省功耗。
在5G新空口(new radio,NR)系统中,终端在RRC空闲态和RRC连接态的基础上,引入了RRC非激活态(RRC_INACTIVE)。终端在RRC非激活态下和RRC空闲态下的空口行为基本一致,因此,终端在RRC非激活态下和在RRC空闲态下有相同的节能效果,即比终端在RRC连接态下要节省功耗。
在LTE系统和5G系统的现有技术中,基站可以向终端发送RRC连接释放消息,以发起RRC连接释放过程。这样终端收到RRC连接释放消息后,便可以释放RRC连接,从RRC连接态转移到RRC空闲态或者RRC非激活态。具体的,基站为终端配置不活动定时器,一般设置时长为10s或者20s,若基站检测到有业务传输时则重新启动该定时器,若一直未检测到有业务传输则定时器超时。不活动定时器超时会触发基站发送RRC连接释放消息给终端,终端收到RRC连接释放消息后进入RRC释放流程。
但是,在一些LTE和5G网络中,很多基站并未配置上述不活动定时器,因此,终端一直处于RRC连接态,无法进入释放流程,导致终端功耗很高。
发明内容
本申请实施例提供了一种无线资源控制RRC连接释放的方法及装置,可以使得终端主动触发释放RRC连接,达到降低终端功耗的目的。
第一方面,本申请提供了一种释放无线资源控制RRC连接的方法,应用于包括终端和网络设备的系统,终端和网络设备之间存在第一RRC连接,第一RRC连接用于终端和网络设备之间的数据传输,该方法包括:
终端确认要释放第一RRC连接时,释放第一RRC连接的本地资源,并和网 络设备建立第二RRC连接;
终端通过第二RRC连接向网络设备发送所述注册消息,该注册消息用于向网络设备注册并指示终端在第二RRC连接上无业务需求;
网络设备接收到终端发送的注册消息后,释放第一RRC连接的本地资源和第二RRC连接的本地资源,并向终端发送第一RRC连接释放消息和第二RRC连接释放消息。
采用这样的方法,终端可以主动触发网络设备释放无线空口资源,即终端确认要释放RRC连接后主动释放本地RRC连接资源并发送注册消息给网络设备完成终端和网络设备的RRC状态的同步,最终完成RRC连接的释放,有利于降低终端的功耗。
在一种实施方式中,该方法还包括:终端接收到第二RRC连接释放消息,响应于第二RRC连接释放消息,释放第二RRC连接的本地资源。
在一种实施方式中,释放第一RRC连接的本地资源,并和网络设备建立第二RRC连接包括:
释放第一RRC连接的本地资源,并生成向网络设备发送的注册消息;
建立和网络设备的第二RRC连接。
在一种实施方式中,网络设备接收到终端发送的注册消息后,释放第一RRC连接的本地资源和第二RRC连接的本地资源,并向终端发送第一RRC连接释放消息和第二RRC连接释放消息,包括:
网络设备接收到终端发送的注册消息后,检测到第一RRC连接为残留资源,释放第一RRC连接的本地资源并向终端发送第一RRC连接释放消息;
网络设备根据注册消息确认终端在第二RRC连接上无业务需求且网络设备为终端维护的连接管理状态为空闲态,释放第二RRC连接的本地资源并向终端发送第二RRC连接释放消息。
在一种实施方式中,终端确认要释放第一RRC连接,包括:终端通过检测到在第一时长内没有进行业务数据的传输时确认要释放第一RRC连接,或者终端通过机器学习预测的方式来确认要释放第一RRC连接。这样由终端判断业务数据传输的结束能够尽快准确的确定出终端业务传输结束的时刻,进而尽快的释放RRC连接,达到降低终端的功耗的目的。
在一种实施方式中,第一时长为终端根据业务场景类型设备的时长。这样根据业务场景的类型设置第一时长可以进一步降低终端的功耗。
在一种实施方式中,业务场景类型包括以下至少之一:亮屏且WIFI未连接、灭屏且WIFI未连接、WIFI连接或睡眠模式。
在一种实施方式中,第一时长为终端根据不同业务数据类型的应用程序设置的时长。这样考虑到了不同的应用程序对数据传输的时延的要求,根据不同的要求设置第一时长,既可以降低终端的功耗也能避免终端提前释放RRC连接而影响用户的体验。
在一种实施方式中,终端确认要释放第一RRC连接时,终端没有接收到网 络设备发送的第一RRC连接释放消息。
在一种实施方式中,在新空口NR独立组网系统中,注册消息为注册请求消息;在长期演进LTE系统中,注册消息为跟踪区更新请求消息。
在一种实施方式中,终端确认要释放第一RRC连接时,释放第一RRC连接的本地资源,并和网络设备建立第二RRC连接,包括:
终端确认要释放第一RRC连接时,终端的RRC层执行本地RRC资源释放,并且发送资源释放指示消息到终端的层一和层二,以及发送第二消息到终端的非接入层,第二消息触发终端的非接入层生成注册消息;
终端和网络设备建立第二RRC连接。
在一种实施方式中,在新空口NR非独立组网系统中,第一RRC连接为LTE的第一RRC连接,该LTE的第一RRC连接用于终端在LTE侧的数据传输;终端和网络设备存在NR的RRC连接,该NR的RRC连接用于终端在NR侧的数据传输;注册消息为跟踪区更新请求消息;第二RRC连接为LTE的第二RRC连接。
在一种可能的实施方式中,在新空口NR非独立组网系统中,终端确认要释放第一RRC连接时,释放第一RRC连接的本地资源,并和所述网络设备建立第二RRC连接,包括:
终端确认要释放LTE的第一RRC连接且不存在NR的RRC连接,释放LTE的第一RRC连接的本地资源,并和网络设备建立LTE的第二RRC连接。
在一种实施方式中,终端确认要释放LTE的第一RRC连接且不存在NR的RRC连接之前,该方法包括:
终端确认要释放NR的RRC连接时,向网络设备发送第三消息,该第三消息用于指示网络设备释放NR的RRC连接;
网络设备接收到第三消息,响应第三消息,释放NR的RRC连接的网络设备侧的本地资源并向终端发送第四消息;
所述终端接收到第四消息,响应第四消息,释放NR的RRC连接的终端侧的本地资源。
在这样的方法中,终端可以采用分步释放RRC连接,先释放NR的RRC连接,然后释放LTE的RRC连接,最终达到降低终端功耗的目的。
在一种实施方式中,释放LTE的第一RRC连接的本地资源,并和网络设备建立LTE的第二RRC连接,包括:
终端的LTE侧的RRC层执行本地RRC资源释放,并且发送资源释放指示消息到终端的LTE侧的层一和层二,以及发送第二消息到终端的非接入层,第二消息触发终端的非接入层生成注册消息;
终端和网络设备建立LTE的第二RRC连接。
在一种实施方式中,终端确认要释放第一RRC连接时,释放第一RRC连接的本地资源,并和网络设备建立第二RRC连接,包括:
终端确认要释放LTE的第一RRC连接和NR的RRC连接时,释放LTE的第一RRC连接的本地资源和NR的RRC连接的本地资源,并和网络设备建立LTE的第 二RRC连接。
在一种实施方式中,网络设备接收到终端发送的注册消息后,释放第一RRC连接的本地资源和第二RRC连接的本地资源,并向终端发送第一RRC连接释放消息和第二RRC连接释放消息,包括:
网络设备接收到终端发送的注册消息后,释放LTE的第一RRC连接的本地资源和NR的RRC连接以及LTE的第二RRC连接的本地资源,并向终端发送LTE的第一RRC连接释放消息和LTE的第二RRC连接释放消息。
在这样的方法中,终端可以确认同时释放LTE和NR的RRC连接时,同时将LTE和NR的RRC连接一起释放掉,最终达到降低终端功耗的目的。
本申请的另一方面提供了一种终端释放RRC连接的方法,该终端和网络设备之间存在着第一RRC连接,第一RRC连接用于终端和网络设备之间的数据传输,该方法包括:
终端确认要释放第一RRC连接时,释放第一RRC连接的本地资源,并建立和网络设备的第二RRC连接;
终端通过第二RRC连接向网络设备发送所述注册消息,该注册消息用于向网络设备注册并指示终端在第二RRC连接上无业务需求;
采用这种方法,终端可以主动触发网络设备释放无线空口资源,即终端确认要释放RRC连接后主动释放本地RRC连接资源并发送注册消息给网络设备完成终端和网络设备的RRC状态的同步,最终完成RRC连接的释放,有利于降低终端的功耗。
在一种实施方式中,该方法还包括:终端接收到网络设备发送的第二RRC连接释放消息,第二RRC连接释放消息是网络设备基于接收到的注册消息生成的;终端响应第二RRC连接释放消息,释放第二RRC连接的本地资源。
在一种实施方式中,释放第一RRC连接的本地资源,并建立和网络设备的第二RRC连接包括:
释放第一RRC连接的本地资源并生成向网络设备发送的注册消息;
建立和网络设备的第二RRC连接。
在一种实施方式中,终端确认要释放第一RRC连接,包括:终端检测到在第一时长内没有进行业务数据的传输时确认要释放第一RRC连接,或者终端通过机器学习预测的方式来确认要释放第一RRC连接。这样由终端判断业务数据传输的结束能够尽快准确的确定出终端业务传输结束的时刻,进而尽快的释放RRC连接,达到降低终端的功耗的目的。
在一种实施方式中,第一时长为终端根据业务场景类型设备的时长。这样根据业务场景的类型设置第一时长可以进一步降低终端的功耗。
在一种实施方式中,业务场景类型包括以下至少之一:亮屏且WIFI未连接、灭屏且WIFI未连接、WIFI连接或睡眠模式。
在一种实施方式中,所述第一时长为终端根据不同业务类型的应用程序设置 的时长。这样考虑到了不同的应用程序对数据传输的时延的要求,根据不同的要求设置第一时长,既可以降低终端的功耗也能避免终端提前释放RRC连接而影响用户的体验。
在一种实施方式中,终端确认要释放所述第一RRC连接时,终端没有接收到网络设备发送的第一RRC连接释放消息。
在一种实施方式中,在新空口NR独立组网系统中,注册消息为注册请求消息;在长期演进LTE系统中,注册消息为跟踪区更新请求消息。
在一种实施方式中,终端确认要释放第一RRC连接时,释放第一RRC连接的本地资源,并建立和网络设备的第二RRC连接,包括:
终端确认要释放第一RRC连接时,终端的RRC层执行本地RRC资源释放,并且发送资源释放指示消息到终端的层一和层二,以及发送第二消息到终端的非接入层,第二消息触发终端的非接入层生成注册消息;
终端建立和网络设备的第二RRC连接。
在一种实施方式中,终端确认要释放第一RRC连接时,释放第一RRC连接的本地资源,并建立和网络设备的第二RRC连接,包括:
终端确认要释放LTE的第一RRC连接且不存在NR的RRC连接,释放LTE的第一RRC连接的本地资源,并建立和网络设备的LTE的第二RRC连接。
在一种实施方式中,在终端确认要释放LTE的第一RRC连接且不存在所述NR的RRC连接之前,该方法还包括:
终端确认要释放NR的RRC连接时,向网络设备发送第三消息,第三消息用于指示网络设备释放NR的RRC连接;
终端接收到网络设备发送的第四消息,响应第四消息,释放NR的RRC连接的本地资源。
在这样的方法中,终端可以采用分步释放RRC连接,先释放NR的RRC连接,然后释放LTE的RRC连接,最终达到降低终端功耗的目的。
在一种实施方式中,释放LTE的第一RRC连接的本地资源,并建立和网络设备的第二RRC连接,包括:
终端的LTE侧的RRC层执行本地RRC资源释放,并且发送资源释放指示消息到终端的LTE侧的层一和层二,以及发送第二消息到终端的非接入层,第二消息触发终端的非接入层生成注册消息;
终端建立和网络设备的LTE的第二RRC连接。
在一种实施方式中,终端确认要释放第一RRC连接时,释放第一RRC连接的本地资源,并建立和网络设备的第二RRC连接,包括:终端确认要释放LTE的第一RRC连接和NR的RRC连接时,释放LTE的第一RRC连接的本地资源和NR的RRC连接的本地资源,并建立和网络设备的LTE的第二RRC连接。
在这样的方法中,终端可以确认同时释放LTE和NR的RRC连接时,同时将LTE和NR的RRC连接一起释放掉,最终达到降低终端功耗的目的。
本申请另一方面提供了一种装置,该装置包括处理器,处理器和存储器耦合, 并读取存储器中的指令并根据指令使得装置执行上述第一方面所述的方法。
在一种实施方式中,该装置为终端或芯片。
本申请另一方面提供了一种包含指令的计算机程序产品,当所述计算机程序产品在终端上运行时,使得所述终端执行上述第一方面所述的方法。
本申请另一方面提供了一种计算机可读存储介质,包括指令,当所述指令在终端上运行时,使得所述终端执行上述第一方面所述的方法。
本申请另一方面提供了一种降低功耗的装置,所述降低功耗的装置设置在终端,包括:识别单元,用于识别所述终端的业务场景类型,还用于识别业务数据的应用程序类型;判断单元,用于判断所述终端的业务数据传输是否结束;信令发送单元,用于当检测到所述终端在第一时长内没有进行业务数据的传输,发送NAS消息到网络设备;信令接收单元,用于接收所述网络设备发送的RRC连接释放消息;释放单元,用于当检测到所述第一时长内没有进行业务数据的传输,所述终端释放RRC连接,还用于接收所述网络设备发送的所述RRC连接释放消息来执行RRC连接的释放。
附图说明
图1A为本申请实施例提供的无线通信架构示意图;
图1B为本申请实施例提供的无线接入协议系统;
图2为本申请实施例提供的移动通信系统的结构示意图;
图3A为现有技术提供的相关技术的RRC连接释放的方法;
图3B为本申请实施例提供的RRC连接释放方法的流程;
图4A为本申请实施例提供的NR系统的独立组网下的RRC连接释放的总流程图;
图4B为本申请实施例提供的LTE系统的RRC连接释放的总流程;
图4C为本申请实施例提供的选项3系列的NSA组网下的三种模式的结构示意图;
图4D为本申请实施例提供的选项3系列的NSA组网下的协议栈示意图;
图4E为本申请实施例提供的option3x模式的NSA组网下的RRC连接释放的一种流程;
图4F为本申请实施例提供的option3x模式的NSA组网下的RRC连接释放的另一种流程;
图5为本申请实施例提供的终端根据业务场景类型设置第一时长的流程图;
图6为本申请实施例提供的终端根据业务数据所属的应用程序设置第一时长的流程图;
图7A为本申请实施例提供的NR系统的独立组网下的用户状态转换的示意图;
图7B为本申请实施例提供的NR系统的独立组网下终端主动触发RRC连接释放的原理的流程图;
图8A为本申请实施例提供的LTE系统的用户状态转换的示意图;
图8B为本申请实施例提供的LTE系统的终端主动触发RRC连接释放的原理的流程图;
图9为本申请实施例提供的终端主动触发RRC连接释放的总体步骤示意图;
图10A为本申请实施例提供的当网络设备未生效本申请实施例方案时终端恢复正常业务的一种流程;
图10B为本申请实施例提供的当网络设备未生效本申请实施例方案时终端恢复正常业务的另一种流程;
图11为本申请实施例提供的RRC连接释放装置的结构方框图;
图12为本申请实施例提供的终端的结构示意图;
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步详细描述。
在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
为了方便理解,下面对本发明实施例中的无线通信架构、无线接入协议系统以及涉及的名词进行解释。
如图1A所示,无线通信架构主要包括应用(Application,APP)层,非接入层(Non-access stratum,NAS),无线资源控制(Radio Resource Control,RRC)层,层二(Layer 2,L2),层一(Layer 1,L1)。应用层依赖L2和L1提供的服务完成用户面数据的接收和发送。NAS层和RRC层依赖L2和L1提供的服务完成控制面信令的接收和发送。其中,应用层的功能部署在终端的应用处理器中;非接入层、无线资源控制层、层二以及层一的功能部署在终端的基带处理器中。
如图1B所示,无线接入协议系统(也称为无线接入层)分为三层,层一为物理层(PHY),层二包括媒体接入控制(MAC)子层、无线链路控制(RLC)子层和分组数据会聚协议(PDCP)子层,层三为RRC层。其中物理层是无线接入系统最底层,它以传输信道为接口,向上层提供服务。
RRC层:无线接入协议控制面的高层,主要负责控制层一和层二完成空口资源传输,依靠下层的服务完成RRC连接控制的功能,并为NAS层提供信息传输服务。
PDCP子层:属于无线接入协议系统的层二,处理控制面的无线资源管理(RRC)消息以及用户面的因特网协议(IP)包。PDCP子层具有报文加解密、完整性保护和验证以及报文头解压缩等功能。
RLC子层:属于无线接入协议系统的层二,位于PDCP子层和MAC子层之间。RLC子层通过SAP(Service Access Point)与PDCP子层进行通信,并通过逻辑信 道与MAC子层进行通信。RLC子层包含透明模式,非确认模式以及确认模式。
NAS层:处于无线接入协议系统的上层,即终端利用无线接入层(Access stratum,AS)和核心网设备进行通信的协议层,NAS层的消息一定程度上独立于下面的AS层协议结构。
RRC连接态(RRC-CONNECTED):又称为业务态,当终端在小区完成驻留并完成随机接入流程(建立RRC连接)后,终端即进入RRC连接态。处于RRC连接态的终端若长时间未与基站进行数据传输,基站将发送消息给终端释放与终端之间的RRC连接。终端在RRC连接态时会不断的监听基站控制信道的数据,导致终端处于高功耗状态。
RRC空闲态(RRC-IDLE):处于RRC连接态的终端接收到基站发送的RRC释放消息后,终端就会断开与基站的RRC连接,进入了RRC空闲态。终端处于RRC空闲态时的功耗很低,因此释放终端的RRC连接可以降低终端的功耗。
RRC非激活态(RRC-INACTIVE):指NR系统为了降低终端的功耗和降低系统的时延,引入的新的RRC状态。终端处于RRC非激活态时,终端和基站的RRC连接处于断开状态,但是基站和核心网之间处于连接状态,这样就简化了终端恢复RRC连接态的流程。终端处于RRC非激活态和处于RRC空闲态时的无线空口行为是一致的,因此RRC非激活态也有利于终端节省功耗。
应用处理器(Application Processor,AP):指终端中用于运行操作系统和应用程序的处理器。
基带处理器(Baseband Processor,BP):也称为基带芯片(modem),应用处理器AP和基带芯片modem之间通过共享内存(share memory)进行通信。可选的,应用处理器AP和基带处理器BP可以整合成一个处理器。
参考图2,其示出了本发明实施例提供的移动通信系统200的结构示意图。该移动通信系统可以是长期演进(Long Term Evolution,LTE)系统或者为第五代移动通信技术5G新空口(new radio,NR)系统,也可以是机器与机器通信(Machine To Machine,M2M)系统,还可以是未来演进的第六代通信系统。该移动通信系统包括:基站220和终端240以及核心网设备260,其中基站220和核心网设备260可以合称为网络设备。
基站220可用于将接收到的无线帧与IP分组报文进行相互转换,还可以协调对空中接口的属性管理。例如,基站220可以是LTE中的演进型基站(eNB,evolution Node B),或者,5G系统中采用的集中分布式架构的基站。基站220也可以是接入点(Access Point,AP)、传输节点(Trans Point,TRP)、中心单元(Central Unit,CU)或者其他网络实体,并且可以包括以上网络实体的功能中的一些或所有功能。另外,基站220还包括中继站,中继站是从上游站接收数据和/或其他信息的传输以及向下游站发送数据和/或其他信息的传输的站。中继站还可以是为其他终端提供中继传输的终端。中继站还可以被称作为中继器。
移动通信系统200可以是包括不同类型的基站(例如,宏站、微微站、毫微 站、中继器等)的异构系统。这些不同的类型的基站可以具有不同的发送功率电平、不同的覆盖区域以及不同的干扰影响。例如,宏站可以具有高发射功率电平(例如,20瓦特),而微微站、毫微站和中继器可以具有较低的发射功率电平(例如,1瓦特)。
基站220和终端240通过无线空口建立无线连接。该无线空口可以是基于LTE标准的无线空口,或者,该无线空口是基于5G标准的无线空口,比如该无线空口是NR,或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
终端240可以是指向用户提供语音和/或数据通信的设备。终端可以经基站220提供的无线接入网(Radio Access Network,RAN)与一个或多个核心网设备260进行通信。终端240可以是移动终端,如移动电话和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
具体的,基站220可用于在网络设备控制器(图2中未示出)的控制下,通过无线接口230与终端240通信。在一些实施例中,所述网络设备控制器可以是核心网设备260的一部分,也可以集成到基站220中。基站220可以通过接口250(如S1接口)向核心网设备260传输信息或者用户数据。基站220与基站220之间也可以通过接口(如X2接口,图2中未示出)相互通信。
需要说明的,图2示出的无线通信系统200仅仅是为了更加清楚的说明本申请的技术方案,并不构成对本申请的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
在LTE和NR系统中,终端有业务需求时需要发起RRC连接进入RRC_CONNECTED态,当业务传输完成后,为了省电终端会收到基站发送的RRC连接释放消息转移到RRC_IDLE态或者RRC_INACTIVE态。触发终端从RRC_CONNECTED态转入RRC_IDLE态或者RRC_INACTIVE态有如下方案:
如图3A所示,终端和基站建立RRC连接之后,基站为该终端维护一个不活动定时器,该定时器的名称为InactivityTimer,该定时器在终端接入成功后立即启动运行。如果基站检测到该终端有业务数据传输时,则重新启动该终端对应的不活动定时器。如果基站在不活动定时器的定时器时长内没有检测到该终端的业务数据传输时,则该终端对应的不活动定时器超时,基站发送RRC连接释放消息给终端。根据从实际网络中获取的数据,一般不活动定时器设置为10~20s的时间。这样意味着在业务传输结束后,终端还需要保持RRC连接态10~20s,会导致终端不必要的额外功耗。而且在5G发展初期,很多基站由于未配置不活动定时器或者网络其他的问题导致终端无法收到RRC连接释放消息,给终端带来了不必要的功耗。
可以看出,在现有技术中,由基站判断终端的业务传输结束来决定释放终端的RRC连接。另外,即使基站开启了不活动定时器的功能,但是基站对每一个终端的处理都是一致的,并未考虑到终端不同的业务场景。比如终端处于灭屏场 景,此时终端可能会经过很长时间间隔才会收到少量的数据,数据的传输时长可能小于1s,但是终端还是要等待一段时间才能够接收到RRC连接释放消息,造成了额外的功耗。
为了解决上述现有的技术问题,本申请实施例提供了一种降低终端功耗的方法,具体是通过终端主动触发RRC连接释放来实现的,并且对终端不同的业务场景进行了差异化处理,可以节约终端的功耗。
本申请实施例提供的RRC连接释放方法的流程如图3B所示,该方法应用于包括终端和网络设备的系统,终端和网络设备之间存在第一RRC连接,第一RRC连接用于终端和网络设备之间的数据传输,该数据包括业务数据和信令数据,该流程包括:
S311,当终端确认要释放第一RRC连接时,释放第一RRC连接的本地资源,并和网络设备建立第二RRC连接。具体的,终端可以通过检测到在第一时长内没有进行业务数据的传输来确认要释放第一RRC连接,也可以通过机器学习预测的方式来确认要释放第一RRC连接。
S312,终端通过第二RRC连接向网络设备发送注册消息,注册消息用于向网络设备注册并指示终端在第二RRC连接上无业务需求。具体的,在NR系统中,该注册消息为注册请求消息;在LTE系统中,该注册消息为跟踪区更新请求消息。
S313,网络设备接收到终端发送的注册消息后,释放第一RRC连接的本地资源和第二RRC连接的本地资源,并向终端发送第一RRC连接释放消息和第二RRC连接释放消息。由于终端提前释放了第一RRC连接,因此终端无法接收到第一RRC连接释放消息。
S314,终端接收到第二RRC连接释放消息,响应第二RRC连接释放消息,释放第二RRC连接的本地资源。
如图4所示,其中图4A为NR系统中独立(Standalone,SA)组网场景对应的具体的处理流程,图4B为LTE系统对应的具体的处理流程,参考图1A和图1B所示,终端和网络设备之间存在第一RRC连接,该第一RRC连接用于终端的数据传输,该数据包括业务数据和信令数据,本申请实施例提供的RRC连接释放方法包括:
S401,终端L2的PDCP子层在一定时长内未检测到业务数据传输时,发送无数据传输指示给终端的RRC层。
可选的,无数据传输检测的功能可以利用终端L2的PDCP子层的TTI(Transmission time interval,传输时间间隔,在LTE系统中一般为1ms,在NR系统中一般为0.5ms)中断来实现。具体的,终端的PDCP子层固定每N个TTI(即一定时长)进行一次业务数据传输的检测,若没有检测到业务数据传输,则发送一个无数据传输指示消息到终端的RRC层。终端的RRC层收到无数据传输指示消息时,记录当前的时间戳,根据当前的时间戳和上一次收到无数据传输指 示消息时的时间戳的差值来判断是否为连续收到的无数据传输指示消息,也就是判断相邻两次收到的无数据传输指示消息的时间差是否为N个TTI,在判断过程中要考虑到一定的时间偏差。当终端的RRC层连续收到M次无数据传输指示消息后,则可以确认终端在第一时长内没有进行业务数据的传输。其中M的取值可以通过第一时长计算得到,比如第一时长为20s,在LTE系统中,当N取值为5时,TTI为1ms,则M取值为4000(=20s/5/1ms)。在TTI中断的实现方式中,由终端的RRC层确认终端在第一时长内没有进行业务数据的传输,终端L2的PDCP子层无需使用该第一时长。
可选的,无数据传输检测的功能也可以通过在终端L2的PDCP子层启动无数据传输检测定时器来实现。首先终端L2的PDCP子层根据第一时长(即一定时长)创建并启动一个无数据传输检测定时器,当终端L2的PDCP子层检测到有数据传输时则重新启动该无数据传输检测定时器,比如该第一时长可设置为20s。如果终端L2的PDCP子层在无数据传输检测定时器时长内未检测到业务数据传输时,则该无数据传输检测定时器超时,终端L2的PDCP子层发送无数据传输指示消息给终端的RRC层。当终端的RRC层接收到一条该无数据传输指示消息后,则可以确认终端在第一时长内没有进行业务数据的传输。在终端L2的PDCP子层中创建并启动无数据传输检测定时器的实现方式中,终端L2的PDCP子层使用第一时长创建无数据传输检测定时器,终端的RRC层无需使用该第一时长。
S402,终端的RRC层根据接收到的无数据传输指示确认终端在第一时长内没有进行业务数据的传输,则执行第一RRC连接的本地资源的释放,包括释放终端的RRC层的资源,以及发送资源释放指示消息到终端的L2和L1来释放对应的RRC资源。当终端的RRC层接收到终端的L2和L1的资源释放完成指示后,终端的RRC层发送第二消息,比如连接错误指示消息,到终端的NAS层。在一种可选的实施方式中,终端的RRC层可以在执行第一RRC连接的本地资源的释放的同时,发送第二消息到终端的NAS层。在另一种可选的实施方式中,终端的RRC层可以在发送第二消息到终端的NAS层后,执行第一RRC连接的本地资源的释放。需要说明的是,终端在执行第一RRC连接的本地资源的释放时,没有接收到网络设备发送的第一RRC连接释放消息。
S403,终端的NAS层接收到连接错误指示消息后,将终端维护的NAS连接管理状态置为IDLE态,并发起相应的NAS流程,即发送注册消息到终端的RRC层。对于NR系统,终端的NAS层接收到连接错误指示消息后将连接管理(Connection Management,CM)状态从CM-CONNECTED态置为CM-IDLE态,并发送注册请求(Registration Request)消息(即注册消息)到终端的RRC层,以通过终端的RRC层向空口发送,其中注册请求消息中Follow-on request字段置为0;对于LTE系统,终端的NAS层接收到连接错误指示消息后将EPS(Evolved Packet System)连接管理(EPS Connection Management,ECM)状态从ECM-CONNECTED态置为ECM-IDLE态,并发送跟踪区更新请求(Tracking Area Update Request)消 息(即注册消息)到终端的RRC层,以通过终端的RRC层向空口发送,其中跟踪区更新请求消息中的Active Flag字段置为0。
S404,终端的RRC层接收到注册消息后检测到第一RRC连接的本地资源已经释放,触发第二RRC连接的建立流程。对于NR系统,该注册消息为注册请求消息;对于LTE系统,该注册消息为跟踪区更新请求消息。其中RRC连接建立流程包括:终端的RRC层向网络设备发送RRC连接建立请求消息,网络设备接收到RRC连接建立请求消息后发送RRC建立消息到终端的RRC层,终端的RRC层接收到RRC建立消息后发送RRC建立完成消息到网络设备。
S405,第二RRC连接建立后,终端的RRC层将接收到的注册消息通过新建立的第二RRC连接发送给网络设备。网络设备接收到终端发送的注册消息后,检测到第一RRC连接为残留资源,释放第一RRC连接的本地资源并向终端发送第一RRC连接释放消息。具体的,网络设备包括核心网和基站,核心网根据基站为终端分配的新的用户标识识别到有该终端的残留的上下文未释放,发送上下文释放请求消息给基站。基站接收到该上下文释放请求消息后释放基站侧的残留资源,同时通过第一RRC连接向终端的RRC层发送第一RRC连接释放消息来释放第一RRC连接。由于终端已经提前释放了第一RRC连接的本地资源,因此终端无法接收到该第一RRC连接释放消息。具体的,对于NR系统,终端在向网络进行初始注册时,基站gNB(next generation NodeB)为该终端分配了用户标识RAN UE NGAP ID1并通知给核心网的AMF(接入和移动管理功能)实体。终端在建立第二RRC连接时,基站gNB为该终端分配了新的用户标识RAN UE NGAP ID2并通知给核心网的AMF实体。核心网的AMF实体检测到RAN UE NGAP ID1和RAN UE NGAP ID2对应着同一个终端,则识别到有该终端的残留的上下文未释放,发送上下文释放请求消息到基站gNB,基站gNB接收到上下文释放请求消息后将基站gNB侧的RAN UE NGAP ID1对应的残留资源释放掉,同时向终端发送第一RRC连接释放消息。对于LTE系统,终端在向网络进行初始附着时,基站eNB为该终端分配了用户标识eNB UE S1AP ID1并通知给核心网的MME(移动性管理实体)。终端在建立第二RRC连接时,基站eNB为该终端分配了新的用户标识eNB UE S1AP ID2并通知给核心网的MME。核心网的MME检测到RAN UE NGAP ID1和RAN UE NGAP ID2对应着同一个终端,则识别到有该终端的残留的上下文未释放,发送上下文释放请求消息到基站eNB,基站eNB接收到上下文释放请求消息后将基站eNB侧的RAN UE NGAP ID1对应的残留资源释放掉,同时向终端发送第一RRC连接释放消息。
S406,终端和网络设备继续完成相应的NAS流程。对于NR系统,网络设备发送注册接受(Registration Accept)消息给终端的NAS层。终端的NAS层接收到该注册接受消息后,发送注册完成(Registration Complete)消息给网络设备;对于LTE系统,网络设备发送跟踪区更新接受(Tracking Area Update Accept)消息给终端的NAS层。终端的NAS层接收到该跟踪区更新接受消息后,发送跟踪区更新完成(Tracking Area Update Complete)消息给网络设备。
S407,终端接收到网络设备发送的第二RRC连接释放消息后,释放第二RRC连接。具体的,网络设备为终端维护连接管理状态为IDLE态,并且检测到注册消息指示终端在第二RRC连接上无业务需求,则发送第二RRC连接释放消息给终端的RRC层。S406步骤中的NAS流程依赖于RRC连接,因此只有当完成相应的NAS流程后才能释放RRC连接。对于NR系统,RAN UE NGAP ID2是基站gNB为终端新分配的用户标识,该标识对应的用户还未完成注册流程,因此网络设备为RAN UE NGAP ID2对应的用户维护的连接管理状态为CM-IDLE态。同时网络设备检测到注册消息中的Follow-on request字段为0时,即注册消息指示了终端在第二RRC连接上无业务需求,发送第二RRC连接释放消息给终端的RRC层来释放新建立的第二RRC连接;对于LTE系统,eNB UE S1AP ID2是基站eNB为终端新分配的用户标识,该用户标识对应的用户还未完成跟踪区更新,因此网络设备为eNB UE S1AP ID2对应的用户维护的连接管理状态为ECM-IDLE态。同时网络设备检测到跟踪区更新请求消息中的Active Flag字段为0时,即跟踪区更新请求消息指示了终端在第二RRC连接上无业务需求,发送第二RRC连接释放消息给终端的RRC层来释放新建立的第二RRC连接。
在一种可选的实施方式中,终端的RRC层在步骤S405中向网络设备发送注册消息后设置第二RRC连接释放标记。当终端在步骤S406中完成相应的NAS流程后,即终端向网络设备发送注册完成消息或者跟踪区更新完成消息后,根据第二RRC连接释放标记,终端立即释放第二RRC连接的本地资源,而不用等接收到网络设备发送的第二RRC连接释放消息后才释放第二RRC连接的本地资源。
除了在图4A中所示的独立(Standalone,SA)组网场景,NR系统还存在非独立(Non-Standalone,NSA)组网场景。NSA组网的方式有很多种,包括选项3系列、选项4系列以及选项7系列,其中选项3系列是NSA组网部署最多的方式。如图4C所示,选项3系列包含三种模式,分别是option3、option3a和option3x。图中虚线代表控制面的连接,实线代表用户面的连接。从图4C中可以看出,选项3系列的NSA组网是一种双连接架构,终端在连接态下可同时使用LTE基站和NR基站的无线资源。选项3系列的NSA组网使用的都是LTE核心网,其中控制面的锚点在LTE,也就是说控制面的信令都是通过LTE系统传输的,NR系统只是通过添加辅小区组(Secondary Cell Group,SCG)承载的方式来增强终端用户面数据传输的能力。
在选项3系列的三种组网模式中LTE基站和NR基站都存在控制面连接,NR基站可以通过该连接将控制面信令通过LTE基站发送给终端。在option3a组网模式中,LTE基站和NR基站与LTE核心网同时存在用户面连接,在添加SCG承载时,NR基站可以建立独立的承载进行数据传输。在option3组网模式中,LTE基站和LTE核心网之间存在用户面连接,NR基站通过X2接口和LTE基站之间建立用户面连接。基站为终端添加的SCG承载的PDCP实体建立在LTE基站侧,该PDCP实体从LTE核心网收到数据后可以将数据通过X2接口转发或者分流到NR基站的 RLC实体。在option3x组网模式中,LTE基站和NR基站与LTE核心网同时存在用户面连接,NR基站通过X2接口和LTE基站之间建立用户面连接。基站为终端添加的SCG承载的PDCP实体建立在NR基站侧,该PDCP实体从LTE核心网收到数据后可以将数据通过X2接口转发或者分流到LTE基站的RLC实体。
在选项3系列的双连接架构中,终端在空口上支持LTE连接和NR连接,那么就必须同时实现LTE和NR的无线接入层的功能。如图4D所示,终端的RRC层、L2(包括PDCP子层、RLC子层、MAC子层)和L1均存在着LTE和NR两种版本。
以option3x的NSA组网模式为例,终端和网络设备之间存在LTE的第一RRC连接,LTE的第一RRC连接用于终端在LTE侧的数据传输,该数据包括业务数据和信令数据;另外终端和网络设备之间存在NR的RRC连接,NR的RRC连接用于终端在NR侧的数据传输,该数据包括业务数据和信令数据。其中NR的RRC连接是终端为了建立SCG承载而建立的RRC连接,SCG承载的PDCP实体建立在终端的NR侧。在本申请实施例中option3x的NSA组网模式下的终端触发RRC连接释放有两种方式,第一种方式的实施例如图4E所示:
S411,终端LTE侧和NR侧的PDCP子层发送数据传输指示(包括有数据传输指示和无数据传输指示)到终端LTE侧的RRC层。以利用PDCP子层的TTI中断进行数据传输检测为例,终端LTE侧的PDCP子层和终端NR侧的PDCP子层都进行数据传输检测,固定N个TTI进行一次检测。当检测到有数据传输时,PDCP子层发送有数据传输指示到终端LTE侧的RRC层;当检测到无数据传输时,PDCP子层发送无数据传输指示到终端LTE侧的RRC层。终端LTE侧的RRC层为终端LTE侧和NR侧的PDCP子层各自维护了一个标志,分别为Flag_Lte和Flag_Nr,初始值均为False。终端LTE侧的RRC层连续收到M次终端LTE侧的PDCP子层发送的无数据传输指示,则将Flag_Lte置为True,代表终端在第一时长内在LTE侧没有进行业务数据的传输;终端LTE侧的RRC层一旦收到终端LTE侧的PDCP子层发送的有数据传输指示,则将Flag_Lte置为False。终端LTE侧的RRC层对Flag_Nr的维护方式和对Flag_Lte的维护方式类似。只有当Flag_Lte和Flag_Nr两个标志均为True,终端LTE侧的RRC层才能确认终端在第一时长内没有进行业务数据的传输。
S412,终端LTE侧的RRC层根据接收到的数据传输指示确认终端在第一时长内没有进行业务数据的传输,则执行LTE的第一RRC连接的本地资源的释放,包括释放终端的RRC层的资源,以及发送LTE资源释放指示消息通知终端LTE侧的L2和L1来释放对应RRC资源,同时发送NR RRC连接释放指示消息通知终端NR侧的RRC层释放本地NR的RRC资源。终端NR侧的RRC层接收到该NR RRC连接释放指示消息后,执行本地NR RRC资源释放,并发送NR资源释放指示消息通知终端NR侧的L2和L1释放对应的RRC资源。终端NR侧的RRC层在接收到终端NR侧的L2和L1的NR资源释放完成指示后,发送NR RRC连接释放完成指示到终端LTE侧的RRC层。当终端LTE侧的RRC层接收到终端LTE侧的L2和L1 的资源释放完成指示以及终端NR侧的RRC层发送的NR RRC连接释放完成指示后,终端LTE侧的RRC层发送第二消息,比如连接错误指示消息,到终端的NAS层。在一种可选的实施方式中,终端LTE侧的RRC层可以在执行LTE的第一RRC连接的本地资源的释放的同时,发送连接错误指示消息到终端LTE侧的NAS层。在另一种可选的实施方式中,终端LTE侧的RRC层可以在发送连接错误指示消息到终端LTE侧的NAS层后,执行LTE的第一RRC连接的本地资源的释放。需要说明的是,终端在执行LTE的第一RRC连接的本地资源的释放时,没有接收到LTE的第一RRC连接释放消息。
S413,终端的NAS层接收到连接错误指示消息后,将终端的ECM状态从ECM-CONNECTED态置为ECM-IDLE态,并发送跟踪区更新请求消息到终端LTE侧的RRC层,以通过终端LTE侧的RRC层向LTE空口发送,其中跟踪区更新请求消息中的Active Flag字段填写为0。
S414,终端LTE侧的RRC层接收到跟踪区更新请求消息后检测到LTE的第一RRC连接的本地资源已经释放,发起LTE的第二RRC连接的建立流程。RRC连接建立流程已经在图4A/4B的S404步骤中给出了具体的描述,此处不再赘述。
S415,LTE的第二RRC连接建立完成后,终端LTE侧的RRC层通过LTE的第二RRC连接将跟踪区更新请求消息发送到LTE的核心网。LTE的核心网识别该终端有残留的上下文未释放,因此发送上下文释放请求到LTE基站(图中未示出),LTE基站接收到该上下文释放请求后释放LTE基站侧的残留资源,同时通过X2接口发送SGNB释放请求消息(SGNB RELEASE REQUEST)到NR基站释放该终端残留的NR的RRC资源。NR基站完成残留的RRC资源的释放后发送SGNB释放响应消息(SGNB RELEASE ACKNOWLEDGE)给LTE基站。LTE的核心网识别终端残留的上下文的方法在图4A/4B的S405步骤中给出了具体的描述,此处不再赘述。LTE基站接收到NR基站发送的SGNB释放响应消息后向LTE的空口发送LTE的第一RRC连接释放消息。由于终端已经提前释放了LTE的第一RRC连接的本地资源,因此终端无法接收到该LTE的第一RRC连接释放消息。
S416,终端和网络设备继续完成跟踪区更新流程。LTE的核心网发送跟踪区更新接受消息到终端的NAS层。终端的NAS层接收到跟踪区更新接受消息后发送跟踪区更新完成消息给LTE的核心网。
S417,终端接收到LTE基站发送的LTE的第二RRC连接释放消息后,释放LTE的第二RRC连接。具体的,LTE核心网为终端维护的连接管理状态为ECM-IDLE态,并且检测到跟踪区更新请求消息中的Active Flag字段为0,发送上下文释放请求消息给LTE基站(图中未示出)。LTE基站接收到该上下文释放请求消息后发送LTE的第二RRC连接释放消息给终端的RRC层来释放新建立的LTE的第二RRC连接,达到了省电的目的。S416步骤中的跟踪区更新流程依赖于RRC连接,因此只有当跟踪区更新流程完成后才能释放RRC连接。LTE核心网为终端维护的连接管理状态为ECM-IDLE态的原因在S407步骤中给出了具体的描述,此处不再赘述。
第二种方式的实施例如图4F所示:
S421,终端NR侧的RRC层接收到终端NR侧的PDCP子层发送的无数据传输指示后,发送第三消息,比如SCG失败消息(SCGFailureInformation),到网络设备通知网络设备释放SCG承载。LTE基站接收到SCG失败消息后通过X2接口发送SGNB释放请求消息(SGNB RELEASE REQUEST)通知NR基站释放该终端SCG承载对应的RRC资源。LTE基站的RRC层接收到NR基站发送的SGNB释放响应消息(SGNB RELEASE ACKNOWLEDGE)后,发送第四消息,比如NR RRC连接释放消息,到终端LTE侧的RRC层来释放NR的RRC连接,即释放终端的SCG承载。具体的无数据传输检测的功能可以通过图4A/4B中的S401步骤给出的方法来实现,此处不再赘述。
S422,终端LTE侧的RRC层接收到终端LTE侧的PDCP子层发送的无数据传输指示后检测到当前终端不存在SCG承载(步骤421已经释放了SCG承载),即不存在NR的RRC连接,执行LTE的第一RRC连接的本地资源的释放,包括释放终端LTE侧的RRC层的资源,以及发送RRC资源释放指示消息到终端LTE侧的L1和L2来释放对应的RRC资源。当终端LTE侧的RRC层接收到终端LTE侧的L2和L1的RRC资源释放完成指示后,终端LTE侧的RRC层发送第二消息,比如连接错误指示消息,到终端的NAS层。具体的无数据传输检测的功能可以通过图4A/4B中的S401步骤给出的方法来实现,此处不再赘述。需要说明的是,若终端LTE侧的RRC层在接收到终端LTE侧的PDCP子层发送的无数据传输指示时检测到当前终端存在SCG承载,则不执行本步骤的操作。在一种可选的实施方式中,终端LTE侧的RRC层可以在执行LTE的第一RRC连接的本地资源的释放的同时,发送连接错误指示消息到终端LTE侧的NAS层。在另一种可选的实施方式中,终端LTE侧的RRC层可以在发送连接错误指示消息到终端LTE侧的NAS层后,执行LTE的第一RRC连接的本地资源的释放。需要说明的是,终端在执行LTE的第一RRC连接的本地资源的释放时,没有接收到LTE的第一RRC连接释放消息。
S423,终端的NAS层接收到连接错误指示消息后,将终端的ECM状态从ECM-CONNECTED态置为ECM-IDLE态,并发送跟踪区更新请求消息到终端LTE侧的RRC层,以通过终端LTE侧的RRC层向LTE空口发送,其中跟踪区更新请求消息中的Active Flag字段填写为0。
S424,终端LTE侧的RRC层接收到跟踪区更新请求消息后检测到LTE的第一RRC连接的本地资源已经释放,发起LTE的第二RRC连接的建立流程。RRC连接建立流程已经在图4A/4B的S404步骤中给出了具体的描述,此处不再赘述。
S425,LTE的第二RRC连接建立完成后,终端LTE侧的RRC层通过LTE的第二RRC连接将跟踪区更新请求消息发送到LTE的核心网。LTE的核心网识别该终端有残留的上下文未释放,因此发送上下文释放请求到LTE基站(图中未示出)。LTE的核心网识别终端残留的上下文的方法在图4A/4B的S405步骤中给出了具体的描述,此处不再赘述。LTE基站接收到该上下文请求消息后检测到终端当前不 存在SCG承载后(步骤421已经释放了SCG承载),释放LTE基站侧的残留资源,同时向终端发送LTE的第一RRC连接释放消息。由于终端已经提前释放了LTE的第一RRC连接的本地资源,因此终端无法接收到该LTE的第一RRC连接释放消息。
S426,终端和网络设备完成跟踪区更新流程。LTE的核心网发送跟踪区更新接受消息到终端的NAS层。终端的NAS层接收到跟踪区更新接受消息后发送跟踪区更新完成消息给LTE的核心网。
S427,终端接收到LTE基站发送的LTE的第二RRC连接释放消息后,释放LTE的第二RRC连接。具体的,LTE核心网为终端维护的连接管理状态为ECM-IDLE态,并且检测到跟踪区更新请求消息中的Active Flag为0,发送上下文释放请求消息给LTE基站(图中未示出)。LTE基站接收到该上下文释放请求消息后发送LTE的第二RRC连接释放消息给终端的RRC层来释放新建立的LTE的第二RRC连接,达到了省电的目的。S426步骤中的跟踪区更新流程依赖于RRC连接,因此只有当跟踪区更新流程完成后才能释放RRC连接。终端的ECM连接管理状态为ECM-IDLE态的原因在S407步骤中给出了具体的描述,此处不再赘述。
图4E和图4F给出了option3x的NSA组网模式下的两个实施例,其中图4E采用的是同时释放LTE和NR的RRC连接的方式,即当终端检测到LTE和NR都没有数据传输后,通过跟踪区更新的流程触发同时释放LTE和NR的RRC连接;图4F采用的是分步释放RRC连接的方式,即当终端检测到NR没有数据传输后主动上报异常消息请求释放NR的RRC连接,然后当检测到LTE没有数据传输后,通过跟踪区更新的流程触发释放LTE的RRC连接。
当然其他的NSA组网方式也可以使用上述类似的方式进行RRC连接的释放,本申请不再一一赘述。
在本申请实施例中,由终端而非基站来确定终端业务传输是否结束,这样可以尽快准确的确定出终端业务传输结束的时刻。终端可以在确定业务传输结束后释放本地RRC连接,并且发起对应的NAS流程建立新的RRC连接,最终网络设备根据NAS消息的指示和标准协议流程发送RRC连接释放消息给终端释放新的RRC连接。这样,终端可以在业务传输结束后快速的将RRC连接释放掉,降低了终端的功耗。
另外,本申请实施例网络设备利用的是标准协议流程,无需进行额外的适配,只需要终端单侧进行修改,因此可以进行快速的落地运用,十分灵活。
在图4给出的实施例中,终端是按照固定的时长进行数据传输业务检测的,没有考虑到终端的业务场景的差异化。下面给出了根据终端不同的业务场景设置无数据传输检测时长(即第一时长)的实施例,具体的实施例流程如图5所示,具体流程包括:
S501,终端的应用处理器AP获取当前终端的业务场景类型,将业务场景类型发送给终端的RRC层。在一种可选的实施方式中,终端的应用处理器AP可以通过AT(Attention)指令将业务场景类型发送给终端的RRC层。在安卓系统中, 可以通过调用isScreenOn接口来获取屏幕的状态,调用isWifiConnected接口来获取Wifi的连接状态等。
终端的业务场景类型包括灭屏且WIFI未连接,亮屏且WIFI未连接,WIFI连接以及睡眠模式。例如通过isScreenOn接口获取到屏幕处于熄灭状态,通过isWifiConnected接口获取到未连接到Wifi,那么此时终端的业务场景类型为灭屏且WIFI未连接。通过isScreenOn接口获取到屏幕处于点亮状态,通过isWifiConnected接口获取到未连接到Wifi,那么此时终端的业务场景类型为亮屏且WIFI未连接。通过isWifiConnected接口获取到已连接到Wifi,那么此时终端的业务场景类型为WIFI连接。
睡眠模式的判断主要用到了环境光、接近光、运动静止,同时也考虑了灭屏,锁屏时长等因素。通过历史记录判断当前时刻用户处于睡眠模式的概率很大,同时通过当前的环境光判断处于关灯状态,用户处于睡眠模式的概率也很大,根据上述两个概率综合判断用户是否处于睡眠模式,比如当概率超过90%,则认为是睡眠模式。需要说明的是,上述的睡眠模式的判断考虑到了灭屏的因素,同时也考虑到了其他的因素,因此睡眠模式下的终端一定处于灭屏状态,但是处于灭屏状态的终端不一定处于睡眠模式。当然也可以使用其他的方法获得业务场景的类型,本申请实施例不做限制。
S502,终端的RRC层接收到业务场景类型后,发送参数配置消息到终端L2的PDCP子层。该参数配置消息可以为终端的RRC层接收到的业务场景类型,也可以是终端的RRC层通过业务场景类型获取的第一时长。
可选的,终端的RRC层接收到业务场景类型后,通过查表的方式得到第一时长。
可选的,终端的RRC层接收到业务场景类型后,也可以通过调用子函数获得第一时长,子函数接收业务场景类型作为入参。
S503,终端L2的PDCP子层接收到参数配置消息后,启动无数据传输检测定时器。如果终端L2的PDCP子层接收到的参数配置消息为业务场景类型,那么终端L2的PDCP子层可以通过查表或者调用子函数的方式获得第一时长,然后根据该时长启动无数据传输检测定时器。如果终端L2的PDCP子层接收到的参数配置消息为第一时长,那么终端L2的PDCP子层直接根据该时长启动无数据传输检测定时器。
S504,当无数据传输检测定时器超时后,终端L2的PDCP子层发送无数据传输指示消息到终端的RRC层。终端的RRC层接收到无数据传输指示消息后,执行本地RRC资源释放,并发送资源释放指示消息到终端的L2和L1来释放对应的RRC资源。当终端的RRC层接收到终端的L2和L1的资源释放完成指示后,终端的RRC层发送第二消息,比如连接错误指示消息,到终端的NAS层。
可选的,步骤S503~S504也可以通过图4中的步骤S401给出的TTI中断的方式来实现,即通过终端L2的PDCP子层的TTI中断来检测业务传输状态,当终端的RRC层连续收到一定次数的无数据传输指示后发送资源释放指示消息到终 端的L1和L2来释放对应的RRC资源。需要说明的是,在TTI中断的实现方式中,终端的RRC层无需发送参数配置消息给终端L2的PDCP子层,终端的RRC层直接通过业务场景类型获取第一时长来确认终端在该第一时长内没有业务数据的传输。当终端的RRC层接收到终端的L2和L1的资源释放完成指示后,发送连接错误指示消息到终端的NAS层。
可选的,步骤S501中终端的应用处理器AP识别到具体的业务场景类型后,根据业务场景类型获取第一时长,然后直接根据该第一时长启动无数据传输检测定时器进行无数据传输的检测。具体的流程如图6所示,包括:
S601,终端的应用处理器AP检测当前终端的业务场景类型。
S602,终端的应用处理器AP根据检测到的业务场景类型获取第一时长,具体的可以通过查表或者子函数调用的方式获取无数据传输检测定时器的时长。
S603,终端的应用处理器AP根据获取的第一时长启动无数据传输检测定时器,如果检测到有数据传输,则重新启动该无数据传输检测定时器;具体的,在安卓系统中终端的应用处理器AP可以通过接口TrafficStats.getMobileRxBytes获取终端接收到的字节数,通过接口TrafficStats.getMobileTxBytes获取终端发送的字节数,在发送和接收的字节数为零时终端没有数据传输。
S604,无数据传输检测定时器超时后,终端的应用处理器AP发送无数据传输指示到终端的RRC层。在一种可选的实施方式中,终端的应用处理器AP可以通过AT指令将无数据传输指示发送到终端的RRC层。
S605,终端的RRC层接收到该无数据传输指示消息后,执行本地RRC资源释放,并发送资源释放指示消息通知终端的L1和L2释放对应的RRC资源。当终端的RRC层接收到终端的L2和L1的资源释放完成指示后,发送第二消息,比如连接错误指示消息,到终端的NAS层。
终端的NAS层接收到该连接错误指示消息后的处理和图4给出的实施例中的处理一致,在此不再赘述。
可选的,终端应用处理器AP获取到第一时长后,也可以将该时长发送给终端的RRC层或者终端L2的PDCP子层来完成无数据传输检测的功能。具体的实施方式和上面描述的类似,不同点在于将无数据传输检测的功能由终端不同的模块来完成。
可选的,终端也可以通过器件的状态直接获取第一时长,然后通过终端不同的模块来完成无数据传输检测的功能。
在图5给出的本申请实施例中,终端的第一时长是根据不同的业务场景确定的,这样可以实现对终端不同的业务场景类型的差异化处理,使得终端更加的省电。
场景一 第一时长 备注
睡眠模式/WIFI连接 T1=2秒 无需等待网络侧不活动
    定时器超时
表1.1
场景二 第一时长 备注
灭屏且WIFI未连接 T2=12秒 判断时长居中
表1.2
Figure PCTCN2021117557-appb-000001
表1.3
表1.1、1.2、1.3给出了3种典型的业务场景下第一时长的配置。表1.1给出的是睡眠模式和WIFI连接模式的第一时长配置。在睡眠模式下,终端只是周期性的处理心跳包或者接收单个微信等应用的小包业务,终端RRC连接建立后,只需短暂的1秒钟时间就可以完成业务数据的接收,此时终端可以在网络侧不活动定时器超时前发起主动释放RRC连接的请求,至少可以节省90%的电量(假设终端无数据传输定时器的时长为2秒钟,网络侧不活动定时器配置为20秒钟)。这里的网络侧不活动定时器即图3A中基站为终端维护的不活动定时器。在WIFI连接场景下,终端主要是在WIFI连接上进行数据的传输,蜂窝基本不使用,那么第一时长的设置可以和睡眠模式的设置一致。
表1.2给出的是灭屏且WIFI未连接模式的第一时长配置。考虑到用户在终端亮屏下的行为在灭屏下将会持续一段时间,可以将终端的第一时长配置居中,例如设置为12秒钟(网络侧不活动定时器时长的典型配置为20秒钟)。
表1.3给出的是亮屏且WIFI未连接模式的第一时长配置。终端在亮屏下用户大部分时间都在断断续续的使用蜂窝的数据,为了减少对用户使用的影响,此时第一时长设置要偏大一点,例如设置为24秒钟(网络侧不活动定时器时长的典型配置为20秒钟)。
进一步,本申请实施例对终端的不同的应用程序的业务数据进行了差异化的处理。具体的,终端中的应用程序在应用处理器AP侧对应一个唯一的用户身份标识(UID)。终端中的应用程序在和网络进行数据传输前会和网络建立Socket连接,终端记录了UID和IP五元组(源地址,源端口号,目的地址,目的端口号,协议类型)的映射表。当终端的应用处理器AP接收或者发送一个数据包时,解析IP包头,根据IP五元组和已经保存的UID与IP五元组的映射表查找到UID,进而可以确定该数据包对应的应用程序。
应用程序 第一时长 备注
王者荣耀 24s 时延要求比较高
网易新闻 12s 新闻浏览属于突发性业务
咕咚运动 2s 数据传输间隔比较大
表2
表2举例给出了一些典型的应用程序对应的第一时长。当终端的应用处理器AP识别到有王者荣耀游戏程序的数据包时,由于王者荣耀游戏程序对时延的要求比较高,因此可以将第一时长设置比网络侧不活动定时器时长稍长些,例如设置为24秒钟(网络侧不活动定时器时长的典型配置为20秒钟)。当终端的应用处理器AP识别到有网易新闻客户端的数据包时,由于用户浏览新闻属于突发性的业务,因此可以将终端的第一时长配置居中,例如设置为12秒钟(网络侧不活动定时器时长的典型配置为20秒钟)。当终端的应用处理器AP识别到有咕咚运动等运动健康应用程序的数据包时,由于此类应用程序和网络交互数据量小而且时间间隔比较大,因此可以将终端的第一时长配置短一些,例如设置为2秒钟(网络侧不活动定时器时长的典型配置为20秒钟)。
具体的,终端的应用处理器AP可以将应用程序分为三类,分别为A类、B类、C类,并且分别创建三个对应的定时器,定时器的初始状态均为停止状态。其中A类应用程序对应着最短的第一时长,例如时长为2s;B类应用程序对应着中等的第一时长,例如时长为12s;C类应用程序对应着最长的第一时长,例如时长为24s。终端的应用处理器AP根据数据包识别到所属的应用程序,然后根据该应用程序获取对应的应用程序的类型。如果该应用程序的类型对应的定时器正在运行中,则重新启动该定时器;如果该应用程序的类型对应的定时器处于停止状态,则启动该定时器。当一个定时器超时时,查看其他两个定时器的状态,如果其他两个定时器均为停止状态,那么终端的应用处理器AP发送无数据传输指示到终端的RRC层。在一种可选的实施方式中,终端的应用处理器AP可以通过AT指令将无数据传输指示发送到终端的RRC层。
终端的RRC层接收到无数据传输指示消息后的处理和图4给出的实施例中的处理一致,在此不再赘述。
终端的应用处理器AP识别到数据包对应的应用程序类型后,根据应用程序类型完成无数据传输检测的功能可以在终端不同的模块完成,例如可以将应用程序类型发送给终端的RRC层,由终端的RRC层完成无数据传输的检测。
该实施例考虑到了不同的应用程序对数据传输的时延的要求,根据不同的要求设置第一时长,避免终端提前释放RRC连接而影响用户的体验。
本申请以上给出的实施例都是终端通过数据传输检测来确认要释放RRC连接的,终端也可以使用其他的方法来确认要进行RRC连接的释放。比如使用机器学习的方式进行预测终端是否需要进行RRC连接的释放,具体的终端根据识别出来的应用类型,器件状态以及记录的不同应用场景、不同器件状态下数据传输的历史信息来推测终端在下一段时间里是否有数据传输。如果终端预测到在下 一段时间里不会有数据传输,则决策需要释放RRC连接,进而使用本申请实施例的方法触发RRC连接释放的流程。
下面对本申请实施例中终端触发RRC连接释放进行详细的描述:
在NR独立组网系统中,终端相对应的用户状态分为注册管理(Registration Mangement,RM)状态和连接管理(Connection Mangement,CM)状态。NR系统在RRC状态中新增了一个RRC Inactive状态,便于网络能够在需要传输数据时快速恢复终端的连接,同时兼顾省电的需求。具体的用户状态的转换如图7A所示,用户的注册管理状态是通过注册和去注册的方式进行转换的。用户的连接管理状态的转换包括了终端与基站的连接建立和释放(也就是RRC连接建立和释放),以及基站和核心网的连接建立和释放(也就是N2和N3连接建立和释放),其中基站gNB和核心网的AMF之间的连接为N2连接,基站gNB和核心网的UPF(User Plane Function)之间的连接为N3连接。本申请实施例中NR系统的终端触发RRC连接释放的主要流程如图7B所示:
S701,终端向网络进行初始注册获得授权接收服务。在NR系统中,终端需要向网络注册才能获得授权接收服务,启动移动性跟踪和可达性。首先处于RM-Deregistered态、CM-IDLE态和RRC-IDLE态的终端发起注册流程,终端的NAS层发送初始注册请求消息到终端的RRC层。终端的RRC层接收到初始注册请求消息后发起第一RRC连接建立流程(即随机接入流程),第一RRC连接建立完成后基站gNB为终端分配用户标识RAN UE NGAP ID1并和初始注册请求消息一起发送给核心网的AMF(接入和移动管理功能)实体。核心网的AMF实体接收到终端的初始注册请求后和终端一起完成注册流程。注册完成后,终端进入RM-Registered态、CM-CONNECTED态和RRC-CONNECTED态。
S702,终端执行第一RRC连接的本地资源的释放并发送消息通知终端的NAS层。具体的,当终端检测到在第一时长没有进行业务数据的传输时,终端的RRC层执行第一RRC连接的本地资源的释放,包括释放终端的RRC层的资源,以及发送资源释放指示消息到终端的L1和L2来释放对应的RRC资源。当终端的RRC层接收到终端的L1和L2资源释放完成指示后,终端的RRC层发送第二消息,比如连接错误指示消息,到终端的NAS层。在一种可选的实施方式中,终端的RRC层可以在执行第一RRC连接的本地资源的释放的同时,发送连接错误指示消息到终端的NAS层。在另一种可选的实施方式中,终端的RRC层可以在发送连接错误指示消息到终端的NAS层后,执行第一RRC连接的本地资源的释放。需要说明的是,终端在执行第一RRC连接的本地资源的释放时,没有接收到网络设备发送的第一RRC连接释放消息。
S703,终端的NAS层接收到连接错误指示消息后,将终端的CM状态从CM-CONNECTED态置为CM-IDLE态,并发送注册请求消息到终端的RRC层。由于此时终端已经提前释放了第一RRC连接的本地资源,因此终端的RRC层将发起第二RRC连接的建立流程。第二RRC连接建立完成后基站gNB为终端分配新的 用户标识RAN UE NGAP ID2并和注册请求消息一起发送给核心网的AMF实体。由于RAN UE NGAP ID2是基站gNB为终端新分配的用户标识,该标识对应的用户还未完成注册流程,因此网络设备为RAN UE NGAP ID2对应的用户维护的连接管理状态为CM-IDLE态。核心网的AMF实体检测到RAN UE NGAP ID1和RAN UE NGAP ID2对应着同一个终端,因此核心网的AMF实体发送RAN UE NGAP ID1对应的上下文释放请求消息到基站gNB,基站gNB接收到该上下文释放请求消息后释放基站gNB侧的残留资源,同时通过第一RRC连接发送第一RRC连接释放消息来释放RAN UE NGAP ID1对应的第一RRC连接。由于此时终端已经提前释放了第一RRC连接的本地资源,因此终端无法接收到该第一RRC连接释放消息。同时核心网的AMF实体接收到终端的初始注册请求后和终端一起完成注册流程。
S704,基站gNB接收到核心网的AMF实体发送的RAN UE NGAP ID2用户标识对应的上下文释放请求后,发送第二RRC连接释放消息到终端的RRC层。具体的,核心网的AMF实体检测到注册请求消息中的Follow-on request字段为0,并且核心网的AMF实体为RAN UE NGAP ID2对应的用户维护的连接管理状态CM-IDLE态。根据标准协议的处理,核心网的AMF实体检测到注册请求消息中的Follow-on request字段为0,即指示终端在第二RRC连接上无业务需求,并且核心网的AMF实体为RAN UE NGAP ID2对应的用户维护的连接管理状态为CM-IDLE态时,会下发RAN UE NGAP ID2对应的上下文释放请求消息来指示基站gNB将终端新建立的第二RRC连接释放掉,达到了省电的目的。
在NR系统中,终端发送的注册请求消息中必须包含有registration type信元,registration type信元包含两个字段,分别是Follow-on request(FOR)和5GS registration type value,共占用4bit,具体如表3所示。
Figure PCTCN2021117557-appb-000002
表3
其中字段Follow-on request(FOR),占用1个bit,取值为0代表没有后续请求等待,取值为1代表有后续请求等待;字段5GS registration type value,占用3个bit,主要有以下几种取值,如表4所示。
Bit 3 2 1 含义
  0 0 1 initial registration
  0 1 0 mobility registration updating
  0 1 1 periodic registration updating
  1 0 0 emergency registration
  1 1 1 Reserved
表4
5GS registration type value取值为“001”代表该注册消息为初始注册消息;取值为“010”代表该注册消息为移动性注册消息;取值为“011”代表该注册消息为周期性注册消息;取值为“100”代表该注册消息为紧急注册消息;取值为“111”以及其他的值均为保留值还未使用。
在图7B的步骤S703中终端的NAS层发送注册请求消息给网络设备,其中注册消息中的Follow-on request填写为0,代表后续没有请求等待,即可以释放RRC连接;5GS registration type value可以填写为“010”或者“011”,代表发送的是移动性注册请求或者周期性注册请求。根据标准协议,核心网的AMF检测到处于CM-IDLE态的终端发送的注册请求中的Follow-on request为0,就会发送上下文释放请求给基站gNB,进而基站gNB将RRC连接释放掉。
另外步骤S703中终端发送的注册请求中还必须包含5GS mobile identity信元,5GS mobile identity信元可以是SUCI(Subscription Concealed Identifier),5G-GUTI(5G Global Unique Temporary Identifier),或者IMEI(International Mobile Equipment Identity)等终端唯一的标识。结合基站gNB给用户分配的RAN UE NGAP ID,核心网如果识别到同一个终端在注册时使用了不同的RAN UE NGAP ID,则将老的RAN UE NGAP ID对应的用户的上下文释放掉。
在LTE系统中,终端相对应的用户状态分为EPS移动性管理(EPS Mobility Management,EMM)状态和EPS连接管理(EPS Connection Management,ECM)状态。具体的用户状态的转换如图8A所示,用户移动性管理状态是通过附着和去附着的方式进行转换的。用户的连接管理状态是通过NAS层的信令进行转换的。本申请实施例中LTE系统的终端触发RRC连接释放的主要流程如图8B所示:
S801,终端向网络进行初始附着获得授权接收服务。在LTE系统中,终端只有在完成附着后才能获得网络的服务。首先处于EMM-Deregistered、ECM-IDLE态和RRC-IDLE态的终端发起附着流程,终端的NAS层发送附着请求消息到终端的RRC层。终端的RRC层接收到附着请求消息后发起第一RRC连接建立流程(即随机接入流程),第一RRC连接建立完成后基站eNB为终端分配eNB UE S1AP ID1并和附着请求消息一起发送给核心网的MME(移动性管理实体)。核心网的MME接收到终端的附着请求消息后和终端一起完成附着流程。附着完成后,终端进入EMM-Registered、ECM-CONNECTED态和RRC-CONNECTED态。
S802,终端执行第一RRC连接的本地资源的释放并发送消息通知终端的NAS层。具体的,当终端检测到在第一时长内没有进行业务数据的传输时,终端的RRC层执行第一RRC连接的本地资源的释放,包括释放终端的RRC层的资源,以及发送资源释放指示消息给终端的L1和L2来释放对应的RRC资源。当终端的RRC层接收到终端的L1和L2的资源释放完成指示后,终端的RRC层发送第二消息,比如连接错误指示消息,到终端的NAS层。在一种可选的实施方式中,终端的RRC层可以在执行第一RRC连接的本地资源的释放的同时,发送连接错误指示消息到终端的NAS层。在另一种可选的实施方式中,终端的RRC层可以在 发送连接错误指示消息到终端的NAS层后,执行第一RRC连接的本地资源的释放。需要说明的是,终端在执行第一RRC连接的本地资源的释放时,没有接收到网络设备发送的第一RRC连接释放消息。
S803,终端发起跟踪区更新(Tracking Area Update,TAU)流程。终端的NAS层接收到连接错误指示后,将终端的ECM状态从ECM-CONNECTED态置为ECM-IDLE态,并发送跟踪区更新请求消息到终端的RRC层。由于此时终端的RRC层已经提前释放了第一RRC连接的本地资源,因此终端的RRC层将发起第二RRC连接建立的流程。第二RRC连接建立完成后基站eNB为终端分配eNB UE S1AP ID2并和跟踪区更新请求消息一起发送给核心网的MME。由于eNB UE S1AP ID2是基站eNB为终端新分配的用户标识,该用户标识对应的用户还未完成跟踪区更新,因此网络设备为eNB UE S1AP ID2对应的用户维护的连接管理状态为ECM-IDLE态。核心网的MME检测到eNB UE S1AP ID1和eNB UE S1AP ID2对应着同一个终端,因此核心网的MME会发送eNB UE S1AP ID1对应的上下文释放请求消息到基站eNB,基站eNB接收到该上下文释放请求消息后释放基站eNB侧的残留资源,同时通过第一RRC连接发送第一RRC连接释放消息来释放eNB UE S1AP ID1对应的第一RRC连接。由于此时终端已经提前释放了第一RRC连接的本地资源,因此终端无法接收到该RRC连接释放消息。同时核心网的MME接收到终端的跟踪区更新请求消息后和终端一起完成跟踪区更新流程。
S804,基站eNB接收到核心网的MME发送的eNB UE S1AP ID2用户标识对应的上下文释放请求消息后,发送第二RRC连接释放消息到终端的RRC层。核心网的MME检测到跟踪区更新消息中的Active Flag字段为0,即指示终端在第二RRC连接上无业务需求,并且核心网的MME为eNB UE S1AP ID2对应的用户维护的连接管理状态为ECM-IDLE态。根据标准协议的处理,核心网的MME检测到跟踪区更新消息中的Active Flag字段为0并且核心网的MME为eNB UE S1AP ID2对应的用户维护的连接管理状态为ECM-IDLE态时,发送eNB UE S1AP ID2对应的上下文释放请求消息来指示基站eNB将终端新建立的第二RRC连接释放掉,达到了省电的目的。
在LTE系统中,终端发送的跟踪区更新请求消息中必须包含有EPS update type信元,EPS update type信元包含两个字段,分别是Active Flag和EPS update type value,共占用4bit,具体如表5所示。
Figure PCTCN2021117557-appb-000003
表5
其中字段Active Flag,占用1个bit,取值为0代表没有承载建立的请求,取值为1代表有承载建立的请求;字段EPS update type value,占用3个bit,主要有以下几种取值,如表5所示。
Bit 3 2 1 含义
  0 0 0 TA updating
  0 0 1 combined TA/LA updating
  0 1 0 combined TA/LA updating with IMSI attach
  0 1 1 periodic updating
  1 0 0 unused;shall be interpreted as"TA updating",if received by the network.
  1 0 1 unused;shall be interpreted as"TA updating",if received by the network.
表6
EPS update type value取值为“000”代表该跟踪区更新消息的类型是常规的跟踪区更新;取值为“001”代表该跟踪区更新消息的类型是联合TA和LA的跟踪区更新;取值为“010”代表该跟踪区更新消息的类型是带有IMST附着的联合TA和LA的跟踪区更新;取值为“011”代表该跟踪区更新消息得类型是周期性跟踪区更新;其他的取值均未使用。
在本申请实施例中终端的NAS层接收到连接错误指示后发送跟踪区更新消息给网络设备,其中Active Flag填写为0,代表没有建立承载的请求,即可以释放RRC连接;EPS update type value可以填写为“000”、“001”、“010”或者“011”。根据标准协议,核心网的MME检测到处于ECM-IDLE态的终端发送的跟踪区更新请求中的Active Flag为0,发送上下文释放请求给基站eNB,进而基站eNB将RRC连接释放掉。
另外终端发送的跟踪区更新消息中还必须包含EPS mobile identity信元,EPS mobile identity信元可以是IMSI(International Mobile Subscriber Identity),GUTI(Globally Unique Temporary UE Identity)或者IMEI(International Mobile Equipment Identity),代表终端的唯一标识。结合基站eNB给用户分配的eNB UE S1AP ID,核心网如果识别到同一个终端在跟踪区更新时使用了不同的eNB UE S1AP ID,则将老的eNB UE S1AP ID对应的用户的上下文释放掉。
需要说明的是,在图7B和图8B中,终端和网络设备均新建立了第二RRC连接。在终端和网络设备建立第二RRC连接时,该网络设备可能和终端存在第一RRC连接时连接的网络设备相比已经发生了改变,包括基站设备和核心网设备的改变。比如基站设备和核心网设备都发生了变化,或者只有基站设备发生了变化。以NR非独立组网系统为例,当只有基站设备发生了变化时,终端和新的基站设备建立第二RRC连接,核心网设备在接收到注册请求消息时检测到该终端有残留的资源未释放,因此会向老的基站发送上下文释放请求消息请求释放第一RRC连接的资源;当基站设备和核心网设备都发生变化时,终端和新的基站设备建立第二RRC连接,新的核心网设备在接收到注册请求消息时会发送消息给老的核心网设备获取该终端的信息,老的核心网设备接收到该消息后将该终端的信息发送给新的核心网设备,并向老的基站发送上下文释放请求消息请求释放第一RRC连接的资源。
如果终端在完成无数据传输检测后不释放本地RRC连接资源,仍然使用第一RRC连接发送注册请求消息或者跟踪区请求更新消息到网络设备,那么由于此时网络设备为该终端用户维护的状态仍然是CM-CONNECTED态或者ECM-CONNECTED态,根据标准协议网络设备即使检测到终端没有建立承载的需求或者后续没有请求等待,也不会给终端发送RRC连接释放消息,无法达到释放RRC连接的目的。
综上所述,本申请实施例给出了一种释放无线资源控制RRC连接的方法,如图9所示,首先终端释放本地RRC连接资源,造成终端和网络维护的RRC状态不一致,然后触发相应的NAS流程,即建立新的RRC连接并发送NAS消息到网络设备指示终端在新的RRC连接上无业务需求,最后网络设备根据终端发送的NAS消息和标准协议流程发送RRC连接释放消息到终端释放新的RRC连接,并在此过程中网络设备识别并释放原有的RRC连接的本地资源,达到省电的目的。
需要说明的是,本申请实施例中终端会单侧释放RRC连接,此时终端维护的RRC状态和网络维护的RRC状态是不一致的。如果由于网络的原因最终没有生效本申请的实施例中的方案,终端维护的RRC状态和网络维护的RRC状态仍然不一致,此时网络发送数据给终端存在两种可能的流程,其中一种流程如图10A所示,具体包括:
S1001,网络设备检测到终端处于上行失步状态。网络设备为该终端维护的RRC状态为RRC连接态,为了维持终端的上行同步,网络设备无线接入协议层的L2会周期性发送TA MCE(Timing Advance MAC Control Element)给终端。由于终端已经释放了RRC资源,因此终端接收不到TA MCE则无法给网络设备回复TA MCE对应的ACK(Acknowledgement),那么网络设备就会检测到终端上行失步。
S1002,网络设备通知终端进行上行重同步。网络设备无线接入协议层的L2会发送PDCCH Order给终端通知终端进行上行重同步,如果上行重同步成功,则终端重新建立RRC连接恢复业务;如果上行重同步失败,则进入S1003步骤。
S1003,终端重同步失败后,网络设备会转为在RRC-IDLE态下对终端进行寻呼,终端接收到网络设备的寻呼消息后和网络设备重新建立RRC连接。
另一种可能的流程如图10B所示,具体包括:
S1011,网络设备检测到RLC达到最大重传次数,发送RRC连接释放消息给终端,同时释放网络设备的RRC资源,然后网络设备维护的RRC状态转换为RRC-IDLE态。具体的,当终端的RLC配置为AM模式(Acknowledgement Mode)时,网络设备发送给终端的数据在RLC层需要进行确认,若没有收到确认,网络设备就会进行RLC层的重传。网络设备的RLC层达到最大重传次数会触发RRC连接释放流程。
S1012,网络设备在RRC-IDLE态下对终端进行寻呼,终端接收到网络设备的 寻呼消息后和网络设备建立RRC连接。
从上面描述的流程可以看出即使由于网络的原因最终没有生效本申请的实施例中的方案,网络设备也会通过相应的自愈方式重新为终端恢复正常的业务传输。
请参考图11,其示出了本申请实施例提供的一种终端的结构示意图,该终端包括:处理器1101、接收器1102、发射器1103、存储器1104和总线1105。处理器1101包括一个或者多个处理核心,处理器1101通过运行软件程序以及模块,从而执行各种功能的应用以及信息处理。接收器1102和发射器1103可以实现为一个通信组件,该通信组件可以是一块基带芯片。存储器1104通过总线1105和处理器1101相连。存储器1104可用于存储至少一个程序指令,处理器1101用于执行至少一个程序指令,以实现上述实施例的技术方案。其实现原理和技术效果与上述方法相关实施例类似,此处不再赘述。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SS)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,不限于此。
本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。本申请各实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如, 数字视频光盘(digital video disc,DWD)、或者半导体介质(例如,SSD)等。
本申请实施例提供一种计算机程序产品,当所述计算机程序产品在终端运行时,使得所述终端执行上述实施例中的技术方案。其实现原理和技术效果与上述相关实施例类似,此处不再赘述。
本申请实施例提供一种计算机可读存储介质,其上存储有程序指令,所述程序指令被终端执行时,使得所述终端执行上述实施例的技术方案。其实现原理和技术效果与上述相关实施例类似,此处不再赘述。
本申请实施例提供一种释放无线资源控制RRC连接的装置,该装置可以为终端,也可以为芯片。当所述装置为芯片时,可以为片上系统(System-on-a-Chip,SoC)主芯片或者基带调制解调(modem)芯片,所述芯片可应用于终端中。所述装置为终端时,也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。该装置包括处理器,该处理器用于与存储器耦合,并读取存储器中的指令并根据指令执行上述实施例中,比如方法实施例的技术方案。该存储器可以集成在处理器中,也可以独立在处理器之外。该存储器包括高速缓存Cache,可以存放频繁访问的数据/指令。
请参考图12,其示出了本申请实施例提供的一种RRC连接释放装置,该RRC连接释放装置可以通过软件、硬件或者两者的结合实现上述实施例中,比如方法实施例的技术方案的部分或者全部。该装置包括:识别单元1201、判断单元1202、信令发送单元1203和释放单元1204。
识别单元1201,用于识别终端的业务场景类型,所述业务场景类型包括睡眠模式、灭屏模式和亮屏模式等,还用于识别业务数据所述的应用程序类型,比如低时延业务类型的应用程序等。
判断单元1202,用于判断终端的业务数据传输是否结束,可以通过启动定时器的方式或者TTI中断的方式来实现。
信令发送单元1203,当检测到终端在第一时长内没有进行业务数据的传输时,发送NAS消息到网络设备,在NAS消息中指示网络设备释放无线空口资源,进而触发网络设备释放终端的RRC连接。
信令接收单元1204,用于接收网络设备发送的RRC连接释放消息。
释放单元1205,当检测到终端在第一时长内没有进行业务数据的传输时,终端释放本地RRC连接。还用于接收网络设备发送的RRC连接释放消息来执行RRC连接的释放。
综上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (36)

  1. 一种释放无线资源控制RRC连接的方法,应用于包括终端和网络设备的系统,所述终端和所述网络设备之间存在第一RRC连接,所述第一RRC连接用于所述终端和所述网络设备之间的数据传输,其特征在于,包括:
    所述终端确认要释放所述第一RRC连接时,释放所述第一RRC连接的本地资源,并和所述网络设备建立第二RRC连接;
    所述终端通过所述第二RRC连接向所述网络设备发送注册消息,所述注册消息用于向所述网络设备注册并指示所述终端在所述第二RRC连接上无业务需求;
    所述网络设备接收到所述终端发送的所述注册消息后,释放所述第一RRC连接的本地资源和所述第二RRC连接的本地资源,并向所述终端发送第一RRC连接释放消息和第二RRC连接释放消息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端接收到所述第二RRC连接释放消息,响应所述第二RRC连接释放消息,释放所述第二RRC连接的本地资源。
  3. 根据权利要求1或2所述的方法,其特征在于,所述释放所述第一RRC连接的本地资源,并和所述网络设备建立第二RRC连接包括:
    释放所述第一RRC连接的本地资源,并生成向所述网络设备发送的所述注册消息;
    建立和所述网络设备的所述第二RRC连接。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述网络设备接收到所述终端发送的所述注册消息后,释放所述第一RRC连接的本地资源和所述第二RRC连接的本地资源,并向所述终端发送第一RRC连接释放消息和第二RRC连接释放消息,包括:
    所述网络设备接收到所述终端发送的所述注册消息后,检测到所述第一RRC连接为残留资源,释放所述第一RRC连接的本地资源并向所述终端发送所述第一RRC连接释放消息;
    所述网络设备根据所述注册消息确认所述终端在所述第二RRC连接上无业务需求且所述网络设备为所述终端维护的连接管理状态为空闲态,释放所述第二RRC连接的本地资源并向所述终端发送所述第二RRC连接释放消息。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述终端确认要释放所述第一RRC连接,包括:所述终端检测到在第一时长内没有业务数据的传输时确认要释放所述第一RRC连接,或者所述终端通过机器学习预测的方式确认要释放所述第一RRC连接。
  6. 根据权利要求5所述的方法,其特征在于,所述第一时长为所述终端根据业务场景类型设置的时长。
  7. 根据权利要求6所述的方法,其特征在于,所述业务场景类型包括以下至少之一:亮屏且WIFI未连接、灭屏且WIFI未连接、WIFI连接或睡眠模式。
  8. 根据权利要求5所述的方法,其特征在于,所述第一时长为所述终端根据不同业务数据类型的应用程序设置的时长。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述终端确认要释放所述第一RRC连接时,所述终端没有接收到所述网络设备发送的第一RRC连接释放消息。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,在新空口NR独立组网系统中,所述注册消息为注册请求消息;在长期演进LTE系统中,所述注册消息为跟踪区更新请求消息。
  11. 根据权利要求10所述的方法,其特征在于,所述终端确认要释放所述第一RRC连接时,释放第一RRC连接的本地资源,并和所述网络设备建立第二RRC连接,包括:
    所述终端确认要释放所述第一RRC连接时,所述终端的RRC层执行本地RRC资源释放,并且发送资源释放指示消息到所述终端的层一和层二,以及发送第二消息到所述终端的非接入层,所述第二消息触发所述终端的非接入层生成所述注册消息;
    所述终端和所述网络设备建立所述第二RRC连接。
  12. 根据权利要求1至9中任一项所述的方法,其特征在于,在新空口NR非独立组网系统中,所述第一RRC连接为LTE的第一RRC连接,所述LTE的第一RRC连接用于所述终端在LTE侧的数据传输;所述终端和所述网络设备存在NR的RRC连接,所述NR的RRC连接用于所述终端在NR侧的数据传输;所述注册消息为跟踪区更新请求消息;所述第二RRC连接为LTE的第二RRC连接。
  13. 根据权利要求12所述的方法,其特征在于,所述终端确认要释放所述第一RRC连接时,释放所述第一RRC连接的本地资源,并和所述网络设备建立第二RRC连接,包括:
    所述终端确认要释放所述LTE的第一RRC连接且不存在所述NR的RRC连接,释放所述LTE的第一RRC连接的本地资源,并和所述网络设备建立所述LTE的第 二RRC连接。
  14. 根据权利要求13所述的方法,其特征在于,在所述终端确认要释放所述LTE的第一RRC连接且不存在所述NR的RRC连接之前,所述方法还包括:
    所述终端确认要释放所述NR的RRC连接时,向所述网络设备发送第三消息,所述第三消息用于指示所述网络设备释放所述NR的RRC连接;
    所述网络设备接收到所述第三消息,响应所述第三消息,释放所述NR的RRC连接的网络设备侧的本地资源并向所述终端发送第四消息;
    所述终端接收到所述第四消息,响应所述第四消息,释放所述NR的RRC连接的终端侧的本地资源。
  15. 根据权利要求13所述的方法,其特征在于,所述释放LTE的第一RRC连接的本地资源,并和所述网络设备建立所述LTE的第二RRC连接,包括:
    所述终端的LTE侧的RRC层执行本地RRC资源释放,并且发送资源释放指示消息到所述终端的LTE侧的层一和层二,以及发送第二消息到所述终端的非接入层,所述第二消息触发所述终端的非接入层生成所述注册消息;
    所述终端和所述网络设备建立所述LTE的第二RRC连接。
  16. 根据权利要求12所述的方法,其特征在于,所述终端确认要释放所述第一RRC连接时,释放所述第一RRC连接的本地资源,并和所述网络设备建立第二RRC连接,包括:
    所述终端确认要释放所述LTE的第一RRC连接和所述NR的RRC连接时,释放所述LTE的第一RRC连接的本地资源和所述NR的RRC连接的本地资源,并和所述网络设备建立所述LTE的第二RRC连接。
  17. 根据权利要求16所述的方法,其特征在于,所述网络设备接收到所述终端发送的所述注册消息后,释放所述第一RRC连接和所述第二RRC连接的本地资源,并向所述终端发送第一RRC连接释放消息和第二RRC连接释放消息,包括:
    所述网络设备接收到所述终端发送的所述注册消息后,释放所述LTE的第一RRC连接的本地资源和所述NR的RRC连接的本地资源以及所述LTE的第二RRC连接的本地资源,并向所述终端发送LTE的第一RRC连接释放消息和LTE的第二RRC连接释放消息。
  18. 一种终端释放无线资源控制RRC连接的方法,所述终端和网络设备之间存在第一RRC连接,所述第一RRC连接用于所述终端和所述网络设备之间的数据传输,其特征在于,包括:
    所述终端确认要释放所述第一RRC连接时,释放所述第一RRC连接的本地资源,并建立和所述网络设备的第二RRC连接;
    所述终端通过所述第二RRC连接向所述网络设备发送注册消息,所述注册消息用于向所述网络设备注册并指示所述终端在所述第二RRC连接上无业务需求。
  19. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    所述终端接收到所述网络设备发送的第二RRC连接释放消息,所述第二RRC连接释放消息是所述网络设备基于接收到的所述注册消息生成的;
    所述终端响应所述第二RRC连接释放消息,释放所述第二RRC连接的本地资源。
  20. 根据权利要求18或19所述的方法,所述释放所述第一RRC连接的本地资源,并建立和所述网络设备的第二RRC连接包括:
    释放所述第一RRC连接的本地资源,并生成向所述网络设备发送的所述注册消息;
    建立和所述网络设备的所述第二RRC连接。
  21. 根据权利要求18-20中任一项所述的方法,其特征在于,所述终端确认要释放所述第一RRC连接,包括:所述终端检测到在第一时长内没有业务数据的传输时确认要释放所述第一RRC连接,或者所述终端通过机器学习预测的方式确认要释放所述第一RRC连接。
  22. 根据权利要求21所述的方法,其特征在于,所述第一时长为所述终端根据业务场景类型设置的时长。
  23. 根据权利要求22所述的方法,其特征在于,所述业务场景类型包括以下至少之一:亮屏且WIFI未连接、灭屏且WIFI未连接、WIFI连接或睡眠模式。
  24. 根据权利要求21所述的方法,其特征在于,所述第一时长为所述终端根据不同业务数据类型的应用程序设置的时长。
  25. 根据权利要求18至24中任一项所述的方法,其特征在于,所述终端确认要释放所述第一RRC连接时,所述终端没有接收到所述网络设备发送的第一RRC连接释放消息。
  26. 根据权利要求18至25中任一项所述的方法,其特征在于,在新空口NR独立组网系统中,所述注册消息为注册请求消息;在长期演进LTE系统中,所述注册消息为跟踪区更新请求消息。
  27. 根据权利要求26所述的方法,其特征在于,所述终端确认要释放所述第一RRC连接时,释放第一RRC连接的本地资源并建立和所述网络设备的第二RRC连接,包括:
    所述终端确认要释放所述第一RRC连接时,所述终端的RRC层执行本地RRC资源释放,并且发送资源释放指示消息到所述终端的层一和层二,以及发送第二消息到所述终端的非接入层,所述第二消息触发所述终端的非接入层生成所述注册消息;
    所述终端建立和所述网络设备的所述第二RRC连接。
  28. 根据权利要求18至25中任一项所述的方法,其特征在于,在新空口NR非独立组网系统中,所述第一RRC连接为LTE的第一RRC连接,所述LTE的第一RRC连接用于所述终端在LTE侧的数据传输;所述终端和所述网络设备存在NR的RRC连接,所述NR的RRC连接用于所述终端在NR侧的数据传输;所述注册消息为跟踪区更新请求消息;所述第二RRC连接为LTE的第二RRC连接。
  29. 根据权利要求28所述的方法,其特征在于,所述终端确认要释放所述第一RRC连接时,释放所述第一RRC连接的本地资源,并建立和所述网络设备的第二RRC连接,包括:
    所述终端确认要释放所述LTE的第一RRC连接且不存在所述NR的RRC连接,释放所述LTE的第一RRC连接的本地资源,并建立和所述网络设备的所述LTE的第二RRC连接。
  30. 根据权利要求29所述的方法,其特征在于,在所述终端确认要释放所述LTE的第一RRC连接且不存在所述NR的RRC连接之前,所述方法还包括:
    所述终端确认要释放所述NR的RRC连接时,向所述网络设备发送第三消息,所述第三消息用于指示所述网络设备释放所述NR的RRC连接;
    所述终端接收到所述网络设备发送的第四消息,响应所述第四消息,释放所述NR的RRC连接的本地资源。
  31. 根据权利要求29所述的方法,其特征在于,所述释放所述LTE的第一RRC连接的本地资源,并建立和所述网络设备的第二RRC连接,包括:
    所述终端的LTE侧的RRC层执行本地RRC资源释放,并且发送资源释放指示消息到所述终端的LTE侧的层一和层二,以及发送第二消息到所述终端的非接入层,所述第二消息触发所述终端的非接入层生成所述注册消息;
    所述终端建立和所述网络设备的所述LTE的第二RRC连接。
  32. 根据权利要求28所述的方法,其特征在于,所述终端确认要释放所述第一RRC连接时,释放所述第一RRC连接的本地资源,并建立和所述网络设备的第二RRC连接,包括:
    所述终端确认要释放所述LTE的第一RRC连接和所述NR的RRC连接时,释放所述LTE的第一RRC连接的本地资源和所述NR的RRC连接的本地资源,并建立和所述网络设备的所述LTE的第二RRC连接。
  33. 一种装置,其特征在于,所述装置包括处理器,所述处理器用于与存储器耦合,并读取存储器中的指令并根据所述指令使得所述装置执行权利要求18至32任一项所述方法。
  34. 根据权利要求33所述的装置,所述装置为终端或芯片。
  35. 一种包含指令的计算机程序产品,其特征在于,当所述计算机程序产品在终端上运行时,使得所述终端执行如权利要求18至32中任一项所述的方法。
  36. 一种计算机可读存储介质,包括指令,其特征在于,当所述指令在终端上运行时,使得所述终端执行如权利要求18至32中任一项所述的方法。
PCT/CN2021/117557 2020-09-11 2021-09-10 一种rrc连接释放的方法及装置 WO2022053003A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/044,934 US20230345581A1 (en) 2020-09-11 2021-09-10 Method and Apparatus for Releasing RRC Connection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010956218.XA CN114173431B (zh) 2020-09-11 2020-09-11 一种rrc连接释放的方法及装置
CN202010956218.X 2020-09-11

Publications (1)

Publication Number Publication Date
WO2022053003A1 true WO2022053003A1 (zh) 2022-03-17

Family

ID=80476036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117557 WO2022053003A1 (zh) 2020-09-11 2021-09-10 一种rrc连接释放的方法及装置

Country Status (3)

Country Link
US (1) US20230345581A1 (zh)
CN (1) CN114173431B (zh)
WO (1) WO2022053003A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116170899A (zh) * 2023-03-01 2023-05-26 上海移芯通信科技有限公司 一种防止连接态寻呼响应丢失的方法和系统
CN116634432A (zh) * 2023-07-21 2023-08-22 浙江大华技术股份有限公司 一种数据传输方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115119342A (zh) * 2022-06-29 2022-09-27 广东虹勤通讯技术有限公司 一种通信方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180302947A1 (en) * 2015-12-23 2018-10-18 Huawei Technologies Co., Ltd. Rrc connection release method, apparatus, and device
CN110225601A (zh) * 2019-05-23 2019-09-10 Oppo广东移动通信有限公司 Rrc连接释放方法、装置及终端设备
CN110536389A (zh) * 2019-09-02 2019-12-03 广东小天才科技有限公司 一种降低终端设备功耗的方法、装置及终端设备
CN110876183A (zh) * 2018-08-31 2020-03-10 华为技术有限公司 Rrc连接释放方法、相关设备及系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112312528B (zh) * 2018-02-13 2023-09-22 华为技术有限公司 无线资源控制rrc状态转换的方法、通信装置、网络设备以及计算机存储介质
CN111148195B (zh) * 2019-07-31 2023-05-23 广东小天才科技有限公司 一种降低终端设备功耗的方法、系统及终端设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180302947A1 (en) * 2015-12-23 2018-10-18 Huawei Technologies Co., Ltd. Rrc connection release method, apparatus, and device
CN110876183A (zh) * 2018-08-31 2020-03-10 华为技术有限公司 Rrc连接释放方法、相关设备及系统
CN110225601A (zh) * 2019-05-23 2019-09-10 Oppo广东移动通信有限公司 Rrc连接释放方法、装置及终端设备
CN110536389A (zh) * 2019-09-02 2019-12-03 广东小天才科技有限公司 一种降低终端设备功耗的方法、装置及终端设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE: "UE behavior in RRC release with re-direction in NR-U", 3GPP DRAFT; R4-2006009, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Electronic Meeting; 20200525 - 20200605, 15 May 2020 (2020-05-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051883197 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116170899A (zh) * 2023-03-01 2023-05-26 上海移芯通信科技有限公司 一种防止连接态寻呼响应丢失的方法和系统
CN116170899B (zh) * 2023-03-01 2023-10-17 上海移芯通信科技股份有限公司 一种防止连接态寻呼响应丢失的方法和系统
CN116634432A (zh) * 2023-07-21 2023-08-22 浙江大华技术股份有限公司 一种数据传输方法及装置
CN116634432B (zh) * 2023-07-21 2023-10-03 浙江大华技术股份有限公司 一种数据传输方法及装置

Also Published As

Publication number Publication date
US20230345581A1 (en) 2023-10-26
CN114173431A (zh) 2022-03-11
CN114173431B (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
US20230180274A1 (en) Data scheduling method, base station, and system
EP3562208B1 (en) User mobility method and device
WO2022053003A1 (zh) 一种rrc连接释放的方法及装置
JP6587001B2 (ja) 無線端末及びその方法
WO2018113661A1 (zh) 用户移动性方法和设备
US11653328B2 (en) User equipment and method executed thereby, base station and method executed thereby, and mobile control entity and method executed 1HEREBY
WO2017194006A1 (zh) Rrc状态的控制方法和装置
US11700571B2 (en) Method and apparatus for recovering RRC connection, and computer storage medium
WO2018019001A1 (zh) 一种终端状态转换方法及装置
WO2018014661A1 (zh) 一种数据或者信令发送、传输方法及装置
US20210058896A1 (en) Communication method, device, and system
CN107046714B (zh) 一种数据传输方法、装置和系统
US20230093649A1 (en) Communication Method and Apparatus
WO2022001495A1 (zh) 状态转换方法及链接态mtch的指示方法、装置、存储介质、终端、基站
WO2022184044A1 (zh) 多播业务的接收方法、配置方法、终端及网络侧设备
WO2024037611A1 (zh) 注册信息同步方法、装置、设备及介质
US20140335864A1 (en) Radio communication system, radio base station, radio terminal and radio communication method
WO2022205381A1 (zh) 广播多播业务传输方法、装置及存储介质
WO2023093818A1 (zh) 由用户设备执行的方法及用户设备
WO2016082222A1 (zh) 一种sgw、mme、寻呼方法及系统
WO2018149280A1 (zh) 数据接收方法及装置
WO2018087034A1 (en) Infrequent small data for battery saving wireless devices
WO2019140561A1 (zh) 一种切换方法及装置、计算机存储介质
WO2019140560A1 (zh) 一种切换方法及装置、计算机存储介质
JP7098016B1 (ja) 通信システム、情報処理装置、情報処理装置の制御方法、及び通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21866055

Country of ref document: EP

Kind code of ref document: A1