WO2022052499A1 - 一种磁悬浮滚珠丝杠副 - Google Patents

一种磁悬浮滚珠丝杠副 Download PDF

Info

Publication number
WO2022052499A1
WO2022052499A1 PCT/CN2021/093414 CN2021093414W WO2022052499A1 WO 2022052499 A1 WO2022052499 A1 WO 2022052499A1 CN 2021093414 W CN2021093414 W CN 2021093414W WO 2022052499 A1 WO2022052499 A1 WO 2022052499A1
Authority
WO
WIPO (PCT)
Prior art keywords
excitation coil
annular
nut
sensor
displacement sensor
Prior art date
Application number
PCT/CN2021/093414
Other languages
English (en)
French (fr)
Inventor
林明星
赵佳佳
赵言锋
宋现春
姜洪奎
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Priority to US17/619,139 priority Critical patent/US11920660B2/en
Publication of WO2022052499A1 publication Critical patent/WO2022052499A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
    • F16H25/2204Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members with balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/2015Means specially adapted for stopping actuators in the end position; Position sensing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/2003Screw mechanisms with arrangements for taking up backlash
    • F16H25/2006Screw mechanisms with arrangements for taking up backlash with more than one nut or with nuts consisting of more than one bearing part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/24Elements essential to such mechanisms, e.g. screws, nuts

Definitions

  • the present disclosure belongs to the technical field of ball screws, and in particular relates to a magnetic suspension ball screw pair.
  • the ball screw pair is an efficient and energy-saving transmission and positioning element, the ball screw pair is more and more widely used in numerical control equipment, but its contact wear can easily lead to the decrease of precision and the degradation of preload.
  • the ball screw pair runs for a long time, the raceways or balls will be worn, and the amount of wear is difficult to quantify. No adjustment or manual fuzzy adjustment will result in unreasonable preload, which will affect the bearing performance of the ball screw pair, and thus affect the heavy-duty CNC equipment. Precision.
  • the axes of the working nut, the pre-tightening nut and the lead screw may be misaligned during installation, which may easily lead to positioning errors.
  • the purpose of the present disclosure is to provide a magnetic levitation ball screw pair, which can solve at least one of the above technical problems.
  • a magnetic suspension ball screw pair including a lead screw, a working nut and a preloading nut, and the inner wall of the screw hole in the working nut and the preloading nut has a plurality of displacement sensors.
  • the sensor group formed by the displacement sensor can measure the gap value between the inner wall of the screw hole and the outer wall of the screw along the diameter direction of the screw hole.
  • the sensor group includes four displacement sensors evenly distributed along the circumferential direction of the screw hole.
  • each displacement sensor is installed with a suitable excitation coil, which can attract the screw along the measurement direction of the suitable displacement sensor , the magnetic force of the excitation coil to attract the lead screw can be adjusted to change the value of the gap, so as to realize the coincidence of the axis of the lead screw, the working nut and the preload nut.
  • a first annular excitation coil is fixedly sleeved at the outer circle of one end of the working nut close to the preload nut, and a second annular excitation coil is fixedly sleeved outside the first annular excitation coil; the preload nut is close to the working nut.
  • the outer circle of one end of the nut is fixedly sleeved with a third annular excitation coil, and an outer fixed sleeve of the third annular excitation coil is provided with a fourth annular excitation coil.
  • annular pressure sensor is installed between the second annular excitation coil and the fourth annular excitation coil, and the annular pressure sensor can measure the preload force between the second annular excitation coil and the fourth annular excitation coil.
  • the present disclosure relies on the cooperation of the first annular excitation coil, the second annular excitation coil, the third annular excitation coil, the fourth annular excitation coil and the annular pressure sensor to generate an axial magnetic levitation force to balance the axial working load and reduce the ball bearing load It can reduce the wear effect between the ball and the raceway and enhance the guiding effect of the ball. As the ball screw pair runs for a long time, the preload force is degraded due to the wear of the balls and raceways, and the preload force between the working nut and the preload nut can also be adjusted by controlling the current of the ring excitation coil.
  • the displacement sensor is used to detect the gap between the screw and the nut, and the radial and lateral magnetic levitation forces are controlled by controlling the current of the excitation coil to adjust the radial and lateral gaps of each section to prevent the positioning error caused by the non-parallel axis of the nut and the screw.
  • the first annular excitation coil and the third annular excitation coil are used in pairs, and the second annular excitation coil and the fourth annular excitation coil are used in pairs, that is, two pairs of annular excitation coils are used together;
  • the magnetic field strength will be weakened, but the excitation will not fail, thereby increasing the excitation reliability.
  • FIG. 1 is a schematic cross-sectional view of an overall structure in an embodiment of the disclosure
  • Fig. 2 is the structural representation of A-A viewing direction in Fig. 1;
  • Fig. 3 is the structural representation of the B-B viewing direction in Fig. 1;
  • Fig. 4 is the structural representation of the C-C viewing direction in Fig. 1;
  • FIG. 5 is a schematic structural diagram of the D-D viewing direction in FIG. 1 .
  • this embodiment provides a magnetic levitation 8 lead screw pair, which includes a lead screw 1 , a working nut 2 and a preload nut 7 .
  • the outer wall surface of the lead screw 1 and the inner wall surfaces of the work nut 2 and the preload nut 7 respectively have raceways, and balls 8 are provided in the raceways.
  • the inner wall of the screw hole in the working nut 2 and the preload nut 7 has a sensor group composed of multiple displacement sensors.
  • the displacement sensor can measure the gap value between the inner wall of the screw hole and the outer wall of the screw 1 along the diameter direction of the screw hole.
  • the sensor group includes four.
  • each two displacement sensors are used in pairs and are symmetrical about the central axis of the screw hole, and the projections of the multiple sensor groups along the axis direction of the screw 1 coincide; each displacement sensor is installed with a A suitable excitation coil, the excitation coil can attract the lead screw 1 along the measurement direction of the adapted displacement sensor, and the magnetic force of the excitation coil to attract the lead screw 1 can be adjusted to change the gap value, thereby realizing the pre-setting of the lead screw 1 and the working nut 2.
  • the axes of the tightening nut 7 are coincident.
  • the field coil is nested in the side wall of the preload nut 7 or the working nut 2 .
  • the sensor group includes a transverse displacement sensor I, a transverse displacement sensor II, a longitudinal displacement sensor I and a longitudinal displacement sensor II; each sensor group is fitted with a transverse excitation coil I, a transverse excitation coil II, and a longitudinal excitation coil I And the longitudinal excitation coil II, the measurement direction of the lateral displacement sensor I and the lateral displacement sensor II is perpendicular to the measurement direction of the longitudinal displacement sensor I and the longitudinal displacement sensor II.
  • transverse excitation coil I and the transverse excitation coil II can provide electromagnetic attractive forces in opposite directions of the same straight line.
  • the degree of attraction of II to the lead screw is different until the lateral clearance on both sides is the same.
  • the principle of adjusting the radial gap by the longitudinal excitation coil I and the longitudinal excitation coil II is the same, and will not be repeated here.
  • the four sensors in each sensor group are evenly arranged along the circumferential direction of the screw hole; the measurement directions of the lateral displacement sensor I and the lateral displacement sensor II are the same as the longitudinal displacement II
  • the measurement direction is vertical. That is to say, the two horizontal displacement sensors can adjust the lead screw in the horizontal direction, so that the vertical gap on both sides will not be affected in the process of adjusting the horizontal gap on both sides.
  • the two vertical displacement sensors can be adjusted vertically up and down It attracts the lead screw without affecting the clearance on both sides in the lateral direction; therefore, the concentric adjustment between the lead screw and the working nut and the preload nut can be completed.
  • the number of sensor groups in the working nut 2 and the pre-tightening nut 7 is two respectively, and the sensor groups are located at both ends of the working nut 2 or both ends of the pre-tightening nut 7 respectively.
  • a plurality of lateral displacement sensors I are arranged in a row along the axis of the screw 1
  • a plurality of lateral displacement sensors II are arranged in a row along the axis of the screw 1
  • a plurality of longitudinal displacement sensors I are arranged along the axis of the screw 1.
  • the axial direction is arranged in a row
  • a plurality of longitudinal displacement sensors II are arranged in a row along the axial direction of the lead screw 1 .
  • first lateral displacement sensor 10 a first radial displacement sensor 11, a second lateral displacement sensor 13, a second radial displacement sensor 15, a first lateral excitation coil 17, a second Transverse field coil 14 , first radial field coil 12 and second radial field coil 16 .
  • a fifth lateral displacement sensor 26 At the CC section of the preload nut 7, there are a fifth lateral displacement sensor 26, a sixth lateral displacement sensor 29, a fifth radial displacement sensor 27, a sixth radial displacement sensor 31, a sixth lateral excitation coil 30, a fifth radial displacement sensor Excitation coil 28 , sixth radial excitation coil 32 , fifth transverse excitation coil 33 .
  • the DD section of the preload nut 7 has a seventh lateral displacement sensor 34, an eighth lateral displacement sensor 37, a seventh radial displacement sensor 35, an eighth radial displacement sensor 39, a seventh lateral excitation coil 41, and an eighth lateral excitation coil. 38.
  • the outer circle of the working nut 2 close to one end of the pre-tightening nut 7 is fixedly sleeved with a first annular excitation coil 3
  • the outside of the first annular excitation coil 3 is fixedly sleeved with a second annular excitation coil 4
  • a third annular excitation coil 6 is fixedly sleeved at the outer circumference of one end of the pre-tightening nut 7 close to the working nut 2
  • a fourth annular excitation coil 5 is fixedly sleeved outside the third annular excitation coil 6 .
  • An annular pressure sensor 9 is installed between the second annular excitation coil 4 and the fourth annular excitation coil 5 , and the annular pressure sensor 9 can measure the preload between the second annular excitation coil 4 and the fourth annular excitation coil 5 force.
  • the specifications of the first annular excitation coil 3 and the third annular excitation coil 6 are the same, and the specifications of the second annular excitation coil 4 and the fourth annular excitation coil 5 are the same.
  • this embodiment should also include a controller, which can read the gap value measured by the displacement sensor and adjust the magnitude of the current in the adapted excitation coil. , until the gap values measured by the two displacement sensors used in pairs are equal; the controller can read the value of the annular pressure sensor 9, and adjust the first annular excitation coil, the second annular excitation coil 4, the third annular excitation coil The current in the coil 6 and the fourth annular excitation coil 5 is adjusted until the preload force measured by the annular pressure sensor 9 meets the set size range.
  • this embodiment should also include a power supply, which can supply power to different excitation coils and annular excitation coils respectively, and the output of the power supply can be controlled by the controller.
  • the two sets of annular excitation coils are the first annular excitation coil 3, the second annular excitation coil 4, the third annular excitation coil 6, and the fourth annular excitation coil 5, which generate an axial magnetic levitation force, and the strength of the magnetic field determines the
  • the size of the pre-tightening force between the pre-tightening nuts 7 can be measured by the annular pressure sensor 9 .
  • the strength of the magnetic field can be controlled by controlling the magnitude of the current in the two sets of annular excitation coils, so as to control the magnetic levitation force to balance the axial working load, thereby weakening the bearing effect of the 8.
  • the 8 between the screw 1 and the working nut 2 or the preload nut 7 is mainly used for guiding.
  • the first lateral displacement sensor 10 and the second lateral displacement sensor 13 detect the lateral gap between the working nut 2 and the lead screw 1 at the AA section, and the lateral gap on both sides of the lead screw 1 is determined by the first lateral excitation coil 17.
  • the first radial displacement sensor 11 and the second radial displacement sensor 15 detect the radial gap between the working nut 2 and the lead screw 1 at the AA section, and the radial gap on both sides of the lead screw 1 is determined by the first radial excitation coil 12 and the second Radial field coil 16 controls.
  • the third lateral displacement sensor 18 and the fourth lateral displacement sensor 21 detect the lateral gap between the working nut 2 and the lead screw 1 at the BB section, and the lateral gap on both sides of the lead screw 1 is determined by the third lateral excitation coil. 25 is controlled with the fourth transverse excitation coil 22 .
  • the third radial displacement sensor 19 and the fourth radial displacement sensor 23 detect the radial gap between the working nut 2 and the lead screw 1 at the BB section, and the radial gap on both sides of the lead screw 1 is determined by the third radial excitation coil 20 and the fourth Radial field coil 24 controls.
  • the fifth lateral displacement sensor 26 and the sixth lateral displacement sensor 29 detect the lateral gap between the preload nut 7 and the lead screw 1 in the CC section, and the lateral gap on both sides of the lead screw 1 is determined by the fifth lateral excitation coil 33. Controlled with the sixth transverse excitation coil 30 .
  • the fifth radial displacement sensor 27 and the sixth radial displacement sensor 31 detect the radial gap between the CC section preload nut 7 and the lead screw 1, and the radial gap on both sides of the lead screw 1 is determined by the fifth radial excitation coil 28 and the sixth radial gap. Control to the excitation coil 32 .
  • the seventh lateral displacement sensor 34 and the eighth lateral displacement sensor 37 detect the lateral gap between the preload nut 7 and the lead screw 11 in the DD section, and the lateral gap on both sides of the lead screw 1 is determined by the seventh lateral excitation coil 41. Controlled with the eighth transverse excitation coil 38 .
  • the seventh radial displacement sensor 35 and the eighth radial displacement sensor 39 detect the radial gap between the DD section preload nut 7 and the lead screw 1.
  • the radial gap on both sides of the lead screw 1 is determined by the seventh radial excitation coil 36 and the eighth diameter. control to the excitation coil 40 .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Transmission Devices (AREA)

Abstract

一种磁悬浮滚珠丝杠(1)副,工作螺母(2)与预紧螺母(7)中螺孔内壁处均具有由多个位移传感器组成的传感器组,位移传感器能够沿螺孔直径方向测量螺孔内壁与丝杠(1)外壁的间隙数值,传感器组包括四个沿螺孔圆周方向均布的位移传感器,每两个位移传感器成对使用且关于螺孔的中心轴线对称,多个传感器组沿丝杠(1)轴线方向的投影重合;每个位移传感器处安装有一个适配的励磁线圈,励磁线圈能够沿适配的位移传感器的测量方向吸引丝杠(1),励磁线圈吸引丝杠(1)的磁力能够调整以改变间隙数值,进而实现丝杠(1)与工作螺母(2)、预紧螺母(7)的轴线重合。

Description

一种磁悬浮滚珠丝杠副 技术领域
本公开属于滚珠丝杠技术领域,具体涉及一种磁悬浮滚珠丝杠副。
背景技术
这里的陈述仅提供与本公开相关的背景技术,而不必然地构成现有技术。
随着装备制造业向高端、精密等极端制造方向扩展,高端装备急需高可靠性的核心传动部件供给。由于滚珠丝杠副作为一种高效、节能的传动与定位元件,在数控设备中滚珠丝杠副应用越来越广泛,但其接触磨损易造成精度下降及预紧力退化。
发明人了解到,在传统滚珠丝杠副中,主要依靠丝杠滚道与螺母滚道之间的滚珠传递载荷,且传统滚珠丝杠副预紧力依靠垫片预紧。随着滚珠丝杠副长时间运行,滚道或滚珠会产生磨损,磨损量难以定量,不调整或手动模糊调整造成预紧力不合理,影响滚珠丝杠副承载性能,进而影响重载数控装备加工精度。
同时,工作螺母、预紧螺母与丝杠在安装时有可能存在轴线不重合的情况,容易导致定位误差。
发明内容
本公开的目的是提供一种磁悬浮滚珠丝杠副,能够至少解决上述技术问题之一。
为实现上述目的,本公开采用下述技术方案:一种磁悬浮滚珠丝杠副,包括 丝杠、工作螺母和预紧螺母,工作螺母与预紧螺母中螺孔内壁处均具有由多个位移传感器组成的传感器组,位移传感器能够沿螺孔直径方向测量螺孔内壁与丝杠外壁的间隙数值,传感器组包括四个沿螺孔圆周方向均布的位移传感器,每两个位移传感器成对使用且关于螺孔的中心轴线对称,多个传感器组沿丝杠轴线方向的投影重合;每个位移传感器处安装有一个适配的励磁线圈,励磁线圈能够沿适配的位移传感器的测量方向吸引丝杠,励磁线圈吸引丝杠的磁力能够调整以改变间隙数值,进而实现丝杠与工作螺母、预紧螺母的轴线重合。
作为进一步改进,所述工作螺母靠近预紧螺母一端的外圆处固定套设有第一环形励磁线圈、第一环形励磁线圈外部固定套设有第二环形励磁线圈;所述预紧螺母靠近工作螺母一端的外圆处固定套设有第三环形励磁线圈,第三环形励磁线圈的外部固定套设有第四环形励磁线圈。
作为进一步改进,所述第二环形励磁线圈与第四环形励磁线圈之间安装有环形压力传感器,所述环形压力传感器能够测量第二环形励磁线圈与第四环形励磁线圈之间的预紧力。
以上一个或多个技术方案的有益效果:
本公开依靠通过第一环形励磁线圈、第二环形励磁线圈、第三环形励磁线圈、第四环形励磁线圈与环形压力传感器的配合,能够产生轴向磁悬浮力来平衡轴向工作载荷,减少滚珠承载作用,减少滚珠与滚道之间的磨损作用,增强滚珠的导向作用。随着滚珠丝杠副长时间运行,因滚珠与滚道磨损造成预紧力退化,亦可通过控制环形励磁线圈电流来调整工作螺母与预紧螺母之间的预紧力。
采用位移传感器检测丝杠与螺母的间隙,通过控制励磁线圈的电流进而控制 径向与横向磁悬浮力调整各截面的径向与横向间隙,防止螺母与丝杠轴线不平行而导致的定位误差。
为防止励磁线圈短路故障,采用第一环形励磁线圈与第三环形励磁线圈成对使用,第二环形励磁线圈与第四环形励磁线圈成对配合使用,即两对环形励磁线圈配合使用;当其中一对环行励磁线圈故障时,磁场强度会减弱,但不会使得励磁失效,从而增加励磁可靠性。
附图说明
构成本公开的一部分的说明书附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的限定。
图1为本公开实施例中整体结构的剖面示意图;
图2为图1中A-A视向的结构示意图;
图3为图1中B-B视向的结构示意图;
图4为图1中C-C视向的结构示意图;
图5为图1中D-D视向的结构示意图。
图中,1、丝杠;2、工作螺母;3、第一环形励磁线圈;4、第二环形励磁线圈;5、第四环形励磁线圈;6、第三环形励磁线圈;7、预紧螺母;8.滚珠;9、环形压力传感器;10、第一横向位移传感器;11、第一径向位移传感器;12、第一径向励磁线圈;13、第二横向位移传感器;14、第二横向励磁线圈;15、第二径向位移传感器;16、第二径向励磁线圈;17、第一横向励磁线圈;18、第三横向位移传感器;19、第三径向位移传感器;20、第三径向励磁线圈;21、第四横向位移传感器;22、第四横向励磁线圈;23、第四径向位移传感器;24、第四径向励 磁线圈;25、第三横向励磁线圈;26、第五横向位移传感器;27、第五径向位移传感器;28、第五径向励磁线圈;29、第六横向位移传感器;30、第六横向励磁线圈;31、第六径向位移传感器;32、第六径向励磁线圈;33、第五横向励磁线圈;34、第七横向位移传感器;35、第七径向位移传感器;36、第七径向励磁线圈;37、第八横向位移传感器;38、第八横向励磁线圈;39、第八径向位移传感器;40、第八径向励磁线圈;41、第七横向励磁线圈。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本公开提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本公开所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本公开的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
为了方便叙述,本公开中如果出现“上、下、左、右”字样,仅表示与附图本身的上、下、左、右方向一致,并不对结构起限定作用,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的设备或元件必须具有特定的方位,以特定的方位构造和操作,因此不能理解为对本公开的限制。
本公开的一种典型实施方式中,如图1-图5所示,本实施例提供一种磁悬浮8丝杠副,包括丝杠1、工作螺母2和预紧螺母7。丝杠1中的外壁面以及工 作螺母2、预紧螺母7的内壁面分别具有滚道,在滚道中设置有滚珠8。工作螺母2与预紧螺母7中螺孔内壁处均具有由多个位移传感器组成的传感器组,位移传感器能够沿螺孔直径方向测量螺孔内壁与丝杠1外壁的间隙数值,传感器组包括四个沿螺孔圆周方向均布的位移传感器,每两个位移传感器成对使用且关于螺孔的中心轴线对称,多个传感器组沿丝杠1轴线方向的投影重合;每个位移传感器处安装有一个适配的励磁线圈,励磁线圈能够沿适配的位移传感器的测量方向吸引丝杠1,励磁线圈吸引丝杠1的磁力能够调整以改变间隙数值,进而实现丝杠1与工作螺母2、预紧螺母7的轴线重合。所述励磁线圈嵌套设置在预紧螺母7或工作螺母2的侧壁中。
具体的,所述传感器组包括横向位移传感器Ⅰ、横向位移传感器Ⅱ、纵向位移传感器Ⅰ和纵向位移传感器Ⅱ;每个传感器组处适配有横向励磁线圈Ⅰ、横向励磁线圈Ⅱ、纵向励磁线圈Ⅰ和纵向励磁线圈Ⅱ,横向位移传感器Ⅰ、横向位移传感器Ⅱ的测量方向与纵向位移传感器Ⅰ、纵向位移传感器Ⅱ测量方向垂直。
可以理解的是,横向励磁线圈Ⅰ、横向励磁线圈Ⅱ能够提供同一直线相反方向的电磁吸引力,通过调节电流大小进而调节两个横向励磁线圈处磁力的大小,使得横向励磁线圈Ⅰ与横向励磁线圈Ⅱ对丝杠的吸引程度不同,直至两侧横向间隙相同。纵向励磁线圈Ⅰ和纵向励磁线圈Ⅱ来调节径向间隙的原理相同,此处不再赘述。
可以理解的是,在本实施例中,每个传感器组中四个传感器沿螺孔的圆周方向均布设置;横向位移传感器Ⅰ、横向位移传感器Ⅱ的测量方向与纵向位移传感器Ⅰ、纵向位移传感器Ⅱ测量方向垂直。也就使得横向的两个位移传感器沿横向 左右调节丝杠,以使得两侧横向间隙调整的过程中,不会对竖向两侧间隙造成影响;同理,纵向的两个位移传感器沿纵向上下吸引丝杠,不会对横向两侧间隙造成影响;因此可以完成丝杠与工作螺母、预紧螺母之间的同心调节。
在本实施例中,所述工作螺母2和预紧螺母7中传感器组的数量分别为两个,传感器组分别处于工作螺母2的两端或预紧螺母7的两端。不同传感器组中,多个横向位移传感器Ⅰ沿丝杠1的轴线方向成列布置,多个横向位移传感器Ⅱ沿丝杠1的轴线方向成列布置,多个纵向位移传感器Ⅰ沿丝杠1的轴线方向成列布置,多个纵向位移传感器Ⅱ沿丝杠1的轴线方向成列布置。
具体的,工作螺母2的A-A截面处有第一横向位移传感器10、第一径向位移传感器11、第二横向位移传感器13、第二径向位移传感器15、第一横向励磁线圈17、第二横向励磁线圈14、第一径向励磁线圈12和第二径向励磁线圈16。
工作螺母2的B-B截面处有第三横向位移传感器18、第四横向位移传感器21、第三径向位移传感器19、第四径向位移传感器23、第三横向励磁线圈25、第四横向励磁线圈22、第三径向励磁线圈20、第四径向励磁线圈24。
预紧螺母7的C-C截面处有第五横向位移传感器26、第六横向位移传感器29、第五径向位移传感器27、第六径向位移传感器31、第六横向励磁线圈30、第五径向励磁线圈28、第六径向励磁线圈32、第五横向励磁线圈33。
预紧螺母7的D-D截面有第七横向位移传感器34、第八横向位移传感器37、第七径向位移传感器35、第八径向位移传感器39、第七横向励磁线圈41、第八横向励磁线圈38、第七径向励磁线圈36、第八径向励磁线圈40。
在本实施例中,所述工作螺母2靠近预紧螺母7一端的外圆处固定套设有第 一环形励磁线圈3、第一环形励磁线圈3外部固定套设有第二环形励磁线圈4;所述预紧螺母7靠近工作螺母2一端的外圆处固定套设有第三环形励磁线圈6,第三环形励磁线圈6的外部固定套设有第四环形励磁线圈5。
所述第二环形励磁线圈4与第四环形励磁线圈5之间安装有环形压力传感器9,所述环形压力传感器9能够测量第二环形励磁线圈4与第四环形励磁线圈5之间的预紧力。在本实施例中,所述第一环形励磁线圈3与第三环形励磁线圈6的规格相同,第二环形励磁线圈4与第四环形励磁线圈5的规格相同。
可以理解的是,为了实现间隙控制及预紧力控制,本实施例还应包括控制器,所述控制器能够读取位移传感器测得的间隙数值,并调节适配的励磁线圈中电流的大小,直至成对使用的两个位移传感器测得的间隙数值相等;所述控制器能够读取环形压力传感器9的数值,并调节第一环形励磁线圈、第二环形励磁线圈4、第三环形励磁线圈6及第四环形励磁线圈5中的电流,直至环形压力传感器9测得的预紧力满足设定大小范围。
可以理解的是,为了实现励磁线圈及环形励磁线圈的供电,本实施例还应包括供电电源,供电电源能够分别向不同励磁线圈及环形励磁线圈供电,供电电源的输出能够被控制器控制。
工作原理:
两组环形励磁线圈分别为第一环形励磁线圈3、第二环形励磁线圈4、第三环形励磁线圈6、第四环形励磁线圈5,它们产生轴向磁悬浮力,磁场的强弱决定工作螺与预紧螺母7之间预紧力大小,预紧力的大小可通过环形压力传感器9测得。
当轴向工作载荷施加在工作螺母2时,可以通过控制两组环形励磁线圈中电流的大小来控制磁场强弱,从而控制磁悬浮力来平衡轴向工作载荷,以此减弱8的承载作用,此时丝杠1与工作螺母2或预紧螺母7之间的8主要以导向作用为主。
工作螺母2的A-A截面处,第一横向位移传感器10与第二横向位移传感器13检测A-A截面处工作螺母2与丝杠1的横向间隙,丝杠1两侧横向间隙由第一横向励磁线圈17与第二横向励磁线圈14控制。第一径向位移传感器11与第二径向位移传感器15检测A-A截面处工作螺母2与丝杠1的径向间隙,丝杠1两侧径向间隙由第一径向励磁线圈12与第二径向励磁线圈16控制。
工作螺母2的B-B截面处,第三横向位移传感器18与第四横向位移传感器21检测B-B截面处工作螺母2与丝杠1的横向间隙,丝杠1两侧的横向间隙由第三横向励磁线圈25与第四横向励磁线圈22控制。第三径向位移传感器19与第四径向位移传感器23检测B-B截面处工作螺母2与丝杠1的径向间隙,丝杠1两侧径向间隙由第三径向励磁线圈20与第四径向励磁线圈24控制。
预紧螺母7的C-C截面处,第五横向位移传感器26与第六横向位移传感器29检测C-C截面预紧螺母7与丝杠1横向间隙,丝杠1两侧横向间隙由第五横向励磁线圈33与第六横向励磁线圈30控制。第五径向位移传感器27与第六径向位移传感器31检测C-C截面预紧螺母7与丝杠1径向间隙,丝杠1两侧径向间隙由第五径向励磁线圈28与第六径向励磁线圈32控制。
预紧螺母7的D-D截面处,第七横向位移传感器34与第八横向位移传感器37检测D-D截面预紧螺母7与丝杠11横向间隙,丝杠1两侧横向间隙由第七横 向励磁线圈41与第八横向励磁线圈38控制。第七径向位移传感器35与第八径向位移传感器39检测D-D截面预紧螺母7与丝杠1径向间隙,丝杠1两侧径向间隙由第七径向励磁线圈36与第八径向励磁线圈40控制。
上述虽然结合附图对本公开的具体实施方式进行了描述,但并非对本公开保护范围的限制,所属领域技术人员应该明白,在本公开的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本公开的保护范围以内。

Claims (10)

  1. 一种磁悬浮滚珠丝杠副,其特征在于,工作螺母与预紧螺母中螺孔内壁处均具有由多个位移传感器组成的传感器组,位移传感器能够沿螺孔直径方向测量螺孔内壁与丝杠外壁的间隙数值,传感器组包括四个沿螺孔圆周方向均布的位移传感器,每两个位移传感器成对使用且关于螺孔的中心轴线对称,多个传感器组沿丝杠轴线方向的投影重合;
    每个位移传感器处安装有一个适配的励磁线圈,励磁线圈能够沿适配的位移传感器的测量方向吸引丝杠,励磁线圈吸引丝杠的磁力能够调整以改变间隙数值,进而实现丝杠与工作螺母、预紧螺母的轴线重合。
  2. 根据权利要求1所述的磁悬浮滚珠丝杠副,其特征在于,所述工作螺母靠近预紧螺母一端的外圆处固定套设有第一环形励磁线圈、第一环形励磁线圈外部固定套设有第二环形励磁线圈;所述预紧螺母靠近工作螺母一端的外圆处固定套设有第三环形励磁线圈,第三环形励磁线圈的外部固定套设有第四环形励磁线圈。
  3. 根据权利要求2所述的磁悬浮滚珠丝杠副,其特征在于,所述第二环形励磁线圈与第四环形励磁线圈之间安装有环形压力传感器,所述环形压力传感器能够测量第二环形励磁线圈与第四环形励磁线圈之间的预紧力。
  4. 根据权利要求2所述的磁悬浮滚珠丝杠副,其特征在于,所述第一环形励磁线圈与第三环形励磁线圈的规格相同,第二环形励磁线圈与第四环形励磁线圈的规格相同。
  5. 根据权利要求1所述的磁悬浮滚珠丝杠副,其特征在于,所述工作螺母和预紧螺母中传感器组的数量分别为两个,传感器组分别处于工作螺母的两端或预紧螺母的两端。
  6. 根据权利要求3所述的磁悬浮滚珠丝杠副,其特征在于,还包括控制器,所述控制器能够读取位移传感器测得的间隙数值,并调节适配的励磁线圈中电流的大小,直至成对使用的两个位移传感器测得的间隙数值相等;
    所述控制器能够读取环形压力传感器的数值,并调节第一环形励磁线圈、第二环形励磁线圈、第三环形励磁线圈及第四环形励磁线圈中的电流,直至环形压力传感器测得的预紧力满足设定大小范围。
  7. 根据权利要求1所述的磁悬浮滚珠丝杠副,其特征在于,所述传感器组包括横向位移传感器Ⅰ、横向位移传感器Ⅱ、纵向位移传感器Ⅰ和纵向位移传感器Ⅱ;每个传感器组处适配有横向励磁线圈Ⅰ、横向励磁线圈Ⅱ、纵向励磁线圈Ⅰ和纵向励磁线圈Ⅱ,横向位移传感器Ⅰ、横向位移传感器Ⅱ的测量方向与纵向位移传感器Ⅰ、纵向位移传感器Ⅱ测量方向垂直。
  8. 根据权利要求7所述的磁悬浮滚珠丝杠副,其特征在于,不同传感器组中,多个横向位移传感器Ⅰ沿丝杠的轴线方向成列布置,多个横向位移传感器Ⅱ沿丝杠的轴线方向成列布置,多个纵向位移传感器Ⅰ沿丝杠的轴线方向成列布置,多个纵向位移传感器Ⅱ沿丝杠的轴线方向成列布置。
  9. 根据权利要求1所述的磁悬浮滚珠丝杠副,其特征在于,还包括供电电源,供电电源能够分别向不同励磁线圈及环形励磁线圈供电,供电电源的输出能够被控制器控制。
  10. 根据权利要求1所述的磁悬浮滚珠丝杠副,其特征在于,所述励磁线圈嵌套设置在预紧螺母或工作螺母的侧壁中。
PCT/CN2021/093414 2020-09-14 2021-05-12 一种磁悬浮滚珠丝杠副 WO2022052499A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/619,139 US11920660B2 (en) 2020-09-14 2021-05-12 Magnetic levitation ball screw pair

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010961134.5A CN112096816B (zh) 2020-09-14 2020-09-14 一种磁悬浮滚珠丝杠副
CN202010961134.5 2020-09-14

Publications (1)

Publication Number Publication Date
WO2022052499A1 true WO2022052499A1 (zh) 2022-03-17

Family

ID=73752645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093414 WO2022052499A1 (zh) 2020-09-14 2021-05-12 一种磁悬浮滚珠丝杠副

Country Status (3)

Country Link
US (1) US11920660B2 (zh)
CN (1) CN112096816B (zh)
WO (1) WO2022052499A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112096816B (zh) 2020-09-14 2021-09-14 山东大学 一种磁悬浮滚珠丝杠副
DE102021119937B4 (de) * 2021-07-30 2023-12-07 Ewellix AB Dämpfungssystem und Linearaktuator
CN114714141B (zh) * 2022-06-09 2022-09-06 北京博鲁斯潘精密机床有限公司 具有驱动丝杠支撑结构的高精度航空叶片叶榫加工机床

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225024A (ja) * 2006-02-23 2007-09-06 Nsk Ltd ボールねじ装置
US20130239714A1 (en) * 2010-10-04 2013-09-19 Jtekt Corporation Ball screw device, linear actuator and vehicle steering system
CN104565252A (zh) * 2015-01-30 2015-04-29 山东大学 一种预紧力可控的双螺母滚珠丝杠副
TWI544164B (zh) * 2013-05-02 2016-08-01 Nat Univ Chung Cheng Ball screw device with pre-pressure sensing function
CN205960992U (zh) * 2016-09-05 2017-02-15 山东大学 一种具有自感知功能的滚珠丝杠副预紧力测控系统
JP2017141871A (ja) * 2016-02-09 2017-08-17 Ntn株式会社 ボールねじ装置およびこれを備える電動アクチュエータ
CN109210073A (zh) * 2018-10-15 2019-01-15 杭州电子科技大学 气磁混合球铰关节及其使用时的装配方法
CN110207981A (zh) * 2019-05-29 2019-09-06 南京理工大学 一种无损滚珠丝杠副静刚度测量装置
CN112096816A (zh) * 2020-09-14 2020-12-18 山东大学 一种磁悬浮滚珠丝杠副

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11230298A (ja) * 1998-02-12 1999-08-27 Canon Inc 磁気ねじおよび該磁気ねじを用いたステージ装置
CN103968024B (zh) * 2014-04-14 2016-08-10 北京工业大学 一种自动调节预紧力滚珠丝杠副
CN104141759A (zh) * 2014-07-14 2014-11-12 沈阳化工大学 一种预紧力可控的丝杠螺母副轴向预紧装置
CN108916336B (zh) * 2018-06-11 2020-06-26 北京中航惠通自动化技术有限公司 一种基于磁悬浮技术的低磨损行星滚柱丝杠
JP7166216B2 (ja) * 2019-04-17 2022-11-07 Thk株式会社 予圧検知可能なねじ装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225024A (ja) * 2006-02-23 2007-09-06 Nsk Ltd ボールねじ装置
US20130239714A1 (en) * 2010-10-04 2013-09-19 Jtekt Corporation Ball screw device, linear actuator and vehicle steering system
TWI544164B (zh) * 2013-05-02 2016-08-01 Nat Univ Chung Cheng Ball screw device with pre-pressure sensing function
CN104565252A (zh) * 2015-01-30 2015-04-29 山东大学 一种预紧力可控的双螺母滚珠丝杠副
JP2017141871A (ja) * 2016-02-09 2017-08-17 Ntn株式会社 ボールねじ装置およびこれを備える電動アクチュエータ
CN205960992U (zh) * 2016-09-05 2017-02-15 山东大学 一种具有自感知功能的滚珠丝杠副预紧力测控系统
CN109210073A (zh) * 2018-10-15 2019-01-15 杭州电子科技大学 气磁混合球铰关节及其使用时的装配方法
CN110207981A (zh) * 2019-05-29 2019-09-06 南京理工大学 一种无损滚珠丝杠副静刚度测量装置
CN112096816A (zh) * 2020-09-14 2020-12-18 山东大学 一种磁悬浮滚珠丝杠副

Also Published As

Publication number Publication date
CN112096816A (zh) 2020-12-18
US11920660B2 (en) 2024-03-05
US20220356932A1 (en) 2022-11-10
CN112096816B (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
WO2022052499A1 (zh) 一种磁悬浮滚珠丝杠副
US7251892B2 (en) Bearing assembly spacer adjustable system and method for adjusting a spacer
CN106884948B (zh) 一种组合式预紧力可调的双螺母滚珠丝杠副及安装方法
US4195944A (en) Frictional couplings
CN103143971A (zh) 一种滚珠丝杆预拉伸结构
CN111536915B (zh) 一种环面蜗杆轴向位置调整量测量装置及其使用方法
CN109877606B (zh) 一种用于轴系镗孔的中间支撑工装及同轴调整方法
CN204512339U (zh) 一种双螺母滚珠丝杠副自动预紧装置
CN114992298A (zh) 一种连轴滚珠丝杠副及加工方法
CN204831785U (zh) 一种电磁式的主轴轴承可控预紧装置
CN113483032A (zh) 一种十字轴万向节轴承间隙调整机构及其装配方法
CN220337245U (zh) 一种可对轴端轴承游隙进行调整的螺母结构
CN208698354U (zh) 一种预紧式汽车轮毂单元
CN208311375U (zh) 一种锥齿轮传动机构
CN116357684B (zh) 一种配对角接触球轴承的组配方法
CN110657157A (zh) 可承受极大轴向载荷的组配角接触球轴承
JP2007113777A (ja) 転がり軸受装置
CN212683271U (zh) 一种丝杆预拉伸结构
CN213647398U (zh) 一种轴承压装夹具
CN109458912B (zh) 一种滚珠丝杠副最优径向间隙的确定方法
CN214367567U (zh) 一种加长型低扭矩滚珠丝杠及其装配扳手
CN218325767U (zh) 一种十字交叉滚子轴承
CN220260234U (zh) 一种中心孔辅助定位工装
CN219053478U (zh) 一种平面浮动式自复位三爪夹头
CN220005415U (zh) 一种用于无缝钢管冷轧机进给回转机构的中继连杆装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21865560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21865560

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/09/2024)