WO2022052336A1 - 一种基于反向散射与空中计算的协作频谱检测方法 - Google Patents

一种基于反向散射与空中计算的协作频谱检测方法 Download PDF

Info

Publication number
WO2022052336A1
WO2022052336A1 PCT/CN2020/134217 CN2020134217W WO2022052336A1 WO 2022052336 A1 WO2022052336 A1 WO 2022052336A1 CN 2020134217 W CN2020134217 W CN 2020134217W WO 2022052336 A1 WO2022052336 A1 WO 2022052336A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectrum
requester
signal
detection
backscattering
Prior art date
Application number
PCT/CN2020/134217
Other languages
English (en)
French (fr)
Inventor
朱琦
李晓辉
Original Assignee
南京邮电大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京邮电大学 filed Critical 南京邮电大学
Priority to JP2022516174A priority Critical patent/JP7169036B2/ja
Publication of WO2022052336A1 publication Critical patent/WO2022052336A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the invention relates to the technical field of communications, in particular to a cooperative spectrum detection method based on backscattering and air computing.
  • B5G cellular IoT networks need to enable ubiquitous smart devices to access available spectrum resources in real time. Due to the scarcity of spectrum resources and rapidly changing channel conditions, available wireless spectrum resources do not always exist. Most mobile users, especially those located in ultra-dense areas, require spectrum detection to discover available radio resources. However, the ultra-high frequency signals used by the B5G system will experience more severe deep fading when encountering various obstacles, which brings difficulties to a single user equipment with limited detection and processing capabilities to detect spectrum opportunities in a timely and accurate manner. Recently, sensing-based cooperative spectrum detection method, referred to as spectrum detection method, as a novel sensing paradigm with higher flexibility, can motivate ubiquitous smart devices to participate in the spectrum detection process, thereby effectively mitigating deep fading in B5G systems. and the impact of hidden terminals.
  • spectrum detection method sensing-based cooperative spectrum detection method
  • the detection assistant first needs to collect enough spectral data and report it over a large number of independent channels. After that, the fusion and decision-making process of a large amount of spectrum data is carried out at the spectrum requester. The above process will consume a lot of energy and network resources for the detection assistant and the entire detection system. At the same time, performing a separate fusion operation at the requester may lead to high information delay, especially when the amount of reported spectrum detection data is large. .
  • the current research on cooperative spectrum detection methods can be divided into two categories according to data types reported by users or fusion rules: spectrum detection methods based on hard fusion and spectrum detection methods based on soft fusion.
  • spectrum detection methods based on hard fusion For the first approach, the spectral data collected and reported by each detection assistant is the binary spectral decision after local decision. In this method, each perceptual assistant requires fewer transmission bits. However, due to the high subjectivity of local decision-making, it is easy to cause a high error rate and may lead to tampering of spectral data.
  • For the second method more accurate spectral detection results can be achieved based on soft fusion. However, this method requires a lot of energy and network resources to transmit the locally sampled spectral signal.
  • the fusion of multi-bit spectrum data is relatively complex, which is likely to cause long data processing delay and low computational efficiency to the spectrum sensing requester. The above two methods still need to be improved, especially when the amount of reported spectrum detection data is huge.
  • the present invention solves the problem of optimal trade-off between spectrum detection accuracy and resource consumption, and directly backscatters the received spectrum signal to the requester through backscattering without local sensing, and then calculates based on the air , using the superposition feature of the wireless channel to realize the air fusion of spectrum detection data on the same channel, without occupying multiple independent channels, and finally, the requester can make the final detection decision by sampling the spectrum data after air fusion There is no need to perform additional fusion calculations, saving energy for perception and transmission and limited network, while ensuring the timeliness of information and the effectiveness of computing.
  • the present invention provides a cooperative spectrum detection method based on backscattering and air calculation.
  • the technical scheme of the present invention is: a cooperative spectrum sensing method based on backscattering and air computing, the specific steps include the following:
  • step (1.1) the backscattering device in the cooperative spectrum detection system uses backscattering to reflect the received spectrum signal to the requester;
  • Step (1.3) the requester obtains the finally received spectrum signal
  • Step (1.4) the requester finally receives Perform M times of sampling to obtain the spectrum detection statistic T;
  • Step (1.5) the requester determines the detection threshold
  • step (1.6) the requester compares the obtained spectrum detection statistic T with the detection threshold to make a final spectrum decision.
  • the cooperative spectrum detection system is composed of N backscattering devices, a user IU that is using the current frequency band, and a spectrum detection requester;
  • the specific operation steps for accumulating the N backscattered spectral signals are as follows: the spectral signals from the N scattering devices are transmitted through the same backscattering channel. , using the superposition characteristics of the wireless channel to realize the natural accumulation of the spectrum signal in the wireless channel, and obtain the accumulated backscattered spectrum signal
  • pi a ⁇ p IU
  • 2 +vi represents the power of zi
  • vi is the power of ni
  • R represents the channel between the i -th scattering device and the requester fading coefficient.
  • the specific operation method for the requester to obtain the finally received spectrum signal is as follows:
  • the spectrum signal received by the requester includes N backscattered spectrum signals superimposed through the same wireless channel and receive the signal directly from the IU
  • hi ,R represents the channel fading coefficient between the ith scattering device and the requester
  • pi a ⁇ p IU
  • vi is n i
  • the power of , h R, IU represents the channel fading coefficient between IU and the requester
  • n R is the additive white Gaussian noise at the requester;
  • the spectrum signal finally received by the requester is When the IU sends the signal, the spectrum signal finally received by the requester is
  • z R, Af represents the accumulated backscattered spectral signal
  • z R represents the directly received signal of the IU.
  • the specific operation method for obtaining the spectrum detection statistic T is as follows: Take M samples, where, Represents the lth sampling result, and then squares the modulo of the M sampling results respectively, and then accumulates to obtain the average value, so as to obtain the spectrum detection statistic as
  • the specific operation method for the requester to determine the detection threshold is as follows: the requester determines the target false alarm probability according to the preset The detection threshold ⁇ is obtained as
  • v R is the power of n R
  • Q -1 ( ) is the inverse function of the Q function
  • the Q function is the complementary distribution function of the standard Gaussian, which is expressed as
  • the final spectrum judgment is: when the spectrum detection statistic T is greater than the detection threshold, it is judged that the current spectrum is occupied; when the spectrum detection statistic T is less than the detection threshold, it is judged that the current spectrum is idle.
  • the purpose of the present invention is to realize a green cooperative spectrum detection method through backscattering and air calculation.
  • the performance of spectrum detection needs to be guaranteed at the cost of a large amount of sensing energy consumption and network resource occupation.
  • Widely distributed smart devices as detection assistants firstly use backscatter to directly reflect the received spectrum signal to the requester without local sensing; then, based on over-the-air calculation and the superposition characteristics of wireless channels, the spectrum detection data can be stored in the same Over-the-air fusion on the backscatter channel does not need to occupy multiple independent channels; finally, the requester only needs to sample the spectrum data after over-the-air fusion to make a final detection decision without additional data processing operations, and finally achieve energy and computational efficiency, as well as the saving of limited network resources.
  • the beneficial effects of the present invention are as follows: 1. Collect and report a large amount of spectrum data by using backscattering, without the need for local spectrum sensing, without consuming sensing energy, reducing the sensing cost, and at the same time helping the requester to recruit with less total compensation Sufficient detection assistant.
  • over-the-air computing to achieve over-the-air fusion of a large amount of spectrum data on the same backscatter channel, saving limited network channel resources, and simultaneous backscatter and data fusion further ensures information timeliness and computational effectiveness.
  • Fig. 1 is the schematic flow sheet of the present invention
  • Fig. 2 is the functional module schematic diagram of the present invention
  • 3 is a graph showing the variation of the cooperative detection probability with the false alarm probability of the hard-fused spectrum detection method and the method of the present invention in the embodiment of the present invention
  • Fig. 4 is the variation diagram of the cooperative detection probability with the false alarm probability of the soft fusion spectrum detection method and the method of the present invention in the embodiment of the present invention
  • FIG. 5 is a graph showing the variation of the number of global transmission bits and the global energy with the number of detection assistants in an embodiment of the present invention.
  • the present invention realizes a green cooperative spectrum detection method through backscattering and air calculation. Under the circumstance that the spectrum detection performance needs to be guaranteed at the expense of a large amount of sensing energy consumption and network resources, a reverse-based method is provided.
  • a method for spectral detection based on scattering and aerial computing First, the excited broad smart device acts as a spectrum detection assistant, using backscatter to directly backscatter the received spectrum signal to the requester, without the need for local sensing or data processing procedures. Then, using over-the-air computing, all reflected spectrum signals are reported to the requester through the same backscatter channel. Using the superposition feature of the wireless channel, the fusion of spectrum detection data is realized in the air instead of the requester. Finally, the perception requester only needs to sample and analyze the received spectrum data after air fusion to make a final detection decision.
  • step (1.1) the backscattering device in the cooperative spectrum detection system uses backscattering to reflect the received spectrum signal to the requester;
  • Step (1.3) the requester obtains the finally received spectrum signal
  • Step (1.4) the requester finally receives Perform M times of sampling to obtain the spectrum detection statistic T;
  • Step (1.5) the requester determines the detection threshold
  • step (1.6) the requester compares the obtained spectrum detection statistic T with the detection threshold to make a final spectrum decision.
  • the cooperative spectrum detection system is composed of N backscattering devices, a user IU that is using the current frequency band, and a spectrum detection requester; the i-th scattering device participating in the cooperative spectrum detection Received signal from IU
  • S IU and p IU respectively represent the transmitted signal and its power of the IU
  • hi IU is the distance between the IU and the i-th scattering device Channel fading coefficient
  • n i is the impedance noise of the ith scattering device; then, the ith scattering device backscatters the received zi, and the backscattered spectrum signal is
  • the specific operation steps for accumulating the N backscattered spectral signals are as follows: the spectral signals from the N scattering devices are transmitted through the same backscattering channel. , using the superposition characteristics of the wireless channel to realize the natural accumulation of the spectrum signal in the wireless channel, and obtain the accumulated backscattered spectrum signal
  • pi a ⁇ p IU
  • 2 +vi represents the power of zi
  • vi is the power of ni
  • R represents the channel between the i -th scattering device and the requester fading coefficient.
  • the specific operation method for the requester to obtain the finally received spectrum signal is as follows:
  • the supplicant receives the signal from the IU directly from the transmission channel
  • n R represents the additive white Gaussian noise at the requester
  • h R, IU is the fading coefficient of the transmission channel between the IU and the requester; further obtain the spectral signal finally received by the requester
  • H 0 and H 1 respectively represent the state of the IU not sending a signal and sending a signal
  • the spectrum signal received by the requester includes N backscattered spectrum signals superimposed through the same wireless channel and receive the signal directly from the IU
  • hi ,R represents the channel fading coefficient between the ith scattering device and the requester
  • pi a ⁇ p IU
  • vi is n i
  • the power of , h R, IU represents the channel fading coefficient between IU and the requester
  • n R is the additive white Gaussian noise at the requester;
  • the spectrum signal finally received by the requester is When the IU sends the signal, the spectrum signal finally received by the requester is
  • z R, Af represents the accumulated backscattered spectral signal
  • z R represents the directly received signal of the IU.
  • the specific operation method for obtaining the spectrum detection statistic T is as follows: Take M samples, where, Represents the lth sampling result, and then squares the modulus of the M sampling results respectively, and then accumulates to obtain the average value, thereby obtaining the spectrum detection statistic
  • the specific operation method for the requester to determine the detection threshold is as follows: the requester determines the target false alarm probability according to the preset The detection threshold ⁇ is obtained as
  • v R is the power of n R
  • Q -1 ( ) is the inverse function of the Q function
  • the Q function is the complementary distribution function of the standard Gaussian, which is expressed as
  • the final spectrum judgment is: when the spectrum detection statistic T is greater than the detection threshold, it is judged that the current spectrum is occupied; when the spectrum detection statistic T is less than the detection threshold, it is judged that the current spectrum is idle.
  • a collaborative spectrum detection method based on backscattering and aerial computing is presented.
  • a large number of smart devices stimulated by spectrum sensing requests act as detection assistants to directly backscatter the received spectrum signals to the requester without local sensing or data preprocessing.
  • all the backscattered spectrum signals are reported through a backscatter channel to realize the air fusion of spectrum data.
  • the requester receives the backscattered radio frequency signal after air fusion, and performs sampling to make the final spectrum. Judgment decision.
  • Accompanying drawing 3 is the method of the present invention and three kinds of typical hard fusion cooperative spectrum detection methods, namely based on and fusion, or fusion, and the method of voting fusion, the obtained detection probability is compared with the change of false alarm probability; It can be seen that when the total number of sampling points and the number of detection assistants are the same, given the target false alarm probability, the spectrum detection method based on backscattering and air calculation in the present invention can obtain higher than the three hard fusion detection mechanisms.
  • the spectrum data reported by the detection assistant is a binary spectrum decision that is highly subjective and may be tampered locally, while the backscatter-based collaborative device can receive
  • the spectrum signal is directly backscattered to the requester, and the spectrum data has high objectivity, so high cooperative spectrum detection performance can be achieved.
  • Accompanying drawing 4 is the method of the present invention and three kinds of typical soft fusion cooperative spectrum detection methods, namely based on equal gain combining, maximum ratio combining, and the method of likelihood ratio combining, the obtained detection probability is compared with the change of false alarm probability; It can be seen from the figure that when the total number of sampling points and the number of detection assistants are the same, when the target false alarm probability is given, the spectrum detection method based on backscattering and air calculation in the present invention can obtain more soft fusion than the three The detection mechanism has a higher detection probability; this is because in the method of the present invention, the spectral data backscattered by each detection assistant is the original received spectral signal without local sensing, sampling or quantization; this kind of spectral data is better than soft fusion.
  • the reported spectrum data after local processing is more objective and accurate; in addition, by using over-the-air calculation, all backscattered spectrum signals are naturally fused together on the wireless channel, and there is no co-channel interference during the data reporting process; Therefore, the requester can obtain the spectral data after air fusion with higher accuracy, thereby achieving better detection performance.
  • Accompanying drawing 5 is the method of the present invention, the hard fusion method and the soft fusion method, the global transmission bit required in the spectrum data reporting process and the global energy comparison diagram; it can be seen that in the hard fusion and soft fusion spectrum detection methods, the global The number of transmitted bits increases with the increase of the number of detection assistants, and far exceeds the method of the present invention; this is because, based on backscattering, the detection assistant can directly reflect the spectral signal without quantization; in addition, when the transmitted bits The more the number, the more energy required for data reporting. Therefore, compared with the hard fusion and soft fusion methods, the cooperative spectrum detection method based on backscattering and air calculation of the present invention improves the detection performance and realizes more Good energy saving effect.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明是一种基于反向散射与空中计算的协作频谱检测方法。该方法考虑在5G蜂窝物联网场景中,广泛分布的移动用户设备作为频谱检测助手,共同协作帮助请求者获取当前频谱状态。具体步骤如下:每个检测用户首先利用反向散射,直接将接收到的频谱信号以请求者为目标进行反向散射,无需进行本地感知与数据处理程序。然后,利用空中计算,将所有经过检测助手反射的频谱信号通过同一个反向散射信道上报给请求者,利用无线信道的累加特性,实现反向散射频谱信号的叠加。最后,请求者对接收到的空中融合后的频谱信号进行采样分析,做出最终的频谱检测判决。

Description

一种基于反向散射与空中计算的协作频谱检测方法 技术领域
本发明涉及通信技术领域,具体涉及一种基于反向散射与空中计算的协作频谱检测方法。
背景技术
B5G蜂窝物联网网络需要使无处不在的智能设备可以实时接入可用的频谱资源。由于频谱资源的稀缺以及快速变化的信道条件,可用的无线频谱资源并非随时存在。大多数移动用户,特别是那些位于超密集区域的用户,需要进行频谱检测以发现可用的无线电资源。然而,B5G系统采用的超高频信号在遇到各种障碍物时会经历更严重的深衰落,给具有有限检测与处理能力的单个用户设备及时准确地检测频谱机会带来了困难。近来,基于感知的协作频谱检测方法,简称为频谱检测方法,作为一种具有更高灵活性的新颖感知范例,可以激励普遍存在的智能设备共同参与频谱检测过程,从而有效减轻B5G系统中深衰落和隐终端带来的影响。为了提高检测准确性,检测助手首先需要收集足够的频谱数据,并通过大量独立信道进行报告。之后,在频谱请求者处进行大量频谱数据的融合与决策过程。以上流程对检测助手以及整个检测系统而言均会消耗大量的能源和网络资源,同时,在请求者处进行单独的融合操作可能导致较高的信息延迟,尤其当上报的频谱检测数据数量庞大时。
目前对协作频谱检测方法的研究,根据用户上报的数据类型或融合规则,可被分为两类:基于硬融合的频谱检测方法和基于软融合的频谱检测方法。对于第一种方法,每个检测助手收集和报告的频谱数据是本地决策后的二进制频谱决策。该方法中,每个感知助手需要较少的传输比特。但是,由于本地决策的主观性高,因此很容易引起较高的错误率,并且可能会导致频谱数据被篡改。对于第二种方法,基于软融合可以实现更准确的频谱检测结果。然而,该方法需要大量的能量和网络资源来传输本地采样后的频谱信号。此外,多位频谱数据的融合相对复杂,极有可能给频谱感知请求者造成较长的数据处理延迟以及较低的计算效率。以上两种方法在仍然有待提高,尤其当上报的频谱检测数据量巨大时。
鉴于上述挑战,本发明解决了频谱检测准确度与资源消耗之间的最佳权衡问题,通过反向散射直接将接收到的频谱信号反向散射给请求者,无需进行本地感知,然后基于空中计算,利用无线信道的叠加特性,实现频谱检测数据在同一信道上的空中融合,无需占用多个独立信道,最后,请求者对空中融合后的频谱数据进行采样,即可做出最终的检测判决,无需进行额外的融合计算,实现感知与传输能量以及有限网络的节约,同时保证信息的时效性与计算有效性。
发明内容
针对上述问题,本发明提供了一种基于反向散射与空中计算的协作频谱检测方法。
本发明的技术方案是:一种基于反向散射与空中计算的协作频谱感知方法,具体步骤包括如下:
步骤(1.1)、协作频谱检测系统中的反向散射设备利用反向散射向请求者反射接收到的频谱信号;
步骤(1.2)、基于空中计算,对N个被反向散射的频谱信号进行累加;
步骤(1.3)、请求者得到最终接受到的频谱信号;
步骤(1.4)、请求者对最终接收到的
Figure PCTCN2020134217-appb-000001
进行M次采样,得到频谱检测统计量T;
步骤(1.5)、请求者确定检测门限;
步骤(1.6)、请求者将得到的频谱检测统计量T与检测门限进行比较,做出最终频谱判决。
进一步的,在步骤(1.1)中,所述协作频谱检测系统由N个反向散射设备,正在使用当前频段的用户IU,以及一个频谱检测请求者组成;
参与协作频谱检测的第i个散射设备接收到来自IU的信号
Figure PCTCN2020134217-appb-000002
其中,a=1表示IU正发送信号,a=0表示IU不发送信号,S IU和p IU分别表示IU的发送信号及其功率,h i,IU是IU与第i个散射设备之间的信道衰落系数,n i是第i个散射设备的阻抗噪声;然后,第i个散射设备将接收到的z i进行反向散射,得到被反向散射后的频谱信号为
Figure PCTCN2020134217-appb-000003
其中,f e表示反向散射系数。
进一步的,在所述步骤(1.2)中,基于空中计算,对N个被反向散射的频谱信号进行累加的具体操作步骤如下:通过同一个反向散射信道传输来自N个散射设备的频谱信号,利用无线信道的叠加特性,实现频谱信号在无线信道中的自然累加,得到累加后的反向散射频谱信号
Figure PCTCN2020134217-appb-000004
其中,p i=a·p IU|h i,IU| 2+v i表示z i的功率,v i为n i的功率,h i,R表示第i个散射设备与请求者之间的信道衰落系数。
进一步的,在所述步骤(1.3)中,请求者得到最终接受到的频谱信号的具体操作方法如下:
请求者接收到的频谱信号包括,经过同一无线信道叠加后的N个被反向散 射的频谱信号
Figure PCTCN2020134217-appb-000005
及直接接收到来自IU的信号
Figure PCTCN2020134217-appb-000006
其中,h i,R表示第i个散射设备与请求者之间的信道衰落系数,p i=a·p IU|h i,IU| 2+v i为z i的功率,v i为n i的功率,h R,IU表示IU与请求者之间的信道衰落系数,n R为请求者处的加性高斯白噪声;
由此可得,当IU不发送信号时,请求者最终接收到的频谱信号为
Figure PCTCN2020134217-appb-000007
当IU发送信号时,请求者最终接收到的频谱信号为
Figure PCTCN2020134217-appb-000008
其中,z R,Af表示累加后的反向散射频谱信号,z R表示直接接收到的IU的信号。
进一步的,在所述步骤(1.4)中,得到频谱检测统计量T的具体操作方法如下:请求者对最终接收到的频谱信号
Figure PCTCN2020134217-appb-000009
进行M次采样,其中,
Figure PCTCN2020134217-appb-000010
表示第l个采样结果,然后对M次采样结果分别求模的平方,随后进行累加求取平均值,从而得到频谱检测统计量为
Figure PCTCN2020134217-appb-000011
进一步的,在所述步骤(1.5)中,请求者确定检测门限的具体操作方法如下:求者根据预先设定的目标虚警概率
Figure PCTCN2020134217-appb-000012
得到检测门限ε为
Figure PCTCN2020134217-appb-000013
其中,v R为n R的功率,Q -1(·)为Q函数的逆函数,Q函数为标准高斯的互补分布函数,表示为
Figure PCTCN2020134217-appb-000014
进一步的,在所述步骤(1.6)中,最终频谱判决是:当频谱检测统计量T大于检测门限时,判决当前频谱被占用;当频谱检测统计量T小于检测门限时,判决当前频谱空闲。
本发明的目的是通过反向散射与空中计算实现一种绿色的协作频谱检测方法。针对当前频谱检测过程中,频谱检测性能需要以大量的感知能耗和网络资源的占用为代价才得以保证的问题,构建了一种基于反向散射与空中计算实现频谱检测的方案。广泛分布的智能设备作为检测助手首先利用反向散射直接将接收到的频谱信号反射给请求者,无需进行本地感知;然后,然后基于空中计算,利用无线信道的叠加特性,实现频谱检测数据在同一反向散射信道上的空中融合,无需占用多个独立信道;最后,请求者仅需对空中融合后的频谱数据进行采样,做出最终的检测判决,无需进行额外的数据处理操作,最终实现能量与计算有效性,以及有限网络资源的节约。
本发明的有益效果是:1.利用反向散射收集并报告大量的频谱数据,不需要进行本地频谱感知,无需消耗感知能量,减少了感知代价,同时有利于请求者以较少的总报酬招募足够的检测助手。
2.利用空中计算,实现大量频谱数据在同一反向散射信道上的空中融合,节省了有限的网络信道资源,反向散射与数据融合同时进行进一步保证了信息时效性以及计算有效性。
3.由于每个检测助手报告的频谱数据是直接接收到的原始频谱信号,而非本地二值频谱决策或具有强烈主观性的预处理频谱数据,因此,在节约能耗与网络资源的同时,实现了更高的检测准确度。
附图说明
图1是本发明的流程示意图;
图2是本发明的功能模块示意图;
图3是本发明实施例中硬融合频谱检测方法与本发明方法的协作检测概率随虚警概率变化图;
图4是本发明实施例中软融合频谱检测方法与本发明方法的协作检测概率随虚警概率变化图;
图5是本发明实施例中全局传输比特数与全局能量随检测助手数量的变化图。
具体实施方式
本发明是通过反向散射与空中计算实现一种绿色的协作频谱检测方法,在频谱检测性能需要以大量感知能耗和网络资源为代价才得以保证的情况下,给出了一种基于反向散射与空中计算实现频谱检测的方法。首先,被激励的广泛智能设备作为频谱检测助手,利用反向散射直接将接收到的频谱信号反向散射给请求者,无需进行本地感知或数据处理程序。然后,利用空中计算,将所有被反射的频谱 信号通过同一个反向散射通道上报给请求者,利用无线信道的叠加特性,频谱检测数据的融合在空中而非请求者处实现。最后,感知请求者仅需对接收到的空中融合后的频谱数据进行采样分析,即可做出最终的检测判决。
为了更清楚地说明本发明的技术方案,下面结合附图对本发明的技术方案做进一步的详细说明:
如图1及图2所述;一种基于反向散射与空中计算的协作频谱感知方法,具体步骤包括如下:
步骤(1.1)、协作频谱检测系统中的反向散射设备利用反向散射向请求者反射接收到的频谱信号;
步骤(1.2)、基于空中计算,对N个被反向散射的频谱信号进行累加;
步骤(1.3)、请求者得到最终接受到的频谱信号;
步骤(1.4)、请求者对最终接收到的
Figure PCTCN2020134217-appb-000015
进行M次采样,得到频谱检测统计量T;
步骤(1.5)、请求者确定检测门限;
步骤(1.6)、请求者将得到的频谱检测统计量T与检测门限进行比较,做出最终频谱判决。
进一步的,在步骤(1.1)中,所述协作频谱检测系统由N个反向散射设备,正在使用当前频段的用户IU,以及一个频谱检测请求者组成;参与协作频谱检测的第i个散射设备接收到来自IU的信号
Figure PCTCN2020134217-appb-000016
其中,a=1表示IU正发送信号,a=0表示IU不发送信号,S IU和p IU分别表示IU的发送信号及其功率,h i,IU是IU与第i个散射设备之间的信道衰落系数,n i是第i个散射设备的阻抗噪声;然后,第i个散射设备将接收到的z i进行反向散射,得到被反向散射后的频谱信号为
Figure PCTCN2020134217-appb-000017
其中,f e表示反向散射系数。
进一步的,在所述步骤(1.2)中,基于空中计算,对N个被反向散射的频谱信号进行累加的具体操作步骤如下:通过同一个反向散射信道传输来自N个散射设备的频谱信号,利用无线信道的叠加特性,实现频谱信号在无线信道中的自然累加,得到累加后的反向散射频谱信号
Figure PCTCN2020134217-appb-000018
其中,p i=a·p IU|h i,IU| 2+v i表示z i的功率,v i为n i的功率,h i,R表示第i个散射设备与请求者之间的信道衰落系数。
进一步的,在所述步骤(1.3)中,请求者得到最终接受到的频谱信号的具 体操作方法如下:
除了从反向散射信道接收到的空中融合后的信号z R,Af之外,请求者还会从传输信道直接接收到来自IU的信号
Figure PCTCN2020134217-appb-000019
其中,n R表示请求者处的加性高斯白噪声,h R,IU是IU与请求者之间传输信道的衰落系数;进一步得到请求者最终接收到的频谱信号
Figure PCTCN2020134217-appb-000020
其中,H 0和H 1分别表示IU不发送信号与发送信号的状态;
请求者接收到的频谱信号包括,经过同一无线信道叠加后的N个被反向散射的频谱信号
Figure PCTCN2020134217-appb-000021
及直接接收到来自IU的信号
Figure PCTCN2020134217-appb-000022
其中,h i,R表示第i个散射设备与请求者之间的信道衰落系数,p i=a·p IU|h i,IU| 2+v i为z i的功率,v i为n i的功率,h R,IU表示IU与请求者之间的信道衰落系数,n R为请求者处的加性高斯白噪声;
由此可得,当IU不发送信号时,请求者最终接收到的频谱信号为
Figure PCTCN2020134217-appb-000023
当IU发送信号时,请求者最终接收到的频谱信号为
Figure PCTCN2020134217-appb-000024
其中,z R,Af表示累加后的反向散射频谱信号,z R表示直接接收到的IU的信号。
进一步的,在所述步骤(1.4)中,得到频谱检测统计量T的具体操作方法如下:请求者对最终接收到的频谱信号
Figure PCTCN2020134217-appb-000025
进行M次采样,其中,
Figure PCTCN2020134217-appb-000026
表示第l个采样结果,然后对M次采样结果分别求模的平方,随后进行累加求取平 均值,从而得到频谱检测统计量
Figure PCTCN2020134217-appb-000027
进一步的,在所述步骤(1.5)中,请求者确定检测门限的具体操作方法如下:求者根据预先设定的目标虚警概率
Figure PCTCN2020134217-appb-000028
得到检测门限ε为
Figure PCTCN2020134217-appb-000029
其中,v R为n R的功率,Q -1(·)为Q函数的逆函数,Q函数为标准高斯的互补分布函数,表示为
Figure PCTCN2020134217-appb-000030
进一步的,在所述步骤(1.6)中,最终频谱判决是:当频谱检测统计量T大于检测门限时,判决当前频谱被占用;当频谱检测统计量T小于检测门限时,判决当前频谱空闲。
综上所述,基于反向散射与空中计算的协作频谱检测方法。首先,被频谱感知请求激励的大量智能设备作为检测助手,将接收到的频谱信号直接反向散射给请求者,无需进行本地感知或数据预处理,然后,通过空中计算,利用无线信道的叠加特性,将所有被反向散射的频谱信号通过一个反向散射信道上报,实现频谱数据的空中融合,最后,请求者接收到空中融合后的反向散射频频信号,并进行采样,做出最终的频谱判决决策。
附图3是本发明方法和三种典型的硬融合协作频谱检测方法,即基于与融合,或融合,以及表决融合的方法,获得的检测概率随虚警概率的变化对比图;从图中可以看出,在总采样点数和检测助手数量相同的情况下,给定目标虚警概率时,本发明中基于反向散射与空中计算的频谱检测方法,可以获得比三种硬融合检测机制更高的检测概率;这是由于基于硬融合的频谱检测方法中,检测助手上报的频谱数据是具有强烈主观性且可能被本地篡改的二值频谱决策,而基于反向散射的协作设备可以将接收到的频谱信号直接反向散射给请求者,频谱数据具有高客观性,因此可以实现较高的协作频谱检测性能。
附图4是本发明方法和三种典型的软融合协作频谱检测方法,即基于等增益合并,最大比合并,以及似然比合并的方法,获得的检测概率随虚警概率的变化对比图;从图中可以看出,在总采样点数和检测助手数量相同的情况下,给定目标虚警概率时,本发明中基于反向散射与空中计算的频谱检测方法,可以获得比三种软融合检测机制更高的检测概率;这是由于本发明方法中,每个检测助手反向散射的频谱数据是原始接收的频谱信号,而没有经过本地感知、采样或量化; 这种频谱数据比软融合频谱检测方法中进行局部处理后报告的频谱数据更加客观和准确;此外,利用空中计算,所有反向散射的频谱信号在无线信道上自然地融合在一起,数据报告过程中不存在同频干扰;因此,请求者能够以更高的准确度获得空中融合后的频谱数据,进而实现更好的检测性能。
附图5是本发明方法与硬融合方法和软融合方法,在频谱数据上报过程中所需的全局传输比特与全局能量对比图;可以看出,在硬融合和软融合频谱检测方法中,全局传输比特数均随着检测助手数量的增加而增加,并且远远超过了本发明方法;这是由于,基于反向散射,检测助手可直接将频谱信号进行反射,无需量化;此外,当传输比特数越多,数据上报所需的能量就越多,因此,与硬融合和软融合方法相比,本发明基于反向散射与空中计算的协作频谱检测方法在提高检测性能的同时,实现了更好的节能效果。
实施例:
在一个B5G蜂窝物联网覆盖的办公楼中,一个移动用户在接入一段频谱之前,首先需要在其他设备的协助下检测该频谱是否空闲。因此,利用本专利发明的方法,该移动用户作为频谱检测请求者,N=10个智能设备在请求者周围随机分布,作为反向散射设备。首先,根据步骤(1.1)所有反向散射设备利用反向散射向请求者反射接收到的该频谱的信号;然后基于空中计算,根据步骤(1.2)对10个被反向散射的频谱信号进行累加;其次,请求者根据步骤(1.3)得到最终接收到的频谱信号,并根据步骤(1.4)进行M=200次采样,得到频谱检测统计量T;随后,请求者根据步骤(1.5)确定检测门限;最后,根据检测统计量与检测门限的比较结果,确定该频谱是否空闲:当检测统计量大于检测门限,判决该频谱被占用,请求者无法接入;当检测统计量小于检测门限,判决该频谱空闲,请求者可以接入。

Claims (7)

  1. 一种基于反向散射与空中计算的协作频谱感知方法,其特征在于,具体步骤包括如下:
    步骤(1.1)、协作频谱检测系统中的反向散射设备利用反向散射向请求者反射接收到的频谱信号;
    步骤(1.2)、基于空中计算,对N个被反向散射的频谱信号进行累加;
    步骤(1.3)、请求者得到最终接受到的频谱信号;
    步骤(1.4)、请求者对最终接收到的
    Figure PCTCN2020134217-appb-100001
    进行M次采样,得到频谱检测统计量T;
    步骤(1.5)、请求者确定检测门限;
    步骤(1.6)、请求者将得到的频谱检测统计量T与检测门限进行比较,做出最终频谱判决。
  2. 根据权利要求1所述的一种基于反向散射与空中计算的协作频谱感知方法,其特征在于,在步骤(1.1)中,所述协作频谱检测系统由N个反向散射设备,正在使用当前频段的用户IU,以及一个频谱检测请求者组成;
    参与协作频谱检测的第i个散射设备接收到来自IU的信号
    Figure PCTCN2020134217-appb-100002
    其中,a=1表示IU正发送信号,a=0表示IU不发送信号,S IU和p IU分别表示IU的发送信号及其功率,h i,IU是IU与第i个散射设备之间的信道衰落系数,n i是第i个散射设备的阻抗噪声;然后,第i个散射设备将接收到的z i进行反向散射,得到被反向散射后的频谱信号为
    Figure PCTCN2020134217-appb-100003
    其中,f e表示反向散射系数。
  3. 根据权利要求1所述的一种基于反向散射与空中计算的协作频谱感知方法,其特征在于,在所述步骤(1.2)中,基于空中计算,对N个被反向散射的频谱信号进行累加的具体操作步骤如下:通过同一个反向散射信道传输来自N个散射设备的频谱信号,利用无线信道的叠加特性,实现频谱信号在无线信道中的自然累加,得到累加后的反向散射频谱信号
    Figure PCTCN2020134217-appb-100004
    其中,p i=a·p IU|h i,IU| 2+v i表示z i的功率,v i为n i的功率,h i,R表示第i个散射设备与请求者之间的信道衰落系数。
  4. 根据权利要求1所述的一种基于反向散射与空中计算的协作频谱感知方法,其特征在于,在所述步骤(1.3)中,请求者得到最终接受到的频谱信号的具体操作方法如下:
    请求者接收到的频谱信号包括,经过同一无线信道叠加后的N个被反向散射的频谱信号
    Figure PCTCN2020134217-appb-100005
    及直接接收到来自IU的信号
    Figure PCTCN2020134217-appb-100006
    其中,h i,R表示第i个散射设备与请求者之间的信道衰落系数,p i=a·p IU|h i,IU| 2+v i为z i的功率,v i为n i的功率,h R,IU表示IU与请求者之间的信道衰落系数,n R为请求者处的加性高斯白噪声;
    由此可得,当IU不发送信号时,请求者最终接收到的频谱信号为
    Figure PCTCN2020134217-appb-100007
    当IU发送信号时,请求者最终接收到的频谱信号为
    Figure PCTCN2020134217-appb-100008
    其中,z R,Af表示累加后的反向散射频谱信号,z R表示直接接收到的IU的信号。
  5. 根据权利要求1所述的一种基于反向散射与空中计算的协作频谱感知方法,其特征在于,在所述步骤(1.4)中,得到频谱检测统计量T的具体操作方法如下:请求者对最终接收到的频谱信号
    Figure PCTCN2020134217-appb-100009
    进行M次采样,其中,
    Figure PCTCN2020134217-appb-100010
    表示第l个采样结果,然后对M次采样结果分别求模的平方,随后进行累加求取平均值,从而得到频谱检测统计量为
    Figure PCTCN2020134217-appb-100011
  6. 根据权利要求1所述的一种基于反向散射与空中计算的协作频谱感知方法,其特征在于,在所述步骤(1.5)中,请求者确定检测门限的具体操作方法如下:求者根据预先设定的目标虚警概率
    Figure PCTCN2020134217-appb-100012
    得到检测门限ε为
    Figure PCTCN2020134217-appb-100013
    其中,v R为n R的功率,Q -1(·)为Q函数的逆函数,Q函数为标准高斯的互补分布函数,表示为
    Figure PCTCN2020134217-appb-100014
  7. 根据权利要求1所述的一种基于反向散射与空中计算的协作频谱感知方法,其特征在于,在所述步骤(1.6)中,最终频谱判决是:当频谱检测统计量T大于检测门限时,判决当前频谱被占用;当频谱检测统计量T小于检测门限时,判决当前频谱空闲。
PCT/CN2020/134217 2020-09-11 2020-12-07 一种基于反向散射与空中计算的协作频谱检测方法 WO2022052336A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022516174A JP7169036B2 (ja) 2020-09-11 2020-12-07 後方散乱及び空中計算に基づく協調スペクトル検出方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010952318.5A CN112260781B (zh) 2020-09-11 2020-09-11 一种基于反向散射与空中计算的协作频谱检测方法
CN202010952318.5 2020-09-11

Publications (1)

Publication Number Publication Date
WO2022052336A1 true WO2022052336A1 (zh) 2022-03-17

Family

ID=74232043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134217 WO2022052336A1 (zh) 2020-09-11 2020-12-07 一种基于反向散射与空中计算的协作频谱检测方法

Country Status (3)

Country Link
JP (1) JP7169036B2 (zh)
CN (1) CN112260781B (zh)
WO (1) WO2022052336A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104052556A (zh) * 2014-06-20 2014-09-17 中国电子科技集团公司第五十四研究所 一种基于分集合并的无线电频谱感知的协作检测方法
CN107359948A (zh) * 2017-07-11 2017-11-17 北京邮电大学 一种认知无线网络的频谱预测方法及装置
CN110601738A (zh) * 2019-08-23 2019-12-20 东南大学 一种基于频谱共享的环境反向散射阵列通信系统速率分析方法
CN110832740A (zh) * 2017-05-03 2020-02-21 希尔莱特有限责任公司 无线功率传输管理
US10693521B2 (en) * 2014-12-19 2020-06-23 University Of Washington Devices and methods for backscatter communication using one or more wireless communication protocols including Bluetooth low energy examples
CN111565393A (zh) * 2020-04-20 2020-08-21 上海交通大学 Ofdma反向散射网络的频谱动态控制方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101459922B (zh) * 2008-12-31 2010-12-29 北京邮电大学 一种设置判决门限值的方法及装置
CN104954308A (zh) * 2015-06-02 2015-09-30 国家电网公司 认知无线电中基于特征向量的双节点协方差盲检测方法
EP3335432B1 (en) * 2015-08-12 2024-02-14 University of Washington Backscatter devices and network systems incorporating backscatter devices
CN105227253A (zh) * 2015-08-20 2016-01-06 黑龙江科技大学 一种新型的基于能量检测的双门限协作频谱感知算法
KR101971392B1 (ko) * 2017-12-29 2019-04-23 숭실대학교산학협력단 에너지 하베스팅 인지 라디오 네트워크에서의 주변 후방산란 통신 시스템 및 그것을 이용한 주변 후방산란 통신 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104052556A (zh) * 2014-06-20 2014-09-17 中国电子科技集团公司第五十四研究所 一种基于分集合并的无线电频谱感知的协作检测方法
US10693521B2 (en) * 2014-12-19 2020-06-23 University Of Washington Devices and methods for backscatter communication using one or more wireless communication protocols including Bluetooth low energy examples
CN110832740A (zh) * 2017-05-03 2020-02-21 希尔莱特有限责任公司 无线功率传输管理
CN107359948A (zh) * 2017-07-11 2017-11-17 北京邮电大学 一种认知无线网络的频谱预测方法及装置
CN110601738A (zh) * 2019-08-23 2019-12-20 东南大学 一种基于频谱共享的环境反向散射阵列通信系统速率分析方法
CN111565393A (zh) * 2020-04-20 2020-08-21 上海交通大学 Ofdma反向散射网络的频谱动态控制方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Chinese Master's Theses Full-text Database", 31 January 2018, 大阪, ISBN: 978-4-422-11733-1, article LIU YANG: "Detection Algorithm Design and Performance Analysis for Spectrum Sharing Wireless Communication Systems", pages: 1 - 107, XP055910979 *
CHOI YOUNG KI; KIM SU MIN; KIM JUNSU: "Impact of Imperfect Spectrum Sensing on Hybrid Backscatter Assisted Cognitive Wireless Powered Radio Networks", 2019 ELEVENTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS (ICUFN), IEEE, 2 July 2019 (2019-07-02), pages 326 - 329, XP033600898, DOI: 10.1109/ICUFN.2019.8806194 *

Also Published As

Publication number Publication date
JP2022543911A (ja) 2022-10-14
CN112260781B (zh) 2021-10-19
CN112260781A (zh) 2021-01-22
JP7169036B2 (ja) 2022-11-10

Similar Documents

Publication Publication Date Title
US9913092B2 (en) Mitigating signal noise for fingerprint-based indoor localization
Zhang et al. A vehicle-based measurement framework for enhancing whitespace spectrum databases
US11330434B2 (en) Security detection for a physical layer authentication system that considers signal-discriminating capability of an active adversary
CN101951274A (zh) 低复杂度的合作频谱感知方法
CN115190474B (zh) 一种面向海洋观监测传感网的隐私感知计算任务卸载方法
Lin et al. Soft decision cooperative spectrum sensing with entropy weight method for cognitive radio sensor networks
WO2023051318A1 (zh) 模型训练方法、无线资源调度方法及其装置及电子设备
WO2017152876A1 (zh) 用于无线通信的装置和方法、参数优化装置和方法
Chen et al. Providing spectrum information service using TV white space via distributed detection system
CN110932807A (zh) 一种非高斯噪声下mimo系统的频谱感知方法
CN110649982A (zh) 基于次用户节点选择的双阈值能量检测方法
CN102075263A (zh) 基于分段能量处理的截尾型序贯检验方法
WO2022052336A1 (zh) 一种基于反向散射与空中计算的协作频谱检测方法
CN106936527B (zh) 一种基于双门限的多用户合作频谱感知方法
CN112073138B (zh) 一种基于量化的双门限协作频谱感知方法
CN113179143B (zh) 一种基于最大最小值的融合频谱感知方法及系统
CN111225384A (zh) 一种上行干扰建模方法、干扰确定方法和装置
CN115086965A (zh) 基于降元处理和联合迭代优化的动态频谱分配方法及系统
CN108173610A (zh) 基于二阶统计量的异构无线网络的协作式频谱感知方法
Sarisaray-Boluk Performance comparisons of the image quality evaluation techniques in Wireless Multimedia Sensor Networks
CN115734264A (zh) 5g网络覆盖评估方法、装置、计算机可读介质及电子设备
Li et al. The partial power control algorithm of underwater acoustic sensor networks based on outage probability minimization
CN114285506B (zh) 一种混合式两级多星协作频谱感知方法
Men et al. A Robust and Energy Efficient Cooperative Spectrum Sensing Scheme in Cognitive Wireless Sensor Networks.
Singh et al. Multi-Layer Perceptron Based Spectrum Prediction in Cognitive Radio Network

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022516174

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20953121

Country of ref document: EP

Kind code of ref document: A1