WO2022052206A1 - 一种热塑性纤维复合丝增强管的制备方法 - Google Patents

一种热塑性纤维复合丝增强管的制备方法 Download PDF

Info

Publication number
WO2022052206A1
WO2022052206A1 PCT/CN2020/121353 CN2020121353W WO2022052206A1 WO 2022052206 A1 WO2022052206 A1 WO 2022052206A1 CN 2020121353 W CN2020121353 W CN 2020121353W WO 2022052206 A1 WO2022052206 A1 WO 2022052206A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic
fiber
composite filament
inorganic
reinforced
Prior art date
Application number
PCT/CN2020/121353
Other languages
English (en)
French (fr)
Inventor
刘伯敏
葛曷一
朱全坤
Original Assignee
山东柏远复合材料科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东柏远复合材料科技股份有限公司 filed Critical 山东柏远复合材料科技股份有限公司
Publication of WO2022052206A1 publication Critical patent/WO2022052206A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04CBRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
    • D04C1/00Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof
    • D04C1/06Braid or lace serving particular purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/681Component parts, details or accessories; Auxiliary operations
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D11/00Other features of manufacture
    • D01D11/06Coating with spinning solutions or melts
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04CBRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
    • D04C1/00Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof
    • D04C1/02Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof made from particular materials
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength

Definitions

  • the invention relates to a preparation method of a reinforced pipe, in particular to a preparation method of a thermoplastic fiber composite wire reinforced pipe.
  • the present invention provides a preparation method of a thermoplastic fiber composite filament reinforced pipe.
  • thermoplastic fiber composite filament reinforced pipe comprising the following steps:
  • Step 1 Preparation of Inorganic Fiber Reinforced Thermoplastic Composite Filament
  • Reconstruction of inorganic fibers immerse the inorganic fibers flowing out of the leakage plate of the melting furnace into the sizing agent for cooling, the cooling time is 1-2s, the cooling temperature is 20-50 °C, and then dried in a 200 °C oven;
  • Production of inorganic fiber reinforced thermoplastic composite yarn put the modified inorganic fiber on the fiber frame, and spread the modified inorganic fiber through the yarn spreader.
  • the fiber penetrates into the thermoplastic resin cavity inside the dipping mold, so that the surface of the modified inorganic fiber is adhered with thermoplastic resin, and the temperature inside the dipping mold is 180-220 °C;
  • the shaped inorganic fiber reinforced thermoplastic composite wire advances, and finally the inorganic fiber reinforced thermoplastic composite wire is wound around the rotating shaft of the tension winder for standby;
  • Step 2 Thermoplastic fiber composite filaments are reinforced into tubes and pre-braided
  • Step 3 Production of Thermoplastic Fiber Composite Filament Reinforced Tube
  • the inorganic fibers include glass fibers and carbon fibers
  • the thermoplastic resins include polyethylene resin, polypropylene resin, polyvinyl chloride, and polystyrene.
  • the diameter of the single inorganic fiber in the first step is 5-30 ⁇ m, and the number of the fiber bundle in the second step is 200-2400tax.
  • the content of inorganic fibers in the inorganic fiber reinforced thermoplastic composite wire is 60-70%
  • the diameter of the inorganic fiber reinforced thermoplastic composite wire is 0.1-0.5mm
  • the tensile strength is 800-1200Mpa.
  • the dipping die is installed on the extruder through a flange, and the dipping die is provided with strip-shaped holes.
  • the inorganic fibers are immersed into the thermoplastic resin cavity through the strip-shaped holes.
  • two sides of the conical shaper are provided with cavities, and cooling circulating water is added into the cavities, and a water inlet and a water outlet are respectively arranged on the cavities.
  • the inorganic fiber reinforced thermoplastic composite wire of the present invention includes thermoplastics, and the thermoplastics and the pipes covered by the outer layer are easy to fuse, the force is relatively strong, and there is no phenomenon of delamination;
  • thermoplastic composite wire is greater than that of steel wire, and it will never rust, which solves the problem of rust and corrosion;
  • the braided layer is a knotless fishing net structure, and each unit is an independent unit. When a single fishing net unit is damaged, it will not affect other units.
  • the mechanical properties of the pipeline are improved, and the stability of the structural mechanical properties of the pipeline is improved.
  • Fig. 1 is the structural representation of the thermoplastic fiber composite wire reinforced pipe of the present invention
  • Fig. 2 is the structural representation of the dipping mould of the present invention
  • FIG. 3 is a schematic view of the structure of the conical shaper of the present invention.
  • thermoplastic fiber composite filament reinforced pipe includes the following steps:
  • Step 1 Preparation of Inorganic Fiber Reinforced Thermoplastic Composite Filament
  • Transformation of inorganic fibers immerse the inorganic fibers flowing out of the leakage plate of the melting furnace into the sizing agent for cooling, the cooling time is 1-2s, the cooling temperature is 20-50 °C, and then dried in a 200 °C oven. A film plasticized by a sizing agent is hung on the fibers.
  • the sizing agent can be combined with inorganic fibers and thermoplastic resins.
  • the inorganic fibers are one of glass fibers and carbon fibers, and the thermoplastic resins are polyethylene resin and polypropylene resin. , one of polyvinyl chloride and polystyrene;
  • Production of inorganic fiber reinforced thermoplastic composite filaments Put the transformed inorganic fibers on a fiber frame, where the diameter of a single inorganic fiber filament is 5-30 ⁇ m, and unfold the transformed inorganic fibers through a yarn spreading machine.
  • the measurement standard for unfolding is: stacking There are no more than 5 monofilaments, and then the unfolded inorganic fibers are immersed in the thermoplastic resin cavity 2 inside the dipping mold 1, so that the surface of the transformed inorganic fibers is adhered with thermoplastic resin, and the temperature inside the dipping mold is 180-220 ° C; Then enter the cone shaper 6, the two sides of the cone shaper 6 are provided with cavities 7, and cooling circulating water is added into the cavity 7, and the water inlet 8 and the water outlet 9 are respectively installed above the cavity 7, and are shaped into filaments.
  • the shaped inorganic fiber reinforced thermoplastic composite wire is driven forward by the tractor, and finally the inorganic fiber reinforced thermoplastic composite wire is wound around the rotating shaft of the tension winder for standby;
  • the content of inorganic fiber in the inorganic fiber reinforced thermoplastic composite wire is 60-70% %
  • the diameter of the inorganic fiber reinforced thermoplastic composite wire is 0.1-0.5mm
  • the tensile strength is 800-1200Mpa.
  • Step 2 Thermoplastic fiber composite filaments are reinforced into tubes and pre-braided
  • Step 3 Production of Thermoplastic Fiber Composite Filament Reinforced Tube
  • each unit is an independent unit. When a single fishing net unit is damaged, it will not affect the mechanical properties of other units. Improve the stability of the structural mechanical properties of the pipeline.
  • the outer layer of the pipe is coated on the outside of the inorganic fiber reinforced thermoplastic composite wire, and the material of the outer layer is exactly the same as the material of the base pipe, and finally cut to length, packaged and put into storage.
  • the dipping die 1 is installed on the extruder 4 through the flange 3, and the dipping die 1 is provided with a strip hole 5.
  • the inorganic fibers are immersed into the thermoplastic resin cavity 2 through the strip hole 5.
  • the flow of the thermoplastic resin is driven by the rotation of the screw, and the setting of the device solves the problem that the thermoplastic resin is easy to stay on the surface of the dipping mold.
  • a reflow extruder is installed on one side of the dipping die 1 to reflow the thermoplastic resin flowing out of the dipping die 1 for reuse.
  • the tensile strength of the thermoplastic fiber composite silk reinforced pipe prepared in this example is ⁇ 100MPa.
  • Step 1 Preparation of Inorganic Fiber Reinforced Thermoplastic Composite Filament
  • Reconstruction of inorganic fibers immerse the glass fiber filaments flowing out of the leakage plate of the melting furnace into the sizing agent for cooling, the cooling time is 1-2s, the cooling temperature is 30 °C, and then dried in a 200 °C oven.
  • the measurement standard for unrolling is: the superimposed part does not exceed 5 monofilaments, and then the unrolled inorganic fibers are dipped into the thermoplastic resin cavity 2 inside the dipping mold 1, so that the surface of the modified inorganic fibers is glued with thermoplastic resin, dipping
  • the internal temperature of the mold is 210°C; then it enters the conical shaper 6, the two sides of the cone shaper 6 are provided with cavities 7, and cooling circulating water is added into the cavity 7, and the water inlet 8 and the water outlet 9 are respectively installed in the empty Above the cavity 7, it is shaped into a filament.
  • thermoplastic resin is polyethylene resin.
  • the tensile strength of the produced inorganic fiber-reinforced thermoplastic composite filaments was measured to be 1200Mpa. .
  • Step 2 Thermoplastic fiber composite filaments are reinforced into tubes and pre-braided
  • Step 3 Production of Thermoplastic Fiber Composite Filament Reinforced Tube
  • each unit is an independent unit.
  • the mechanical properties of the pipeline are improved, and the stability of the structural mechanical properties of the pipeline is improved.
  • the outer layer of the pipe is coated on the outside of the inorganic fiber reinforced thermoplastic composite wire.
  • the material of the outer layer is exactly the same as that of the base pipe, which is a PE base pipe. Finally, it is cut to length and packaged for storage.
  • thermoplastic fiber composite filament reinforced pipes Measuring the physical properties of thermoplastic fiber composite filament reinforced pipes

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Moulding By Coating Moulds (AREA)
  • Laminated Bodies (AREA)
  • Ropes Or Cables (AREA)

Abstract

一种热塑性纤维复合丝增强管的制备方法,包括以下步骤:(1)制备无机纤维增强热塑性复合丝,包括无机纤维的改造和生产无机纤维增强热塑性复合丝;(2)对热塑性纤维复合丝增强成管进行预编织;(3)准备基管,在基管外部进行编织,编织成无结渔网结构形成编织层,然后在热塑性复合丝外面包覆管道外层,外层材料和基管材质完全一样;(4)定长截取,包装入库。该方法制备的热塑性纤维复合丝增强管不存在分层的现象,不易生锈腐蚀,结构力学性能稳定。

Description

一种热塑性纤维复合丝增强管的制备方法 技术领域
本发明涉及增强管的制备方法,特别涉及一种热塑性纤维复合丝增强管的制备方法。
背景技术
目前,市面上有钢丝网骨架管,钢丝网骨架生产时先挤出一个基管,在基管外面缠绕上钢丝,钢丝的直径和疏密根据承压力不同去选择,缠绕上钢丝之后,外面再包覆上一层PE塑料,形成一个复合的管道,这种管道的优点为承载水的耐压力比较大,但是这种管道也存在着一些缺点,例如当管道受到破坏时,钢丝容易被腐蚀;当管道外层不被破坏,水分子也会浸入,时间久了内部钢丝也会产生腐蚀。此外,管道在输水的时候,当水锤从高处落下时,会对管壁产生冲击力,使钢丝和管体分层。另外,由于管道和钢丝的材质不一样,也会产生分层。钢丝缠绕在基管上,有地地方钢丝密,有的地方钢丝疏,也会造成各个部位的承压力不同。
发明内容
本发明为了弥补现有技术的不足,提供了一种热塑性纤维复合丝增强管的制备方法。
本发明是通过如下技术方案实现的:一种热塑性纤维复合丝增强管的制备方法,包括以下步骤:
步骤一:无机纤维增强热塑性复合丝的制备
无机纤维的改造:将熔融炉漏丝板流出的无机纤维丝浸入浸润剂冷却,冷却时间为1-2s,冷却温度为20-50℃,然后在200℃烘箱中烘干;
生产无机纤维增强热塑性复合丝:将改造的无机纤维放到纤维架上,通过展纱机将改造的无机纤维展开,展开的衡量标准是:叠加部分不超过5根单丝,然后将展开的无机纤维穿入浸胶模具内部的热塑性树脂空腔中,使改造的无机纤维表面粘上热塑性树脂,浸胶模具内部温度为180-220℃;接着利用锥形整型器整形成丝,牵引机带动整形的无机纤维增强热塑性复合丝前进,最后无机纤维增强热塑性复合丝绕着张力收卷机的转轴收卷备用;
步骤二:热塑性纤维复合丝增强成管预编织
选择不同规格和不同根数的无机纤维增强热塑性复合丝进行合股,合股的过程中进行加捻,形成纤维束,将纤维束绕到编织机的锭子上,然后放到织布机上进行预备编织;
步骤三:热塑性纤维复合丝增强管的生产
准备基管,在基管外部进行编织纤维束,编织成无结渔网结构形成编织层,然后在无机纤维增强热塑性复合丝外面包覆管道外层,外层材料和基管材质完全一样,最后定长截取,包装入库。
进一步的,所述无机纤维包括玻璃纤维、碳纤维,热塑性树脂包括聚乙烯树脂、聚丙烯树脂、聚氯乙烯、聚苯乙烯中。
进一步的,所述步骤一中的单根无机纤维丝的直径为5-30μm,步骤二中纤维束的支数为200-2400tax。
进一步的,所述步骤一中无机纤维增强热塑性复合丝中无机纤维的含量为60-70%,无机纤维增强热塑性复合丝的直径为0.1-0.5mm,抗拉强度为800-1200Mpa。
进一步的,所述浸胶模具通过法兰安装在挤出机上,浸胶模具上设置条形孔,步骤一中无机纤维通过条形孔浸入热塑性树脂空腔中。
进一步的,所述锥形整型器的两侧设置空腔,空腔内加入冷却循环水,所述空腔上分别设置进水口和出水口。
与现有技术相比,本发明的有益之处为:
1、本发明无机纤维增强热塑性复合丝包括热塑性塑料,热塑性塑料和外层包覆的管道很容易融合,作用力比较强,不存在分层的现象;
2、热塑性复合丝的抗拉强度大于钢丝的抗拉强度,且永久不会生锈,解决了生锈腐蚀的问题;
3、本发明基管和外层包覆的管道之间为编织层,不容易形成错层,编织层为无结渔网结构,各个单元为独立单元,当单个渔网单元破坏时,不影响其他单元的力学性能,提高管道的结构力学性能的稳定性。
附图说明
下面结合附图对本发明作进一步的说明。
图1为本发明热塑性纤维复合丝增强管的结构示意图;
图2为本发明浸胶模具的结构示意图;
图3为本发明锥形整型器的结构示意图。
图中,1、浸胶模具,2、热塑性树脂空腔,3、法兰,4、挤出机,5、条形孔,6、锥形整型器,7、空腔,8、进水口,9、出水口。
具体实施方式
下面结合附图说明对本发明做进一步地说明。
实施案例1
如图1-4所示,一种热塑性纤维复合丝增强管的制备方法,包括以下步骤:
步骤一:无机纤维增强热塑性复合丝的制备
无机纤维的改造:将熔融炉漏丝板流出的无机纤维丝浸入浸润剂冷却,冷却时间为1-2s,冷却温度为20-50℃,然后在200℃烘箱中烘干,烘干后,无机纤维上挂了一层浸润剂塑化的膜,本实施案例中浸润剂能够和无机纤维、热塑性树脂结合,无机纤维为玻璃纤维、碳纤维中的一种,热塑性树脂为聚乙烯树脂、聚丙烯树脂、聚氯乙烯、聚苯乙烯中的一种;
生产无机纤维增强热塑性复合丝:将改造的无机纤维放到纤维架上,其中单根无机纤维丝的直径为5-30μm,通过展纱机将改造的无机纤维展开,展开的衡量标准是:叠加部分不超过5根单丝,然后将展开的无机纤维浸入浸胶模具1内部的热塑性树脂空腔2中,使改造的无机纤维表面粘上热塑性树脂,浸胶模具内部温度为180-220℃;接着进入锥形整型器6,锥形整型器6的两侧设置空腔7,空腔7内加入冷却循环水,进水口8和出水口9分别安装在空腔7上方,整形成丝。接着通过牵引机带动整形的无机纤维增强热塑性复合丝前进,最后无机纤维增强热塑性复合丝绕着张力收卷机的转轴收卷备用;其中无机纤维增强热塑性复合丝中无机纤维的含量为60-70%,无机纤维增强热塑性复合丝的直径为0.1-0.5mm,抗拉强度为800-1200Mpa。
步骤二:热塑性纤维复合丝增强成管预编织
选择不同规格和不同根数的无机纤维增强热塑性复合丝进行合股,合股的过程中进行加捻,形成纤维束,纤维束的支数为200-2400tax,将纤维束绕到编织机的锭子上,然后放到织布机上进行预备编织;
步骤三:热塑性纤维复合丝增强管的生产
准备基管,在基管外部进行编织纤维束,编织成无结渔网结构,编织层为无结渔网结构后,各个单元为独立单元,当单个渔网单元破坏时,不影响其他单元的力学性能,提高管道的结构力学性能的稳定性。然后在无机纤维增强热塑性复合丝外面包覆管道外层,外层材料和基管材质完全一样,最后定长截取,包装入库。
如图3所示,浸胶模具1通过法兰3安装在挤出机4上,浸胶模具1上设置条形孔5,步骤一中无机纤维通过条形孔5浸入热塑性树脂空腔2中,通过螺杆转动带动热塑性树脂的流动,该装置的设置解决了热塑性树脂容易在浸胶模具表面滞留的问题。此外,在浸胶模具1的一侧安装回流挤出机,使浸胶模具1内流出的热塑性树脂回流,重新使用。本实施 案例制备的热塑性纤维复合丝增强管拉伸强度≥100MPa。
实施案例2
步骤一:无机纤维增强热塑性复合丝的制备
无机纤维的改造:将熔融炉漏丝板流出的玻璃纤维丝浸入浸润剂冷却,冷却时间为1-2s,冷却温度为30℃,然后在200℃烘箱中烘干,烘干后,玻璃纤维上挂了一层浸润剂塑化的膜;生产无机纤维增强热塑性复合丝:将改造的无机纤维放到纤维架上,其中单根无机纤维丝的直径为20μm,通过展纱机将改造的无机纤维展开,展开的衡量标准是:叠加部分不超过5根单丝,然后将展开的无机纤维浸入浸胶模具1内部的热塑性树脂空腔2中,使改造的无机纤维表面粘上热塑性树脂,浸胶模具内部温度为210℃;接着进入锥形整型器6,锥形整型器6的两侧设置空腔7,空腔7内加入冷却循环水,进水口8和出水口9分别安装在空腔7上方,整形成丝。接着通过牵引机带动整形的无机纤维增强热塑性复合丝前进,最后无机纤维增强热塑性复合丝绕着张力收卷机的转轴收卷备用,本实施案例中,热塑性树脂为聚乙烯树脂。测量生产无机纤维增强热塑性复合丝抗拉强度为1200Mpa。。
步骤二:热塑性纤维复合丝增强成管预编织
选择不同规格和不同根数的无机纤维增强热塑性复合丝进行合股,合股的过程中进行加捻,形成纤维束,纤维束的支数为200-2400tax,将纤维束绕到编织机的锭子上,然后放到织布机上进行预备编织;
步骤三:热塑性纤维复合丝增强管的生产
准备基管,在基管外部进行编织纤维束,编织成无结渔网结构,形成编织层,编织层为无结渔网结构后,各个单元为独立单元,当单个渔网单元破坏时,不影响其他单元的力学性能,提高管道的结构力学性能的稳定性。然后在无机纤维增强热塑性复合丝外面包覆管道外层,外层材料和基管材质完全一样,为PE基管,最后定长截取,包装入库。
测量热塑性纤维复合丝增强管的物理学性能,
测量结果如下:
Figure PCTCN2020121353-appb-000001

Claims (6)

  1. 一种热塑性纤维复合丝增强管的制备方法,其特征在于:包括以下步骤:
    步骤一:无机纤维增强热塑性复合丝的制备
    无机纤维的改造:将熔融炉漏丝板流出的无机纤维丝浸入浸润剂冷却,冷却时间为1-2s,冷却温度为20-50℃,然后在200℃烘箱中烘干;生产无机纤维增强热塑性复合丝:将改造的无机纤维放到纤维架上,通过展纱机将改造的无机纤维展开,展开的衡量标准是:叠加部分不超过5根单丝,然后将展开的无机纤维穿入浸胶模具(1)内部的热塑性树脂空腔(2)中,使改造的无机纤维表面粘上热塑性树脂,浸胶模具内部温度为180-220℃;接着利用锥形整型器(6)整形成丝,牵引机带动整形的无机纤维增强热塑性复合丝前进,最后无机纤维增强热塑性复合丝绕着张力收卷机的转轴收卷备用;
    步骤二:热塑性纤维复合丝增强成管预编织
    选择不同规格和不同根数的无机纤维增强热塑性复合丝进行合股,合股的过程中进行加捻,形成纤维束,将纤维束绕到编织机的锭子上,然后放到织布机上进行预编织;
    步骤三:热塑性纤维复合丝增强管的生产
    准备基管,在基管外部进行编织纤维束,编织成无结渔网结构,形成编织层,然后在无机纤维增强热塑性复合丝编织的无结渔网结构层外面包覆管道外层,外层材料和基管材质完全一样,最后定长截取,包装入库。
  2. 根据权利要求1所述的一种热塑性纤维复合丝增强管的制备方法,其特征在于:所述无机纤维包括玻璃纤维、碳纤维,热塑性树脂包括聚乙烯树脂、聚丙烯树脂、聚氯乙烯、聚苯乙烯。
  3. 根据权利要求1所述的一种热塑性纤维复合丝增强管的制备方法,其特征在于:所述步骤一中的单根无机纤维丝的直径为5-30μm,步骤二中纤维束的支数为200-2400tax。
  4. 根据权利要求1所述的一种热塑性纤维复合丝增强管的制备方法,其特征在于:所述步骤一中无机纤维增强热塑性复合丝中无机纤维的含量为60-70%,无机纤维增强热塑性复合丝的直径为0.1-0.5mm,抗拉强度为800-1200Mpa。
  5. 根据权利要求1所述的一种热塑性纤维复合丝增强管的制备方法,其特征在于:所述浸胶模具(1)通过法兰(3)安装在挤出机(4)上,浸胶模具(1)上设置条形孔(5),步骤一中无机纤维通过条形孔(5)浸入热塑性树脂空腔(2)中。
  6. 根据权利要求1所述的一种热塑性纤维复合丝增强管的制备方法,其特征在于:所述锥形整型器(6)的两侧设置空腔(7),空腔(7)内加入冷却循环水,所述空腔(7)上分别设置进水口(8)和出水口(9)。
PCT/CN2020/121353 2020-09-10 2020-10-16 一种热塑性纤维复合丝增强管的制备方法 WO2022052206A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010946757.5A CN112538688A (zh) 2020-09-10 2020-09-10 一种热塑性纤维复合丝增强管的制备方法
CN202010946757.5 2020-09-10

Publications (1)

Publication Number Publication Date
WO2022052206A1 true WO2022052206A1 (zh) 2022-03-17

Family

ID=75013501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121353 WO2022052206A1 (zh) 2020-09-10 2020-10-16 一种热塑性纤维复合丝增强管的制备方法

Country Status (2)

Country Link
CN (1) CN112538688A (zh)
WO (1) WO2022052206A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0058783A1 (en) * 1981-02-20 1982-09-01 Koninklijke Nijverdal-Ten Cate N.V. Tubing of hybrid, fibre-reinforced synthetic resin
CN2462181Y (zh) * 2001-02-13 2001-11-28 王茂峰 纤维编织增强的塑料高压软管
CN201202892Y (zh) * 2008-06-04 2009-03-04 浙江伟星新型建材股份有限公司 一种增强型ppr复合管
CN101737571A (zh) * 2008-11-13 2010-06-16 E.I.内穆尔杜邦公司 纤维带增强的热塑性管
CN202082504U (zh) * 2011-04-19 2011-12-21 合肥华宇橡塑设备有限公司 纤维增强热塑性塑料管材
CN204004833U (zh) * 2014-08-16 2014-12-10 大庆工大用军科技开发有限公司 连续增强塑料管
CN104723582A (zh) * 2015-03-27 2015-06-24 解廷秀 一种连续纤维增强热塑性复合材料的制造设备及其应用
CN105003753A (zh) * 2015-08-07 2015-10-28 广东宝通玻璃钢有限公司 有关连续纤维增强的热塑性管道及生产方法
JP2017057861A (ja) * 2015-09-14 2017-03-23 株式会社クラベ ホース及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202029401U (zh) * 2011-05-16 2011-11-09 天津市金锚科技发展有限公司 用于高分子材料制品的拉挤成型设备
CN103802335A (zh) * 2012-11-14 2014-05-21 辽宁辽杰科技有限公司 一种纤维增强热塑性复合材料管材的制备方法
GB201306667D0 (en) * 2013-04-12 2013-05-29 Wellstream Int Ltd A flexible pipe body and method of manufacture
CN106917922A (zh) * 2015-12-24 2017-07-04 天津安纳赛能源科技有限公司 一种柔性复合内衬管及其生产工艺
CN108099052A (zh) * 2018-01-19 2018-06-01 汉硕高新材料(天津)有限公司 一种连续性热塑树脂基体纤维预浸料的制备生产线及制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0058783A1 (en) * 1981-02-20 1982-09-01 Koninklijke Nijverdal-Ten Cate N.V. Tubing of hybrid, fibre-reinforced synthetic resin
CN2462181Y (zh) * 2001-02-13 2001-11-28 王茂峰 纤维编织增强的塑料高压软管
CN201202892Y (zh) * 2008-06-04 2009-03-04 浙江伟星新型建材股份有限公司 一种增强型ppr复合管
CN101737571A (zh) * 2008-11-13 2010-06-16 E.I.内穆尔杜邦公司 纤维带增强的热塑性管
CN202082504U (zh) * 2011-04-19 2011-12-21 合肥华宇橡塑设备有限公司 纤维增强热塑性塑料管材
CN204004833U (zh) * 2014-08-16 2014-12-10 大庆工大用军科技开发有限公司 连续增强塑料管
CN104723582A (zh) * 2015-03-27 2015-06-24 解廷秀 一种连续纤维增强热塑性复合材料的制造设备及其应用
CN105003753A (zh) * 2015-08-07 2015-10-28 广东宝通玻璃钢有限公司 有关连续纤维增强的热塑性管道及生产方法
JP2017057861A (ja) * 2015-09-14 2017-03-23 株式会社クラベ ホース及びその製造方法

Also Published As

Publication number Publication date
CN112538688A (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
CN101737571B (zh) 纤维带增强的热塑性管
US2878038A (en) Plastic pipe bend and method for making same
JP5744009B2 (ja) 多数の個別フィラメントから成る糸を製造するための方法および装置ならびにこれにより製造されたモノフィラメント糸
CN100593660C (zh) 不锈钢纤维增强塑料管道及其生产工艺
CN106194046B (zh) 一种多层耐磨擦碳纤维连续抽油杆及制备装置和制备方法
US3850203A (en) Porous tube device for bilateral osmotic processes
CN108177359A (zh) 一种缠绕成型复合材料真空旋转固化装置及固化方法
CN101927574A (zh) 同晶结构自粘结玻璃纤维增强塑料管的制造方法
CN102913691A (zh) 一种增强复合管及其制作方法
CN111720631A (zh) 一种高环刚度的拉缠frp管及其制备方法
CN104455793A (zh) 连续针织复合拉绕玻璃钢管及其生产方法
WO2022052206A1 (zh) 一种热塑性纤维复合丝增强管的制备方法
CA2681240A1 (en) Composite material
CN101592272B (zh) 一种轻体吸排输液软管的制造方法
WO2017193431A1 (zh) 一种智能复合材料芯导线及其制备方法
US20220234254A1 (en) Method for producing a reinforcing bar
CN106904805A (zh) 一种玻璃钢化粪池筒体及其生产工艺
CN208951451U (zh) 一种织网结构增强塑料复合管
JPH0562894B2 (zh)
CN216544625U (zh) 扁平软管及生产线
CN221187434U (zh) 一种内外功能增强复合管的生产线及其复合管
JPH10251984A (ja) 中空状連続補強材及びアンカーボルト
CN209832836U (zh) 高强度塑胶喷雾管
CN212584450U (zh) 一种高环刚度的拉缠frp管
CN209638552U (zh) 矿物纤维增强热塑性管道

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952991

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20952991

Country of ref document: EP

Kind code of ref document: A1