WO2022052093A1 - 电池、用电装置、电池的制造方法以及系统 - Google Patents

电池、用电装置、电池的制造方法以及系统 Download PDF

Info

Publication number
WO2022052093A1
WO2022052093A1 PCT/CN2020/115022 CN2020115022W WO2022052093A1 WO 2022052093 A1 WO2022052093 A1 WO 2022052093A1 CN 2020115022 W CN2020115022 W CN 2020115022W WO 2022052093 A1 WO2022052093 A1 WO 2022052093A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
battery
explosion
battery module
channel
Prior art date
Application number
PCT/CN2020/115022
Other languages
English (en)
French (fr)
Inventor
曾毓群
姜利文
方伍梅
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP20952881.9A priority Critical patent/EP4080662A4/en
Priority to CN202080102951.3A priority patent/CN116034513A/zh
Priority to PCT/CN2020/115022 priority patent/WO2022052093A1/zh
Publication of WO2022052093A1 publication Critical patent/WO2022052093A1/zh
Priority to US17/976,744 priority patent/US20230050668A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • H01M50/367Internal gas exhaust passages forming part of the battery cover or case; Double cover vent systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • H01M50/143Fireproof; Explosion-proof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/169Lids or covers characterised by the methods of assembling casings with lids by welding, brazing or soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • H01M50/358External gas exhaust passages located on the battery cover or case
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/578Devices or arrangements for the interruption of current in response to pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular, to a battery, an electrical device, a battery manufacturing method, and a system.
  • batteries are widely used to power high-power devices, such as electric vehicles.
  • the safety requirements for batteries are getting higher and higher.
  • the battery can sometimes experience thermal runaway during use. Once the battery is thermally out of control, the entire battery is prone to fire and explosion quickly, which seriously affects the safety of the battery.
  • the present application provides a battery, an electrical device, a battery manufacturing method and a system, aiming to solve the technical problem that the battery is prone to fire and explode rapidly and seriously affects the safety of the battery.
  • An embodiment of the present application provides a battery, including a battery module, a box, and a flow guide member.
  • the battery module includes explosion-proof components.
  • the case is configured to receive the battery module.
  • the casing includes a gas exhaust passage.
  • the gas discharge passage includes an air inlet and an air outlet.
  • the air guide member is arranged in the box and shields the explosion-proof assembly to form a gas guide channel.
  • the gas guide channel is communicated with the air inlet, and is used to guide the gas generated by the battery module after the explosion-proof component is destroyed to the outside of the box through the air outlet.
  • the air guide member and the battery module are enclosed to form a gas guide channel, and the explosion-proof component is located in the gas guide channel.
  • the gas released from the explosion-proof assembly can directly enter the gas guide channel more quickly and be guided by the gas guide channel to the gas discharge channel, which is beneficial to further reduce the escape of gas from the gas guide channel and spread out of the gas guide channel possibility of battery mods.
  • the air guide member includes a first plate body and a second plate body, the first plate body shields the explosion-proof assembly, and two or more second plate bodies extend from the first plate body toward the battery module, respectively.
  • a plate body, two or more second plate bodies and the battery module are enclosed to form a gas guide channel.
  • the first plate body and the second plate body can respectively effectively block the flow of gas from different directions, thereby effectively guiding the gas to flow along the gas guiding channel and reducing the possibility of the gas spreading freely around.
  • the first plate body and the box body are detachably connected or the first plate body and the box body are welded.
  • the guide member can be removed from the cover and replaced with a new guide member. Flow parts, do not need to replace the entire cover.
  • the battery module further includes an adapter, the adapter includes an air flow channel, the adapter is configured to be connected to the air guide member, and the gas guide channel communicates with the air inlet through the air flow channel.
  • the air flow channel of the adapter can play the role of assisting in guiding the gas, which can help reduce the possibility that the gas will spread freely to the surrounding after the gas is discharged from the gas guiding channel before entering the gas discharging channel.
  • the adapter and the flow guide member are integrally formed.
  • the adapter and the flow guide member can be seamlessly connected, which is beneficial to reduce the possibility of gas escaping from the gap due to the split design of the adapter member and the flow guide member at the connection between the two.
  • the box body includes a cover body, the explosion-proof assembly is disposed toward the cover body, and the air guide member is configured to be connected with the cover body.
  • the box body further includes a casing for accommodating the battery module, the casing includes a side plate, the cover body is connected to the side plate, and a accommodating portion is formed at the connection position of the cover body and the side plate, and the gas
  • the discharge channel is arranged on the side plate and the air inlet is communicated with the accommodating part, and at least part of the adapter is located in the accommodating part.
  • the gas guide channel and the gas inlet of the gas discharge channel are connected in the accommodating part through the adapter, so that the gas exchange position of the gas inlet of the gas guide channel and the gas discharge channel is located in the accommodating part, which is beneficial to reduce the exchange rate of the gas. The possibility of escaping during the process and entering the box directly.
  • the housing includes two side plates arranged at intervals, the battery module is arranged between the two side plates, and the gas guide channel extends from one side plate toward the other side plate. Both side plates are provided with gas discharge channels, so that the gas generated when the battery module is thermally runaway can flow to the gas discharge channels on both sides through the gas guide channels, thereby helping to improve the gas discharge efficiency.
  • the number of battery modules is the same as the number of flow guide components, and one battery module is provided with one flow guide component, which is used to independently guide the gas generated after the explosion-proof components of each battery module are destroyed.
  • One battery module is provided with a guide component, which can effectively separate each battery module, so that the gas generated when each battery module is thermally out of control is not easy to spread to other battery modules, effectively improving the safety of the battery. sex.
  • the gas discharge channel further includes a confluence cavity
  • the air inlet and the air outlet are both communicated with the confluence cavity
  • the number of air intakes is the same as the number of guide components
  • one air intake is communicated with one airflow channel .
  • the confluence cavity can accommodate more gas, and the pressure will decrease rapidly after the gas enters the confluence cavity, so that the gas in the box can enter the gas discharge channel through the air inlet more quickly, so that the gas can leave quickly.
  • the accommodating space of the box body is further beneficial to further reduce the possibility that the gas cannot be quickly discharged from the box body, resulting in a sharp rise in the internal pressure of the box body.
  • the battery further includes a sealing member configured to seal the gas guide channel, so that the gas flows to the air inlet along the gas guide channel.
  • the provision of the sealing member can reduce the possibility of gas escaping from other positions of the gas guide channel during the process of entering the gas inlet of the gas discharge channel.
  • a sealing member is provided between the air guide member and the battery module.
  • it can reduce the possibility of gas entering the gap between the battery module and the side plate, resulting in the gas not being discharged in time; on the other hand, it can reduce the gas entering the gap between the battery module and the side plate and spreading to other parts through the gap
  • the battery module may cause fire and explosion of other battery modules.
  • the sealing member is arranged between the battery module and the side plate, which can reduce the possibility of gas escaping from the gap between the air guide member and the battery module during the process of entering the air inlet of the gas discharge channel.
  • the battery further includes a pressure relief valve, the pressure relief valve is disposed on the outer wall of the box body and covers the gas outlet, and the pressure relief valve is configured to be actuated to release the pressure when the pressure or temperature in the gas discharge channel reaches a threshold value , to ensure that the gas can be quickly and quickly discharged to the external environment through the pressure relief valve.
  • the battery of the embodiment of the present application includes a box body, a battery module, and a flow guide member. Both the battery module and the air guide part are arranged in the box.
  • the battery module includes explosion-proof components. When the battery module encounters a thermal runaway condition, the explosion-proof component is destroyed so that the battery module can release gas through the destroyed explosion-proof component.
  • the air guide member shields the explosion-proof assembly of the battery module to form a gas guide channel.
  • the gas guide channel may guide the gas to flow toward the gas discharge channel along a predetermined path. The gas will then quickly exit the box from the gas discharge channel.
  • the provided gas guide channels and gas discharge channels can guide the directional flow of the gas.
  • the gas guide channel and the gas discharge channel are arranged to help reduce the possibility that the gas released by the thermal runaway battery module can spread freely to the surroundings and cause fire and explosion of other battery modules that are not thermally runaway. , which is beneficial to improve the safety of battery use.
  • Embodiments of the present application also provide an electrical device, including the battery according to the above-mentioned embodiments, and the battery is used to provide electrical energy.
  • Embodiments of the present application also provide a method for manufacturing a battery, including:
  • the battery module including the explosion-proof component in a box including a gas discharge channel, and the gas discharge channel includes an air inlet and an air outlet;
  • the air guide component is arranged in the box and shields the explosion-proof assembly to form a gas guide channel.
  • the gas guide channel is connected with the air inlet, and is used to guide the gas generated by the battery module after the explosion-proof component is destroyed to the box through the air outlet. outside.
  • the air-guiding component shields the explosion-proof component of the battery module.
  • the gas introduction channel and the gas discharge channel may guide the gas to flow along a predetermined path.
  • the gas guide channel and the gas discharge channel are arranged to help reduce the possibility that the gas released by the thermal runaway battery module can spread freely to the surroundings and cause fire and explosion of other battery modules that are not thermally runaway. , which is beneficial to improve the safety of battery use.
  • Embodiments of the present application also provide a system for manufacturing a battery, including:
  • a first assembling device configured to dispose the battery module including the explosion-proof component in the box including the gas discharge channel, and the gas discharge channel includes an air inlet and an air outlet;
  • the second assembling device is configured to set the guide member in the box and shield the explosion-proof assembly to form a gas guide channel, the gas guide channel is connected with the air inlet, and is used for destroying the explosion-proof assembly.
  • the gas is led out of the box through the gas outlet.
  • FIG. 1 is a schematic structural diagram of a vehicle disclosed in an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an exploded structure of a battery disclosed in an embodiment of the present application.
  • Fig. 3 is the enlarged view of A place in Fig. 2;
  • FIG. 4 is a schematic structural diagram of a battery disclosed in an embodiment of the present application.
  • Fig. 5 is the sectional structure schematic diagram along B-B direction in Fig. 4;
  • Fig. 6 is an enlarged view at C in Fig. 5;
  • Fig. 7 is an enlarged view at D in Fig. 6;
  • FIG. 8 is a schematic diagram of a partial structure of a battery disclosed in an embodiment of the present application.
  • Fig. 9 is an enlarged view at E in Fig. 8.
  • FIG. 10 is a partial cross-sectional structural schematic diagram of a battery disclosed in an embodiment of the present application.
  • Figure 11 is an enlarged view at F in Figure 10;
  • FIG. 12 is a schematic diagram of an exploded structure of a battery disclosed in another embodiment of the present application.
  • FIG. 13 is an enlarged view of G in FIG. 12 .
  • the applicant carried out cooling treatment on the battery module with thermal runaway, but found that the temperature of the battery module rose rapidly after the thermal runaway, and it was difficult to suppress the spread of thermal runaway by a single cooling process. .
  • the applicant found that the key to suppressing the spread of thermal runaway is that after the thermal runaway of the battery module is found, the high temperature gas accumulated in the battery should be discharged in time, so as to quickly reduce the temperature of the battery and prevent the spread of thermal runaway.
  • the embodiment of the present application provides an electrical device using the battery 10 as a power source.
  • the electrical device can be, but not limited to, a vehicle, a ship, or an aircraft.
  • an embodiment of the present application provides a vehicle 1 .
  • the vehicle 1 may be a fuel vehicle, a gas vehicle or a new energy vehicle. New energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles.
  • the vehicle 1 may include a motor 1 a , a controller 1 b and a battery 10 .
  • the controller 1b is used to control the battery 10 to supply power to the motor 1a.
  • the motor 1a is connected to the wheels through a transmission mechanism, thereby driving the vehicle 1 to travel.
  • the battery 10 can be used as a driving power source of the vehicle 1 to provide driving power for the vehicle 1 in place of or partially in place of fuel or natural gas.
  • the battery 10 may be provided at the bottom, front or rear of the vehicle 1 .
  • the battery 10 may be used to power the vehicle 1 .
  • the battery 10 may be used as the operating power source of the vehicle 1 for the electrical system of the vehicle 1 .
  • the battery 10 can be used for the operating power requirements of the vehicle 1 for starting, navigating and running.
  • the battery 10 may include more than two battery modules 20 .
  • the battery 10 further includes a case 30 .
  • the box body 30 includes an accommodating space.
  • the battery module 20 is disposed in the accommodating space of the box body 30 .
  • the box body 30 can provide a mounting platform for the battery module 20 and can also provide protection for the battery module 20 .
  • More than two battery modules 20 are arranged in the box body 30 . More than two battery modules 20 can be arranged side by side in one direction, so as to make full use of the accommodating space of the box body 30 .
  • the battery 10 further includes a guide member 40 .
  • the air guide member 40 is arranged in the casing 30 .
  • the guide member 40 is disposed corresponding to the battery module 20 .
  • the number of the air guide members 40 may be equal to the number of the battery modules 20 , that is, one air guide member 40 is corresponding to one battery module 20 .
  • the air guide member 40 and the box body 30 are separate structures, that is, they are provided separately from each other, and are independently processed and manufactured, and then the two are assembled.
  • the battery module 20 may include more than two battery cells 22, but the number of the battery cells 22 included in the battery module 20 is not limited here.
  • two or more battery cells 22 may be connected in series, parallel or mixed.
  • Two or more battery cells 22 may be arranged side by side in one direction.
  • the arrangement direction of two or more battery cells 22 may be perpendicular to the arrangement direction of each battery module 20 .
  • the battery module 20 includes an explosion-proof assembly 21 .
  • the explosion-proof component 21 may be an explosion-proof valve on each battery cell 22 .
  • the explosion-proof valve will be destroyed, so that the gas inside the battery cell 22 is released through the destroyed explosion-proof valve.
  • the gas released from the battery cells 22 is in a high temperature and high pressure state.
  • the battery module 20 has a casing (not shown in the figure) and an explosion-proof valve disposed on the casing. Two or more battery cells 22 are arranged in the casing.
  • the explosion-proof assembly 21 may be an explosion-proof valve provided on the housing.
  • the battery cells 22 When the internal pressure of the battery cells 22 is too large, the battery cells 22 will release gas into the inner space of the casing.
  • the pressure inside the casing reaches a preset pressure value, the explosion-proof valve on the casing is destroyed, so that the gas inside the casing is released through the destroyed explosion-proof valve.
  • the gas released from the casing is in a state of high temperature and high pressure.
  • the case 30 includes a gas discharge passage 31 .
  • the gas discharge passage 31 includes an air inlet 311 and an air outlet 312 .
  • the gas discharge passage 31 communicates with the accommodating space in the box body 30 through the air inlet 311 .
  • the gas discharge channel 31 communicates with the external environment through the gas outlet 312 .
  • the gas discharge passage 31 has a function of guiding the flow of gas.
  • the guide member 40 is disposed in the box body 30 and shields the explosion-proof assembly 21 to form the gas guide channel 50 .
  • the explosion-proof assembly 21 is provided corresponding to the gas guide passage 50 .
  • the gas introduction passage 50 communicates with the air inlet 311 of the gas discharge passage 31 .
  • the gas guide channel 50 is used to guide the gas generated by the battery module 20 after the explosion-proof assembly 21 is destroyed to the gas discharge channel 31 , and is guided to the outside of the box 30 through the gas outlet 312 of the gas discharge channel 31 , so that the battery 10 can be quickly discharged. to prevent the spread of thermal runaway and reduce the possibility of explosion.
  • the flow guide member 40 shields the explosion-proof assembly 21, the flow guide member 40 can isolate the explosion-proof assembly 21 from the box body 30, so that the gas released after the explosion-proof assembly 21 is destroyed will be blocked by the flow guide member 40, reducing the direct impact of the gas on the box body. 30 and the possibility of rapidly melting through the box 30.
  • the battery module 20 has opposite ends.
  • a gas discharge channel 31 is provided on the box body 30 in an area corresponding to one end of the battery module 20 . It can be understood that the areas on the box 30 corresponding to the two ends of the battery module 20 are respectively provided with gas discharge channels 31 , so that the gas can be discharged in two directions, which is beneficial to improve the efficiency of gas discharge from the box 30 .
  • the extending direction of the guide member 40 is the same as the arrangement direction of the battery cells 22 .
  • the battery 10 in the embodiment of the present application includes a box body 30 , a battery module 20 and a flow guide member 40 .
  • the battery module 20 and the air guide member 40 are both disposed in the box body 30 .
  • the battery module 20 includes an explosion-proof assembly 21 .
  • the air guide member 40 shields the explosion-proof assembly 21 of the battery module 20 to form the gas guide channel 50 .
  • the gas guide channel 50 may guide the gas to flow toward the gas discharge channel 31 along a predetermined path. Then the gas will be quickly discharged from the box 30 from the gas discharge channel 31 .
  • the provided gas guide channels 50 and gas discharge channels 31 can guide the directional flow of the gas. In this way, it is beneficial to reduce the possibility that the gas released by the battery module 20 that has undergone thermal runaway spreads freely to the surroundings, thereby causing other battery modules 20 that have not undergone thermal runaway to catch fire or explode, which is beneficial to improve the usability of the battery 10. safety.
  • the air guide member 40 and the battery module 20 are enclosed to form a gas guide channel 50, and the explosion-proof component 21 may be located in the gas guide channel 50, so that when heat occurs When out of control, the gas released from the explosion-proof assembly 21 can directly enter the gas guide channel 50 and be guided by the gas guide channel 50 to the gas discharge channel 31, which is beneficial to further reduce the escape of gas from the gas guide channel 50 and spread to the gas guide.
  • the possibility of introducing the battery module 20 outside the channel 50 improves the exhaust efficiency.
  • the guide member 40 includes a first plate body 41 and a second plate body 42 .
  • the first plate body 41 is configured to shield the explosion-proof assembly 21 to isolate the explosion-proof assembly 21 and the box body 30 .
  • the second plate body 42 extends from the first plate body 41 toward the battery module 20 .
  • the first plate body 41 , the second plate body 42 and the battery module 20 are enclosed to form a gas guide channel 50 .
  • the first plate body 41 can block the gas from the front of the explosion-proof assembly 21 of the battery module 20, and the second plate body 42 can block the gas from the side of the explosion-proof assembly 21, so that the first plate body 41 and the second plate body 42 can be respectively
  • the gas flow is effectively blocked from different directions, thereby effectively guiding the gas to flow along the gas guiding channel 50 , reducing the possibility of the gas spreading freely around, and improving the exhaust efficiency.
  • the air guide member 40 includes a first plate body 41 and two second plate bodies 42 .
  • the two second plates 42 are arranged at intervals, and the two second plates 42 are located on the same side of the first plate 41 , so that the air guide member 40 has a U-shaped structure as a whole.
  • a chamber formed by the first plate body 41 and the two second plate bodies 42 can form a gas guide channel 50 with the battery module 20 .
  • the first plate body 41 and the second plate body 42 are integrally formed. It can be understood that the number of the second plate bodies 42 can also be more than three.
  • three or more second plates 42 are arranged at intervals.
  • a cavity is formed by a part of two adjacent second plate bodies 42 and the first plate body 41 . More than two chambers may form the gas guide channel 50 with the battery module 20 .
  • the air inlet 311 of the gas discharge channel 31 on the box 30 is located at one side of the battery module 20 , and the gas guide channel 50 extends to the end of the battery module 20 , so that there is a distance between the gas introduction passage 50 and the air inlet 311 of the gas discharge passage 31 .
  • the battery module 20 further includes an adapter 60 .
  • the adapter 60 includes an airflow channel 61 for guiding the flow of gas.
  • the adapter 60 is configured to be connected to the air guide member 40 , so that the gas flowing out of the gas guide channel 50 can directly enter the gas flow channel 61 of the adapter 60 .
  • the gas guide channel 50 communicates with the air inlet 311 of the gas discharge channel 31 through the gas flow channel 61 of the adapter 60 .
  • the gas flow channel 61 of the adapter 60 can play an auxiliary role in guiding the gas, which can help reduce the amount of gas entering the gas after the gas is discharged from the gas guide channel 50 .
  • the possibility of free spreading around the discharge channel 31 occurs before.
  • the adaptor 60 and the air guide member 40 are integrally formed, so that the adaptor 60 and the air guide member 40 can be seamlessly connected, which is beneficial to reduce the separation between the adaptor 60 and the air guide member 40 There is a gap at the junction of the two body design, resulting in the possibility of gas escaping from the gap.
  • the cross-sectional shape of the adapter 60 may be the same as the cross-sectional shape of the flow guide member 40 .
  • the adapter 60 can also be a cylindrical structure, so that the gas flowing out from the gas guide channel 50 can directly enter the airflow channel 61 of the adapter 60 and enter the gas discharge channel 31 under the guidance of the airflow channel 61 , It is beneficial to reduce the possibility that the gas will spread freely to the surrounding after the gas is discharged from the gas guide channel 50 before entering the gas discharge channel 31 .
  • the case 30 includes a cover 32 .
  • the explosion-proof assembly 21 of the battery module 20 is disposed toward the cover body 32 .
  • the air guide member 40 is configured to be connected to the cover body 32 .
  • the guide member 40 is disposed between the cover body 32 and the battery module 20 .
  • the gas will be blocked by the flow guide member 40 and will not directly act on the cover 32 , reducing the direct impact of the gas on the cover 32 and causing damage to the cover 32 possibility.
  • the cover body 32 of the box body 30 faces the passenger compartment.
  • the battery module 20 of the present embodiment reduces the possibility of damage to the cover body 32 by providing the air guide member 40, thereby reducing the possibility of gas rapidly invading the passenger compartment through the damaged cover body 32 and causing injury to the passengers. Buy more time for occupants to get out of vehicle 1.
  • the case 30 further includes a casing 33 .
  • the casing 33 is used to accommodate the battery module 20 .
  • the housing 33 includes side plates 331 .
  • the cover body 32 is connected to the side plate 331 .
  • the cover body 32 may be connected to the side plate 331 and sealed with the side plate 331 by fasteners.
  • a receiving portion 70 is formed at the connection position of the cover body 32 and the side plate 331 .
  • the opening of the accommodating portion 70 faces the air guide member 40 .
  • the gas discharge channel 31 is provided on the side plate 331 and the air inlet 311 communicates with the accommodating part 70 .
  • the gas outlet 312 of the gas discharge channel 31 is located on the surface of the side plate 331 on the side away from the battery module 20 .
  • At least part of the adapter 60 is located in the receiving portion 70 .
  • the airflow channel 61 of the adapter 60 communicates with the air inlet 311 of the gas discharge channel 31 .
  • the adaptor 60 located in the accommodating part communicates the air inlet 311 of the gas guide passage 50 and the gas discharge passage 31, so that the gas exchange position of the air inlet 311 of the gas guide passage 50 and the gas discharge passage 31 is located at In the accommodating part 70, it is beneficial to reduce the possibility that the gas escapes and directly enters the box 30 during the exchange process.
  • the surface of the side plate 331 connected to the cover body 32 is flat, and the cover body 32 has a flange for connecting with the side plate 331 and a concave portion recessed away from the battery module 20 .
  • the guide member 40 and the adapter 60 are located in the recessed portion of the cover body 32 .
  • a receiving portion 70 is formed between the recessed portion of the cover body 32 and the surface of the side plate 331 connected to the cover body 32 .
  • the housing 33 further includes a support plate 333 .
  • the side plate 331 and the support plate 333 are connected.
  • the battery module 20 is placed on the support plate 333 .
  • the gas discharge channel 31 further includes a confluence cavity 313 .
  • the air inlet 311 of the gas discharge passage 31 and the air outlet 312 of the gas discharge passage 31 are both communicated with the confluence chamber 313 .
  • the number of the air inlets 311 is the same as the number of the air guide members 40 .
  • the number of the adapters 60 is the same as the number of the flow guide parts 40 .
  • An air inlet 311 communicates with an airflow channel 61 of an adapter 60 .
  • the confluence cavity 313 can accommodate more gas, and the pressure will decrease rapidly after the gas enters the confluence cavity 313, so that the gas in the box 30 can enter the gas discharge channel through the air inlet 311 more quickly 31 , so that the gas can quickly leave the accommodating space of the box body 30 , thereby further reducing the possibility that the gas cannot be quickly discharged from the box body 30 and the pressure inside the box body 30 rises sharply.
  • the air guide member 40 and the box body 30 are detachably connected or welded.
  • the guide member 40 includes a first plate body 41 and a second plate body 42 .
  • the first plate body 41 is detachably connected to the cover body 32 .
  • the first plate body 41 may be connected to the cover body 32 by screws or rivets. In this way, when the thermal runaway range of the battery module 20 is small, and the damage to the first plate body 41 and the second plate body 42 of the air guide member 40 is low, the air guide member 40 can be removed from the cover body 32 . It is removed and replaced with a new air guide member 40 , and it is not necessary to replace the cover body 32 as a whole.
  • the first plate body 41 and the cover body 32 are welded.
  • the first plate body 41 and the cover body 32 may be connected by laser welding. In this way, the first plate body 41 and the cover body 32 are directly welded and connected, which can make the structure formed by the first plate body 41 and the cover body 32 more compact, which is beneficial to reduce the space occupancy rate and improve the energy density of the battery 10 .
  • the battery 10 further includes a sealing member 80 .
  • the sealing member 80 is configured to seal the gas guide passage 50 so that the gas can flow all along the gas guide passage 50 to the air inlet 311 of the gas discharge passage 31 .
  • the gas introduction passage 50 has an outlet for abutting with the air inlet 311 of the gas discharge passage 31 .
  • the sealing member 80 is used to seal the area other than the outlet of the gas guide passage 50 .
  • the provision of the sealing member 80 can reduce the possibility of gas escaping from other positions of the gas guide channel 50 during the process of entering the gas inlet 311 of the gas discharge channel 31 .
  • the material of the sealing member 80 is selected from high temperature and impact resistant materials.
  • the sealing member 80 may be a sheet-like structure.
  • the sealing member 80 is arranged between the battery module 20 and the side plate 331 .
  • it can reduce the gas entering the gap between the battery module 20 and the side plate 331 and cause the gas to fail in time.
  • it reduces the possibility of gas entering the gap between the battery module 20 and the side plate 331 and spreading to other battery modules 20 through the gap, causing other battery modules 20 to catch fire and explode.
  • a sealing member 80 is provided between the air guide member 40 and the battery module 20 , which can reduce the flow of gas from the air guide member during the process of entering the air inlet 311 of the gas discharge channel 31 from the air guide member 20 .
  • the guide member 40 includes a first plate body 41 and a second plate body 42 .
  • the first plate body 41 is configured to shield the explosion-proof assembly 21 to isolate the explosion-proof assembly 21 and the box body 30 .
  • the second plate body 42 extends from the first plate body 41 toward the battery module 20 .
  • the first plate body 41 , the second plate body 42 and the battery module 20 are enclosed to form a gas guide channel 50 .
  • a sealing member 80 is disposed between the second plate body 42 and the battery module 20 .
  • the housing 33 includes two spaced side plates 331 and a connecting plate 332 .
  • the two side plates 331 are arranged at intervals along the arrangement direction of the battery cells 22 .
  • the connection plate 332 is configured to connect the two side plates 331 .
  • the battery module 20 is disposed between the two side plates 331 .
  • the gas guide channel 50 extends from one side plate 331 toward the other side plate 331 .
  • the gas guide channel 50 has two opposing outlets. Both side plates 331 are provided with gas discharge channels 31 . The two outlets of the gas guide channel 50 correspond to the gas discharge channels 31 on the two side plates 331 respectively.
  • the gas generated when the battery module 20 is thermally out of control can flow to the gas discharge channels 31 on both sides through the two outlets of the gas guide channel 50 , thereby helping to improve the gas discharge efficiency and reduce the long accumulation time of the gas in the box 30 .
  • the gas spreads to other battery modules 20 or the battery 10 as a whole may cause an explosion due to an instantaneous increase in pressure.
  • the number of the battery modules 20 is the same as the number of the air guide members 40 , and one battery module 20 is provided with one air guide member 40 correspondingly.
  • a guide member 40 and a battery module 20 form a gas guide channel 50 .
  • a guide member 40 is used to independently guide the gas generated after the explosion-proof component 21 of one battery module 20 is destroyed.
  • One battery module 20 is provided with one flow guide member 40 , which can effectively separate each battery module 20 , so that the gas generated when each battery module 20 is thermally out of control is not easy to spread to other battery modules 20 . The safety of the battery 10 is effectively improved.
  • the battery 10 further includes a pressure relief valve 90 .
  • the pressure relief valve 90 is disposed on the outer wall of the box body 30 and covers the gas outlet 312 of the gas discharge passage 31 .
  • the box body 30 includes a side plate 331 and a connecting plate 332 .
  • the pressure relief valve 90 is detachably connected to the side plate 331 of the box body 30 .
  • the pressure relief valve 90 is connected to the side plate 331 by screws.
  • the pressure relief valve 90 is configured to actuate to relieve the pressure when the pressure or temperature within the gas exhaust passage 31 reaches a threshold value.
  • the gas generated by the thermal runaway of the battery module 20 in the box 30 is guided to the gas discharge channel 31 through the gas guide channel 50, and then the pressure relief valve 90 is actuated under the action of the gas, thereby switching from the normally closed state to the open state, It is ensured that the gas can be quickly and quickly discharged to the external environment through the pressure relief valve 90 .
  • the pressure relief valve 90 can prevent liquid water and impurities from entering the interior of the case 30 through the gas discharge passage 31 , thereby reducing the possibility that liquid water and impurities have adverse effects on the battery module 20 .
  • the pressure relief valve 90 may be a one-way valve.
  • the battery 10 in the embodiment of the present application includes a box body 30 , a battery module 20 and a flow guide member 40 .
  • the battery module 20 and the air guide member 40 are both disposed in the box body 30 .
  • the case 30 includes a gas discharge passage 31 .
  • the air guide member 40 and the box body 30 are of separate structures.
  • the air guide member 40 shields the explosion-proof assembly 21 of the battery module 20 . When the thermal runaway of the battery module 20 occurs, the explosion-proof component 21 will be destroyed to release high temperature and high pressure gas.
  • the gas guide passage 50 can guide the gas released from the explosion-proof assembly 21 to the gas discharge passage 31 , and then the gas is discharged to the outside of the box 30 through the gas discharge passage 31 .
  • the gas generated by the thermal runaway of the battery module 20 will flow in a predetermined direction and be discharged out of the box body 30 , and it is not easy to flow and spread around the box body 30 , thereby effectively reducing the spread of the gas to other battery modules 20 .
  • the possibility of fire and explosion of other battery modules 20 is beneficial to improve the use safety of the battery 10 .
  • the embodiment of the present application also provides a method for manufacturing the battery 10, including:
  • the guide member 40 is arranged in the box body 30 and shields the explosion-proof assembly 21 to form a gas guide channel 50.
  • the gas guide channel 50 is communicated with the air inlet 311, and is used to destroy the explosion-proof assembly 21.
  • the battery module 20 generates The gas is led to the outside of the box 30 through the gas outlet 312 .
  • the case 30 includes a cover 32 and a housing 33 .
  • the cover 32 is connected to the case 33 .
  • the battery module 20 is arranged in the casing 33 , and then the cover body 32 and the casing 33 are covered combine.
  • the gas discharge passage 31 is provided on the casing 33 .
  • the air guide member 40 and the cover body 32 are connected and fixed in advance, and then the cover body 32 and the shell are connected and fixed in advance.
  • the body 33 is closed.
  • the air guide member 40 shields the explosion-proof assembly 21 and surrounds the battery module 20 to form a gas guide channel 50 .
  • the air guide member 40 shields the explosion-proof component 21 of the battery module 20 .
  • the gas introduction channel 50 and the gas discharge channel 31 may guide the gas to flow along a predetermined path. In this way, the gas guide channel 50 and the gas discharge channel 31 are provided, which can help reduce the free spread of the gas released by the battery module 20 that has undergone thermal runaway to the surrounding, causing other battery modules 20 that have not undergone thermal runaway to catch fire, The possibility of explosion is beneficial to improve the safety of the battery 10 in use.
  • the embodiment of the present application also provides a manufacturing system for the battery 10, including:
  • the first assembly device is configured to dispose the battery module 20 including the explosion-proof assembly 21 in the box 30 including the gas discharge channel 31, and the gas discharge channel 31 includes an air inlet 311 and an air outlet 312;
  • the second assembling device is configured to dispose the air guide member 40 in the box body 30 and shield the explosion-proof assembly 21 to form a gas guide channel 50.
  • the gas guide channel 50 communicates with the air inlet 311 for connecting the explosion-proof assembly After 21 is destroyed, the gas generated by the battery module 20 is guided to the outside of the box 30 through the gas outlet 312 .
  • the case 30 includes a cover 32 and a housing 33 .
  • the cover 32 is connected to the case 33 .
  • the gas discharge passage 31 is provided on the casing 33 .
  • the battery module 20 is set in the casing 33 by the first assembling device, and then the cover body 32 and the casing 33 are closed.
  • the air guide member 40 and the cover body 32 are connected and fixed in advance by the second assembling device, and then the cover body 32 and the casing 33 are closed together.
  • the air guide member 40 shields the explosion-proof assembly 21 and surrounds the battery module 20 to form a gas guide channel 50 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

本申请提供一种电池、用电装置、电池的制造方法以及系统。电池包括电池模组、箱体以及导流部件。电池模组包括防爆组件。箱体被配置为收纳电池模组。箱体包括气体排出通道。气体排出通道包括进气口和出气口。导流部件设置于箱体内并遮挡防爆组件以形成气体导引通道。气体导引通道与进气口相连通,用于将防爆组件破坏后电池模组产生的气体通过出气口引导至箱体外。本申请实施例提供的电池,旨在解决电池容易迅速发生起火、爆炸,严重影响电池使用安全性的技术问题。

Description

电池、用电装置、电池的制造方法以及系统 技术领域
本申请涉及电池技术领域,特别是涉及一种电池、用电装置、电池的制造方法以及系统。
背景技术
随着社会和科学技术的发展,电池被广泛地应用于为高功率的装置提供动力,例如电动车辆等。由于电池在人类生活方方面面得以普及应用,因此对电池的安全性要求越来越高。然而,电池在使用过程中,有时会出现热失控的情况。电池一旦出现热失控的情况,整个电池容易迅速发生起火、爆炸,严重影响电池使用安全性。
发明内容
本申请提供一种电池、用电装置、电池的制造方法以及系统,旨在解决电池容易迅速发生起火、爆炸,严重影响电池使用安全性的技术问题。
本申请实施例提供一种电池,包括电池模组、箱体以及导流部件。
电池模组包括防爆组件。箱体被配置为收纳电池模组。箱体包括气体排出通道。气体排出通道包括进气口和出气口。导流部件设置于箱体内并遮挡防爆组件以形成气体导引通道。气体导引通道与进气口相连通,用于将防爆组件破坏后电池模组产生的气体通过出气口引导至箱体外。
本申请一个实施例中,导流部件和电池模组围合形成气体导引通 道,防爆组件位于气体导引通道内。从防爆组件位置释放的气体能够直接地更快速地进入气体导引通道并被气体导引通道引导至气体排出通道,有利于进一步降低气体从气体导引通道逃逸而蔓延到气体导引通道之外的电池模组的可能性。
本申请一个实施例中,导流部件包括第一板体和第二板体,第一板体遮挡防爆组件,两个以上的第二板体分别从第一板体朝向电池模组延伸,第一板体、两个以上的第二板体以及电池模组围合形成气体导引通道。第一板体和第二板体可以分别从不同的方向有效阻挡气体流动,进而有效引导气体沿气体导引通道流动,降低气体向四周自由蔓延的可能性。
本申请一个实施例中,第一板体与箱体可拆卸连接或者第一板体与箱体焊接。在电池模组发生热失控的范围较小,而导致导流部件的第一板体和第二板体损坏程度较低时,可以将导流部件从盖体上移除,重新更换新的导流部件,不需要将盖体整体进行更换。
本申请一个实施例中,电池模组还包括转接件,转接件包括气流通道,转接件被配置为连接于导流部件,气体导引通道通过气流通道与进气口相连通。转接件的气流通道可以起到辅助引导气体的作用,可以有利于降低气体从气体导引通道排出后,进入气体排出通道之前发生向四周自由蔓延的可能性。
本申请一个实施例中,转接件与导流部件为一体成型结构。转接件和导流部件可以实现无缝连接,有利于降低因转接件和导流部件为分体设计而在两者连接处存在缝隙,导致气体从该缝隙发生逃逸的可能性。
本申请一个实施例中,箱体包括盖体,防爆组件朝向盖体设置,导流部件被配置为与盖体相连接。电池模组发生热失控从破坏的防爆组件释放气体时,气体会受到导流部件的阻挡而不会直接作用于盖体,降低气体 直接冲击盖体而导致盖体发生损坏的可能性。
本申请一个实施例中,箱体还包括壳体,壳体用于容纳电池模组,壳体包括侧板,盖体连接于侧板,盖体和侧板的连接位置形成有容纳部,气体排出通道设置于侧板并且进气口与容纳部相连通,至少部分转接件位于容纳部内。通过转接件在容纳部内将气体导引通道和气体排出通道的进气口连通,从而使得气体导引通道和气体排出通道的进气口的气体交换位置位于容纳部内,有利于降低气体在交换过程中发生逃逸而直接进入箱体的可能性。
本申请一个实施例中,壳体包括两个间隔设置的侧板,电池模组设置于两个侧板之间,气体导引通道从一个侧板朝向另一个侧板延伸。两个侧板均设置有气体排出通道,从而电池模组热失控时产生的气体可以通过气体导引通道向两侧的气体排出通道流动,从而有利于提高气体排出效率。
本申请一个实施例中,电池模组的数量与导流部件的数量相同且一个电池模组对应设置有一个导流部件,用于单独引导每一个电池模组的防爆组件破坏后所产生的气体。一个电池模组对应设置一个导流部件的方式,可以有效将各个电池模组实现分离,使得每个电池模组发生热失控时产生的气体都不易向其他电池模组蔓延,有效提高电池的安全性。
本申请一个实施例中,气体排出通道还包括汇流腔,进气口以及出气口均与汇流腔相联通,进气口的数量与导流部件的数量相同,一个进气口与一个气流通道联通。设置汇流腔后,汇流腔可以容纳更多的气体,并且气体进入汇流腔后压力会迅速减小,从而箱体内的气体可以更快地通过进气口进入到气体排出通道,使得气体可以迅速离开箱体的容纳空间,进而有利于进一步降低气体不能迅速从箱体内排出而导致箱体内部压力急剧 上升的可能性。
本申请一个实施例中,电池还包括密封部件,密封部件被配置为密封气体导引通道,以使气体沿气体导引通道流动至进气口。设置密封部件,可以降低气体在进入气体排出通道的进气口过程中从气体导引通道其它位置发生逃逸的可能性。
本申请一个实施例中,导流部件和电池模组之间设置有密封部件。一方面,可以降低气体进入电池模组和侧板之间的缝隙而导致气体无法及时排出的可能性;另一方面,降低气体进入电池模组和侧板之间的缝隙而经由缝隙蔓延至其他电池模组而导致其他电池模组出现起火、爆炸的可能性。
和/或,电池模组和侧板之间设置密封部件,可以降低气体在进入气体排出通道的进气口的过程中从导流部件和电池模组之间的缝隙发生逃逸的可能性。
本申请一个实施例中,电池还包括泄压阀,泄压阀设置于箱体的外壁并且覆盖出气口,泄压阀被配置为气体排出通道内压力或温度达到阈值时致动以泄放压力,保证气体可以及时快速地通过泄压阀排出到外部环境中。
本申请实施例的电池包括箱体、电池模组以及导流部件。电池模组和导流部件均设置于箱体内。电池模组包括防爆组件。在电池模组遇到热失控情况时,防爆组件发生破坏以使电池模组可以通过破坏后的防爆组件释放气体。导流部件遮挡电池模组的防爆组件以形成气体导引通道。气体导引通道可以引导气体沿预定路径朝气体排出通道流动。然后气体会从气体排出通道迅速排出箱体。设置的气体导引通道和气体排出通道可以引导气体定向流动。这样,设置的气体导引通道和气体排出通道,可以有利于 降低发生热失控的电池模组所释放的气体向四周自由蔓延而导致其它未发生热失控的电池模组发生起火、爆炸的可能性,有利于提高电池使用安全性。
本申请实施例还提供一种用电装置,包括如上述实施例的电池,电池用于提供电能。
本申请实施例还提供一种电池的制造方法,包括:
将包括防爆组件的电池模组设置于包括气体排出通道的箱体内,气体排出通道包括进气口和出气口;
将导流部件设置于箱体内并遮挡防爆组件以形成气体导引通道,气体导引通道与进气口相连通,用于将防爆组件破坏后电池模组产生的气体通过出气口引导至箱体外。
本申请实施例电池的制造方法加工制造的电池,导流部件遮挡电池模组的防爆组件。气体导引通道和气体排出通道可以引导气体沿预定路径流动。这样,设置的气体导引通道和气体排出通道,可以有利于降低发生热失控的电池模组所释放的气体向四周自由蔓延而导致其它未发生热失控的电池模组发生起火、爆炸的可能性,有利于提高电池使用安全性。
本申请实施例还提供一种电池的制造系统,包括:
第一装配装置,被配置为将包括防爆组件的电池模组设置于包括气体排出通道的箱体内,气体排出通道包括进气口和出气口;
第二装配装置,被配置为将导流部件设置于箱体内并遮挡防爆组件以形成气体导引通道,气体导引通道与进气口相连通,用于将防爆组件破坏后电池模组产生的气体通过出气口引导至箱体外。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例公开的一种车辆的结构示意图;
图2是本申请一实施例公开的一种电池的分解结构示意图;
图3是图2中A处放大图;
图4是本申请一实施例公开的一种电池的结构示意图;
图5是图4中沿B-B方向的剖视结构示意图;
图6是图5中C处放大图;
图7是图6中D处放大图;
图8是本申请一实施例公开的一种电池的局部结构示意图;
图9是图8中E处放大图;
图10是本申请一实施例公开的一种电池的局部剖视结构示意图;
图11是图10中F处放大图;
图12是本申请另一实施例公开的一种电池的分解结构示意图;
图13是图12中G处放大图。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外” 等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
申请人在注意到电池一旦出现热失控情况,电池整体会迅速发生起火、爆炸的问题之后,对电池的各个结构以及使用环境进行研究分析。申请人发现,当电池内的一个电池模组发生热失控时,往往会迅速殃及其它未发生热失控的电池模组,从而导致其它未发生热失控的电池模组也在很短时间内发生起火、爆炸,最终导致电池整体发生起火、爆炸。为了避免电池模组出现热失控而导致整个电池爆炸,申请人对发生热失控的电池模组进行降温处理,但发现电池模组热失控后温度急速上升,单一的降温很难抑制热失控的蔓延。申请人发现抑制热失控蔓延的关键在于发现电池模组热失控后,应及时将聚集在电池中的高温气体排出,才能迅速将电池温度降下来,防止热失控蔓延。
基于申请人发现的上述问题,申请人对电池的结构进行改进,下面对本申请实施例进行进一步描述。
为了更好地理解本申请,下面结合图1至图13对本申请实施例进 行描述。
本申请实施例提供一种使用电池10作为电源的用电装置。该用电装置可以但不仅限于为车辆、船舶或飞行器等。参见图1所示,本申请的一个实施例提供一种车辆1。车辆1可以为燃油汽车、燃气汽车或新能源汽车。新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。在本申请一实施例中,车辆1可以包括马达1a、控制器1b以及电池10。控制器1b用来控制电池10为马达1a供电。马达1a通过传动机构与车轮连接,从而驱动车辆1行进。电池10可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。在一个示例中,在车辆1的底部、车头或车尾可以设置电池10。电池10可以用于为车辆1供电。在一个示例中,电池10可以作为车辆1的操作电源,用于车辆1的电路系统。可选地,电池10可以用于车辆1的启动、导航和运行时的工作用电需求。
参见图2所示,电池10可以包括两个以上的电池模组20。在一些可选的实施例中,电池10还包括箱体30。箱体30包括容纳空间。电池模组20设置于箱体30的容纳空间内。箱体30可以为电池模组20提供安装平台,也可以为电池模组20提供防护。两个以上的电池模组20排列布置于箱体30内。两个以上的电池模组20可以沿一方向并排设置,充分利用箱体30的容纳空间。
参见图2所示,电池10还包括导流部件40。导流部件40设置于箱体30内。导流部件40对应电池模组20设置。导流部件40的数量可以与电池模组20的数量相等,也即一个电池模组20对应设置一个导流部件40。导流部件40和箱体30为分体结构,也即彼此分开提供,各自独立加工制造,然后将两者进行组装。
参见图3所示,电池模组20可以包括两个以上的电池单体22,但 这里并不对电池模组20包括的电池单体22的数量进行限定。对于每个电池模组20,两个以上的电池单体22可以通过串联、并联或混联的方式连接。两个以上的电池单体22可以沿一方向并排设置。两个以上的电池单体22的排列方向可以与各个电池模组20的排列方向相垂直。
参见图3所示,电池模组20包括防爆组件21。在电池模组20包括两个以上的电池单体22的实施例中,防爆组件21可以是每个电池单体22上的防爆阀。电池单体22出现内部压力过大的情况时,会破坏防爆阀,以使电池单体22内部的气体通过破坏的防爆阀释放出来。从电池单体22释放的气体呈高温高压状态。在其他一些实施例中,电池模组20具有外壳(图中未示出)和设置于外壳上的防爆阀。两个以上的电池单体22设置于外壳内。防爆组件21可以是设置于外壳上的防爆阀。电池单体22出现内部压力过大的情况时,电池单体22会向外壳内部空间释放气体。在外壳内部的压力达到预设压力值时,会破坏外壳上的防爆阀,以使外壳内部的气体通过破坏的防爆阀释放出来。从外壳释放出的气体呈高温高压状态。
参见图2和图3所示,箱体30包括气体排出通道31。气体排出通道31包括进气口311和出气口312。气体排出通道31通过进气口311与箱体30内的容纳空间相连通。气体排出通道31通过出气口312与外部环境相连通。气体排出通道31具有引导气体流动的功能。在电池模组20发生热失控而释放高温高压气体时,气体可以从气体排出通道31的进气口311进入气体排出通道31,并且在气体排出通道31的引导下最终从出气口312定向排放到外部环境,从而降低因电池模组20热失控所释放的大量气体积聚而导致电池10发生爆炸的可能性。
参见图4至图6所示,导流部件40设置于箱体30内并遮挡防爆组件21以形成气体导引通道50。防爆组件21对应于气体导引通道50设 置。气体导引通道50与气体排出通道31的进气口311相连通。气体导引通道50用于将防爆组件21破坏后电池模组20产生的气体引导至气体排出通道31,并且通过气体排出通道31的出气口312引导至箱体30外,从而使电池10迅速排气、泄压,防止热失控蔓延,降低发生爆炸的可能性。由于导流部件40遮挡防爆组件21,因此导流部件40可以将防爆组件21与箱体30隔离开,从而防爆组件21破坏后释放的气体会受到导流部件40阻挡,降低气体直接冲击箱体30而迅速将箱体30熔穿的可能性。沿电池单体22的排列方向,电池模组20具有相对的两端。箱体30上与电池模组20的一端所对应的区域设置气体排出通道31。可以理解地,箱体30上与电池模组20的两端所对应的区域分别设置气体排出通道31,使得气体可以沿两个方向排出,从而有利于提高气体排出箱体30的效率。导流部件40的延伸方向与电池单体22的排列方向相同。
本申请实施例的电池10包括箱体30、电池模组20以及导流部件40。电池模组20和导流部件40均设置于箱体30内。电池模组20包括防爆组件21。在电池模组20发生热失控时,防爆组件21发生破坏以使电池模组20可以通过破坏后的防爆组件21释放内部气体。导流部件40遮挡电池模组20的防爆组件21以形成气体导引通道50。气体导引通道50可以引导气体沿预定路径朝气体排出通道31流动。然后气体会从气体排出通道31迅速排出箱体30。设置的气体导引通道50和气体排出通道31可以引导气体定向流动。如此一来,有利于降低发生热失控的电池模组20所释放的气体向四周自由蔓延从而导致其它未发生热失控的电池模组20发生起火、爆炸的可能性,有利于提高电池10使用的安全性。
在一些实施例中,参见图5和图6所示,导流部件40和电池模组20围合形成气体导引通道50,而防爆组件21可以位于气体导引通道50内,从而当发生热失控时,从防爆组件21位置释放的气体能够直接进入 气体导引通道50并被气体导引通道50引导至气体排出通道31,有利于进一步降低气体从气体导引通道50逃逸而蔓延到气体导引通道50之外的电池模组20的可能性,提高排气效率。
在一些实施例中,参见图7所示,导流部件40包括第一板体41和第二板体42。第一板体41被配置为遮挡防爆组件21,以隔离防爆组件21和箱体30。第二板体42从第一板体41上朝电池模组20延伸。第一板体41、第二板体42以及电池模组20围合形成气体导引通道50。第一板体41可以从电池模组20的防爆组件21的正面阻挡气体,而第二板体42可以从防爆组件21的侧面阻挡气体,从而第一板体41和第二板体42可以分别从不同的方向有效阻挡气体流动,进而有效引导气体沿气体导引通道50流动,降低气体向四周自由蔓延的可能性,提高排气效率。在一个示例中,参见图7至图9所示,导流部件40包括第一板体41和两个第二板体42。沿电池模组20的排列方向,两个第二板体42间隔设置,并且两个第二板体42位于第一板体41的同一侧,使得导流部件40整体呈U形结构。第一板体41和两个第二板体42围合形成的一个腔室可以和电池模组20形成气体导引通道50。在一个示例中,第一板体41和第二板体42为一体成型结构。可以理解地,第二板体42的数量也可以是三个以上。沿电池模组20的排列方向,三个以上的第二板体42间隔设置。相邻两个第二板体42和第一板体41的一部分形成一个腔室。两个以上的腔室可以和电池模组20形成气体导引通道50。
在一些实施例中,参见图10所示,箱体30上气体排出通道31的进气口311位于电池模组20的一侧,而气体导引通道50延伸截止于电池模组20的端部,从而气体导引通道50与气体排出通道31的进气口311之间具有一段距离。电池模组20还包括转接件60。转接件60包括用于引导气体流动的气流通道61。转接件60被配置为连接于导流部件40,从而 从气体导引通道50流出的气体可以直接进入转接件60的气流通道61内。气体导引通道50通过转接件60的气流通道61与气体排出通道31的进气口311相连通。在气体从气体导引通道50进入气体排出通道31的过程中,转接件60的气流通道61可以起到辅助引导气体的作用,可以有利于降低气体从气体导引通道50排出后,进入气体排出通道31之前发生向四周自由蔓延的可能性。
在一个示例中,转接件60与导流部件40为一体成型结构,使得转接件60和导流部件40可以实现无缝连接,有利于降低因转接件60和导流部件40为分体设计而在两者连接处存在缝隙,导致气体从该缝隙发生逃逸的可能性。转接件60的横截面形状可以与导流部件40的横截面形状相同。或者,转接件60也可以是筒状结构,从而从气体导引通道50流出的气体可以直接进入转接件60的气流通道61内,并在气流通道61的引导下进入气体排出通道31,有利于降低气体从气体导引通道50排出后,进入气体排出通道31之前发生向四周自由蔓延的可能性。
在一些实施例中,参见图10所示,箱体30包括盖体32。电池模组20的防爆组件21朝向盖体32设置。导流部件40被配置为与盖体32相连接。导流部件40设置于盖体32和电池模组20之间。电池模组20发生热失控从破坏的防爆组件21释放气体时,气体会受到导流部件40的阻挡而不会直接作用于盖体32,降低气体直接冲击盖体32而导致盖体32发生损坏的可能性。示例性地,电池10应用于车辆1时,箱体30的盖体32朝向乘员舱。如果箱体30的盖体32发生损坏,气体可以较快地进入乘员舱而对车内乘员造成伤害。本实施例的电池模组20通过设置导流部件40来降低盖体32发生损坏的可能性,从而可以降低气体通过损坏的盖体32快速侵入乘员舱而对乘员造成伤害的可能性,也可以为乘员争取更多时间离开车辆1。
在一些实施例中,参见图10所示,箱体30还包括壳体33。壳体33用于容纳电池模组20。壳体33包括侧板331。盖体32连接于侧板331。盖体32可以通过紧固件连接于侧板331并且与侧板331密封。盖体32和侧板331的连接位置形成有容纳部70。容纳部70的开口朝向导流部件40。气体排出通道31设置于侧板331并且进气口311与容纳部70相连通。气体排出通道31的出气口312位于侧板331远离电池模组20一侧的表面上。至少部分转接件60位于容纳部70内。转接件60的气流通道61与气体排出通道31的进气口311相连通。这样,位于容纳部内的转接件60将气体导引通道50和气体排出通道31的进气口311连通,从而使得气体导引通道50和气体排出通道31的进气口311的气体交换位置位于容纳部70内,有利于降低气体在交换过程中发生逃逸而直接进入箱体30的可能性。在一个示例中,侧板331上与盖体32相连接的表面为平面,而盖体32具有用于与侧板331相连接的翻边以及远离电池模组20凹陷的凹陷部。导流部件40和转接件60位于盖体32的凹陷部内。盖体32和侧板331连接后,盖体32的凹陷部与侧板331上与盖体32相连接的表面之间形成容纳部70。
在一些实施例中,参见图10所示,壳体33还包括支承板333。侧板331和支承板333相连接。电池模组20置于支承板333上。
在一些实施例中,参见图10所示,气体排出通道31还包括汇流腔313。气体排出通道31的进气口311以及气体排出通道31的出气口312均与汇流腔313相联通。进气口311的数量与导流部件40的数量相同。转接件60的数量与导流部件40的数量相同。一个进气口311与一个转接件60的气流通道61联通。当电池模组20发生热失控时,电池模组20所产生的气体通过相对应的进气口311汇流到汇流腔313,然后再从出气口312排出。设置汇流腔313后,汇流腔313可以容纳更多的气体,并且气 体进入汇流腔313后压力会迅速减小,从而箱体30内的气体可以更快地通过进气口311进入到气体排出通道31,使得气体可以迅速离开箱体30的容纳空间,进而有利于进一步降低气体不能迅速从箱体30内排出而导致箱体30内部压力急剧上升的可能性。
在一些实施例中,参见图10和图11所示,导流部件40和箱体30可拆卸连接或焊接连接。导流部件40包括第一板体41和第二板体42。第一板体41与盖体32可拆卸连接。例如,第一板体41可以通过螺钉或铆钉连接于盖体32。这样,在电池模组20发生热失控的范围较小,而导致导流部件40的第一板体41和第二板体42损坏程度较低时,可以将导流部件40从盖体32上移除,重新更换新的导流部件40,不需要将盖体32整体进行更换。或者,第一板体41与盖体32焊接。例如,第一板体41与盖体32可以通过激光焊接连接。这样,第一板体41与盖体32直接焊接连接,可以使得第一板体41和盖体32形成的结构更加紧凑,有利于降低空间占用率,以提高电池10的能量密度。
在一些实施例中,参见图10和图11所示,电池10还包括密封部件80。密封部件80被配置为密封气体导引通道50,以使气体可以全部沿气体导引通道50流动至气体排出通道31的进气口311。气体导引通道50具有用于与气体排出通道31的进气口311对接的出口。密封部件80用于密封除气体导引通道50的出口之外的区域。设置密封部件80,可以降低气体在进入气体排出通道31的进气口311过程中从气体导引通道50其它位置发生逃逸的可能性。密封部件80的材料选用耐高温耐冲击的材料。密封部件80可以是片状结构。在一个示例中,参见图10所示,电池模组20和侧板331之间设置密封部件80,一方面,可以降低气体进入电池模组20和侧板331之间的缝隙而导致气体无法及时排出的可能性;另一方面,降低气体进入电池模组20和侧板331之间的缝隙而经由缝隙蔓延至 其他电池模组20而导致其他电池模组20出现起火、爆炸的可能性。在另一个示例中,参见图11所示,导流部件40和电池模组20之间设置有密封部件80,可以降低气体在进入气体排出通道31的进气口311的过程中从导流部件40和电池模组20之间的缝隙发生逃逸的可能性。示例性地,导流部件40包括第一板体41和第二板体42。第一板体41被配置为遮挡防爆组件21,以隔离防爆组件21和箱体30。第二板体42从第一板体41上朝电池模组20延伸。第一板体41、第二板体42以及电池模组20围合形成气体导引通道50。第二板体42和电池模组20之间设置有密封部件80。
在一些实施例中,参见图12所示,壳体33包括两个间隔设置的侧板331以及连接板332。两个侧板331沿电池单体22的排列方向间隔设置。连接板332被配置为连接两个侧板331。电池模组20设置于两个侧板331之间。气体导引通道50从一个侧板331朝向另一个侧板331延伸。气体导引通道50具有两个相对的出口。两个侧板331均设置有气体排出通道31。气体导引通道50的两个出口分别与两个侧板331上的气体排出通道31对应。电池模组20热失控时产生的气体可以通过气体导引通道50的两个出口向两侧的气体排出通道31流动,从而有利于提高气体排出效率,降低气体在箱体30内积聚时间较长而导致气体蔓延至其他电池模组20或电池10整体因压力瞬间上升较快而发生爆炸的可能性。在一个示例中,参见图11和12所示,电池模组20的数量与导流部件40的数量相同且一个电池模组20对应设置有一个导流部件40。一个导流部件40和一个电池模组20形成一个气体导引通道50。一个导流部件40用于单独引导一个电池模组20的防爆组件21破坏后所产生的气体。一个电池模组20对应设置一个导流部件40的方式,可以有效将各个电池模组20实现分离,使得每个电池模组20发生热失控时产生的气体都不易向其他电池模组20 蔓延,有效提高电池10的安全性。
在一些实施例中,参见图12和图13所示,电池10还包括泄压阀90。泄压阀90设置于箱体30的外壁并且覆盖气体排出通道31的出气口312。箱体30包括侧板331和连接板332。泄压阀90与箱体30的侧板331可拆卸连接。例如,泄压阀90通过螺钉连接于侧板331。泄压阀90被配置为气体排出通道31内压力或温度达到阈值时致动以泄放压力。箱体30内的电池模组20发生热失控产生的气体通过气体导引通道50引导至气体排出通道31,然后泄压阀90在气体作用下致动,从而从常闭状态切换至开启状态,保证气体可以及时快速地通过泄压阀90排出到外部环境中。在电池10处于正常工作状态时,由于处于常闭状态的泄压阀90覆盖气体排出通道31的出气口312,因此泄压阀90可以阻挡液态水及杂质通过气体排出通道31进入箱体30内部,从而降低液态水及杂质对电池模组20产生不良影响的可能性。在一个示例中,泄压阀90可以是单向导通阀。
本申请实施例的电池10包括箱体30、电池模组20以及导流部件40。电池模组20和导流部件40均设置于箱体30内。箱体30包括气体排出通道31。导流部件40和箱体30为分体结构。导流部件40遮挡电池模组20的防爆组件21。在电池模组20发生热失控时会破坏防爆组件21以释放高温高压的气体。气体导引通道50可以将从防爆组件21释放出的气体引导至气体排出通道31,然后气体会经过气体排出通道31排放到箱体30外。这样,电池模组20发生热失控时所产生的气体会沿预定方向流动并排出到箱体30外,不易在箱体30内向四周流动蔓延,从而有效降低气体向其他电池模组20蔓延而导致其他电池模组20发生起火、爆炸的可能性,有利于提高电池10的使用安全性。
本申请实施例还提供一种电池10的制造方法,包括:
将包括防爆组件21的电池模组20设置于包括气体排出通道31的箱体30内,气体排出通道31包括进气口311和出气口312;
将导流部件40设置于箱体30内并遮挡防爆组件21以形成气体导引通道50,气体导引通道50与进气口311相连通,用于将防爆组件21破坏后电池模组20产生的气体通过出气口312引导至箱体30外。
在一些实施例中,箱体30包括盖体32和壳体33。盖体32和壳体33相连接。在将包括防爆组件21的电池模组20设置于包括气体排出通道31的箱体30内的步骤中,将电池模组20设置于壳体33内,然后再将盖体32和壳体33盖合。气体排出通道31设置于壳体33上。在将导流部件40设置于箱体30内并遮挡防爆组件21以形成气体导引通道50的步骤中,预先将导流部件40与盖体32进行连接固定,然后再将盖体32和壳体33盖合。导流部件40遮挡防爆组件21并且和电池模组20之间围合形成气体导引通道50。
本申请实施例电池10的制造方法加工制造的电池10,导流部件40遮挡电池模组20的防爆组件21。气体导引通道50和气体排出通道31可以引导气体沿预定路径流动。这样,设置的气体导引通道50和气体排出通道31,可以有利于降低发生热失控的电池模组20所释放的气体向四周自由蔓延而导致其它未发生热失控的电池模组20发生起火、爆炸的可能性,有利于提高电池10使用安全性。
本申请实施例还提供一种电池10的制造系统,包括:
第一装配装置,被配置为将包括防爆组件21的电池模组20设置于包括气体排出通道31的箱体30内,气体排出通道31包括进气口311和出气口312;
第二装配装置,被配置为将导流部件40设置于箱体30内并遮挡防爆组件21以形成气体导引通道50,气体导引通道50与进气口311相连 通,用于将防爆组件21破坏后电池模组20产生的气体通过出气口312引导至箱体30外。
在一些实施例中,箱体30包括盖体32和壳体33。盖体32和壳体33相连接。气体排出通道31设置于壳体33上。通过第一装配装置将电池模组20设置于壳体33内,然后再将盖体32和壳体33盖合。通过第二装配装置预先将导流部件40与盖体32进行连接固定,然后再将盖体32和壳体33盖合。导流部件40遮挡防爆组件21并且和电池模组20之间围合形成气体导引通道50。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (17)

  1. 一种电池,包括:
    电池模组,包括防爆组件;
    箱体,被配置为收纳所述电池模组,所述箱体包括气体排出通道,所述气体排出通道包括进气口和出气口;
    导流部件,设置于所述箱体内并遮挡所述防爆组件以形成气体导引通道,所述气体导引通道与所述进气口相连通,用于将所述防爆组件破坏后所述电池模组产生的气体通过所述出气口引导至所述箱体外。
  2. 根据权利要求1所述的电池,其中,所述导流部件和所述电池模组围合形成所述气体导引通道,所述防爆组件位于所述气体导引通道内。
  3. 根据权利要求2所述的电池,其中,所述导流部件包括第一板体和第二板体,所述第一板体遮挡所述防爆组件,两个以上的所述第二板体分别从所述第一板体朝向所述电池模组延伸,所述第一板体、两个以上的所述第二板体以及所述电池模组围合形成所述气体导引通道。
  4. 根据权利要求3所述的电池,其中,所述第一板体与所述箱体可拆卸连接或者所述第一板体与所述箱体焊接。
  5. 根据权利要求1至4任一项所述的电池,其中,所述电池模组包括转接件,所述转接件包括气流通道,所述转接件被配置为连接于所述导流部件,所述气体导引通道通过所述气流通道与所述进气口相连通。
  6. 根据权利要求5所述的电池,其中,所述转接件与所述导流部件为一体成型结构。
  7. 根据权利要求6所述的电池,其中,所述箱体包括盖体,所述防爆组件朝向所述盖体设置,所述导流部件被配置为与所述盖体相连接。
  8. 根据权利要求7所述的电池,其中,所述箱体还包括壳体,所述壳 体用于容纳所述电池模组,所述壳体包括侧板,所述盖体连接于所述侧板,所述盖体和所述侧板的连接位置形成有容纳部,所述气体排出通道设置于所述侧板并且所述进气口与所述容纳部相连通,至少部分所述转接件位于所述容纳部内。
  9. 根据权利要求8所述的电池,其中,所述壳体包括两个间隔设置的所述侧板,所述电池模组设置于两个所述侧板之间,所述气体导引通道从一个所述侧板朝向另一个所述侧板延伸。
  10. 根据权利要求8或9所述的电池,其中,所述电池模组的数量与所述导流部件的数量相同且一个所述电池模组对应设置有一个所述导流部件,用于单独引导每一个所述电池模组的所述防爆组件破坏后所产生的气体。
  11. 根据权利要求10所述的电池,其中,所述气体排出通道还包括汇流腔,所述进气口以及所述出气口均与所述汇流腔相联通,所述进气口的数量与所述导流部件的数量相同,一个所述进气口与一个所述气流通道联通。
  12. 根据权利要求8至11任一项所述的电池,其中,所述电池还包括密封部件,所述密封部件被配置为密封所述气体导引通道,以使所述气体沿所述气体导引通道流动至所述进气口。
  13. 根据权利要求12所述的电池,其中,所述导流部件和所述电池模组之间设置有所述密封部件;和/或,所述电池模组和所述侧板之间设置所述密封部件。
  14. 根据权利要求1至13任一项所述的电池,其中,所述电池还包括泄压阀,所述泄压阀设置于所述箱体的外壁并且覆盖所述出气口,所述泄压阀被配置为所述气体排出通道内压力或温度达到阈值时致动以泄放压力。
  15. 一种用电装置,包括如权利要求1至14任一项所述的电池,所述电池用于提供电能。
  16. 一种电池的制造方法,包括:
    将包括防爆组件的电池模组设置于包括气体排出通道的箱体内,所述气体排出通道包括进气口和出气口;
    将导流部件设置于所述箱体内并遮挡所述防爆组件以形成气体导引通道,所述气体导引通道与所述进气口相连通,用于将所述防爆组件破坏后所述电池模组产生的气体通过所述出气口引导至所述箱体外。
  17. 一种电池的制造系统,包括:
    第一装配装置,被配置为将包括防爆组件的电池模组设置于包括气体排出通道的箱体内,所述气体排出通道包括进气口和出气口;
    第二装配装置,被配置为将导流部件设置于所述箱体内并遮挡所述防爆组件以形成气体导引通道,所述气体导引通道与所述进气口相连通,用于将所述防爆组件破坏后所述电池模组产生的气体通过所述出气口引导至所述箱体外。
PCT/CN2020/115022 2020-09-14 2020-09-14 电池、用电装置、电池的制造方法以及系统 WO2022052093A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20952881.9A EP4080662A4 (en) 2020-09-14 2020-09-14 BATTERY, ELECTRICAL DEVICE AND MANUFACTURING METHOD AND SYSTEM FOR BATTERY
CN202080102951.3A CN116034513A (zh) 2020-09-14 2020-09-14 电池、用电装置、电池的制造方法以及系统
PCT/CN2020/115022 WO2022052093A1 (zh) 2020-09-14 2020-09-14 电池、用电装置、电池的制造方法以及系统
US17/976,744 US20230050668A1 (en) 2020-09-14 2022-10-28 Battery, electric device, manufacturing method and manufacturing system for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/115022 WO2022052093A1 (zh) 2020-09-14 2020-09-14 电池、用电装置、电池的制造方法以及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/976,744 Continuation US20230050668A1 (en) 2020-09-14 2022-10-28 Battery, electric device, manufacturing method and manufacturing system for battery

Publications (1)

Publication Number Publication Date
WO2022052093A1 true WO2022052093A1 (zh) 2022-03-17

Family

ID=80630156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115022 WO2022052093A1 (zh) 2020-09-14 2020-09-14 电池、用电装置、电池的制造方法以及系统

Country Status (4)

Country Link
US (1) US20230050668A1 (zh)
EP (1) EP4080662A4 (zh)
CN (1) CN116034513A (zh)
WO (1) WO2022052093A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115602994A (zh) * 2022-10-31 2023-01-13 厦门海辰储能科技股份有限公司(Cn) 电池模组和用电设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012079510A (ja) * 2010-09-30 2012-04-19 Gs Yuasa Corp 電池モジュール及び組電池
CN102656718A (zh) * 2010-12-13 2012-09-05 松下电器产业株式会社 电池包
JP2013114952A (ja) * 2011-11-30 2013-06-10 Sanyo Electric Co Ltd 電源装置及びこれを備える車両並びに蓄電装置
CN103943795A (zh) * 2013-01-21 2014-07-23 株式会社丰田自动织机 蓄电池壳体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208797082U (zh) * 2018-11-13 2019-04-26 宁德时代新能源科技股份有限公司 一种电池包
CN209183604U (zh) * 2018-12-27 2019-07-30 宁德时代新能源科技股份有限公司 电池箱
CN111106278B (zh) * 2018-12-29 2021-02-12 宁德时代新能源科技股份有限公司 电池包

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012079510A (ja) * 2010-09-30 2012-04-19 Gs Yuasa Corp 電池モジュール及び組電池
CN102656718A (zh) * 2010-12-13 2012-09-05 松下电器产业株式会社 电池包
JP2013114952A (ja) * 2011-11-30 2013-06-10 Sanyo Electric Co Ltd 電源装置及びこれを備える車両並びに蓄電装置
CN103943795A (zh) * 2013-01-21 2014-07-23 株式会社丰田自动织机 蓄电池壳体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4080662A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115602994A (zh) * 2022-10-31 2023-01-13 厦门海辰储能科技股份有限公司(Cn) 电池模组和用电设备
CN115602994B (zh) * 2022-10-31 2024-01-23 厦门海辰储能科技股份有限公司 电池模组和用电设备

Also Published As

Publication number Publication date
EP4080662A4 (en) 2023-12-27
US20230050668A1 (en) 2023-02-16
EP4080662A1 (en) 2022-10-26
CN116034513A (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
JP7422789B2 (ja) 電池、その関連装置、製造方法及び製造機器
WO2021088570A1 (zh) 电池包及装置
KR100903182B1 (ko) 차량용 전지팩의 냉각 시스템
JP5000107B2 (ja) フィルム外装電気デバイス集合体
WO2022083022A1 (zh) 箱体、电池及装置
KR101652975B1 (ko) 에너지저장시스템
CN114175363A (zh) 电池及其相关装置、制备方法和制备设备
JP7321300B2 (ja) 電池、その関連装置、製造方法及び製造機器
CN213660567U (zh) 电池包及车辆
US20210359374A1 (en) Battery system and vehicle including the battery system
KR102665192B1 (ko) 전지 팩 및 이를 포함하는 디바이스
WO2022143042A1 (zh) 用于车辆的电池包以及车辆
CN114552115A (zh) 一种电池模组及电动车辆
CN111668410A (zh) 动力电池包及车辆
JP7099915B2 (ja) 電池パックの冷却構造及び電池パックの排煙構造
US20230050668A1 (en) Battery, electric device, manufacturing method and manufacturing system for battery
JP5632402B2 (ja) フィルム外装電気デバイス集合体
KR20210139167A (ko) 전지 시스템 및 전지 시스템을 포함한 차량
CN114175376B (zh) 电池及其相关装置、制备方法和制备设备
CN219873922U (zh) 电池和用电设备
KR20220060816A (ko) 전기 차량용 공냉식 배터리 팩
CN217158514U (zh) 一种电池模组及电动车辆
JP2023538656A (ja) バッテリーモジュール、それを含むバッテリーパック及び自動車
KR20230008110A (ko) 전지, 전기 장치, 전지 제조 방법 및 장치
CN218472201U (zh) 电池托盘、动力电池包及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952881

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020952881

Country of ref document: EP

Effective date: 20220720

NENP Non-entry into the national phase

Ref country code: DE