WO2022052080A1 - 一种多次籽晶可替换的导膜法蓝宝石晶体生长炉 - Google Patents

一种多次籽晶可替换的导膜法蓝宝石晶体生长炉 Download PDF

Info

Publication number
WO2022052080A1
WO2022052080A1 PCT/CN2020/114963 CN2020114963W WO2022052080A1 WO 2022052080 A1 WO2022052080 A1 WO 2022052080A1 CN 2020114963 W CN2020114963 W CN 2020114963W WO 2022052080 A1 WO2022052080 A1 WO 2022052080A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
seed
seed crystal
cavity
growth furnace
Prior art date
Application number
PCT/CN2020/114963
Other languages
English (en)
French (fr)
Inventor
徐军
赵衡煜
王东海
李东振
王庆国
Original Assignee
南京同溧晶体材料研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京同溧晶体材料研究院有限公司 filed Critical 南京同溧晶体材料研究院有限公司
Priority to PCT/CN2020/114963 priority Critical patent/WO2022052080A1/zh
Publication of WO2022052080A1 publication Critical patent/WO2022052080A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/34Edge-defined film-fed crystal-growth using dies or slits
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/36Single-crystal growth by pulling from a melt, e.g. Czochralski method characterised by the seed, e.g. its crystallographic orientation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides

Definitions

  • the invention belongs to the field of crystal growth, and in particular relates to a sapphire crystal growth furnace with a guide film method that can replace multiple seed crystals.
  • Sapphire is a single crystal of alumina ( ⁇ -Al 2 O 3 ), also known as corundum, which is a unique combination with excellent optical, physical and chemical properties.
  • ⁇ -Al 2 O 3 alumina
  • artificial sapphire (Al 2 O 3 ) crystal has become an extremely important basic material in modern industries, especially in the microelectronics and optoelectronics industries, and is widely used in infrared military devices, satellite space technology, high-intensity Window material for lasers.
  • artificial sapphire As a leading representative of new materials, has excellent optical, physical and chemical properties, and mechanical properties. It is widely used in aerospace, military industry, substrates, medical equipment, precision machinery, luxury goods and other fields. Its market Exploding rapidly. The largest profit in the LED industry and the current market demand is concentrated on artificial sapphire substrates, prompting the concentrated transfer of worldwide production capacity to the substrate field. The current development of luxury artificial sapphire concepts and medical devices is also rapidly driving the demand for artificial sapphire.
  • the artificial sapphire crystal growth method mainly adopts KY method (Kyropoulos method, bubble method), HEM method (Heat Exchanger Method, heat exchange method), EFG method (Edge-defined Film-fed method) Growth, guided mode method), CZ method (Czochralski method, pulling method), etc.
  • the technology has a relatively mature history of decades.
  • the guided mode method is one of the methods for artificially preparing single crystal materials from the melt, that is, the "edge-limited film feed growth" technology, referred to as the EFG method, is mainly used to grow crystals of specific shapes, in fact, it is the pulling method. a deformation.
  • the working principle of the guided mode method is to put the raw material into the crucible and heat it to melt, the melt rises to the top of the mold along a mold under capillary action, and the liquid surface of the top of the mold receives the seed crystal and pulls the melt, so that the seed crystal and the melt are pulled together.
  • the atoms or molecules are continuously rearranged on the interface of the mold, and the single crystal with the same shape as the edge of the mold grows gradually with the cooling.
  • the advantage of the guided mode method for growing crystals is that the growth process can easily observe the growth status of the crystal, the growth rate is fast, and the growth can be shaped by designing the shape of the mold, and the heating method adopts induction graphite heating.
  • the crucible/mold material is generally graphite, which is easy to process. , low cost, suitable for growing various oxide crystal materials.
  • the guided mode method has the advantages of short growth time, low power consumption, directional/shaped growth, and simple crystal processing. It can be predicted that the guided mode method will gradually replace the bubble growth method as the mainstream growth method of sapphire crystals.
  • the guided mode method will gradually replace the bubble growth method as the mainstream growth method of sapphire crystals.
  • the current domestic research level of the guided mode method is low, only single-piece, double-piece and other thick slices can be grown.
  • foreign imported equipment has poor product consistency and labor dependence. The problems of high cost, long lead time and high price have seriously affected the development of sapphire guided mode crystal growth technology in China.
  • the crystal growth process of EFG method can be simply summarized as 1. Heating up the melt, including the melting of raw materials, after the melt enters the mold, it climbs from the slit to the mold mouth according to the capillary phenomenon; 2. Planting, including seed crystal baking 3. Seeding and shouldering, including pulling out the crystal from the melt, slowly expanding the crystal until it is the same size as the mold; 4. Pulling at a constant speed.
  • the equipment power and temperature gradient remain basically unchanged, and the temperature field is maintained roughly stable;
  • the cooling rate to ensure the integrity of the crystal.
  • the device gradually reduces the power until the power is turned off, and the crystal gradually cools down.
  • a typical EFG sapphire crystal growth time such as using the 1st stage, 3 hours, the 2nd stage, 1 hour, the 3rd stage 1 hour, the 4th stage 5 hours, Section 5 6-10 hours for a total of 16-20 hours.
  • the time-consuming of heating and cooling the equipment accounts for more than 50% of the whole process.
  • the present invention provides a sapphire crystal growth furnace with a guide film method with multiple seed crystals replaceable, which is provided with a base, a crystal growth furnace cavity, Crucible, seed crystal rod, sealing valve, seed crystal spare cabin cavity, seed crystal replacement plate, elevator; one end of the base is fixedly installed on the outermost bottom end of the growth furnace, and the other end is connected to the bottom of the crucible; the crucible is fixed It is installed at the bottom of the inner side of the crystal growth furnace, and the crucible is equipped with a mold; one end of the seed rod is connected with a seed crystal, which is lowered to the top of the mold for use, and the other end is fixedly installed on the seed crystal replacement plate through the sealing valve.
  • the sealing valve is fixedly installed at the connection port between the crystal growth furnace cavity and the seed crystal spare cabin cavity; the seed crystal replacement plate is fixedly installed on the top of the seed crystal spare cabin cavity, and a plurality of groups of grooves are arranged throughout.
  • the seed rod is fixedly installed inside the slot; the sealing valve is provided with a set of through holes, which penetrate a set of seed rods; the lifter is connected to the seed rod on the seed replacement plate for multiple The lifting adjustment of the group seed rod.
  • the cavities of the crystal growth furnace cavity and the seed crystal spare cabin cavity are stainless steel cavities, and a circulating water cooling device is provided inside.
  • the crystal growth furnace chamber is also provided with a growth chamber furnace door and an observation window, and the observation window is used to monitor the crystal production process in real time.
  • the seed rods are molybdenum seed rods with a length of 75-105 cm.
  • One group of seed rods is set in the crystal growth furnace cavity, and other groups of seed rods are set in the cavity of the seed crystal spare cabin.
  • it also includes single crystals, which are grown at the front of the seed crystals.
  • One group of single crystals is placed directly above the mold when growing, and the single crystals grown by other groups are placed in the cavity of the seed crystal spare chamber.
  • the cavity of the crystal growth furnace is filled with inert gas
  • the cavity of the seed crystal spare cabin includes an inflating and deflating device and a hatch.
  • the inflating and deflating device is used for other internal inflation and deflation; Finished single crystal or replacement seed crystal.
  • the film-guided sapphire crystal growth furnace provided by the present invention can perform one-pot crystal growth by improving a series of structures of the crucible feeding system, the seed crystal replacement plate, the seed crystal rod and the spare seed crystal bin. After completion, the equipment does not cool down, the crystal is taken out by mechanical transmission and the seed crystal is replaced, seeded again, and the crystal growth process is repeated. Restricted, you can open the seed crystal spare compartment multiple times to take out the crystal and replace the spare seed crystal. On the premise that the crucible melt is sufficient, it can grow continuously for 10-20 times, which greatly improves the growth efficiency of the sapphire crystal.
  • FIG. 1 is a schematic structural diagram of a crystal growth furnace of the present invention.
  • Figure 2(a) is a schematic structural diagram of the crystal growth furnace of the present invention when a seed rod is equipped with a seed crystal for growth.
  • Figure 2(b) is a schematic structural diagram of replacing the seed crystals in the spare seed crystal bin in the crystal growth furnace of the present invention.
  • Base 1 used to support the crucible, as other specific embodiments of the present invention, the base 1 can be fixedly installed to realize the immobilization of the crucible 2; it can also be fixedly connected with the lifting and rotating platform, and is driven by a lifting motor and a rotating motor, The lifting and rotation of the crucible 2 is realized.
  • the main body of the crucible is a cylinder with a capacity of 10-20L, which can accommodate 100 kg of sapphire polycrystalline raw materials. Under the high temperature environment, with the continuous growth of crystals, the melt level in the crucible continues to drop until it is lower than the mold slit. bottom.
  • Mold 3 The mold 3 is set in the crucible 2, and the two are combined to form a melt feeding system.
  • the melt in the crucible 2 climbs up from the slit in the mold 3 according to capillary action until it climbs out of the mold 3 mouth, and forms a single crystal 4 after contacting with the seed crystal.
  • the mold shown in this figure is multi-chip synchronous growth, which can grow 10-20 long single crystals at a time.
  • the multi-piece single crystal shown in the figure is finally formed.
  • the product obtained in the present invention is a sapphire single crystal, and the crystallization driving force is the axial temperature gradient.
  • Seed crystal 5 set in the seed crystal replacement plate 8. Select high-quality sapphire crystals to be processed into seed crystals. It is an extremely important accessory in the crystal growth process, and a-direction, c-direction or ⁇ -direction single crystal can be selected according to needs. After descending the melt in contact with the die 3, a single crystal is gradually formed and pulled upward.
  • Seed crystal rod 6 The function of the seed crystal rod 6 is to drive the seed crystal to move up and down. Because it is close to the melt, it is usually made of a metal with a higher melting point, and a molybdenum seed rod is commonly used. Each seed rod corresponds to a set of lifters 9 and independently executes lift commands.
  • Seed crystal spare compartment sealing valve 7 Above the sealing valve is the seed crystal spare compartment, and below is the crystal growth chamber. The sealing valve clamps the seed rod to ensure the up and down displacement of the seed rod 6 to form a seal. When the seed rod 6 descends or rises through the sealing valve with the seed crystal, the sealing valve is opened.
  • a In a traditional, non-seed-free crystal growth furnace, the temperature at the sealing valve position is usually low, less than 100°C; b: The sealing valve is in contact with the furnace plate, transferring heat to the furnace plate below and is The cooling circulating water takes away the heat, thereby ensuring the safety of the sealing valve; c: The sealing valve is not an essential part, and is only used in the equipment that needs to open the hatch 12 of the seed crystal spare cabin.
  • Seed crystal replacement tray 8 Multiple seed crystal replacement trays can be placed as required, preferably 2-3 seed crystal rods and seed crystals 5, but only one working slot is facing the lower mold mouth. Before each round of crystal growth, the seed crystal replacement plate rotates a seed crystal rod into the working tank, and then the seed crystal rod lifter lowers the seed crystal rod to perform the whole process of crystal growth again. ( Figure 2).
  • Lift 9 The seed rod 6 is connected to the bottom of the lift, because the lift will significantly rise out of the top of the crystal furnace, so there is a need to leave enough space for the production workshop.
  • a typical seed crystal replacement crystal growth furnace needs a production workshop with a height of about 5 meters. .
  • Furnace cavity 10 It is mainly made of stainless steel, and there is circulating water inside for cooling. According to actual needs, an independent circulating water system can be designed for the crystal growth chamber 11 and the seed crystal reserve chamber 12 .
  • Crystal growth chamber cavity 11 including a furnace door, with an observation window, which is convenient for real-time monitoring of the crystal growth process.
  • the observation window and the growth chamber door each have separate pipes for circulating water.
  • the cavity 12 of the seed crystal spare cabin including the furnace door, the furnace door of the spare seed crystal cabin can be opened at any time, the grown crystal can be removed and the seed crystal can be replaced.
  • the process of opening the door - taking the material - replacing the seed crystal requires 2-3 times of gas extraction. During this process, the crystal growth in the crystal growth chamber is not affected (as shown in Figure 2(a)- Figure 2(b)).
  • the furnace door has a separate pipe for circulating water. The above process can be performed multiple times until the melt in the crucible 2 is lower than the lower edge of the mold.
  • a sapphire crystal growth furnace with a guide film method that can replace multiple seed crystals which is provided with a base 1, a crystal growth furnace cavity 11, a crucible 2, a seed crystal rod 6, a sealing valve 7, and a seed crystal for standby use from bottom to top.
  • the bottom of the inner side, the crucible 2 is equipped with a mold 3; the lower end of the seed rod 6 is connected with a seed crystal 5, which can be lowered to the top of the mold 3 for use, and the other end is fixedly installed on the seed crystal replacement plate 8 through the sealing valve 7
  • the sealing valve 7 is fixedly installed at the connection port between the crystal growth furnace cavity 11 and the seed crystal spare cabin cavity 12; the seed crystal replacement plate 8 is fixedly installed on the top of the seed crystal spare cabin cavity 12, and there are multiple groups of The notch, the seed rod 6 is fixedly installed inside the notch; the sealing valve 7 is provided with a group of through holes, passing through a group of seed rods 6;
  • the crystal rod 6 is used for lifting and lowering adjustment of
  • the cavity 10 of the crystal growth furnace cavity 11 and the seed crystal spare cabin cavity 12 is a stainless steel cavity, and a circulating water cooling device is provided inside.
  • the crystal growth furnace chamber 11 is also provided with a growth chamber furnace door and an observation window, and the observation window is used to monitor the crystal production process in real time.
  • the seed rod 6 is a molybdenum seed rod, and the length is set to 75-105 cm, preferably 80 cm, and a group of seed rods 6 are arranged in the crystal growth furnace cavity 11 .
  • the single crystal 4 When the single crystal 4 is grown, it is placed directly above the mold 3 , and the grown single crystal 4 is stored in the cavity 12 of the seed crystal spare chamber.
  • the cavity 12 of the seed crystal spare cabin is filled with inert gas, and is equipped with an inflating and deflating device and a hatch. After the finished crystal is replaced with a new spare seed crystal, the hatch is closed, the air is exhausted and the inert gas is finally filled; the hatch is used to complete the above process of taking out the grown single crystal or replacing the seed crystal.
  • the sealing valve When the hatch of the seed crystal spare cabin needs to be opened to replace the spare seed crystal, the sealing valve must be closed to ensure that the growth chamber is filled with inert gas and no oxygen is mixed. It should be noted that the temperature at the location of the sealing valve is lower than 100°C, so circulating water is not required for cooling.
  • the present invention is not limited by the number of seed crystals in the seed crystal spare compartment, and the seed crystal spare compartment can be opened multiple times to take out crystals and replace the spare seed crystals.
  • the crucible melt is sufficient, it can grow continuously for 10-20 times, which greatly improves the growth efficiency of the sapphire crystal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明提供了一种多次籽晶可替换的导膜法蓝宝石晶体生长炉,从下到上依次设置有基座、晶体生长炉腔体、坩埚、籽晶杆、密封阀、籽晶备用舱腔体、籽晶替换盘、升降机,通过改进坩埚供料系统、籽晶替换盘、籽晶杆及备用籽晶仓的一系列结构,能够进行一锅晶体生长完成后设备不降温,采用机械传动方式取出晶体并更换籽晶,再次下种,重复晶体生长过程,与早前的籽晶替换方案相比,本发明不受籽晶备用舱中籽晶数量的限制,可多次开启籽晶备用舱取出晶体并替换备用籽晶。在坩埚熔体充足的前提下,可持续生长10-20次,极大的提高蓝宝石晶体的生长效率。

Description

一种多次籽晶可替换的导膜法蓝宝石晶体生长炉 技术领域
本发明属于晶体生长领域,特别涉及一种多次籽晶可替换的导膜法蓝宝石晶体生长炉。
背景技术
蓝宝石(Sapphire)是一种氧化铝(α-Al 2O 3)的单晶,又称刚玉,是一种具有集优良光学、物理和化学性能的独特结合体。作为最硬的氧化物晶体,人造蓝宝石由于其光学和物理特性而被运用于各种要求苛刻的领域,可在高温下保持其高强度、优良的热属性和透过率,有着很好的热特性,极好的电气特性和介电特性,且防化学腐蚀。随着科学技术的迅猛发展,人造蓝宝石(Al 2O 3)晶体已成为现代工业,尤其是微电子及光电子产业极为重要的基础材料,被广泛的应用于红外军事装置、卫星空间技术、高强度激光的窗口材料。其独特的晶格结构、优异的力学性能、良好的热学性能使蓝宝石晶体成为实际应用的半导体GaN/Al 2O 3发光二极管(LED),大规模集成电路SOI和SOS及超导纳米结构薄膜等最为理想的衬底材料。
伴随光学革命的到来,人造蓝宝石作为新材料的领军代表,其光学、理化、机械等性能十分优异,在航天、军工、衬底、医疗器械、精密机械、奢侈品等领域应用十分广泛,其市场正在迅速爆发。LED行业的最大利润和当前市场需求集中在人造蓝宝石衬底片上,促使世界范围内的产能集中转移到衬底领域。目前奢侈品人造蓝宝石概念和医疗器械的发展也正在迅速推动人造蓝宝石的需求。
人造蓝宝石晶体生长方法主要采用KY法(Kyropoulos method,泡生法)、HEM法(Heat Exchanger Method,热交换法)、EFG法(Edge-defined Film-fed Growth,导模法)、CZ法(Czochralski method,提拉法)等,技术均有数十年历史较为成熟。其中导模法是从熔体人工制取单晶材料的方法之一,即“边缘限定薄膜供料生长”技术,简称EFG 法,主要用于生长特定形状的晶体,实际上它是提拉法的一种变形。导模法的工作原理是将原料放入坩埚中加热融化,熔体沿一模具在毛细作用下上升至模具顶端,在模具顶部液面上接籽晶提拉熔体,使籽晶和熔体的交界面上不断进行原子或分子的重新排列,随降温逐渐凝固而生长出与模具边缘形状相同的单晶体。导模法生长晶体的优点在于生长过程可以方便地观察晶体的生长状况,生长速率快,能够通过设计模具形状定型生长,并且加热方式采用感应石墨加热,其坩埚/模具材料一般为石墨,加工简单,成本低,适合生长各种氧化物晶体材料。
导模法具有生长时间短、耗电量低、可定向/定形生长、晶体加工简单等优势,可以预测导模法将逐渐取代泡生法成为蓝宝石晶体主流生长方式。目前,只有俄罗斯、美国和日本等少数国家掌握此技术,而国内目前导模法研究水平底下,仅能实现单片、双片等厚片生长,同时国外进口装备存在产品一致性差、人工依赖性高、交货周期长、价格昂贵等问题,严重影响我国蓝宝石导模法长晶技术的发展。
传统工艺下,EFG法晶体生长过程可以简单归纳为1.升温熔料,包括原料熔化,熔体进入模具后,根据毛细现象由狭缝爬料至模具口;2.下种,包括籽晶烤种,接触模具口熔体;3. 引晶放肩,包括从熔体中提拉出晶体,缓慢扩大晶体直至与模具相同尺寸为止;4.匀速提拉。这一阶段需要密切关注晶体质量变化,设备功率和温度梯度基本保持不变,维持温场大致稳定;5.拉脱降温,这一阶段晶体生长工作已经完成,坩埚内熔体液面下降,对于有掺杂激活离子的熔体来说,由于分凝作用的存在,熔体内组分显著漂移,无法保证晶体持续生长。晶体与熔体分离后,需注意降温速率,保证晶体完整。在此过程中,设备逐渐降低功率至关停电源,晶体逐渐降温。
技术问题
就从工作进度和时间安排角度而言,一次典型的EFG蓝宝石晶体生长的耗时,例如采用第1段,3小时,第2段,1小时,第3段1小时,第4段5小时,第5段6-10小时,共计16-20小时。显而易见的是,设备升温和降温的耗时占据了整个过程的50%以上。需要指出的是,也有部分工厂,采用快速降温的方式,将第5段时间压缩在4小时以内。这样意味着500℃/h的超快降温速率,会在晶格中留下大量应力与晶格畸变,影响晶体质量,是一种牺牲质量来换取时间的得不偿失的做法。
技术解决方案
为了解决上述晶体生长耗时长且影响质量的缺陷,本发明提供了一种多次籽晶可替换的导膜法蓝宝石晶体生长炉,从下到上依次设置有基座、晶体生长炉腔体、坩埚、籽晶杆、密封阀、籽晶备用舱腔体、籽晶替换盘、升降机;所述基座一端固定安装在生长炉的外侧最底端,另一端与坩埚底部连接;所述坩埚固定安装在晶体生长炉腔体内侧的底部,坩埚内部装有模具;所述籽晶杆一端连接有籽晶,下降至模具正上方待用,另一端穿过密封阀固定安装在籽晶替换盘上;所述密封阀固定安装在晶体生长炉腔体与籽晶备用舱腔体之间连接端口处;所述籽晶替换盘固定安装在籽晶备用舱腔体的顶部,贯穿设置有多组槽口,所述籽晶杆固定安装在所述槽口内部;所述密封阀设置有一组通孔,贯穿一组籽晶杆;所述升降机连接籽晶替换盘上的籽晶杆,用于多组籽晶杆的升降调整。
作为改进,所述晶体生长炉腔体与籽晶备用舱腔体的腔体为不锈钢腔体,内部均设置有循环水冷却装置。
作为改进,所述晶体生长炉腔体还设置有生长腔炉门和观察窗,观察窗口用于实时监控晶体生产过程。
作为改进,所述籽晶杆为钼籽晶杆,长度设置为75-105cm,一组籽晶杆设置在晶体生长炉腔体内,其他多组籽晶杆设置在籽晶备用舱腔体内。
作为改进,还包括单晶,生长在籽晶前端,一组单晶生长时正对放置在模具上方,其他组生长的单晶活动放置在籽晶备用舱腔体内。
作为改进,晶体生长炉腔体内部充有惰性气体,籽晶备用舱腔体包括有充放气装置、舱门,充放气装置用于内部其他的充气、放气;舱门用于取出生长完成的单晶或更换籽晶。
有益效果
本发明提供的多次籽晶可替换的导膜法蓝宝石晶体生长炉,通过改进坩埚供料系统、籽晶替换盘、籽晶杆及备用籽晶仓的一系列结构,能够进行一锅晶体生长完成后设备不降温,采用机械传动方式取出晶体并更换籽晶,再次下种,重复晶体生长过程,与早前的籽晶替换方案相比,本发明不受籽晶备用舱中籽晶数量的限制,可多次开启籽晶备用舱取出晶体并替换备用籽晶。在坩埚熔体充足的前提下,可持续生长10-20次,极大的提高蓝宝石晶体的生长效率。
同时,在籽晶替换的核心理念下,可以根据实际需要衍生出多种具体实施方案,能够简化流程,或简化设备部件,或减少长晶的全程时间。
附图说明
图1为本发明晶体生长炉的结构示意图。
图2(a)为本发明晶体生长炉一根籽晶杆配备籽晶生长时的结构示意图。
图2(b)为本发明晶体生长炉更换备用籽晶仓内籽晶的结构示意图。
附图中:1、基座;2、坩埚;3、模具;4、单晶;5、籽晶;6、籽晶杆;7、密封阀;8、籽晶替换盘;9、升降机;10、炉腔;11、晶体生长腔腔体;12、籽晶备用舱腔体。
本发明的最佳实施方式
下面对本发明附图结合实施例作出进一步说明。
基座1:用于坩埚支撑,作为本发明的其他具体实施方式,基座1可以固定安装,实现坩埚2的固定不动;也可以与升降旋转平台固定连接,通过升降电机、旋转电机驱动,实现坩埚2的升降及旋转。
坩埚2:坩埚主体为圆柱体,容量为10-20L,可容纳100公斤的蓝宝石多晶原料,高温环境下,随着晶体不断生长,坩埚内熔体液面不断下降,直至低于模具狭缝底部。
模具3:模具3设置在坩埚2内,两者组合形成熔体供料系统。坩埚2中的熔体根据毛细作用,从模具3中的狭缝向上攀爬,直至爬出模具3口,在与籽晶接触后形成晶体单晶4。本图示选展示的模具是多片同步生长的,可一次生长10-20长片状单晶。
单晶4:经过前述长晶流程并最终形成图示的多片单晶,例如本发明中获得的产品为蓝宝石单晶,其结晶驱动力为轴向的温度梯度。
  籽晶5:设置在籽晶替换盘8内。选用优质蓝宝石晶体加工成为籽晶。是晶体生长过程中极其重要的配件,并根据需要可选用a向,c向或γ向单晶。在下降接触模具3的熔体后,逐渐形成单晶并向上提拉。
籽晶杆6:籽晶杆6的作用在于带动籽晶上下位移,因为要接近熔体所以通常由熔点较高的金属,常见使用的是钼籽晶杆。每根籽晶杆对应一套升降机9,并独立执行升降指令。
籽晶备用舱密封阀7:密封阀上方的是籽晶备用舱,下方是晶体生长腔。密封阀卡住籽晶杆,保障籽晶杆6上下位移的同时形成密封。当籽晶杆6带着籽晶下降或上升通过密封阀时,密封阀开启。需要说明的是a:传统的、非替换籽晶的晶体生长炉中,密封阀位置的温度通常较低,不足100℃;b:密封阀与炉板接触,将热量传递给下方炉板并由冷却循环水带走热量,从而保障密封阀的安全;c:密封阀并非必要部件,仅在需要打开籽晶备用舱舱门12的设备中使用。
籽晶替换盘8:籽晶替换盘上可根据需要安放安放多根,优选2-3根籽晶杆并配备籽晶5,但是仅有一根工作槽正对着下方模具口。每一轮长晶前,籽晶替换盘将一根籽晶杆转动进入工作槽,随后籽晶杆升降机将籽晶杆下降,再次执行晶体生长全过程。(如图2)。
升降机9:升降机下方连接籽晶杆6,因为升降机将显著升出晶体炉顶部,因此对于生产车间需要留足挑高空间,一个典型的籽晶替换晶体生长炉需要挑高约5米的生产车间。
炉腔10:主要由不锈钢铸成,内部有循环水进行冷却。可根据实际需要,对晶体生长腔11和籽晶备用舱12设计独立的循环水系统。
晶体生长腔腔体11:包括炉门,带有观察窗口,便于实时监控晶体生长过程。观察窗和生长腔炉门各自具有独立管道的循环水。
籽晶备用舱腔体12:包括炉门,可随时打开备用籽晶舱的炉门,取下生长完成的晶体并替换籽晶。开门-取料-替换籽晶的过程需要2-3次抽放气,在此过程中,不影响晶体生长腔的晶体生长(如图2(a)-图2(b))。炉门具有独立管道的循环水。上述过程可多次执行,直至坩埚2中熔体低于模具下沿。需要指出的是,因蓝宝石单晶是单元氧化物晶体,且无掺杂,元素分凝作用不明显,因此可以执行长时间多轮次的长晶而不用担心熔体的化学组分因分凝而产生组分漂移。
一种多次籽晶可替换的导膜法蓝宝石晶体生长炉,从下到上依次设置有基座1、晶体生长炉腔体11、坩埚2、籽晶杆6、密封阀7、籽晶备用舱腔体12、籽晶替换盘8、升降机9;基座1一端固定安装在生长炉的外侧最底端,另一端与坩埚2底部连接;所述坩埚2固定安装在晶体生长炉腔体11内侧的底部,坩埚2内部装有模具3;所述籽晶杆6下端连接有籽晶5,可下降至模具3上方待用,另一端穿过密封阀7固定安装在籽晶替换盘8上;密封阀7固定安装在晶体生长炉腔体11与籽晶备用舱腔体12之间连接端口处;籽晶替换盘8固定安装在籽晶备用舱腔体12的顶部,贯穿设置有多组槽口,所述籽晶杆6固定安装在所述槽口内部;所述密封阀7设置有一组通孔,贯穿一组籽晶杆6;所述升降机9连接籽晶替换盘8上的籽晶杆6,用于多组籽晶杆6的升降调整。
晶体生长炉腔体11与籽晶备用舱腔体12的腔体10为不锈钢腔体,内部均设置有循环水冷却装置。晶体生长炉腔体11还设置有生长腔炉门和观察窗,观察窗口用于实时监控晶体生产过程。
备用的多组籽晶杆6设置在籽晶备用舱腔体12内。所述籽晶杆6为钼籽晶杆,长度设置为75-105cm,优选为80cm,一组籽晶杆6设置在晶体生长炉腔体11内。
单晶4生长时正对地放置在模具3上方,已经生长完毕的单晶4收纳在籽晶备用舱腔体12内。
籽晶备用舱腔体12充有惰性气体,配有充放气装置、舱门,当籽晶备用舱中籽晶使用完毕后,可排空惰性气体、充入空气、打开舱门并取出长完的晶体,替换上新的备用籽晶,关闭舱门,排尽空气最后充入惰性气体;舱门用于完成上述取出生长完成的单晶或更换籽晶的过程。
当籽晶备用舱需要打开舱门执行替换备用籽晶时,须关闭密封阀,保证生长腔腔体内充满惰性气体,无氧气混入。需要说明的是,密封阀的所处位置温度低于100°C,因此并不需要循环水进行冷却。
与早前的籽晶替换方案相比,本发明不受籽晶备用舱中籽晶数量的限制,可多次开启籽晶备用舱取出晶体并替换备用籽晶。在坩埚熔体充足的前提下,可持续生长10-20次,极大的提高蓝宝石晶体的生长效率。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (6)

  1. 一种多次籽晶可替换的导膜法蓝宝石晶体生长炉,其特征在于:从下到上依次设置有基座(1)、晶体生长炉腔体(11)、坩埚(2)、籽晶杆(6)、密封阀(7)、籽晶备用舱腔体(12)、籽晶替换盘(8)、升降机(9);所述基座(1)一端固定安装在生长炉的外侧最底端,另一端与坩埚(2)底部连接;所述坩埚(2)固定安装在晶体生长炉腔体(11)内侧的底部,坩埚(2)内部装有模具(3);所述籽晶杆(6)下端连接有籽晶(5),可下降至模具(3)上方待用,另一端穿过密封阀(7)固定安装在籽晶替换盘(8)上;所述密封阀(7)固定安装在晶体生长炉腔体(11)与籽晶备用舱腔体(12)之间连接端口处;所述籽晶替换盘(8)固定安装在籽晶备用舱腔体(12)的顶部,贯穿设置有多组槽口,所述籽晶杆(6)固定安装在所述槽口内部;所述密封阀(7)设置有一组通孔,贯穿一组籽晶杆(6);所述升降机(9)连接籽晶替换盘(8)上的籽晶杆(6),用于多组籽晶杆(6)的升降调整。
  2. 根据权利要求1所述的导膜法蓝宝石晶体生长炉,其特征在于:所述晶体生长炉腔体(11)与籽晶备用舱腔体(12)的腔体(10)为不锈钢腔体,内部均设置有循环水冷却装置。
  3. 根据权利要求1所述的导膜法蓝宝石晶体生长炉,其特征在于:所述晶体生长炉腔体(11)还设置有生长腔炉门和观察窗,观察窗口用于实时监控晶体生产过程。
  4. 根据权利要求1所述的导膜法蓝宝石晶体生长炉,其特征在于:所述籽晶杆(6)为钼籽晶杆,长度设置为75-105cm,一组籽晶杆(6)设置在晶体生长炉腔体(11)内,其他多组籽晶杆(6)设置在籽晶备用舱腔体(12)内。
  5. 根据权利要求4所述的导膜法蓝宝石晶体生长炉,其特征在于:还包括单晶(4),生长在籽晶(5)前端,一组单晶(4)生长时正对放置在模具(3)上方,其他组生长的单晶(4)活动放置在籽晶备用舱腔体(12)内。
  6. 根据权利要求1所述的导膜法蓝宝石晶体生长炉,其特征在于:晶体生长炉腔体(11)内部充有惰性气体,籽晶备用舱腔体(12)包括有充放气装置、舱门,充放气装置用于内部其他的充气、放气;舱门用于取出生长完成的单晶或更换籽晶。
PCT/CN2020/114963 2020-09-14 2020-09-14 一种多次籽晶可替换的导膜法蓝宝石晶体生长炉 WO2022052080A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/114963 WO2022052080A1 (zh) 2020-09-14 2020-09-14 一种多次籽晶可替换的导膜法蓝宝石晶体生长炉

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/114963 WO2022052080A1 (zh) 2020-09-14 2020-09-14 一种多次籽晶可替换的导膜法蓝宝石晶体生长炉

Publications (1)

Publication Number Publication Date
WO2022052080A1 true WO2022052080A1 (zh) 2022-03-17

Family

ID=80632006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114963 WO2022052080A1 (zh) 2020-09-14 2020-09-14 一种多次籽晶可替换的导膜法蓝宝石晶体生长炉

Country Status (1)

Country Link
WO (1) WO2022052080A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115404538A (zh) * 2022-07-20 2022-11-29 中国电子科技集团公司第二十六研究所 一种可实现晶体连续生长的装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203159740U (zh) * 2013-02-05 2013-08-28 元亮科技有限公司 导模法生长多条晶体的生长装置
CN103898598A (zh) * 2012-12-29 2014-07-02 富泰华精密电子(郑州)有限公司 晶体生长装置
CN206562474U (zh) * 2017-01-19 2017-10-17 许昌天戈硅业科技有限公司 一种蓝宝石长晶炉籽晶冷却与更换系统
CN109306519A (zh) * 2018-10-30 2019-02-05 天通银厦新材料有限公司 一种携带备用籽晶的蓝宝石晶体生长炉及其引晶方法
CN110904500A (zh) * 2019-11-04 2020-03-24 南京同溧晶体材料研究院有限公司 一种多次籽晶可替换的导膜法蓝宝石晶体生长炉
CN110923815A (zh) * 2019-11-04 2020-03-27 南京同溧晶体材料研究院有限公司 一种基于籽晶替换方案的导膜法蓝宝石晶体生长炉

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103898598A (zh) * 2012-12-29 2014-07-02 富泰华精密电子(郑州)有限公司 晶体生长装置
CN203159740U (zh) * 2013-02-05 2013-08-28 元亮科技有限公司 导模法生长多条晶体的生长装置
CN206562474U (zh) * 2017-01-19 2017-10-17 许昌天戈硅业科技有限公司 一种蓝宝石长晶炉籽晶冷却与更换系统
CN109306519A (zh) * 2018-10-30 2019-02-05 天通银厦新材料有限公司 一种携带备用籽晶的蓝宝石晶体生长炉及其引晶方法
CN110904500A (zh) * 2019-11-04 2020-03-24 南京同溧晶体材料研究院有限公司 一种多次籽晶可替换的导膜法蓝宝石晶体生长炉
CN110923815A (zh) * 2019-11-04 2020-03-27 南京同溧晶体材料研究院有限公司 一种基于籽晶替换方案的导膜法蓝宝石晶体生长炉

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115404538A (zh) * 2022-07-20 2022-11-29 中国电子科技集团公司第二十六研究所 一种可实现晶体连续生长的装置
CN115404538B (zh) * 2022-07-20 2023-08-22 中国电子科技集团公司第二十六研究所 一种可实现晶体连续生长的装置

Similar Documents

Publication Publication Date Title
WO2021088314A1 (zh) 一种多次籽晶可替换的导膜法蓝宝石晶体生长炉
CN102758249B (zh) 一种无色刚玉单晶的制备方法
CN1724722A (zh) 大尺寸蓝宝石单晶的冷心放肩微量提拉制备法
CN103060901B (zh) 导模法生长多条晶体的制备工艺
CN110257901B (zh) 大直径高效n型单晶硅的制备工艺
CN110923815B (zh) 一种基于籽晶替换方案的导膜法蓝宝石晶体生长炉
CN101970728B (zh) 单晶制造装置及单晶的制造方法
CN114232070B (zh) 一种提拉法生长氧化镓晶体的双腔结构与方法
CN104562183A (zh) 大尺寸稀土掺杂氟化钇钡单晶生长方法
CN113638048B (zh) 一种vgf法生长磷化铟单晶的方法
CN202989351U (zh) 基于多加热器的铸锭炉热场结构
CN206157273U (zh) 一种新型单晶炉
CN114059162B (zh) 氧化镓晶体生长装置及晶体生长方法
WO2022052080A1 (zh) 一种多次籽晶可替换的导膜法蓝宝石晶体生长炉
CN113073380A (zh) 一种节能型晶体生长单晶炉设备及其使用方法
CN114737253B (zh) 生长大尺寸蓝宝石单晶板材的单晶炉热场结构及方法
WO2022052079A1 (zh) 一种基于籽晶替换方案的导膜法蓝宝石晶体生长炉
CN114941171B (zh) 一种用直拉法生长准矩形柱体单晶硅的装置和工艺方法
CN110453283A (zh) 一种封盖式引晶的导模法生长封口蓝宝石管的模具和方法
CN213652729U (zh) 一种碳化硅晶体微管愈合用装置
KR101292703B1 (ko) 단결정 성장장치
CN202081191U (zh) 一种蓝宝石生长炉
CN114592236A (zh) 一种p型掺镓硅单晶的生长方法
CN105401211B (zh) 拉制c轴蓝宝石单晶长晶炉及方法
CN219449950U (zh) 一种全自动硅芯生长设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20952868

Country of ref document: EP

Kind code of ref document: A1