WO2022050132A1 - 画像表示装置及び電子機器 - Google Patents

画像表示装置及び電子機器 Download PDF

Info

Publication number
WO2022050132A1
WO2022050132A1 PCT/JP2021/031006 JP2021031006W WO2022050132A1 WO 2022050132 A1 WO2022050132 A1 WO 2022050132A1 JP 2021031006 W JP2021031006 W JP 2021031006W WO 2022050132 A1 WO2022050132 A1 WO 2022050132A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
display device
transmission window
light emitting
image display
Prior art date
Application number
PCT/JP2021/031006
Other languages
English (en)
French (fr)
Inventor
誠一郎 甚田
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to KR1020237005230A priority Critical patent/KR20230061348A/ko
Priority to DE112021004550.4T priority patent/DE112021004550T5/de
Priority to US18/042,388 priority patent/US20230329036A1/en
Publication of WO2022050132A1 publication Critical patent/WO2022050132A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1248Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes

Definitions

  • This disclosure relates to image display devices and electronic devices.
  • Recent electronic devices such as smartphones, mobile phones, and PCs (Personal Computers) are equipped with various sensors such as cameras on the frame (bezel) of the display panel.
  • the number of sensors installed is increasing, and in addition to cameras, there are sensors for face recognition, infrared sensors, motion detection sensors, and the like.
  • a technique has been proposed in which an image sensor module is placed directly under the display panel and the subject light passing through the display panel is photographed by the image sensor module. In order to arrange the image sensor module directly under the display panel, it is necessary to make the display panel transparent (see Patent Document 1).
  • opaque members such as pixel circuits and wiring patterns are arranged in each pixel of the display panel, and in addition, an insulating layer having low transmittance is also arranged. Therefore, when the image sensor module is placed directly under the display panel, the light incident on the display panel is irregularly reflected, refracted and diffracted in the display panel, and the light generated by these reflections, refractions and diffractions. It is incident on the image sensor module in a state where (hereinafter referred to as diffracted light) is generated. If shooting is performed with diffracted light generated, the image quality of the subject image deteriorates.
  • the present disclosure provides an image display device and an electronic device capable of suppressing the generation of diffracted light.
  • a plurality of pixels arranged in a two-dimensional manner are provided. At least a part of the plurality of pixels The first self-luminous element and The first light emitting region emitted by the first self-luminous element and Provided is an image display device comprising a non-light emitting region having a transmission window having a predetermined shape for transmitting visible light.
  • Two or more pixels having the non-light emitting region having different shapes of the transmission windows may be provided.
  • the non-light emitting region may be arranged at a position overlapping with a light receiving device that receives light incident through the image display device when viewed in a plan view from the display surface side of the image display device.
  • the pixel circuit connected to the first self-luminous element may be arranged in the first light emitting region.
  • the non-light emitting region may have a plurality of the transmission windows arranged apart from each other in one pixel.
  • the transparent window may be arranged so as to straddle two or more pixels.
  • An optical member that is arranged on the light incident side of the transmission window and refracts the incident light to guide the incident light to the transmission window may be provided.
  • the optical member is The first optical system that refracts the incident light in the optical axis direction, It has a second optical system that parallelizes the light refracted by the first optical system, and has.
  • the transmission window may transmit light parallelized by the second optical system.
  • a first optical member arranged on the light incident side of the transmission window and refracting the incident light to guide the incident light to the transmission window.
  • a second optical member which is arranged on the light emitting side of the transmission window and parallelizes the light emitted from the transmission window and guides the light to the light receiving device, may be provided.
  • the first pixel area including some of the plurality of pixels and A second pixel area including at least a part of the pixels other than the pixels in the first pixel area among the plurality of pixels is provided.
  • the pixel in the first pixel region has the first self-luminous element, the first light emitting region, and the non-light emitting region.
  • the pixels in the second pixel area are The second self-luminous element and It may have a second light emitting region that is emitted by the second self-luminous element and has a larger area than the first light emitting region.
  • the first pixel area may be provided at a plurality of places in the pixel display area at a distance from each other.
  • two or more pixels having the transmission window having different shapes may be provided so that the shape of the diffracted light due to the light transmitted through the transmission window is different.
  • the first self-luminous element is With the lower electrode layer, A display layer arranged on the lower electrode layer and An upper electrode layer arranged on the display layer and It has a wiring layer arranged below the lower electrode layer and conducted to the lower electrode layer via a contact extending from the lower electrode layer in the stacking direction.
  • the shape of the transmission window when viewed in a plan view from the display surface side of the plurality of pixels may be defined by the end portion of the lower electrode layer.
  • the first self-luminous element is With the lower electrode layer, A display layer arranged on the lower electrode layer and An upper electrode layer arranged on the display layer and It has a wiring layer arranged below the lower electrode layer and conducted to the lower electrode layer via a contact extending from the lower electrode layer in the stacking direction.
  • the shape of the transmission window when viewed in a plan view from the display surface side of the plurality of pixels may be defined by the end portion of the wiring layer.
  • the wiring layer has a plurality of laminated metal layers, and has a plurality of laminated metal layers.
  • the shape of the transmission window when viewed in a plan view from the display surface side of the plurality of pixels may be defined by the end portion of at least one metal layer of the plurality of metal layers.
  • the metal layer that defines the shape of the transmission window when viewed in a plan view from the display surface side of the plurality of pixels may be an electrode of a capacitor in a pixel circuit.
  • the entire area of the first light emitting region may be covered with the lower electrode layer except for the region of the transmission window.
  • an image display device having a plurality of pixels arranged two-dimensionally and A light receiving device for receiving light incident through the image display device.
  • the image display device has a first pixel region including a part of the plurality of pixels.
  • the part of the pixels in the first pixel area The first self-luminous element and The first light emitting region emitted by the first self-luminous element and It has a non-emissive region, which has a transmission window of a predetermined shape that allows visible light to pass through.
  • An electronic device is provided in which at least a part of the first pixel region is arranged so as to overlap the light receiving device when viewed in a plan view from the display surface side of the image display device.
  • the light receiving device may receive light through the non-light emitting region.
  • the light receiving device includes an image sensor that photoelectrically converts light incident through the non-light emitting region, a distance measuring sensor that receives light incident through the non-light emitting region and measures a distance, and an incident light through the non-light emitting region. It may include at least one of a temperature sensor that measures the temperature based on the emitted light.
  • Sectional view of the image sensor module. The figure schematically explaining the optical composition of an image sensor module. The figure explaining the optical path until the light from a subject is imaged on an image sensor.
  • the cross-sectional view which shows an example of the laminated structure of a display layer.
  • the cross-sectional view which shows the 1st example of the cross-sectional structure of the 1st pixel area.
  • the plan layout view according to the 1st modification of FIG. FIG. 19 is a cross-sectional view taken along the line AA.
  • the plan layout view according to the 2nd modification of FIG. FIG. 21 is a cross-sectional view taken along the line AA of FIG.
  • the plan layout view according to the 3rd modification of FIG. FIG. 23 is a sectional view taken along line AA of FIG. 23.
  • FIG. 27 The circuit diagram which shows the 2nd example of the detailed circuit composition of a pixel circuit.
  • the plan layout view according to the 4th modification of FIG. FIG. 27 is a cross-sectional view taken along the line AA of FIG. 27.
  • the figure which shows the example which the transparent window is a rectangle. It is a figure which shows the diffracted light which is generated when the parallel light is made incident on the transmission window of FIG. 29A.
  • the figure which shows the example which the transmission window is circular.
  • FIG. 3 is a diagram showing diffracted light generated when parallel light is incident on the transmission window of FIG. 30A.
  • FIG. 5 is a cross-sectional view showing an example in which a microlens is arranged on the light incident side of the first pixel region. The figure which showed the traveling direction of the light incident on the 1st pixel area in the absence of a microlens by an arrow.
  • FIG. 1 is a plan view and a cross-sectional view of an electronic device 50 provided with an image display device 1 according to the first embodiment of the present disclosure.
  • the image display device 1 according to the present embodiment includes a display panel 2.
  • flexible printed circuit boards (FPCs) 3 are connected to the display panel 2.
  • the display panel 2 is, for example, a glass substrate or a transparent film in which a plurality of layers are laminated, and a plurality of pixels are arranged vertically and horizontally on the display surface 2z.
  • a chip (COF: Chip On Film) 4 incorporating at least a part of the drive circuit of the display panel 2 is mounted on the FPC 3.
  • the drive circuit may be laminated on the display panel 2 as COG (Chip On Glass).
  • the image display device 1 can arrange various sensors 5 that receive light through the display panel 2 directly under the display panel 2.
  • the configuration including the image display device 1 and the sensor 5 is referred to as an electronic device 50.
  • the type of the sensor 5 provided in the electronic device 50 is not particularly limited, but for example, the light is projected through the image sensor and the display panel 2 that photoelectrically convert the light incident on the display panel 2, and is reflected by the object.
  • a distance measurement sensor that receives light received through the display panel 2 and measures the distance to an object, a temperature sensor that measures the temperature based on the light incident through the display panel 2, and the like.
  • the sensor 5 arranged directly below the display panel 2 has at least the function of a light receiving device that receives light.
  • the sensor 5 may have a function of a light emitting device that emits light through the display panel 2.
  • FIG. 1 shows an example of a specific location of the sensor 5 arranged directly under the display panel 2 with a broken line.
  • the sensor 5 is arranged, for example, on the back surface side above the center of the display panel 2.
  • the location of the sensor 5 in FIG. 1 is an example, and the location of the sensor 5 is arbitrary.
  • FIG. 1 shows an example in which the sensor 5 is arranged at one place of the display panel 2, the sensor 5 may be arranged at a plurality of places as shown in FIG. 2A or FIG. 2B.
  • FIG. 2A shows an example in which two sensors 5 are arranged side by side on the back surface side above the center of the display panel 2.
  • FIG. 2B shows an example in which the sensors 5 are arranged at the four corners of the display panel 2. The reason why the sensors 5 are arranged at the four corners of the display panel 2 as shown in FIG. 2B is as follows. Since the pixel region overlapping the sensor 5 in the display panel 2 is devised to increase the transmittance, there is a possibility that the display quality may be slightly different from the pixel region around the pixel region. be.
  • the types of the plurality of sensors 5 may be the same or different.
  • a plurality of image sensor modules 9 having different focal lengths may be arranged, or different types of sensors 5 such as an image pickup sensor 5 and a ToF (Time of Flight) sensor 5 may be arranged. ..
  • FIG. 3 is a diagram schematically showing the structure of the pixel 7 in the first pixel region 6 and the structure of the pixel 7 in the second pixel region 8.
  • the pixel 7 in the first pixel region 6 has a first self-luminous element 6a, a first light emitting region 6b, and a non-light emitting region 6c.
  • the first light emitting region 6b is a region where light is emitted by the first self-luminous element 6a.
  • the non-light emitting region 6c has a transmission window 6d having a predetermined shape for transmitting visible light, although the first self-luminous element 6a does not emit light.
  • the pixel 7 in the second pixel region 8 has a second self-luminous element 8a and a second light emitting region 8b.
  • the second light emitting region 8b is emitted by the second self-luminous element 8a and has a larger area than the first light emitting region 6b.
  • Typical examples of the first self-luminous element 6a and the second self-luminous element 8a are organic EL (Electroluminescence) elements (hereinafter, also referred to as OLED: Organic Light Emitting Diode). Since the backlight can be omitted from the self-luminous element, at least a part of the self-luminous element can be made transparent. In the following, an example of using an OLED as a self-luminous element will be mainly described.
  • the structure of the pixels 7 may be the same in the display panel 2 instead of changing the structure of the pixels 7 in the pixel area that overlaps with the sensor 5 and the pixel area that does not overlap with the sensor 5.
  • all the pixels 7 may be configured by the first light emitting region 6b and the non-light emitting region 6c in FIG. 3 so that the sensor 5 can be arranged on the display panel 2 in an arbitrary position.
  • FIG. 4 is a cross-sectional view of the image sensor module 9.
  • the image sensor module 9 includes an image sensor 9b mounted on a support substrate 9a, an IR (Infrared Ray) cut filter 9c, a lens unit 9d, a coil 9e, a magnet 9f, and the like. It has a spring of 9 g.
  • the lens unit 9d has one or more lenses. The lens unit 9d is movable in the optical axis direction according to the direction of the current flowing through the coil 9e.
  • the internal configuration of the image sensor module 9 is not limited to that shown in FIG.
  • FIG. 5 is a diagram schematically explaining the optical configuration of the image sensor module 9.
  • the light from the subject 10 is refracted by the lens unit 9d and imaged on the image sensor 9b.
  • the display panel 2 is arranged between the subject 10 and the lens unit 9d. When the light from the subject 10 passes through the display panel 2, it is important to suppress absorption, reflection, and diffraction on the display panel 2.
  • FIG. 6 is a diagram illustrating an optical path until the light from the subject 10 forms an image on the image sensor 9b.
  • each pixel 7 of the display panel 2 and each pixel 7 of the image sensor 9b are schematically represented by rectangular squares. As shown, each pixel 7 of the display panel 2 is much larger than each pixel 7 of the image sensor 9b.
  • Light from a specific position of the subject 10 passes through the transmission window 6d of the display panel 2, is refracted by the lens unit 9d of the image sensor module 9, and is imaged by the specific pixel 7 on the image sensor 9b. In this way, the light from the subject 10 passes through the plurality of transmission windows 6d provided in the plurality of pixels 7 in the first pixel region 6 of the display panel 2 and is incident on the image sensor module 9.
  • FIG. 7 is a circuit diagram showing a basic configuration of a pixel circuit 12 including an OLED 5.
  • the pixel circuit 12 of FIG. 7 includes a drive transistor Q1, a sampling transistor Q2, and a pixel capacitance Cs in addition to the OLED 5.
  • the sampling transistor Q2 is connected between the signal line Sig and the gate of the drive transistor Q1.
  • a scanning line Gate is connected to the gate of the sampling transistor Q2.
  • the pixel capacitance Cs is connected between the gate of the drive transistor Q1 and the anode electrode of the OLED 5.
  • the drive transistor Q1 is connected between the power supply voltage node Vccp and the anode of the OLED 5.
  • FIG. 8 is a plan layout diagram of the pixels 7 in the second pixel region 8 in which the sensor 5 is not directly arranged.
  • the pixel 7 in the second pixel region 8 has a general pixel configuration.
  • Each pixel 7 has a plurality of color pixels 7 (for example, three color pixels 7 of RGB).
  • FIG. 8 shows a planar layout of a total of four color pixels 7, two color pixels 7 in the horizontal direction and two color pixels 7 in the vertical direction.
  • Each color pixel 7 has a second light emitting region 8b.
  • the second light emitting region 8b extends over almost the entire area of the color pixel 7.
  • a pixel circuit 12 having a second self-luminous element 8a (OLED5) is arranged in the second light emitting region 8b.
  • the two columns on the left side of FIG. 8 show the planar layout below the anode electrode 12a, and the two columns on the right side of FIG. 8 show the planar layout of the anode electrode 12a and the display layer 2a arranged on the an
  • the anode electrode 12a and the display layer 2a are arranged over almost the entire area of the color pixel 7, and the entire area of the color pixel 7 is the second light emitting region 8b that emits light.
  • the pixel circuit 12 of the color pixel 7 is arranged in the region of the upper half in the color pixel 7. Further, on the upper end side of the color pixel 7, a wiring pattern for the power supply voltage Vccp and a wiring pattern for the scanning line are arranged in the horizontal direction X. Further, a wiring pattern of the signal line Sigma is arranged along the boundary of the color pixel 7 in the vertical direction Y.
  • FIG. 9 is a cross-sectional view of the pixel 7 (color pixel 7) in the second pixel region 8 in which the sensor 5 is not arranged directly below.
  • FIG. 9 shows a cross-sectional structure in the A-A line direction of FIG. 8, and more specifically, shows a cross-sectional structure around the drive transistor Q1 in the pixel circuit 12.
  • the cross-sectional views shown in the drawings attached to the present specification, including FIG. 9, emphasize the characteristic layer structure, and the ratio of the vertical and horizontal lengths does not necessarily match the plan layout. do not do.
  • the upper surface of FIG. 9 is the display surface side of the display panel 2, and the bottom surface of FIG. 9 is the side on which the sensor 5 is arranged.
  • the first transparent substrate 31 From the bottom surface side to the top surface side (light emitting side) of FIG. 9, the first transparent substrate 31, the first insulating layer 32, the first wiring layer (gate electrode) 33, the second insulating layer 34, and the second wiring.
  • the two transparent substrates 41 are laminated in this order.
  • the first transparent substrate 31 and the second transparent substrate 41 are preferably formed of, for example, quartz glass or a transparent film having excellent visible light transmittance.
  • either one of the first transparent substrate 31 and the second transparent substrate 41 may be formed of quartz glass and the other may be formed of a transparent film.
  • a colored film having a low transmittance for example, a polyimide film may be used.
  • at least one of the first transparent substrate 31 and the second transparent substrate 41 may be formed of a transparent film.
  • a first wiring layer (M1) 33 for connecting each circuit element in the pixel circuit 12 is arranged on the first transparent substrate 31.
  • a first insulating layer 32 is arranged on the first transparent substrate 31 so as to cover the first wiring layer 33.
  • the first insulating layer 32 is, for example, a laminated structure of a silicon nitride layer and a silicon oxide layer having excellent visible light transparency.
  • a semiconductor layer 42 forming a channel region of each transistor in the pixel circuit 12 is arranged on the first insulating layer 32.
  • FIG. 9 schematically shows a cross-sectional structure of a drive transistor Q1 having a gate formed in the first wiring layer 33, a source and a drain formed in the second wiring layer 35, and a channel region formed in the semiconductor layer 42.
  • other transistors are also arranged in these layers 33, 35, 42 and are connected to the first wiring layer 33 by contacts (not shown).
  • a second insulating layer 34 is arranged on the first insulating layer 32 so as to cover a transistor or the like.
  • the second insulating layer 34 is, for example, a laminated structure of a silicon oxide layer, a silicon nitride layer, and a silicon oxide layer having excellent visible light transparency.
  • a trench 34a is formed in a part of the second insulating layer 34, and by filling the trench 34a with the contact member 35a, the second wiring layer (M2) 35 connected to the source, drain, etc. of each transistor is formed. It is formed.
  • FIG. 9 shows a second wiring layer 35 for connecting the drive transistor Q1 and the anode electrode 12a of the OLED 5, but the second wiring layer 35 connected to other circuit elements is also arranged on the same layer. Has been done.
  • a third wiring layer (not shown in FIG. 9) may be provided between the second wiring layer 35 and the anode electrode 12a.
  • the third wiring layer can be used as wiring in the pixel circuit, or may be used for connection with the anode electrode 12a.
  • a third insulating layer 36 for covering the second wiring layer 35 and flattening the surface is arranged on the second insulating layer 34.
  • the third insulating layer 36 is made of a resin material such as acrylic resin.
  • the film thickness of the third insulating layer 36 is larger than the film thickness of the first to second insulating layers 32 and 34.
  • a trench 36a is formed in a part of the upper surface of the third insulating layer 36, and the contact member 36b is filled in the trench 36a to conduct conduction with the second wiring layer 35, and the contact member 36b is connected to the third insulating layer.
  • the anode electrode layer 38 is formed by extending to the upper surface side of the 36.
  • the anode electrode layer 38 has a laminated structure and includes a metal material layer.
  • the metal material layer generally has a low visible light transmittance and functions as a reflective layer that reflects light.
  • As a specific metal material for example, AlNd or Ag can be applied.
  • the lowermost layer of the anode electrode layer 38 is a portion in contact with the trench 36a and is easily broken, at least the corner portion of the trench 36a may be formed of a metal material such as AlNd.
  • the uppermost layer of the anode electrode layer 38 is formed of a transparent conductive layer such as ITO (Indium Tin Oxide).
  • the anode electrode layer 38 may have, for example, an ITO / Ag / ITO laminated structure. Ag is originally opaque, but by reducing the film thickness, the visible light transmittance is improved. Since the strength is weakened when Ag is thinned, it can function as a transparent conductive layer by forming a laminated structure in which ITO is arranged on both sides.
  • a fourth insulating layer 37 is arranged on the third insulating layer 36 so as to cover the anode electrode layer 38.
  • the fourth insulating layer 37 is also made of a resin material such as acrylic resin, like the third insulating layer 36.
  • the fourth insulating layer 37 is patterned according to the arrangement location of the OLED 5, and a recess 37a is formed.
  • the display layer 2a is arranged so as to include the bottom surface and the side surface of the recess 37a of the fourth insulating layer 37.
  • the display layer 2a has a laminated structure as shown in FIG. 10, for example.
  • the display layer 2a shown in FIG. 10 has an anode 2b, a hole injection layer 2c, a hole transport layer 2d, a light emitting layer 2e, an electron transport layer 2f, an electron injection layer 2g, and a cathode 2h in the order of stacking from the anode electrode layer 38 side. It is a laminated structure in which.
  • the anode 2b is also referred to as an anode electrode 12a.
  • the hole injection layer 2c is a layer into which holes are injected from the anode electrode 12a.
  • the hole transport layer 2d is a layer that efficiently transports holes to the light emitting layer 2e.
  • the light emitting layer 2e recombines holes and electrons to generate excitons, and emits light when the excitons return to the ground state.
  • the cathode 2h is also called a cathode electrode.
  • the electron injection layer 2g is a layer into which electrons from the cathode 2h are injected.
  • the electron transport layer 2f is a layer that efficiently transports electrons to the light emitting layer 2e.
  • the light emitting layer 2e contains an organic substance.
  • a cathode electrode layer 39 is arranged on the display layer 2a shown in FIG.
  • the cathode electrode layer 39 is formed of a transparent conductive layer like the anode electrode layer 38.
  • the transparent conductive layer of the anode electrode layer 38 is formed of, for example, ITO / Ag / ITO, and the transparent electrode layer of the cathode electrode layer 39 is formed of, for example,
  • a fifth insulating layer 40 is arranged on the cathode electrode layer 39.
  • the fifth insulating layer 40 is formed of an insulating material that flattens the upper surface and has excellent moisture resistance.
  • a second transparent substrate 41 is arranged on the fifth insulating layer 40.
  • the anode electrode layer 38 that functions as a reflective film is arranged in almost the entire area of the color pixels 7, and visible light cannot be transmitted.
  • FIG. 11 is a plan layout view of pixels 7 in the first pixel area 6 in which the sensor 5 is arranged directly below.
  • One pixel 7 has a plurality of color pixels 7 (for example, three color pixels 7 of RGB).
  • FIG. 11 shows a planar layout of a total of four color pixels 7, two color pixels 7 in the horizontal direction and two color pixels 7 in the vertical direction.
  • Each color pixel 7 has a first light emitting region 6b and a non-light emitting region 6c.
  • the first light emitting region 6b is a region including a pixel circuit 12 having a first self-luminous element 6a (OLED5) and being emitted by the OLED 5.
  • the non-light emitting region 6c is a region through which visible light is transmitted.
  • the non-light emitting region 6c cannot emit the light from the OLED 5, but can transmit the incident visible light. Therefore, by arranging the sensor 5 directly below the non-light emitting region 6c, the sensor 5 can receive visible light.
  • FIG. 12 is a cross-sectional view of the pixel 7 in the first pixel region 6 in which the sensor 5 is arranged directly below.
  • FIG. 12 shows the cross-sectional structure of FIG. 11 in the AA line direction, and shows the cross-sectional structure from the first light emitting region 6b to the non-light emitting region 6c.
  • the third insulating layer 36, the fourth insulating layer 37, the anode electrode layer 38, the display layer 2a, and the cathode electrode layer 39 are removed. Therefore, the light incident on the non-light emitting region 6c from above (display surface side) in FIG. 12 is emitted from the bottom surface (back surface side) and incident on the sensor 5 without being absorbed or reflected in the non-light emitting region 6c. Will be done.
  • a part of the light incident on the first pixel region 6 is incident on not only the non-light emitting region 6c but also on the first light emitting region 6b and diffracted to generate diffracted light.
  • FIG. 13 is a diagram illustrating a diffraction phenomenon that generates diffracted light.
  • Parallel light such as sunlight or highly directional light is diffracted at the boundary between the non-light emitting region 6c and the first light emitting region 6b to generate high-order diffracted light including the primary diffracted light.
  • the 0th-order diffracted light is light traveling in the optical axis direction of the incident light, and is the light having the highest light intensity among the diffracted light. in short, The 0th-order diffracted light is the object to be photographed and is the light to be photographed. The higher the order of the diffracted light, the more the light travels in a direction away from the 0th-order diffracted light, and the light intensity becomes weaker.
  • higher-order diffracted light including the first-order diffracted light is collectively called diffracted light.
  • the diffracted light is light that does not originally exist in the subject light, and is unnecessary light for photographing the subject 10.
  • the brightest bright spot is the 0th-order light
  • the higher-order diffracted light spreads from the 0th-order diffracted light in a cross shape.
  • the subject light is white light
  • the diffraction angle is different for each of a plurality of wavelength components contained in the white light, so that iridescent diffracted light f is generated.
  • the shape of the diffracted light reflected in the captured image is, for example, a cross shape, but the shape of the diffracted light f is determined by the shape of the portion through which the light is transmitted in the non-light emitting region 6c, as will be described later. If the shape of the transmitted portion is known, the shape of the diffracted light can be estimated by simulation from the diffraction principle.
  • a light transmission region exists not only in the non-light emitting region 6c but also in the wiring gap and around the first light emitting region 6b. As described above, when the light transmission region having an irregular shape exists at a plurality of locations in the pixel 7, the incident light is diffracted in a complicated manner, and the shape of the diffracted light f is also complicated.
  • FIG. 14 is a planar layout diagram of an image display device 1 according to an embodiment that solves a problem that may occur in the planar layout of FIG.
  • an anode electrode 12a is arranged in the entire area of the first light emitting region 6b in the first pixel region 6 to prevent light from transmitting, and a transmission window 6d having a predetermined shape is provided in the non-light emitting region 6c. Only the inside of the transmission window 6d allows the subject light to pass through.
  • FIG. 14 shows an example in which the periphery of the transmission window 6d in the non-light emitting region 6c is covered with the anode electrode 12a, but as will be described later, the member defining the shape of the transmission window 6d is not necessarily the anode electrode 12a.
  • the planar shape of the transparent window 6d is rectangular.
  • the planar shape of the transmission window 6d is preferably as simple as possible. The simpler the shape, the simpler the generation direction of the diffracted light f, and the diffracted light shape can be obtained in advance by simulation.
  • the planar layout of FIG. 15 is more desirable than that of FIG.
  • the shape of the transmission window 6d in the non-light emitting region 6c in the first pixel region 6 in which the sensor 5 is arranged directly below can be defined by any of a plurality of members.
  • FIG. 16 is a cross-sectional view showing a first example of the cross-sectional structure of the first pixel region 6.
  • FIG. 16 shows an example in which the shape of the transmission window 6d in the non-light emitting region 6c is defined by the anode electrode 12a (anode electrode layer 38).
  • the end portion of the anode electrode layer 38 is formed in a rectangular shape as shown in FIG. 14 when viewed in a plan view from the display surface side.
  • the shape of the transmission window 6d is defined by the end portion of the anode electrode layer 38.
  • the third insulating layer 36 and the fourth insulating layer 37 inside the transmission window 6d are left as they are. Therefore, when the materials of the third insulating layer 36 and the fourth insulating layer 37 are colored resin layers, the visible light transmittance may decrease, but at least a part of the visible light is transmitted, so that the visible light is transmitted.
  • the third insulating layer 36 and the fourth electrode layer 37 in the window 6d may be left.
  • FIG. 17 is a cross-sectional view showing a second example of the cross-sectional structure of the first pixel region 6.
  • FIG. 17 defines the shape of the transmission window 6d at the end of the anode electrode layer 38 as in FIG. FIG. 17 differs from FIG. 16 in that the fourth insulating layer 37 is removed inside the transmission window 6d. Since the fourth insulating layer 37 does not exist inside the transmission window 6d, absorption and reflection of light when light is transmitted through the fourth insulating layer 37 can be suppressed, and the amount of light incident on the sensor 5 can be increased. , The light receiving sensitivity of the sensor 5 becomes high.
  • FIG. 18 is a cross-sectional view showing a third example of the cross-sectional structure of the first pixel region 6.
  • FIG. 18 defines the shape of the transmission window 6d at the end of the anode electrode layer 38 as in FIGS. 16 and 17.
  • FIG. 18 is different from FIGS. 16 and 17 in that the third insulating layer 36 and the fourth insulating layer 37 are removed inside the transmission window 6d. Since the third insulating layer 36 and the fourth insulating layer 37 do not exist inside the transmission window 6d, the amount of light incident on the sensor 5 can be increased as compared with FIG. 17, and the light received by the sensor 5 can be further increased as compared with FIG. You can increase the sensitivity.
  • the end portion of the third insulating layer 36 arranged under the anode electrode layer 38 is provided at substantially the same position as the end portion of the anode electrode layer 38.
  • the end of the third insulating layer 36 may protrude toward the transmission window 6d from the end of the anode electrode layer 38.
  • the shape of the transmission window 6d is the end of the anode electrode layer 38. It is ambiguous whether it is defined by the part or by the end of the third insulating layer 36.
  • the method of generating the diffracted light f may change depending on how the end of the third insulating layer 36 protrudes.
  • FIG. 19 is a plan layout view according to the first modification of FIG. 14, and FIG. 20 is a sectional view taken along line AA of FIG. FIG. 20 shows a fourth example of the cross-sectional structure of the first pixel region 6.
  • the shape of the transmission window 6d is defined by the end portion of the second wiring layer (M2) 35 arranged below the third insulating layer 36.
  • the second wiring layer (M2) 35 is formed in a rectangular shape when viewed in a plan view from the display surface direction. Since the second wiring layer (M2) 35 is made of a metal material such as aluminum that does not transmit visible light, the incident light to the first pixel region 6 passes through the inside of the transmission window 6d and enters the sensor 5. Will be done.
  • the second wiring layer (M2) 35 since the second wiring layer (M2) 35 is arranged on the transmission window 6d side of the third insulating layer 36, the second wiring layer (M2) 35 may have manufacturing variations.
  • the shape of the transmission window 6d can be defined.
  • FIG. 21 is a plan layout view according to the second modification of FIG. 14, and FIG. 22 is a sectional view taken along line AA of FIG. 21.
  • the shape of the transmission window 6d is defined by the end portion of the first wiring layer (M1) 33 arranged below the third insulating layer 36.
  • the first wiring layer (M1) 33 is formed in a rectangular shape when viewed in a plan view from the display surface direction. Since the first wiring layer (M1) 33 is made of a metal material such as aluminum that does not transmit visible light, the incident light to the first pixel region 6 passes through the inside of the transmission window 6d and enters the sensor 5. Will be done.
  • FIGS. 19 to 22 show an example in which the shape of the transmission window 6d is defined at the end of the wiring layer
  • the capacitor may be formed by the wiring layer that defines the shape of the transmission window 6d. As a result, it is not necessary to separately form a capacitor, and the cross-sectional structure of the image display device 1 can be simplified.
  • FIG. 23 is a plan layout view according to the third modification of FIG. 14, and FIG. 24 is a sectional view taken along line AA of FIG. 23.
  • the shape of the transmission window 6d is defined by the first wiring layer (M1) 33.
  • a metal layer 44 is arranged so as to sandwich the first insulating layer 32 directly above the first wiring layer (M1) 33 provided to define the shape of the transmission window 6d to form a capacitor 43.
  • the capacitor 43 can be used as a capacitor provided in the pixel circuit 12.
  • the capacitor 43 shown in FIG. 24 can be used, for example, as the pixel capacitance Cs in the pixel circuit 12 of FIG. 7.
  • FIG. 25 is a circuit diagram showing a first example of a detailed circuit configuration of the pixel circuit 12.
  • the pixel circuit 12 of FIG. 25 has three transistors Q3 to Q5 in addition to the drive transistor Q1 and the sampling transistor Q2 shown in FIG. 7.
  • the drain of the transistor Q3 is connected to the gate of the drive transistor Q1, the source of the transistor Q3 is set to the voltage V1, and the gate signal Gate1 is input to the gate of the transistor Q3.
  • the drain of the transistor Q4 is connected to the anode electrode 12a of the OLED 5, the source of the transistor Q4 is set to the voltage V2, and the gate signal Gate2 is input to the gate of the transistor Q4.
  • Transistors Q1 to Q4 are N-type transistors, while transistors Q5 are P-type transistors.
  • the source of the transistor Q5 is set to the power supply voltage Vccp
  • the drain of the transistor Q5 is connected to the drain of the drive transistor Q1
  • the gate signal Gate3 is input to the gate of the transistor Q5.
  • FIG. 26 is a circuit diagram showing a second example of a detailed circuit configuration of the pixel circuit 12.
  • Each of the transistors Q1a to Q5a in the pixel circuit 12 of FIG. 26 is the reverse of the conductive type of each of the transistors Q1 to Q5 in the pixel circuit 12 of FIG. 25.
  • the pixel circuit 12 in FIG. 26 is partially different from the pixel circuit 12 in FIG. 25 except that the conductive type of the transistor is reversed.
  • 25 and 26 are merely examples of the pixel circuit 12, and various changes in the circuit configuration can be considered.
  • the capacitor 43 formed by the first wiring layer (M1) 33 of FIG. 24 and the metal layer immediately above the first wiring layer (M1) 33 can be used as the capacitors Cs in the pixel circuit 12 of FIG. 25 or FIG.
  • 19 to 26 show an example in which the wiring layer constituting a part of the pixel circuit 12 is used to define the shape of the transmission window 6d, but the transmission window 6d is separated from the wiring layer of the pixel circuit 12.
  • a metal layer may be provided to define the shape of the above.
  • FIG. 27 is a plan layout view according to the fourth modification of FIG. 14, and FIG. 28 is a sectional view taken along line AA of FIG. 27.
  • the shape of the transmission window 6d is defined by the end portion of the third metal layer (M3) 45.
  • the third metal layer (M3) 45 that defines the shape of the transmission window 6d may form a part of the wiring layer of the pixel circuit 12, or is newly provided to define the shape of the transmission window 6d. It may be a window.
  • the pattern provided to define the opening shape of FIGS. 19, 21, and 27 is shown as an electrically floating image, but since it is easily affected by electrical factors such as potential coupling, some potential is present. It is recommended to connect to. For example, considering FIG. 25, a fixed DC potential (Vccp, Vcath, V1, V2) is the first recommendation, the anode potential is the second recommendation, and other wirings and nodes are the third recommendation.
  • the first wiring layer (M1) 33 and the second wiring layer (M2) 35 used as the wiring of the pixel circuit 12 are adapted to the ideal shape of the transmission window 6d due to the limitation of the wiring of the pixel circuit 12. It may not be possible to place it. Therefore, in FIG. 27, a third wiring layer (M3) 45 is newly provided, and the end portion of the third wiring layer (M3) 45 is arranged at a position where the shape of the transmission window 6d becomes ideal. .. Thereby, the transmission window 6d can be set to an ideal shape without changing the first wiring layer (M1) 33 and the second wiring layer (M2) 35.
  • FIG. 29A shows an example in which the transmission window 6d is rectangular
  • FIG. 29B shows an example of diffracted light f generated when parallel light is incident on the transmission window 6d in FIG. 29A.
  • the transmission window 6d is rectangular
  • cross-shaped diffracted light f is generated.
  • FIG. 30A shows an example in which the transmission window 6d is circular
  • FIG. 30B shows an example of diffracted light f generated when parallel light is incident on the transmission window 6d in FIG. 30A.
  • diffracted light f is generated concentrically. The higher the diffracted light f, the larger the diameter size and the weaker the light intensity.
  • the number of transmission windows 6d in the non-light emitting region 6c is not necessarily limited to one.
  • a plurality of transmission windows 6d may be provided in the non-light emitting region 6c.
  • 31A is a diagram showing an example in which a plurality of circular transmission windows 6d are provided in the non-emission region 6c
  • FIG. 31B is an example of diffracted light f generated when parallel light is incident on each transmission window 6d in FIG. 31A. Is shown.
  • the plurality of transmission windows 6d are provided, the light intensity of the central portion of the diffracted light f is weakened, and the diffracted light f is generated concentrically.
  • FIG. 31A shows an example in which a plurality of circular transmission windows 6d are provided, a plurality of transmission windows 6d having a shape other than the circular shape may be provided. In this case, the shape of the diffracted light f is different from that in FIG. 31B.
  • FIGS. 29A and 29B when the transmission window 6d is rectangular, cross-shaped diffracted light f is generated.
  • a plurality of transmission windows 6d having different directions of the rectangles are provided, and the diffracted lights f generated in the plurality of transmission windows 6d are combined.
  • a method of removing the diffracted light f can be considered.
  • FIG. 32 is a diagram showing a first example of removal of diffracted light f.
  • two image sensor modules 9 are arranged directly under the display panel 2, and in the non-light emitting region 6c of each pixel 7 in the two first pixel regions 6 located directly above the image sensor modules 9.
  • a transparent window 6d having a different rectangular orientation is arranged.
  • a rectangular transmission window 6d is arranged substantially parallel to the boundary line of the pixel 7 in the non-light emitting region 6c in the first pixel region 6 located directly above the image sensor module 9 located on the left side. ing.
  • a rectangular transmission window 6d is arranged in a direction inclined by 45 degrees with respect to the boundary line of the pixel 7. is doing.
  • the cross shape of the diffracted light f1 incident on the image sensor module 9 on the left side and the cross shape of the diffracted light f2 incident on the image sensor module 9 on the right side are 45 degrees different from each other. More specifically, the diffracted light f2 is not generated in the direction in which the diffracted light f1 is generated, and the diffracted light f1 is not generated in the direction in which the diffracted light f2 is generated. Therefore, by combining the captured image g1 of the diffracted light f1 by the image sensor module 9 on the left side and the captured image g2 of the diffracted light f2 by the image sensor module 9 on the right side, as shown in the composite image g3 of FIG. , The diffracted light f other than the light spot of the 0th-order diffracted light at the center position can be removed.
  • the arrangement angles of the transmission windows 6d having the same size and shape are different from each other, the direction in which the diffracted light f is generated is changed, and the diffracted light f generation image is synthesized to cancel the diffracted light f.
  • the sizes and shapes of the plurality of transmission windows 6d to be synthesized do not necessarily have to be the same.
  • FIG. 33 is a diagram showing a second example of removal of diffracted light f.
  • two image sensor modules 9 are arranged directly under the display panel 2, and transparent windows 6d having different shapes and directions are arranged in the two first pixel regions 6 located directly above the image sensor modules 9. Is placed.
  • a transmission window 6d is provided in almost the entire non-light emitting region 6c in the first pixel region 6 located directly above the image sensor module 9 located on the left side. Since the non-light emitting region 6c has a rectangular shape, the shape of the transmission window 6d also has a rectangular shape.
  • the non-light emitting area 6c in the first pixel area 6 located directly above the image sensor module 9 located on the right side is larger than the first pixel area 6 on the left side in a direction inclined by 45 degrees with respect to the boundary line of the pixel 7.
  • a small size transparent window 6d is provided.
  • the size of the transmission window 6d is different on the left side and the right side, and the inclination direction is also different, but the shapes of the diffracted light f3 and f4 are almost the same as the diffracted light f1 and f2 in FIG. (Captured images g4 and g5). Therefore, similarly to FIG. 32, by synthesizing the images of the diffracted light f taken by each image sensor 9b, the diffracted light f is removed except for the light spot of the 0th-order diffracted light as shown in the combined image g6. can.
  • one or more transmission windows 6d are provided for one pixel 7 (or one color pixel 7) is shown, but one is provided with a plurality of pixels 7 (or a plurality of color pixels 7) as a unit.
  • the above transmission window 6d may be provided.
  • FIG. 34 is a diagram showing an example in which one transmission window 6d is provided so as to straddle three pixels 7 (or three color pixels 7).
  • the shape of the transmission window 6d is defined at the end of the second wiring layer (M2) 35.
  • FIG. 35 is a diagram showing a third example of removal of diffracted light f.
  • two image sensor modules 9 are arranged directly under the display panel 2, and in the non-light emitting region 6c of each pixel 7 in the two first pixel regions 6 located directly above the image sensor modules 9.
  • Transparent windows 6d having different shapes and directions are arranged.
  • the non-light emitting region 6c in the first pixel region 6 located directly above the image sensor module 9 located on the left side has a size straddling three pixels 7 (or three color pixels 7).
  • a rectangular transparent window 6d is provided.
  • the non-light emitting area 6c in the first pixel area 6 located directly above the image sensor module 9 located on the right side is larger than the first pixel area 6 on the left side in a direction inclined by 45 degrees with respect to the boundary line of the pixel 7.
  • Three small-sized transparent windows 6d are provided so as to straddle three pixels 7 (or three color pixels 7).
  • the generated diffracted light f5 and f6 are substantially the same as the diffracted light f1 and f2 of FIG. 32 (photographed images g7 and g8).
  • the transmission window 6d is provided in the non-light emitting region 6c in the first pixel region 6 so that the generation direction of the diffracted light f can be predicted in advance.
  • the amount of light received by the sensor 5 is limited, and there is a concern that the detection sensitivity of the sensor 5 may decrease. Therefore, it is desirable to take measures to collect as much light incident on the first pixel region 6 as possible on the transmission window 6d.
  • FIG. 36 is a cross-sectional view showing an example in which the microlens (optical system) 20 is arranged on the light incident side of the first pixel region 6.
  • the microlens 20 is arranged on the second transparent substrate 41 of the display panel 2, or is formed by processing the second transparent substrate 41.
  • the microlens 20 can be formed by arranging a resist on a transparent resin material having excellent visible light transmittance and performing wet etching or dry etching.
  • FIG. 37A is a diagram showing the traveling direction of the light incident on the first pixel region 6 when the microlens 20 is not provided
  • FIG. 37B is an arrow showing the traveling direction of the light when the microlens 20 of FIG. 36 is provided. It is a figure shown by. Without the microlens 20, the light incident on the opaque member in the first pixel region 6 cannot pass through the transmission window 6d, so that the amount of light transmitted through the transmission window 6d is reduced. On the other hand, when the microlens 20 is provided, the parallel light incident on the microlens 20 is refracted in the focal direction of the microlens 20. Therefore, by optimizing the curvature of the microlens 20 and adjusting the focal position, the amount of light transmitted through the transmission window 6d can be increased.
  • FIG. 38 is a diagram showing the traveling direction of the light refracted by the microlens 20 by an arrow line. As shown in the figure, since the microlens 20 refracts light, a part of the refracted light passes through the transmission window 6d and reaches a place away from the light receiving surface of the sensor 5 and is incident on the microlens 20. There is a risk that the emitted light cannot be used effectively.
  • a plurality of microlenses 20a and 20b having different convex directions may be arranged on the light incident side of the first pixel region 6.
  • the light refracted by the first microlens 20a is converted into parallel light having a small beam diameter by the second microlens 20b and incident on the transmission window 6d. Will be done.
  • the curvature of the second microlens 20b according to the size of the transmission window 6d, parallel light can be incident over the entire area of the transmission window 6d, and light with less image distortion can be received by the sensor 5. ..
  • the two microlenses 20a and 20b shown in FIG. 39 can be formed by, for example, laminating transparent resin layers, one of which is processed by wet etching, and the other of which is processed by dry etching.
  • a microlens (first optical system) 20a is provided on the light incident side of the first pixel region 6.
  • another microlens (second optical system) 20b may be arranged on the light emitting side of the first pixel region 6.
  • the direction of the convex shape is opposite between the microlens 20a on the light incident side and the microlens 20b on the light emitting side.
  • the light incident on the first microlens 20a is refracted and passed through the transmission window 6d, and then converted into parallel light by the second microlens 20b and incident on the sensor 5.
  • the first transparent resin layer is processed by wet etching or dry etching to form a second microlens 20b, then each layer is formed, and then the second transparent resin layer is formed. Is processed by wet etching or dry etching to form the first microlens 20a.
  • FIG. 41 is a diagram showing the traveling direction of light passing through the two microlenses 20a and 20b of FIG. 40 by arrow lines.
  • the light refracted by the first microlens 20a passes through the transmission window 6d, and then is converted into parallel light by the second microlens 20b and incident on the sensor 5.
  • the light incident on the microlens 20 can be incident on the sensor 5 without leakage, and the light receiving sensitivity of the sensor 5 can be improved.
  • the non-light emitting region 6c is provided in the first pixel region 6 located directly above the sensor 5 arranged on the back surface side of the display panel 2, and the non-light emitting region 6c has a predetermined shape.
  • a transmission window 6d is provided.
  • the light incident on the first pixel region 6 passes through the transmission window 6d and is incident on the sensor 5.
  • Diffracted light f is generated when light is transmitted through the transmission window 6d.
  • the shape of the transmission window 6d a predetermined shape, the generation direction of the diffracted light f can be estimated in advance, and the light receiving signal of the sensor 5 can be used.
  • the influence of the diffracted light f can be removed.
  • the diffracted light f imprinted on the image data captured by the image sensor module 9 can be removed by image processing by estimating the generation direction of the diffracted light f in advance. can.
  • the transmission window 6d in the non-light emitting region 6c can be defined by the end of the anode electrode 12a or the end of the wiring layer, the transmission window 6d having a desired shape and size can be formed relatively easily. Further, since a plurality of transmission windows 6d having different shapes can be formed in the non-light emitting region 6c of the first pixel region 6, the diffracted light f is synthesized by synthesizing the diffracted light f generated by the transmission windows 6d having different shapes. It is also possible to offset the effects of.
  • the microlens 20 are arranged on the light incident side of the first pixel region 6, the light incident on the first pixel region 6 is refracted by the microlens 20 and transmitted to the transmission window 6d of the non-light emitting region 6c. This makes it possible to increase the amount of light transmitted through the transmission window 6d. Further, by providing a plurality of microlenses 20 along the incident direction of the light, the light transmitted through the transmission window 6d can be guided to the light receiving surface of the sensor 5, and the light receiving amount of the sensor 5 can be increased. The light receiving sensitivity of 5 can be improved.
  • FIG. 42 is a plan view when the electronic device 50 of the first embodiment is applied to a capsule endoscope.
  • the capsule endoscope 50 of FIG. 42 is, for example, photographed by a camera (ultra-small camera) 52 and a camera 52 for capturing an image in the body cavity in a housing 51 having hemispherical surfaces at both ends and a cylindrical center.
  • a CPU (Central Processing Unit) 56 and a coil (magnetic force / current conversion coil) 57 are provided in the housing 51.
  • the CPU 56 controls the shooting by the camera 52 and the data storage operation in the memory 53, and also controls the data transmission from the memory 53 to the data receiving device (not shown) outside the housing 51 by the wireless transmitter 55.
  • the coil 57 supplies electric power to the camera 52, the memory 53, the wireless transmitter 55, the antenna 54, and the light source 52b described later.
  • the housing 51 is provided with a magnetic (reed) switch 58 for detecting when the capsule endoscope 50 is set in the data receiving device.
  • the reed switch 58 detects the set to the data receiving device and the data can be transmitted, the CPU 56 supplies electric power from the coil 57 to the wireless transmitter 55.
  • the camera 52 has, for example, an image pickup element 52a including an objective optical system for capturing an image in the body cavity, and a plurality of light sources 52b for illuminating the inside of the body cavity.
  • the camera 52 is configured as a light source 52b, for example, a CMOS (Complementary Metal Oxide Semiconductor) sensor equipped with an LED (Light Emitting Diode), a CCD (Charge Coupled Device), or the like.
  • CMOS Complementary Metal Oxide Semiconductor
  • LED Light Emitting Diode
  • CCD Charge Coupled Device
  • the display unit 3 in the electronic device 50 of the first embodiment is a concept including a light emitting body as shown in the light source 52b of FIG. 42.
  • the capsule endoscope 50 of FIG. 42 has, for example, two light sources 52b, and these light sources 52b can be configured by a display panel having a plurality of light source units and an LED module having a plurality of LEDs. In this case, by arranging the image pickup unit of the camera 52 below the display panel or the LED module, restrictions on the layout arrangement of the camera 52 are reduced, and a smaller capsule endoscope 50 can be realized.
  • FIG. 43 is a rear view when the electronic device 50 of the first embodiment is applied to the digital single-lens reflex camera 60.
  • the digital single-lens reflex camera 60 and the compact camera are provided with a display unit 3 for displaying a preview screen on the back surface opposite to the lens.
  • the camera modules 4 and 5 may be arranged on the side opposite to the display surface of the display unit 3 so that the photographer's face image can be displayed on the display surface of the display unit 3.
  • the camera modules 4 and 5 can be arranged in the area overlapping with the display unit 3, it is not necessary to provide the camera modules 4 and 5 in the frame portion of the display unit 3, and the display unit 3
  • the size can be made as large as possible.
  • FIG. 44A is a plan view showing an example in which the electronic device 50 of the first embodiment is applied to a head-mounted display (hereinafter, HMD) 61.
  • the HMD 61 of FIG. 44A is used for VR (Virtual Reality), AR (Augmented Reality), MR (Mixed Reality), SR (Substituional Reality), and the like.
  • the current HMD has a camera 62 mounted on the outer surface, and the wearer of the HMD can visually recognize the surrounding image, while the surrounding humans wear the HMD.
  • the facial expressions of a person's eyes and face cannot be understood.
  • the display surface of the display unit 3 is provided on the outer surface of the HMD 61, and the camera modules 4 and 5 are provided on the opposite side of the display surface of the display unit 3.
  • the facial expression of the wearer taken by the camera modules 4 and 5 can be displayed on the display surface of the display unit 3, and the humans around the wearer can display the facial expression of the wearer and the movement of the eyes in real time. Can be grasped.
  • the electronic device 50 according to the first embodiment can be used for various purposes, and the utility value can be enhanced.
  • the present technology can have the following configurations. (1) Equipped with a plurality of pixels arranged in a two-dimensional manner, At least a part of the plurality of pixels The first self-luminous element and The first light emitting region emitted by the first self-luminous element and An image display device comprising a non-light emitting region having a transmission window having a predetermined shape for transmitting visible light. (2) The image display device according to (1), wherein two or more pixels having the non-light emitting region having different shapes of the transmission windows are provided. (3) The non-light emitting region is arranged at a position overlapping with a light receiving device that receives light incident through the image display device when viewed in a plan view from the display surface side of the image display device (1) or. The image display device according to (2).
  • the image display device according to any one of (1) to (7), comprising an optical member arranged on the light incident side of the transmission window and refracting the incident light to guide the incident light to the transmission window. .. (9)
  • the optical member is The first optical system that refracts the incident light in the optical axis direction, It has a second optical system that parallelizes the light refracted by the first optical system, and has.
  • the image display device according to (8), wherein the transmission window transmits light parallelized by the second optical system.
  • a first pixel region including some of the plurality of pixels and A second pixel area including at least a part of the pixels other than the pixels in the first pixel area among the plurality of pixels is provided.
  • the pixel in the first pixel region has the first self-luminous element, the first light emitting region, and the non-light emitting region.
  • the pixels in the second pixel area are The second self-luminous element and
  • the first self-luminous element is With the lower electrode layer, A display layer arranged on the lower electrode layer and An upper electrode layer arranged on the display layer and It has a wiring layer arranged below the lower electrode layer and conducted to the lower electrode layer via a contact extending from the lower electrode layer in the stacking direction.
  • the first self-luminous element is With the lower electrode layer, A display layer arranged on the lower electrode layer and An upper electrode layer arranged on the display layer and It has a wiring layer arranged below the lower electrode layer and conducted to the lower electrode layer via a contact extending from the lower electrode layer in the stacking direction.
  • the image display device according to any one of (1) to (13), wherein the shape of the transmission window when viewed in a plan view from the display surface side of the plurality of pixels is defined by an end portion of the wiring layer. .. (16)
  • the wiring layer has a plurality of laminated metal layers, and has a plurality of laminated metal layers.
  • the image display device wherein the shape of the transmission window when viewed in a plan view from the display surface side of the plurality of pixels is defined by the end portion of at least one metal layer of the plurality of metal layers.
  • the metal layer defining the shape of the transmission window when viewed in a plan view from the display surface side of the plurality of pixels is an electrode of a capacitor in a pixel circuit.
  • the image display device according to any one of (14) to (18), wherein the entire area of the first light emitting region is covered with the lower electrode layer except for the region of the transmission window.
  • An image display device having a plurality of pixels arranged two-dimensionally, A light receiving device for receiving light incident through the image display device is provided.
  • the image display device has a first pixel region including a part of the plurality of pixels.
  • the part of the pixels in the first pixel area The first self-luminous element and The first light emitting region emitted by the first self-luminous element and It has a non-emissive region, which has a transmission window of a predetermined shape that allows visible light to pass through.
  • the light receiving device includes an image sensor that photoelectrically converts light incident through the non-light emitting region, a distance measuring sensor that receives light incident through the non-light emitting region and measures a distance, and the non-light emitting sensor. 19.
  • 1 image display device 2 display panel, 2a display layer, 5 sensor, 6 first pixel area, 6a first self-luminous element, 6b first light emitting area, 6c non-light emitting area, 6d transmission window, 7 pixels, 8 second Pixel area, 8a second self-luminous element, 8b second light emitting area, 9 image sensor module, 9a support substrate, 9b image sensor, 9c cut filter, 9d lens unit, 9e coil, 9f magnet, 9g spring, 10 subject, 11 Specific pixel, 12 pixel circuit, 12a anode electrode, 31 first transparent substrate, 32 first insulating layer, 33 first wiring layer, 34 second insulating layer, 35 second wiring layer, 36 third insulating layer, 36a trench, 37 4th insulating layer, 38 anode electrode layer, 39 cathode electrode layer, 40 5th insulating layer, 41 2nd transparent substrate, 42 semiconductor layer, 43 capacitor, 44 metal layer, 45 3rd metal layer

Abstract

[課題]回折光の発生を抑制可能な画像表示装置及び電子機器を提供する。 [解決手段]画像表示装置は、二次元状に配置される複数の画素を備え、前記複数の画素のうち少なくとも一部の画素は、第1自発光素子と、前記第1自発光素子により発光される第1発光領域と、可視光を透過させる所定の形状の透過窓を有する非発光領域と、を有する。

Description

画像表示装置及び電子機器
 本開示は、画像表示装置及び電子機器に関する。
 最近のスマートフォンや携帯電話、PC(Personal Computer)などの電子機器では、表示パネルの額縁(ベゼル)に、カメラなどの種々のセンサを搭載している。搭載されるセンサも増える傾向にあり、カメラの他に、顔認証用のセンサや赤外線センサ、動体検出センサなどがある。その一方で、デザイン上の観点や軽薄短小化の傾向から、画面サイズに影響を与えずに電子機器の外形サイズをできるだけコンパクトにすることが求められており、ベゼル幅は狭まる傾向にある。このような背景から、表示パネルの真下にイメージセンサモジュールを配置して、表示パネルを通過した被写体光をイメージセンサモジュールで撮影する技術が提案されている。表示パネルの真下にイメージセンサモジュールを配置するには、表示パネルを透明化する必要がある(特許文献1参照)。
特開2011-175962号公報
 しかしながら、表示パネルの各画素には、画素回路や配線パターンなどの不透明な部材が配置されており、それに加えて、透過率の低い絶縁層も配置されている。このため、表示パネルの真下にイメージセンサモジュールを配置すると、表示パネルに入射された光は、表示パネル内で不規則に反射、屈折及び回折を行い、これらの反射、屈折及び回折により生じた光(以下、回折光と呼ぶ)が発生した状態でイメージセンサモジュールに入射される。回折光が発生したまま撮影を行うと、被写体画像の画質が低下してしまう。
 そこで、本開示では、回折光の発生を抑制可能な画像表示装置及び電子機器を提供するものである。
 上記の課題を解決するために、本開示によれば、二次元状に配置される複数の画素を備え、
 前記複数の画素のうち少なくとも一部の画素は、
 第1自発光素子と、
 前記第1自発光素子により発光される第1発光領域と、
 可視光を透過させる所定の形状の透過窓を有する非発光領域と、を有する、画像表示装置が提供される。
 前記透過窓の形状がそれぞれ異なる前記非発光領域を有する二以上の画素が設けられてもよい。
 前記非発光領域は、当該画像表示装置の表示面側から平面視したときに、当該画像表示装置を通して入射される光を受光する受光装置に重なる位置に配置されてもよい。
 前記第1自発光素子に接続される画素回路は、前記第1発光領域内に配置されてもよい。
 前記非発光領域は、一つの画素内にそれぞれ離隔して配置される複数の前記透過窓を有してもよい。
 前記透過窓は、二以上の画素に跨がって配置されてもよい。
 前記二以上の画素に跨がって配置される前記透過窓には、形状が異なる複数種類が存在してもよい。
 前記透過窓の光入射側に配置され、入射された光を屈折させて前記透過窓に導く光学部材を備えてもよい。
 前記光学部材は、
 入射された光を光軸方向に屈折させる第1光学系と、
 前記第1光学系で屈折された光を平行化する第2光学系と、を有し、
 前記透過窓は、前記第2光学系で平行化された光を透過させてもよい。
 前記透過窓の光入射側に配置され、入射された光を屈折させて前記透過窓に導く第1光学部材と、
 前記透過窓の光出射側に配置され、前記透過窓から出射された光を平行化させて受光装置に導く第2光学部材と、を備えてもよい。
 前記複数の画素のうち一部の画素を含む第1画素領域と、
 前記複数の画素のうち前記第1画素領域内の画素以外の少なくとも一部の画素を含む第2画素領域と、を備え、
 前記第1画素領域内の画素は、前記第1自発光素子、前記第1発光領域、及び前記非発光領域を有し、
 前記第2画素領域内の画素は、
 第2自発光素子と、
 前記第2自発光素子により発光され、前記第1発光領域よりも面積が大きい第2発光領域と、を有してもよい。
 前記第1画素領域は、画素表示領域内の複数箇所に離隔して設けられてもよい。
 前記第1画素領域内には、前記透過窓を透過した光による回折光の形状がそれぞれ相違するように、それぞれ異なる形状の前記透過窓を有する二以上の画素が設けられてもよい。
 前記第1自発光素子は、
 下部電極層と、
 前記下部電極層の上に配置される表示層と、
 前記表示層の上に配置される上部電極層と、
 前記下部電極層の下に配置され、前記下部電極層から積層方向に延びるコンタクトを介して前記下部電極層に導通される配線層と、を有し、
 前記複数の画素の表示面側から平面視した際の前記透過窓の形状は、前記下部電極層の端部により規定されてもよい。
 前記第1自発光素子は、
 下部電極層と、
 前記下部電極層の上に配置される表示層と、
 前記表示層の上に配置される上部電極層と、
 前記下部電極層の下に配置され、前記下部電極層から積層方向に延びるコンタクトを介して前記下部電極層に導通される配線層と、を有し、
 前記複数の画素の表示面側から平面視した際の前記透過窓の形状は、前記配線層の端部により規定されてもよい。
 前記配線層は、積層された複数の金属層を有し、
 前記複数の画素の表示面側から平面視した際の前記透過窓の形状は、前記複数の金属層の少なくとも一つの金属層の端部により規定されてもよい。
 前記複数の画素の表示面側から平面視した際の前記透過窓の形状を規定する前記金属層は、画素回路内のキャパシタの電極であってもよい。
 前記第1発光領域の全域は、前記透過窓の領域を除いて前記下部電極層で覆われてもよい。
 本開示の他の一態様では、二次元状に配置される複数の画素を有する画像表示装置と、
 前記画像表示装置を通して入射される光を受光する受光装置と、を備え、
 前記画像表示装置は、前記複数の画素のうち一部の画素を含む第1画素領域を有し、
 前記第1画素領域内の前記一部の画素は、
 第1自発光素子と、
 前記第1自発光素子により発光される第1発光領域と、
 可視光を透過させる所定の形状の透過窓を有する非発光領域と、を有し、
 前記第1画素領域の少なくとも一部は、前記画像表示装置の表示面側から平面視したときに前記受光装置に重なるように配置される、電子機器が提供される。
 前記受光装置は、前記非発光領域を通して光を受光してもよい。
 前記受光装置は、前記非発光領域を通して入射された光を光電変換する撮像センサと、前記非発光領域を通して入射された光を受光して距離を計測する距離計測センサと、前記非発光領域を通して入射された光に基づいて温度を計測する温度センサと、の少なくとも一つを含んでもよい。
表示パネルの直下に配置されるセンサの具体的な場所の一例を破線で示す図。 表示パネルの中央より上側の裏面側に二つのセンサを並べて配置した例を示す図。 表示パネルの四隅にセンサ5を配置した例を示す図。 第1画素領域内の画素の構造と、第2画素領域内の画素の構造とを模式的に示す図。 イメージセンサモジュールの断面図。 イメージセンサモジュールの光学構成を模式的に説明する図。 被写体からの光がイメージセンサ上に結像するまでの光路を説明する図。 OLEDを含む画素回路の基本構成を示す回路図。 第2画素領域内の画素の平面レイアウト図。 センサが直下に配置されていない第2画素領域内の画素の断面図。 表示層の積層構造の一例を示す断面図。 センサが直下に配置されている第1画素領域内の画素の平面レイアウト図。 センサが直下に配置されている第1画素領域内の画素の断面図。 回折光を発生させる回折現象を説明する図。 一実施形態による画像表示装置の平面レイアウト図。 画素内の第2発光領域の全域にアノード電極を配置した平面レイアウト図。 第1画素領域の断面構造の第1例を示す断面図。 第1画素領域の断面構造の第2例を示す断面図。 第1画素領域の断面構造の第3例を示す断面図。 図14の第1変形例による平面レイアウト図。 図19のA-A線断面図。 図14の第2変形例による平面レイアウト図。 図21のA-A線断面図。 図14の第3変形例による平面レイアウト図。 図23のA-A線断面図。 画素回路の詳細な回路構成の第1例を示す回路図。 画素回路の詳細な回路構成の第2例を示す回路図。 図14の第4変形例による平面レイアウト図。 図27のA-A線断面図。 透過窓が矩形である例を示す図。 図29Aの透過窓に平行光を入射させたときに発生する回折光を示す図。 透過窓が円形である例を示す図。 図30Aの透過窓に平行光を入射させたときに発生する回折光を示す図。 非発光領域内に複数の円形の透過窓を設けた例を示す図。 図31Aの各透過窓に平行光を入射させたときに発生する回折光を示す図。 回折光の除去の第1例を示す図。 回折光の除去の第2例を示す図。 3つの画素に跨がるように1個の透過窓を設ける例を示す図。 回折光の除去の第3例を示す図。 第1画素領域の光入射側にマイクロレンズを配置した例を示す断面図。 マイクロレンズがない場合に第1画素領域に入射される光の進行方向を矢印で示した図。 図36のマイクロレンズを設けた場合の光の進行方向を矢印で示した図。 マイクロレンズで屈折された光の進行方向を矢印線で示した図。 第1画素領域の光入射側に、凸方向の異なる複数のマイクロレンズを配置した断面図。 第1画素領域の光入射側にマイクロレンズを配置するとともに、第1画素領域の光出射側に別のマイクロレンズを配置した断面図。 図40の二個のマイクロレンズを通る光の進行方向を矢印線で示した図。 第1の実施形態の電子機器をカプセル内視鏡に適用した場合の平面図。 第1の実施形態の電子機器をデジタル一眼レフカメラに適用した場合の背面図。 第1の実施形態の電子機器をHMDに適用した例を示す平面図。 現状のHMDを示す図。
 以下、図面を参照して、画像表示装置及び電子機器の実施形態について説明する。以下では、画像表示装置及び電子機器の主要な構成部分を中心に説明するが、画像表示装置及び電子機器には、図示又は説明されていない構成部分や機能が存在しうる。以下の説明は、図示又は説明されていない構成部分や機能を除外するものではない。
 (第1の実施形態)
 図1は本開示の第1の実施形態による画像表示装置1を備えた電子機器50の平面図及び断面図である。図示のように、本実施形態による画像表示装置1は、表示パネル2を備えている。表示パネル2には、例えばフレキシブル・プリント基板(FPC:Flexible Printed Circuits)3が接続されている。表示パネル2は、例えばガラス基板又は透明フィルム上に複数の層を積層したものであり、表示面2zには縦横に複数の画素が配置されている。FPC3の上には、表示パネル2の駆動回路の少なくとも一部を内蔵するチップ(COF:Chip On Film)4が実装されている。なお、駆動回路をCOG(Chip On Glass)として表示パネル2に積層してもよい。
 本実施形態による画像表示装置1は、表示パネル2の直下に、表示パネル2を通して光を受光する各種のセンサ5を配置可能としている。本明細書では、画像表示装置1とセンサ5を備えた構成を電子機器50と呼ぶ。電子機器50内に設けられるセンサ5の種類は特に問わないが、例えば、表示パネル2を通して入射された光を光電変換する撮像センサ、表示パネル2を通して光を投光するとともに、対象物で反射された光を表示パネル2を通して受光して、対象物までの距離を計測する距離計測センサ、表示パネル2を通して入射された光に基づいて温度を計測する温度センサなどである。このように、表示パネル2の直下に配置されるセンサ5は、光を受光する受光装置の機能を少なくとも備えている。なお、センサ5は、表示パネル2を通して光を投光する発光装置の機能を備えていてもよい。
 図1は表示パネル2の直下に配置されるセンサ5の具体的な場所の一例を破線で示している。図1のように、センサ5は、例えば、表示パネル2の中央よりも上側の裏面側に配置されている。なお、図1のセンサ5の配置場所は一例であり、センサ5の配置場所は任意である。図示のように、表示パネル2の裏面側にセンサ5を配置することで、表示パネル2の側方にセンサ5を配置しなくて済み、電子機器50のベゼルを極小化することができ、電子機器50の正面側のほぼ全域を表示パネル2にすることができる。
 図1では、表示パネル2の一箇所にセンサ5を配置する例を示しているが、図2A又は図2Bに示すように、複数箇所にセンサ5を配置してもよい。図2Aは、表示パネル2の中央より上側の裏面側に二つのセンサ5を並べて配置した例を示している。また、図2Bは、表示パネル2の四隅にセンサ5を配置した例を示している。図2Bのように、表示パネル2の四隅にセンサ5を配置するのは以下の理由である。表示パネル2内のセンサ5と重なる画素領域は、透過率を高くする工夫を施すため、その周囲の画素領域とは表示品質に若干の差異が生じるおそれがある。ある。人間は画面中央を凝視するとき、中心視野となる画面中央部は詳細まで把握でき、若干の差異に気づくことができる。しかし、周辺視野となる外周部の詳細視認度は低くなる。通常の表示画像では画面中央を見ることが多いため、その差異を目立たなくするために四隅にセンサ5を配置することが推奨される。
 図2Aや図2Bのように、表示パネル2の裏面側に複数のセンサ5を配置する場合、複数のセンサ5の種類は同じでも異なっていてもよい。例えば、焦点距離の異なる複数のイメージセンサモジュール9を配置してもよいし、あるいは、撮像センサ5とToF(Time of Flight)センサ5などのように、異なる種類のセンサ5を配置してもよい。
 本実施形態では、裏面側のセンサ5と重なる画素領域(第1画素領域)と、センサ5と重ならない画素領域(第2画素領域)で、画素の構造を変えている。図3は、第1画素領域6内の画素7の構造と、第2画素領域8内の画素7の構造とを模式的に示す図である。第1画素領域6内の画素7は、第1自発光素子6a、第1発光領域6b、及び非発光領域6cを有する。第1発光領域6bは、第1自発光素子6aにより発光される領域である。非発光領域6cは、第1自発光素子6aによる発光は行わないものの、可視光を透過させる所定の形状の透過窓6dを有する。第2画素領域8内の画素7は、第2自発光素子8a及び第2発光領域8bを有する。第2発光領域8bは、第2自発光素子8aにより発光され、第1発光領域6bよりも大きい面積を有する。
 第1自発光素子6a及び第2自発光素子8aの代表例は、有機EL(Electroluminescence)素子(以下では、OLED:Organic Light Emitting Diodeとも呼ぶ)である。自発光素子は、バックライトを省略できるため、少なくとも一部を透明化することができる。以下では、自発光素子としてOLEDを用いる例を主に説明する。
 なお、センサ5と重なる画素領域とセンサ5と重ならない画素領域で画素7の構造を変えるのではなく、表示パネル2内の全画素7の構造を同じにしてもよい。この場合、表示パネル2内の任意の場所にセンサ5を重ねて配置できるように、全画素7を図3の第1発光領域6bと非発光領域6cで構成すればよい。
 図4はイメージセンサモジュール9の断面図である。図4に示すように、イメージセンサモジュール9は、支持基板9aの上に実装されるイメージセンサ9bと、IR(Infrared Ray)カットフィルタ9cと、レンズユニット9dと、コイル9eと、磁石9fと、バネ9gとを有する。レンズユニット9dは、1つ又は複数のレンズを有する。レンズユニット9dは、コイル9eに流す電流の方向に応じて光軸方向に移動可能とされている。なお、イメージセンサモジュール9の内部構成は、図4に示したものに限定されない。
 図5はイメージセンサモジュール9の光学構成を模式的に説明する図である。被写体10からの光は、レンズユニット9dで屈折されて、イメージセンサ9b上に結像する。レンズユニット9dに入射される光の量が多いほどイメージセンサ9bで受光される光量も増えて、感度が向上する。本実施形態の場合、被写体10とレンズユニット9dとの間に表示パネル2が配置されることになる。被写体10からの光が表示パネル2を透過する際に、表示パネル2での吸収、反射、回折を抑制することが重要となる。
 図6は被写体10からの光がイメージセンサ9b上に結像するまでの光路を説明する図である。図6では、表示パネル2の各画素7とイメージセンサ9bの各画素7を模式的に矩形のマス目で表している。図示のように、表示パネル2の各画素7は、イメージセンサ9bの各画素7よりもはるかに大きい。被写体10の特定位置からの光は、表示パネル2の透過窓6dを通過して、イメージセンサモジュール9のレンズユニット9dで屈折されて、イメージセンサ9b上の特定画素7で結像される。このように、被写体10からの光は、表示パネル2の第1画素領域6内の複数画素7に設けられた複数の透過窓6dを透過して、イメージセンサモジュール9に入射される。
 図7はOLED5を含む画素回路12の基本構成を示す回路図である。図7の画素回路12は、OLED5の他に、ドライブトランジスタQ1と、サンプリングトランジスタQ2と、画素容量Csとを備えている。サンプリングトランジスタQ2は、信号線SigとドライブトランジスタQ1のゲートとの間に接続されている。サンプリングトランジスタQ2のゲートには、走査線Gateが接続されている。画素容量Csは、ドライブトランジスタQ1のゲートとOLED5のアノード電極との間に接続されている。ドライブトランジスタQ1は、電源電圧ノードVccpとOLED5のアノードとの間に接続されている。
 図8はセンサ5が直下に配置されていない第2画素領域8内の画素7の平面レイアウト図である。第2画素領域8内の画素7は、一般的な画素構成を有する。各画素7は複数の色画素7(例えば、RGBの3つの色画素7)を有する。図8には、横に2つの色画素7と、縦に2つの色画素7の計4つの色画素7の平面レイアウトが図示されている。各色画素7は第2発光領域8bを有する。第2発光領域8bは、色画素7のほぼ全域に広がっている。第2発光領域8b内には、第2自発光素子8a(OLED5)を有する画素回路12が配置されている。図8の左側2列は、アノード電極12aよりも下側の平面レイアウトを示し、図8の右側2列は、アノード電極12aと、その上に配置される表示層2aの平面レイアウトを示している。
 図8の右側2列に示すように、色画素7のほぼ全域にわたってアノード電極12aと表示層2aが配置されており、色画素7の全域が光を発光する第2発光領域8bとなる。
 図8の左側2列に示すように、色画素7の画素回路12は、色画素7内の上側半分の領域内に配置されている。また、色画素7の上端側には、電源電圧Vccp用の配線パターンと、走査線用の配線パターンが水平方向Xに配置されている。また、色画素7の縦方向Yの境界に沿って信号線Sigの配線パターンが配置されている。
 図9はセンサ5が直下に配置されていない第2画素領域8内の画素7(色画素7)の断面図である。図9は図8のA-A線方向の断面構造を示しており、より詳細には画素回路12内のドライブトランジスタQ1の周辺の断面構造を示している。なお、図9を含めて、本明細書に添付した図面に記載された断面図は、特徴的な層構成を強調して図示しており、縦横の長さの比率は平面レイアウトとは必ずしも一致しない。
 図9の上面は表示パネル2の表示面側であり、図9の底面はセンサ5が配置される側である。図9の底面側から上面側(光出射側)にかけて、第1透明基板31と、第1絶縁層32と、第1配線層(ゲート電極)33と、第2絶縁層34と、第2配線層(ソース配線またはドレイン配線)35と、第3絶縁層36と、アノード電極層38と、第4絶縁層37と、表示層2aと、カソード電極層39と、第5絶縁層40と、第2透明基板41とが順に積層されている。
 第1透明基板31と第2透明基板41は、例えば、可視光透過性に優れた石英ガラスや透明フィルム等で形成されることが望ましい。あるいは第1透明基板31と第2透明基板41のどちらか一方を石英ガラス、もう一方を透明フィルムで形成してもよい。
 なお、製造観点から有色で透過率のそれほど高くないフィルム、例えばポリイミドフィルムを利用してもよい。あるいは第1透明基板31と第2透明基板41の少なくとも一方を、透明フィルムで形成してもよい。第1透明基板31の上に、画素回路12内の各回路素子を接続するための第1配線層(M1)33が配置されている。
 第1透明基板31の上には、第1配線層33を覆うように第1絶縁層32が配置されている。第1絶縁層32は、例えば、可視光透過性に優れたシリコン窒化層とシリコン酸化層の積層構造である。第1絶縁層32の上には、画素回路12内の各トランジスタのチャネル領域が形成される半導体層42が配置されている。図9は、第1配線層33に形成されるゲートと、第2配線層35に形成されるソース及びドレインと、半導体層42に形成されるチャネル領域とを有するドライブトランジスタQ1の断面構造を模式的に図示しているが、他のトランジスタもこれらの層33、35、42に配置されており、不図示のコンタクトにより第1配線層33に接続されている。
 第1絶縁層32の上には、トランジスタ等を覆うように第2絶縁層34が配置されている。第2絶縁層34は、例えば、可視光透過性に優れたシリコン酸化層、シリコン窒化層及びシリコン酸化層の積層構造である。第2絶縁層34の一部にはトレンチ34aが形成されて、トレンチ34a内にコンタクト部材35aを充填することにより、各トランジスタのソースやドレイン等に接続される第2配線層(M2)35が形成されている。図9には、ドライブトランジスタQ1とOLED5のアノード電極12aとを接続するための第2配線層35が図示されているが、他の回路素子に接続される第2配線層35も同じ層に配置されている。また、後述するように、第2配線層35とアノード電極12aとの間に、図9では不図示の第3配線層を設けてもよい。第3配線層は、画素回路内の配線として用いることができる他、アノード電極12aとの接続に用いてもよい。
 第2絶縁層34の上には、第2配線層35を覆って表面を平坦化するための第3絶縁層36が配置されている。第3絶縁層36は、アクリル樹脂等の樹脂材料で形成されている。第3絶縁層36の膜厚は、第1~第2絶縁層32,34の膜厚よりも大きくしている。
 第3絶縁層36の上面の一部にはトレンチ36aが形成されて、トレンチ36a内にコンタクト部材36bを充填して第2配線層35との導通を図るとともに、コンタクト部材36bを第3絶縁層36の上面側まで延在させてアノード電極層38を形成している。アノード電極層38は積層構造であり、金属材料層を含んでいる。金属材料層は、一般には可視光透過率が低く、光を反射させる反射層として機能する。具体的な金属材料としては、例えばAlNdやAgを適用可能である。
 アノード電極層38の最下層は、トレンチ36aに接する部分であり、断線しやすいことから、少なくともトレンチ36aの角部は例えばAlNdなどの金属材料で形成される場合がある。アノード電極層38の最上層は、ITO(Indium Tin Oxide)などの透明導電層で形成されている。あるいは、アノード電極層38を、例えば、ITO/Ag/ITOの積層構造にしてもよい。Agは本来的には不透明であるが、膜厚を薄くすることで、可視光透過率が向上する。Agを薄くすると強度が弱くなるため、両面にITOを配置した積層構造にすることで、透明導電層として機能させることができる。
 第3絶縁層36の上には、アノード電極層38を覆うように第4絶縁層37が配置されている。第4絶縁層37も、第3絶縁層36と同様にアクリル樹脂等の樹脂材料で形成されている。第4絶縁層37は、OLED5の配置場所に合わせてパターニングされて、凹部37aが形成されている。
 第4絶縁層37の凹部37aの底面及び側面を含むように表示層2aが配置されている。表示層2aは、例えば図10に示すような積層構造を有する。図10に示す表示層2aは、アノード電極層38側から積層順に、陽極2b、正孔注入層2c、正孔輸送層2d、発光層2e、電子輸送層2f、電子注入層2g、及び陰極2hを配置した積層構造である。陽極2bは、アノード電極12aとも呼ばれる。正孔注入層2cは、アノード電極12aからの正孔が注入される層である。正孔輸送層2dは、正孔を発光層2eに効率よく運ぶ層である。発光層2eは、正孔と電子を再結合させて励起子を生成し、励起子が基底状態に戻る際に光を発光する。陰極2hは、カソード電極とも呼ばれる。電子注入層2gは、陰極2hからの電子が注入される層である。電子輸送層2fは、電子を発光層2eに効率よく運ぶ層である。発光層2eは有機物を含んでいる。
 図9に示す表示層2aの上には、カソード電極層39が配置されている。カソード電極層39は、アノード電極層38と同様に透明導電層で形成されている。なお、アノード電極層38の透明導電層は、例えばITO/Ag/ITOで形成され、カソード電極層39の透明電極層は、例えばMgAgで形成される。
 カソード電極層39の上には第5絶縁層40が配置されている。第5絶縁層40は、上面を平坦化するとともに耐湿性に優れた絶縁材料で形成される。第5絶縁層40の上には、第2透明基板41が配置されている。
 図8及び図9に示すように、第2画素領域8では、色画素7のほぼ全域に反射膜として機能するアノード電極層38が配置されており、可視光を透過させることはできない。
 図11はセンサ5が直下に配置されている第1画素領域6内の画素7の平面レイアウト図である。一つの画素7は複数の色画素7(例えば、RGBの3つの色画素7)を有する。図11には、横に2つの色画素7と、縦に2つの色画素7の計4つの色画素7の平面レイアウトが図示されている。各色画素7は、第1発光領域6bと非発光領域6cとを有する。第1発光領域6bは、第1自発光素子6a(OLED5)を有する画素回路12を含み、OLED5により発光される領域である。非発光領域6cは、可視光を透過させる領域である。
 非発光領域6cは、OLED5からの光を発光させることはできないが、入射された可視光を透過させることができる。よって、非発光領域6cの直下にセンサ5を配置することで、センサ5にて可視光を受光することができる。
 図12はセンサ5が直下に配置されている第1画素領域6内の画素7の断面図である。図12は図11のA-A線方向の断面構造を示しており、第1発光領域6bから非発光領域6cにかけての断面構造を示している。図9と比較すればわかるように、非発光領域6cでは、第3絶縁層36、第4絶縁層37、アノード電極層38、表示層2a、及びカソード電極層39が除去されている。従って、図12の上方(表示面側)から非発光領域6cに入射された光は、非発光領域6c内で吸収や反射されることなく、底面(裏面側)から出射されてセンサ5に入射される。
 しかしながら、第1画素領域6に入射された光の一部は、非発光領域6cだけでなく第1発光領域6bにも入射されて回折され、回折光を発生させる。
 図13は回折光を発生させる回折現象を説明する図である。太陽光や指向性の高い光等の平行光は、非発光領域6cと第1発光領域6bの境界部等で回折され、1次回折光を初めとする高次の回折光を生じさせる。なお、0次回折光は入射光の光軸方向を進む光であり、回折光の中で最も光強度の大きい光である。つまり、
 0次回折光は撮影対象物そのものであり、撮影すべき光である。より高次の回折光ほど、0次回折光から離れた方向を進行し、光強度も弱くなる。一般には、1次回折光を含む高次の回折光を総称して回折光と呼ぶ。回折光は、本来的には被写体光に存在しない光であり、被写体10の撮影にとって不要な光である。
 回折光が写り込んだ撮像画像において、最も明るい輝点が0次光であり、0次回折光からクロス形状に高次の回折光が広がっている。被写体光が白色光の場合、白色光に含まれる複数の波長成分ごとに回折角度が異なるため、虹色の回折光fが発生される。
 撮像画像に写り込んだ回折光の形状は、例えばクロス形状になるが、どのような形状の回折光fが発生するかは、後述するように非発光領域6c内に光が透過する部分の形状に依存し、透過する部分の形状が既知であれば、回折原理からシミュレーションにより回折光形状を推測できる。図11に示す第1画素領域6内の各画素7の平面レイアウトでは、非発光領域6c外に、配線の隙間や第1発光領域6bの周囲にも、光の透過領域が存在する。このように、画素7内の複数箇所に不規則な形状の光の透過領域が存在すると、入射光が複雑に回折し、回折光fの形状も複雑になる。
 図14は図11の平面レイアウトで生じうる問題点を解決させた一実施形態による画像表示装置1の平面レイアウト図である。図14では、第1画素領域6における第1発光領域6b内の全域にアノード電極12aを配置して光が透過しないようにし、かつ非発光領域6cに所定の形状の透過窓6dを設けて、透過窓6dの内部だけが被写体光を透過させるようにしている。図14では、非発光領域6cの透過窓6dの周囲をアノード電極12aで覆う例を示しているが、後述するように透過窓6dの形状を規定する部材は必ずしもアノード電極12aとは限らない。
 図14では、透過窓6dの平面形状を矩形にしている。透過窓6dの平面形状はできるだけ簡易な形状が望ましい。簡易な形状ほど、回折光fの発生方向が単純化し、シミュレーションにより予め回折光形状を求めることができる。
 このように、本実施形態では、表示パネル2内のセンサ5の直上に位置する第1画素領域6については、図14に示すように、画素7内の非発光領域6cに透過窓6dを設けて、回折光fの形状を制御している。これに対して、表示パネル2内のセンサ5の直上に位置しない第2画素領域8については、図8と同様の平面レイアウトでも構わない。あるいは、図15に示すように、画素7内の第2発光領域8bの全域にアノード電極12aを配置して、入射光を透過させないようにしてもよい。アノード電極12aの面積が広い方が発光面積が広がり、OLED5の劣化を抑制できる。よって、図8よりも図15の平面レイアウトの方がより望ましい。
 上述したように、センサ5が直下に配置される第1画素領域6における非発光領域6c内の透過窓6dの形状は、複数の部材のいずれかで規定することができる。
 図16は第1画素領域6の断面構造の第1例を示す断面図である。図16は、非発光領域6c内の透過窓6dの形状がアノード電極12a(アノード電極層38)で規定されている例を示している。アノード電極層38の端部は、表示面側から平面視したときに、図14に示したように矩形状に形成されている。このように、図16の例では、透過窓6dの形状は、アノード電極層38の端部によって規定されている。
 図16の例では、透過窓6dの内部の第3絶縁層36と第4絶縁層37をそのまま残している。このため、第3絶縁層36と第4絶縁層37の材料が有色の樹脂層である場合は、可視光透過率が低下するおそれがあるが、少なくとも一部の可視光は透過するため、透過窓6d内の第3絶縁層36と第4電極層37を残してもよい。
 図17は第1画素領域6の断面構造の第2例を示す断面図である。図17は、図16と同様にアノード電極層38の端部で透過窓6dの形状を規定している。図17は、透過窓6dの内部において第4絶縁層37が除去されている点で図16とは異なっている。透過窓6dの内部に第4絶縁層37が存在しないため、第4絶縁層37を光が透過する際の光の吸収や反射等を抑制でき、センサ5に入射される光の光量を増やせるため、センサ5の受光感度が高くなる。
 図18は第1画素領域6の断面構造の第3例を示す断面図である。図18は、図16及び図17と同様にアノード電極層38の端部で透過窓6dの形状を規定している。図18は、透過窓6dの内部において第3絶縁層36と第4絶縁層37が除去されている点で図16及び図17とは異なっている。透過窓6dの内部に第3絶縁層36と第4絶縁層37が存在しないため、センサ5に入射される光の光量を図17よりも増やすことができ、図17よりもさらにセンサ5の受光感度を高くできる。
 図18の場合、アノード電極層38の下に配置されている第3絶縁層36の端部は、アノード電極層38の端部とほぼ同じ位置に設けられている。製造ばらつきによっては、第3絶縁層36の端部がアノード電極層38の端部よりも、透過窓6d側に突き出る可能性があり、この場合、透過窓6dの形状がアノード電極層38の端部で規定されるのか、第3絶縁層36の端部で規定されるのかがあいまいになる。また、第3絶縁層36の端部の突き出し具合によって、回折光fの発生の仕方が変わる可能性がある。
 そこで、以下に示すように、第3絶縁層36よりも底面側の配線層によって、透過窓6dの形状を規定することも考えられる。
 図19は図14の第1変形例による平面レイアウト図、図20は図19のA-A線断面図である。図20は第1画素領域6の断面構造の第4例を示している。図19及び図20の例では、第3絶縁層36の下方に配置されている第2配線層(M2)35の端部で透過窓6dの形状を規定している。第2配線層(M2)35は、図19に示すように、表示面方向から平面視したときに矩形状に形成されている。第2配線層(M2)35は、アルミニウムなどの可視光を透過させない金属材料で形成されているため、第1画素領域6への入射光は透過窓6dの内部を通過してセンサ5に入射される。
 図19の断面構造では、第2配線層(M2)35を第3絶縁層36よりも透過窓6d側に配置しているため、製造ばらつきがあっても第2配線層(M2)35にて透過窓6dの形状を規定することができる。
 図21は図14の第2変形例による平面レイアウト図、図22は図21のA-A線断面図である。図21及び図22の例では、第3絶縁層36の下方に配置されている第1配線層(M1)33の端部で透過窓6dの形状を規定している。第1配線層(M1)33は、図21に示すように、表示面方向から平面視したときに矩形状に形成されている。第1配線層(M1)33は、アルミニウム等の可視光を透過させない金属材料で形成されているため、第1画素領域6への入射光は透過窓6dの内部を通過してセンサ5に入射される。
 図19~図22では、配線層の端部で透過窓6dの形状を規定する例を示したが、透過窓6dの形状を規定する配線層でキャパシタを形成してもよい。これにより、キャパシタを別に形成しなくて済み、画像表示装置1の断面構造を簡略化できる。
 図23は図14の第3変形例による平面レイアウト図、図24は図23のA-A線断面図である。図24では、第1配線層(M1)33にて透過窓6dの形状を規定している。また、透過窓6dの形状を規定するために設けた第1配線層(M1)33の真上に、第1絶縁層32を間に挟んで金属層44を配置して、キャパシタ43を形成している。このキャパシタ43は画素回路12に設けられるキャパシタとして利用することができる。図24に示すキャパシタ43は、例えば図7の画素回路12内の画素容量Csとして使用することができる。
 図25は画素回路12の詳細な回路構成の第1例を示す回路図である。図25の画素回路12は、図7に示したドライブトランジスタQ1とサンプリングトランジスタQ2の他に、3つのトランジスタQ3~Q5を有する。トランジスタQ3のドレインはドライブトランジスタQ1のゲートに接続され、トランジスタQ3のソースは電圧V1に設定され、トランジスタQ3のゲートにはゲート信号Gate1が入力される。トランジスタQ4のドレインはOLED5のアノード電極12aに接続され、トランジスタQ4のソースは電圧V2に設定され、トランジスタQ4のゲートにはゲート信号Gate2が入力される。
 トランジスタQ1~Q4はN型トランジスタであるのに対して、トランジスタQ5はP型トランジスタである。トランジスタQ5のソースは電源電圧Vccpに設定され、トランジスタQ5のドレインはドライブトランジスタQ1のドレインに接続され、トランジスタQ5のゲートにはゲート信号Gate3が入力される。
 図26は画素回路12の詳細な回路構成の第2例を示す回路図である。図26の画素回路12内の各トランジスタQ1a~Q5aは、図25の画素回路12内の各トランジスタQ1~Q5の導電型を逆にしたものである。トランジスタの導電型を逆にした以外に、図26の画素回路12は図25の画素回路12とは一部の回路構成が異なっている。図25及び図26は画素回路12の例示に過ぎず、種々の回路構成の変更が考えられる。
 図24の第1配線層(M1)33と、その直上の金属層にて形成されるキャパシタ43は、図25又は図26の画素回路12内のキャパシタCsとして用いることができる。
 図19~図26では、画素回路12の一部を構成する配線層を透過窓6dの形状を規定するために用いる例を示したが、画素回路12の配線層とは別個に、透過窓6dの形状を規定するための金属層を設けてもよい。
 図27は図14の第4変形例による平面レイアウト図、図28は図27のA-A線断面図である。図28では、第3金属層(M3)45の端部にて透過窓6dの形状を規定している。透過窓6dの形状を規定する第3金属層(M3)45は、画素回路12の配線層の一部を構成するものでもよいし、あるいは、透過窓6dの形状を規定するために新たに設けたものでもよい。図19、図21、図27の開口形状を規定するために設けたパターンは電気的にフローティングのイメージで図示しているが、電位カップリングなどの電気的な影響を受けやすくなるため、何らかの電位に接続することが推奨される。例えば、図25で考えると、固定のDC電位(Vccp、Vcath、V1、V2)が第1推奨、アノード電位が第2推奨、その他の配線やノードが第3推奨である。
 画素回路12の配線として用いられる第1配線層(M1)33や第2配線層(M2)35では、画素回路12の配線という制約のために、透過窓6dの理想的な形状に合うように配置できない可能性がある。そこで、図27では、新たに第3配線層(M3)45を設けて、この第3配線層(M3)45の端部を、透過窓6dの形状が理想的になる位置に配置している。これにより、第1配線層(M1)33や第2配線層(M2)35を変更することなく、透過窓6dを理想的な形状に設定できる。
 上述した各例では、透過窓6dを矩形状にする例を示したが、透過窓6dの形状は矩形には限定されない。ただし、透過窓6dの形状によって、回折光fの形状が変化する。図29Aは透過窓6dが矩形である例を示し、図29Bは図29Aの透過窓6dに平行光を入射させたときに発生する回折光fの一例を示している。図示のように、透過窓6dが矩形の場合には、クロス形状の回折光fが発生する。
 図30Aは透過窓6dが円形である例を示し、図30Bは図30Aの透過窓6dに平行光を入射させたときに発生する回折光fの一例を示している。図30Bに示すように、透過窓6dが円形の場合は、同心円状に回折光fが発生する。高次の回折光fほど、径サイズが大きくなり、かつ光強度が弱くなる。
 非発光領域6c内の透過窓6dは、必ずしも1個だけとは限らない。非発光領域6c内に複数の透過窓6dを設けてもよい。図31Aは非発光領域6c内に複数の円形の透過窓6dを設けた例を示す図、図31Bは図31Aの各透過窓6dに平行光を入射させたときに発生する回折光fの一例を示している。複数の透過窓6dを設けると、回折光fの中心部分の光強度は弱くなり、かつ同心円状に回折光fが発生する。図31Aでは、円形の透過窓6dを複数設ける例を示したが、円形以外の形状の透過窓6dを複数設けてもよい。この場合、回折光fの形状は図31Bとは異なったものになる。
 図29A及び図29Bに示したように、透過窓6dが矩形の場合、クロス形状の回折光fが発生する。この回折光fをソフトウェアによる画像処理で除去するには、例えば、矩形の向きがそれぞれ異なる複数の透過窓6dを設けて、これら複数の透過窓6dで発生した回折光f同士を合成して、回折光fを除去する手法が考えられる。
 図32は回折光fの除去の第1例を示す図である。図32では、表示パネル2の直下に2つのイメージセンサモジュール9を配置するとともに、これらイメージセンサモジュール9の直上に位置する2つの第1画素領域6内の各画素7の非発光領域6cに、それぞれ矩形の向きが異なる透過窓6dを配置している。
 図32の例では、左側に位置するイメージセンサモジュール9の直上に位置する第1画素領域6内の非発光領域6cに、画素7の境界線に略平行に矩形状の透過窓6dを配置している。一方、右側に位置するイメージセンサモジュール9の直上に位置する第1画素領域6内の非発光領域6cに、画素7の境界線に対して45度傾いた方向に矩形状の透過窓6dを配置している。
 左側のイメージセンサモジュール9に入射される回折光f1のクロス形状と、右側のイメージセンサモジュール9に入射される回折光f2のクロス形状とは、互いに45度向きが異なっている。より詳細には、回折光f1が発生する方向には回折光f2は発生しておらず、かつ、回折光f2が発生する方向には回折光f1は発生していない。このため、左側のイメージセンサモジュール9による回折光f1の撮影画像g1と、右側のイメージセンサモジュール9による回折光f2の撮影画像g2とを合成することで、図32の合成画像g3に示すように、中心位置の0次回折光の光スポット以外の回折光fを除去することができる。
 図32では、同じサイズ及び形状の透過窓6dの配置角度を互いに相違させて、回折光fの発生する方向を変えて、回折光f発生画像を合成して回折光fを相殺しているが、合成対象の複数の透過窓6dのサイズや形状は必ずしも同一でなくてもよい。
 図33は回折光fの除去の第2例を示す図である。図33では、表示パネル2の直下に2つのイメージセンサモジュール9を配置するとともに、これらイメージセンサモジュール9の直上に位置する2つの第1画素領域6内に、それぞれ形状及び方向の異なる透過窓6dを配置している。
 図33の例では、左側に位置するイメージセンサモジュール9の直上に位置する第1画素領域6内の非発光領域6cには、ほぼ全域に透過窓6dを設けている。非発光領域6cは矩形状であるため、透過窓6dの形状も矩形状になる。右側に位置するイメージセンサモジュール9の直上に位置する第1画素領域6内の非発光領域6cには、画素7の境界線に対して45度傾斜した方向に左側の第1画素領域6よりも小サイズの透過窓6dを設けている。
 このように、図33の例では、左側と右側で透過窓6dのサイズが異なり、かつ傾斜方向も異なるが、回折光f3、f4の形状は図32の回折光f1、f2とほぼ同じになる(撮影画像g4とg5)。よって、図32と同様に、各イメージセンサ9bで撮影された回折光fの画像同士を合成することで、合成画像g6に示すように、0次回折光の光スポットを除いて回折光fを除去できる。
 上述した実施形態では、1画素7(又は1色画素7)について1個以上の透過窓6dを設ける例を示したが、複数の画素7(又は複数の色画素7)を単位として、1個以上の透過窓6dを設けてもよい。
 図34は3つの画素7(又は3つの色画素7)に跨がるように1個の透過窓6dを設ける例を示す図である。図34では、例えば、第2配線層(M2)35の端部にて透過窓6dの形状を規定している。
 図35は回折光fの除去の第3例を示す図である。図35では、表示パネル2の直下に2つのイメージセンサモジュール9を配置するとともに、これらイメージセンサモジュール9の直上に位置する2つの第1画素領域6内の各画素7の非発光領域6cに、それぞれ形状及び方向の異なる透過窓6dを配置している。
 図35の例では、左側に位置するイメージセンサモジュール9の直上に位置する第1画素領域6内の非発光領域6cには、3つの画素7(又は3つの色画素7)に跨がるサイズの矩形状の透過窓6dを設けている。右側に位置するイメージセンサモジュール9の直上に位置する第1画素領域6内の非発光領域6cには、画素7の境界線に対して45度傾斜した方向に左側の第1画素領域6よりも小サイズの透過窓6dが3つの画素7(又は3つの色画素7)に跨がるように3つ設けている。図35の場合も、発生する回折光f5,f6は図32の回折光f1、f2とほぼ同じになる(撮影画像g7、g8)
 上述した各例では、第1画素領域6内の非発光領域6cに透過窓6dを設けることにより、回折光fの発生方向を事前に予測できるようにしているが、透過窓6dを透過した光しかセンサ5で受光できないため、センサ5で受光する受光量が制限され、センサ5の検出感度が低下することが懸念される。そこで、第1画素領域6に入射された光をできるだけ多く透過窓6dに集光する対策を施すのが望ましい。具体的な対策の一案として、第1画素領域6の光入射側にマイクロレンズを配置して、入射光を透過窓6dに集光させることが考えられる。
 図36は第1画素領域6の光入射側にマイクロレンズ(光学系)20を配置した例を示す断面図である。マイクロレンズ20は、表示パネル2の第2透明基板41の上に配置されるか、あるいは第2透明基板41を加工して形成される。マイクロレンズ20は、可視光透過性に優れた透明樹脂材の上にレジストを配置してウェットエッチング又はドライエッチングを行うことで形成可能である。
 図37Aはマイクロレンズ20がない場合に第1画素領域6に入射される光の進行方向を矢印で示した図、図37Bは図36のマイクロレンズ20を設けた場合の光の進行方向を矢印で示した図である。マイクロレンズ20がないと、第1画素領域6内の不透明部材に入射された光は透過窓6dを通過することができないため、透過窓6dを透過する光の光量が少なくなる。一方、マイクロレンズ20を設けると、マイクロレンズ20に入射された平行光はマイクロレンズ20の焦点方向に屈折される。よって、マイクロレンズ20の曲率を最適化して焦点位置を調整することで、透過窓6dを透過する光の光量を増やすことができる。
 1枚のマイクロレンズ20だけだと、マイクロレンズ20で屈折された光の少なくとも一部は透過窓6dを斜め方向に透過するため、透過窓6dを透過した光の一部がセンサ5に入射されないおそれがある。図38はマイクロレンズ20で屈折された光の進行方向を矢印線で示した図である。図示のように、マイクロレンズ20は、光を屈折させるため、屈折された光の一部は、透過窓6dを透過してセンサ5の受光面から外れた場所に到達し、マイクロレンズ20に入射された光を有効活用できないおそれがある。
 そこで、図39に示すように、第1画素領域6の光入射側に、凸方向の異なる複数のマイクロレンズ20a、20bを配置してもよい。この場合、図39に矢印線で示したように、一個目のマイクロレンズ20aで屈折された光が、二個目のマイクロレンズ20bでビーム径の小さな平行光に変換されて透過窓6dに入射される。二個目のマイクロレンズ20bの曲率を透過窓6dのサイズに合わせて調整することで、透過窓6dの全域にわたって平行光を入射させることができ、像の歪みの少ない光をセンサ5で受光できる。
 図39に示す二個のマイクロレンズ20a、20bは、例えば、透明樹脂層を積層して、一方はウェットエッチングで加工し、他方はドライエッチングで加工することで、形成可能である。
 光の進行方向に沿って複数のマイクロレンズ20を配置する図39の一変形例として、図40に示すように、第1画素領域6の光入射側にマイクロレンズ(第1光学系)20aを配置するとともに、第1画素領域6の光出射側に別のマイクロレンズ(第2光学系)20bを配置してもよい。光入射側のマイクロレンズ20aと光出射側のマイクロレンズ20bでは、凸形状の向きが逆である。一個目のマイクロレンズ20aに入射された光は、屈折されて透過窓6dを通過した後、二個目のマイクロレンズ20bで平行光に変換されてセンサ5に入射される。
 図40の画像表示装置1は、例えば、第1透明樹脂層をウェットエッチング又はドライエッチングで加工して二個目のマイクロレンズ20bを形成し、その後、各層を形成した後、第2透明樹脂層をウェットエッチング又はドライエッチングで加工して一個目のマイクロレンズ20aを形成する。
 図41は図40の二個のマイクロレンズ20a、20bを通る光の進行方向を矢印線で示した図である。一個目のマイクロレンズ20aで屈折された光は透過窓6dを透過した後に、二個目のマイクロレンズ20bで平行光に変換されてセンサ5に入射される。これにより、図38のように一個のマイクロレンズ20だけを設ける場合と比べて、マイクロレンズ20に入射された光を漏れなくセンサ5に入射させることができ、センサ5の受光感度を向上できる。
 このように、本実施形態では、表示パネル2の裏面側に配置されるセンサ5の直上に位置する第1画素領域6に非発光領域6cを設け、非発光領域6cには予め定めた形状の透過窓6dを設ける。これにより、第1画素領域6に入射された光は、透過窓6dを透過してセンサ5に入射される。透過窓6dを光が透過する際に回折光fが発生するが、透過窓6dの形状を予め定めた形状にすることで、回折光fの発生方向を予め推定でき、センサ5の受光信号から回折光fによる影響を除去することができる。例えば、センサ5がイメージセンサモジュール9の場合、回折光fの発生方向を予め推測することで、イメージセンサモジュール9で撮影した画像データに写し込まれた回折光fを画像処理により除去することができる。
 非発光領域6cの透過窓6dの形状は、アノード電極12aの端部や配線層の端部により規定できるため、所望の形状及びサイズの透過窓6dを比較的容易に形成できる。また、第1画素領域6の非発光領域6c内に形状の異なる複数の透過窓6dを形成できるため、形状の異なる透過窓6dで発生される回折光f同士を合成することで、回折光fによる影響を相殺することも可能となる。
 また、第1画素領域6の光入射側にマイクロレンズ20を配置することで、第1画素領域6に入射された光をマイクロレンズ20で屈折させて非発光領域6cの透過窓6dに透過させることができ、透過窓6dを透過する光の光量を増やすことができる。さらに、マイクロレンズ20を光の入射方向に沿って複数設けることで、透過窓6dを透過した光をセンサ5の受光面に導くことができ、センサ5の受光量を増やすことができることから、センサ5の受光感度を向上できる。
 (第2の実施形態)
 上述した第1の実施形態で説明した構成を備えた電子機器50の具体的な候補としては、種々のものが考えられる。例えば、図42は第1の実施形態の電子機器50をカプセル内視鏡に適用した場合の平面図である。図42のカプセル内視鏡50は、例えば両端面が半球状で中央部が円筒状の筐体51内に、体腔内の画像を撮影するためのカメラ(超小型カメラ)52、カメラ52により撮影された画像データを記録するためのメモリ53、および、カプセル内視鏡50が被験者の体外に排出された後に、記録された画像データをアンテナ54を介して外部へ送信するための無線送信機55を備えている。
 また、筐体51内には、CPU(Central Processing Unit)56およびコイル(磁力・電流変換コイル)57が設けられている。CPU56は、カメラ52による撮影、およびメモリ53へのデータ蓄積動作を制御するとともに、メモリ53から無線送信機55による筐体51外のデータ受信装置(図示せず)へのデータ送信を制御する。コイル57は、カメラ52、メモリ53、無線送信機55、アンテナ54および後述する光源52bへの電力供給を行う。
 さらに、筐体51には、カプセル内視鏡50をデータ受信装置にセットした際に、これを検知するための磁気(リード)スイッチ58が設けられている。CPU56は、このリードスイッチ58がデータ受信装置へのセットを検知し、データの送信が可能になった時点で、コイル57からの無線送信機55への電力供給を行う。
 カメラ52は、例えば体腔内の画像を撮影するための対物光学系を含む撮像素子52a、体腔内を照明する複数の光源52bを有している。具体的には、カメラ52は、光源52bとして、例えばLED(Light Emitting Diode)を備えたCMOS(Complementary Metal Oxide Semiconductor)センサやCCD(Charge Coupled Device)等によって構成される。
 第1の実施形態の電子機器50における表示部3は、図42の光源52bのような発光体を含む概念である。図42のカプセル内視鏡50では、例えば2個の光源52bを有するが、これらの光源52bを、複数の光源部を有する表示パネルや、複数のLEDを有するLEDモジュールで構成可能である。この場合、表示パネルやLEDモジュールの下方にカメラ52の撮像部を配置することで、カメラ52のレイアウト配置に関する制約が少なくなり、より小型のカプセル内視鏡50を実現できる。
 また、図43は第1の実施形態の電子機器50をデジタル一眼レフカメラ60に適用した場合の背面図である。デジタル一眼レフカメラ60やコンパクトカメラは、レンズとは反対側の背面に、プレビュー画面を表示する表示部3を備えている。この表示部3の表示面とは反対側にカメラモジュール4,5を配置して、撮影者の顔画像を表示部3の表示面に表示できるようにしてもよい。第1の実施形態による電子機器50では、表示部3と重なる領域にカメラモジュール4,5を配置できるため、カメラモジュール4,5を表示部3の額縁部分に設けなくて済み、表示部3のサイズを可能な限り大型化することができる。
 図44Aは第1の実施形態の電子機器50をヘッドマウントディスプレイ(以下、HMD)61に適用した例を示す平面図である。図44AのHMD61は、VR(Virtual Reality)、AR(Augmented Reality)、MR(Mixed Reality)、又はSR(Substituional Reality)等に利用されるものである。現状のHMDは、図44Bに示すように、外表面にカメラ62を搭載しており、HMDの装着者は、周囲の画像を視認することができる一方で、周囲の人間には、HMDの装着者の目や顔の表情がわからないという問題がある。
 そこで、図44Aでは、HMD61の外表面に表示部3の表示面を設けるとともに、表示部3の表示面の反対側にカメラモジュール4,5を設ける。これにより、カメラモジュール4,5で撮影した装着者の顔の表情を表示部3の表示面に表示させることができ、装着者の周囲の人間が装着者の顔の表情や目の動きをリアルタイムに把握することができる。
 図44Aの場合、表示部3の裏面側にカメラモジュール4,5を設けるため、カメラモジュール4,5の設置場所についての制約がなくなり、HMD61のデザインの自由度を高めることができる。また、カメラを最適な位置に配置できるため、表示面に表示される装着者の目線が合わない等の不具合を防止できる。
 このように、第2の実施形態では、第1の実施形態による電子機器50を種々の用途に用いることができ、利用価値を高めることができる。
 なお、本技術は以下のような構成を取ることができる。
 (1)二次元状に配置される複数の画素を備え、
 前記複数の画素のうち少なくとも一部の画素は、
 第1自発光素子と、
 前記第1自発光素子により発光される第1発光領域と、
 可視光を透過させる所定の形状の透過窓を有する非発光領域と、を有する、画像表示装置。
 (2)前記透過窓の形状がそれぞれ異なる前記非発光領域を有する二以上の画素が設けられる、(1)に記載の画像表示装置。
 (3)前記非発光領域は、当該画像表示装置の表示面側から平面視したときに、当該画像表示装置を通して入射される光を受光する受光装置に重なる位置に配置される、(1)又は(2)に記載の画像表示装置。
 (4)前記第1自発光素子に接続される画素回路は、前記第1発光領域内に配置される、(1)乃至(3)のいずれか一項に記載の画像表示装置。
 (5)前記非発光領域は、一つの画素内にそれぞれ離隔して配置される複数の前記透過窓を有する、(1)乃至(4)のいずれか一項に記載の画像表示装置。
 (6)前記透過窓は、二以上の画素に跨がって配置される、(1)乃至(4)のいずれか一項に記載の画像表示装置。
 (7)前記二以上の画素に跨がって配置される前記透過窓には、形状が異なる複数種類が存在する、(6)に記載の画像表示装置。
 (8)前記透過窓の光入射側に配置され、入射された光を屈折させて前記透過窓に導く光学部材を備える、(1)乃至(7)のいずれか一項に記載の画像表示装置。
 (9)前記光学部材は、
 入射された光を光軸方向に屈折させる第1光学系と、
 前記第1光学系で屈折された光を平行化する第2光学系と、を有し、
 前記透過窓は、前記第2光学系で平行化された光を透過させる、(8)に記載の画像表示装置。
 (10)前記透過窓の光入射側に配置され、入射された光を屈折させて前記透過窓に導く第1光学部材と、
 前記透過窓の光出射側に配置され、前記透過窓から出射された光を平行化させて受光装置に導く第2光学部材と、を備える、(1)乃至(7)のいずれか一項に記載の画像表示装置。
 (11)前記複数の画素のうち一部の画素を含む第1画素領域と、
 前記複数の画素のうち前記第1画素領域内の画素以外の少なくとも一部の画素を含む第2画素領域と、を備え、
 前記第1画素領域内の画素は、前記第1自発光素子、前記第1発光領域、及び前記非発光領域を有し、
 前記第2画素領域内の画素は、
 第2自発光素子と、
 前記第2自発光素子により発光され、前記第1発光領域よりも面積が大きい第2発光領域と、を有する、(1)乃至(10)のいずれか一項に記載の画像表示装置。
 (12)前記第1画素領域は、画素表示領域内の複数箇所に離隔して設けられる、(11)に記載の画像表示装置。
 (13)前記第1画素領域内には、前記透過窓を透過した光による回折光の形状がそれぞれ相違するように、それぞれ異なる形状の前記透過窓を有する二以上の画素が設けられる、(11)又は(12)に記載の画像表示装置。
 (14)前記第1自発光素子は、
 下部電極層と、
 前記下部電極層の上に配置される表示層と、
 前記表示層の上に配置される上部電極層と、
 前記下部電極層の下に配置され、前記下部電極層から積層方向に延びるコンタクトを介して前記下部電極層に導通される配線層と、を有し、
 前記複数の画素の表示面側から平面視した際の前記透過窓の形状は、前記下部電極層の端部により規定される、(1)乃至(13)のいずれか一項に記載の画像表示装置。
 (15)前記第1自発光素子は、
 下部電極層と、
 前記下部電極層の上に配置される表示層と、
 前記表示層の上に配置される上部電極層と、
 前記下部電極層の下に配置され、前記下部電極層から積層方向に延びるコンタクトを介して前記下部電極層に導通される配線層と、を有し、
 前記複数の画素の表示面側から平面視した際の前記透過窓の形状は、前記配線層の端部により規定される、(1)乃至(13)のいずれか一項に記載の画像表示装置。
 (16)前記配線層は、積層された複数の金属層を有し、
 前記複数の画素の表示面側から平面視した際の前記透過窓の形状は、前記複数の金属層の少なくとも一つの金属層の端部により規定される、(15)に記載の画像表示装置。
 (17)前記複数の画素の表示面側から平面視した際の前記透過窓の形状を規定する前記金属層は、画素回路内のキャパシタの電極である、(16)に記載の画像表示装置。
 (18)前記第1発光領域の全域は、前記透過窓の領域を除いて前記下部電極層で覆われる、(14)乃至(18)のいずれか一項に記載の画像表示装置。
 (19)二次元状に配置される複数の画素を有する画像表示装置と、
 前記画像表示装置を通して入射される光を受光する受光装置と、を備え、
 前記画像表示装置は、前記複数の画素のうち一部の画素を含む第1画素領域を有し、
 前記第1画素領域内の前記一部の画素は、
 第1自発光素子と、
 前記第1自発光素子により発光される第1発光領域と、
 可視光を透過させる所定の形状の透過窓を有する非発光領域と、を有し、
 前記第1画素領域の少なくとも一部は、前記画像表示装置の表示面側から平面視したときに前記受光装置に重なるように配置される、電子機器。
 (20)前記受光装置は、前記非発光領域を通して光を受光する、(19)に記載の電子機器。
 (21)前記受光装置は、前記非発光領域を通して入射された光を光電変換する撮像センサと、前記非発光領域を通して入射された光を受光して距離を計測する距離計測センサと、前記非発光領域を通して入射された光に基づいて温度を計測する温度センサと、の少なくとも一つを含む、(19)又は(20)に記載の電子機器。
 本開示の態様は、上述した個々の実施形態に限定されるものではなく、当業者が想到しうる種々の変形も含むものであり、本開示の効果も上述した内容に限定されない。すなわち、特許請求の範囲に規定された内容およびその均等物から導き出される本開示の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更および部分的削除が可能である。
 1 画像表示装置、2 表示パネル、2a 表示層、5 センサ、6 第1画素領域、6a 第1自発光素子、6b 第1発光領域、6c 非発光領域、6d 透過窓、7 画素、8 第2画素領域、8a 第2自発光素子、8b 第2発光領域、9 イメージセンサモジュール、9a 支持基板、9b イメージセンサ、9c カットフィルタ、9d レンズユニット、9e コイル、9f 磁石、9g バネ、10 被写体、11 特定画素、12 画素回路、12a アノード電極、31 第1透明基板、32 第1絶縁層、33 第1配線層、34 第2絶縁層、35 第2配線層、36 第3絶縁層、36a トレンチ、37 第4絶縁層、38 アノード電極層、39 カソード電極層、40 第5絶縁層、41 第2透明基板、42 半導体層、43 キャパシタ、44 金属層、45 第3金属層

Claims (21)

  1.  二次元状に配置される複数の画素を備え、
     前記複数の画素のうち少なくとも一部の画素は、
     第1自発光素子と、
     前記第1自発光素子により発光される第1発光領域と、
     可視光を透過させる所定の形状の透過窓を有する非発光領域と、を有する、画像表示装置。
  2.  前記透過窓の形状がそれぞれ異なる前記非発光領域を有する二以上の画素が設けられる、請求項1に記載の画像表示装置。
  3.  前記非発光領域は、当該画像表示装置の表示面側から平面視したときに、当該画像表示装置を通して入射される光を受光する受光装置に重なる位置に配置される、請求項1に記載の画像表示装置。
  4.  前記第1自発光素子に接続される画素回路は、前記第1発光領域内に配置される、請求項1に記載の画像表示装置。
  5.  前記非発光領域は、一つの画素内にそれぞれ離隔して配置される複数の前記透過窓を有する、請求項1に記載の画像表示装置。
  6.  前記透過窓は、二以上の画素に跨がって配置される、請求項1に記載の画像表示装置。
  7.  前記二以上の画素に跨がって配置される前記透過窓には、形状が異なる複数種類が存在する、請求項6に記載の画像表示装置。
  8.  前記透過窓の光入射側に配置され、入射された光を屈折させて前記透過窓に導く光学部材を備える、請求項1に記載の画像表示装置。
  9.  前記光学部材は、
     入射された光を光軸方向に屈折させる第1光学系と、
     前記第1光学系で屈折された光を平行化する第2光学系と、を有し、
     前記透過窓は、前記第2光学系で平行化された光を透過させる、請求項8に記載の画像表示装置。
  10.  前記透過窓の光入射側に配置され、入射された光を屈折させて前記透過窓に導く第1光学部材と、
     前記透過窓の光出射側に配置され、前記透過窓から出射された光を平行化させて受光装置に導く第2光学部材と、を備える、請求項1に記載の画像表示装置。
  11.  前記複数の画素のうち一部の画素を含む第1画素領域と、
     前記複数の画素のうち前記第1画素領域内の画素以外の少なくとも一部の画素を含む第2画素領域と、を備え、
     前記第1画素領域内の画素は、前記第1自発光素子、前記第1発光領域、及び前記非発光領域を有し、
     前記第2画素領域内の画素は、
     第2自発光素子と、
     前記第2自発光素子により発光され、前記第1発光領域よりも面積が大きい第2発光領域と、を有する、請求項1に記載の画像表示装置。
  12.  前記第1画素領域は、画素表示領域内の複数箇所に離隔して設けられる、請求項11に記載の画像表示装置。
  13.  前記第1画素領域内には、前記透過窓を透過した光による回折光の形状がそれぞれ相違するように、それぞれ異なる形状の前記透過窓を有する二以上の画素が設けられる、請求項11に記載の画像表示装置。
  14.  前記第1自発光素子は、
     下部電極層と、
     前記下部電極層の上に配置される表示層と、
     前記表示層の上に配置される上部電極層と、
     前記下部電極層の下に配置され、前記下部電極層から積層方向に延びるコンタクトを介して前記下部電極層に導通される配線層と、を有し、
     前記複数の画素の表示面側から平面視した際の前記透過窓の形状は、前記下部電極層の端部により規定される、請求項1に記載の画像表示装置。
  15.  前記第1自発光素子は、
     下部電極層と、
     前記下部電極層の上に配置される表示層と、
     前記表示層の上に配置される上部電極層と、
     前記下部電極層の下に配置され、前記下部電極層から積層方向に延びるコンタクトを介して前記下部電極層に導通される配線層と、を有し、
     前記複数の画素の表示面側から平面視した際の前記透過窓の形状は、前記配線層の端部により規定される、請求項1に記載の画像表示装置。
  16.  前記配線層は、積層された複数の金属層を有し、
     前記複数の画素の表示面側から平面視した際の前記透過窓の形状は、前記複数の金属層の少なくとも一つの金属層の端部により規定される、請求項15に記載の画像表示装置。
  17.  前記複数の画素の表示面側から平面視した際の前記透過窓の形状を規定する前記金属層は、画素回路内のキャパシタの電極である、請求項16に記載の画像表示装置。
  18.  前記第1発光領域の全域は、前記透過窓の領域を除いて前記下部電極層で覆われる、請求項14に記載の画像表示装置。
  19.  二次元状に配置される複数の画素を有する画像表示装置と、
     前記画像表示装置を通して入射される光を受光する受光装置と、を備え、
     前記画像表示装置は、前記複数の画素のうち一部の画素を含む第1画素領域を有し、
     前記第1画素領域内の前記一部の画素は、
     第1自発光素子と、
     前記第1自発光素子により発光される第1発光領域と、
     可視光を透過させる所定の形状の透過窓を有する非発光領域と、を有し、
     前記第1画素領域の少なくとも一部は、前記画像表示装置の表示面側から平面視したときに前記受光装置に重なるように配置される、電子機器。
  20.  前記受光装置は、前記非発光領域を通して光を受光する、請求項19に記載の電子機器。
  21.  前記受光装置は、前記非発光領域を通して入射された光を光電変換する撮像センサと、前記非発光領域を通して入射された光を受光して距離を計測する距離計測センサと、前記非発光領域を通して入射された光に基づいて温度を計測する温度センサと、の少なくとも一つを含む、請求項19に記載の電子機器。
PCT/JP2021/031006 2020-09-03 2021-08-24 画像表示装置及び電子機器 WO2022050132A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237005230A KR20230061348A (ko) 2020-09-03 2021-08-24 화상 표시 장치 및 전자 기기
DE112021004550.4T DE112021004550T5 (de) 2020-09-03 2021-08-24 Bildanzeigevorrichtung und elektronische einrichtung
US18/042,388 US20230329036A1 (en) 2020-09-03 2021-08-24 Image display device and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-148536 2020-09-03
JP2020148536A JP2023156540A (ja) 2020-09-03 2020-09-03 画像表示装置及び電子機器

Publications (1)

Publication Number Publication Date
WO2022050132A1 true WO2022050132A1 (ja) 2022-03-10

Family

ID=80490868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031006 WO2022050132A1 (ja) 2020-09-03 2021-08-24 画像表示装置及び電子機器

Country Status (5)

Country Link
US (1) US20230329036A1 (ja)
JP (1) JP2023156540A (ja)
KR (1) KR20230061348A (ja)
DE (1) DE112021004550T5 (ja)
WO (1) WO2022050132A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112780A1 (ja) * 2021-12-13 2023-06-22 ソニーセミコンダクタソリューションズ株式会社 画像表示装置及び電子機器
WO2024030450A1 (en) * 2022-08-01 2024-02-08 Applied Materials, Inc. Bezel-less camera and sensor hole

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005010407A (ja) * 2003-06-18 2005-01-13 Canon Inc 撮像装置付き表示装置
JP2011118330A (ja) * 2009-11-02 2011-06-16 Sony Corp 撮像装置付き画像表示装置
WO2018168231A1 (ja) * 2017-03-14 2018-09-20 富士フイルム株式会社 近赤外線カットフィルタ、近赤外線カットフィルタの製造方法、固体撮像素子、カメラモジュールおよび画像表示装置
WO2020021399A1 (ja) * 2018-07-27 2020-01-30 株式会社半導体エネルギー研究所 表示装置、表示モジュール、及び電子機器
US20200111827A1 (en) * 2018-10-08 2020-04-09 Samsung Electronics Co., Ltd. Semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101084198B1 (ko) 2010-02-24 2011-11-17 삼성모바일디스플레이주식회사 유기 발광 표시 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005010407A (ja) * 2003-06-18 2005-01-13 Canon Inc 撮像装置付き表示装置
JP2011118330A (ja) * 2009-11-02 2011-06-16 Sony Corp 撮像装置付き画像表示装置
WO2018168231A1 (ja) * 2017-03-14 2018-09-20 富士フイルム株式会社 近赤外線カットフィルタ、近赤外線カットフィルタの製造方法、固体撮像素子、カメラモジュールおよび画像表示装置
WO2020021399A1 (ja) * 2018-07-27 2020-01-30 株式会社半導体エネルギー研究所 表示装置、表示モジュール、及び電子機器
US20200111827A1 (en) * 2018-10-08 2020-04-09 Samsung Electronics Co., Ltd. Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112780A1 (ja) * 2021-12-13 2023-06-22 ソニーセミコンダクタソリューションズ株式会社 画像表示装置及び電子機器
WO2024030450A1 (en) * 2022-08-01 2024-02-08 Applied Materials, Inc. Bezel-less camera and sensor hole

Also Published As

Publication number Publication date
US20230329036A1 (en) 2023-10-12
KR20230061348A (ko) 2023-05-08
DE112021004550T5 (de) 2023-06-22
JP2023156540A (ja) 2023-10-25

Similar Documents

Publication Publication Date Title
US20180012069A1 (en) Fingerprint sensor, fingerprint sensor package, and fingerprint sensing system using light sources of display panel
JP7007268B2 (ja) 表示パネルおよびその製造方法、並びに表示装置
US8502756B2 (en) Image display device with imaging unit
JP5644928B2 (ja) 撮像装置付き画像表示装置
WO2021244251A1 (zh) 显示基板和显示装置
WO2021244266A1 (zh) 显示基板和显示装置
WO2022050132A1 (ja) 画像表示装置及び電子機器
TWI680397B (zh) 感測板及具有感測板的顯示器
US8937363B2 (en) Solid-state imaging device and electronic apparatus
US20230012412A1 (en) Display substrate and method of manufacturing the same, and display device
US20210014393A1 (en) Light emitting device, exposure system, imaging display device, imaging device, electronic device, and lighting device
CN111834398B (zh) 显示模组和显示装置
JP2011150583A (ja) 撮像装置付き画像表示装置
WO2022049906A1 (ja) 画像表示装置及び電子機器
WO2023195351A1 (ja) 表示装置および電子機器
WO2021111955A1 (ja) 電子機器
JP2023181857A (ja) 発光装置、表示装置、光電変換装置、および、電子機器
CN115379610A (zh) 光学装置
KR20230144679A (ko) 표시 장치
JP2023165556A (ja) 発光装置、発光装置の製造方法、表示装置、光電変換装置、電子機器、照明装置、移動体、および、ウェアラブルデバイス
JP2023178185A (ja) 電子モジュール、表示装置、光電変換装置、および、電子機器
CN117135975A (zh) 显示面板及显示装置
JP2023161989A (ja) 半導体装置、発光装置、表示装置、光電変換装置、電子機器、照明装置、移動体、および、ウェアラブルデバイス
CN114374750A (zh) 电子设备
KR20240055949A (ko) 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864190

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21864190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP