WO2022049968A1 - Self-organizing film-forming composition, and method for forming pattern - Google Patents

Self-organizing film-forming composition, and method for forming pattern Download PDF

Info

Publication number
WO2022049968A1
WO2022049968A1 PCT/JP2021/028767 JP2021028767W WO2022049968A1 WO 2022049968 A1 WO2022049968 A1 WO 2022049968A1 JP 2021028767 W JP2021028767 W JP 2021028767W WO 2022049968 A1 WO2022049968 A1 WO 2022049968A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
self
polymer
forming
composition
Prior art date
Application number
PCT/JP2021/028767
Other languages
French (fr)
Japanese (ja)
Inventor
研 丸山
美樹 玉田
涼 久米川
宗大 白谷
壮祐 大澤
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2022546176A priority Critical patent/JPWO2022049968A1/ja
Publication of WO2022049968A1 publication Critical patent/WO2022049968A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present invention relates to a composition for forming a self-assembled monolayer and a pattern forming method.
  • an ArF excimer laser can be used to form a fine pattern having a line width of about 50 nm, but even finer pattern formation is required.
  • a method for forming a self-organizing pattern using a so-called self-organizing phase separation (microdomain) structure that spontaneously forms an order pattern has been proposed.
  • a method for forming such a self-assembling pattern a block copolymer obtained by copolymerizing a monomer compound having one property and a monomer compound having different properties is used, and an ultrafine pattern is formed by self-assembling.
  • Patent Documents 1 to 3 a method for annealing the film containing the block copolymer, it is possible to form a pattern in a self-aligned manner because the structures having the same properties are ordered to gather together.
  • a method of forming a fine pattern by self-assembling a composition containing a plurality of polymers having different properties from each other is also known (see Patent Documents 4 to 5).
  • the coatability is not sufficient, and defects derived from foreign substances and aggregates (hereinafter, also referred to as "coating defects") are scattered in the obtained coating film.
  • the present invention has been made based on the above circumstances, and an object thereof is to provide a composition for forming a self-assembled monolayer and a pattern forming method capable of forming a self-assembled monolayer having few coating defects. To do.
  • the coating defect may be caused by the low solubility of the polymer in the composition for forming a self-assembling film in a solvent. I got the knowledge. As a result of further studies, it was found that the above object can be achieved by adopting the following configuration, and the present invention has been completed.
  • a first polymer (hereinafter, also referred to as “[A] polymer”) containing a first polymer chain and a second polymer chain different from the first polymer chain, and a solvent (hereinafter, “[B1] solvent”. Also called.) Including [B1] A composition for forming a self-assembled monolayer (hereinafter, also referred to as “composition (I)"", wherein the solvent is a mixture of two or more kinds of solvents selected from the group consisting of an ester solvent and a ketone solvent. ).
  • [A] Contains a polymer and a solvent (hereinafter, also referred to as "[B2] solvent”).
  • a composition for forming a self-assembled monolayer in which the absolute value of the difference between the solubility parameter P of the polymer [A] and the solubility parameter S of the solvent [B2] is 0.35 or less hereinafter, “composition (II)). Also called.).
  • the solubility of each of the first polymer and the solvent is used. Since the parameters are close to each other, the solubility of the first polymer in the solvent can be improved, and as a result, the occurrence of coating defects can be reduced.
  • the present invention in yet another embodiment, A step of applying the above composition (I) or (II) on a substrate to form a coating film,
  • the present invention relates to a pattern forming method including a step of phase-separating the coating film to form a self-assembled monolayer and a step of removing a part of the phase of the self-assembled monolayer.
  • a pattern having a good shape can be formed by using a self-assembled monolayer having few coating defects. Therefore, these can be suitably used in a pattern forming step in manufacturing various electronic devices such as semiconductor devices and liquid crystal devices, which are required to be further miniaturized.
  • self-assembling Directed Self Assembly
  • composition (I) contains the [A] polymer and the [B1] solvent.
  • the composition (I) is a second polymer having a smaller surface free energy than the [A] polymer (hereinafter, also referred to as “[C] polymer”).
  • Other components such as surfactants may be contained.
  • each component of the composition (I) will be described.
  • the polymer is one or more kinds of polymers capable of forming a phase-separated structure by self-assembly.
  • the [A] polymer is a so-called block copolymer containing a first polymerized chain and a second polymerized chain different from the first polymerized chain.
  • one or more block copolymers can be used as the [A] polymer, only one type of block copolymer (hereinafter, also referred to as “[A1] block copolymer”) should be used. Is preferable.
  • the composition (I) may contain another polymer (hereinafter, also referred to as “[A2] polymer”) in addition to the [A] polymer as long as the phase-separated structure is formed.
  • the block copolymer is a polymer having a structure in which a plurality of blocks are bonded. Each of the above blocks consists of a chain structure of structural units derived from one type of monomer.
  • blocks of the same type aggregate with each other by heating or the like to form a phase composed of blocks of the same type.
  • a phase separation structure having an ordered pattern in which different types of phases are periodically and alternately repeated can be formed.
  • Examples of the [A1] block copolymer include diblock copolymers, triblock copolymers, and tetrablock copolymers. Among these, diblock copolymers and triblock copolymers are preferable, and diblock copolymers are more preferable, from the viewpoint that a pattern having a desired fine phase separation structure can be more easily formed.
  • Examples of the block include polystyrene block, poly (meth) acrylic acid ester block, polyvinyl acetal block, polyurethane block, polyurea block, polyimide block, polyamide block, epoxy block, novolak type phenol block, polyester block and the like.
  • the [A1] block copolymer is preferably a polymer composed of a polystyrene block and a poly (meth) acrylic acid ester block.
  • the abundance ratio of the structural unit (A) to the total of the two structural units (A) and (B) constituting these blocks based on the mass. Can be appropriately selected according to the line / space width ratio of the desired line space pattern, the size of the contact hole, and the like.
  • the abundance ratio of (A) is preferably 0.35 or more, more preferably 0.40 or more, from the viewpoint of forming a fine and good phase-separated structure. Further, 0.65 or less is preferable, and 0.60 or less is more preferable.
  • the abundance ratio of (A) is preferably 0.65 or more from the viewpoint of forming a fine and good phase-separated structure. Further, 0.85 or less is preferable, and 0.75 or less is more preferable.
  • the block copolymer can be synthesized by forming each block in a desired order by living anionic polymerization, living radical polymerization, or the like. For example, it can be synthesized by connecting polystyrene blocks, poly (meth) acrylic acid ester blocks, other blocks and the like while polymerizing in a desired order, and then adding methanol or the like to terminate the polymerization.
  • a [A1] block copolymer which is a diblock copolymer composed of a polystyrene block and a poly (meth) acrylic acid ester block
  • an anionic polymerization initiator is used and styrene is used in a suitable solvent.
  • Polystyrene blocks are synthesized by polymerizing.
  • it is connected to a polystyrene block and the (meth) acrylic acid ester is polymerized in the same manner to synthesize a poly (meth) acrylic acid ester block.
  • the polymerization is stopped by adding methanol or the like.
  • Examples of the method for synthesizing each block include a method in which a solution containing a monomer is dropped into a reaction solvent containing an anionic polymerization initiator to carry out a polymerization reaction.
  • Examples of the solvent used for the polymerization include alkanes such as n-pentane, n-hexane, n-heptane, n-octane, n-nonane, and n-decane; Cycloalkanes such as cyclohexane, cycloheptane, cyclooctane, decalin, norbornane; Aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, cumene; Saturated carboxylic acid esters such as ethyl acetate, n-butyl acetate, i-butyl acetate, methyl propionate; Ketones such as acetone, 2-butanone, 4-methyl-2-pentanone, 2-heptanone; Examples thereof include ethers such as tetrahydrofuran, dimethoxyethanes and diethoxyethanes. These
  • anionic polymerization initiator used in the above polymerization examples include alkyllithium, alkylmagnesium halide, naphthalene sodium, alkylated lanthanoid compounds and the like. Of these, when polymerizing using styrene and / or (meth) acrylic acid ester as the monomer, it is preferable to use an alkyllithium compound.
  • the polymerization terminal is treated with, for example, a terminal treatment agent containing a hetero atom, whereby the hetero atom is contained at the end of the block copolymer. It is also possible to introduce a group. [A1] By introducing a group containing a heteroatom at the end of the block copolymer, the phase separation in the composition (I) can be controlled to be better.
  • Examples of the terminal treatment agent containing the heteroatom include epoxy compounds such as 1,2-butylene oxide, butyl glycidyl ether, 2-ethylhexyl glycidyl ether, propylene oxide, ethylene oxide, and epoxyamine; Isocyanate compound, thioisocyanate compound, imidazolidinone, imidazole, aminoketone, pyrrolidone, diethylaminobenzophenone, nitrile compound, aziridine, formamide, epoxyamine, benzylamine, oxime compound, azine, pidrazone, imine, azocarboxylic acid ester, aminostyrene, vinyl Nitrogen-containing compounds such as pyridine, aminoacrylate, aminodiphenylethylene and imide compounds; Silane compounds such as alkoxysilane, aminosilane, ketoiminosilane, isocyanatesilane, siloxane, glycidylsilane, mercaptosilane, vinyls
  • the [A1] block copolymer synthesized by the above polymerization is preferably recovered by the reprecipitation method. That is, after the polymerization reaction, the target copolymer is recovered as a powder by putting the reaction solution into the reprecipitation solvent.
  • the reprecipitation solvent alcohols, alkanes and the like can be used alone or in combination of two or more.
  • the polymer can be recovered by removing low molecular weight components such as monomers and oligomers by a liquid separation operation, a column operation, an ultrafiltration operation, or the like.
  • the weight average molecular weight (Mw) of the block copolymer by gel permeation chromatography (GPC) is preferably 1,000 or more, more preferably 8,000 or more, still more preferably 20,000 or more, and 40. 000 or more is particularly preferable. Further, 150,000 or less is preferable, 100,000 or less is more preferable, 80,000 or less is further preferable, and 70,000 or less is particularly preferable. [A1] By setting the Mw of the block copolymer in the above range, a better phase separation structure can be formed.
  • the ratio (Mw / Mn) of Mw of the [A1] block copolymer to the number average molecular weight (Mn) is usually 1 or more. Further, it is usually 3 or less, more preferably 2 or less, further preferably 1.5 or less, and particularly preferably 1.2 or less. [A1] By setting the Mw / Mn of the block copolymer in the above range, a better phase-separated structure can be formed.
  • Tosoh GPC columns (2 "G2000HXL”, 1 "G3000HXL” and 1 "G4000HXL”) were used, eluent: tetrahydrofuran (Wako Pure Chemical Industries, Ltd.), flow rate: 1.0 mL. / Min, sample concentration: 1.0% by mass, sample injection volume: 100 ⁇ L, column temperature: 40 ° C., measured by GPC using a differential refractometer as a detector and monodisperse polystyrene as a standard. Is.
  • polymer constituting the polymer examples include an acrylic polymer, a styrene polymer, a vinyl acetal polymer, a urethane polymer, a urea polymer, an imide polymer, and an amide polymer. Examples thereof include novolak-type phenol polymers and ester-based polymers.
  • the polymer may be a homopolymer synthesized from one kind of monomer or a random copolymer synthesized from a plurality of kinds of monomers.
  • a homopolymer or a random copolymer corresponding to each block composition constituting the block copolymer can be preferably adopted.
  • a polymer composed of a polystyrene block and a poly (meth) acrylic acid ester block is used as the [A1] block copolymer
  • a mixed system of an acrylic polymer and a styrene polymer may be used as the [A2] polymer.
  • a random copolymer of an acrylic monomer and a styrene monomer can be used.
  • the polymer can be produced, for example, by polymerizing a monomer corresponding to each predetermined structural unit in an appropriate polymerization reaction solvent using a polymerization initiator such as a radical polymerization initiator.
  • a polymerization initiator such as a radical polymerization initiator.
  • the method for synthesizing the polymer include a method in which a solution containing a monomer and a polymerization initiator is dropped onto a polymerization reaction solvent or a solution containing a monomer to carry out a polymerization reaction, and polymerization with a solution containing a monomer.
  • a method in which a solution containing an initiator is separately added dropwise to a polymerization reaction solvent or a solution containing a monomer to carry out a polymerization reaction a method containing a plurality of types of solutions containing each monomer and a solution containing a polymerization initiator. Examples thereof include a method in which the above is dropped into a polymerization reaction solvent or a solution containing a monomer to carry out the polymerization reaction.
  • radical polymerization initiator examples include azobisisobutyronitrile (AIBN), 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile), and 2,2'-azobis (2-cyclopropylpro). Pionitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), dimethyl 2,2'-azobisisobutyrate and other azo radical polymerization initiators; benzoyl peroxide, t-butyl hydroperoxide , Peroxide radical polymerization initiators such as cumenehydroperoxide and the like. Among these, AIBN and dimethyl 2,2'-azobisisobutyrate are preferable, and AIBN is more preferable. These radical polymerization initiators can be used alone or in admixture of two or more.
  • the solvent used for the above-mentioned polymerization for example, the same solvent as those mentioned in the above-mentioned method for synthesizing the [A1] block copolymer can be used.
  • the reaction temperature in the above polymerization is usually 40 ° C. or higher, preferably 50 ° C. or higher. Further, it is usually 150 ° C. or lower, preferably 120 ° C. or lower.
  • the reaction time in the above polymerization is usually 1 hour or more. Further, it is usually 48 hours or less, preferably 24 hours or less.
  • the polymer obtained by the above polymerization reaction is preferably recovered by the reprecipitation method in the same manner as the above-mentioned method for synthesizing the [A1] block copolymer.
  • the Mw of the [A2] polymer is not particularly limited, but is preferably 3,000 or more, more preferably 5,000 or more, further preferably 7,000 or more, and particularly preferably 8,000 or more. Further, 50,000 or less is preferable, 30,000 or less is more preferable, 20,000 or less is further preferable, and 15,000 or less is particularly preferable.
  • a finer pattern can be obtained from the composition (I), and the rectangularity of the pattern is also improved. If the Mw of the polymer is less than the above lower limit, the heat resistance of the self-assembled monolayer may decrease. If the Mw of the polymer exceeds the upper limit, a sufficiently fine pattern may not be obtained.
  • the Mw / Mn of the [A2] polymer is usually 1 or more. Further, it is usually 5 or less, preferably 3 or less, and more preferably 2 or less.
  • the content of the polymer is preferably 70% by mass or more, preferably 80% by mass or more, based on the total solid content of the composition (I). More preferably, 90% by mass or more is further preferable, and 95% by mass or more is particularly preferable.
  • the solvent is a mixture of two or more kinds of solvents selected from the group consisting of an ester solvent and a ketone solvent.
  • the solvent two or more kinds may be selected from only the ester-based solvent, two or more kinds may be selected from only the ketone-based solvent, one or more kinds may be selected from the ester-based solvent, and one shall be selected from the ketone-based solvent.
  • a mixture of more than one species may be selected and used as a mixed solvent.
  • the solvent [B1] is preferably a mixture of two solvents in which one is selected from the ester solvent and one is selected from the ketone solvent.
  • the solvent may contain a solvent other than the ester solvent and the ketone solvent as long as the effect of the present invention is not impaired.
  • the ester solvent is not particularly limited as long as it has an ester bond in the molecule and the polymer [A] exhibits solubility, and even if it is a chain ester solvent, it is a cyclic ester solvent (the ester bond is a ring). It may be a solvent which constitutes a part of the above.
  • chain ester solvent examples include, for example.
  • Monocarboxylic acid ester solvents such as butyl acetate, ethyl lactate, butoxyethyl acetate, methoxybutyl acetate, cyclohexanol acetate;
  • Polyhydric alcohol carboxylate solvent such as propylene glycol diacetate, 1,4-butanediol diacetate, 1,3-butylene glycol diacetate, 1,6-hexanediol diacetate;
  • Polyhydric alcohol partial ether carboxylate solvent such as propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate;
  • Multivalent condensed alcohol partial ether carboxylate solvent such as diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobut
  • cyclic ester solvent examples include ⁇ -propiolactone, ⁇ -butyrolactone and the like.
  • ester solvent a chain ester solvent is preferable from the viewpoint of solubility, coatability, and solvent removal property of the polymer [A].
  • the chain ester solvent preferably further contains an ether bond from the viewpoint of solubility and coatability of the polymer [A].
  • chain ester solvent a monocarboxylic acid ester solvent, a polyhydric alcohol carboxylate solvent, a polyhydric alcohol partial ether carboxylate solvent and a polyhydric condensed alcohol partial ether carboxylate solvent are preferable, and a monocarboxylic acid ester is used.
  • a system solvent and a polyhydric alcohol partially ether carboxylate system solvent are more preferable.
  • butyl acetate, ethyl lactate, methoxybutyl acetate and propylene glycol monomethyl ether acetate are particularly preferable.
  • the ketone solvent is not particularly limited as long as it has a carbonyl group (excluding those contained in the ester bond) in the molecule and the [A] polymer exhibits solubility, and is a chain ketone solvent. Alternatively, it may be a cyclic ketone solvent.
  • chain ketone solvent examples include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-iso-butyl ketone, 2-heptanone, ethyl-n-butyl ketone, and methyl-n-.
  • chain ketone solvent examples include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-iso-butyl ketone, 2-heptanone, ethyl-n-butyl ketone, and methyl-n-.
  • chain ketone solvent examples include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-iso-
  • the cyclic ketone solvent is preferably a cyclic ketone solvent having 5 to 8 ring members, and examples thereof include cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, and methylcyclohexanone.
  • a cyclic ketone solvent is preferable from the viewpoint of solubility, coatability, and solvent removal property of the polymer [A].
  • cyclopentanone and cyclohexanone are more preferable, and cyclohexane is particularly preferable.
  • the ratio of the ketone solvent to the total mass of the ester solvent and the ketone solvent is preferably 10% by mass or more, preferably 20% by mass or more. Is more preferable, and 30% by mass or more is further preferable. Further, 90% by mass or less is preferable, 80% by mass or less is more preferable, and 70% by mass or less is further preferable.
  • the solvent may contain a solvent other than the ester solvent and the ketone solvent.
  • examples of other solvents include alcohol solvents, ether solvents, amide solvents, hydrocarbon solvents and the like.
  • the alcohol solvent examples include, for example. Aliphatic monoalcoholic solvents with 1 to 18 carbon atoms such as 4-methyl-2-pentanol and n-hexanol; An alicyclic monoalcohol solvent having 3 to 18 carbon atoms such as cyclohexanol; Polyhydric alcohol solvent with 2 to 18 carbon atoms such as 1,2-propylene glycol; Examples thereof include a polyhydric alcohol partially ether solvent having 3 to 19 carbon atoms such as propylene glycol monomethyl ether.
  • ether solvent examples include, for example. Dialkyl ether solvents such as diethyl ether, dipropyl ether, dibutyl ether, dipentyl ether, diisoamyl ether, dihexyl ether, diheptyl ether; Cyclic ether solvent such as tetrahydrofuran and tetrahydropyran; Examples thereof include aromatic ring-containing ether solvents such as diphenyl ether and anisole.
  • Dialkyl ether solvents such as diethyl ether, dipropyl ether, dibutyl ether, dipentyl ether, diisoamyl ether, dihexyl ether, diheptyl ether
  • Cyclic ether solvent such as tetrahydrofuran and tetrahydropyran
  • aromatic ring-containing ether solvents such as diphenyl ether and anisole.
  • amide solvent examples include cyclic amide solvents such as N, N'-dimethylimidazolidinone and N-methylpyrrolidone; Examples thereof include chain amide solvents such as N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide and N-methylpropionamide.
  • hydrocarbon solvent examples include, for example.
  • aromatic hydrocarbon solvents having 6 to 16 carbon atoms such as toluene and xylene.
  • the content of the other solvent in the [B1] solvent is preferably 0.1% by mass or more, more preferably 1% by mass or more, still more preferably 5% by mass or more. 10% by mass or more is particularly preferable. Further, 30% by mass or less is preferable, 25% by mass or less is more preferable, 20% by mass or less is further preferable, and 15% by mass or less is particularly preferable. [B1] When the solvent contains another solvent in the above range, a self-assembled monolayer having less defects in the ordered structure can be obtained while ensuring good filterability of the composition for forming a self-assembled monolayer. Can be formed.
  • the [C] polymer is a polymer having a smaller surface free energy than the [A] polymer.
  • the [C] polymer is [A]. Since the surface free energy is smaller than that of the polymer, it is considered that the [C] polymer is unevenly distributed in the upper region in the coating film 102 in the process of self-assembly.
  • the phase separation of the [A] polymer proceeds better by the interaction between the [C] polymer unevenly distributed in the upper region in the coating film 102 and the [A] polymer existing in the region other than the upper region. It is possible to form a self-assembled film 103 (see FIG. 2) having a block phase (I) 103a and a block phase (II) 103b as a better phase separation structure, resulting in a more regular. It is possible to obtain a self-assembled film having few defects in the arrangement structure.
  • the reason why the phase separation is improved by the [C] polymer is not always clear, but for example, when the [C] polymer is not applied, the difference in surface free energy between the atmosphere and the [A] polymer is large.
  • phase separation in the substantially horizontal direction tends to be promoted, but by applying the [C] polymer, the difference in surface free energy from the polymer [A] becomes smaller, and the phase separation in the substantially horizontal direction becomes smaller. Since the phase separation is suppressed, it is conceivable that the phase separation in the substantially vertical direction is effectively carried out as a result. Finally, as shown in FIG. 2, the [C] polymer is unevenly distributed in the region 104 above the self-assembled monolayer 103.
  • the surface free energy of each polymer is obtained by spin-coating the solution of each polymer and then heating to form a thin film of each polymer. (1969) ”.
  • K. According to the method of OWENS et al., The contact angle of a liquid such as pure water and methylene iodide on the thin film can be measured, and can be obtained from the measured values using the relationship of the following formula (X) and the following formula (Y). ..
  • the value obtained by subtracting the surface free energy of the [C] polymer from the surface free energy of the [A] polymer is preferably 1 mN / m or more, more preferably 3 mN / m or more, still more preferably 5 mN / m or more, and 7 mN. It is particularly preferably / m or more, and even more preferably 9 mN / m or more. Further, 20 mN / m or less is preferable, 18 mN / m or less is more preferable, 15 mN / m or less is further preferable, 13 mN / m or less is particularly preferable, and 11 mN / m or less is even more preferable.
  • the [C] polymer is more effectively unevenly distributed in the coating film forming step and the like, and the interaction between the [C] polymer and the [A] polymer is allowed to occur. It is considered that it can be enhanced more effectively, and as a result, a self-assembled membrane having less defects in the ordered arrangement structure can be obtained.
  • the [C] polymer is not particularly limited as long as the surface free energy is smaller than that of the [A] polymer, but is a structural unit containing a fluorine atom and / or a silicon atom (hereinafter, also referred to as “structural unit (I)”). It is preferable to have.
  • structural unit (I) containing a fluorine atom include 1,1,1,3,3,3-hexafluoro-2-propyl (meth) acrylate and 1,1-difluoro-1-ethoxycarbonylbutane-2.
  • Examples include structural units derived from (meth) acrylates containing a fluorine atom such as yl (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate, and trifluoromethyl (meth) acrylate.
  • the structural unit (I) containing a silicon atom is derived from, for example, a (meth) acrylate containing a silicon atom such as 2- (trimethylsilyl) ethyl (meth) acrylate and 2- (trimethoxysilyl) ethyl (meth) acrylate. Examples include structural units to be used.
  • the content ratio of the structural unit (I) is preferably 10 mol% or more, more preferably 14 mol% or more, still more preferably 18 mol% or more, based on all the structural units constituting the [C] polymer. 22 mol% or more is particularly preferable. Further, 50 mol% or less is preferable, 45 mol% or less is more preferable, 40 mol% or less is further preferable, and 36 mol% or less is particularly preferable.
  • the [C] polymer may have a structural unit other than the structural unit (I) (hereinafter, also referred to as “structural unit (II)”).
  • structural unit (II) include structural units derived from (meth) acrylic acid esters, structural units derived from styrene compounds, and the like.
  • Examples of the (meth) acrylic acid ester include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, cyclohexyl (meth) acrylate, norbornyl (meth) acrylate, and (meth) acrylic.
  • Examples include adamantyl acid, tetrahydrofurfuryl (meth) acrylate, and the like.
  • styrene compound examples include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, ⁇ -methylstyrene, 4-hydroxystyrene, 4- (t-butoxy) styrene and the like.
  • the structural unit of the [C] polymer it is considered that the interaction with the [A] polymer can be more appropriately enhanced, and from the viewpoint of forming a better phase-separated structure, the [A] polymer It is preferable to include at least a part of the structural units possessed by the polymer, and it is more preferable to include all the structural units possessed by the polymer [A].
  • the polymer [A] is a diblock copolymer of polystyrene block-tetrahydrofurfuryl block poly (meth) acrylate
  • the polymer [C] is derived from styrene in addition to the structural unit (I).
  • a structural unit derived from and a structural unit derived from tetrahydrofurfuryl (meth) acrylate it is preferable to have at least one of a structural unit derived from and a structural unit derived from tetrahydrofurfuryl (meth) acrylate, and both a structural unit derived from styrene and a structural unit derived from tetrahydrofurfuryl (meth) acrylate. It is more preferable to have.
  • the [C] polymer a random copolymer is preferable from the viewpoint of being able to more effectively exhibit the interaction with the [A] polymer and forming a better phase-separated structure.
  • a monomer giving each structural unit such as the structural unit (I) and the structural unit (II) is subjected to radical polymerization in the same manner as in the above-mentioned method for synthesizing the polymer [A]. It can be synthesized by polymerizing in an appropriate solvent using an agent or the like.
  • the Mw of the [C] polymer is preferably 1,000 or more, more preferably 5,000 or more, further preferably 8,000 or more, and particularly preferably 10,000 or more. Further, 100,000 or less is preferable, 60,000 or less is more preferable, 40,000 or less is further preferable, and 30,000 or less is particularly preferable. [C] By setting the Mw of the polymer in the above range, it is possible to form a self-assembled monolayer having less defects in the ordered structure.
  • the Mw / Mn of the [C] polymer is usually 1 or more, preferably 1.1 or more. Further, it is usually 5 or less, preferably 3 or less, more preferably 2.5 or less, further preferably 1.8 or less, and particularly preferably 1.5 or less. [C] By setting the Mw / Mn of the polymer in the above range, it is possible to form a self-assembled monolayer having less defects in the ordered structure.
  • the composition (I) may further contain a surfactant.
  • a surfactant When the composition (I) contains a surfactant, the applicability to a substrate or the like can be improved.
  • composition (I) can be prepared, for example, by mixing the polymer [A], the solvent [B1], and if necessary, other components, and filtering the composition with a membrane filter having a pore size of about 200 nm. More preferably, it can be prepared by circulating filtration with a high-density polyethylene filter having a pore size of about 10 nm.
  • the solid content concentration of the composition (I) is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, further preferably 1% by mass or more, and particularly preferably 5% by mass or more.
  • the upper limit of the solid content concentration of the composition (I) is preferably 50% by mass or less, more preferably 40% by mass or less, further preferably 30% by mass or less, and particularly preferably 20% by mass or less.
  • composition (II) contains the [A] polymer and the [B2] solvent.
  • the [B1] solvent is specified from the viewpoint of being a mixture of predetermined solvents, whereas in the composition (II), the [B2] solvent is used as the solubility parameter of the [A] polymer. It is specified from the viewpoint of closeness.
  • the polymer [A], other components, the preparation method, etc. are the same as those in the composition (I). explain.
  • the solubility parameter value of the solvent is expressed using the Hansen solubility parameter.
  • the dispersion term ⁇ d indicates a non-polar interaction
  • the polar term ⁇ p indicates an interaction between dipoles
  • the hydrogen bond term ⁇ h indicates a hydrogen bond interaction.
  • the value of the Hansen solubility parameter is obtained by using computer software (product name "Hansen Solubility Parameters in Practice").
  • X1 is a molar fraction of the solvent 1 in the mixed solvent).
  • the absolute value of the difference between the solubility parameter P of the [A] polymer and the solubility parameter S of the [B2] solvent (hereinafter, also referred to as “(PS) value”) is 0.
  • PS solubility parameter
  • the above (PS) value may be 0.35 or less, it is preferably 0.30 or less, more preferably 0.25 or less, further preferably 0.20 or less, still more preferably 0.15 or less. 0.10 or less is particularly preferable.
  • the solubility parameter P of the [A] polymer and the solubility parameter S of the [B2] solvent that is, the above (PS) value is preferably 0, but even if it is 0.001 or more. It may be 0.002 or more, or 0.005 or more.
  • the solvent As the solvent, as long as the above (PS) value is satisfied, only one kind of solvent may be used, or a mixture of a plurality of kinds of solvents may be used. When a mixture of a plurality of kinds of solvents is used, the solubility parameter of the mixture may satisfy the above (PS) value.
  • the [B2] solvent is preferably a mixture of a plurality of kinds of solvents having different solubility parameters. Among them, the [B2] solvent is preferably a mixture of a solvent having a solubility parameter S1 larger than the solubility parameter P and a solvent having a solubility parameter S2 smaller than the solubility parameter P.
  • solubility parameter of the mixture is approximated to the solubility parameter P of the polymer [A]. Can be made to. The same is true for the reverse operation.
  • the ester solvent, the ketone solvent, the alcohol solvent, the ether solvent, the amide solvent, the hydrocarbon solvent and the like exemplified in the composition (I) may be preferably used.
  • can. From these solvents, one or more kinds of solvents satisfying the above (PS) value may be appropriately selected. Suitable solvents and combinations thereof are the same as in composition (I).
  • the pattern forming method according to the present embodiment is a step of applying the composition (I) or (II) on a substrate to form a coating film (hereinafter, also referred to as a “coating film forming step”), wherein the coating film is formed.
  • a step of forming a self-assembled film by phase separation hereinafter, also referred to as a “self-assembled film forming step”
  • a step of removing a part of the phase of the self-assembled film hereinafter, “removal step”. Also called.) Includes.
  • the self-assembled monolayer forming step preferably includes a step of heating the coating film (hereinafter, also referred to as a "heating step”). Further, a step of allowing the coating film to stand still (hereinafter, also referred to as “standing step”) may be provided before the heating step or at the same time as the heating step. Further, an annealing step for stabilizing the phase separation structure may be provided. Examples of the phase-separated structure formed in the self-assembled monolayer forming step include a sea-island structure, a cylinder structure, a co-continuous structure, and a lamellar structure. The phase separation structure may be partial.
  • a step of forming a lower layer film on the upper surface side of the substrate (hereinafter, also referred to as “lower layer film forming step”) and / or a pre-pattern on the upper surface side of the substrate is formed.
  • a step of forming (hereinafter, also referred to as a “pre-pattern forming step”) may be further provided.
  • the pattern forming method may further include a step of removing the pre-pattern (hereinafter, also referred to as “pre-pattern removing step”) after the removing step, and the pattern formed after the removing step is used as a mask as described above. It is preferable to further include a step of etching the substrate (hereinafter, also referred to as “board pattern forming step”).
  • the pattern forming method according to the present embodiment is typically a lower layer film forming step, a pre-pattern forming step, a coating film forming step, a self-assembling film forming step (standing step, heating step and annealing step).
  • the removing step, the pre-pattern removing step, and the substrate pattern forming step are included in this order.
  • each process will be described with reference to the drawings.
  • the case where the [A] polymer in the composition (I) or (II) is a [A1] block copolymer will be described as an example.
  • This step is a step of forming the lower layer film 105 on the upper surface side of the substrate 101.
  • a substrate with a lower layer film 105 having a lower layer film 105 formed on the substrate 101 can be obtained.
  • the self-assembled monolayer 103 which will be described later, is formed on the underlayer film 105. Since the phase-separated structure of the self-assembled membrane 103 changes not only by the interaction between each block of the [A1] block copolymer contained in the composition (I), but also by the interaction with the underlying membrane 105. Having the underlayer film 105 may facilitate structural control. Further, when the self-assembled monolayer 103 is a thin film, the transfer process can be improved by having the underlayer film 105.
  • composition for forming the underlayer film used for forming the underlayer film 105 a conventionally known organic underlayer film forming material or the like can be used, for example, a composition for forming an underlayer film containing a cross-linking agent, a thermal acid generator, or the like. Can be mentioned.
  • the method for forming the underlayer film 105 is not particularly limited, but for example, the composition for forming the underlayer film is applied onto the substrate 101 by a known method such as a spin coating method, and then cured by exposure and / or heating to form the underlayer film 105.
  • the method and the like can be mentioned.
  • the radiation used for this exposure include visible light, ultraviolet rays, far ultraviolet rays, X-rays, electron beams, ⁇ -rays, molecular rays, ion beams and the like.
  • the heating temperature is not particularly limited, but is preferably 90 ° C. or higher. Further, 550 ° C or lower is preferable, 450 ° C or lower is more preferable, and 300 ° C or lower is further preferable.
  • the heating time is preferably 5 seconds or longer, more preferably 10 seconds or longer, and even more preferably 20 seconds or longer. Further, 1,200 seconds or less is preferable, 600 seconds or less is more preferable, and 300 seconds or less is further preferable.
  • the average thickness of the underlayer film 105 is not particularly limited, but is preferably 1 nm or more, more preferably 2 nm or more, still more preferably 3 nm or more. Further, 20,000 nm or less is preferable, 1,000 nm or less is more preferable, and 100 nm or less is further preferable.
  • This step is a step of forming a pre-pattern.
  • This pre-pattern may be formed on the substrate 101, or may be formed on the lower layer film 105 formed in the lower layer film forming step as shown in FIG.
  • the shape of the phase-separated structure is controlled by the pre-pattern 106, and a finer pattern can be formed. That is, among the blocks contained in the [A1] block copolymer contained in the composition (I) or (II), the block having a high affinity with the side surface of the pre-pattern (referred to as "block (II)”) is the pre-pattern.
  • the block phase (II) 103b is formed along the block phase (II) 103b, and the block having a low affinity (referred to as “block (I)”) forms the block phase (I) 103a at a position away from the pre-pattern.
  • block (I) the block having a low affinity
  • the phase separation structure of the self-assembled monolayer 103 can be finely controlled by the material, size, shape and the like of the pre-pattern.
  • the pre-pattern 106 can be appropriately selected according to the pattern to be finally formed, and for example, a line-and-space pattern, a hole pattern, a cylinder pattern, or the like can be used.
  • the phase separation structure of the self-assembled monolayer 103 is preferably formed along the pre-pattern 106, and the interface formed by the phase separation is the side surface of the pre-pattern 106. It is more preferable that they are substantially parallel.
  • the [A1] block copolymer consists of a styrene block and a poly (meth) acrylic acid block and the pre-pattern has a high affinity with the styrene block
  • the phase of the styrene block is linear along the pre-pattern.
  • phase separation structure formed is composed of a plurality of phases, and the interface formed from these phases is usually substantially vertical, but the interface itself does not necessarily have to be clear. Further, the phase separation structure obtained can be precisely controlled by the ratio of the length of each block chain in the block copolymer molecule, the length of the block copolymer molecule, the pre-pattern, the underlayer film, etc., and the desired fineness can be obtained. You can get a pattern.
  • Examples of the method for forming the pre-pattern 106 include the same method as the known resist pattern forming method.
  • a conventional resist composition such as a polymer having an acid dissociable group, a radiation-sensitive acid generator and a composition containing an organic solvent may be used.
  • a commercially available chemically amplified resist composition is applied onto the substrate 101 or the underlayer film 105 to form a resist film.
  • the desired region of the resist film is irradiated with radiation through a mask having a specific pattern to expose the resist film.
  • Examples of the radiation include electromagnetic waves such as ultraviolet rays, far ultraviolet rays, and X-rays; charged particle beams such as electron beams and ⁇ rays.
  • electromagnetic waves such as ultraviolet rays, far ultraviolet rays, and X-rays
  • charged particle beams such as electron beams and ⁇ rays.
  • far ultraviolet rays are preferable, ArF excimer laser light and KrF excimer laser light are preferable, and ArF excimer laser light is more preferable.
  • immersion exposure can be performed.
  • post-exposure baking PEB
  • development is performed using a developer such as an alkaline developer or an organic solvent to form a desired pre-pattern 106.
  • a developer such as an alkaline developer or an organic solvent
  • the obtained pre-pattern 106 is further cured by heat treatment after irradiating it with ultraviolet rays of, for example, 254 nm or 193 nm.
  • the heating temperature is usually 100 ° C. or higher and 250 ° C. or lower.
  • the heating time is, for example, 1 minute or more and 30 minutes or less.
  • the same method as a known resist pattern forming method can be used.
  • the composition for forming the pre-pattern a conventional composition for forming a resist film can be used.
  • the surface of the pre-pattern 106 may be hydrophobized or hydrophilized.
  • Specific treatment methods include hydrogenation treatment in which hydrogen plasma is exposed to hydrogen plasma for a certain period of time. By increasing the hydrophobicity or hydrophilicity of the surface of the pre-pattern 106, self-organization can be further promoted.
  • this step is a step of forming the coating film 102 on the substrate 101 via the lower layer film 105.
  • the coating film 102 is directly formed on the substrate 101.
  • the coating film 102 is formed by the composition (I) or (II).
  • the substrate 101 include conventionally known wafers such as silicon wafers, silicon dioxide, and wafers coated with aluminum. Further, as described later, the underlayer film and / or the pre-pattern may be formed on the substrate.
  • the method for forming the coating film 102 include rotary coating (spin coating), cast coating, roll coating and the like.
  • the average thickness of the coating film 102 to be formed is not particularly limited, but is preferably 0.2 nm or more, more preferably 1 nm or more, further preferably 2 nm or more, and particularly preferably 10 nm or more. Further, 1,000 nm or less is preferable, 200 nm or less is more preferable, 120 nm or less is further preferable, and 70 nm or less is particularly preferable.
  • the pattern forming method according to the present embodiment preferably includes a standing step and a heating step as the self-assembled monolayer forming step.
  • This step is a step of allowing the coating film 102 formed in the coating film forming step to stand still. "Standing the coating film” means that the coating film-like state is maintained and does not move. By providing this step, a better phase separation structure can be formed. In this step, as long as the coating film retains the state of the coating film, a part or all of the [B1] solvent or the [B2] solvent may evaporate from the coating film.
  • the time for the standing step is preferably 1 minute or longer, more preferably 3 minutes or longer, and even more preferably 5 minutes or longer.
  • the time is preferably 120 minutes or less, more preferably 60 minutes or less, further preferably 30 minutes or less, and particularly preferably 20 minutes or less.
  • a step of removing the solvent from the coating film (hereinafter, also referred to as “solvent removing step”) may be further provided.
  • solvent removing step examples include a method of heating.
  • This step is a step of heating the coating film 102.
  • This step may be performed at any of the steps of the coating film forming step, the standing step, and the solvent removing step, but it is preferably performed in the standing step. By performing the heating step in the above-mentioned standing step, a better phase separation structure can be formed.
  • Examples of the heating method in the heating step include a method of heating with an oven, a hot plate, or the like.
  • the temperature of the heating step is preferably 40 ° C. or higher, more preferably 100 ° C. or higher, further preferably 150 ° C. or higher, and particularly preferably 200 ° C. or higher. Further, 300 ° C. or lower is preferable, 280 ° C. or lower is more preferable, 260 ° C. or lower is further preferable, and 240 ° C. or lower is particularly preferable.
  • the time of the heating step is preferably 1 minute or longer, more preferably 3 minutes or longer, and even more preferably 5 minutes or longer. Further, 120 minutes or less is preferable, 60 minutes or less is more preferable, 30 minutes or less is further preferable, and 20 minutes or less is particularly preferable. By setting the above time in the above range, a better phase separation structure can be formed.
  • ultraviolet rays of 254 nm or 193 nm may be further irradiated.
  • the self-assembled monolayer 103 is formed by forming the phase separation structure from the coating film 102.
  • the polymer is phase-separated in a direction substantially perpendicular to the substrate 101 to form a self-assembled monolayer 103.
  • the composition (I) contains the [C] polymer, for example, the [C] polymer is unevenly distributed above the self-assembled monolayer 103 to form the region 104, as shown in FIG.
  • the average thickness of the self-assembled monolayer 103 is not particularly limited, but is preferably 0.1 nm or more, more preferably 0.5 nm or more, further preferably 1 nm or more, and particularly preferably 10 nm or more. Further, 500 nm or less is preferable, 100 nm or less is more preferable, 60 nm or less is further preferable, and 40 nm or less is particularly preferable.
  • the pattern forming method may include a step of annealing the formed self-assembled monolayer 103 in order to make the phase separation structure of the self-assembled monolayer 103 clearer and more stable.
  • the annealing method include a method of heating with an oven, a hot plate, or the like.
  • the heating temperature is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and even more preferably 150 ° C. or higher.
  • 400 ° C. or lower is preferable, 350 ° C. or lower is more preferable, and 300 ° C. or lower is further preferable.
  • the heating time is usually 30 seconds or longer, preferably 1 minute or longer, more preferably 2 minutes or longer, still more preferably 3 minutes or longer.
  • 120 minutes or less is preferable, 90 minutes or less is more preferable, and 60 minutes or less is further preferable.
  • This step is a step of removing a part of the phase separation structure of the self-assembled monolayer 103.
  • the pre-pattern 106 can also be removed simultaneously with or separately from some of the above phases. As shown in FIGS. 6 and 7, the block phase (I) 103a and the pre-pattern 106 of the self-assembled monolayer 103 are removed by etching using the difference in the etching rate of each block phase separated by self-assembly. can do.
  • the phase to be removed by etching is a polymethylmethacrylate block phase
  • radiation having a diameter of 254 nm can be used. Since the polymethylmethacrylate block phase is decomposed by the above irradiation, it becomes easier to etch.
  • RIE reactive ion etching
  • chemical dry etching and chemical wet etching such as chemical dry etching and chemical wet etching; spatter etching, ion beam etching and the like.
  • Known methods such as physical etching of the above can be mentioned.
  • reactive ion etching (RIE) is preferable, and among them, chemical dry etching using CF 4 , O 2 gas, etc., and chemical wet etching (wet development) using a liquid etching solution such as an organic solvent and hydrofluoric acid are preferable. More preferred.
  • organic solvent examples include alkanes such as n-pentane, n-hexane and n-heptane, cycloalkanes such as cyclohexane, cycloheptane and cyclooctane, ethyl acetate, n-butyl acetate, i-butyl acetate and propionic acid.
  • Saturated carboxylic acid esters such as methyl, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and methyl n-pentyl ketone, alcohols such as methanol, ethanol, 1-propanol, 2-propanol and 4-methyl-2-pentanol. kind and so on. These solvents may be used alone or in combination of two or more.
  • This step is a step of removing the pre-pattern 106 as shown in FIGS. 6 and 7. By removing the pre-pattern 106, it becomes possible to form a finer and more complicated pattern.
  • a method for removing the pre-pattern 106 a method for removing a part of the phase separation structure described above can be applied. Further, this step may be performed at the same time as the removal step, or may be performed before or after the removal step.
  • This step is a step of patterning by etching the lower layer film and the substrate using a pattern consisting of a part of the self-assembled monolayer remaining after the removal step as a mask. After the patterning on the substrate is completed, the phase used as the mask is removed from the substrate by a dissolution treatment or the like, and finally the patterned substrate can be obtained.
  • the same method as the method in the removal step can be used, and the etching gas and the etching solution can be appropriately selected depending on the material of the underlayer film and the substrate.
  • the substrate is made of a silicon material
  • a mixed gas of Freon-based gas and SF4 can be used.
  • a mixed gas of BCl 3 and Cl 2 can be used.
  • the pattern obtained by the pattern forming method is preferably used for a semiconductor element or the like, and the semiconductor element is also used for an LED, a solar cell or the like.
  • the pattern can be similarly formed by the above method.
  • Mw and Mn of the polymer are measured by gel permeation chromatography (GPC) using Tosoh's GPC columns (2 "G2000HXL", 1 "G3000HXL", 1 "G4000HXL”) under the following conditions. did. (Measurement condition)
  • Eluent Tetrahydrofuran (Wako Pure Chemical Industries, Ltd.)
  • Flow rate 1.0 mL / min
  • Sample concentration 1.0 mass%
  • Sample injection amount 100 ⁇ L
  • Detector Differential refractometer Standard material: Monodisperse polystyrene
  • 13 C-NMR analysis was performed using a nuclear magnetic resonance apparatus (“JNM-EX400” manufactured by JEOL Ltd.) and DMSO-d 6 as a measurement solvent.
  • the content ratio of each structural unit in the polymer was calculated from the area ratio of the peak corresponding to each structural unit in the spectrum obtained by 13 C-NMR.
  • the Mw of the block copolymer (P-1) was 51,000, and the Mw / Mn was 1.13.
  • the content ratio of the styrene unit and the content ratio of the methyl methacrylate unit in the block copolymer (P-1) were 50.1 mol% and 49.9 mol%, respectively. ..
  • the block copolymer (P-1) is a diblock copolymer.
  • the Mw of the polymer (P-2) was 20,070, and the Mw / Mn was 1.28.
  • the content ratios of the structural units derived from styrene, the structural units derived from tetrahydrofurfuryl methacrylate and the structural units derived from 2,2,2-trifluoroethyl methacrylate were 34.7, respectively. It was mol%, 34.4 mol% and 30.9 mol%.
  • composition for self-assembled monolayer formation The components used in the preparation of the self-assembled monolayer formation composition are shown below.
  • B-1 Propylene glycol monomethyl ether acetate
  • B-2 Butyl acetate
  • B-3 Cyclohexanone
  • B-4 Ethyl lactate
  • B-5 Cyclopentanone
  • B-6 Diisoamyl ether
  • Example 1 (Preparation of composition for forming a self-assembled monolayer (S-1)) [A] 100 parts by mass of (A-1) as a polymer, 370 parts by mass of (B-1) and (B-2) 197 parts by mass as a solvent of [B] are mixed and dissolved to prepare a mixed solution. Obtained. The obtained mixed solution was filtered through a membrane filter having a pore size of 0.01 ⁇ m to prepare a composition for forming a self-assembled monolayer (S-1).
  • Example 2 to 6 and Comparative Examples 1 to 4 The self-assembled monolayer forming compositions (S-2) to (S-6) and (CS-) were operated in the same manner as in Example 1 except that the components of the types and blending amounts shown in Table 1 below were used. 1)-(CS-4) were prepared.
  • a composition for forming an underlayer film containing a cross-linking agent is spin-coated on a 12-inch silicon wafer using a spin coater (“CLEAN TRACK ACT12” by Tokyo Electron Limited), and then baked at 150 ° C. for 60 seconds to form a film thickness. A 30 nm underlayer film was formed.
  • an ArF resist composition containing an acid dissociative polymer, a photoacid generator and an organic solvent was spin-coated on this underlayer film, and then prebaked (PB) at 100 ° C. for 60 seconds to a film thickness of 90 nm. A resist film was formed.
  • MIBK methyl isobutyl ketone
  • IPA 2-propanol
  • the composition for forming a self-assembled monolayer of the example it is possible to form a coating film in which defects during coating are suppressed, and as a result, the formed pattern is formed. There are few defects and defects, and a phase-separated structure by self-assembly can be formed well.
  • the number of defects at the time of application is high, and probably due to this, the phase separation defects and defects of the formed pattern also increase, and the phase due to self-assembly is increased. It can be seen that the separated structure cannot be formed well.
  • the self-assembling composition and the pattern forming method of the present invention it is possible to form a uniform coating film without residue defects in order to form a phase-separated structure by self-assembling well. Therefore, these can be suitably used for a lithography process in manufacturing various electronic devices such as semiconductor devices and liquid crystal devices, which are required to be further miniaturized.

Abstract

Provided are: a self-organizing film-forming composition capable of forming a self-organizing film having few coating defects; and a method for forming a pattern. This self-organizing film-forming composition contains a solvent and a first polymer having a first polymer chain and a second polymer chain that is different from the first polymer chain. The solvent is a mixture of two or more solvents selected from the group consisting of ester-based solvents and ketone-based solvents. The self-organizing film-forming composition contains a solvent and a first polymer having a first polymer chain and a second polymer chain that is different from the first polymer chain. The absolute value of the difference between the solubility parameter P of the first polymer and the solubility parameter S of the solvent is 0.35 or less.

Description

自己組織化膜形成用組成物及びパターン形成方法Composition for self-assembled monolayer formation and pattern formation method
 本発明は、自己組織化膜形成用組成物及びパターン形成方法に関する。 The present invention relates to a composition for forming a self-assembled monolayer and a pattern forming method.
 半導体デバイス、液晶デバイス等の各種電子デバイス構造の微細化に伴って、パターン形成工程におけるパターンの微細化が要求されている。現在、例えばArFエキシマレーザーを用いて線幅50nm程度の微細なパターンを形成することができるが、さらに微細なパターン形成が要求されるようになってきている。 With the miniaturization of various electronic device structures such as semiconductor devices and liquid crystal devices, miniaturization of patterns in the pattern forming process is required. At present, for example, an ArF excimer laser can be used to form a fine pattern having a line width of about 50 nm, but even finer pattern formation is required.
 上記要求に対し、秩序パターンを自発的に形成するいわゆる自己組織化による相分離(ミクロドメイン)構造を利用した自己組織化パターンの形成方法が提案されている。かかる自己組織化パターンの形成方法として、一の性質を有する単量体化合物と、それと性質の異なる単量体化合物とを共重合してなるブロック共重合体を用い、自己組織化により超微細パターンを形成する方法が知られている(特許文献1~3参照)。この方法によると、上記ブロック共重合体を含む膜をアニーリングすることにより、同じ性質を持つ構造同士が集まろうと規則配列するために、自己整合的にパターンを形成することができる。また、互いに性質の異なる複数の重合体を含む組成物を自己組織化させることにより微細パターンを形成する方法も知られている(特許文献4~5参照)。 In response to the above requirements, a method for forming a self-organizing pattern using a so-called self-organizing phase separation (microdomain) structure that spontaneously forms an order pattern has been proposed. As a method for forming such a self-assembling pattern, a block copolymer obtained by copolymerizing a monomer compound having one property and a monomer compound having different properties is used, and an ultrafine pattern is formed by self-assembling. Is known (see Patent Documents 1 to 3). According to this method, by annealing the film containing the block copolymer, it is possible to form a pattern in a self-aligned manner because the structures having the same properties are ordered to gather together. Further, a method of forming a fine pattern by self-assembling a composition containing a plurality of polymers having different properties from each other is also known (see Patent Documents 4 to 5).
特開2008-149447号公報Japanese Unexamined Patent Publication No. 2008-149447 特表2002-519728号公報Japanese Patent Publication No. 2002-591728 特開2003-218383号公報Japanese Patent Application Laid-Open No. 2003-218383 米国特許出願公開2009/0214823号明細書U.S. Patent Application Publication No. 2009/0214823 特開2010-58403号公報Japanese Unexamined Patent Publication No. 2010-58403
 しかし、上記従来の技術では、塗布性が十分でなく、得られる塗膜において異物や凝集体由来の欠陥(以下、「塗布欠陥」ともいう。)が散見されている。 However, with the above-mentioned conventional technique, the coatability is not sufficient, and defects derived from foreign substances and aggregates (hereinafter, also referred to as "coating defects") are scattered in the obtained coating film.
 本発明は、以上のような事情に基づいてなされたものであり、その目的は、塗布欠陥の少ない自己組織化膜を形成することができる自己組織化膜形成用組成物及びパターン形成方法を提供することにある。 The present invention has been made based on the above circumstances, and an object thereof is to provide a composition for forming a self-assembled monolayer and a pattern forming method capable of forming a self-assembled monolayer having few coating defects. To do.
 本発明者らは、本課題を解決すべく検討を重ねたところ、塗布欠陥は自己組織化膜形成用組成物中の重合体の溶媒への溶解性が低いことに起因するのではないかとの知見を得た。さらに検討を進めた結果、下記構成を採用することにより、上記目的を達成できることを見出し、本発明を完成させるに至った。 As a result of repeated studies to solve this problem, the present inventors have suggested that the coating defect may be caused by the low solubility of the polymer in the composition for forming a self-assembling film in a solvent. I got the knowledge. As a result of further studies, it was found that the above object can be achieved by adopting the following configuration, and the present invention has been completed.
 すなわち、本発明は、一実施形態において、
 第1重合鎖と、前記第1重合鎖と異なる第2重合鎖とを含む第1重合体(以下、「[A]重合体」ともいう。)、及び
 溶媒(以下、「[B1]溶媒」ともいう。)
 を含み、
 [B1]溶媒が、エステル系溶媒及びケトン系溶媒からなる群より選択される2種以上の溶媒の混合物である自己組織化膜形成用組成物(以下、「組成物(I)」ともいう。)に関する。
That is, the present invention, in one embodiment,
A first polymer (hereinafter, also referred to as “[A] polymer”) containing a first polymer chain and a second polymer chain different from the first polymer chain, and a solvent (hereinafter, “[B1] solvent”. Also called.)
Including
[B1] A composition for forming a self-assembled monolayer (hereinafter, also referred to as "composition (I)"", wherein the solvent is a mixture of two or more kinds of solvents selected from the group consisting of an ester solvent and a ketone solvent. ).
 本発明は、別の実施形態において、
 [A]重合体、及び溶媒(以下、「[B2]溶媒」ともいう。)を含み、
 [A]重合体が有する溶解度パラメータPと[B2]溶媒が有する溶解度パラメータSとの差の絶対値が0.35以下である自己組織化膜形成用組成物(以下、「組成物(II)」ともいう。)に関する。
The present invention, in another embodiment,
[A] Contains a polymer and a solvent (hereinafter, also referred to as "[B2] solvent").
A composition for forming a self-assembled monolayer in which the absolute value of the difference between the solubility parameter P of the polymer [A] and the solubility parameter S of the solvent [B2] is 0.35 or less (hereinafter, “composition (II)). Also called.).
 組成物(I)や組成物(II)によれば、第1重合体とともに配合する溶媒として特定の溶媒の混合溶媒を用いることに加え又はそれに代えて、第1重合体及び溶媒のそれぞれの溶解度パラメータ同士を近似させているので、第1重合体の溶媒への溶解性を向上させることができ、その結果、塗布欠陥の発生を低減させることができる。 According to the composition (I) and the composition (II), in addition to or instead of using a mixed solvent of a specific solvent as the solvent to be blended with the first polymer, the solubility of each of the first polymer and the solvent is used. Since the parameters are close to each other, the solubility of the first polymer in the solvent can be improved, and as a result, the occurrence of coating defects can be reduced.
 本発明は、さらに別の実施形態において、
 基板上に上記組成物(I)又は(II)を塗布して塗布膜を形成する工程、
 前記塗布膜を相分離させて自己組織化膜を形成する工程、及び
 前記自己組織化膜の一部の相を除去する工程
 を含むパターン形成方法に関する。
The present invention, in yet another embodiment,
A step of applying the above composition (I) or (II) on a substrate to form a coating film,
The present invention relates to a pattern forming method including a step of phase-separating the coating film to form a self-assembled monolayer and a step of removing a part of the phase of the self-assembled monolayer.
 当該パターン形成方法によれば、塗布欠陥の少ない自己組織化膜を用いて良好な形状のパターンを形成することができる。従って、これらはさらなる微細化が要求されている半導体デバイス、液晶デバイス等の各種電子デバイス製造におけるパターン形成工程に好適に用いることができる。 According to the pattern forming method, a pattern having a good shape can be formed by using a self-assembled monolayer having few coating defects. Therefore, these can be suitably used in a pattern forming step in manufacturing various electronic devices such as semiconductor devices and liquid crystal devices, which are required to be further miniaturized.
 本明細書において、「自己組織化(Directed Self Assembly)」とは、外的要因からの制御のみに起因せず、自発的に組織や構造を構築する現象をいう。 In the present specification, "self-assembling (Directed Self Assembly)" refers to a phenomenon in which an organization or structure is spontaneously constructed without being caused only by control from external factors.
本発明の一実施形態に係るパターン形成方法において、基板上に塗布膜を形成した後の状態の一例を示す模式図である。It is a schematic diagram which shows an example of the state after forming a coating film on a substrate in the pattern forming method which concerns on one Embodiment of this invention. 本発明の一実施形態に係るパターン形成方法において、自己組織化膜を形成した後の状態の一例を示す模式図である。It is a schematic diagram which shows an example of the state after forming the self-assembled monolayer in the pattern forming method which concerns on one Embodiment of this invention. 本発明の一実施形態に係るパターン形成方法において、基板上に下層膜を形成した後の状態の一例を示す模式図である。It is a schematic diagram which shows an example of the state after forming the lower layer film on the substrate in the pattern forming method which concerns on one Embodiment of this invention. 本発明の一実施形態に係るパターン形成方法において、下層膜上にプレパターンを形成した後の状態の一例を示す模式図である。It is a schematic diagram which shows an example of the state after forming the pre-pattern on the underlayer film in the pattern forming method which concerns on one Embodiment of this invention. 本発明の一実施形態に係るパターン形成方法において、プレパターンによって挟まれた下層膜上の領域に塗布膜を形成した後の状態の一例を示す模式図である。It is a schematic diagram which shows an example of the state after forming the coating film in the region on the lower layer film sandwiched by the pre-pattern in the pattern forming method which concerns on one Embodiment of this invention. 本発明の一実施形態に係るパターン形成方法において、プレパターンによって挟まれた下層膜上の領域に自己組織化膜を形成した後の状態の一例を示す模式図である。It is a schematic diagram which shows an example of the state after forming the self-assembled monolayer in the region on the lower layer membrane sandwiched by the pre-pattern in the pattern formation method which concerns on one Embodiment of this invention. 本発明の一実施形態に係るパターン形成方法において、自己組織化膜の一部の相及びプレパターンを除去した後の状態の一例を示す模式図である。It is a schematic diagram which shows an example of the state after removing a part phase and a pre-pattern of a self-assembled monolayer in the pattern formation method which concerns on one Embodiment of this invention.
 以下、本発明の自己組織化膜形成用組成物及びパターン形成方法のそれぞれの実施の形態について図面を参照しつつ詳説する。 Hereinafter, embodiments of the self-assembled monolayer forming composition and the pattern forming method of the present invention will be described in detail with reference to the drawings.
《第1実施形態》
〔組成物(I)〕
 組成物(I)は、[A]重合体と[B1]溶媒とを含有する。組成物(I)は、[A]重合体及び[B1]溶媒以外にも、[A]重合体よりも表面自由エネルギーが小さい第2重合体(以下、「[C]重合体」ともいう)、界面活性剤等の他の成分を含有してもよい。以下、組成物(I)の各成分について説明する。
<< First Embodiment >>
[Composition (I)]
The composition (I) contains the [A] polymer and the [B1] solvent. In addition to the [A] polymer and the [B1] solvent, the composition (I) is a second polymer having a smaller surface free energy than the [A] polymer (hereinafter, also referred to as “[C] polymer”). , Other components such as surfactants may be contained. Hereinafter, each component of the composition (I) will be described.
<[A]重合体>
 [A]重合体は、自己組織化により相分離構造を形成しうる1種又は複数種の重合体である。[A]重合体は、第1重合鎖と、前記第1重合鎖と異なる第2重合鎖とを含む、いわゆるブロック共重合体である。[A]重合体として、1種又は複数種のブロック共重合体を用いることができるものの、1種のブロック共重合体(以下、「[A1]ブロック共重合体」ともいう)のみを用いることが好ましい。また、組成物(I)は、相分離構造が形成される限り、[A]重合体以外に他の重合体(以下、「[A2]重合体」ともいう。)を含んでいてもよい。
<[A] Polymer>
[A] The polymer is one or more kinds of polymers capable of forming a phase-separated structure by self-assembly. The [A] polymer is a so-called block copolymer containing a first polymerized chain and a second polymerized chain different from the first polymerized chain. Although one or more block copolymers can be used as the [A] polymer, only one type of block copolymer (hereinafter, also referred to as “[A1] block copolymer”) should be used. Is preferable. Further, the composition (I) may contain another polymer (hereinafter, also referred to as “[A2] polymer”) in addition to the [A] polymer as long as the phase-separated structure is formed.
 ([A1]ブロック共重合体)
 [A1]ブロック共重合体は、複数のブロックが結合した構造を有する重合体である。上記ブロックのそれぞれは1種類の単量体に由来する構造単位の連鎖構造からなる。このような複数のブロックを有する[A1]ブロック共重合体は、加熱等により、同じ種類のブロック同士が凝集し、同種のブロックからなる相を形成する。このとき異なる種類のブロックから形成される相同士は互いに混ざり合うことがないため、異種の相が周期的に交互に繰り返される秩序パターンを有する相分離構造を形成することができると推察される。
([A1] block copolymer)
[A1] The block copolymer is a polymer having a structure in which a plurality of blocks are bonded. Each of the above blocks consists of a chain structure of structural units derived from one type of monomer. In such a [A1] block copolymer having a plurality of blocks, blocks of the same type aggregate with each other by heating or the like to form a phase composed of blocks of the same type. At this time, since the phases formed from different types of blocks do not mix with each other, it is presumed that a phase separation structure having an ordered pattern in which different types of phases are periodically and alternately repeated can be formed.
 [A1]ブロック共重合体としては、例えばジブロック共重合体、トリブロック共重合体、テトラブロック共重合体等が挙げられる。これらの中で、所望の微細な相分離構造を有するパターンをより容易に形成できるという観点から、ジブロック共重合体及びトリブロック共重合体が好ましく、ジブロック共重合体がより好ましい。 Examples of the [A1] block copolymer include diblock copolymers, triblock copolymers, and tetrablock copolymers. Among these, diblock copolymers and triblock copolymers are preferable, and diblock copolymers are more preferable, from the viewpoint that a pattern having a desired fine phase separation structure can be more easily formed.
 上記ブロックとしては、例えばポリスチレンブロック、ポリ(メタ)アクリル酸エステルブロック、ポリビニルアセタールブロック、ポリウレタンブロック、ポリウレアブロック、ポリイミドブロック、ポリアミドブロック、エポキシブロック、ノボラック型フェノールブロック、ポリエステルブロック等が挙げられる。 Examples of the block include polystyrene block, poly (meth) acrylic acid ester block, polyvinyl acetal block, polyurethane block, polyurea block, polyimide block, polyamide block, epoxy block, novolak type phenol block, polyester block and the like.
 相分離構造の形成し易さ及び相の除去のし易さの観点から、[A1]ブロック共重合体としては、ポリスチレンブロックとポリ(メタ)アクリル酸エステルブロックとからなる重合体が好ましい。 From the viewpoint of easy formation of a phase-separated structure and easy removal of a phase, the [A1] block copolymer is preferably a polymer composed of a polystyrene block and a poly (meth) acrylic acid ester block.
 [A1]ブロック共重合体がジブロック共重合体の場合、これらのブロックを構成する2種の構造単位(A)及び(B)の合計に占める構造単位(A)の質量基準での存在比は、所望するラインスペースパターンのライン/スペース幅比、コンタクトホールの寸法等に応じて適宜選択できる。ラメラ構造を形成する場合、微細かつ良好な相分離構造を形成する観点から、上記(A)の存在比としては、0.35以上が好ましく、0.40以上がより好ましい。また、0.65以下が好ましく、0.60以下がより好ましい。シリンダ構造を形成する場合、微細かつ良好な相分離構造を形成する観点から、上記(A)の存在比としては、0.65以上が好ましい。また、0.85以下が好ましく、0.75以下がより好ましい。 [A1] When the block copolymer is a diblock copolymer, the abundance ratio of the structural unit (A) to the total of the two structural units (A) and (B) constituting these blocks based on the mass. Can be appropriately selected according to the line / space width ratio of the desired line space pattern, the size of the contact hole, and the like. When forming a lamellar structure, the abundance ratio of (A) is preferably 0.35 or more, more preferably 0.40 or more, from the viewpoint of forming a fine and good phase-separated structure. Further, 0.65 or less is preferable, and 0.60 or less is more preferable. When forming a cylinder structure, the abundance ratio of (A) is preferably 0.65 or more from the viewpoint of forming a fine and good phase-separated structure. Further, 0.85 or less is preferable, and 0.75 or less is more preferable.
 ([A1]ブロック共重合体の合成方法)
 [A1]ブロック共重合体は、リビングアニオン重合、リビングラジカル重合等によって、各ブロックを所望の順で形成することにより合成することができる。例えばポリスチレンブロック、ポリ(メタ)アクリル酸エステルブロック、これら以外の他のブロック等を所望の順で重合しながら連結した後、メタノール等を添加して重合を停止させることにより合成することができる。
([A1] Method for synthesizing block copolymer)
[A1] The block copolymer can be synthesized by forming each block in a desired order by living anionic polymerization, living radical polymerization, or the like. For example, it can be synthesized by connecting polystyrene blocks, poly (meth) acrylic acid ester blocks, other blocks and the like while polymerizing in a desired order, and then adding methanol or the like to terminate the polymerization.
 例えばポリスチレンブロック及びポリ(メタ)アクリル酸エステルブロックからなるジブロック共重合体である[A1]ブロック共重合体を合成する場合は、まずアニオン重合開始剤を使用して、適当な溶媒中でスチレンを重合することによりポリスチレンブロックを合成する。次にポリスチレンブロックに繋げて、(メタ)アクリル酸エステルを同様に重合してポリ(メタ)アクリル酸エステルブロックを合成する。その後、メタノール等を添加することにより、重合を停止させる。なお、それぞれのブロックの合成方法としては、例えばアニオン重合開始剤を含有する反応溶媒中に単量体を含有する溶液を滴下して重合反応させる方法等が挙げられる。 For example, when synthesizing a [A1] block copolymer, which is a diblock copolymer composed of a polystyrene block and a poly (meth) acrylic acid ester block, first, an anionic polymerization initiator is used and styrene is used in a suitable solvent. Polystyrene blocks are synthesized by polymerizing. Next, it is connected to a polystyrene block and the (meth) acrylic acid ester is polymerized in the same manner to synthesize a poly (meth) acrylic acid ester block. Then, the polymerization is stopped by adding methanol or the like. Examples of the method for synthesizing each block include a method in which a solution containing a monomer is dropped into a reaction solvent containing an anionic polymerization initiator to carry out a polymerization reaction.
 上記重合に使用される溶媒としては、例えば
 n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカン等のアルカン類;
 シクロヘキサン、シクロヘプタン、シクロオクタン、デカリン、ノルボルナン等のシクロアルカン類;
 ベンゼン、トルエン、キシレン、エチルベンゼン、クメン等の芳香族炭化水素類;
 酢酸エチル、酢酸n-ブチル、酢酸i-ブチル、プロピオン酸メチル等の飽和カルボン酸エステル類;
 アセトン、2-ブタノン、4-メチル-2-ペンタノン、2-ヘプタノン等のケトン類;
 テトラヒドロフラン、ジメトキシエタン類、ジエトキシエタン類等のエーテル類などが挙げられる。これらの溶媒は、単独で使用してもよく2種以上を併用してもよい。
Examples of the solvent used for the polymerization include alkanes such as n-pentane, n-hexane, n-heptane, n-octane, n-nonane, and n-decane;
Cycloalkanes such as cyclohexane, cycloheptane, cyclooctane, decalin, norbornane;
Aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, cumene;
Saturated carboxylic acid esters such as ethyl acetate, n-butyl acetate, i-butyl acetate, methyl propionate;
Ketones such as acetone, 2-butanone, 4-methyl-2-pentanone, 2-heptanone;
Examples thereof include ethers such as tetrahydrofuran, dimethoxyethanes and diethoxyethanes. These solvents may be used alone or in combination of two or more.
 上記重合に使用されるアニオン重合開始剤としては、例えばアルキルリチウム、アルキルマグネシウムハライド、ナフタレンナトリウム、アルキル化ランタノイド系化合物等が挙げられる。これらのうち、モノマーとしてスチレン及び/又は(メタ)アクリル酸エステルを使用して重合する場合には、アルキルリチウム化合物を用いることが好ましい。 Examples of the anionic polymerization initiator used in the above polymerization include alkyllithium, alkylmagnesium halide, naphthalene sodium, alkylated lanthanoid compounds and the like. Of these, when polymerizing using styrene and / or (meth) acrylic acid ester as the monomer, it is preferable to use an alkyllithium compound.
 上記重合において、上述のように各ブロックを所望の順で形成した後、その重合末端を、例えばヘテロ原子を含む末端処理剤で処理することにより、上記ブロック共重合体の末端にヘテロ原子を含む基を導入することもできる。[A1]ブロック共重合体の末端にヘテロ原子を含む基を導入することで、組成物(I)における相分離がより良好なものに制御され得る。 In the above polymerization, after forming each block in a desired order as described above, the polymerization terminal is treated with, for example, a terminal treatment agent containing a hetero atom, whereby the hetero atom is contained at the end of the block copolymer. It is also possible to introduce a group. [A1] By introducing a group containing a heteroatom at the end of the block copolymer, the phase separation in the composition (I) can be controlled to be better.
 上記ヘテロ原子を含む末端処理剤としては、例えば
 1,2-ブチレンオキシド、ブチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、プロピレンオキシド、エチレンオキシド、エポキシアミン等のエポキシ化合物;
 イソシアネート化合物、チオイソシアネート化合物、イミダゾリジノン、イミダゾール、アミノケトン、ピロリドン、ジエチルアミノベンゾフェノン、ニトリル化合物、アジリジン、ホルムアミド、エポキシアミン、ベンジルアミン、オキシム化合物、アジン、ピドラゾン、イミン、アゾカルボン酸エステル、アミノスチレン、ビニルピリジン、アミノアクリレート、アミノジフェニルエチレン、イミド化合物等の含窒素化合物;
 アルコキシシラン、アミノシラン、ケトイミノシラン、イソシアネートシラン、シロキサン、グリシジルシラン、メルカプトシラン、ビニルシラン、エポキシシラン、ピリジルシラン、ピペラジルシラン、ピロリドンシラン、シアノシラン、イソシアン酸シラン等のシラン化合物;
 ハロゲン化スズ、ハロゲン化ケイ素、二酸化炭素等が挙げられる。
Examples of the terminal treatment agent containing the heteroatom include epoxy compounds such as 1,2-butylene oxide, butyl glycidyl ether, 2-ethylhexyl glycidyl ether, propylene oxide, ethylene oxide, and epoxyamine;
Isocyanate compound, thioisocyanate compound, imidazolidinone, imidazole, aminoketone, pyrrolidone, diethylaminobenzophenone, nitrile compound, aziridine, formamide, epoxyamine, benzylamine, oxime compound, azine, pidrazone, imine, azocarboxylic acid ester, aminostyrene, vinyl Nitrogen-containing compounds such as pyridine, aminoacrylate, aminodiphenylethylene and imide compounds;
Silane compounds such as alkoxysilane, aminosilane, ketoiminosilane, isocyanatesilane, siloxane, glycidylsilane, mercaptosilane, vinylsilane, epoxysilane, pyridylsilane, piperazylsilane, pyrrolidonesilane, cyanosilane, and isocyanatesilane;
Examples thereof include tin halide, silicon halide, and carbon dioxide.
 上記重合により合成された[A1]ブロック共重合体は、再沈殿法により回収することが好ましい。すなわち、重合反応後、反応液を再沈溶媒に投入することにより、目的の共重合体を粉体として回収する。再沈溶媒としては、アルコール類やアルカン類等を単独で又は2種以上を混合して使用することができる。再沈殿法の他に、分液操作やカラム操作、限外濾過操作等により、単量体、オリゴマー等の低分子量成分を除去して、重合体を回収することもできる。 The [A1] block copolymer synthesized by the above polymerization is preferably recovered by the reprecipitation method. That is, after the polymerization reaction, the target copolymer is recovered as a powder by putting the reaction solution into the reprecipitation solvent. As the reprecipitation solvent, alcohols, alkanes and the like can be used alone or in combination of two or more. In addition to the reprecipitation method, the polymer can be recovered by removing low molecular weight components such as monomers and oligomers by a liquid separation operation, a column operation, an ultrafiltration operation, or the like.
 [A1]ブロック共重合体のゲルパーミエーションクロマトグラフィー(GPC)による重量平均分子量(Mw)としては、1,000以上が好ましく、8,000以上がより好ましく、20,000以上がさらに好ましく、40,000以上が特に好ましい。また、150,000以下が好ましく、100,000以下がより好ましく、80,000以下がさらに好ましく、70,000以下が特に好ましい。[A1]ブロック共重合体のMwを上記範囲とすることで、さらに良好な相分離構造を形成することができる。 [A1] The weight average molecular weight (Mw) of the block copolymer by gel permeation chromatography (GPC) is preferably 1,000 or more, more preferably 8,000 or more, still more preferably 20,000 or more, and 40. 000 or more is particularly preferable. Further, 150,000 or less is preferable, 100,000 or less is more preferable, 80,000 or less is further preferable, and 70,000 or less is particularly preferable. [A1] By setting the Mw of the block copolymer in the above range, a better phase separation structure can be formed.
 [A1]ブロック共重合体のMwと数平均分子量(Mn)との比(Mw/Mn)としては、通常1以上である。また、通常3以下であり、2以下がより好ましく、1.5以下がさらに好ましく、1.2以下が特に好ましい。[A1]ブロック共重合体のMw/Mnを上記範囲とすることで、より良好な相分離構造を形成することができる。 The ratio (Mw / Mn) of Mw of the [A1] block copolymer to the number average molecular weight (Mn) is usually 1 or more. Further, it is usually 3 or less, more preferably 2 or less, further preferably 1.5 or less, and particularly preferably 1.2 or less. [A1] By setting the Mw / Mn of the block copolymer in the above range, a better phase-separated structure can be formed.
 Mw及びMnは、東ソー社のGPCカラム(「G2000HXL」2本、「G3000HXL」1本及び「G4000HXL」1本)を使用し、溶離液:テトラヒドロフラン(和光純薬工業社)、流量:1.0mL/分、試料濃度:1.0質量%、試料注入量:100μL、カラム温度:40℃の分析条件で、検出器として示差屈折計を使用し、単分散ポリスチレンを標準とするGPCにより測定したものである。 For Mw and Mn, Tosoh GPC columns (2 "G2000HXL", 1 "G3000HXL" and 1 "G4000HXL") were used, eluent: tetrahydrofuran (Wako Pure Chemical Industries, Ltd.), flow rate: 1.0 mL. / Min, sample concentration: 1.0% by mass, sample injection volume: 100 μL, column temperature: 40 ° C., measured by GPC using a differential refractometer as a detector and monodisperse polystyrene as a standard. Is.
 ([A2]重合体)
 [A2]重合体を構成する重合体としては、例えばアクリル系重合体、スチレン系重合体、ビニルアセタール系重合体、ウレタン系重合体、ウレア系重合体、イミド系重合体、アミド系重合体、ノボラック型フェノール重合体、エステル系重合体等が挙げられる。上記重合体としては、1種類の単量体から合成されるホモポリマーであっても、複数種の単量体から合成されるランダムコポリマーであってもよい。[A1]ブロック共重合体を構成する各ブロック組成に対応するホモポリマー又はランダムコポリマーを好適に採用することができる。[A1]ブロック共重合体として、ポリスチレンブロックとポリ(メタ)アクリル酸エステルブロックとからなる重合体を用いる場合、[A2]重合体として、アクリル系重合体とスチレン系重合体との混合系や、アクリル系単量体とスチレン系単量体とのランダムコポリマーを用いることができる。
([A2] polymer)
[A2] Examples of the polymer constituting the polymer include an acrylic polymer, a styrene polymer, a vinyl acetal polymer, a urethane polymer, a urea polymer, an imide polymer, and an amide polymer. Examples thereof include novolak-type phenol polymers and ester-based polymers. The polymer may be a homopolymer synthesized from one kind of monomer or a random copolymer synthesized from a plurality of kinds of monomers. [A1] A homopolymer or a random copolymer corresponding to each block composition constituting the block copolymer can be preferably adopted. When a polymer composed of a polystyrene block and a poly (meth) acrylic acid ester block is used as the [A1] block copolymer, a mixed system of an acrylic polymer and a styrene polymer may be used as the [A2] polymer. , A random copolymer of an acrylic monomer and a styrene monomer can be used.
 ([A2]重合体の合成方法)
 [A2]重合体は、例えば所定の各構造単位に対応する単量体を、ラジカル重合開始剤等の重合開始剤を使用し、適当な重合反応溶媒中で重合することにより製造できる。重合体の合成方法としては、例えば単量体及び重合開始剤を含有する溶液を重合反応溶媒又は単量体を含有する溶液に滴下して重合反応させる方法、単量体を含有する溶液と重合開始剤を含有する溶液とを各別に重合反応溶媒又は単量体を含有する溶液に滴下して重合反応させる方法、各々の単量体を含有する複数種の溶液と重合開始剤を含有する溶液とを各別に重合反応溶媒又は単量体を含有する溶液に滴下して重合反応させる方法等が挙げられる。
([A2] Polymer Synthesis Method)
[A2] The polymer can be produced, for example, by polymerizing a monomer corresponding to each predetermined structural unit in an appropriate polymerization reaction solvent using a polymerization initiator such as a radical polymerization initiator. Examples of the method for synthesizing the polymer include a method in which a solution containing a monomer and a polymerization initiator is dropped onto a polymerization reaction solvent or a solution containing a monomer to carry out a polymerization reaction, and polymerization with a solution containing a monomer. A method in which a solution containing an initiator is separately added dropwise to a polymerization reaction solvent or a solution containing a monomer to carry out a polymerization reaction, a method containing a plurality of types of solutions containing each monomer and a solution containing a polymerization initiator. Examples thereof include a method in which the above is dropped into a polymerization reaction solvent or a solution containing a monomer to carry out the polymerization reaction.
 上記ラジカル重合開始剤としては、アゾビスイソブチロニトリル(AIBN)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-シクロプロピルプロピオニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、ジメチル2,2’-アゾビスイソブチレート等のアゾ系ラジカル重合開始剤;ベンゾイルパーオキサイド、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等の過酸化物系ラジカル重合開始剤などが挙げられる。これらの中で、AIBN及びジメチル2,2’-アゾビスイソブチレートが好ましく、AIBNがより好ましい。これらのラジカル重合開始剤は1種単独で又は2種以上を混合して用いることができる。 Examples of the radical polymerization initiator include azobisisobutyronitrile (AIBN), 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile), and 2,2'-azobis (2-cyclopropylpro). Pionitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), dimethyl 2,2'-azobisisobutyrate and other azo radical polymerization initiators; benzoyl peroxide, t-butyl hydroperoxide , Peroxide radical polymerization initiators such as cumenehydroperoxide and the like. Among these, AIBN and dimethyl 2,2'-azobisisobutyrate are preferable, and AIBN is more preferable. These radical polymerization initiators can be used alone or in admixture of two or more.
 上記重合に使用される溶媒としては、例えば上述の[A1]ブロック共重合体の合成方法において挙げたものと同様の溶媒等が使用できる。 As the solvent used for the above-mentioned polymerization, for example, the same solvent as those mentioned in the above-mentioned method for synthesizing the [A1] block copolymer can be used.
 上記重合における反応温度としては、通常40℃以上であり、50℃以上が好ましい。また、通常150℃以下であり、120℃以下が好ましい。上記重合における反応時間としては、通常1時間以上である。また、通常48時間以下であり、24時間以下が好ましい。 The reaction temperature in the above polymerization is usually 40 ° C. or higher, preferably 50 ° C. or higher. Further, it is usually 150 ° C. or lower, preferably 120 ° C. or lower. The reaction time in the above polymerization is usually 1 hour or more. Further, it is usually 48 hours or less, preferably 24 hours or less.
 上記重合反応により得られた重合体は、上述の[A1]ブロック共重合体の合成方法と同様にして、再沈殿法により回収することが好ましい。 The polymer obtained by the above polymerization reaction is preferably recovered by the reprecipitation method in the same manner as the above-mentioned method for synthesizing the [A1] block copolymer.
 [A2]重合体のMwとしては、特に限定されないが、3,000以上が好ましく、5,000以上がより好ましく、7,000以上がさらに好ましく、8,000以上が特に好ましい。また、50,000以下が好ましく、30,000以下がより好ましく、20,000以下がさらに好ましく、15,000以下が特に好ましい。上記重合体のMwを上記範囲とすることで組成物(I)からより微細なパターンを得ることができ、パターンの矩形性も向上する。上記重合体のMwが上記下限未満であると自己組織化膜の耐熱性が低下するおそれがある。上記重合体のMwが上記上限を超えると十分に微細なパターンが得られないおそれがある。 The Mw of the [A2] polymer is not particularly limited, but is preferably 3,000 or more, more preferably 5,000 or more, further preferably 7,000 or more, and particularly preferably 8,000 or more. Further, 50,000 or less is preferable, 30,000 or less is more preferable, 20,000 or less is further preferable, and 15,000 or less is particularly preferable. By setting the Mw of the polymer in the above range, a finer pattern can be obtained from the composition (I), and the rectangularity of the pattern is also improved. If the Mw of the polymer is less than the above lower limit, the heat resistance of the self-assembled monolayer may decrease. If the Mw of the polymer exceeds the upper limit, a sufficiently fine pattern may not be obtained.
 [A2]重合体のMw/Mnとしては、通常1以上である。また、通常5以下であり、3以下が好ましく、2以下がさらに好ましい。 The Mw / Mn of the [A2] polymer is usually 1 or more. Further, it is usually 5 or less, preferably 3 or less, and more preferably 2 or less.
 [A]重合体(複数種の重合体が存在する場合はそれらの合計)の含有量は、組成物(I)の全固形分に対して、70質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましく、95質量%以上が特に好ましい。 [A] The content of the polymer (the total of a plurality of types of polymers, if present) is preferably 70% by mass or more, preferably 80% by mass or more, based on the total solid content of the composition (I). More preferably, 90% by mass or more is further preferable, and 95% by mass or more is particularly preferable.
<[B1]溶媒>
 [B1]溶媒は、エステル系溶媒及びケトン系溶媒からなる群より選択される2種以上の溶媒の混合物である。[B]溶媒として、エステル系溶媒のみから2種以上選択してもよく、ケトン系溶媒のみから2種以上選択してもよく、エステル系溶媒から1種以上選択し、かつケトン系溶媒から1種以上選択して混合溶媒としてもよい。[A]重合体の溶解性を考慮すると、[B1]溶媒は、エステル系溶媒から1種及びケトン系溶媒から1種をそれぞれ選択した2種の溶媒の混合物であることが好ましい。[B1]溶媒は、本発明の効果を損なわない範囲で、エステル系溶媒及びケトン系溶媒以外の他の溶媒を含んでもよい。
<[B1] solvent>
[B1] The solvent is a mixture of two or more kinds of solvents selected from the group consisting of an ester solvent and a ketone solvent. [B] As the solvent, two or more kinds may be selected from only the ester-based solvent, two or more kinds may be selected from only the ketone-based solvent, one or more kinds may be selected from the ester-based solvent, and one shall be selected from the ketone-based solvent. A mixture of more than one species may be selected and used as a mixed solvent. Considering the solubility of the polymer [A], the solvent [B1] is preferably a mixture of two solvents in which one is selected from the ester solvent and one is selected from the ketone solvent. [B1] The solvent may contain a solvent other than the ester solvent and the ketone solvent as long as the effect of the present invention is not impaired.
 (エステル系溶媒)
 エステル系溶媒としては、分子内にエステル結合を有し、かつ[A]重合体が溶解性を示す限り特に限定されず、鎖状エステル系溶媒であっても環状エステル系溶媒(エステル結合が環の一部を構成する溶媒)であってもよい。
(Ester solvent)
The ester solvent is not particularly limited as long as it has an ester bond in the molecule and the polymer [A] exhibits solubility, and even if it is a chain ester solvent, it is a cyclic ester solvent (the ester bond is a ring). It may be a solvent which constitutes a part of the above.
 鎖状エステル系溶媒としては、例えば、
 酢酸ブチル、乳酸エチル、ブトキシエチルアセテート、メトキシブチルアセテート、シクロヘキサノールアセテート等のモノカルボン酸エステル系溶媒;
 プロピレングリコールジアセテート、1,4-ブタンジオールジアセテート、1,3-ブチレングリコールジアセテート、1,6-ヘキサンジオールジアセテート等の多価アルコールカルボキシレート系溶媒;
 プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート等の多価アルコール部分エーテルカルボキシレート系溶媒;
 ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート等の多価縮合アルコール部分エーテルカルボキシレート系溶媒;
 シュウ酸ジエチル等、トリアセチンの多価カルボン酸エステル系溶媒;
 ジメチルカーボネート、ジエチルカーボネート等のカーボネート系溶媒などが挙げられる。
Examples of the chain ester solvent include, for example.
Monocarboxylic acid ester solvents such as butyl acetate, ethyl lactate, butoxyethyl acetate, methoxybutyl acetate, cyclohexanol acetate;
Polyhydric alcohol carboxylate solvent such as propylene glycol diacetate, 1,4-butanediol diacetate, 1,3-butylene glycol diacetate, 1,6-hexanediol diacetate;
Polyhydric alcohol partial ether carboxylate solvent such as propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate;
Multivalent condensed alcohol partial ether carboxylate solvent such as diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate;
Triacetin polyvalent carboxylic acid ester solvent such as diethyl oxalate;
Examples thereof include carbonate solvents such as dimethyl carbonate and diethyl carbonate.
 環状エステル系溶媒としては、例えば、β-プロピオラクトン、γ-ブチロラクトン等が挙げられる。 Examples of the cyclic ester solvent include β-propiolactone, γ-butyrolactone and the like.
 エステル系溶媒としては、[A]重合体の溶解性や塗布性、溶媒除去性の点から、鎖状エステル系溶媒が好ましい。鎖状エステル系溶媒は、[A]重合体の溶解性や塗布性の点から、エーテル結合をさらに含むことが好ましい。 As the ester solvent, a chain ester solvent is preferable from the viewpoint of solubility, coatability, and solvent removal property of the polymer [A]. The chain ester solvent preferably further contains an ether bond from the viewpoint of solubility and coatability of the polymer [A].
 鎖状エステル系溶媒としては、モノカルボン酸エステル系溶媒、多価アルコールカルボキシレート系溶媒、多価アルコール部分エーテルカルボキシレート系溶媒及び多価縮合アルコール部分エーテルカルボキシレート系溶媒が好ましく、モノカルボン酸エステル系溶媒及び多価アルコール部分エーテルカルボキシレート系溶媒がより好ましい。中でも、酢酸ブチル、乳酸エチル、メトキシブチルアセテート、プロピレングリコールモノメチルエーテルアセテートが特に好ましい。 As the chain ester solvent, a monocarboxylic acid ester solvent, a polyhydric alcohol carboxylate solvent, a polyhydric alcohol partial ether carboxylate solvent and a polyhydric condensed alcohol partial ether carboxylate solvent are preferable, and a monocarboxylic acid ester is used. A system solvent and a polyhydric alcohol partially ether carboxylate system solvent are more preferable. Of these, butyl acetate, ethyl lactate, methoxybutyl acetate and propylene glycol monomethyl ether acetate are particularly preferable.
 (ケトン系溶媒)
 ケトン系溶媒としては、分子内にカルボニル基(エステル結合に含まれるものは除く。)を有し、かつ[A]重合体が溶解性を示す限り特に限定されず、鎖状ケトン系溶媒であっても環状ケトン系溶媒であってもよい。
(Ketone solvent)
The ketone solvent is not particularly limited as long as it has a carbonyl group (excluding those contained in the ester bond) in the molecule and the [A] polymer exhibits solubility, and is a chain ketone solvent. Alternatively, it may be a cyclic ketone solvent.
 鎖状ケトン系溶媒としては、例えば、アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン、メチル-iso-ブチルケトン、2-ヘプタノン、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジ-iso-ブチルケトン、トリメチルノナノン等が挙げられる。 Examples of the chain ketone solvent include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-iso-butyl ketone, 2-heptanone, ethyl-n-butyl ketone, and methyl-n-. Examples thereof include hexyl ketone, di-iso-butyl ketone, trimethylnonanonone and the like.
 環状ケトン系溶媒としては、環員数が5~8の環状ケトン系溶媒が好ましく、例えば、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルシクロヘキサノン等が挙げられる。 The cyclic ketone solvent is preferably a cyclic ketone solvent having 5 to 8 ring members, and examples thereof include cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, and methylcyclohexanone.
 ケトン系溶媒としては、[A]重合体の溶解性や塗布性、溶媒除去性の点から、環状ケトン系溶媒が好ましい。中でも、シクロペンタノン、シクロヘキサノンがさらに好ましく、シクロヘキサンが特に好ましい。 As the ketone solvent, a cyclic ketone solvent is preferable from the viewpoint of solubility, coatability, and solvent removal property of the polymer [A]. Of these, cyclopentanone and cyclohexanone are more preferable, and cyclohexane is particularly preferable.
 [B1]溶媒がエステル系溶媒とケトン系溶媒とをともに含む場合、エステル系溶媒とケトン系溶媒との合計質量中、ケトン系溶媒が占める割合としては10質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上がさらに好ましい。また、90質量%以下が好ましく、80質量%以下がより好ましく、70質量%以下がさらに好ましい。エステル系溶媒とケトン系溶媒との混合溶媒系において、ケトン系溶媒の含有量を上記範囲とすることで、[A]重合体の溶解性を向上させることができ、塗布欠陥の抑制を効率的に図ることができる。 [B1] When the solvent contains both the ester solvent and the ketone solvent, the ratio of the ketone solvent to the total mass of the ester solvent and the ketone solvent is preferably 10% by mass or more, preferably 20% by mass or more. Is more preferable, and 30% by mass or more is further preferable. Further, 90% by mass or less is preferable, 80% by mass or less is more preferable, and 70% by mass or less is further preferable. By setting the content of the ketone solvent in the above range in the mixed solvent system of the ester solvent and the ketone solvent, the solubility of the polymer [A] can be improved and the suppression of coating defects is efficient. Can be planned.
 (他の溶媒)
 [B1]溶媒は、エステル系溶媒及びケトン系溶媒以外の他の溶媒を含んでいてもよい。他の溶媒としては、例えば、アルコール系溶媒、エーテル系溶媒、アミド系溶媒、炭化水素系溶媒等が挙げられる。
(Other solvents)
[B1] The solvent may contain a solvent other than the ester solvent and the ketone solvent. Examples of other solvents include alcohol solvents, ether solvents, amide solvents, hydrocarbon solvents and the like.
 アルコール系溶媒としては、例えば、
 4-メチル-2-ペンタノール、n-ヘキサノール等の炭素数1~18の脂肪族モノアルコール系溶媒;
 シクロヘキサノール等の炭素数3~18の脂環式モノアルコール系溶媒;
 1,2-プロピレングリコール等の炭素数2~18の多価アルコール系溶媒;
 プロピレングリコールモノメチルエーテル等の炭素数3~19の多価アルコール部分エーテル系溶媒などが挙げられる。
Examples of the alcohol solvent include, for example.
Aliphatic monoalcoholic solvents with 1 to 18 carbon atoms such as 4-methyl-2-pentanol and n-hexanol;
An alicyclic monoalcohol solvent having 3 to 18 carbon atoms such as cyclohexanol;
Polyhydric alcohol solvent with 2 to 18 carbon atoms such as 1,2-propylene glycol;
Examples thereof include a polyhydric alcohol partially ether solvent having 3 to 19 carbon atoms such as propylene glycol monomethyl ether.
 エーテル系溶媒としては、例えば、
 ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、ジペンチルエーテル、ジイソアミルエーテル、ジヘキシルエーテル、ジヘプチルエーテル等のジアルキルエーテル系溶媒;
 テトラヒドロフラン、テトラヒドロピラン等の環状エーテル系溶媒;
ジフェニルエーテル、アニソール等の芳香環含有エーテル系溶媒などが挙げられる。
Examples of the ether solvent include, for example.
Dialkyl ether solvents such as diethyl ether, dipropyl ether, dibutyl ether, dipentyl ether, diisoamyl ether, dihexyl ether, diheptyl ether;
Cyclic ether solvent such as tetrahydrofuran and tetrahydropyran;
Examples thereof include aromatic ring-containing ether solvents such as diphenyl ether and anisole.
 アミド系溶媒としては、例えば
 N,N’-ジメチルイミダゾリジノン、N-メチルピロリドン等の環状アミド系溶媒;
 N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド等の鎖状アミド系溶媒などが挙げられる。
Examples of the amide solvent include cyclic amide solvents such as N, N'-dimethylimidazolidinone and N-methylpyrrolidone;
Examples thereof include chain amide solvents such as N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide and N-methylpropionamide.
 炭化水素系溶媒としては、例えば、
 n-ペンタン、n-ヘキサン等の炭素数5~12の脂肪族炭化水素系溶媒;
 トルエン、キシレン等の炭素数6~16の芳香族炭化水素系溶媒などが挙げられる。
Examples of the hydrocarbon solvent include, for example.
An aliphatic hydrocarbon solvent having 5 to 12 carbon atoms such as n-pentane and n-hexane;
Examples thereof include aromatic hydrocarbon solvents having 6 to 16 carbon atoms such as toluene and xylene.
 [B1]溶媒が他の溶媒を含む場合、[B1]溶媒における他の溶媒の含有量としては、0.1質量%以上が好ましく、1質量%以上がより好ましく、5質量%以上がさらに好ましく、10質量%以上が特に好ましい。また、30質量%以下が好ましく、25質量%以下がより好ましく、20質量%以下がさらに好ましく、15質量%以下が特に好ましい。[B1]溶媒が他の溶媒を上記範囲の含有量で含むことにより、自己組織化膜形成用組成物の良好な濾過性を確保しつつ、規則配列構造の欠陥のより少ない自己組織化膜を形成することができる。 When the [B1] solvent contains another solvent, the content of the other solvent in the [B1] solvent is preferably 0.1% by mass or more, more preferably 1% by mass or more, still more preferably 5% by mass or more. 10% by mass or more is particularly preferable. Further, 30% by mass or less is preferable, 25% by mass or less is more preferable, 20% by mass or less is further preferable, and 15% by mass or less is particularly preferable. [B1] When the solvent contains another solvent in the above range, a self-assembled monolayer having less defects in the ordered structure can be obtained while ensuring good filterability of the composition for forming a self-assembled monolayer. Can be formed.
[他の成分]
<[C]重合体>
 [C]重合体は、[A]重合体よりも表面自由エネルギーが小さい重合体である。図1に示すように、[C]重合体を含有する組成物(I)により基板101上に塗布膜102を形成した際(形成方法は後述)、[C]重合体の方が[A]重合体よりも表面自由エネルギーが小さいため、[C]重合体は自己組織化の過程において、塗布膜102中の上部領域に偏在して推移すると考えられる。この塗布膜102中の上部領域に偏在する[C]重合体と、上部領域以外の領域に存在する[A]重合体との相互作用により、[A]重合体の相分離をより良好に進行させることができ、より良好な相分離構造としてのブロック相(I)103a及びブロック相(II)103bを有する自己組織化膜103(図2参照)を形成することができ、その結果、より規則配列構造の欠陥の少ない自己組織化膜を得ることができる。上述のように[C]重合体により相分離がより良好になる理由については必ずしも明確ではないが、例えば[C]重合体を適用しない場合、大気と[A]重合体の表面自由エネルギー差が大きいために略水平方向への相分離が促進される傾向にあるが、[C]重合体を適用することで、[A]重合体との表面自由エネルギー差が小さくなり、略水平方向への相分離が抑制されるため、結果として略垂直方向への相分離が効果的に実施されること等が考えられる。最終的には、図2に示すように、[C]重合体は自己組織化膜103の上方の領域104に偏在する。
[Other ingredients]
<[C] Polymer>
The [C] polymer is a polymer having a smaller surface free energy than the [A] polymer. As shown in FIG. 1, when the coating film 102 is formed on the substrate 101 by the composition (I) containing the [C] polymer (the forming method will be described later), the [C] polymer is [A]. Since the surface free energy is smaller than that of the polymer, it is considered that the [C] polymer is unevenly distributed in the upper region in the coating film 102 in the process of self-assembly. The phase separation of the [A] polymer proceeds better by the interaction between the [C] polymer unevenly distributed in the upper region in the coating film 102 and the [A] polymer existing in the region other than the upper region. It is possible to form a self-assembled film 103 (see FIG. 2) having a block phase (I) 103a and a block phase (II) 103b as a better phase separation structure, resulting in a more regular. It is possible to obtain a self-assembled film having few defects in the arrangement structure. As mentioned above, the reason why the phase separation is improved by the [C] polymer is not always clear, but for example, when the [C] polymer is not applied, the difference in surface free energy between the atmosphere and the [A] polymer is large. Due to its large size, phase separation in the substantially horizontal direction tends to be promoted, but by applying the [C] polymer, the difference in surface free energy from the polymer [A] becomes smaller, and the phase separation in the substantially horizontal direction becomes smaller. Since the phase separation is suppressed, it is conceivable that the phase separation in the substantially vertical direction is effectively carried out as a result. Finally, as shown in FIG. 2, the [C] polymer is unevenly distributed in the region 104 above the self-assembled monolayer 103.
 各重合体の表面自由エネルギーは、各重合体の溶液をスピンコートした後、加熱等することにより各重合体の薄膜を形成させ、文献「JOURNAL OF APPLIED POLYMER SCIENCE VOL.13,PP.1741-1747(1969)」に記載されているD.K.OWENSらの方法に従い、上記薄膜上における純水及びヨウ化メチレン等の液体の接触角を測定し、その測定値から下記式(X)及び下記式(Y)の関係を用いて求めることができる。 The surface free energy of each polymer is obtained by spin-coating the solution of each polymer and then heating to form a thin film of each polymer. (1969) ”. K. According to the method of OWENS et al., The contact angle of a liquid such as pure water and methylene iodide on the thin film can be measured, and can be obtained from the measured values using the relationship of the following formula (X) and the following formula (Y). ..
  (1+cosθ)×γ=2(γ ×γ 1/2+2(γ ×γ 1/2
                             ・・・(X)
  γ=γ +γ ・・・(Y)
(γ:重合体の表面自由エネルギー、γ :重合体の表面自由エネルギーの分散成分、γ :重合体の表面自由エネルギーの極性成分、γ:液体の表面自由エネルギー、γ :液体の表面自由エネルギーの分散成分、γ :液体の表面自由エネルギーの極性成分、θ:接触角)
(1 + cosθ) × γ L = 2 (γ S d × γ L d ) 1/2 + 2 (γ S p × γ L p ) 1/2
... (X)
γ S = γ S d + γ S p ... (Y)
S : Surface free energy of polymer, γ S d : Dispersion component of surface free energy of polymer, γ Sp : Polar component of surface free energy of polymer, γ L : Surface free energy of liquid, γ L d : Dispersion component of the surface free energy of the liquid, γ L p : Polar component of the surface free energy of the liquid, θ: Contact angle)
 [A]重合体の表面自由エネルギーから[C]重合体の表面自由エネルギーを減じた値としては、1mN/m以上が好ましく、3mN/m以上がより好ましく、5mN/m以上がさらに好ましく、7mN/m以上が特に好ましく、9mN/m以上がさらに特に好ましい。また、20mN/m以下が好ましく、18mN/m以下がより好ましく、15mN/m以下がさらに好ましく、13mN/m以下が特に好ましく、11mN/m以下がさらに特に好ましい。上記表面自由エネルギー差を上記範囲とすることで、上記塗布膜形成工程等において[C]重合体をより効果的に偏在化させ、[C]重合体と[A]重合体との相互作用をより効果的に高めることができると考えられ、その結果、より規則配列構造の欠陥の少ない自己組織化膜を得ることができる。 The value obtained by subtracting the surface free energy of the [C] polymer from the surface free energy of the [A] polymer is preferably 1 mN / m or more, more preferably 3 mN / m or more, still more preferably 5 mN / m or more, and 7 mN. It is particularly preferably / m or more, and even more preferably 9 mN / m or more. Further, 20 mN / m or less is preferable, 18 mN / m or less is more preferable, 15 mN / m or less is further preferable, 13 mN / m or less is particularly preferable, and 11 mN / m or less is even more preferable. By setting the surface free energy difference within the above range, the [C] polymer is more effectively unevenly distributed in the coating film forming step and the like, and the interaction between the [C] polymer and the [A] polymer is allowed to occur. It is considered that it can be enhanced more effectively, and as a result, a self-assembled membrane having less defects in the ordered arrangement structure can be obtained.
 [C]重合体としては、[A]重合体よりも表面自由エネルギーが小さい限り特に限定されないが、フッ素原子及び/又は珪素原子を含む構造単位(以下、「構造単位(I)」ともいう)を有することが好ましい。フッ素原子を含む構造単位(I)としては、例えば、1,1,1,3,3,3-ヘキサフルオロ-2-プロピル(メタ)アクリレート、1,1-ジフルオロ-1-エトキシカルボニルブタン-2-イル(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、トリフルオロメチル(メタ)アクリレート等のフッ素原子を含む(メタ)アクリレート等に由来する構造単位等が挙げられる。珪素原子を含む構造単位(I)としては、例えば、2-(トリメチルシリル)エチル(メタ)アクリレート、2-(トリメトキシシリル)エチル(メタ)アクリレート等の珪素原子を含む(メタ)アクリレート等に由来する構造単位等が挙げられる。上記構造単位(I)の含有割合としては、[C]重合体を構成する全構造単位に対して、10モル%以上が好ましく、14モル%以上がより好ましく、18モル%以上がさらに好ましく、22モル%以上が特に好ましい。また、50モル%以下が好ましく、45モル%以下がより好ましく、40モル%以下がさらに好ましく、36モル%以下が特に好ましい。上記構造単位(I)の含有割合を上記範囲とすることで、上述の[C]重合体の偏在化及び[C]重合体と[A]重合体との相互作用をより効果的に向上させることができる。 The [C] polymer is not particularly limited as long as the surface free energy is smaller than that of the [A] polymer, but is a structural unit containing a fluorine atom and / or a silicon atom (hereinafter, also referred to as “structural unit (I)”). It is preferable to have. Examples of the structural unit (I) containing a fluorine atom include 1,1,1,3,3,3-hexafluoro-2-propyl (meth) acrylate and 1,1-difluoro-1-ethoxycarbonylbutane-2. -Examples include structural units derived from (meth) acrylates containing a fluorine atom such as yl (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate, and trifluoromethyl (meth) acrylate. The structural unit (I) containing a silicon atom is derived from, for example, a (meth) acrylate containing a silicon atom such as 2- (trimethylsilyl) ethyl (meth) acrylate and 2- (trimethoxysilyl) ethyl (meth) acrylate. Examples include structural units to be used. The content ratio of the structural unit (I) is preferably 10 mol% or more, more preferably 14 mol% or more, still more preferably 18 mol% or more, based on all the structural units constituting the [C] polymer. 22 mol% or more is particularly preferable. Further, 50 mol% or less is preferable, 45 mol% or less is more preferable, 40 mol% or less is further preferable, and 36 mol% or less is particularly preferable. By setting the content ratio of the structural unit (I) in the above range, the uneven distribution of the above-mentioned [C] polymer and the interaction between the [C] polymer and the [A] polymer are more effectively improved. be able to.
 また、[C]重合体は、上記構造単位(I)以外の他の構造単位(以下、「構造単位(II)」ともいう)を有していてもよい。上記構造単位(II)としては、例えば(メタ)アクリル酸エステルに由来する構造単位、スチレン化合物に由来する構造単位等が挙げられる。 Further, the [C] polymer may have a structural unit other than the structural unit (I) (hereinafter, also referred to as “structural unit (II)”). Examples of the structural unit (II) include structural units derived from (meth) acrylic acid esters, structural units derived from styrene compounds, and the like.
 上記(メタ)アクリル酸エステルとしては、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ノルボルニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸テトラヒドロフルフリル等が挙げられる。 Examples of the (meth) acrylic acid ester include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, cyclohexyl (meth) acrylate, norbornyl (meth) acrylate, and (meth) acrylic. Examples include adamantyl acid, tetrahydrofurfuryl (meth) acrylate, and the like.
 上記スチレン化合物としては、例えばスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、α-メチルスチレン、4-ヒドロキシスチレン、4-(t-ブトキシ)スチレン等が挙げられる。 Examples of the styrene compound include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, α-methylstyrene, 4-hydroxystyrene, 4- (t-butoxy) styrene and the like.
 [C]重合体が有する構造単位としては、[A]重合体との相互作用をより適度に高めることができると考えられ、より良好な相分離構造を形成させる観点から、[A]重合体が有する構造単位の少なくとも一部を含むことが好ましく、[A]重合体が有する構造単位をすべて含むことがより好ましい。例えば[A]重合体が、ポリスチレンブロック-ポリ(メタ)アクリル酸テトラヒドロフルフリルブロックのジブロック共重合体である場合、[C]重合体は、上記構造単位(I)以外に、スチレンに由来する構造単位及び(メタ)アクリル酸テトラヒドロフルフリルに由来する構造単位の少なくともいずれかを有することが好ましく、スチレンに由来する構造単位及び(メタ)アクリル酸テトラヒドロフルフリルに由来する構造単位の両方を有することがより好ましい。 As the structural unit of the [C] polymer, it is considered that the interaction with the [A] polymer can be more appropriately enhanced, and from the viewpoint of forming a better phase-separated structure, the [A] polymer It is preferable to include at least a part of the structural units possessed by the polymer, and it is more preferable to include all the structural units possessed by the polymer [A]. For example, when the polymer [A] is a diblock copolymer of polystyrene block-tetrahydrofurfuryl block poly (meth) acrylate, the polymer [C] is derived from styrene in addition to the structural unit (I). It is preferable to have at least one of a structural unit derived from and a structural unit derived from tetrahydrofurfuryl (meth) acrylate, and both a structural unit derived from styrene and a structural unit derived from tetrahydrofurfuryl (meth) acrylate. It is more preferable to have.
 [C]重合体としては[A]重合体との相互作用をより効果的に発揮することができ、より良好な相分離構造を形成させる観点から、ランダム共重合体が好ましい。 As the [C] polymer, a random copolymer is preferable from the viewpoint of being able to more effectively exhibit the interaction with the [A] polymer and forming a better phase-separated structure.
 [C]重合体は、例えば上記構造単位(I)及び構造単位(II)等の各構造単位を与える単量体を、上述の[A]重合体の合成方法と同様にして、ラジカル重合開始剤等を用い、適当な溶媒中で重合することにより合成できる。 In the [C] polymer, for example, a monomer giving each structural unit such as the structural unit (I) and the structural unit (II) is subjected to radical polymerization in the same manner as in the above-mentioned method for synthesizing the polymer [A]. It can be synthesized by polymerizing in an appropriate solvent using an agent or the like.
 [C]重合体のMwとしては、1,000以上が好ましく、5,000以上がより好ましく、8,000以上がさらに好ましく、10,000以上が特に好ましい。また、100,000以下が好ましく、60,000以下がより好ましく、40,000以下がさらに好ましく、30,000以下が特に好ましい。[C]重合体のMwを上記範囲とすることで、より規則配列構造の欠陥の少ない自己組織化膜を形成することができる。 The Mw of the [C] polymer is preferably 1,000 or more, more preferably 5,000 or more, further preferably 8,000 or more, and particularly preferably 10,000 or more. Further, 100,000 or less is preferable, 60,000 or less is more preferable, 40,000 or less is further preferable, and 30,000 or less is particularly preferable. [C] By setting the Mw of the polymer in the above range, it is possible to form a self-assembled monolayer having less defects in the ordered structure.
 [C]重合体のMw/Mnとしては、通常1以上であり、1.1以上が好ましい。また、通常5以下であり、3以下が好ましく、2.5以下がより好ましく、1.8以下がさらに好ましく、1.5以下が特に好ましい。[C]重合体のMw/Mnを上記範囲とすることで、より規則配列構造の欠陥の少ない自己組織化膜を形成することができる。 The Mw / Mn of the [C] polymer is usually 1 or more, preferably 1.1 or more. Further, it is usually 5 or less, preferably 3 or less, more preferably 2.5 or less, further preferably 1.8 or less, and particularly preferably 1.5 or less. [C] By setting the Mw / Mn of the polymer in the above range, it is possible to form a self-assembled monolayer having less defects in the ordered structure.
<界面活性剤>
 組成物(I)は、さらに界面活性剤を含有してもよい。組成物(I)が界面活性剤を含有することで、基板等への塗布性を向上させることができる。
<Surfactant>
The composition (I) may further contain a surfactant. When the composition (I) contains a surfactant, the applicability to a substrate or the like can be improved.
<組成物(I)の調製方法>
 組成物(I)は、例えば[A]重合体、[B1]溶媒、及び必要に応じて他の成分を混合し、好ましくは孔径200nm程度のメンブランフィルターで濾過することにより調製することができ、さらに好ましくは、孔径10nm程度の高密度ポリエチレン製フィルターで循環濾過を行うことにより調製することができる。
<Preparation method of composition (I)>
The composition (I) can be prepared, for example, by mixing the polymer [A], the solvent [B1], and if necessary, other components, and filtering the composition with a membrane filter having a pore size of about 200 nm. More preferably, it can be prepared by circulating filtration with a high-density polyethylene filter having a pore size of about 10 nm.
 組成物(I)の固形分濃度としては、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1質量%以上がさらに好ましく、5質量%以上が特に好ましい。組成物(I)の固形分濃度の上限としては、50質量%以下が好ましく、40質量%以下がより好ましく、30質量%以下がさらに好ましく、20質量%以下が特に好ましい。 The solid content concentration of the composition (I) is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, further preferably 1% by mass or more, and particularly preferably 5% by mass or more. The upper limit of the solid content concentration of the composition (I) is preferably 50% by mass or less, more preferably 40% by mass or less, further preferably 30% by mass or less, and particularly preferably 20% by mass or less.
《第2実施形態》
〔組成物(II)〕
 組成物(II)は、[A]重合体と[B2]溶媒とを含有する。組成物(I)では[B1]溶媒を所定の溶媒の混合物であるという観点から特定しているのに対し、組成物(II)では[B2]溶媒を[A]重合体の溶解度パラメータとの近似性の観点から特定している。組成物(II)において[A]重合体や他の成分、調製方法等は組成物(I)と同様であるので、以下では組成物(I)と異なる点である[B2]溶媒について主に説明する。
<< Second Embodiment >>
[Composition (II)]
The composition (II) contains the [A] polymer and the [B2] solvent. In the composition (I), the [B1] solvent is specified from the viewpoint of being a mixture of predetermined solvents, whereas in the composition (II), the [B2] solvent is used as the solubility parameter of the [A] polymer. It is specified from the viewpoint of closeness. In the composition (II), the polymer [A], other components, the preparation method, etc. are the same as those in the composition (I). explain.
 なお、溶媒の溶解度パラメータ値は、ハンセン溶解度パラメータを用いて表される。ハンセン溶解度パラメータは、Hildebrandによって導入された溶解度パラメータを、分散項δd、極性項δp及び水素結合項δhの3成分に分割し、δ=(δd+δp+δh1/2として求めることができる。分散項δdは無極性相互作用を、極性項δpは双極子間相互作用を、水素結合項δhは水素結合相互作用をそれぞれ示す。ハンセン溶解度パラメータの値は、コンピュータソフトウェア(製品名「Hansen Solubility Parameters in Practice」)を用いて求められる。また、溶媒が、溶媒1及び溶媒2の2種の混合溶媒の場合のハンセン溶解度パラメータAmは、δAm=X1×δ1+(1-X1)×δ2(δ1及びδ2は、それぞれ溶媒1及び溶媒2のハンセン溶解度パラメータの値である。X1は、混合溶媒中における溶媒1のモル分率である。)により求めることができる。 The solubility parameter value of the solvent is expressed using the Hansen solubility parameter. The Hansen solubility parameter can be obtained by dividing the solubility parameter introduced by Hildebrand into three components, the dispersion term δd, the polarity term δp, and the hydrogen bond term δh, and obtaining δ = (δd 2 + δp 2 + δh 2 ) 1/2 . can. The dispersion term δd indicates a non-polar interaction, the polar term δp indicates an interaction between dipoles, and the hydrogen bond term δh indicates a hydrogen bond interaction. The value of the Hansen solubility parameter is obtained by using computer software (product name "Hansen Solubility Parameters in Practice"). Further, when the solvent is a mixed solvent of two kinds of the solvent 1 and the solvent 2, the Hansen solubility parameter Am is δAm = X1 × δ1 + (1-X1) × δ2 (δ1 and δ2 are the solvent 1 and the solvent 2, respectively). It is a value of the Hansen solubility parameter. X1 is a molar fraction of the solvent 1 in the mixed solvent).
<[B2]溶媒>
 [B2]溶媒としては、[A]重合体が有する溶解度パラメータPと[B2]溶媒が有する溶解度パラメータSとの差の絶対値(以下、「(P-S)値」ともいう。)が0.35以下となるような溶媒を用いる。これにより[A]重合体の[B2]溶媒への溶解性を向上させることができ、残渣の発生を抑制して塗布欠陥が低減された自己組織化膜を形成することができる。
<[B2] solvent>
As the [B2] solvent, the absolute value of the difference between the solubility parameter P of the [A] polymer and the solubility parameter S of the [B2] solvent (hereinafter, also referred to as “(PS) value”) is 0. Use a solvent such that it is .35 or less. As a result, the solubility of the [A] polymer in the [B2] solvent can be improved, the generation of residues can be suppressed, and a self-assembled film with reduced coating defects can be formed.
 上記(P-S)値は0.35以下であればよいものの、0.30以下が好ましく、0.25以下がより好ましく、0.20以下がさらに好ましく、0.15以下がなおさらに好ましく、0.10以下が特に好ましい。なお、[A]重合体が有する溶解度パラメータPと[B2]溶媒が有する溶解度パラメータSとの差がない、すなわち上記(P-S)値は0が好ましいものの、0.001以上であってもよく、0.002以上であってもよく、0.005以上であってもよい。 Although the above (PS) value may be 0.35 or less, it is preferably 0.30 or less, more preferably 0.25 or less, further preferably 0.20 or less, still more preferably 0.15 or less. 0.10 or less is particularly preferable. There is no difference between the solubility parameter P of the [A] polymer and the solubility parameter S of the [B2] solvent, that is, the above (PS) value is preferably 0, but even if it is 0.001 or more. It may be 0.002 or more, or 0.005 or more.
 [B2]溶媒として、上記(P-S)値を満たす限り、1種の溶媒のみを用いてもよく、複数種の溶媒の混合物を用いてもよい。複数種の溶媒の混合物を用いる場合、その混合物の溶解度パラメータが上記(P-S)値を満たせばよい。上記(P-S)値の制御の容易性の観点から、[B2]溶媒は、異なる溶解度パラメータを有する複数種の溶媒の混合物であることが好ましい。中でも、[B2]溶媒は、溶解度パラメータPより大きい溶解度パラメータS1を有する溶媒と、溶解度パラメータPより小さい溶解度パラメータS2を有する溶媒との混合物であることが好ましい。例えば、溶解度パラメータPより大きい溶解度パラメータS1を有する溶媒に、溶解度パラメータPより小さい溶解度パラメータS2を有する溶媒を徐々に添加することにより、混合物の溶解度パラメータを[A]重合体の溶解度パラメータPに近似させることができる。逆の操作でも同様である。 [B2] As the solvent, as long as the above (PS) value is satisfied, only one kind of solvent may be used, or a mixture of a plurality of kinds of solvents may be used. When a mixture of a plurality of kinds of solvents is used, the solubility parameter of the mixture may satisfy the above (PS) value. From the viewpoint of ease of controlling the (PS) value, the [B2] solvent is preferably a mixture of a plurality of kinds of solvents having different solubility parameters. Among them, the [B2] solvent is preferably a mixture of a solvent having a solubility parameter S1 larger than the solubility parameter P and a solvent having a solubility parameter S2 smaller than the solubility parameter P. For example, by gradually adding a solvent having a solubility parameter S2 smaller than the solubility parameter P to a solvent having a solubility parameter S1 larger than the solubility parameter P, the solubility parameter of the mixture is approximated to the solubility parameter P of the polymer [A]. Can be made to. The same is true for the reverse operation.
 具体的な[B2]溶媒としては、組成物(I)にて例示したエステル系溶媒、ケトン系溶媒、アルコール系溶媒、エーテル系溶媒、アミド系溶媒、炭化水素系溶媒等を好適に用いることができる。これらの溶媒から、上記(P-S)値を満たす1種又は複数種の溶媒を適宜選択すればよい。好適な溶媒やその組み合わせは組成物(I)と同様である。 As the specific [B2] solvent, the ester solvent, the ketone solvent, the alcohol solvent, the ether solvent, the amide solvent, the hydrocarbon solvent and the like exemplified in the composition (I) may be preferably used. can. From these solvents, one or more kinds of solvents satisfying the above (PS) value may be appropriately selected. Suitable solvents and combinations thereof are the same as in composition (I).
《第3実施形態》
〔パターン形成方法〕
 本実施形態に係るパターン形成方法は、基板上に組成物(I)又は(II)を塗布して塗布膜を形成する工程(以下、「塗布膜形成工程」ともいう。)、前記塗布膜を相分離させて自己組織化膜を形成する工程(以下、「自己組織化膜形成工程」ともいう。)、及び前記自己組織化膜の一部の相を除去する工程(以下、「除去工程」ともいう。)を含む。
<< Third Embodiment >>
[Pattern formation method]
The pattern forming method according to the present embodiment is a step of applying the composition (I) or (II) on a substrate to form a coating film (hereinafter, also referred to as a “coating film forming step”), wherein the coating film is formed. A step of forming a self-assembled film by phase separation (hereinafter, also referred to as a “self-assembled film forming step”), and a step of removing a part of the phase of the self-assembled film (hereinafter, “removal step”). Also called.) Includes.
 上記自己組織化膜形成工程は、上記塗布膜を加熱する工程(以下、「加熱工程」ともいう。)を備えることが好ましい。また、上記加熱工程の前又は上記加熱工程と同時に、上記塗布膜を静置する工程(以下、「静置工程」ともいう。)を備えていてもよい。さらに相分離構造を安定化させるアニーリング工程を備えていてもよい。自己組織化膜形成工程で形成される相分離構造としては、海島構造、シリンダ構造、共連続構造、ラメラ構造等が挙げられる。相分離構造は部分的なものであってもよい。 The self-assembled monolayer forming step preferably includes a step of heating the coating film (hereinafter, also referred to as a "heating step"). Further, a step of allowing the coating film to stand still (hereinafter, also referred to as “standing step”) may be provided before the heating step or at the same time as the heating step. Further, an annealing step for stabilizing the phase separation structure may be provided. Examples of the phase-separated structure formed in the self-assembled monolayer forming step include a sea-island structure, a cylinder structure, a co-continuous structure, and a lamellar structure. The phase separation structure may be partial.
 上記パターン形成方法は、塗布膜形成工程の前に、基板の上面側に下層膜を形成する工程(以下、「下層膜形成工程」ともいう。)及び/又は上記基板の上面側にプレパターンを形成する工程(以下、「プレパターン形成工程」ともいう。)をさらに備えてもよい。 In the pattern forming method, before the coating film forming step, a step of forming a lower layer film on the upper surface side of the substrate (hereinafter, also referred to as “lower layer film forming step”) and / or a pre-pattern on the upper surface side of the substrate is formed. A step of forming (hereinafter, also referred to as a “pre-pattern forming step”) may be further provided.
 上記パターン形成方法は、除去工程の後に、プレパターンを除去する工程(以下、「プレパターン除去工程」ともいう。)をさらに備えてもよく、上記除去工程後に上記形成されたパターンをマスクとして上記基板をエッチングする工程(以下、「基板パターン形成工程」ともいう。)をさらに備えることが好ましい。 The pattern forming method may further include a step of removing the pre-pattern (hereinafter, also referred to as “pre-pattern removing step”) after the removing step, and the pattern formed after the removing step is used as a mask as described above. It is preferable to further include a step of etching the substrate (hereinafter, also referred to as “board pattern forming step”).
 従って、本実施形態に係るパターン形成方法は、代表的には、下層膜形成工程、プレパターン形成工程、塗布膜形成工程、自己組織化膜形成工程(静置工程、加熱工程及びアニーリング工程)、除去工程、プレパターン除去工程並びに基板パターン形成工程をこの順で含む。以下、各工程について図面を参照しつつ説明する。なお、組成物(I)又は(II)における[A]重合体が[A1]ブロック共重合体である場合を例として説明する。 Therefore, the pattern forming method according to the present embodiment is typically a lower layer film forming step, a pre-pattern forming step, a coating film forming step, a self-assembling film forming step (standing step, heating step and annealing step). The removing step, the pre-pattern removing step, and the substrate pattern forming step are included in this order. Hereinafter, each process will be described with reference to the drawings. The case where the [A] polymer in the composition (I) or (II) is a [A1] block copolymer will be described as an example.
[下層膜形成工程]
 本工程は、基板101の上面側に下層膜105を形成する工程である。これにより、図3に示すように、基板101上に下層膜105が形成された下層膜付き基板を得ることができる。後述する自己組織化膜103は、この下層膜105上に形成される。自己組織化膜103が有する相分離構造は、組成物(I)が含有する[A1]ブロック共重合体の各ブロック間の相互作用に加え、下層膜105との相互作用によっても変化するため、下層膜105を有することで構造制御がより容易となる場合がある。さらに、自己組織化膜103が薄膜である場合には、下層膜105を有することでその転写プロセスを改善することができる。
[Underlayer film forming process]
This step is a step of forming the lower layer film 105 on the upper surface side of the substrate 101. As a result, as shown in FIG. 3, a substrate with a lower layer film 105 having a lower layer film 105 formed on the substrate 101 can be obtained. The self-assembled monolayer 103, which will be described later, is formed on the underlayer film 105. Since the phase-separated structure of the self-assembled membrane 103 changes not only by the interaction between each block of the [A1] block copolymer contained in the composition (I), but also by the interaction with the underlying membrane 105. Having the underlayer film 105 may facilitate structural control. Further, when the self-assembled monolayer 103 is a thin film, the transfer process can be improved by having the underlayer film 105.
 下層膜105の形成に用いられる下層膜形成用組成物としては、従来公知の有機下層膜形成材料等を用いることができ、例えば架橋剤、熱酸発生剤等を含む下層膜形成用組成物などが挙げられる。 As the composition for forming the underlayer film used for forming the underlayer film 105, a conventionally known organic underlayer film forming material or the like can be used, for example, a composition for forming an underlayer film containing a cross-linking agent, a thermal acid generator, or the like. Can be mentioned.
 下層膜105の形成方法は特に限定されないが、例えば基板101上に下層膜形成用組成物をスピンコート法等の公知の方法により塗布した後、露光及び/又は加熱することにより硬化して形成する方法等が挙げられる。この露光に用いられる放射線としては、例えば可視光線、紫外線、遠紫外線、X線、電子線、γ線、分子線、イオンビーム等が挙げられる。また、上記加熱温度としては、特に限定されないが、90℃以上が好ましい。また、550℃以下が好ましく、450℃以下がより好ましく、300℃以下がさらに好ましい。上記加熱時間としては、5秒以上が好ましく、10秒以上がより好ましく、20秒以上がさらに好ましい。また、1,200秒以下が好ましく、600秒以下がより好ましく、300秒以下がさらに好ましい。下層膜105の平均厚みとしては、特に限定されないが、1nm以上が好ましく、2nm以上がより好ましく、3nm以上がさらに好ましい。また、20,000nm以下が好ましく、1,000nm以下がより好ましく、100nm以下がさらに好ましい。 The method for forming the underlayer film 105 is not particularly limited, but for example, the composition for forming the underlayer film is applied onto the substrate 101 by a known method such as a spin coating method, and then cured by exposure and / or heating to form the underlayer film 105. The method and the like can be mentioned. Examples of the radiation used for this exposure include visible light, ultraviolet rays, far ultraviolet rays, X-rays, electron beams, γ-rays, molecular rays, ion beams and the like. The heating temperature is not particularly limited, but is preferably 90 ° C. or higher. Further, 550 ° C or lower is preferable, 450 ° C or lower is more preferable, and 300 ° C or lower is further preferable. The heating time is preferably 5 seconds or longer, more preferably 10 seconds or longer, and even more preferably 20 seconds or longer. Further, 1,200 seconds or less is preferable, 600 seconds or less is more preferable, and 300 seconds or less is further preferable. The average thickness of the underlayer film 105 is not particularly limited, but is preferably 1 nm or more, more preferably 2 nm or more, still more preferably 3 nm or more. Further, 20,000 nm or less is preferable, 1,000 nm or less is more preferable, and 100 nm or less is further preferable.
[プレパターン形成工程]
 本工程は、プレパターンを形成する工程である。このプレパターンは、基板101上に形成してもよく、図4に示すように上記下層膜形成工程で形成された下層膜105上に形成してもよい。プレパターン106によって相分離構造の形状が制御され、より微細なパターンの形成が可能となる。すなわち、組成物(I)又は(II)が含有する[A1]ブロック共重合体が有するブロックのうち、プレパターンの側面と親和性が高いブロック(「ブロック(II)」とする)はプレパターンに沿ってブロック相(II)103bを形成し、親和性の低いブロック(「ブロック(I)」とする)はプレパターンから離れた位置にブロック相(I)103aを形成する。これにより、形成されるパターンがより微細かつ良好になる。また、プレパターンの材質、サイズ、形状等により、自己組織化膜103の相分離構造を細かく制御することができる。なお、プレパターン106としては、最終的に形成したいパターンに合わせて適宜選択することができ、例えばラインアンドスペースパターン、ホールパターン、シリンダーパターン等を用いることができる。
[Pre-pattern formation process]
This step is a step of forming a pre-pattern. This pre-pattern may be formed on the substrate 101, or may be formed on the lower layer film 105 formed in the lower layer film forming step as shown in FIG. The shape of the phase-separated structure is controlled by the pre-pattern 106, and a finer pattern can be formed. That is, among the blocks contained in the [A1] block copolymer contained in the composition (I) or (II), the block having a high affinity with the side surface of the pre-pattern (referred to as "block (II)") is the pre-pattern. The block phase (II) 103b is formed along the block phase (II) 103b, and the block having a low affinity (referred to as “block (I)”) forms the block phase (I) 103a at a position away from the pre-pattern. As a result, the formed pattern becomes finer and better. Further, the phase separation structure of the self-assembled monolayer 103 can be finely controlled by the material, size, shape and the like of the pre-pattern. The pre-pattern 106 can be appropriately selected according to the pattern to be finally formed, and for example, a line-and-space pattern, a hole pattern, a cylinder pattern, or the like can be used.
 プレパターン106を有する場合、上述のように、自己組織化膜103の相分離構造はプレパターン106に沿って形成されることが好ましく、相分離により形成される界面は、プレパターン106の側面と略平行であることがより好ましい。例えば[A1]ブロック共重合体がスチレンブロック及びポリ(メタ)アクリル酸ブロックからなり、プレパターンとスチレンブロックとの親和性が高い場合には、スチレンブロックの相がプレパターンに沿って直線状に形成され、その隣にポリ(メタ)アクリル酸ブロックの相及びスチレンブロックの相がこの順で交互に配列するラメラ状相分離構造等を形成する。なお、形成される相分離構造は、複数の相からなるものであり、これらの相から形成される界面は通常略垂直であるが、界面自体は必ずしも明確でなくてよい。また、上記ブロック共重合体分子における各ブロック鎖の長さの比、上記ブロック共重合体分子の長さ、プレパターン、下層膜等により、得られる相分離構造を精密に制御し、所望の微細パターンを得ることができる。 When the pre-pattern 106 is provided, as described above, the phase separation structure of the self-assembled monolayer 103 is preferably formed along the pre-pattern 106, and the interface formed by the phase separation is the side surface of the pre-pattern 106. It is more preferable that they are substantially parallel. For example, when the [A1] block copolymer consists of a styrene block and a poly (meth) acrylic acid block and the pre-pattern has a high affinity with the styrene block, the phase of the styrene block is linear along the pre-pattern. It is formed, and next to it, a poly (meth) acrylic acid block phase and a styrene block phase are alternately arranged in this order to form a lamellar phase separation structure or the like. The phase separation structure formed is composed of a plurality of phases, and the interface formed from these phases is usually substantially vertical, but the interface itself does not necessarily have to be clear. Further, the phase separation structure obtained can be precisely controlled by the ratio of the length of each block chain in the block copolymer molecule, the length of the block copolymer molecule, the pre-pattern, the underlayer film, etc., and the desired fineness can be obtained. You can get a pattern.
 プレパターン106を形成する方法としては、公知のレジストパターン形成方法と同様の方法等が挙げられる。また、このプレパターン106の形成に用いられる組成物としては、酸解離性基を有する重合体、感放射線性酸発生剤及び有機溶媒を含有する組成物等の従来のレジスト組成物を用いることができる。具体的には、例えば市販の化学増幅型レジスト組成物を基板101又は下層膜105上に塗布してレジスト膜を形成する。次に、上記レジスト膜の所望の領域に特定パターンのマスクを介して放射線を照射し、露光を行う。上記放射線としては、例えば紫外線、遠紫外線、X線等の電磁波;電子線、α線等の荷電粒子線などが挙げられる。これらの中で、遠紫外線が好ましく、ArFエキシマレーザー光及びKrFエキシマレーザー光が好ましく、ArFエキシマレーザー光がより好ましい。 Examples of the method for forming the pre-pattern 106 include the same method as the known resist pattern forming method. Further, as the composition used for forming the pre-pattern 106, a conventional resist composition such as a polymer having an acid dissociable group, a radiation-sensitive acid generator and a composition containing an organic solvent may be used. can. Specifically, for example, a commercially available chemically amplified resist composition is applied onto the substrate 101 or the underlayer film 105 to form a resist film. Next, the desired region of the resist film is irradiated with radiation through a mask having a specific pattern to expose the resist film. Examples of the radiation include electromagnetic waves such as ultraviolet rays, far ultraviolet rays, and X-rays; charged particle beams such as electron beams and α rays. Among these, far ultraviolet rays are preferable, ArF excimer laser light and KrF excimer laser light are preferable, and ArF excimer laser light is more preferable.
 また、露光方法としては液浸露光を行うこともできる。次いでポストエクスポージャーベーク(PEB)を行い、アルカリ現像液、有機溶媒等の現像液を用いて現像を行い、所望のプレパターン106を形成することができる。得られたプレパターン106は、例えば254nmや193nmの紫外線等を照射した後、加熱処理により硬化をより促進させることが好ましい。上記加熱温度としては、通常100℃以上250℃以下である。上記加熱時間としては、例えば1分間以上30分間以下である。 Further, as an exposure method, immersion exposure can be performed. Next, post-exposure baking (PEB) is performed, and development is performed using a developer such as an alkaline developer or an organic solvent to form a desired pre-pattern 106. It is preferable that the obtained pre-pattern 106 is further cured by heat treatment after irradiating it with ultraviolet rays of, for example, 254 nm or 193 nm. The heating temperature is usually 100 ° C. or higher and 250 ° C. or lower. The heating time is, for example, 1 minute or more and 30 minutes or less.
 プレパターン106の形成方法としては、公知のレジストパターン形成方法と同様の方法を用いることができる。また、上記プレパターン形成用の組成物としては、従来のレジスト膜形成用組成物を用いることができる。 As a method for forming the pre-pattern 106, the same method as a known resist pattern forming method can be used. Further, as the composition for forming the pre-pattern, a conventional composition for forming a resist film can be used.
 なお、プレパターン106の表面を疎水化処理又は親水化処理してもよい。具体的な処理方法としては、水素プラズマに一定時間さらす水素化処理等が挙げられる。プレパターン106の表面の疎水性又は親水性を増長させることにより、自己組織化をより促進することができる。 The surface of the pre-pattern 106 may be hydrophobized or hydrophilized. Specific treatment methods include hydrogenation treatment in which hydrogen plasma is exposed to hydrogen plasma for a certain period of time. By increasing the hydrophobicity or hydrophilicity of the surface of the pre-pattern 106, self-organization can be further promoted.
[塗布膜形成工程]
 本工程は、図5に示すように、基板101上に下層膜105を介して塗布膜102を形成する工程である。下層膜105を形成しない場合、基板101上に塗布膜102を直接形成する。塗布膜102は、組成物(I)又は(II)により形成する。基板101としては、例えばシリコンウェハ、二酸化シリコン、アルミニウムで被覆されたウェハ等の従来公知のものなどが挙げられる。また、後述するように、下層膜及び/又はプレパターンを基板上に形成してもよい。塗布膜102を形成する方法としては、例えば回転塗布(スピンコーティング)、流延塗布、ロール塗布等が挙げられる。
[Coating film forming process]
As shown in FIG. 5, this step is a step of forming the coating film 102 on the substrate 101 via the lower layer film 105. When the lower layer film 105 is not formed, the coating film 102 is directly formed on the substrate 101. The coating film 102 is formed by the composition (I) or (II). Examples of the substrate 101 include conventionally known wafers such as silicon wafers, silicon dioxide, and wafers coated with aluminum. Further, as described later, the underlayer film and / or the pre-pattern may be formed on the substrate. Examples of the method for forming the coating film 102 include rotary coating (spin coating), cast coating, roll coating and the like.
 形成される塗布膜102の平均厚みは、特に限定されないが、0.2nm以上が好ましく、1nm以上がより好ましく、2nm以上がさらに好ましく、10nm以上が特に好ましい。また、1,000nm以下が好ましく、200nm以下がより好ましく、120nm以下がさらに好ましく、70nm以下が特に好ましい。 The average thickness of the coating film 102 to be formed is not particularly limited, but is preferably 0.2 nm or more, more preferably 1 nm or more, further preferably 2 nm or more, and particularly preferably 10 nm or more. Further, 1,000 nm or less is preferable, 200 nm or less is more preferable, 120 nm or less is further preferable, and 70 nm or less is particularly preferable.
[自己組織化膜形成工程]
 本実施形態に係るパターン形成方法は、自己組織化膜形成工程として静置工程及び加熱工程を好適に備える。
[Self-assembled monolayer forming process]
The pattern forming method according to the present embodiment preferably includes a standing step and a heating step as the self-assembled monolayer forming step.
 (静置工程)
 本工程は、上記塗布膜形成工程で形成された塗布膜102を静置する工程である。「塗布膜を静置する」とは、塗布膜状の状態を保持し、かつ移動していないことをいう。本工程を備えることで、より良好な相分離構造を形成することができる。本工程は、塗布膜が塗布膜状の状態を保持している限り、塗布膜から[B1]溶媒又は[B2]溶媒の一部又は全部が蒸発してもよい。
(Standing process)
This step is a step of allowing the coating film 102 formed in the coating film forming step to stand still. "Standing the coating film" means that the coating film-like state is maintained and does not move. By providing this step, a better phase separation structure can be formed. In this step, as long as the coating film retains the state of the coating film, a part or all of the [B1] solvent or the [B2] solvent may evaporate from the coating film.
 上記静置工程の時間としては、1分以上が好ましく、3分以上がより好ましく、5分以上がさらに好ましい。上記時間を上記範囲とすることで、より良好な相分離構造を形成することができ、ひいては規則配列構造の欠陥のより少ない自己組織化膜を形成することができる。また、上記時間としては、生産性の観点から、120分以下が好ましく、60分以下がより好ましく、30分以下がさらに好ましく、20分以下が特に好ましい。 The time for the standing step is preferably 1 minute or longer, more preferably 3 minutes or longer, and even more preferably 5 minutes or longer. By setting the above time in the above range, a better phase-separated structure can be formed, and thus a self-assembled monolayer having less defects in the ordered structure can be formed. From the viewpoint of productivity, the time is preferably 120 minutes or less, more preferably 60 minutes or less, further preferably 30 minutes or less, and particularly preferably 20 minutes or less.
 上記静置工程の後に、上記塗布膜から溶媒を除去する工程(以下、「溶媒除去工程」ともいう)をさらに備えてもよい。溶媒除去工程を行う方法としては、例えば加熱する方法等が挙げられる。 After the standing step, a step of removing the solvent from the coating film (hereinafter, also referred to as “solvent removing step”) may be further provided. Examples of the method for performing the solvent removal step include a method of heating.
 (加熱工程)
 本工程は、塗布膜102を加熱する工程である。本工程は、上記塗布膜形成工程、上記静置工程及び上記溶媒除去工程のいずれの段階で行ってもよいが、上記静置工程で行うことが好ましい。加熱工程を上記静置工程で行うことにより、より良好な相分離構造を形成することができる。
(Heating process)
This step is a step of heating the coating film 102. This step may be performed at any of the steps of the coating film forming step, the standing step, and the solvent removing step, but it is preferably performed in the standing step. By performing the heating step in the above-mentioned standing step, a better phase separation structure can be formed.
 上記加熱工程における加熱方法としては、例えばオーブン、ホットプレート等により加熱する方法等が挙げられる。 Examples of the heating method in the heating step include a method of heating with an oven, a hot plate, or the like.
 上記加熱工程の温度としては、40℃以上が好ましく、100℃以上がより好ましく、150℃以上がさらに好ましく、200℃以上が特に好ましい。また、300℃以下が好ましく、280℃以下がより好ましく、260℃以下がさらに好ましく、240℃以下が特に好ましい。上記加熱工程の温度を上記範囲とすることで、より良好な相分離構造を形成することができる。 The temperature of the heating step is preferably 40 ° C. or higher, more preferably 100 ° C. or higher, further preferably 150 ° C. or higher, and particularly preferably 200 ° C. or higher. Further, 300 ° C. or lower is preferable, 280 ° C. or lower is more preferable, 260 ° C. or lower is further preferable, and 240 ° C. or lower is particularly preferable. By setting the temperature of the heating step in the above range, a better phase separation structure can be formed.
 上記加熱工程の時間としては、1分以上が好ましく、3分以上がより好ましく、5分以上がさらに好ましい。また、120分以下が好ましく、60分以下がより好ましく、30分以下がさらに好ましく、20分以下が特に好ましい。上記時間を上記範囲とすることで、より良好な相分離構造を形成することができる。 The time of the heating step is preferably 1 minute or longer, more preferably 3 minutes or longer, and even more preferably 5 minutes or longer. Further, 120 minutes or less is preferable, 60 minutes or less is more preferable, 30 minutes or less is further preferable, and 20 minutes or less is particularly preferable. By setting the above time in the above range, a better phase separation structure can be formed.
 加熱工程による相分離構造の形成後、例えば254nmや193nmの紫外線等をさらに照射してもよい。 After forming the phase-separated structure by the heating step, for example, ultraviolet rays of 254 nm or 193 nm may be further irradiated.
 塗布膜102から相分離構造が形成されることで自己組織化膜103が形成される。[A]重合体は基板101に対して略垂直方向に相分離して自己組織化膜103を形成する。組成物(I)が[C]重合体を含有する場合、図2に示すように、例えば[C]重合体は自己組織化膜103の上方に偏在して領域104を形成する。 The self-assembled monolayer 103 is formed by forming the phase separation structure from the coating film 102. [A] The polymer is phase-separated in a direction substantially perpendicular to the substrate 101 to form a self-assembled monolayer 103. When the composition (I) contains the [C] polymer, for example, the [C] polymer is unevenly distributed above the self-assembled monolayer 103 to form the region 104, as shown in FIG.
 自己組織化膜103の平均厚みとしては、特に限定されないが、0.1nm以上が好ましく、0.5nm以上がより好ましく、1nm以上がさらに好ましく、10nm以上が特に好ましい。また、500nm以下が好ましく、100nm以下がより好ましく、60nm以下がさらに好ましく、40nm以下が特に好ましい。 The average thickness of the self-assembled monolayer 103 is not particularly limited, but is preferably 0.1 nm or more, more preferably 0.5 nm or more, further preferably 1 nm or more, and particularly preferably 10 nm or more. Further, 500 nm or less is preferable, 100 nm or less is more preferable, 60 nm or less is further preferable, and 40 nm or less is particularly preferable.
 (アニーリング工程)
 本実施形態において、パターン形成方法は、自己組織化膜103の相分離構造をより明確かつ安定的なものにするために、形成された自己組織化膜103をアニーリングする工程を備えてもよい。アニーリングの方法としては、例えばオーブン、ホットプレート等により加熱する方法などが挙げられる。上記加熱温度としては、80℃以上が好ましく、100℃以上がより好ましく、150℃以上がさらに好ましい。また、400℃以下が好ましく、350℃以下がより好ましく、300℃以下がさらに好ましい。上記加熱時間としては、通常30秒以上であり、1分以上が好ましく、2分以上がより好ましく、3分以上がさらに好ましい。また、120分以下が好ましく、90分以下がより好ましく、60分以下がさらに好ましい。
(Annealing process)
In the present embodiment, the pattern forming method may include a step of annealing the formed self-assembled monolayer 103 in order to make the phase separation structure of the self-assembled monolayer 103 clearer and more stable. Examples of the annealing method include a method of heating with an oven, a hot plate, or the like. The heating temperature is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and even more preferably 150 ° C. or higher. Further, 400 ° C. or lower is preferable, 350 ° C. or lower is more preferable, and 300 ° C. or lower is further preferable. The heating time is usually 30 seconds or longer, preferably 1 minute or longer, more preferably 2 minutes or longer, still more preferably 3 minutes or longer. Further, 120 minutes or less is preferable, 90 minutes or less is more preferable, and 60 minutes or less is further preferable.
[除去工程]
 本工程は、自己組織化膜103が有する相分離構造のうち、一部の相を除去する工程である。また、プレパターン106も、上記一部の相と同時又は別途、除去することができる。図6及び図7に示すように、自己組織化により相分離した各ブロック相のエッチングレートの差を用いて、自己組織化膜103のブロック相(I)103a及びプレパターン106をエッチング処理により除去することができる。
[Removal process]
This step is a step of removing a part of the phase separation structure of the self-assembled monolayer 103. Further, the pre-pattern 106 can also be removed simultaneously with or separately from some of the above phases. As shown in FIGS. 6 and 7, the block phase (I) 103a and the pre-pattern 106 of the self-assembled monolayer 103 are removed by etching using the difference in the etching rate of each block phase separated by self-assembly. can do.
 上記エッチング処理の前に、必要に応じて放射線を照射してもよい。上記放射線としては、エッチングにより除去する相がポリメタクリル酸メチルブロック相である場合には、254nmの放射線を用いることができる。上記放射線照射により、ポリメタクリル酸メチルブロック相が分解されるため、よりエッチングされ易くなる。 Before the above etching process, radiation may be applied if necessary. As the radiation, when the phase to be removed by etching is a polymethylmethacrylate block phase, radiation having a diameter of 254 nm can be used. Since the polymethylmethacrylate block phase is decomposed by the above irradiation, it becomes easier to etch.
 自己組織化膜103が有する相分離構造のうちの一部のブロック相の除去の方法としては、例えばケミカルドライエッチング、ケミカルウェットエッチング等の反応性イオンエッチング(RIE);スパッタエッチング、イオンビームエッチング等の物理的エッチング等の公知の方法が挙げられる。これらのうち反応性イオンエッチング(RIE)が好ましく、中でもCF、Oガス等を用いたケミカルドライエッチング、有機溶媒、フッ酸等の液体のエッチング液を用いたケミカルウェットエッチング(湿式現像)がより好ましい。上記有機溶媒としては、n-ペンタン、n-ヘキサン、n-ヘプタン等のアルカン類、シクロヘキサン、シクロヘプタン、シクロオクタン等のシクロアルカン類、酢酸エチル、酢酸n-ブチル、酢酸i-ブチル、プロピオン酸メチル等の飽和カルボン酸エステル類、アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルn-ペンチルケトン等のケトン類、メタノール、エタノール、1-プロパノール、2-プロパノール、4-メチル-2-ペンタノール等のアルコール類などが挙げられる。なお、これらの溶媒は、単独で使用してもよく2種以上を併用してもよい。 As a method for removing a block phase of a part of the phase separation structure of the self-assembling film 103, for example, reactive ion etching (RIE) such as chemical dry etching and chemical wet etching; spatter etching, ion beam etching and the like. Known methods such as physical etching of the above can be mentioned. Of these, reactive ion etching (RIE) is preferable, and among them, chemical dry etching using CF 4 , O 2 gas, etc., and chemical wet etching (wet development) using a liquid etching solution such as an organic solvent and hydrofluoric acid are preferable. More preferred. Examples of the organic solvent include alkanes such as n-pentane, n-hexane and n-heptane, cycloalkanes such as cyclohexane, cycloheptane and cyclooctane, ethyl acetate, n-butyl acetate, i-butyl acetate and propionic acid. Saturated carboxylic acid esters such as methyl, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and methyl n-pentyl ketone, alcohols such as methanol, ethanol, 1-propanol, 2-propanol and 4-methyl-2-pentanol. Kind and so on. These solvents may be used alone or in combination of two or more.
[プレパターン除去工程]
 本工程は、図6及び図7に示すように、プレパターン106を除去する工程である。プレパターン106を除去することにより、より微細かつ複雑なパターンを形成することが可能となる。なお、プレパターン106の除去の方法については、上述の相分離構造のうちの一部の相を除去する方法を適用できる。また、本工程は、上記除去工程と同時に行ってもよいし、除去工程の前又は後に行ってもよい。
[Pre-pattern removal process]
This step is a step of removing the pre-pattern 106 as shown in FIGS. 6 and 7. By removing the pre-pattern 106, it becomes possible to form a finer and more complicated pattern. As a method for removing the pre-pattern 106, a method for removing a part of the phase separation structure described above can be applied. Further, this step may be performed at the same time as the removal step, or may be performed before or after the removal step.
[基板パターン形成工程]
 本工程は、上記除去工程後、残存した自己組織化膜の一部からなるパターンをマスクとして下層膜及び基板をエッチングすることによりパターニングする工程である。基板へのパターニングが完了した後、マスクとして使用された相は溶解処理等により基板上から除去され、最終的にパターニングされた基板を得ることができる。
[Substrate pattern forming process]
This step is a step of patterning by etching the lower layer film and the substrate using a pattern consisting of a part of the self-assembled monolayer remaining after the removal step as a mask. After the patterning on the substrate is completed, the phase used as the mask is removed from the substrate by a dissolution treatment or the like, and finally the patterned substrate can be obtained.
 上記エッチングの方法としては、上記除去工程における方法と同様の方法を用いることができ、エッチングガス及びエッチング溶液は、下層膜及び基板の材質により適宜選択することができる。例えば基板がシリコン素材である場合には、フロン系ガスとSF4の混合ガス等を用いることができる。また、基板が金属膜である場合には、BClとClの混合ガス等を用いることができる。なお、当該パターン形成方法により得られるパターンは半導体素子等に好適に用いられ、さらに上記半導体素子はLED、太陽電池等にも用いられる。 As the etching method, the same method as the method in the removal step can be used, and the etching gas and the etching solution can be appropriately selected depending on the material of the underlayer film and the substrate. For example, when the substrate is made of a silicon material, a mixed gas of Freon-based gas and SF4 can be used. When the substrate is a metal film, a mixed gas of BCl 3 and Cl 2 can be used. The pattern obtained by the pattern forming method is preferably used for a semiconductor element or the like, and the semiconductor element is also used for an LED, a solar cell or the like.
 また、[A]重合体が[A1]ブロック共重合体だけでなく[A2]重合体を含む場合においても、上記方法により同様にパターンを形成できる。 Further, even when the [A] polymer contains not only the [A1] block copolymer but also the [A2] polymer, the pattern can be similarly formed by the above method.
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。各物性値の測定方法を下記に示す。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to these examples. The measurement method of each physical property value is shown below.
[Mw及びMn]
 重合体のMw及びMnは、ゲルパーミエーションクロマトグラフィー(GPC)により東ソー社のGPCカラム(「G2000HXL」2本、「G3000HXL」1本、「G4000HXL」1本)を使用し、以下の条件により測定した。
 (測定条件)
  溶離液:テトラヒドロフラン(和光純薬工業社)
  流量:1.0mL/分
  試料濃度:1.0質量%
  試料注入量:100μL
  カラム温度:40℃
  検出器:示差屈折計
  標準物質:単分散ポリスチレン
[Mw and Mn]
Mw and Mn of the polymer are measured by gel permeation chromatography (GPC) using Tosoh's GPC columns (2 "G2000HXL", 1 "G3000HXL", 1 "G4000HXL") under the following conditions. did.
(Measurement condition)
Eluent: Tetrahydrofuran (Wako Pure Chemical Industries, Ltd.)
Flow rate: 1.0 mL / min Sample concentration: 1.0 mass%
Sample injection amount: 100 μL
Column temperature: 40 ° C
Detector: Differential refractometer Standard material: Monodisperse polystyrene
13C-NMR分析]:
 13C-NMR分析は、核磁気共鳴装置(日本電子社の「JNM-EX400」)を使用し、測定溶媒としてDMSO-dを使用して行った。重合体における各構造単位の含有割合は、13C-NMRで得られたスペクトルにおける各構造単位に対応するピークの面積比から算出した。
[ 13 C-NMR analysis]:
13 C-NMR analysis was performed using a nuclear magnetic resonance apparatus (“JNM-EX400” manufactured by JEOL Ltd.) and DMSO-d 6 as a measurement solvent. The content ratio of each structural unit in the polymer was calculated from the area ratio of the peak corresponding to each structural unit in the spectrum obtained by 13 C-NMR.
<[A]重合体の合成>
[合成例1](ブロック共重合体(P-1)の合成)
 500mLのフラスコ反応容器を減圧乾燥した後、窒素雰囲気下、蒸留脱水処理を行ったテトラヒドロフラン200gを注入し、-78℃まで冷却した。その後、sec-ブチルリチウム(sec-BuLi)の1Nシクロヘキサン溶液を0.27g注入し、蒸留脱水処理を行ったスチレン10.7g(0.103mol)を30分かけて滴下注入した。このとき反応液の内温が-60℃以上にならないように注意した。滴下終了後30分間熟成した後、さらに蒸留脱水処理を行ったメタクリル酸メチル10.3g(0.103mol)を30分かけて滴下注入し、120分間反応させた。この後、末端処理剤としてメタノール1mLを注入し反応させた。重合反応液を室温まで昇温し、得られた重合反応液を濃縮してプロピレングリコールメチルエーテルアセテート(PGMEA)で置換した後、シュウ酸2質量%水溶液1,000gを注入撹拌し、静置後、下層の水層を取り除いた。この操作を3回繰り返し、Li塩を除去した後、超純水1,000gを注入撹拌し、下層の水層を取り除いた。この操作を3回繰り返しシュウ酸を除去した後、得られた溶液を濃縮した後、メタノール500g中に滴下して、重合体を析出させた。減圧濾過して得られた重合体をメタノールで2回洗浄した後、60℃で減圧乾燥させることで、白色のブロック共重合体(P-1)20.5gを得た。
<[A] Polymer synthesis>
[Synthesis Example 1] (Synthesis of block copolymer (P-1))
After drying the 500 mL flask reaction vessel under reduced pressure, 200 g of hydrochloric acid subjected to distillation dehydration treatment was injected under a nitrogen atmosphere, and the mixture was cooled to −78 ° C. Then, 0.27 g of a 1N cyclohexane solution of sec-butyllithium (sec-BuLi) was injected, and 10.7 g (0.103 mol) of styrene subjected to distillation dehydration treatment was added dropwise over 30 minutes. At this time, care was taken so that the internal temperature of the reaction solution did not exceed -60 ° C. After aging for 30 minutes after the completion of the dropping, 10.3 g (0.103 mol) of methyl methacrylate, which had been further subjected to distillation dehydration treatment, was dropped and injected over 30 minutes and reacted for 120 minutes. After that, 1 mL of methanol was injected as a terminal treatment agent to react. The temperature of the polymerization reaction solution was raised to room temperature, the obtained polymerization reaction solution was concentrated and replaced with propylene glycol methyl ether acetate (PGMEA), and then 1,000 g of a 2% by mass aqueous solution of oxalic acid was injected and stirred, and then allowed to stand. , The lower aqueous layer was removed. This operation was repeated 3 times to remove the Li salt, and then 1,000 g of ultrapure water was injected and stirred to remove the lower aqueous layer. This operation was repeated 3 times to remove oxalic acid, and then the obtained solution was concentrated and then added dropwise to 500 g of methanol to precipitate a polymer. The polymer obtained by filtration under reduced pressure was washed twice with methanol and then dried under reduced pressure at 60 ° C. to obtain 20.5 g of a white block copolymer (P-1).
 ブロック共重合体(P-1)のMwは51,000、Mw/Mnは1.13であった。また、13C-NMR分析の結果、ブロック共重合体(P-1)におけるスチレン単位の含有割合及びメタクリル酸メチル単位の含有割合は、それぞれ50.1モル%及び49.9モル%であった。なお、ブロック共重合体(P-1)はジブロック共重合体である。 The Mw of the block copolymer (P-1) was 51,000, and the Mw / Mn was 1.13. As a result of 13 C-NMR analysis, the content ratio of the styrene unit and the content ratio of the methyl methacrylate unit in the block copolymer (P-1) were 50.1 mol% and 49.9 mol%, respectively. .. The block copolymer (P-1) is a diblock copolymer.
[合成例2]
<[C]重合体の合成>
 スチレン24.90g(0.240mol)、メタクリル酸テトラヒドロフルフリル40.66g(0.239mol)及び2,2,2-トリフルオロエチルメタクリレート34.44g(0.205mol)を、2-ブタノン200gに溶解し、さらにラジカル重合開始剤としてAIBN1.12gを投入した単量体溶液を調製した。100gの2-ブタノンを投入した1,000mLの三口フラスコを30分窒素パージした後、反応釜を攪拌しながら80℃に加熱し、上記調製した単量体溶液を滴下漏斗を用いて3時間かけて滴下した。滴下開始を重合開始時間とし、重合反応を6時間実施した。重合終了後、重合反応液を水冷することにより30℃以下に冷却した後、2,000gのメタノールに投入し、析出した白色粉末をろ別した。ろ別された白色粉末を400gのメタノールに分散させてスラリー状にして洗浄してからろ別する操作を2回行い、その後50℃にて17時間真空乾燥し、白色粉末の重合体(P-2)を得た。重合体(P-2)のMwは20,070、Mw/Mnは1.28であった。また13C-NMR分析の結果、スチレンに由来する構造単位、メタクリル酸テトラヒドロフルフリルに由来する構造単位及び2,2,2-トリフルオロエチルメタクリレートに由来する構造単位の含有割合はそれぞれ34.7モル%、34.4モル%及び30.9モル%であった。
[Synthesis Example 2]
<Synthesis of [C] polymer>
24.90 g (0.240 mol) of styrene, 40.66 g (0.239 mol) of tetrahydrofurfuryl methacrylate and 34.44 g (0.205 mol) of 2,2,2-trifluoroethyl methacrylate are dissolved in 200 g of 2-butanone. Then, a monomer solution containing 1.12 g of AIBN as a radical polymerization initiator was prepared. A 1,000 mL three-necked flask containing 100 g of 2-butanone was purged with nitrogen for 30 minutes, then heated to 80 ° C. with stirring in the reaction vessel, and the above-prepared monomer solution was poured over 3 hours using a dropping funnel. Dropped. The polymerization reaction was carried out for 6 hours, with the start of dropping as the polymerization start time. After completion of the polymerization, the polymerization reaction solution was cooled to 30 ° C. or lower by water cooling, and then the mixture was added to 2,000 g of methanol to filter off the precipitated white powder. The filtered white powder was dispersed in 400 g of methanol to form a slurry, washed and filtered twice, and then vacuum dried at 50 ° C. for 17 hours to obtain a polymer of the white powder (P-). 2) was obtained. The Mw of the polymer (P-2) was 20,070, and the Mw / Mn was 1.28. As a result of 13 C-NMR analysis, the content ratios of the structural units derived from styrene, the structural units derived from tetrahydrofurfuryl methacrylate and the structural units derived from 2,2,2-trifluoroethyl methacrylate were 34.7, respectively. It was mol%, 34.4 mol% and 30.9 mol%.
<自己組織化膜形成用組成物の調製>
 自己組織化膜形成用組成物の調製に用いた各成分について以下に示す。
<Preparation of composition for self-assembled monolayer formation>
The components used in the preparation of the self-assembled monolayer formation composition are shown below.
[[A]重合体]
 A-1:上記合成例1で合成した重合体(P-1)
[[A] Polymer]
A-1: Polymer (P-1) synthesized in the above synthesis example 1.
[[B]溶媒]
 B-1:プロピレングリコールモノメチルエーテルアセテート
 B-2:酢酸ブチル
 B-3:シクロヘキサノン
 B-4:乳酸エチル
 B-5:シクロペンタノン
 B-6:ジイソアミルエーテル
[[B] Solvent]
B-1: Propylene glycol monomethyl ether acetate B-2: Butyl acetate B-3: Cyclohexanone B-4: Ethyl lactate B-5: Cyclopentanone B-6: Diisoamyl ether
[[C]重合体]
 C-1:上記合成例2で合成した重合体(P-2)
[[C] Polymer]
C-1: Polymer (P-2) synthesized in Synthesis Example 2 above.
[実施例1](自己組織化膜形成用組成物(S-1)の調製)
 [A]重合体としての(A-1)100質量部、[B]溶媒としての(B-1)370質量部および(B-2)197質量部、を混合し、溶解させて混合溶液を得た。得られた混合溶液を孔径0.01μmのメンブランフィルターでろ過し、自己組織化膜形成用組成物(S-1)を調製した。
[Example 1] (Preparation of composition for forming a self-assembled monolayer (S-1))
[A] 100 parts by mass of (A-1) as a polymer, 370 parts by mass of (B-1) and (B-2) 197 parts by mass as a solvent of [B] are mixed and dissolved to prepare a mixed solution. Obtained. The obtained mixed solution was filtered through a membrane filter having a pore size of 0.01 μm to prepare a composition for forming a self-assembled monolayer (S-1).
[実施例2~6並びに比較例1~4]
 下記表1に示す種類及び配合量の各成分を用いた以外は実施例1と同様に操作して、自己組織化膜形成用組成物(S-2)~(S-6)並びに(CS-1)~(CS-4)を調製した。
[Examples 2 to 6 and Comparative Examples 1 to 4]
The self-assembled monolayer forming compositions (S-2) to (S-6) and (CS-) were operated in the same manner as in Example 1 except that the components of the types and blending amounts shown in Table 1 below were used. 1)-(CS-4) were prepared.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[塗布欠陥性能評価]
 上記調製した各自己組織化膜形成用組成物を用いて、12インチシリコンウェハの表面に膜厚40nmの塗膜を形成させ、100℃で60秒間焼成を行った。得られた膜が形成された基板について、欠陥検査装置(KLA-Tencor社の「KLA2810」)による欠陥検査を行うことにより欠陥の数をそれぞれ測定した。欠陥抑制性は、欠陥の数が1ウェハあたり150個以下の場合は「○」と、150個を超える場合は「×」と評価した。結果を表2に示す。
[Evaluation of coating defect performance]
Using each of the self-assembled monolayer forming compositions prepared above, a coating film having a film thickness of 40 nm was formed on the surface of a 12-inch silicon wafer, and firing was performed at 100 ° C. for 60 seconds. The number of defects was measured by performing a defect inspection with a defect inspection device (“KLA2810” manufactured by KLA-Tencor) on the substrate on which the obtained film was formed. The defect suppression property was evaluated as "◯" when the number of defects was 150 or less per wafer, and "x" when the number of defects exceeded 150. The results are shown in Table 2.
<パターン形成方法>
 12インチシリコンウェハ上に、架橋剤を含む下層膜形成用組成物をスピンコーター(東京エレクトロン社の「CLEAN TRACK ACT12」)を使用してスピンコートした後、150℃で60秒間ベークして膜厚30nmの下層膜を形成した。次に、この下層膜上に、酸解離性重合体、光酸発生剤及び有機溶媒を含有するArFレジスト組成物をスピンコートした後、100℃で60秒間プレベーク(PB)して膜厚90nmのレジスト膜を形成した。次いで、ArF液浸露光装置(ニコン社の「NSR S610C」)を使用し、NA;1.3、CrossPole、σ=0.8/1の光学条件にて、マスクパターンを介して露光した。その後、150℃で60秒間PEBを行った後、2.38質量%テトラメチルアンモニウムヒドロキシド水溶液により23℃で30秒間現像し、水洗し、乾燥することで線幅100nmのラインアンドスペースパターンであるプレパターンを得た。次いで、このプレパターンに193nmの紫外線を20mJ/cmの条件で照射後、210℃で2分間ベークすることで評価用基板を得た。
<Pattern formation method>
A composition for forming an underlayer film containing a cross-linking agent is spin-coated on a 12-inch silicon wafer using a spin coater (“CLEAN TRACK ACT12” by Tokyo Electron Limited), and then baked at 150 ° C. for 60 seconds to form a film thickness. A 30 nm underlayer film was formed. Next, an ArF resist composition containing an acid dissociative polymer, a photoacid generator and an organic solvent was spin-coated on this underlayer film, and then prebaked (PB) at 100 ° C. for 60 seconds to a film thickness of 90 nm. A resist film was formed. Then, using an ArF immersion exposure apparatus (Nikon's "NSR S610C"), exposure was performed via a mask pattern under optical conditions of NA; 1.3, CrossPole, σ = 0.8 / 1. Then, PEB was performed at 150 ° C. for 60 seconds, then developed with a 2.38 mass% tetramethylammonium hydroxide aqueous solution at 23 ° C. for 30 seconds, washed with water, and dried to obtain a line-and-space pattern having a line width of 100 nm. I got a pre-pattern. Next, this pre-pattern was irradiated with ultraviolet rays of 193 nm under the condition of 20 mJ / cm 2 , and then baked at 210 ° C. for 2 minutes to obtain an evaluation substrate.
 次に、各自己組織化膜形成用組成物を上記評価用基板上に厚さ40nmになるように塗布し、200℃で5分間加熱して相分離させ、ミクロドメイン構造を形成した。さらに、193nmの放射線を20mJ/cmで照射し、メチルイソブチルケトン(MIBK)/2-プロパノール(IPA)=2/8(質量比)の溶液中に30分間浸漬させてメタクリル酸メチル相を除去し、パターンを形成した。 Next, each self-assembled monolayer forming composition was applied onto the evaluation substrate so as to have a thickness of 40 nm, and heated at 200 ° C. for 5 minutes for phase separation to form a microdomain structure. Furthermore, the methyl methacrylate phase is removed by irradiating with radiation of 193 nm at 20 mJ / cm 2 and immersing it in a solution of methyl isobutyl ketone (MIBK) / 2-propanol (IPA) = 2/8 (mass ratio) for 30 minutes. And formed a pattern.
[パターンの良好性]
 上記形成したパターンを、走査型電子顕微鏡(日立製作所社の「S-4800」)を用いて観察し、パターンの良好性を評価した。形成したパターンの良好性は、パターンが確認でき、欠陥(ディスロケーション、ブリッジ、ミッシングライン等)がない場合は「○(良好)」と、パターン形成が不完全であるか、又は欠陥がある場合は「×(不良)」と評価した。評価結果を表2に合わせて示す。
[Good pattern]
The formed pattern was observed using a scanning electron microscope (“S-4800” manufactured by Hitachi, Ltd.), and the goodness of the pattern was evaluated. The goodness of the formed pattern is "○ (good)" when the pattern can be confirmed and there are no defects (dislocation, bridge, missing line, etc.), and when the pattern formation is incomplete or defective. Was evaluated as "x (defective)". The evaluation results are shown in Table 2.
[溶解度パラメータ]
 組成物(II)の項で説明した方法にて測定した。[A]重合体の溶解度パラメータと[B]溶媒の溶解度パラメータとの差をΔσとして表2に示す。実際の評価にはΔσの絶対値を用いる。
[Solubility parameter]
The measurement was carried out by the method described in the section of composition (II). The difference between the solubility parameter of the polymer [A] and the solubility parameter of the solvent [B] is shown in Table 2 as Δσ. The absolute value of Δσ is used for the actual evaluation.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の結果から明らかなように、実施例の自己組織化膜形成用組成物によれば、塗布時の欠陥を抑制した塗布膜を形成することができ、その結果、形成されたパターンの形成不良や欠陥が少なく、自己組織化による相分離構造を良好に形成することができる。一方、比較例の自己組織化膜形成用組成物では、塗布時の欠陥数が高いものとなり、それに起因してか、形成されたパターンの相分離不良や欠陥も多くなり、自己組織化による相分離構造を良好に形成することができないことが分かる。 As is clear from the results in Table 2, according to the composition for forming a self-assembled monolayer of the example, it is possible to form a coating film in which defects during coating are suppressed, and as a result, the formed pattern is formed. There are few defects and defects, and a phase-separated structure by self-assembly can be formed well. On the other hand, in the composition for forming a self-assembled film of the comparative example, the number of defects at the time of application is high, and probably due to this, the phase separation defects and defects of the formed pattern also increase, and the phase due to self-assembly is increased. It can be seen that the separated structure cannot be formed well.
 本発明の自己組織化形成用組成物及びパターン形成方法によれば、自己組織化による相分離構造を良好に形成させるために均一で残渣欠陥のない塗布膜を形成させることができる。従って、これらは、さらなる微細化が要求されている半導体デバイス、液晶デバイス等の各種電子デバイス製造におけるリソグラフィー工程に好適に用いることができる。 According to the self-assembling composition and the pattern forming method of the present invention, it is possible to form a uniform coating film without residue defects in order to form a phase-separated structure by self-assembling well. Therefore, these can be suitably used for a lithography process in manufacturing various electronic devices such as semiconductor devices and liquid crystal devices, which are required to be further miniaturized.
101  基板
102  塗布膜
103  自己組織化膜
103a  ブロック相(I)
103b  ブロック相(II)
104  [C]重合体が偏在する領域
105  下層膜
106  プレパターン
 
 
 
101 Substrate 102 Coating film 103 Self-assembled film 103a Block phase (I)
103b block phase (II)
104 [C] Region where polymer is unevenly distributed 105 Underlayer film 106 Pre-pattern

Claims (12)

  1.  第1重合鎖と、前記第1重合鎖と異なる第2重合鎖とを含む第1重合体、及び
     溶媒
     を含み、
     前記溶媒が、エステル系溶媒及びケトン系溶媒からなる群より選択される2種以上の溶媒の混合物である自己組織化膜形成用組成物。
    It contains a first polymer containing a first polymerized chain and a second polymerized chain different from the first polymerized chain, and a solvent.
    A composition for forming a self-assembled monolayer, wherein the solvent is a mixture of two or more kinds of solvents selected from the group consisting of an ester solvent and a ketone solvent.
  2.  前記溶媒が、前記エステル系溶媒及び前記ケトン系溶媒の2種の混合溶媒である請求項1に記載の自己組織化膜形成用組成物。 The composition for forming a self-assembled monolayer according to claim 1, wherein the solvent is a mixed solvent of two kinds of the ester solvent and the ketone solvent.
  3.  前記ケトン系溶媒が、環状ケトン系溶媒である請求項1又は2に記載の自己組織化膜形成用組成物。 The composition for forming a self-assembled monolayer according to claim 1 or 2, wherein the ketone solvent is a cyclic ketone solvent.
  4.  前記環状ケトン系溶媒の環員数が5~8である請求項3に記載の自己組織化膜形成用組成物。 The composition for forming a self-assembled monolayer according to claim 3, wherein the cyclic ketone solvent has 5 to 8 ring members.
  5.  前記エステル系溶媒が、鎖状エステル系溶媒である請求項1~4のいずれか1項に記載の自己組織化膜形成用組成物。 The composition for forming a self-assembled monolayer according to any one of claims 1 to 4, wherein the ester solvent is a chain ester solvent.
  6.  前記鎖状エステル系溶媒がエーテル結合をさらに含む請求項5に記載の自己組織化膜形成用組成物。 The composition for forming a self-assembled monolayer according to claim 5, wherein the chain ester solvent further contains an ether bond.
  7.  前記溶媒が前記エステル系溶媒と前記ケトン系溶媒とをともに含む場合、前記エステル系溶媒と前記ケトン系溶媒との合計質量中、前記ケトン系溶媒が占める割合が10質量%以上90質量%以下である請求項1~6のいずれか1項に記載の自己組織化膜形成用組成物。 When the solvent contains both the ester solvent and the ketone solvent, the ratio of the ketone solvent to the total mass of the ester solvent and the ketone solvent is 10% by mass or more and 90% by mass or less. The composition for forming a self-assembling film according to any one of claims 1 to 6.
  8.  第1重合鎖と、前記第1重合鎖と異なる第2重合鎖とを含む第1重合体、及び
     溶媒
     を含み、
     前記第1重合体が有する溶解度パラメータPと前記溶媒が有する溶解度パラメータSとの差の絶対値が0.35以下である自己組織化膜形成用組成物。
    It contains a first polymer containing a first polymerized chain and a second polymerized chain different from the first polymerized chain, and a solvent.
    A composition for forming a self-assembled monolayer, wherein the absolute value of the difference between the solubility parameter P of the first polymer and the solubility parameter S of the solvent is 0.35 or less.
  9.  前記溶媒は、異なる溶解度パラメータを有する複数種の溶媒の混合物である請求項8に記載の自己組織化膜形成用組成物。 The composition for forming a self-assembled monolayer according to claim 8, wherein the solvent is a mixture of a plurality of kinds of solvents having different solubility parameters.
  10.  前記溶媒は、前記溶解度パラメータPより大きい溶解度パラメータS1を有する溶媒と、前記溶解度パラメータPより小さい溶解度パラメータS2を有する溶媒との混合物である請求項8又は9に記載の自己組織化膜形成用組成物。 The self-assembling film forming composition according to claim 8 or 9, wherein the solvent is a mixture of a solvent having a solubility parameter S1 larger than the solubility parameter P and a solvent having a solubility parameter S2 smaller than the solubility parameter P. thing.
  11.  前記第1重合体より表面自由エネルギーが小さい第2重合体をさらに含む請求項1~10のいずれか1項に記載の自己組織化膜形成用組成物。 The composition for forming a self-assembled monolayer according to any one of claims 1 to 10, further comprising a second polymer having a smaller surface free energy than the first polymer.
  12.  基板上に請求項1~11のいずれか1項に記載の自己組織化膜形成用組成物を塗布して塗布膜を形成する工程、
     前記塗布膜を相分離させて自己組織化膜を形成する工程、及び
     前記自己組織化膜の一部の相を除去する工程
     を含むパターン形成方法。
     
    A step of applying the composition for forming a self-assembled monolayer according to any one of claims 1 to 11 on a substrate to form a coating film.
    A pattern forming method comprising a step of phase-separating the coating film to form a self-assembled monolayer and a step of removing a part of the phase of the self-assembled monolayer.
PCT/JP2021/028767 2020-09-01 2021-08-03 Self-organizing film-forming composition, and method for forming pattern WO2022049968A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022546176A JPWO2022049968A1 (en) 2020-09-01 2021-08-03

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-146794 2020-09-01
JP2020146794 2020-09-01

Publications (1)

Publication Number Publication Date
WO2022049968A1 true WO2022049968A1 (en) 2022-03-10

Family

ID=80491996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028767 WO2022049968A1 (en) 2020-09-01 2021-08-03 Self-organizing film-forming composition, and method for forming pattern

Country Status (2)

Country Link
JP (1) JPWO2022049968A1 (en)
WO (1) WO2022049968A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120202017A1 (en) * 2011-02-07 2012-08-09 Wisconsin Alumni Research Foundation Solvent annealing block copolymers on patterned substrates
JP2015170723A (en) * 2014-03-06 2015-09-28 Jsr株式会社 Patterning method and self-organization composition
JP2016107211A (en) * 2014-12-05 2016-06-20 Jsr株式会社 Self-organizing film forming method, pattern forming method, and composition for forming self-organizing film
WO2017145953A1 (en) * 2016-02-22 2017-08-31 株式会社カネカ Polyol composition and thermosetting resin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120202017A1 (en) * 2011-02-07 2012-08-09 Wisconsin Alumni Research Foundation Solvent annealing block copolymers on patterned substrates
JP2015170723A (en) * 2014-03-06 2015-09-28 Jsr株式会社 Patterning method and self-organization composition
JP2016107211A (en) * 2014-12-05 2016-06-20 Jsr株式会社 Self-organizing film forming method, pattern forming method, and composition for forming self-organizing film
WO2017145953A1 (en) * 2016-02-22 2017-08-31 株式会社カネカ Polyol composition and thermosetting resin

Also Published As

Publication number Publication date
JPWO2022049968A1 (en) 2022-03-10

Similar Documents

Publication Publication Date Title
JP5994788B2 (en) Self-assembling composition for pattern formation and pattern forming method
JP5835123B2 (en) Self-assembling composition for pattern formation and pattern forming method
WO2014003023A1 (en) Composition for pattern formation and pattern forming method
JP6540191B2 (en) Underlying composition and self-assembled lithography process
JP2015170723A (en) Patterning method and self-organization composition
JP6394042B2 (en) Pattern forming composition and pattern forming method
WO2013073505A1 (en) Self-organizing composition for pattern formation and pattern formation method
WO2016088785A1 (en) Method for forming self-assembled film, method for forming pattern, and composition for forming self-assembled film
JP6966709B2 (en) Pattern-forming composition and pattern-forming method
JP6955176B2 (en) Film-forming compositions, film-forming methods and self-assembling lithography processes
JP7044976B2 (en) Pattern formation method
WO2022049968A1 (en) Self-organizing film-forming composition, and method for forming pattern
JP6398695B2 (en) Composition for forming underlayer and self-organized lithography process
WO2016133115A1 (en) Self-organized-film forming method, pattern forming method, and self-organized-film forming composition
JP6264148B2 (en) Pattern forming composition and pattern forming method
JP2016161886A (en) Composition for forming underlay film, method for forming underlay film and self assemble lithography process
WO2022039082A1 (en) Composition for underlayer film formation, underlayer film, and lithography process
WO2022102304A1 (en) Composition for underlayer film formation, underlayer film, and lithography process
WO2013146715A1 (en) Pattern forming method
WO2016159329A1 (en) Composition for forming pattern, and pattern forming method
JP6788198B2 (en) Method and composition for forming contact hole pattern
JP2016134580A (en) Patterning composition, patterning method, and block-copolymer
JP2015139875A (en) Self-organizing composition for pattern formation and pattern formation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864026

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022546176

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21864026

Country of ref document: EP

Kind code of ref document: A1