WO2013073505A1 - Self-organizing composition for pattern formation and pattern formation method - Google Patents
Self-organizing composition for pattern formation and pattern formation method Download PDFInfo
- Publication number
- WO2013073505A1 WO2013073505A1 PCT/JP2012/079308 JP2012079308W WO2013073505A1 WO 2013073505 A1 WO2013073505 A1 WO 2013073505A1 JP 2012079308 W JP2012079308 W JP 2012079308W WO 2013073505 A1 WO2013073505 A1 WO 2013073505A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- self
- pattern
- pattern formation
- polymer
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/0002—Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
Definitions
- the present invention relates to a self-assembling composition for pattern formation and a pattern forming method.
- the present invention has been made based on the circumstances as described above, and its object is to provide a self-assembling composition for pattern formation capable of forming a sufficiently fine pattern, and the self-organization for pattern formation. It is providing the pattern formation method using a chemical composition.
- the invention made to solve the above problems is [A] a polymer having a heteroatom-containing group ( ⁇ ) at at least one end of the main chain (hereinafter also referred to as “[A] polymer”), and [B] a pattern-forming self containing polysiloxane It is an organized composition.
- the self-assembling composition for pattern formation contains [A] polymer and [B] polysiloxane, and [A] polymer has a group ( ⁇ ) containing a hetero atom at least at one end of the main chain. Since it becomes easy to carry out phase separation, a sufficiently fine pattern can be formed. Moreover, by having the group ( ⁇ ) containing a hetero atom, the pattern shape is stabilized, and variations in pattern size can be reduced.
- the “terminal” in “at least one terminal of the main chain” refers to the carbon atom at the terminal end of the polymer main chain part formed when a polymer is synthesized by polymerizing monomers. .
- the hetero atom is preferably at least one selected from the group consisting of an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a tin atom and a silicon atom.
- the group ( ⁇ ) is preferably represented by the following formula (1).
- R 1 is a single bond or a divalent organic group having 1 to 30 carbon atoms.
- R 2 is a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms.
- the [A] polymer has a group ( ⁇ ) represented by the above formula (1) at least at one end of the main chain, thereby further facilitating phase separation. Therefore, a sufficiently fine and good pattern can be formed.
- the polymer is preferably a styrene polymer.
- the polymer is a styrenic polymer, phase separation is further facilitated, and thus the self-assembling composition for pattern formation can form a finer and better pattern.
- the polysiloxane is preferably a hydrolysis-condensation product of a hydrolyzable silane compound containing a compound represented by the following formula (2).
- R 3 is an alkyl group having 1 to 8 carbon atoms or an organic group having 6 to 30 carbon atoms including an aromatic ring, provided that a part or all of the hydrogen atoms of the alkyl group are included.
- R 4 represents a chlorine atom or a monovalent group represented by —OR 5.
- R 5 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms.
- an aryl group having 6 to 15 carbon atoms provided that a part or all of the hydrogen atoms of the alkyl group, acyl group and aryl group may be substituted.
- the plurality of R 3 may be the same or different, and when a is 2 or less, the plurality of R 4 may be the same or different.
- the self-assembling composition for pattern formation can form a finer pattern because [B] polysiloxane has the above specific structure, so that phase separation is more likely to occur.
- the content of [B] polysiloxane with respect to 100 parts by mass of [A] polymer is preferably 20 parts by mass or more and 200 parts by mass.
- the self-assembling composition for pattern formation can form a fine and complicated desired pattern by containing the [A] polymer and the [B] polysiloxane in the specific ratio.
- the pattern forming method of the present invention comprises: (1) forming a self-assembled film having a phase separation structure on a substrate using the self-assembled composition for pattern formation of the present invention; and (2) removing a part of the phase of the self-assembled film. The process of carrying out is included.
- the pattern forming method of the present invention since a self-assembled film is formed using the pattern-forming self-assembled composition, a sufficiently fine pattern can be formed.
- the pattern forming method of the present invention comprises: Before step (1) above, (0-1) further comprising a step of forming a lower layer film on the substrate, and (0-2) a step of forming a pre-pattern on the lower layer film, In the step (1), a method of forming a self-assembled film in a region on the lower layer film delimited by the pre-pattern is preferable.
- the pattern forming method of the present invention further includes a step of forming an underlayer film and a pre-pattern, the phase separation of the self-assembling composition for pattern formation is more precisely controlled, and the resulting pattern is finer can do.
- the pattern obtained by the pattern forming method of the present invention is preferably a line and space pattern or a hole pattern. According to the pattern forming method, a finer desired line and space pattern or hole pattern can be formed.
- the present invention can provide a self-assembling composition for forming a pattern capable of forming a sufficiently fine pattern and a pattern forming method using the same. Therefore, the self-assembling composition for pattern formation and the pattern forming method of the present invention are suitably used for lithography processes in the manufacture of various electronic devices such as semiconductor devices and liquid crystal devices that require further miniaturization.
- the pattern formation method of this invention it is a schematic diagram which shows an example of the state after forming a lower layer film
- the pattern formation method of this invention it is a schematic diagram which shows an example of the state after forming a pre pattern on a lower layer film.
- Self-assembled composition for pattern formation refers to a phenomenon of spontaneously constructing an organization or structure, not only due to control from an external factor.
- a film having a phase separation structure by self-organization is formed by applying a self-assembled composition for pattern formation onto a substrate, and a part of this self-assembled film By removing this phase, a pattern can be formed.
- the self-assembling composition for pattern formation of the present invention comprises: [A] a polymer having a hetero atom-containing group ( ⁇ ) at at least one end of the main chain, and [B] a self-pattern forming composition containing polysiloxane. It is an organized composition.
- the self-assembling composition for pattern formation contains a [A] polymer and [B] polysiloxane, each having a terminal structure of at least one main chain having the above-mentioned specific structure. In comparison, phase separation is more likely to occur, and a pattern having a sufficiently fine microdomain structure can be formed.
- the self-assembling composition for pattern formation contains, in addition to the [A] polymer and [B] polysiloxane, optional components such as other polymers, solvents, and surfactants, as long as the effects of the present invention are not impaired. You may do it.
- optional components such as other polymers, solvents, and surfactants, as long as the effects of the present invention are not impaired. You may do it.
- each component will be described in detail.
- the polymer is a polymer having a group ( ⁇ ) containing a hetero atom at at least one end of the main chain (except for [B] polysiloxane).
- the polymer is not particularly limited as long as it is a polymer having a group ( ⁇ ) at at least one end of the main chain, but a styrene polymer obtained by polymerizing a styrene compound, (meth) acrylate Acrylic polymers obtained by polymerizing compounds and copolymers thereof are preferred. Particularly preferred is a styrene polymer.
- the notation “(meth) acrylate” represents both methacrylate and acrylate.
- the polymer is polymerized, for example, by treating the polymerization terminal with an appropriate terminal treating agent and introducing the group ( ⁇ ) or using a polymerization initiator containing the group ( ⁇ ). Can be synthesized.
- the polymer Since the polymer has a structure having the group ( ⁇ ) at least at one end of the main chain, phase separation is more likely to occur. Therefore, the self-assembling composition for pattern formation has been conventionally used. Compared with the composition of, a pattern having a finer and better microdomain structure can be formed.
- hetero atom in group ((alpha)) containing the said hetero atom It is at least 1 sort (s) selected from the group which consists of an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a tin atom, and a silicon atom.
- oxygen atoms, nitrogen atoms and sulfur atoms are more preferred, oxygen atoms and nitrogen atoms are more preferred, and oxygen atoms are particularly preferred.
- the group ( ⁇ ) is preferably a group represented by the above formula (1).
- R 1 is a single bond or a divalent organic group having 1 to 30 carbon atoms.
- R 2 is a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms.
- Examples of the divalent organic group having 1 to 30 carbon atoms represented by R 1 include, for example, an aliphatic chain hydrocarbon group having 1 to 30 carbon atoms, an alicyclic hydrocarbon group having 3 to 30 carbon atoms, and carbon. Examples thereof include aromatic hydrocarbon groups of several 6 to 30 and groups having a hetero atom such as an oxygen atom or a nitrogen atom between carbon-carbons of these hydrocarbon groups.
- Examples of the aliphatic chain hydrocarbon group having 1 to 30 carbon atoms include a methylene group, an ethanediyl group, an n-propanediyl group, an i-propanediyl group, an n-butanediyl group, an i-butanediyl group, and an n-pentanediyl group. I-pentanediyl group, n-hexanediyl group, i-hexanediyl group and the like. Among these, a methylene group and an ethanediyl group are preferable, and a methylene group is more preferable from the viewpoint that the pattern-forming self-assembled composition is more likely to cause phase separation.
- Examples of the alicyclic hydrocarbon group having 3 to 30 carbon atoms include a cyclopropanediyl group, a cyclobutanediyl group, a cyclopentanediyl group, a cyclohexanediyl group, a cyclooctanediyl group, a norbornanediyl group, and an adamantanediyl group. Can be mentioned.
- Examples of the aromatic hydrocarbon group having 6 to 30 carbon atoms include a phenylene group, a naphthalenylene group, and an anthracenylene group.
- Examples of the group containing a group having a hetero atom such as an oxygen atom or a nitrogen atom between carbon-carbon of these hydrocarbon groups include, for example, —O—, —CO— between the carbon-carbon of the hydrocarbon group.
- a group containing a linking group having at least one hetero atom such as —COO—, —OCO—, —NO—, —NH— and the like.
- R 1 is preferably a single bond or an aliphatic chain hydrocarbon group having 1 to 30 carbon atoms, more preferably a methylene group, an ethanediyl group or a propanediyl group, and even more preferably an ethanediyl group or a propanediyl group.
- Examples of the monovalent organic group having 1 to 30 carbon atoms represented by R 2 include an aliphatic chain hydrocarbon group having 1 to 30 carbon atoms, an alicyclic hydrocarbon group having 3 to 30 carbon atoms, and carbon. Examples thereof include aromatic hydrocarbon groups of several 6 to 30 and groups having a hetero atom such as an oxygen atom or a nitrogen atom between carbon-carbons of these hydrocarbon groups.
- Examples of the aliphatic chain hydrocarbon group having 1 to 30 carbon atoms include, for example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, n-pentyl group, i -Pentyl group, n-hexyl group, i-hexyl group and the like.
- Examples of the alicyclic hydrocarbon group having 3 to 30 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group, a norbornyl group, and an adamantyl group.
- Examples of the aromatic hydrocarbon group having 6 to 30 carbon atoms include a phenyl group, a naphthalenyl group, and an anthracenyl group.
- Examples of the group containing a group having a hetero atom such as an oxygen atom or a nitrogen atom between carbon-carbon of these hydrocarbon groups include -O-, -CO-, And groups containing a linking group having at least one heteroatom such as —COO—, —OCO—, —NO—, —NH— and the like.
- R 2 examples include a hydrogen atom, an aliphatic chain hydrocarbon group having 1 to 30 carbon atoms, and a group having —O— between carbon and carbon of the aliphatic chain hydrocarbon group having 1 to 30 carbon atoms.
- Examples of the group ( ⁇ ) include a structure represented by the following formula.
- R is a hydrogen atom or a monovalent organic group.
- Q is a divalent organic group.
- Examples of the polymer include a polymer obtained by polymerizing a compound such as a styrene compound or a (meth) acrylate compound.
- examples of the styrene compounds include styrene, 2-methylstyrene, 4-methylstyrene, ethylstyrene, 4-methoxystyrene, 4-phenylstyrene, 2,4-dimethylstyrene, 4-n-octylstyrene, 4-n. -Decylstyrene, 4-n-dodecylstyrene, 4-t-butoxystyrene and the like.
- styrene, 2-methylstyrene, 4-methylstyrene, 4-methoxystyrene and 4-t-butoxystyrene are preferable, and styrene is more preferable.
- the (meth) acrylate compound include alkyl (meth) acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, and butyl (meth) acrylate; phenyl (meth) acrylate, benzyl Aryl (meth) acrylates such as (meth) acrylate, naphthyl (meth) acrylate, xylyl (meth) acrylate, cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, cyclooctyl (meth) acrylate, adamantyl (meth) acrylate,
- phenyl (meth) acrylate, benzyl (meth) acrylate and butyl (meth) acrylate are preferred, and phenyl methacrylate, benzyl methacrylate and butyl methacrylate are more preferred.
- the polymer may be a homopolymer obtained by polymerizing one of the above compounds, or may be a copolymer obtained by polymerizing two or more compounds. Examples of such a copolymer include a styrene-butadiene copolymer, a styrene-acrylonitrile copolymer, and a styrene-acrylonitrile-butadiene copolymer.
- the polymer is preferably a homopolymer, and more preferably a styrene homopolymer.
- the polymer can be synthesized by living anionic polymerization, living radical polymerization or the like, and among these, living anionic polymerization in which any terminal structure can be easily introduced is preferable.
- monomers such as styrene and (meth) acrylate are polymerized in the presence of an arbitrary polymerization initiator, and the polymerization terminal is treated with an arbitrary terminal treatment agent, and the above group such as the group represented by the above formula (1) It can be synthesized by introducing the group ( ⁇ ).
- the above polymerization method for example, it can be synthesized by a method such as a method of dropping a solution containing a monomer such as styrene into a reaction solvent containing a polymerization initiator to cause a polymerization reaction.
- Examples of the solvent used for the polymerization include alkanes such as n-pentane, n-hexane, n-heptane, n-octane, n-nonane and n-decane; Cycloalkanes such as cyclohexane, cycloheptane, cyclooctane, decalin, norbornane; Aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, cumene; Halogenated hydrocarbons such as chlorobutanes, bromohexanes, dichloroethanes, hexamethylene dibromide, chlorobenzene; Saturated carboxylic acid esters such as ethyl acetate, n-butyl acetate, i-butyl acetate and methyl propionate; Ketones such as acetone, 2-butanone, 4-methyl-2-p
- the reaction temperature in the above polymerization is usually ⁇ 150 ° C. to 50 ° C., preferably ⁇ 80 ° C. to 40 ° C.
- the reaction time is usually 5 minutes to 24 hours, preferably 20 minutes to 12 hours.
- Examples of the initiator used for the polymerization include alkyllithium, alkylmagnesium halide, sodium naphthalene, alkylated lanthanoid compounds, and the like.
- alkyllithium alkylmagnesium halide
- sodium naphthalene alkylated lanthanoid compounds
- alkylated lanthanoid compounds alkylated lanthanoid compounds
- Examples of the terminal treatment method include a method as shown in the following scheme when the [A] polymer is a polystyrene having a group ( ⁇ ) at the end of the main chain. That is, by adding a terminal treating agent such as 1,2-butylene oxide to the obtained polystyrene to modify the terminal and performing a metal removal treatment with an acid or the like, a group represented by the above formula (1) ( [A] polymer having ⁇ ) at the terminal is obtained.
- a terminal treating agent such as 1,2-butylene oxide
- m is an integer of 10 to 5,000.
- Examples of the end treatment agent include epoxy compounds such as 1,2-butylene oxide, butyl glycidyl ether, propylene oxide, ethylene oxide, 2-ethylhexyl glycidyl ether, and epoxyamine; Isocyanate compound, thioisocyanate compound, imidazolidinone, imidazole, aminoketone, pyrrolidone, diethylaminobenzophenone, nitrile compound, aziridine, formamide, epoxyamine, benzylamine, oxime compound, azine, pyrazone, imine, azocarboxylic acid ester, aminostyrene, vinyl Nitrogen-containing compounds such as pyridine, aminoacrylate, aminodiphenylethylene, and imide compounds; Silane compounds such as alkoxysilane, aminosilane, ketinominosilane, isocyanate silane, siloxane, glycidylsilane, mercaptosilane, vinyl
- the polymer can also be synthesized by polymerization using an initiator containing the group ( ⁇ ).
- examples of such polymerization include radical polymerization using a radical polymerization initiator containing a group ( ⁇ ).
- radical polymerization initiators containing the above group ( ⁇ ) include azobisisobutyronitrile (AIBN), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), and 2,2′-azobis.
- AIBN azobisisobutyronitrile
- 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile)
- 2,2′-azobis (2-cyclopropylpropionitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), dimethyl 2,2'-azobis (2-methylpropionate), dimethyl 2,2'-azobis Isobutyrate, 2,2′-azobis [2-methyl-N- (2-hydroxyethyl) propionamide], 2,2′-azobis [2- (2-imidazolin-2-yl) propane], 2, 2′-azobis [2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide], 2,2′-
- 2,2′-azobis [2-methyl-N- (2-hydroxyethyl) propionamide] and 2,2′-azobis [2- (2-imidazolin-2-yl) propane] are preferable.
- Examples of the polymerization solvent used in the radical polymerization include those exemplified as the polymerization solvent used in the living anion polymerization and the like.
- the reaction temperature in the radical polymerization may be appropriately determined depending on the initiator type. Usually, it is 30 ° C to 150 ° C, preferably 40 ° C to 150 ° C, and more preferably 50 ° C to 140 ° C.
- the dropping time varies depending on the reaction temperature, the type of initiator, the monomer to be reacted, etc., but is usually 30 minutes to 8 hours, preferably 45 minutes to 6 hours, more preferably 1 hour to 5 hours. Further, the total reaction time including the dropping time varies depending on the conditions as in the dropping time, but is usually 30 minutes to 12 hours, preferably 45 minutes to 12 hours, and more preferably 1 to 10 hours.
- the [A] polymer having a group ( ⁇ ) at the end of the main chain obtained by the above polymerization is preferably recovered by a reprecipitation method. That is, after completion of the terminal treatment reaction, the target copolymer is recovered as a powder by introducing the reaction solution into a reprecipitation solvent.
- a reprecipitation solvent alcohols or alkanes can be used alone or in admixture of two or more.
- the polymer can be recovered by removing low-molecular components such as monomers and oligomers by a liquid separation operation, a column operation, an ultrafiltration operation, or the like.
- the weight average molecular weight (Mw) of the polymer by gel permeation chromatography (GPC) is preferably 1,000 to 200,000, more preferably 3,000 to 120,000, and more preferably 3,500 to 100. Is more preferred.
- Mw weight average molecular weight
- the self-assembling composition for pattern formation can form a pattern having a finer microdomain structure.
- the ratio (Mw / Mn) of Mw and number average molecular weight (Mn) of the polymer is usually 1 to 5, preferably 1 to 3, more preferably 1 to 2, and more preferably 1 to 1.5. Is more preferable, and 1 to 1.2 is particularly preferable.
- Mw and Mn are GPC columns (2 G2000HXL, 1 G3000HXL, 1 G4000HXL, or more from Tosoh), flow rate 1.0 mL / min, elution solvent tetrahydrofuran, sample concentration 1.0 mass%, sample injection It was measured by gel permeation chromatography (GPC) using a monodisperse polystyrene as a standard, using a differential refractometer as a detector under analysis conditions of an amount of 100 ⁇ L and a column temperature of 40 ° C.
- GPC gel permeation chromatography
- the polysiloxane contained in the self-assembling composition for pattern formation is not particularly limited as long as it is a hydrolyzed condensate of a hydrolyzable silane compound, but includes a compound represented by the above formula (2). It is preferably a hydrolysis condensate of a hydrolyzable silane compound.
- R 3 is an alkyl group having 1 to 8 carbon atoms or an organic group having 6 to 30 carbon atoms including an aromatic ring. However, one part or all part of the hydrogen atom which this alkyl group has may be substituted.
- R 4 is a monovalent group represented by a chlorine atom or —OR 5 .
- R 5 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an acyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 15 carbon atoms.
- a is an integer of 1 to 3. However, when a is 2 or more, the plurality of R 3 may be the same or different. When a is 2 or less, the plurality of R 4 may be the same or different.
- Examples of the alkyl group having 1 to 8 carbon atoms represented by R 3 include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, a t-butyl group, and an n-hexyl group. Is mentioned.
- Preferred examples of the organic group having 6 to 30 carbon atoms including the aromatic ring represented by R 3 include a group represented by the following formula (2-a).
- R 6 is a single bond or a chain hydrocarbon group having 1 to 10 carbon atoms.
- R 7 is a fluorine atom, a hydroxyl group, an alkyl group having 1 to 6 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms.
- b is 0 or 1.
- c is an integer of 0 to 5. However, when c is 2 or more, the plurality of R 7 may be the same or different. * Shows the site
- Examples of the chain hydrocarbon group having 1 to 10 carbon atoms represented by R 6 include a methylene group, an ethanediyl group, a propanediyl group, a butanediyl group, and a pentanediyl group.
- a methylene group, an ethanediyl group and a propanediyl group are preferable, a methylene group and an ethanediyl group are more preferable, and an ethanediyl group is more preferable.
- R 6 is preferably a single bond, a methylene group or an ethanediyl group, more preferably a single bond or an ethanediyl group.
- Examples of the alkyl group having 1 to 6 carbon atoms represented by R 7 include a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group.
- Examples of the alkoxy group having 1 to 6 carbon atoms represented by R 7 include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and a pentoxy group. Of these, a butoxy group is preferred.
- R 7 is preferably an alkoxy group having 1 to 6 carbon atoms, and more preferably a butoxy group.
- B is preferably 0, and c is preferably 0 to 2, more preferably 0 and 1.
- Examples of the substituent that the alkyl group represented by R 3 may have include a fluorine atom, a hydroxyl group, and an acyl group.
- R 3 is preferably an organic group having 6 to 30 carbon atoms including an aromatic ring from the viewpoint of easy phase separation of the self-assembling composition for pattern formation, and is represented by the above formula (2-a). Are more preferred.
- Examples of the alkyl group having 1 to 6 carbon atoms represented by R 5 include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, and a t-butyl group.
- Examples of the acyl group having 1 to 6 carbon atoms represented by R 5 include an acetyl group, a propionyl group, and a butyryl group.
- Examples of the aryl group having 6 to 15 carbon atoms represented by R 5 include a phenyl group and a naphthalenyl group.
- Examples of the substituent that the alkyl group, acyl group, and aryl group represented by R 5 may have include a chain hydrocarbon group having 1 to 10 carbon atoms, a fluorine atom, and a hydroxyl group.
- R 4 is preferably a monovalent group represented by —OR 5 , more preferably R 5 is an alkoxy group having 1 to 6 carbon atoms, and an ethoxy group is more preferable. .
- a in the above formula (2) is an integer of 1 to 3.
- a is 1, it is a trifunctional silane, when a is 2, it is a bifunctional silane, and when a is 3, it is a monofunctional silane.
- 1 and 2 are preferable as a, and 1 is more preferable.
- hydrolyzable silane compound represented by the above formula (2) examples include methyltrimethoxysilane, methyltriethoxysilane, methyltri i-propoxysilane, methyltrin-butoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, Ethyltri i-propoxysilane, ethyltri n-butoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, n-butyltrimethoxysilane, n-butyltriethoxysilane, n-hexyltrimethoxysilane, n-hexyl Triethoxysilane, decyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltri
- [B] polysiloxane is hydrolyzed having an aromatic ring from the viewpoint that the compatibility with [A] polymer and the ease of phase separation can be appropriately balanced.
- Silane compounds are preferable, and phenyltrimethoxysilane, phenyltriethoxysilane, 4-t-butoxyphenethyltriethoxysilane, 1- (t-butoxyphenyl) ethyltriethoxysilane, and t-butoxyphenyltriethoxysilane are more preferable.
- the polysiloxane may be a hydrolysis condensate of one of these hydrolyzable silane compounds, or may be a hydrolysis condensate of two or more compounds. .
- the water used for the hydrolytic condensation of the hydrolyzable silane compound represented by the above formula (2) is preferably water purified by a method such as reverse osmosis membrane treatment, ion exchange treatment or distillation. By using such purified water, side reactions can be suppressed and the reactivity of hydrolysis can be improved.
- the amount of water used is preferably from 0.1 to 3 mol, more preferably from 0.3 to 1 mol, based on 1 mol of the total amount of hydrolyzable groups of the hydrolyzable silane compound represented by the above formula (2).
- the amount is 2 mol, more preferably 0.5 to 1.5 mol.
- the self-organization composition for pattern formation mentioned later is The thing similar to what was illustrated as a solvent to contain can be used.
- ethylene glycol monoalkyl ether acetate diethylene glycol dialkyl ether, propylene glycol monoalkyl ether, propylene glycol monoalkyl ether acetate, propionic acid esters are preferred, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, propylene glycol monomethyl ether Propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monomethyl ether acetate, methyl 3-methoxypropionate, or diacetone alcohol is more preferable.
- the hydrolysis / condensation reaction of the hydrolyzable silane compound represented by the above formula (2) is preferably an acid catalyst (for example, hydrochloric acid, sulfuric acid, nitric acid, formic acid, oxalic acid, acetic acid, trifluoroacetic acid, trifluoromethanesulfonic acid).
- an acid catalyst for example, hydrochloric acid, sulfuric acid, nitric acid, formic acid, oxalic acid, acetic acid, trifluoroacetic acid, trifluoromethanesulfonic acid.
- Phosphoric acid, acidic ion exchange resins, various Lewis acids Phosphoric acid, acidic ion exchange resins, various Lewis acids
- basic catalysts eg, nitrogen-containing compounds such as ammonia, primary amines, secondary amines, tertiary amines, pyridine; basic ion exchange resins; water
- a catalyst such as hydroxide such as sodium oxide; carbonate such as potassium carbonate; carboxylate such as sodium acetate; various Lewis bases] or alkoxide (eg, zirconium alkoxide, titanium alkoxide, aluminum alkoxide).
- alkoxide eg, zirconium alkoxide, titanium alkoxide, aluminum alkoxide
- tri-i-propoxyaluminum can be used as the aluminum alkoxide.
- the amount of the catalyst used is preferably 0.2 mol or less, more preferably 0.00001 to 0.1 mol per mol of the hydrolyzable silane compound monomer from the viewpoint of
- the reaction temperature and reaction time in the hydrolytic condensation of the hydrolyzable silane compound represented by the above formula (2) are appropriately set.
- the reaction temperature is preferably 40 ° C to 200 ° C, more preferably 50 ° C to 150 ° C.
- the reaction time is preferably 30 minutes to 24 hours, more preferably 1 hour to 12 hours.
- the hydrolysis condensation reaction can be performed most efficiently.
- the reaction may be carried out in one step by adding the hydrolyzable silane compound, water and catalyst to the reaction system at one time, or the hydrolyzable silane compound, water and catalyst may be added in several steps.
- the hydrolysis condensation reaction may be carried out in multiple stages by adding it to the reaction system in batches.
- water and the produced alcohol can be removed from the reaction system by adding a dehydrating agent and then subjecting it to evaporation.
- the dehydrating agent used at this stage is generally consumed or adsorbed by excess water, so that the dehydrating ability is completely consumed or removed by evaporation.
- the molecular weight of the polysiloxane can be measured as a weight average molecular weight (Mw) in terms of polystyrene using GPC (gel permeation chromatography) using tetrahydrofuran as a mobile phase.
- Mw weight average molecular weight
- the Mw of the hydrolyzed condensate is usually preferably a value within the range of 500 to 10,000, more preferably a value within the range of 1,000 to 5,000.
- the value of Mw of the hydrolysis-condensation product is 10,000 or less, phase separation of the self-assembling composition for pattern formation is more likely to occur.
- the self-assembling composition for pattern formation may further contain other polymers in addition to the [A] polymer and the [B] polysiloxane.
- polymers examples include (meth) acrylic polymers, polyvinyl acetal polymers, polyurethane polymers, polyurea polymers, polyimide polymers, polyamide polymers, epoxy polymers, novolac-type phenol polymers, polyester polymers, and the like. Can be mentioned.
- the polymer may be a homopolymer synthesized from one type of monomer compound or a copolymer synthesized from a plurality of types of monomer compounds.
- the content ratio of the [A] polymer and [B] polysiloxane in the self-assembling composition for pattern formation is 20 parts by mass or more of [B] polysiloxane with respect to 100 parts by mass of the [A] polymer.
- the content is preferably 200 parts by mass or less, more preferably 50 parts by mass or more and 150 parts by mass or less, and further preferably 75 parts by mass or more and 125 parts by mass or less.
- the self-assembling composition for pattern formation usually contains a solvent.
- the solvent include alcohol solvents, ether solvents, ketone solvents, amide solvents, ester solvents, hydrocarbon solvents, and mixed solvents thereof.
- alcohol solvents include methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, sec-butanol, tert-butanol, n-pentanol, i-pentanol, 2-methylbutanol, sec-pentanol, tert-pentanol, 3-methoxybutanol, n-hexanol, 2-methylpentanol, sec-hexanol, 2-ethylbutanol, sec-heptanol, 3-heptanol, n-octanol, 2-ethylhexanol , Sec-octanol, n-nonyl alcohol, 2,6-dimethyl-4-heptanol, n-decanol, sec-undecyl alcohol, trimethylnonyl alcohol, sec-tetradecyl alcohol, sec-hept
- ether solvent examples include diethyl ether, dipropyl ether, dibutyl ether, diphenyl ether and the like.
- ketone solvent examples include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-i-butyl ketone, methyl-n-pentyl ketone, ethyl-n-butyl ketone, methyl-n- And ketone solvents such as hexyl ketone, di-i-butyl ketone, trimethylnonanone, cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, methylcyclohexanone, 2,4-pentanedione, acetonylacetone, acetophenone, etc. .
- amide solvents include N, N′-dimethylimidazolidinone, N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, Examples thereof include N-methylpropionamide and N-methylpyrrolidone.
- ester solvents include diethyl carbonate, propylene carbonate, methyl acetate, ethyl acetate, ⁇ -butyrolactone, ⁇ -valerolactone, n-propyl acetate, i-propyl acetate, n-butyl acetate, i-butyl acetate, sec sec -Butyl, n-pentyl acetate, sec-pentyl acetate, 3-methoxybutyl acetate, methyl pentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, benzyl acetate, cyclohexyl acetate, methyl cyclohexyl acetate, n-nonyl acetate, acetoacetic acid Methyl, ethyl acetoacetate, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether a
- hydrocarbon solvent examples include n-pentane, i-pentane, n-hexane, i-hexane, n-heptane, i-heptane, 2,2,4-trimethylpentane, n-octane, i-octane and cyclohexane.
- Aliphatic hydrocarbon solvents such as methylcyclohexane; Fragrances such as benzene, toluene, xylene, mesitylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, i-propylbenzene, diethylbenzene, i-butylbenzene, triethylbenzene, di-i-propylbenzene, n-amylnaphthalene Group hydrocarbon solvents and the like.
- Fragrances such as benzene, toluene, xylene, mesitylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, i-propylbenzene, diethylbenzene, i-butylbenzene, triethylbenzene, di-i-propyl
- propylene glycol monomethyl ether acetate PGMEA
- cyclohexanone and ⁇ -butyrolactone are preferred, and propylene glycol monomethyl ether acetate (PGMEA) is more preferred.
- PGMEA propylene glycol monomethyl ether acetate
- These solvents may be used alone or in combination of two or more.
- the pattern-forming self-assembled composition may further contain a surfactant.
- a surfactant When the self-assembling composition for pattern formation contains a surfactant, applicability to a substrate or the like can be improved.
- the self-assembling composition for pattern formation can be prepared, for example, by mixing [A] polymer, [B] polysiloxane, surfactant and the like in a predetermined ratio in the above solvent.
- the self-assembling composition for pattern formation can be prepared and used in a state dissolved or dispersed in a suitable solvent.
- the pattern forming method of the present invention comprises: (1) forming a self-assembled film having a phase separation structure on a substrate using the self-assembled composition for pattern formation of the present invention; and (2) removing a part of the phase of the self-assembled film. It is a pattern formation method including the process to do.
- the method further comprises (0-1) a step of forming a lower layer film on the substrate, and (0-2) a step of forming a pre-pattern on the lower layer film.
- Step it is preferable to form a self-assembled film in a region on the lower layer film delimited by the pre-pattern. If necessary, in the step (2), the pre-pattern may be removed in addition to a part of the phase of the self-assembled film.
- step (2) it is preferable to further include (3) a step of etching the substrate using the formed pattern as a mask after the step (2).
- step (3) a step of etching the substrate using the formed pattern as a mask after the step (2).
- This step is a step of forming a lower layer film on the substrate using the lower layer film forming composition.
- a substrate with a lower layer film in which the lower layer film 102 is formed on the substrate 101 can be obtained, and the self-assembled film is formed on the lower layer film 102.
- the phase separation structure (microdomain structure) of the self-assembled film is in addition to the interaction between the polymer such as [A] polymer and [B] polysiloxane contained in the self-assembled composition for pattern formation. Since it also changes due to the interaction with the lower layer film 102, the structure control is possible by having the lower layer film 102, and a desired pattern can be obtained. Further, when the self-assembled film is a thin film, the transfer process can be improved by having the lower layer film 102.
- the substrate 101 a conventionally known substrate such as a silicon wafer or a wafer coated with aluminum can be used.
- composition for forming the lower layer film for example, materials commercially available under trade names such as ARC66 (manufactured by Brewer Science), NFC HM8005 (manufactured by JSR), NFC CT08 (manufactured by JSR), and the like can be used.
- the formation method of the lower layer film 102 is not particularly limited.
- a coating film formed by applying a known method such as a spin coating method on the substrate 101 is cured by exposure and / or heating. can do.
- radiation used for this exposure include visible light, ultraviolet light, far ultraviolet light, X-rays, electron beams, ⁇ -rays, molecular beams, and ion beams.
- the temperature at which the coating film is heated is not particularly limited, but is preferably 90 ° C to 550 ° C, more preferably 90 ° C to 450 ° C, and further preferably 90 ° C to 300 ° C.
- the thickness of the lower layer film 102 is not particularly limited, but is preferably 50 nm to 20,000 nm, and more preferably 70 nm to 1,000 nm.
- the lower layer film 102 preferably includes an SOC (Spin on carbon) film.
- a prepattern 103 is formed on the lower layer film 102 using a composition for forming a prepattern.
- the pre-pattern 103 controls the phase separation of the self-assembling composition for pattern formation, and a desired fine pattern can be formed. That is, among the polymers contained in the self-assembling composition for pattern formation, a polymer having a high affinity with the side surface of the prepattern forms a phase along the prepattern, and a polymer having a low affinity is obtained from the prepattern. Form a phase at a remote location. Thereby, a desired pattern can be formed.
- phase separation structure formed by the self-assembling composition for pattern formation can be finely controlled by the material, length, thickness, shape and the like of the prepattern.
- the pre-pattern can be appropriately selected according to the pattern to be finally formed. For example, a line and space pattern, a hole pattern, a pillar pattern, or the like can be used.
- the pre-pattern 103 As a method for forming the pre-pattern 103, a method similar to a known resist pattern forming method can be used. Further, as the pre-pattern forming composition, a conventional resist film-forming composition can be used. As a specific method for forming the pre-pattern 103, for example, a chemically amplified resist composition such as ARX2928JN (manufactured by JSR) is used and applied onto the lower layer film 102 to form a resist film. Next, immersion exposure is performed by irradiating a desired region of the resist film with radiation through a mask having a specific pattern. Examples of the radiation include ultraviolet rays, far ultraviolet rays, X-rays, and charged particle beams.
- the radiation include ultraviolet rays, far ultraviolet rays, X-rays, and charged particle beams.
- PEB post-exposure baking
- the surface of the pre-pattern 103 may be subjected to a hydrophobic treatment or a hydrophilic treatment.
- a hydrogenation treatment by exposing to hydrogen plasma for a certain period of time can be cited.
- This step is a step of forming a self-assembled film having a phase separation structure on a substrate using the self-assembled composition for pattern formation.
- the self-assembled composition for pattern formation is directly applied on the substrate to form a coating film, thereby forming a self-assembled film having a phase separation structure.
- a coating film is formed by applying the self-assembling composition for pattern formation to a region on the lower layer film delimited by the pre-pattern, and a phase separation structure is formed.
- a self-assembled film is formed. From the viewpoint that the phase separation structure of the self-assembled film can be precisely controlled, a method using the lower layer film and the prepattern is preferable.
- the formation of the self-assembled film 105 follows the principle described in the report by Walheim et al. (Macromolecules, vol. 30, pp. 4995-5003, 1997). That is, by applying a solution containing two or more kinds of polymers incompatible with each other on a substrate and performing annealing or the like, polymers having the same properties accumulate to form an ordered pattern spontaneously. Self-organization can be promoted. As a result, a phase separation structure is formed on the substrate 101. This phase separation structure is preferably formed along the pre-pattern, and the interface formed by phase separation is more preferably substantially parallel to the side surface of the pre-pattern.
- phase of [B] polysiloxane is formed along the prepattern 103 (105b), and [B] polysiloxane is formed.
- the phase of the polymer incompatible with A is formed in the part farthest from the side of the pre-pattern, that is, the central part of the area delimited by the pre-pattern (105a), and the lamellar (plate-like) phase is formed An alternating lamellar phase separation structure is formed.
- a [B] polysiloxane phase is formed along the hole side surface of the prepattern, and [B] polysiloxane is incompatible with [B] polysiloxane at the center of the hole.
- a polymer phase is formed.
- the pre-pattern is a pillar pattern
- a [B] polysiloxane phase is formed along the side surface of the pre-pattern pillar, and a [A] polymer phase is formed at a portion away from each pillar. Is done.
- a desired phase separation structure can be formed by appropriately adjusting the distance between the pillars of the pre-pattern and the blending ratio of each polymer of the self-assembling composition for pattern formation.
- phase separation structure formed in this step is composed of a plurality of phases, and the interface formed from these phases is usually substantially vertical, but the interface itself is not necessarily clear.
- the desired fine pattern can be obtained by precisely controlling the obtained phase separation structure by the blending ratio of each polymer, the pre-pattern, the lower layer film, and the like.
- the method for forming the coating film 104 by applying the self-assembling composition for pattern formation onto a substrate is not particularly limited.
- the self-assembling composition for pattern formation to be used is applied by a spin coating method or the like. Methods and the like. Thereby, the self-assembling composition for pattern formation is applied between the prepatterns 103 on the substrate 101 or the lower layer film 102 to form a coating film.
- annealing method for example, a method of heating at a temperature of 80 ° C. to 400 ° C. by an oven, a hot plate or the like can be mentioned.
- the annealing time is usually 10 seconds to 30 minutes, preferably 30 seconds to 10 minutes.
- the film thickness of the self-assembled film 105 thus obtained is preferably 0.1 nm to 500 nm, and more preferably 0.5 nm to 100 nm.
- This step is a step of removing the phase 105a and / or the pre-pattern 103 made of [B] polysiloxane in the phase separation structure of the self-assembled film 105 as shown in FIGS.
- the phase 105a and / or the pre-pattern 103 made of the [A] polymer can be removed by etching using the difference in the etching rate of each phase separated by self-organization.
- FIG. 5 shows a state after the phase 105a and the prepattern 103 made of the [A] polymer in the phase separation structure are removed.
- RIE reactive ion etching
- chemical dry etching chemical wet etching
- Known methods such as physical etching such as sputter etching and ion beam etching. Of these, reactive ion etching (RIE) is preferable.
- step (2) patterning is performed by etching the lower layer film and the substrate using the pattern made of the phase 105b made of [B] polysiloxane which is a part of the block phase of the remaining phase separation film as a mask. It is a process. After the patterning on the substrate is completed, the phase used as a mask is removed from the substrate by dissolution treatment or the like, and a finally patterned substrate (pattern) can be obtained.
- the etching method the same method as in step (2) can be used, and the etching gas and the etching solution can be appropriately selected depending on the material of the lower layer film and the substrate.
- the substrate when the substrate is a silicon material, a mixed gas of chlorofluorocarbon gas and SF 4 or the like can be used.
- a mixed gas of BCl 3 and Cl 2 or the like can be used.
- the pattern obtained by the pattern forming method is preferably used for a semiconductor element and the like, and the semiconductor element is widely used for an LED, a solar cell, and the like.
- Mw and Mn of the polymer were measured by gel permeation chromatography (GPC) using Tosoh GPC columns (2 G2000HXL, 1 G3000HXL, 1 G4000HXL) under the following conditions.
- Eluent Tetrahydrofuran (Wako Pure Chemical Industries)
- Flow rate 1.0 mL / min
- Sample concentration 1.0% by mass
- Sample injection volume 100 ⁇ L
- Detector Differential refractometer Standard material: Monodisperse polystyrene
- the reaction solution was warmed to room temperature, concentrated, and replaced with propylene glycol methyl ether acetate (PGMEA). Thereafter, 1,000 g of a 2% oxalic acid aqueous solution was injected and stirred, and after standing, the lower aqueous layer was removed. This operation was repeated three times, and after removing the lithium salt, 1,000 g of ultrapure water was injected and stirred, and the lower aqueous layer was removed. This operation was repeated 3 times, and oxalic acid was removed. Then, the solution was concentrated and dropped into 500 g of n-hexane to precipitate a polymer.
- PMEA propylene glycol methyl ether acetate
- the polymer filtered under reduced pressure was washed twice with n-hexane and then dried under reduced pressure at 60 ° C. to obtain 10.5 g of a white polymer (A-1).
- Mw of the polymer (A-1) was 5,000, and Mw / Mn was 1.13.
- the dripping start was set as the polymerization reaction start time, and the polymerization reaction was carried out for 6 hours.
- the polymerization reaction solution was cooled with water and cooled to 30 ° C. or lower. This cooled polymerization reaction liquid was put into 1,500 g of methanol, and the precipitated white powder was separated by filtration. The filtered white powder was washed twice with 300 g of methanol and then separated and dried at 50 ° C. for 17 hours to obtain 71.3 g of a white polymer (A-9).
- Mw of the polymer (A-9) was 5,000, and Mw / Mn was 1.23.
- the structure of the radical polymerization initiator VA-086 is as shown in the following formula (i).
- the polymer (A-9) has a structure represented by the following formula (ii) at the end of the main chain.
- a maleic acid aqueous solution was prepared by dissolving 5 g of maleic anhydride in 100 g of water by heating. Next, 23.0 g of phenyltriethoxysilane (M-1), 34.0 g of 4-t-butoxyphenethyltriethoxysilane (M-2), and 500 g of propylene glycol monopropyl ether were placed in the flask. To this flask, the dropping funnel containing the maleic acid aqueous solution prepared in advance was set and heated at 60 ° C. in an oil bath, and then the maleic acid aqueous solution was slowly dropped and reacted at 60 ° C. for 4 hours. .
- the polymer (B-1) had a solid content concentration of 15% by mass, Mw of 2,000, and Mw / Mn of 1.13.
- the “solid content” means a residue obtained by drying a sample on a hot plate at 175 ° C. for 1 hour to remove volatile substances.
- Example 1 Polymer (A-1) and polymer (B-1) were mixed at a mass ratio of 4: 6 to prepare a PGMEA solution having a concentration of 1% by mass. This solution was filtered through a membrane filter having a pore diameter of 200 nm to prepare a self-assembling composition for pattern formation, and a pattern was formed by the following method.
- Examples 2 to 17 and Comparative Example 1 A self-assembling composition for pattern formation was prepared in the same manner as in Example 1 except that the type of polymer used was as shown in Table 4, and a pattern was formed by the following method.
- ⁇ Pattern formation method> A 12-inch silicon wafer was spin-coated with an underlayer film (ARC66, manufactured by Brewer Science) using CLEAN TRACK ACT12 (manufactured by Tokyo Electron), and then baked at 205 ° C. to form an underlayer film having a thickness of 77 nm. .
- ARX2928JN manufactured by JSR
- PB 120 ° C., 60 seconds
- NSR S610C ArF immersion exposure apparatus
- PEB was performed at 115 ° C. for 60 seconds, and then developed with a 2.38 mass% tetramethylammonium hydroxide aqueous solution at 23 ° C. for 30 seconds, washed with water, and dried to obtain a prepattern (60 nm hole / 120 nm Pitch).
- the prepattern was irradiated with ultraviolet light of 254 nm at 150 mJ / cm 2 and then baked at 170 ° C. for 5 minutes to obtain an evaluation substrate.
- each self-assembling composition for pattern formation was applied on the evaluation substrate so as to have a thickness of 15 nm, and baked at 120 ° C. for 1 minute to cause phase separation to form a microdomain structure. Then, it was immersed in cyclohexane for 1 minute, the polystyrene part was removed, and the hole pattern was formed.
- the hole diameter of the pattern can be made smaller than that of the comparative example, and the micro domain structure is sufficiently fine. was found to be obtained.
- the self-assembling composition for pattern formation that can form a pattern having a sufficiently fine microdomain structure, and a pattern forming method using the same. Therefore, the self-assembling composition for pattern formation and the pattern forming method of the present invention are suitably used for lithography processes in the manufacture of various electronic devices such as semiconductor devices and liquid crystal devices that require further miniaturization.
- Phase 105b consisting of polymer b.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Materials For Photolithography (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
The invention is a self-organizing composition for pattern formation comprising [A] a polymer with a heteroatom-containing group (α) on at least one end of the main chain, and [B] a polysiloxane. The heteroatom is preferably at least one kind selected from the group consisting of oxygen atoms, nitrogen atoms, sulfur atoms, phosphorus atoms, tin atoms and silicon atoms. The group (α) is preferably represented by formula (1). The polymer [A] is preferably a styrene polymer.
(1)
Description
本発明は、パターン形成用自己組織化組成物及びパターン形成方法に関する。
The present invention relates to a self-assembling composition for pattern formation and a pattern forming method.
半導体デバイス、液晶デバイス等の各種電子デバイス構造の微細化に伴って、リソグラフィー工程におけるパターンの微細化が要求されている。現在、例えばArFエキシマレーザーを用いて線幅90nm程度の微細なパターンを形成することができるが、さらに微細なパターン形成が要求されるようになってきている。
With the miniaturization of various electronic device structures such as semiconductor devices and liquid crystal devices, pattern miniaturization in the lithography process is required. At present, it is possible to form a fine pattern with a line width of about 90 nm using, for example, an ArF excimer laser, but a finer pattern formation has been required.
上記要求に対し、秩序パターンを自発的に形成するいわゆる自己組織化による相分離構造を利用したパターン形成方法がいくつか提案されている。例えば、一の性質を有する単量体化合物と、それと性質の異なる単量体化合物とが共重合してなるブロック共重合体を用いた自己組織化による超微細パターンの形成方法が知られている(特開2008-149447号公報、特表2002-519728号公報、特開2003-218383号公報参照)。この方法によると、上記ブロック共重合体を含む組成物をアニーリングすることにより、同じ性質を持つポリマー構造同士が集まろうとするために、自己整合的にパターンを形成することができる。また、互いに性質の異なる複数のポリマーを含む組成物を自己組織化させることにより微細パターンを形成する方法も知られている(米国特許出願公開2009/0214823号明細書、特開2010-58403号公報参照)。
In response to the above requirements, several pattern forming methods using so-called self-organized phase separation structures that spontaneously form ordered patterns have been proposed. For example, a method for forming an ultrafine pattern by self-assembly using a block copolymer obtained by copolymerizing a monomer compound having one property and a monomer compound having a different property is known. (See JP2008-149447, JP2002-519728, and JP2003-218383). According to this method, by annealing the composition containing the block copolymer, polymer structures having the same properties tend to gather together, so that a pattern can be formed in a self-aligning manner. Also known is a method of forming a fine pattern by self-organizing a composition containing a plurality of polymers having different properties (US Patent Application Publication No. 2009/0214823, Japanese Patent Application Laid-Open No. 2010-58403). reference).
しかし、上記従来の自己組織化によるパターン形成方法では、得られるパターンの微細化が十分であるとは言えない。
However, it cannot be said that the conventional pattern formation method by self-organization is sufficient to make the pattern fine.
本発明は、以上のような事情に基づいてなされたものであり、その目的は、十分に微細なパターンを形成することが可能なパターン形成用自己組織化組成物、及びこのパターン形成用自己組織化組成物を用いたパターン形成方法を提供することである。
The present invention has been made based on the circumstances as described above, and its object is to provide a self-assembling composition for pattern formation capable of forming a sufficiently fine pattern, and the self-organization for pattern formation. It is providing the pattern formation method using a chemical composition.
上記課題を解決するためになされた発明は、
[A]ヘテロ原子を含む基(α)を主鎖の少なくとも一方の末端に有する重合体(以下、「[A]重合体」ともいう)、及び
[B]ポリシロキサン
を含有するパターン形成用自己組織化組成物である。 The invention made to solve the above problems is
[A] a polymer having a heteroatom-containing group (α) at at least one end of the main chain (hereinafter also referred to as “[A] polymer”), and [B] a pattern-forming self containing polysiloxane It is an organized composition.
[A]ヘテロ原子を含む基(α)を主鎖の少なくとも一方の末端に有する重合体(以下、「[A]重合体」ともいう)、及び
[B]ポリシロキサン
を含有するパターン形成用自己組織化組成物である。 The invention made to solve the above problems is
[A] a polymer having a heteroatom-containing group (α) at at least one end of the main chain (hereinafter also referred to as “[A] polymer”), and [B] a pattern-forming self containing polysiloxane It is an organized composition.
当該パターン形成用自己組織化組成物は、[A]重合体及び[B]ポリシロキサンを含有し、[A]重合体が、ヘテロ原子を含む基(α)を主鎖の少なくとも一方の末端に有することで、相分離し易くなるため、十分に微細なパターンを形成することができる。また、ヘテロ原子を含む基(α)を有することで、パターン形状が安定し、パターンサイズのバラつきを低減させることが可能となる。なお、ここで「主鎖の少なくとも一方の末端」における「末端」とは、単量体を重合させて重合体を合成した際にできる重合体主鎖部分の最末端の炭素原子のことをいう。
The self-assembling composition for pattern formation contains [A] polymer and [B] polysiloxane, and [A] polymer has a group (α) containing a hetero atom at least at one end of the main chain. Since it becomes easy to carry out phase separation, a sufficiently fine pattern can be formed. Moreover, by having the group (α) containing a hetero atom, the pattern shape is stabilized, and variations in pattern size can be reduced. Here, the “terminal” in “at least one terminal of the main chain” refers to the carbon atom at the terminal end of the polymer main chain part formed when a polymer is synthesized by polymerizing monomers. .
上記ヘテロ原子は、酸素原子、窒素原子、硫黄原子、リン原子、スズ原子及びケイ素原子からなる群より選択される少なくとも1種であることが好ましい。[A]重合体の基(α)が、これらのうちのいずれかのヘテロ原子を含むことで、相分離がより起こり易くなる。
The hetero atom is preferably at least one selected from the group consisting of an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a tin atom and a silicon atom. [A] When the polymer group (α) contains any of these heteroatoms, phase separation is more likely to occur.
上記基(α)は下記式(1)で表されることが好ましい。
(式(1)中、R1は、単結合又は炭素数1~30の2価の有機基である。R2は、水素原子又は炭素数1~30の1価の有機基である。)
The group (α) is preferably represented by the following formula (1).
(In Formula (1), R 1 is a single bond or a divalent organic group having 1 to 30 carbon atoms. R 2 is a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms.)
当該パターン形成用自己組織化組成物は、[A]重合体が、主鎖の少なくとも一方の末端に上記式(1)で表される基(α)を有することで、さらに相分離し易くなるため、十分に微細かつ良好なパターンを形成することができる。
In the self-assembling composition for pattern formation, the [A] polymer has a group (α) represented by the above formula (1) at least at one end of the main chain, thereby further facilitating phase separation. Therefore, a sufficiently fine and good pattern can be formed.
[A]重合体は、スチレン系重合体であることが好ましい。[A]重合体がスチレン系重合体であると、さらに相分離し易くなるため、当該パターン形成用自己組織化組成物は、より微細かつ良好なパターンを形成することができる。
[A] The polymer is preferably a styrene polymer. [A] When the polymer is a styrenic polymer, phase separation is further facilitated, and thus the self-assembling composition for pattern formation can form a finer and better pattern.
[B]ポリシロキサンは、下記式(2)で表される化合物を含む加水分解性シラン化合物の加水分解縮合物であることが好ましい。
(式(2)中、R3は、炭素数1~8のアルキル基、又は芳香環を含む炭素数6~30の有機基である。但し、このアルキル基が有する水素原子の一部又は全部は置換されていてもよい。R4は、塩素原子又は-OR5で表される1価の基である。R5は、水素原子、炭素数1~6のアルキル基、炭素数1~6のアシル基又は炭素数6~15のアリール基である。但し、このアルキル基、アシル基及びアリール基が有する水素原子の一部又は全部は置換されていてもよい。aは、1~3の整数である。但し、aが2以上の場合、複数のR3は、同一でも異なっていてもよい。また、aが2以下の場合、複数のR4は、同一でも異なっていてもよい。)
[B] The polysiloxane is preferably a hydrolysis-condensation product of a hydrolyzable silane compound containing a compound represented by the following formula (2).
(In the formula (2), R 3 is an alkyl group having 1 to 8 carbon atoms or an organic group having 6 to 30 carbon atoms including an aromatic ring, provided that a part or all of the hydrogen atoms of the alkyl group are included. R 4 represents a chlorine atom or a monovalent group represented by —OR 5. R 5 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms. Or an aryl group having 6 to 15 carbon atoms, provided that a part or all of the hydrogen atoms of the alkyl group, acyl group and aryl group may be substituted. Provided that when a is 2 or more, the plurality of R 3 may be the same or different, and when a is 2 or less, the plurality of R 4 may be the same or different. )
当該パターン形成用自己組織化組成物は、[B]ポリシロキサンが上記特定構造であることにより、相分離がより起こり易くなるため、より微細なパターンを形成することができる。
The self-assembling composition for pattern formation can form a finer pattern because [B] polysiloxane has the above specific structure, so that phase separation is more likely to occur.
当該パターン形成用自己組織化組成物は、[A]重合体100質量部に対する[B]ポリシロキサンの含有量が、20質量部以上200質量部であることが好ましい。当該パターン形成用自己組織化組成物は、[A]重合体と[B]ポリシロキサンを上記特定の割合で含有することにより、微細かつ複雑な所望のパターンを形成することができる。
In the self-assembling composition for pattern formation, the content of [B] polysiloxane with respect to 100 parts by mass of [A] polymer is preferably 20 parts by mass or more and 200 parts by mass. The self-assembling composition for pattern formation can form a fine and complicated desired pattern by containing the [A] polymer and the [B] polysiloxane in the specific ratio.
本発明のパターン形成方法は、
(1)本発明のパターン形成用自己組織化組成物を用い、基板上に相分離構造を有する自己組織化膜を形成する工程、及び
(2)上記自己組織化膜の一部の相を除去する工程
を含む。 The pattern forming method of the present invention comprises:
(1) forming a self-assembled film having a phase separation structure on a substrate using the self-assembled composition for pattern formation of the present invention; and (2) removing a part of the phase of the self-assembled film. The process of carrying out is included.
(1)本発明のパターン形成用自己組織化組成物を用い、基板上に相分離構造を有する自己組織化膜を形成する工程、及び
(2)上記自己組織化膜の一部の相を除去する工程
を含む。 The pattern forming method of the present invention comprises:
(1) forming a self-assembled film having a phase separation structure on a substrate using the self-assembled composition for pattern formation of the present invention; and (2) removing a part of the phase of the self-assembled film. The process of carrying out is included.
本発明のパターン形成方法においては、当該パターン形成用自己組織化組成物を用いて自己組織化膜を形成するため、十分に微細なパターンを形成することができる。
In the pattern forming method of the present invention, since a self-assembled film is formed using the pattern-forming self-assembled composition, a sufficiently fine pattern can be formed.
本発明のパターン形成方法は、
上記(1)工程前に、
(0-1)基板上に下層膜を形成する工程、及び
(0-2)上記下層膜上にプレパターンを形成する工程
をさらに有し、
上記(1)工程において、自己組織化膜を上記プレパターンによって区切られた上記下層膜上の領域に形成する方法であることが好ましい。 The pattern forming method of the present invention comprises:
Before step (1) above,
(0-1) further comprising a step of forming a lower layer film on the substrate, and (0-2) a step of forming a pre-pattern on the lower layer film,
In the step (1), a method of forming a self-assembled film in a region on the lower layer film delimited by the pre-pattern is preferable.
上記(1)工程前に、
(0-1)基板上に下層膜を形成する工程、及び
(0-2)上記下層膜上にプレパターンを形成する工程
をさらに有し、
上記(1)工程において、自己組織化膜を上記プレパターンによって区切られた上記下層膜上の領域に形成する方法であることが好ましい。 The pattern forming method of the present invention comprises:
Before step (1) above,
(0-1) further comprising a step of forming a lower layer film on the substrate, and (0-2) a step of forming a pre-pattern on the lower layer film,
In the step (1), a method of forming a self-assembled film in a region on the lower layer film delimited by the pre-pattern is preferable.
本発明のパターン形成方法が下層膜及びプレパターンを形成する工程をさらに有することで、当該パターン形成用自己組織化組成物の相分離がより精密に制御され、得られるパターンをより微細なものとすることができる。
When the pattern forming method of the present invention further includes a step of forming an underlayer film and a pre-pattern, the phase separation of the self-assembling composition for pattern formation is more precisely controlled, and the resulting pattern is finer can do.
本発明のパターン形成方法により得られるパターンは、ラインアンドスペースパターン又はホールパターンであることが好ましい。当該パターン形成方法によると、さらに微細な所望のラインアンドスペースパターン又はホールパターンを形成することができる。
The pattern obtained by the pattern forming method of the present invention is preferably a line and space pattern or a hole pattern. According to the pattern forming method, a finer desired line and space pattern or hole pattern can be formed.
本発明は、十分に微細なパターンを形成することができるパターン形成用自己組織化組成物及びこれを用いたパターン形成方法を提供することができる。従って、本発明のパターン形成用自己組織化組成物及びパターン形成方法は、さらなる微細化が要求されている半導体デバイス、液晶デバイス等の各種電子デバイス製造におけるリソグラフィー工程に好適に用いられる。
The present invention can provide a self-assembling composition for forming a pattern capable of forming a sufficiently fine pattern and a pattern forming method using the same. Therefore, the self-assembling composition for pattern formation and the pattern forming method of the present invention are suitably used for lithography processes in the manufacture of various electronic devices such as semiconductor devices and liquid crystal devices that require further miniaturization.
以下、本発明のパターン形成用自己組織化組成物、パターン形成方法の実施の形態について詳説する。
Hereinafter, embodiments of the self-assembling composition for pattern formation and the pattern forming method of the present invention will be described in detail.
<パターン形成用自己組織化組成物>
自己組織化(Directed Self Assembly)とは、外的要因からの制御のみに起因せず、自発的に組織や構造を構築する現象を指す。本発明においては、パターン形成用自己組織化組成物を基板上に塗布することにより、自己組織化による相分離構造を有する膜(自己組織化膜)を形成し、この自己組織化膜における一部の相を除去することにより、パターンを形成することができる。 <Self-assembled composition for pattern formation>
Self-organized (Directed Self Assembly) refers to a phenomenon of spontaneously constructing an organization or structure, not only due to control from an external factor. In the present invention, a film having a phase separation structure by self-organization (self-assembled film) is formed by applying a self-assembled composition for pattern formation onto a substrate, and a part of this self-assembled film By removing this phase, a pattern can be formed.
自己組織化(Directed Self Assembly)とは、外的要因からの制御のみに起因せず、自発的に組織や構造を構築する現象を指す。本発明においては、パターン形成用自己組織化組成物を基板上に塗布することにより、自己組織化による相分離構造を有する膜(自己組織化膜)を形成し、この自己組織化膜における一部の相を除去することにより、パターンを形成することができる。 <Self-assembled composition for pattern formation>
Self-organized (Directed Self Assembly) refers to a phenomenon of spontaneously constructing an organization or structure, not only due to control from an external factor. In the present invention, a film having a phase separation structure by self-organization (self-assembled film) is formed by applying a self-assembled composition for pattern formation onto a substrate, and a part of this self-assembled film By removing this phase, a pattern can be formed.
本発明のパターン形成用自己組織化組成物は、[A]ヘテロ原子を含む基(α)を主鎖の少なくとも一方の末端に有する重合体、及び[B]ポリシロキサンを含有するパターン形成用自己組織化組成物である。当該パターン形成用自己組織化組成物は、少なくとも一方の主鎖の末端構造が上記特定構造である[A]重合体と[B]ポリシロキサンとを含有するため、従来の自己組織化組成物と比較して、より相分離が起こり易く、十分に微細なミクロドメイン構造を有するパターンを形成することができる。当該パターン形成用自己組織化組成物は、[A]重合体及び[B]ポリシロキサン以外に、本発明の効果を損なわない限り、他の重合体、溶媒、界面活性剤等の任意成分を含有していてもよい。
以下、各成分について詳述する。 The self-assembling composition for pattern formation of the present invention comprises: [A] a polymer having a hetero atom-containing group (α) at at least one end of the main chain, and [B] a self-pattern forming composition containing polysiloxane. It is an organized composition. The self-assembling composition for pattern formation contains a [A] polymer and [B] polysiloxane, each having a terminal structure of at least one main chain having the above-mentioned specific structure. In comparison, phase separation is more likely to occur, and a pattern having a sufficiently fine microdomain structure can be formed. The self-assembling composition for pattern formation contains, in addition to the [A] polymer and [B] polysiloxane, optional components such as other polymers, solvents, and surfactants, as long as the effects of the present invention are not impaired. You may do it.
Hereinafter, each component will be described in detail.
以下、各成分について詳述する。 The self-assembling composition for pattern formation of the present invention comprises: [A] a polymer having a hetero atom-containing group (α) at at least one end of the main chain, and [B] a self-pattern forming composition containing polysiloxane. It is an organized composition. The self-assembling composition for pattern formation contains a [A] polymer and [B] polysiloxane, each having a terminal structure of at least one main chain having the above-mentioned specific structure. In comparison, phase separation is more likely to occur, and a pattern having a sufficiently fine microdomain structure can be formed. The self-assembling composition for pattern formation contains, in addition to the [A] polymer and [B] polysiloxane, optional components such as other polymers, solvents, and surfactants, as long as the effects of the present invention are not impaired. You may do it.
Hereinafter, each component will be described in detail.
[[A]重合体]
[A]重合体は、ヘテロ原子を含む基(α)を主鎖の少なくとも一方の末端に有する重合体である(但し、[B]ポリシロキサンを除く)。[A]重合体としては、主鎖の少なくとも一方の末端に基(α)を有する重合体である限り特に限定されないが、スチレン系化合物を重合して得られるスチレン系重合体、(メタ)アクリレート化合物を重合して得られるアクリル系重合体、これらの共重合体が好ましいものとして挙げられる。特に好ましいものとしては、スチレン系重合体が挙げられる。なお、本明細書において「(メタ)アクリレート」という表記は、メタクリレートとアクリレートの両方を表す。 [[A] polymer]
[A] The polymer is a polymer having a group (α) containing a hetero atom at at least one end of the main chain (except for [B] polysiloxane). [A] The polymer is not particularly limited as long as it is a polymer having a group (α) at at least one end of the main chain, but a styrene polymer obtained by polymerizing a styrene compound, (meth) acrylate Acrylic polymers obtained by polymerizing compounds and copolymers thereof are preferred. Particularly preferred is a styrene polymer. In this specification, the notation “(meth) acrylate” represents both methacrylate and acrylate.
[A]重合体は、ヘテロ原子を含む基(α)を主鎖の少なくとも一方の末端に有する重合体である(但し、[B]ポリシロキサンを除く)。[A]重合体としては、主鎖の少なくとも一方の末端に基(α)を有する重合体である限り特に限定されないが、スチレン系化合物を重合して得られるスチレン系重合体、(メタ)アクリレート化合物を重合して得られるアクリル系重合体、これらの共重合体が好ましいものとして挙げられる。特に好ましいものとしては、スチレン系重合体が挙げられる。なお、本明細書において「(メタ)アクリレート」という表記は、メタクリレートとアクリレートの両方を表す。 [[A] polymer]
[A] The polymer is a polymer having a group (α) containing a hetero atom at at least one end of the main chain (except for [B] polysiloxane). [A] The polymer is not particularly limited as long as it is a polymer having a group (α) at at least one end of the main chain, but a styrene polymer obtained by polymerizing a styrene compound, (meth) acrylate Acrylic polymers obtained by polymerizing compounds and copolymers thereof are preferred. Particularly preferred is a styrene polymer. In this specification, the notation “(meth) acrylate” represents both methacrylate and acrylate.
[A]重合体は、例えば、その重合末端を適切な末端処理剤で処理して上記基(α)を導入することにより、又は上記基(α)を含む重合開始剤を用いて重合を行うことにより合成することができる。
[A]重合体は、その主鎖の少なくとも一方の末端に上記基(α)を有する構造であることにより、相分離がより起こり易くなるため、当該パターン形成用自己組織化組成物は、従来の組成物と比較して、さらに微細かつ良好なミクロドメイン構造を有するパターンを形成することができる。 [A] The polymer is polymerized, for example, by treating the polymerization terminal with an appropriate terminal treating agent and introducing the group (α) or using a polymerization initiator containing the group (α). Can be synthesized.
[A] Since the polymer has a structure having the group (α) at least at one end of the main chain, phase separation is more likely to occur. Therefore, the self-assembling composition for pattern formation has been conventionally used. Compared with the composition of, a pattern having a finer and better microdomain structure can be formed.
[A]重合体は、その主鎖の少なくとも一方の末端に上記基(α)を有する構造であることにより、相分離がより起こり易くなるため、当該パターン形成用自己組織化組成物は、従来の組成物と比較して、さらに微細かつ良好なミクロドメイン構造を有するパターンを形成することができる。 [A] The polymer is polymerized, for example, by treating the polymerization terminal with an appropriate terminal treating agent and introducing the group (α) or using a polymerization initiator containing the group (α). Can be synthesized.
[A] Since the polymer has a structure having the group (α) at least at one end of the main chain, phase separation is more likely to occur. Therefore, the self-assembling composition for pattern formation has been conventionally used. Compared with the composition of, a pattern having a finer and better microdomain structure can be formed.
上記ヘテロ原子を含む基(α)におけるヘテロ原子としては、特に限定されないが、酸素原子、窒素原子、硫黄原子、リン原子、スズ原子及びケイ素原子からなる群より選択される少なくとも1種であることが好ましく、酸素原子、窒素原子及び硫黄原子がより好ましく、酸素原子及び窒素原子がさらに好ましく、酸素原子が特に好ましい。
Although it does not specifically limit as a hetero atom in group ((alpha)) containing the said hetero atom, It is at least 1 sort (s) selected from the group which consists of an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a tin atom, and a silicon atom. Are preferred, oxygen atoms, nitrogen atoms and sulfur atoms are more preferred, oxygen atoms and nitrogen atoms are more preferred, and oxygen atoms are particularly preferred.
上記基(α)としては、上記式(1)で表される基が好ましい。
The group (α) is preferably a group represented by the above formula (1).
上記式(1)中、R1は、単結合又は炭素数1~30の2価の有機基である。R2は、水素原子又は炭素数1~30の1価の有機基である。
In the above formula (1), R 1 is a single bond or a divalent organic group having 1 to 30 carbon atoms. R 2 is a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms.
上記R1で表される炭素数1~30の2価の有機基としては、例えば炭素数1~30の脂肪族鎖状炭化水素基、炭素数3~30の脂環式炭化水素基、炭素数6~30の芳香族炭化水素基、これらの炭化水素基の炭素-炭素間に酸素原子、窒素原子等のヘテロ原子を有する基等が挙げられる。
Examples of the divalent organic group having 1 to 30 carbon atoms represented by R 1 include, for example, an aliphatic chain hydrocarbon group having 1 to 30 carbon atoms, an alicyclic hydrocarbon group having 3 to 30 carbon atoms, and carbon. Examples thereof include aromatic hydrocarbon groups of several 6 to 30 and groups having a hetero atom such as an oxygen atom or a nitrogen atom between carbon-carbons of these hydrocarbon groups.
上記炭素数1~30の脂肪族鎖状炭化水素基としては、例えばメチレン基、エタンジイル基、n-プロパンジイル基、i-プロパンジイル基、n-ブタンジイル基、i-ブタンジイル基、n-ペンタンジイル基、i-ペンタンジイル基、n-ヘキサンジイル基、i-ヘキサンジイル基等が挙げられる。これらのうち、当該パターン形成用自己組織化組成物が相分離をより起こし易くなるという観点から、メチレン基、エタンジイル基が好ましく、メチレン基がより好ましい。
Examples of the aliphatic chain hydrocarbon group having 1 to 30 carbon atoms include a methylene group, an ethanediyl group, an n-propanediyl group, an i-propanediyl group, an n-butanediyl group, an i-butanediyl group, and an n-pentanediyl group. I-pentanediyl group, n-hexanediyl group, i-hexanediyl group and the like. Among these, a methylene group and an ethanediyl group are preferable, and a methylene group is more preferable from the viewpoint that the pattern-forming self-assembled composition is more likely to cause phase separation.
上記炭素数3~30の脂環式炭化水素基としては、例えばシクロプロパンジイル基、シクロブタンジイル基、シクロペンタンジイル基、シクロヘキサンジイル基、シクロオクタンジイル基、ノルボルナンジイル基、アダマンダンジイル基等が挙げられる。
Examples of the alicyclic hydrocarbon group having 3 to 30 carbon atoms include a cyclopropanediyl group, a cyclobutanediyl group, a cyclopentanediyl group, a cyclohexanediyl group, a cyclooctanediyl group, a norbornanediyl group, and an adamantanediyl group. Can be mentioned.
上記炭素数6~30の芳香族炭化水素基としては、例えばフェニレン基、ナフタレニレン基、アントラセニレン基等が挙げられる。
Examples of the aromatic hydrocarbon group having 6 to 30 carbon atoms include a phenylene group, a naphthalenylene group, and an anthracenylene group.
また、これらの炭化水素基の炭素-炭素間に酸素原子、窒素原子等のヘテロ原子を有する基を含む基としては、例えば上記炭化水素基の炭素-炭素間に、-O-、-CO-、-COO-、-OCO-、-NO-、-NH-等の少なくともひとつのヘテロ原子を有する結合基を含む基等が挙げられる。
Examples of the group containing a group having a hetero atom such as an oxygen atom or a nitrogen atom between carbon-carbon of these hydrocarbon groups include, for example, —O—, —CO— between the carbon-carbon of the hydrocarbon group. , A group containing a linking group having at least one hetero atom such as —COO—, —OCO—, —NO—, —NH— and the like.
上記R1としては、単結合又は炭素数1~30の脂肪族鎖状炭化水素基が好ましく、メチレン基、エタンジイル基、プロパンジイル基がより好ましく、エタンジイル基、プロパンジイル基がさらに好ましい。
R 1 is preferably a single bond or an aliphatic chain hydrocarbon group having 1 to 30 carbon atoms, more preferably a methylene group, an ethanediyl group or a propanediyl group, and even more preferably an ethanediyl group or a propanediyl group.
上記R2で表される炭素数1~30の1価の有機基としては、例えば炭素数1~30の脂肪族鎖状炭化水素基、炭素数3~30の脂環式炭化水素基、炭素数6~30の芳香族炭化水素基、これらの炭化水素基の炭素-炭素間に酸素原子、窒素原子等のヘテロ原子を有する基等が挙げられる。
Examples of the monovalent organic group having 1 to 30 carbon atoms represented by R 2 include an aliphatic chain hydrocarbon group having 1 to 30 carbon atoms, an alicyclic hydrocarbon group having 3 to 30 carbon atoms, and carbon. Examples thereof include aromatic hydrocarbon groups of several 6 to 30 and groups having a hetero atom such as an oxygen atom or a nitrogen atom between carbon-carbons of these hydrocarbon groups.
上記炭素数1~30の脂肪族鎖状炭化水素基としては、例えばメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、n-ペンチル基、i-ペンチル基、n-ヘキシル基、i-ヘキシル基等が挙げられる。
Examples of the aliphatic chain hydrocarbon group having 1 to 30 carbon atoms include, for example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, n-pentyl group, i -Pentyl group, n-hexyl group, i-hexyl group and the like.
上記炭素数3~30の脂環式炭化水素基としては、例えばシクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基、シクロオクチル基、ノルボルニル基、アダマンチル基等が挙げられる。
Examples of the alicyclic hydrocarbon group having 3 to 30 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group, a norbornyl group, and an adamantyl group.
上記炭素数6~30の芳香族炭化水素基としては、例えばフェニル基、ナフタレニル基、アントラセニル基等が挙げられる。
Examples of the aromatic hydrocarbon group having 6 to 30 carbon atoms include a phenyl group, a naphthalenyl group, and an anthracenyl group.
また、これらの炭化水素基の炭素-炭素間に酸素原子、窒素原子等のヘテロ原子を有する基を含む基としては、上記炭化水素基の炭素-炭素間に、-O-、-CO-、-COO-、-OCO-、-NO-、-NH-等の少なくともひとつのヘテロ原子を有する結合基を含む基等が挙げられる。
Examples of the group containing a group having a hetero atom such as an oxygen atom or a nitrogen atom between carbon-carbon of these hydrocarbon groups include -O-, -CO-, And groups containing a linking group having at least one heteroatom such as —COO—, —OCO—, —NO—, —NH— and the like.
上記R2としては、水素原子、炭素数1~30の脂肪族鎖状炭化水素基、及び炭素数1~30の脂肪族鎖状炭化水素基の炭素-炭素間に-O-を有する基が好ましく、水素原子、炭素数1~3の脂肪族鎖状炭化水素基、及び炭素数1~10の脂肪族鎖状炭化水素基の炭素-炭素間に-O-を有する基がより好ましい。
Examples of R 2 include a hydrogen atom, an aliphatic chain hydrocarbon group having 1 to 30 carbon atoms, and a group having —O— between carbon and carbon of the aliphatic chain hydrocarbon group having 1 to 30 carbon atoms. A group having —O— between carbon and carbon of a hydrogen atom, an aliphatic chain hydrocarbon group having 1 to 3 carbon atoms, and an aliphatic chain hydrocarbon group having 1 to 10 carbon atoms is more preferable.
上記基(α)としては、例えば下記式で表される構造等が挙げられる。
Examples of the group (α) include a structure represented by the following formula.
上記式中、Rは、水素原子又は1価の有機基である。Qは、2価の有機基である。*は、[A]重合体において、重合体の主鎖末端の炭素原子に結合する部位を示す。
In the above formula, R is a hydrogen atom or a monovalent organic group. Q is a divalent organic group. * In the [A] polymer, the site | part couple | bonded with the carbon atom of the principal chain terminal of a polymer is shown.
これらのうち、上記式(1)で表される基である(1-1)~(1-7)で表される基が好ましく、(1-2)、(1-3)及び(1-4)で表される基がより好ましい。
Of these, the groups represented by (1-1) to (1-7) which are groups represented by the above formula (1) are preferable, and (1-2), (1-3) and (1- The group represented by 4) is more preferable.
[A]重合体としては、スチレン系化合物、(メタ)アクリレート化合物等の化合物を重合して得られる重合体等が挙げられる。上記スチレン系化合物としては、例えばスチレン、2-メチルスチレン、4-メチルスチレン、エチルスチレン、4-メトキシスチレン、4-フェニルスチレン、2,4-ジメチルスチレン、4-n-オクチルスチレン、4-n-デシルスチレン、4-n-ドデシルスチレン、4-t-ブトキシスチレン等が挙げられる。これらのうち、スチレン、2-メチルスチレン、4-メチルスチレン、4-メトキシスチレン及び4-t-ブトキシスチレンが好ましく、スチレンがより好ましい。上記(メタ)アクリレート化合物としては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、ブチル(メタ)アクリレート等のアルキル(メタ)アクリレート;フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、ナフチル(メタ)アクリレート、キシリル(メタ)アクリレート等のアリール(メタ)アクリレート、シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、シクロオクチル(メタ)アクリレート、アダマンチル(メタ)アクリレート、ノルボルニル(メタ)アクリレート等のアリサイクリック(メタ)アクリレート等が挙げられる。これらのうち、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート及びブチル(メタ)アクリレートが好ましく、フェニルメタクリレート、ベンジルメタクリレート及びブチルメタクリレートがより好ましい。
[A] Examples of the polymer include a polymer obtained by polymerizing a compound such as a styrene compound or a (meth) acrylate compound. Examples of the styrene compounds include styrene, 2-methylstyrene, 4-methylstyrene, ethylstyrene, 4-methoxystyrene, 4-phenylstyrene, 2,4-dimethylstyrene, 4-n-octylstyrene, 4-n. -Decylstyrene, 4-n-dodecylstyrene, 4-t-butoxystyrene and the like. Of these, styrene, 2-methylstyrene, 4-methylstyrene, 4-methoxystyrene and 4-t-butoxystyrene are preferable, and styrene is more preferable. Examples of the (meth) acrylate compound include alkyl (meth) acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, and butyl (meth) acrylate; phenyl (meth) acrylate, benzyl Aryl (meth) acrylates such as (meth) acrylate, naphthyl (meth) acrylate, xylyl (meth) acrylate, cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, cyclooctyl (meth) acrylate, adamantyl (meth) acrylate, norbornyl Alicyclic (meth) acrylates such as (meth) acrylates are listed. Of these, phenyl (meth) acrylate, benzyl (meth) acrylate and butyl (meth) acrylate are preferred, and phenyl methacrylate, benzyl methacrylate and butyl methacrylate are more preferred.
[A]重合体としては、上記化合物のうちの1種の化合物を重合した単重合体であってもよいし、2種以上の化合物を重合した共重合体であってもよい。このような共重合体としては、例えばスチレン-ブタジエン共重合体、スチレン-アクリロニトリル共重合体、スチレン-アクリロニトリル-ブタジエン共重合体等が挙げられる。[A]重合体としては、単重合体であることが好ましく、スチレンの単重合体であることがより好ましい。
[A] The polymer may be a homopolymer obtained by polymerizing one of the above compounds, or may be a copolymer obtained by polymerizing two or more compounds. Examples of such a copolymer include a styrene-butadiene copolymer, a styrene-acrylonitrile copolymer, and a styrene-acrylonitrile-butadiene copolymer. [A] The polymer is preferably a homopolymer, and more preferably a styrene homopolymer.
<[A]重合体の合成方法>
[A]重合体は、リビングアニオン重合、リビングラジカル重合等によって合成することが出来るが、これらのうち、任意の末端構造を容易に導入することができるリビングアニオン重合が好ましい。例えばスチレン、(メタ)アクリレート等のモノマーを任意の重合開始剤の存在下で重合し、その重合末端を、任意の末端処理剤で処理し、上記式(1)で表される基等の上記基(α)を導入することにより合成することができる。 <[A] Polymer Synthesis Method>
[A] The polymer can be synthesized by living anionic polymerization, living radical polymerization or the like, and among these, living anionic polymerization in which any terminal structure can be easily introduced is preferable. For example, monomers such as styrene and (meth) acrylate are polymerized in the presence of an arbitrary polymerization initiator, and the polymerization terminal is treated with an arbitrary terminal treatment agent, and the above group such as the group represented by the above formula (1) It can be synthesized by introducing the group (α).
[A]重合体は、リビングアニオン重合、リビングラジカル重合等によって合成することが出来るが、これらのうち、任意の末端構造を容易に導入することができるリビングアニオン重合が好ましい。例えばスチレン、(メタ)アクリレート等のモノマーを任意の重合開始剤の存在下で重合し、その重合末端を、任意の末端処理剤で処理し、上記式(1)で表される基等の上記基(α)を導入することにより合成することができる。 <[A] Polymer Synthesis Method>
[A] The polymer can be synthesized by living anionic polymerization, living radical polymerization or the like, and among these, living anionic polymerization in which any terminal structure can be easily introduced is preferable. For example, monomers such as styrene and (meth) acrylate are polymerized in the presence of an arbitrary polymerization initiator, and the polymerization terminal is treated with an arbitrary terminal treatment agent, and the above group such as the group represented by the above formula (1) It can be synthesized by introducing the group (α).
上記重合方法としては、例えば重合開始剤を含有する反応溶媒中に、スチレン等のモノマーを含有する溶液を滴下して重合反応させる方法等の方法で合成することができる。
As the above polymerization method, for example, it can be synthesized by a method such as a method of dropping a solution containing a monomer such as styrene into a reaction solvent containing a polymerization initiator to cause a polymerization reaction.
上記重合に使用される溶媒としては、例えば
n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカン等のアルカン類;
シクロヘキサン、シクロヘプタン、シクロオクタン、デカリン、ノルボルナン等のシクロアルカン類;
ベンゼン、トルエン、キシレン、エチルベンゼン、クメン等の芳香族炭化水素類;
クロロブタン類、ブロモヘキサン類、ジクロロエタン類、ヘキサメチレンジブロミド、クロロベンゼン等のハロゲン化炭化水素類;
酢酸エチル、酢酸n-ブチル、酢酸i-ブチル、プロピオン酸メチル等の飽和カルボン酸エステル類;
アセトン、2-ブタノン、4-メチル-2-ペンタノン、2-ヘプタノン等のケトン類;
テトラヒドロフラン、ジメトキシエタン類、ジエトキシエタン類等のエーテル類;
メタノール、エタノール、1-プロパノール、2-プロパノール、4-メチル-2-ペンタノール等のアルコール類等が挙げられる。これらの溶媒は、単独で使用してもよく2種以上を併用してもよい。 Examples of the solvent used for the polymerization include alkanes such as n-pentane, n-hexane, n-heptane, n-octane, n-nonane and n-decane;
Cycloalkanes such as cyclohexane, cycloheptane, cyclooctane, decalin, norbornane;
Aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, cumene;
Halogenated hydrocarbons such as chlorobutanes, bromohexanes, dichloroethanes, hexamethylene dibromide, chlorobenzene;
Saturated carboxylic acid esters such as ethyl acetate, n-butyl acetate, i-butyl acetate and methyl propionate;
Ketones such as acetone, 2-butanone, 4-methyl-2-pentanone, 2-heptanone;
Ethers such as tetrahydrofuran, dimethoxyethanes, diethoxyethanes;
Examples thereof include alcohols such as methanol, ethanol, 1-propanol, 2-propanol, and 4-methyl-2-pentanol. These solvents may be used alone or in combination of two or more.
n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカン等のアルカン類;
シクロヘキサン、シクロヘプタン、シクロオクタン、デカリン、ノルボルナン等のシクロアルカン類;
ベンゼン、トルエン、キシレン、エチルベンゼン、クメン等の芳香族炭化水素類;
クロロブタン類、ブロモヘキサン類、ジクロロエタン類、ヘキサメチレンジブロミド、クロロベンゼン等のハロゲン化炭化水素類;
酢酸エチル、酢酸n-ブチル、酢酸i-ブチル、プロピオン酸メチル等の飽和カルボン酸エステル類;
アセトン、2-ブタノン、4-メチル-2-ペンタノン、2-ヘプタノン等のケトン類;
テトラヒドロフラン、ジメトキシエタン類、ジエトキシエタン類等のエーテル類;
メタノール、エタノール、1-プロパノール、2-プロパノール、4-メチル-2-ペンタノール等のアルコール類等が挙げられる。これらの溶媒は、単独で使用してもよく2種以上を併用してもよい。 Examples of the solvent used for the polymerization include alkanes such as n-pentane, n-hexane, n-heptane, n-octane, n-nonane and n-decane;
Cycloalkanes such as cyclohexane, cycloheptane, cyclooctane, decalin, norbornane;
Aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, cumene;
Halogenated hydrocarbons such as chlorobutanes, bromohexanes, dichloroethanes, hexamethylene dibromide, chlorobenzene;
Saturated carboxylic acid esters such as ethyl acetate, n-butyl acetate, i-butyl acetate and methyl propionate;
Ketones such as acetone, 2-butanone, 4-methyl-2-pentanone, 2-heptanone;
Ethers such as tetrahydrofuran, dimethoxyethanes, diethoxyethanes;
Examples thereof include alcohols such as methanol, ethanol, 1-propanol, 2-propanol, and 4-methyl-2-pentanol. These solvents may be used alone or in combination of two or more.
上記重合における反応温度は、通常-150℃~50℃であり、-80℃~40℃が好ましい。反応時間としては、通常5分~24時間であり、20分~12時間が好ましい。
The reaction temperature in the above polymerization is usually −150 ° C. to 50 ° C., preferably −80 ° C. to 40 ° C. The reaction time is usually 5 minutes to 24 hours, preferably 20 minutes to 12 hours.
上記重合に使用される開始剤としては、例えばアルキルリチウム、アルキルマグネシウムハライド、ナフタレンナトリウム、アルキル化ランタノイド系化合物等が挙げられるが、モノマーとしてスチレン、メタクリル酸メチルを使用して重合する場合には、アルキルリチウム化合物を用いることが好ましい。
Examples of the initiator used for the polymerization include alkyllithium, alkylmagnesium halide, sodium naphthalene, alkylated lanthanoid compounds, and the like. When polymerizing using styrene or methyl methacrylate as a monomer, It is preferable to use an alkyl lithium compound.
上記末端処理の方法としては、例えば、[A]重合体が主鎖の末端に基(α)を有するポリスチレンの場合、下記スキームに示すような方法等が挙げられる。即ち、得られたポリスチレンに、1,2-ブチレンオキシド等の末端処理剤を添加して末端を変性し、酸による脱メタル処理等を行うことで、上記式(1)で表される基(α)を末端に有する[A]重合体が得られる。
Examples of the terminal treatment method include a method as shown in the following scheme when the [A] polymer is a polystyrene having a group (α) at the end of the main chain. That is, by adding a terminal treating agent such as 1,2-butylene oxide to the obtained polystyrene to modify the terminal and performing a metal removal treatment with an acid or the like, a group represented by the above formula (1) ( [A] polymer having α) at the terminal is obtained.
上記スキーム中、mは、10~5,000の整数である。
In the above scheme, m is an integer of 10 to 5,000.
上記末端処理剤としては、例えば1,2-ブチレンオキシド、ブチルグリシジルエーテル、プロピレンオキシド、エチレンオキシド、2-エチルヘキシルグリシジルエーテル、エポキシアミン等のエポキシ化合物等;
イソシアネート化合物、チオイソシアネート化合物、イミダゾリジノン、イミダゾール、アミノケトン、ピロリドン、ジエチルアミノベンゾフェノン、ニトリル化合物、アジリジン、ホルムアミド、エポキシアミン、ベンジルアミン、オキシム化合物、アジン、ピドラゾン、イミン、アゾカルボン酸エステル、アミノスチレン、ビニルピリジン、アミノアクリレート、アミノジフェニルエチレン、イミド化合物等の含窒素化合物;
アルコキシシラン、アミノシラン、ケトイミノシラン、イソシアネートシラン、シロキサン、グリシジルシラン、メルカプトシラン、ビニルシラン、エポキシシラン、ピリジルシラン、ピペラジルシラン、ピロリドンシラン、シアノシラン、イソシアン酸シラン等のシラン化合物;
ハロゲン化スズ、ハロゲン化ケイ素、二酸化炭素等が挙げられる。これらのうち、エポキシ化合物が好ましく、1,2-ブチレンオキシド、ブチルグリシジルエーテル、プロピレンオキシド及び2-エチルヘキシルグリシジルエーテルがより好ましい。 Examples of the end treatment agent include epoxy compounds such as 1,2-butylene oxide, butyl glycidyl ether, propylene oxide, ethylene oxide, 2-ethylhexyl glycidyl ether, and epoxyamine;
Isocyanate compound, thioisocyanate compound, imidazolidinone, imidazole, aminoketone, pyrrolidone, diethylaminobenzophenone, nitrile compound, aziridine, formamide, epoxyamine, benzylamine, oxime compound, azine, pyrazone, imine, azocarboxylic acid ester, aminostyrene, vinyl Nitrogen-containing compounds such as pyridine, aminoacrylate, aminodiphenylethylene, and imide compounds;
Silane compounds such as alkoxysilane, aminosilane, ketinominosilane, isocyanate silane, siloxane, glycidylsilane, mercaptosilane, vinyl silane, epoxy silane, pyridylsilane, piperazylsilane, pyrrolidone silane, cyanosilane, and isocyanate silane;
Examples thereof include tin halide, silicon halide, carbon dioxide and the like. Of these, epoxy compounds are preferable, and 1,2-butylene oxide, butyl glycidyl ether, propylene oxide, and 2-ethylhexyl glycidyl ether are more preferable.
イソシアネート化合物、チオイソシアネート化合物、イミダゾリジノン、イミダゾール、アミノケトン、ピロリドン、ジエチルアミノベンゾフェノン、ニトリル化合物、アジリジン、ホルムアミド、エポキシアミン、ベンジルアミン、オキシム化合物、アジン、ピドラゾン、イミン、アゾカルボン酸エステル、アミノスチレン、ビニルピリジン、アミノアクリレート、アミノジフェニルエチレン、イミド化合物等の含窒素化合物;
アルコキシシラン、アミノシラン、ケトイミノシラン、イソシアネートシラン、シロキサン、グリシジルシラン、メルカプトシラン、ビニルシラン、エポキシシラン、ピリジルシラン、ピペラジルシラン、ピロリドンシラン、シアノシラン、イソシアン酸シラン等のシラン化合物;
ハロゲン化スズ、ハロゲン化ケイ素、二酸化炭素等が挙げられる。これらのうち、エポキシ化合物が好ましく、1,2-ブチレンオキシド、ブチルグリシジルエーテル、プロピレンオキシド及び2-エチルヘキシルグリシジルエーテルがより好ましい。 Examples of the end treatment agent include epoxy compounds such as 1,2-butylene oxide, butyl glycidyl ether, propylene oxide, ethylene oxide, 2-ethylhexyl glycidyl ether, and epoxyamine;
Isocyanate compound, thioisocyanate compound, imidazolidinone, imidazole, aminoketone, pyrrolidone, diethylaminobenzophenone, nitrile compound, aziridine, formamide, epoxyamine, benzylamine, oxime compound, azine, pyrazone, imine, azocarboxylic acid ester, aminostyrene, vinyl Nitrogen-containing compounds such as pyridine, aminoacrylate, aminodiphenylethylene, and imide compounds;
Silane compounds such as alkoxysilane, aminosilane, ketinominosilane, isocyanate silane, siloxane, glycidylsilane, mercaptosilane, vinyl silane, epoxy silane, pyridylsilane, piperazylsilane, pyrrolidone silane, cyanosilane, and isocyanate silane;
Examples thereof include tin halide, silicon halide, carbon dioxide and the like. Of these, epoxy compounds are preferable, and 1,2-butylene oxide, butyl glycidyl ether, propylene oxide, and 2-ethylhexyl glycidyl ether are more preferable.
また、[A]重合体は、上記基(α)を含む開始剤を用いて重合を行うことにより合成することもできる。このような重合としては、例えば、基(α)を含むラジカル重合開始剤を用いるラジカル重合等が挙げられる。
[A] The polymer can also be synthesized by polymerization using an initiator containing the group (α). Examples of such polymerization include radical polymerization using a radical polymerization initiator containing a group (α).
上記基(α)を含むラジカル重合開始剤として、例えばアゾビスイソブチロニトリル(AIBN)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-シクロプロピルプロピオニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、ジメチル2,2’-アゾビス(2-メチルプロピオネート)、ジメチル2,2’-アゾビスイソブチレート、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、2,2’-アゾビス[2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド]、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)、2,2’-アゾビス(N-シクロヘキシル-2-メチルプロピオンアミド)、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]等のアゾ系ラジカル重合開始剤;ビス(3-カルボキシプロピオニル)ペルオキシド、ビス(4-tert-ブチルシクロヘキシル)パージカーボネート、ジドデカノイルペルオキシド、ピバロイルtert-ブチルペルオキシド等の過酸化物系ラジカル重合開始剤などが挙げられる。これらの中で、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]が好ましい。なお、ラジカル開始剤は、単独で又は2種以上を組み合わせて用いてもよい。
Examples of radical polymerization initiators containing the above group (α) include azobisisobutyronitrile (AIBN), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), and 2,2′-azobis. (2-cyclopropylpropionitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), dimethyl 2,2'-azobis (2-methylpropionate), dimethyl 2,2'-azobis Isobutyrate, 2,2′-azobis [2-methyl-N- (2-hydroxyethyl) propionamide], 2,2′-azobis [2- (2-imidazolin-2-yl) propane], 2, 2′-azobis [2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide], 2,2′-azobis (N-butyl-2- Tyrpropionamide), 2,2′-azobis (N-cyclohexyl-2-methylpropionamide), 2,2′-azobis [N- (2-carboxyethyl) -2-methylpropionamidine] and other azo radicals Polymerization initiators: peroxide radical polymerization initiators such as bis (3-carboxypropionyl) peroxide, bis (4-tert-butylcyclohexyl) purge carbonate, didodecanoyl peroxide, and pivaloyl tert-butyl peroxide. Among these, 2,2′-azobis [2-methyl-N- (2-hydroxyethyl) propionamide] and 2,2′-azobis [2- (2-imidazolin-2-yl) propane] are preferable. . In addition, you may use a radical initiator individually or in combination of 2 or more types.
上記ラジカル重合に用いられる重合溶媒としては、例えば、上記リビングアニオン重合等で用いられる重合溶媒として例示したもの等が挙げられる。
Examples of the polymerization solvent used in the radical polymerization include those exemplified as the polymerization solvent used in the living anion polymerization and the like.
上記ラジカル重合における反応温度は開始剤種によって適宜決定すればよい。通常30℃~150℃であり、40℃~150℃が好ましく、50℃~140℃がより好ましい。滴下時間は、反応温度、開始剤の種類、反応させる単量体等の条件によって異なるが、通常30分~8時間であり、45分~6時間が好ましく、1時間~5時間がより好ましい。また、滴下時間を含む全反応時間も、滴下時間と同様に条件により異なるが、通常30分~12時間であり、45分~12時間が好ましく、1~10時間がより好ましい。
The reaction temperature in the radical polymerization may be appropriately determined depending on the initiator type. Usually, it is 30 ° C to 150 ° C, preferably 40 ° C to 150 ° C, and more preferably 50 ° C to 140 ° C. The dropping time varies depending on the reaction temperature, the type of initiator, the monomer to be reacted, etc., but is usually 30 minutes to 8 hours, preferably 45 minutes to 6 hours, more preferably 1 hour to 5 hours. Further, the total reaction time including the dropping time varies depending on the conditions as in the dropping time, but is usually 30 minutes to 12 hours, preferably 45 minutes to 12 hours, and more preferably 1 to 10 hours.
上記重合により得られた主鎖の末端に基(α)を有する[A]重合体は、再沈殿法により回収することが好ましい。すなわち、末端処理反応終了後、反応液を再沈溶媒に投入することにより、目的の共重合体を粉体として回収する。再沈溶媒としては、アルコール類やアルカン類等を単独で又は2種以上を混合して使用することができる。再沈殿法の他に、分液操作やカラム操作、限外ろ過操作等により、単量体、オリゴマー等の低分子成分を除去して、重合体を回収することもできる。
The [A] polymer having a group (α) at the end of the main chain obtained by the above polymerization is preferably recovered by a reprecipitation method. That is, after completion of the terminal treatment reaction, the target copolymer is recovered as a powder by introducing the reaction solution into a reprecipitation solvent. As the reprecipitation solvent, alcohols or alkanes can be used alone or in admixture of two or more. In addition to the reprecipitation method, the polymer can be recovered by removing low-molecular components such as monomers and oligomers by a liquid separation operation, a column operation, an ultrafiltration operation, or the like.
[A]重合体のゲルパーミエーションクロマトグラフィー(GPC)による重量平均分子量(Mw)としては、1,000~200,000が好ましく、3,000~120,000がより好ましく、3,500~100,000がさらに好ましい。[A]ポリシロキサンのMwを上記特定範囲とすることで、当該パターン形成用自己組織化組成物は、より微細なミクロドメイン構造を有するパターンを形成することができる。
[A] The weight average molecular weight (Mw) of the polymer by gel permeation chromatography (GPC) is preferably 1,000 to 200,000, more preferably 3,000 to 120,000, and more preferably 3,500 to 100. Is more preferred. [A] By setting the Mw of the polysiloxane within the above specific range, the self-assembling composition for pattern formation can form a pattern having a finer microdomain structure.
[A]重合体のMwと数平均分子量(Mn)との比(Mw/Mn)としては、通常1~5であり、1~3が好ましく、1~2がより好ましく、1~1.5がさらに好ましく、1~1.2が特に好ましい。Mw/Mnをこのような特定範囲とすることで、当該パターン形成用自己組織化組成物は、より微細で良好なミクロドメイン構造を有するパターンを形成することができる。
[A] The ratio (Mw / Mn) of Mw and number average molecular weight (Mn) of the polymer is usually 1 to 5, preferably 1 to 3, more preferably 1 to 2, and more preferably 1 to 1.5. Is more preferable, and 1 to 1.2 is particularly preferable. By making Mw / Mn into such a specific range, the self-assembling composition for pattern formation can form a pattern having a finer and better microdomain structure.
なお、Mw及びMnは、GPCカラム(G2000HXL 2本、G3000HXL 1本、G4000HXL 1本、以上東ソー製)を用い、流量1.0mL/分、溶出溶媒テトラヒドロフラン、試料濃度1.0質量%、試料注入量100μL、カラム温度40℃の分析条件で、検出器として示差屈折計を使用し、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(GPC)により測定したものである。
Mw and Mn are GPC columns (2 G2000HXL, 1 G3000HXL, 1 G4000HXL, or more from Tosoh), flow rate 1.0 mL / min, elution solvent tetrahydrofuran, sample concentration 1.0 mass%, sample injection It was measured by gel permeation chromatography (GPC) using a monodisperse polystyrene as a standard, using a differential refractometer as a detector under analysis conditions of an amount of 100 μL and a column temperature of 40 ° C.
<[B]ポリシロキサン>
当該パターン形成用自己組織化組成物が含有する[B]ポリシロキサンとしては、加水分解性シラン化合物の加水分解縮合物であれば特に限定されないが、上記式(2)で表される化合物を含む加水分解性シラン化合物の加水分解縮合物であることが好ましい。 <[B] Polysiloxane>
[B] The polysiloxane contained in the self-assembling composition for pattern formation is not particularly limited as long as it is a hydrolyzed condensate of a hydrolyzable silane compound, but includes a compound represented by the above formula (2). It is preferably a hydrolysis condensate of a hydrolyzable silane compound.
当該パターン形成用自己組織化組成物が含有する[B]ポリシロキサンとしては、加水分解性シラン化合物の加水分解縮合物であれば特に限定されないが、上記式(2)で表される化合物を含む加水分解性シラン化合物の加水分解縮合物であることが好ましい。 <[B] Polysiloxane>
[B] The polysiloxane contained in the self-assembling composition for pattern formation is not particularly limited as long as it is a hydrolyzed condensate of a hydrolyzable silane compound, but includes a compound represented by the above formula (2). It is preferably a hydrolysis condensate of a hydrolyzable silane compound.
上記式(2)中、R3は、炭素数1~8のアルキル基、又は芳香環を含む炭素数6~30の有機基である。但し、このアルキル基が有する水素原子の一部又は全部は置換されていてもよい。R4は、塩素原子又は-OR5で表される1価の基である。R5は、水素原子、炭素数1~6のアルキル基、炭素数1~6のアシル基又は炭素数6~15のアリール基である。但し、このアルキル基、アシル基及びアリール基が有する水素原子の一部又は全部は置換されていてもよい。aは、1~3の整数である。但し、aが2以上の場合、複数のR3は、同一でも異なっていてもよい。また、aが2以下の場合、複数のR4は、同一でも異なっていてもよい。
In the above formula (2), R 3 is an alkyl group having 1 to 8 carbon atoms or an organic group having 6 to 30 carbon atoms including an aromatic ring. However, one part or all part of the hydrogen atom which this alkyl group has may be substituted. R 4 is a monovalent group represented by a chlorine atom or —OR 5 . R 5 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an acyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 15 carbon atoms. However, some or all of the hydrogen atoms of the alkyl group, acyl group and aryl group may be substituted. a is an integer of 1 to 3. However, when a is 2 or more, the plurality of R 3 may be the same or different. When a is 2 or less, the plurality of R 4 may be the same or different.
上記R3で表される炭素数1~8のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、t-ブチル基、n-ヘキシル基等が挙げられる。
Examples of the alkyl group having 1 to 8 carbon atoms represented by R 3 include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, a t-butyl group, and an n-hexyl group. Is mentioned.
上記R3で表される芳香環を含む炭素数6~30の有機基としては、例えば下記式(2-a)で表される基が好ましいものとして挙げられる。
Preferred examples of the organic group having 6 to 30 carbon atoms including the aromatic ring represented by R 3 include a group represented by the following formula (2-a).
上記式(2-a)中、R6は、単結合又は炭素数1~10の鎖状炭化水素基である。R7は、フッ素原子、水酸基、炭素数1~6のアルキル基又は炭素数1~6のアルコキシ基である。bは、0又は1である。cは、0~5の整数である。但し、cが2以上の場合、複数のR7は同一でも異なっていてもよい。*は、Siと結合する部位を示す。
In the above formula (2-a), R 6 is a single bond or a chain hydrocarbon group having 1 to 10 carbon atoms. R 7 is a fluorine atom, a hydroxyl group, an alkyl group having 1 to 6 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms. b is 0 or 1. c is an integer of 0 to 5. However, when c is 2 or more, the plurality of R 7 may be the same or different. * Shows the site | part couple | bonded with Si.
上記R6で表される炭素数1~10の鎖状炭化水素基としては、例えばメチレン基、エタンジイル基、プロパンジイル基、ブタンジイル基、ペンタンジイル基等が挙げられる。
これらのうち、メチレン基、エタンジイル基及びプロパンジイル基が好ましく、メチレン基及びエタンジイル基がより好ましく、エタンジイル基がさらに好ましい。 Examples of the chain hydrocarbon group having 1 to 10 carbon atoms represented by R 6 include a methylene group, an ethanediyl group, a propanediyl group, a butanediyl group, and a pentanediyl group.
Among these, a methylene group, an ethanediyl group and a propanediyl group are preferable, a methylene group and an ethanediyl group are more preferable, and an ethanediyl group is more preferable.
これらのうち、メチレン基、エタンジイル基及びプロパンジイル基が好ましく、メチレン基及びエタンジイル基がより好ましく、エタンジイル基がさらに好ましい。 Examples of the chain hydrocarbon group having 1 to 10 carbon atoms represented by R 6 include a methylene group, an ethanediyl group, a propanediyl group, a butanediyl group, and a pentanediyl group.
Among these, a methylene group, an ethanediyl group and a propanediyl group are preferable, a methylene group and an ethanediyl group are more preferable, and an ethanediyl group is more preferable.
上記R6としては、単結合、メチレン基及びエタンジイル基が好ましく、単結合及びエタンジイル基がより好ましい。
R 6 is preferably a single bond, a methylene group or an ethanediyl group, more preferably a single bond or an ethanediyl group.
上記R7で表される炭素数1~6のアルキル基としては、例えばメチル基、エチル基、プロピル基、ブチル基、ペンチル基等が挙げられる。
Examples of the alkyl group having 1 to 6 carbon atoms represented by R 7 include a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group.
上記R7で表される炭素数1~6のアルコキシ基としては、例えばメトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペントキシ基等が挙げられる。これらのうち、ブトキシ基が好ましい。
Examples of the alkoxy group having 1 to 6 carbon atoms represented by R 7 include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and a pentoxy group. Of these, a butoxy group is preferred.
上記R7としては、炭素数1~6のアルコキシ基が好ましく、ブトキシ基がより好ましい。
R 7 is preferably an alkoxy group having 1 to 6 carbon atoms, and more preferably a butoxy group.
上記bとしては、0が好ましく、上記cとしては、0~2が好ましく、0及び1がより好ましい。
B is preferably 0, and c is preferably 0 to 2, more preferably 0 and 1.
上記R3で表されるアルキル基が有してもよい置換基としては、例えばフッ素原子、水酸基、アシル基等が挙げられる。
Examples of the substituent that the alkyl group represented by R 3 may have include a fluorine atom, a hydroxyl group, and an acyl group.
上記R3としては、当該パターン形成用自己組織化組成物の相分離し易さの観点から、芳香環を含む炭素数6~30の有機基が好ましく、上記式(2-a)で表される基がより好ましい。
R 3 is preferably an organic group having 6 to 30 carbon atoms including an aromatic ring from the viewpoint of easy phase separation of the self-assembling composition for pattern formation, and is represented by the above formula (2-a). Are more preferred.
上記R5で表される炭素数1~6のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、t-ブチル基等が挙げられる
Examples of the alkyl group having 1 to 6 carbon atoms represented by R 5 include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, and a t-butyl group.
上記R5で表される炭素数1~6のアシル基としては、例えばアセチル基、プロピオニル基、ブチリル基等が挙げられる。
Examples of the acyl group having 1 to 6 carbon atoms represented by R 5 include an acetyl group, a propionyl group, and a butyryl group.
上記R5で表される炭素数6~15のアリール基としては、例えばフェニル基、ナフタレニル基等が挙げられる。
Examples of the aryl group having 6 to 15 carbon atoms represented by R 5 include a phenyl group and a naphthalenyl group.
上記R5で表されるアルキル基、アシル基及びアリール基が有してもよい置換基としては、例えば炭素数1~10の鎖状炭化水素基、フッ素原子、水酸基等が挙げられる。
Examples of the substituent that the alkyl group, acyl group, and aryl group represented by R 5 may have include a chain hydrocarbon group having 1 to 10 carbon atoms, a fluorine atom, and a hydroxyl group.
上記R4としては、-OR5で表される1価の基であることが好ましく、R5が炭素数1~6のアルキル基であるアルコキシ基であることがより好ましく、エトキシ基がさらに好ましい。
R 4 is preferably a monovalent group represented by —OR 5 , more preferably R 5 is an alkoxy group having 1 to 6 carbon atoms, and an ethoxy group is more preferable. .
上記式(2)のaは1から3の整数である。aが1の場合は3官能性シラン、aが2の場合は2官能性シラン、aが3の場合は1官能性シランである。aとしては、これらのうち、1及び2が好ましく、1がより好ましい。
A in the above formula (2) is an integer of 1 to 3. When a is 1, it is a trifunctional silane, when a is 2, it is a bifunctional silane, and when a is 3, it is a monofunctional silane. Among these, 1 and 2 are preferable as a, and 1 is more preferable.
上記式(2)で表される加水分解性シラン化合物としては、例えば
メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリi-プロポキシシラン、メチルトリn-ブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリi-プロポキシシラン、エチルトリn-ブトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、n-ブチルトリメトキシシラン、n-ブチルトリエトキシシラン、n-ヘキシルトリメトキシシラン、n-ヘキシルトリエトキシシラン、デシルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、4-t-ブトキシフェネチルトリエトキシシラン、1-(t-ブトキシフェニル)エチルトリエトキシシラン、t-ブトキシフェニルトリエトキシシラン、p-ヒドロキシフェニルトリメトキシシラン、1-(p-ヒドロキシフェニル)エチルトリメトキシシラン、2-(p-ヒドロキシフェニル)エチルトリメトキシシラン、4-ヒドロキシ-5-(p-ヒドロキシフェニルカルボニルオキシ)ペンチルトリメトキシシラン、トリフルオロメチルトリメトキシシラン、トリフルオロメチルトリエトキシシラン、3,3,3-トリフルオロプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メルカプトプロピルトリメトキシシランなどの3官能性シラン;
ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジアセトキシシラン、ジn-ブチルジメトキシシラン、ジフェニルジメトキシシランなどの2官能性シラン; トリメチルメトキシシラン、トリn-ブチルエトキシシランなどの1官能性シランが挙げられる。 Examples of the hydrolyzable silane compound represented by the above formula (2) include methyltrimethoxysilane, methyltriethoxysilane, methyltri i-propoxysilane, methyltrin-butoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, Ethyltri i-propoxysilane, ethyltri n-butoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, n-butyltrimethoxysilane, n-butyltriethoxysilane, n-hexyltrimethoxysilane, n-hexyl Triethoxysilane, decyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypro Pyrtrimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, 4-t-butoxyphenethyltriethoxysilane, 1- (t-butoxyphenyl) ethyltriethoxysilane, t-butoxyphenyltriethoxysilane, p-hydroxyphenyl Trimethoxysilane, 1- (p-hydroxyphenyl) ethyltrimethoxysilane, 2- (p-hydroxyphenyl) ethyltrimethoxysilane, 4-hydroxy-5- (p-hydroxyphenylcarbonyloxy) pentyltrimethoxysilane, tri Fluoromethyltrimethoxysilane, trifluoromethyltriethoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyl triethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-functional silanes such as 3-mercaptopropyltrimethoxysilane;
Bifunctional silanes such as dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldiacetoxysilane, di-n-butyldimethoxysilane, and diphenyldimethoxysilane; monofunctional silanes such as trimethylmethoxysilane and tri-n-butylethoxysilane .
メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリi-プロポキシシラン、メチルトリn-ブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリi-プロポキシシラン、エチルトリn-ブトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、n-ブチルトリメトキシシラン、n-ブチルトリエトキシシラン、n-ヘキシルトリメトキシシラン、n-ヘキシルトリエトキシシラン、デシルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、4-t-ブトキシフェネチルトリエトキシシラン、1-(t-ブトキシフェニル)エチルトリエトキシシラン、t-ブトキシフェニルトリエトキシシラン、p-ヒドロキシフェニルトリメトキシシラン、1-(p-ヒドロキシフェニル)エチルトリメトキシシラン、2-(p-ヒドロキシフェニル)エチルトリメトキシシラン、4-ヒドロキシ-5-(p-ヒドロキシフェニルカルボニルオキシ)ペンチルトリメトキシシラン、トリフルオロメチルトリメトキシシラン、トリフルオロメチルトリエトキシシラン、3,3,3-トリフルオロプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メルカプトプロピルトリメトキシシランなどの3官能性シラン;
ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジアセトキシシラン、ジn-ブチルジメトキシシラン、ジフェニルジメトキシシランなどの2官能性シラン; トリメチルメトキシシラン、トリn-ブチルエトキシシランなどの1官能性シランが挙げられる。 Examples of the hydrolyzable silane compound represented by the above formula (2) include methyltrimethoxysilane, methyltriethoxysilane, methyltri i-propoxysilane, methyltrin-butoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, Ethyltri i-propoxysilane, ethyltri n-butoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, n-butyltrimethoxysilane, n-butyltriethoxysilane, n-hexyltrimethoxysilane, n-hexyl Triethoxysilane, decyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypro Pyrtrimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, 4-t-butoxyphenethyltriethoxysilane, 1- (t-butoxyphenyl) ethyltriethoxysilane, t-butoxyphenyltriethoxysilane, p-hydroxyphenyl Trimethoxysilane, 1- (p-hydroxyphenyl) ethyltrimethoxysilane, 2- (p-hydroxyphenyl) ethyltrimethoxysilane, 4-hydroxy-5- (p-hydroxyphenylcarbonyloxy) pentyltrimethoxysilane, tri Fluoromethyltrimethoxysilane, trifluoromethyltriethoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyl triethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-functional silanes such as 3-mercaptopropyltrimethoxysilane;
Bifunctional silanes such as dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldiacetoxysilane, di-n-butyldimethoxysilane, and diphenyldimethoxysilane; monofunctional silanes such as trimethylmethoxysilane and tri-n-butylethoxysilane .
これらのうち、[B]ポリシロキサンを、[A]重合体との相溶性及び相分離のし易さが適度にバランスされた重合体とすることができるという観点から、芳香環を有する加水分解性シラン化合物が好ましく、フェニルトリメトキシシラン、フェニルトリエトキシシラン、4-t-ブトキシフェネチルトリエトキシシラン、1-(t-ブトキシフェニル)エチルトリエトキシシラン、t-ブトキシフェニルトリエトキシシランがより好ましい。なお、[B]ポリシロキサンは、これらの加水分解性シラン化合物のうちの1種の化合物の加水分解縮合物であってもよいし、2種以上の化合物の加水分解縮合物であってもよい。
Among these, [B] polysiloxane is hydrolyzed having an aromatic ring from the viewpoint that the compatibility with [A] polymer and the ease of phase separation can be appropriately balanced. Silane compounds are preferable, and phenyltrimethoxysilane, phenyltriethoxysilane, 4-t-butoxyphenethyltriethoxysilane, 1- (t-butoxyphenyl) ethyltriethoxysilane, and t-butoxyphenyltriethoxysilane are more preferable. [B] The polysiloxane may be a hydrolysis condensate of one of these hydrolyzable silane compounds, or may be a hydrolysis condensate of two or more compounds. .
<[B]ポリシロキサンの合成方法>
[B]ポリシロキサンの合成方法としては、例えば上記式(2)で表される加水分解性シラン化合物の少なくとも一部を加水分解して、加水分解性基(-R4)をシラノール基に変換し、縮合反応を起こさせるものである限り、特に限定されるものではないが、一例として以下のように実施することができる。 <[B] Polysiloxane Synthesis Method>
[B] As a method for synthesizing polysiloxane, for example, at least a part of the hydrolyzable silane compound represented by the above formula (2) is hydrolyzed to convert the hydrolyzable group (—R 4 ) into a silanol group. And as long as it causes a condensation reaction, it is not particularly limited, but can be carried out as follows as an example.
[B]ポリシロキサンの合成方法としては、例えば上記式(2)で表される加水分解性シラン化合物の少なくとも一部を加水分解して、加水分解性基(-R4)をシラノール基に変換し、縮合反応を起こさせるものである限り、特に限定されるものではないが、一例として以下のように実施することができる。 <[B] Polysiloxane Synthesis Method>
[B] As a method for synthesizing polysiloxane, for example, at least a part of the hydrolyzable silane compound represented by the above formula (2) is hydrolyzed to convert the hydrolyzable group (—R 4 ) into a silanol group. And as long as it causes a condensation reaction, it is not particularly limited, but can be carried out as follows as an example.
上記式(2)で表される加水分解性シラン化合物の加水分解縮合に用いられる水は、逆浸透膜処理、イオン交換処理、蒸留等の方法により精製された水を使用することが好ましい。このような精製水を用いることによって、副反応を抑制し、加水分解の反応性を向上させることができる。水の使用量は、上記式(2)で表される加水分解性シラン化合物の加水分解性基の合計量1モルに対して、好ましくは0.1~3モル、より好ましくは0.3~2モル、さらに好ましくは0.5~1.5モルの量である。このような量の水を用いることによって、加水分解・縮合の反応速度を最適化することができる。
The water used for the hydrolytic condensation of the hydrolyzable silane compound represented by the above formula (2) is preferably water purified by a method such as reverse osmosis membrane treatment, ion exchange treatment or distillation. By using such purified water, side reactions can be suppressed and the reactivity of hydrolysis can be improved. The amount of water used is preferably from 0.1 to 3 mol, more preferably from 0.3 to 1 mol, based on 1 mol of the total amount of hydrolyzable groups of the hydrolyzable silane compound represented by the above formula (2). The amount is 2 mol, more preferably 0.5 to 1.5 mol. By using such an amount of water, the hydrolysis / condensation reaction rate can be optimized.
上記式(2)で表される加水分解性シラン化合物の加水分解縮合に使用することができる溶媒としては、特に限定されるものではないが、通常、後述するパターン形成用自己組織化組成物が含有する溶媒として例示したものと同様のものを使用することができる。このような溶媒のうち、酢酸エチレングリコールモノアルキルエーテル、ジエチレングリコールジアルキルエーテル、プロピレングリコールモノアルキルエーテル、酢酸プロピレングリコールモノアルキルエーテル、プロピオン酸エステル類が好ましく、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、酢酸プロピレングリコールモノメチルエーテル又は3-メトキシプロピオン酸メチル、ジアセトンアルコールがより好ましい。
Although it does not specifically limit as a solvent which can be used for the hydrolysis condensation of the hydrolysable silane compound represented by the said Formula (2), Usually, the self-organization composition for pattern formation mentioned later is The thing similar to what was illustrated as a solvent to contain can be used. Of these solvents, ethylene glycol monoalkyl ether acetate, diethylene glycol dialkyl ether, propylene glycol monoalkyl ether, propylene glycol monoalkyl ether acetate, propionic acid esters are preferred, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, propylene glycol monomethyl ether Propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monomethyl ether acetate, methyl 3-methoxypropionate, or diacetone alcohol is more preferable.
上記式(2)で表される加水分解性シラン化合物の加水分解・縮合反応は、好ましくは酸触媒(例えば、塩酸、硫酸、硝酸、蟻酸、シュウ酸、酢酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸、リン酸、酸性イオン交換樹脂、各種ルイス酸)、塩基触媒(例えば、アンモニア、1級アミン類、2級アミン類、3級アミン類、ピリジンなどの含窒素化合物;塩基性イオン交換樹脂;水酸化ナトリウムなどの水酸化物;炭酸カリウムなどの炭酸塩;酢酸ナトリウムなどのカルボン酸塩;各種ルイス塩基)、又はアルコキシド(例えば、ジルコニウムアルコキシド、チタニウムアルコキシド、アルミニウムアルコキシド)等の触媒の存在下で行われる。例えば、アルミニウムアルコキシドとしては、トリ-i-プロポキシアルミニウムを用いることができる。触媒の使用量としては、加水分解縮合反応の促進の観点から、加水分解性シラン化合物のモノマー1モルに対して、好ましくは0.2モル以下であり、より好ましくは0.00001~0.1モルである。
The hydrolysis / condensation reaction of the hydrolyzable silane compound represented by the above formula (2) is preferably an acid catalyst (for example, hydrochloric acid, sulfuric acid, nitric acid, formic acid, oxalic acid, acetic acid, trifluoroacetic acid, trifluoromethanesulfonic acid). , Phosphoric acid, acidic ion exchange resins, various Lewis acids), basic catalysts (eg, nitrogen-containing compounds such as ammonia, primary amines, secondary amines, tertiary amines, pyridine; basic ion exchange resins; water) Conducted in the presence of a catalyst such as hydroxide such as sodium oxide; carbonate such as potassium carbonate; carboxylate such as sodium acetate; various Lewis bases] or alkoxide (eg, zirconium alkoxide, titanium alkoxide, aluminum alkoxide). Is called. For example, tri-i-propoxyaluminum can be used as the aluminum alkoxide. The amount of the catalyst used is preferably 0.2 mol or less, more preferably 0.00001 to 0.1 mol per mol of the hydrolyzable silane compound monomer from the viewpoint of promoting the hydrolysis condensation reaction. Is a mole.
上記式(2)で表される加水分解性シラン化合物の加水分解縮合における反応温度及び反応時間は、適宜に設定される。例えば、下記の条件が採用できる。反応温度は、好ましくは40℃~200℃、より好ましくは50℃~150℃である。反応時間は、好ましくは30分~24時間、より好ましくは1時間~12時間である。このような反応温度及び反応時間とすることによって、加水分解縮合反応を最も効率的に行うことができる。この加水分解縮合においては、反応系内に加水分解性シラン化合物、水及び触媒を一度に添加して反応を一段階で行ってもよく、あるいは、加水分解性シラン化合物、水及び触媒を、数回に分けて反応系内に添加することによって、加水分解縮合反応を多段階で行ってもよい。なお、加水分解縮合反応の後には、脱水剤を加え、次いでエバポレーションにかけることによって、水及び生成したアルコールを反応系から除去することができる。この段階で用いられる脱水剤は、一般的に、過剰の水を吸着又は包接して脱水能が完全に消費されるか、またはエバポレーションにより除去される。
The reaction temperature and reaction time in the hydrolytic condensation of the hydrolyzable silane compound represented by the above formula (2) are appropriately set. For example, the following conditions can be adopted. The reaction temperature is preferably 40 ° C to 200 ° C, more preferably 50 ° C to 150 ° C. The reaction time is preferably 30 minutes to 24 hours, more preferably 1 hour to 12 hours. By setting such reaction temperature and reaction time, the hydrolysis condensation reaction can be performed most efficiently. In this hydrolysis condensation, the reaction may be carried out in one step by adding the hydrolyzable silane compound, water and catalyst to the reaction system at one time, or the hydrolyzable silane compound, water and catalyst may be added in several steps. The hydrolysis condensation reaction may be carried out in multiple stages by adding it to the reaction system in batches. After the hydrolysis condensation reaction, water and the produced alcohol can be removed from the reaction system by adding a dehydrating agent and then subjecting it to evaporation. The dehydrating agent used at this stage is generally consumed or adsorbed by excess water, so that the dehydrating ability is completely consumed or removed by evaporation.
[B]ポリシロキサンの分子量は、移動相にテトラヒドロフランを使用したGPC(ゲルパーミエーションクロマトグラフィー)を用い、ポリスチレン換算の重量平均分子量(Mw)として測定することができる。そして、加水分解縮合物のMwは、通常500~10,000の範囲内の値とするのが好ましく、1,000~5,000の範囲内の値とするのがより好ましい。加水分解縮合物のMwの値を500以上とすることによって、自己組織化膜の成膜性を改善することができる。一方、加水分解縮合物のMwの値を10,000以下とすることによって、当該パターン形成用自己組織化組成物の相分離がより起こり易くなる。
[B] The molecular weight of the polysiloxane can be measured as a weight average molecular weight (Mw) in terms of polystyrene using GPC (gel permeation chromatography) using tetrahydrofuran as a mobile phase. The Mw of the hydrolyzed condensate is usually preferably a value within the range of 500 to 10,000, more preferably a value within the range of 1,000 to 5,000. By setting the value of Mw of the hydrolysis-condensation product to 500 or more, the film formability of the self-assembled film can be improved. On the other hand, when the Mw value of the hydrolysis-condensation product is 10,000 or less, phase separation of the self-assembling composition for pattern formation is more likely to occur.
[他の重合体]
当該パターン形成用自己組織化組成物は、[A]重合体及び[B]ポリシロキサンに加えて、他の重合体をさらに含有してもよい。 [Other polymers]
The self-assembling composition for pattern formation may further contain other polymers in addition to the [A] polymer and the [B] polysiloxane.
当該パターン形成用自己組織化組成物は、[A]重合体及び[B]ポリシロキサンに加えて、他の重合体をさらに含有してもよい。 [Other polymers]
The self-assembling composition for pattern formation may further contain other polymers in addition to the [A] polymer and the [B] polysiloxane.
他の重合体としては、例えば(メタ)アクリル系ポリマー、ポリビニルアセタール系ポリマー、ポリウレタン系ポリマー、ポリウレア系ポリマー、ポリイミド系ポリマー、ポリアミド系ポリマー、エポキシ系ポリマー、ノボラック型フェノールポリマー、ポリエステル系ポリマー等が挙げられる。なお、上記ポリマーとしては、1種類の単量体化合物から合成されるホモポリマーであっても、複数種の単量体化合物から合成されるコポリマーであってもよい。
Examples of other polymers include (meth) acrylic polymers, polyvinyl acetal polymers, polyurethane polymers, polyurea polymers, polyimide polymers, polyamide polymers, epoxy polymers, novolac-type phenol polymers, polyester polymers, and the like. Can be mentioned. The polymer may be a homopolymer synthesized from one type of monomer compound or a copolymer synthesized from a plurality of types of monomer compounds.
当該パターン形成用自己組織化組成物における[A]重合体と[B]ポリシロキサンとの含有割合としては、[A]重合体100質量部に対して、[B]ポリシロキサンを20質量部以上200質量部以下含有することが好ましく、50質量部以上150質量部以下がより好ましく、75質量部以上125質量部以下がさらに好ましい。当該パターン形成用自己組織化組成物における[A]重合体と[B]ポリシロキサンとの含有割合を上記特定範囲とすることで、より複雑な微細パターンを形成することが可能となる。
The content ratio of the [A] polymer and [B] polysiloxane in the self-assembling composition for pattern formation is 20 parts by mass or more of [B] polysiloxane with respect to 100 parts by mass of the [A] polymer. The content is preferably 200 parts by mass or less, more preferably 50 parts by mass or more and 150 parts by mass or less, and further preferably 75 parts by mass or more and 125 parts by mass or less. By setting the content ratio of the [A] polymer and the [B] polysiloxane in the self-assembling composition for pattern formation within the specific range, a more complicated fine pattern can be formed.
[溶媒]
当該パターン形成用自己組織化組成物は、通常溶媒を含有する。上記溶媒としては、例えばアルコール系溶媒、エーテル系溶媒、ケトン系溶媒、アミド系溶媒、エステル系溶媒、炭化水素系溶媒及びその混合溶媒等が挙げられる。 [solvent]
The self-assembling composition for pattern formation usually contains a solvent. Examples of the solvent include alcohol solvents, ether solvents, ketone solvents, amide solvents, ester solvents, hydrocarbon solvents, and mixed solvents thereof.
当該パターン形成用自己組織化組成物は、通常溶媒を含有する。上記溶媒としては、例えばアルコール系溶媒、エーテル系溶媒、ケトン系溶媒、アミド系溶媒、エステル系溶媒、炭化水素系溶媒及びその混合溶媒等が挙げられる。 [solvent]
The self-assembling composition for pattern formation usually contains a solvent. Examples of the solvent include alcohol solvents, ether solvents, ketone solvents, amide solvents, ester solvents, hydrocarbon solvents, and mixed solvents thereof.
アルコール系溶媒としては、例えば
メタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール、i-ブタノール、sec-ブタノール、tert-ブタノール、n-ペンタノール、i-ペンタノール、2-メチルブタノール、sec-ペンタノール、tert-ペンタノール、3-メトキシブタノール、n-ヘキサノール、2-メチルペンタノール、sec-ヘキサノール、2-エチルブタノール、sec-ヘプタノール、3-ヘプタノール、n-オクタノール、2-エチルヘキサノール、sec-オクタノール、n-ノニルアルコール、2,6-ジメチル-4-ヘプタノール、n-デカノール、sec-ウンデシルアルコール、トリメチルノニルアルコール、sec-テトラデシルアルコール、sec-ヘプタデシルアルコール、フルフリルアルコール、フェノール、シクロヘキサノール、メチルシクロヘキサノール、3,3,5-トリメチルシクロヘキサノール、ベンジルアルコール、ジアセトンアルコール等のモノアルコール系溶媒;
エチレングリコール、1,2-プロピレングリコール、1,3-ブチレングリコール、2,4-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2,5-ヘキサンジオール、2,4-ヘプタンジオール、2-エチル-1,3-ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等の多価アルコール系溶媒;
エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールモノ-2-エチルブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノヘキシルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル等の多価アルコール部分エーテル系溶媒等が挙げられる。 Examples of alcohol solvents include methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, sec-butanol, tert-butanol, n-pentanol, i-pentanol, 2-methylbutanol, sec-pentanol, tert-pentanol, 3-methoxybutanol, n-hexanol, 2-methylpentanol, sec-hexanol, 2-ethylbutanol, sec-heptanol, 3-heptanol, n-octanol, 2-ethylhexanol , Sec-octanol, n-nonyl alcohol, 2,6-dimethyl-4-heptanol, n-decanol, sec-undecyl alcohol, trimethylnonyl alcohol, sec-tetradecyl alcohol, sec-heptadec Monoalcohol solvents such as alcohol, furfuryl alcohol, phenol, cyclohexanol, methylcyclohexanol, 3,3,5-trimethylcyclohexanol, benzyl alcohol, diacetone alcohol;
Ethylene glycol, 1,2-propylene glycol, 1,3-butylene glycol, 2,4-pentanediol, 2-methyl-2,4-pentanediol, 2,5-hexanediol, 2,4-heptanediol, 2 Polyhydric alcohol solvents such as ethyl-1,3-hexanediol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol;
Ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monohexyl ether, ethylene glycol monophenyl ether, ethylene glycol mono-2-ethylbutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl Ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, diethylene glycol monohexyl ether, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol Monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, polyhydric alcohol partial ether solvents such as dipropylene glycol monopropyl ether.
メタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール、i-ブタノール、sec-ブタノール、tert-ブタノール、n-ペンタノール、i-ペンタノール、2-メチルブタノール、sec-ペンタノール、tert-ペンタノール、3-メトキシブタノール、n-ヘキサノール、2-メチルペンタノール、sec-ヘキサノール、2-エチルブタノール、sec-ヘプタノール、3-ヘプタノール、n-オクタノール、2-エチルヘキサノール、sec-オクタノール、n-ノニルアルコール、2,6-ジメチル-4-ヘプタノール、n-デカノール、sec-ウンデシルアルコール、トリメチルノニルアルコール、sec-テトラデシルアルコール、sec-ヘプタデシルアルコール、フルフリルアルコール、フェノール、シクロヘキサノール、メチルシクロヘキサノール、3,3,5-トリメチルシクロヘキサノール、ベンジルアルコール、ジアセトンアルコール等のモノアルコール系溶媒;
エチレングリコール、1,2-プロピレングリコール、1,3-ブチレングリコール、2,4-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2,5-ヘキサンジオール、2,4-ヘプタンジオール、2-エチル-1,3-ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等の多価アルコール系溶媒;
エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールモノ-2-エチルブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノヘキシルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル等の多価アルコール部分エーテル系溶媒等が挙げられる。 Examples of alcohol solvents include methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, sec-butanol, tert-butanol, n-pentanol, i-pentanol, 2-methylbutanol, sec-pentanol, tert-pentanol, 3-methoxybutanol, n-hexanol, 2-methylpentanol, sec-hexanol, 2-ethylbutanol, sec-heptanol, 3-heptanol, n-octanol, 2-ethylhexanol , Sec-octanol, n-nonyl alcohol, 2,6-dimethyl-4-heptanol, n-decanol, sec-undecyl alcohol, trimethylnonyl alcohol, sec-tetradecyl alcohol, sec-heptadec Monoalcohol solvents such as alcohol, furfuryl alcohol, phenol, cyclohexanol, methylcyclohexanol, 3,3,5-trimethylcyclohexanol, benzyl alcohol, diacetone alcohol;
Ethylene glycol, 1,2-propylene glycol, 1,3-butylene glycol, 2,4-pentanediol, 2-methyl-2,4-pentanediol, 2,5-hexanediol, 2,4-heptanediol, 2 Polyhydric alcohol solvents such as ethyl-1,3-hexanediol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol;
Ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monohexyl ether, ethylene glycol monophenyl ether, ethylene glycol mono-2-ethylbutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl Ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, diethylene glycol monohexyl ether, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol Monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, polyhydric alcohol partial ether solvents such as dipropylene glycol monopropyl ether.
エーテル系溶媒としては、例えばジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、ジフェニルエーテル等が挙げられる。
Examples of the ether solvent include diethyl ether, dipropyl ether, dibutyl ether, diphenyl ether and the like.
ケトン系溶媒としては、例えばアセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン、メチル-i-ブチルケトン、メチル-n-ペンチルケトン、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジ-i-ブチルケトン、トリメチルノナノン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルシクロヘキサノン、2,4-ペンタンジオン、アセトニルアセトン、アセトフェノン等のケトン系溶媒が挙げられる。
Examples of the ketone solvent include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-i-butyl ketone, methyl-n-pentyl ketone, ethyl-n-butyl ketone, methyl-n- And ketone solvents such as hexyl ketone, di-i-butyl ketone, trimethylnonanone, cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, methylcyclohexanone, 2,4-pentanedione, acetonylacetone, acetophenone, etc. .
アミド系溶媒としては、例えばN,N’-ジメチルイミダゾリジノン、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド、N-メチルピロリドン等が挙げられる。
Examples of amide solvents include N, N′-dimethylimidazolidinone, N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, Examples thereof include N-methylpropionamide and N-methylpyrrolidone.
エステル系溶媒としては、例えばジエチルカーボネート、プロピレンカーボネート、酢酸メチル、酢酸エチル、γ-ブチロラクトン、γ-バレロラクトン、酢酸n-プロピル、酢酸i-プロピル、酢酸n-ブチル、酢酸i-ブチル、酢酸sec-ブチル、酢酸n-ペンチル、酢酸sec-ペンチル、酢酸3-メトキシブチル、酢酸メチルペンチル、酢酸2-エチルブチル、酢酸2-エチルヘキシル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸n-ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸エチレングリコールモノメチルエーテル、酢酸エチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノ-n-ブチルエーテル、酢酸プロピレングリコールモノメチルエーテル、酢酸プロピレングリコールモノエチルエーテル、酢酸プロピレングリコールモノプロピルエーテル、酢酸プロピレングリコールモノブチルエーテル、酢酸ジプロピレングリコールモノメチルエーテル、酢酸ジプロピレングリコールモノエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリグリコール、プロピオン酸エチル、プロピオン酸n-ブチル、プロピオン酸i-アミル、3-メトキシプロピオン酸メチル、シュウ酸ジエチル、シュウ酸ジ-n-ブチル、乳酸メチル、乳酸エチル、乳酸n-ブチル、乳酸n-アミル、マロン酸ジエチル、フタル酸ジメチル、フタル酸ジエチル等が挙げられる。
Examples of ester solvents include diethyl carbonate, propylene carbonate, methyl acetate, ethyl acetate, γ-butyrolactone, γ-valerolactone, n-propyl acetate, i-propyl acetate, n-butyl acetate, i-butyl acetate, sec sec -Butyl, n-pentyl acetate, sec-pentyl acetate, 3-methoxybutyl acetate, methyl pentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, benzyl acetate, cyclohexyl acetate, methyl cyclohexyl acetate, n-nonyl acetate, acetoacetic acid Methyl, ethyl acetoacetate, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol acetate Mono-n-butyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, propylene glycol monobutyl ether acetate, dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate, glycol diacetate , Methoxytriglycol acetate, ethyl propionate, n-butyl propionate, i-amyl propionate, methyl 3-methoxypropionate, diethyl oxalate, di-n-butyl oxalate, methyl lactate, ethyl lactate, n-lactate Examples include butyl, n-amyl lactate, diethyl malonate, dimethyl phthalate, and diethyl phthalate.
炭化水素系溶媒としては、例えば
n-ペンタン、i-ペンタン、n-ヘキサン、i-ヘキサン、n-ヘプタン、i-ヘプタン、2,2,4-トリメチルペンタン、n-オクタン、i-オクタン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素系溶媒;
ベンゼン、トルエン、キシレン、メシチレン、エチルベンゼン、トリメチルベンゼン、メチルエチルベンゼン、n-プロピルベンゼン、i-プロピルベンゼン、ジエチルベンゼン、i-ブチルベンゼン、トリエチルベンゼン、ジ-i-プロピルベンセン、n-アミルナフタレン等の芳香族炭化水素系溶媒等が挙げられる。 Examples of the hydrocarbon solvent include n-pentane, i-pentane, n-hexane, i-hexane, n-heptane, i-heptane, 2,2,4-trimethylpentane, n-octane, i-octane and cyclohexane. , Aliphatic hydrocarbon solvents such as methylcyclohexane;
Fragrances such as benzene, toluene, xylene, mesitylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, i-propylbenzene, diethylbenzene, i-butylbenzene, triethylbenzene, di-i-propylbenzene, n-amylnaphthalene Group hydrocarbon solvents and the like.
n-ペンタン、i-ペンタン、n-ヘキサン、i-ヘキサン、n-ヘプタン、i-ヘプタン、2,2,4-トリメチルペンタン、n-オクタン、i-オクタン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素系溶媒;
ベンゼン、トルエン、キシレン、メシチレン、エチルベンゼン、トリメチルベンゼン、メチルエチルベンゼン、n-プロピルベンゼン、i-プロピルベンゼン、ジエチルベンゼン、i-ブチルベンゼン、トリエチルベンゼン、ジ-i-プロピルベンセン、n-アミルナフタレン等の芳香族炭化水素系溶媒等が挙げられる。 Examples of the hydrocarbon solvent include n-pentane, i-pentane, n-hexane, i-hexane, n-heptane, i-heptane, 2,2,4-trimethylpentane, n-octane, i-octane and cyclohexane. , Aliphatic hydrocarbon solvents such as methylcyclohexane;
Fragrances such as benzene, toluene, xylene, mesitylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, i-propylbenzene, diethylbenzene, i-butylbenzene, triethylbenzene, di-i-propylbenzene, n-amylnaphthalene Group hydrocarbon solvents and the like.
これらのうち酢酸プロピレングリコールモノメチルエーテル(PGMEA)、シクロヘキサノン、γ-ブチロラクトンが好ましく、酢酸プロピレングリコールモノメチルエーテル(PGMEA)がより好ましい。これらの溶媒は単独で使用してもよく2種以上を併用してもよい。
Of these, propylene glycol monomethyl ether acetate (PGMEA), cyclohexanone and γ-butyrolactone are preferred, and propylene glycol monomethyl ether acetate (PGMEA) is more preferred. These solvents may be used alone or in combination of two or more.
[界面活性剤]
当該パターン形成用自己組織化組成物は、さらに界面活性剤を含有してもよい。当該パターン形成用自己組織化組成物が界面活性剤を含有することで、基板等への塗布性を向上させることができる。 [Surfactant]
The pattern-forming self-assembled composition may further contain a surfactant. When the self-assembling composition for pattern formation contains a surfactant, applicability to a substrate or the like can be improved.
当該パターン形成用自己組織化組成物は、さらに界面活性剤を含有してもよい。当該パターン形成用自己組織化組成物が界面活性剤を含有することで、基板等への塗布性を向上させることができる。 [Surfactant]
The pattern-forming self-assembled composition may further contain a surfactant. When the self-assembling composition for pattern formation contains a surfactant, applicability to a substrate or the like can be improved.
<当該パターン形成用自己組織化組成物の調製方法>
当該パターン形成用自己組織化組成物は、例えば上記溶媒中で、[A]重合体、[B]ポリシロキサン、界面活性剤等を所定の割合で混合することにより調製できる。また、パターン形成用自己組織化組成物は、適当な溶媒に溶解又は分散させた状態に調製され使用され得る。 <Method for Preparing Self-Assembled Composition for Pattern Formation>
The self-assembling composition for pattern formation can be prepared, for example, by mixing [A] polymer, [B] polysiloxane, surfactant and the like in a predetermined ratio in the above solvent. The self-assembling composition for pattern formation can be prepared and used in a state dissolved or dispersed in a suitable solvent.
当該パターン形成用自己組織化組成物は、例えば上記溶媒中で、[A]重合体、[B]ポリシロキサン、界面活性剤等を所定の割合で混合することにより調製できる。また、パターン形成用自己組織化組成物は、適当な溶媒に溶解又は分散させた状態に調製され使用され得る。 <Method for Preparing Self-Assembled Composition for Pattern Formation>
The self-assembling composition for pattern formation can be prepared, for example, by mixing [A] polymer, [B] polysiloxane, surfactant and the like in a predetermined ratio in the above solvent. The self-assembling composition for pattern formation can be prepared and used in a state dissolved or dispersed in a suitable solvent.
<パターン形成方法>
本発明のパターン形成方法は、
(1)本発明のパターン形成用自己組織化組成物を用い、基板上に相分離構造を有する自己組織化膜を形成する工程、及び
(2)上記自己組織化膜の一部の相を除去する工程
を含むパターン形成方法である。 <Pattern formation method>
The pattern forming method of the present invention comprises:
(1) forming a self-assembled film having a phase separation structure on a substrate using the self-assembled composition for pattern formation of the present invention; and (2) removing a part of the phase of the self-assembled film. It is a pattern formation method including the process to do.
本発明のパターン形成方法は、
(1)本発明のパターン形成用自己組織化組成物を用い、基板上に相分離構造を有する自己組織化膜を形成する工程、及び
(2)上記自己組織化膜の一部の相を除去する工程
を含むパターン形成方法である。 <Pattern formation method>
The pattern forming method of the present invention comprises:
(1) forming a self-assembled film having a phase separation structure on a substrate using the self-assembled composition for pattern formation of the present invention; and (2) removing a part of the phase of the self-assembled film. It is a pattern formation method including the process to do.
また、上記(1)工程前に、(0-1)基板上に下層膜を形成する工程、及び(0-2)上記下層膜上にプレパターンを形成する工程をさらに有し、上記(1)工程において、自己組織化膜を上記プレパターンによって区切られた上記下層膜上の領域に形成することが好ましい。なお、必要に応じて、上記(2)工程において、自己組織化膜の一部の相に加えプレパターンを除去してもよい。
Further, before the step (1), the method further comprises (0-1) a step of forming a lower layer film on the substrate, and (0-2) a step of forming a pre-pattern on the lower layer film. ) Step, it is preferable to form a self-assembled film in a region on the lower layer film delimited by the pre-pattern. If necessary, in the step (2), the pre-pattern may be removed in addition to a part of the phase of the self-assembled film.
さらに、上記(2)工程後に、(3)上記形成されたパターンをマスクとして、上記基板をエッチングする工程をさらに有することが好ましい。以下、各工程について詳述する。なお、各工程については、図1~5を参照しながら説明する。
Furthermore, it is preferable to further include (3) a step of etching the substrate using the formed pattern as a mask after the step (2). Hereinafter, each process is explained in full detail. Each step will be described with reference to FIGS.
[(0-1)工程]
本工程は、下層膜形成用組成物を用いて、基板上に下層膜を形成する工程である。これにより、図1に示すように、基板101上に下層膜102が形成された下層膜付き基板を得ることができ、自己組織化膜はこの下層膜102上に形成される。上記自己組織化膜が有する相分離構造(ミクロドメイン構造)は、パターン形成用自己組織化組成物が含有する[A]重合体及び[B]ポリシロキサン等の重合体間の相互作用に加えて、下層膜102との相互作用によっても変化するため、下層膜102を有することで構造制御が可能となり、所望のパターンを得ることができる。さらに、自己組織化膜が薄膜である場合には、下層膜102を有することでその転写プロセスを改善することができる。 [Step (0-1)]
This step is a step of forming a lower layer film on the substrate using the lower layer film forming composition. Thereby, as shown in FIG. 1, a substrate with a lower layer film in which thelower layer film 102 is formed on the substrate 101 can be obtained, and the self-assembled film is formed on the lower layer film 102. The phase separation structure (microdomain structure) of the self-assembled film is in addition to the interaction between the polymer such as [A] polymer and [B] polysiloxane contained in the self-assembled composition for pattern formation. Since it also changes due to the interaction with the lower layer film 102, the structure control is possible by having the lower layer film 102, and a desired pattern can be obtained. Further, when the self-assembled film is a thin film, the transfer process can be improved by having the lower layer film 102.
本工程は、下層膜形成用組成物を用いて、基板上に下層膜を形成する工程である。これにより、図1に示すように、基板101上に下層膜102が形成された下層膜付き基板を得ることができ、自己組織化膜はこの下層膜102上に形成される。上記自己組織化膜が有する相分離構造(ミクロドメイン構造)は、パターン形成用自己組織化組成物が含有する[A]重合体及び[B]ポリシロキサン等の重合体間の相互作用に加えて、下層膜102との相互作用によっても変化するため、下層膜102を有することで構造制御が可能となり、所望のパターンを得ることができる。さらに、自己組織化膜が薄膜である場合には、下層膜102を有することでその転写プロセスを改善することができる。 [Step (0-1)]
This step is a step of forming a lower layer film on the substrate using the lower layer film forming composition. Thereby, as shown in FIG. 1, a substrate with a lower layer film in which the
上記基板101としては、例えばシリコンウェハ、アルミニウムで被覆されたウェハ等の従来公知の基板を使用できる。
As the substrate 101, a conventionally known substrate such as a silicon wafer or a wafer coated with aluminum can be used.
また、上記下層膜形成用組成物としては、例えばARC66(ブルワーサイエンス製)、NFC HM8005(JSR製)、NFC CT08(JSR製)等の商品名で市販されている材料等を用いることができる。
Moreover, as the composition for forming the lower layer film, for example, materials commercially available under trade names such as ARC66 (manufactured by Brewer Science), NFC HM8005 (manufactured by JSR), NFC CT08 (manufactured by JSR), and the like can be used.
上記下層膜102の形成方法は特に限定されないが、例えば、基板101上にスピンコート法等の公知の方法により塗布して形成された塗膜を、露光及び/又は加熱することにより硬化して形成することができる。この露光に用いられる放射線としては、例えば可視光線、紫外線、遠紫外線、X線、電子線、γ線、分子線、イオンビーム等が挙げられる。
また、塗膜を加熱する際の温度は、特に限定されないが、90℃~550℃であることが好ましく、90℃~450℃がより好ましく、90℃~300℃がさらに好ましい。なお、上記下層膜102の膜厚は特に限定されないが、50nm~20,000nmが好ましく、70nm~1,000nmがより好ましい。また、上記下層膜102は、SOC(Spin on carbon)膜を含むことが好ましい。 The formation method of thelower layer film 102 is not particularly limited. For example, a coating film formed by applying a known method such as a spin coating method on the substrate 101 is cured by exposure and / or heating. can do. Examples of radiation used for this exposure include visible light, ultraviolet light, far ultraviolet light, X-rays, electron beams, γ-rays, molecular beams, and ion beams.
The temperature at which the coating film is heated is not particularly limited, but is preferably 90 ° C to 550 ° C, more preferably 90 ° C to 450 ° C, and further preferably 90 ° C to 300 ° C. The thickness of thelower layer film 102 is not particularly limited, but is preferably 50 nm to 20,000 nm, and more preferably 70 nm to 1,000 nm. The lower layer film 102 preferably includes an SOC (Spin on carbon) film.
また、塗膜を加熱する際の温度は、特に限定されないが、90℃~550℃であることが好ましく、90℃~450℃がより好ましく、90℃~300℃がさらに好ましい。なお、上記下層膜102の膜厚は特に限定されないが、50nm~20,000nmが好ましく、70nm~1,000nmがより好ましい。また、上記下層膜102は、SOC(Spin on carbon)膜を含むことが好ましい。 The formation method of the
The temperature at which the coating film is heated is not particularly limited, but is preferably 90 ° C to 550 ° C, more preferably 90 ° C to 450 ° C, and further preferably 90 ° C to 300 ° C. The thickness of the
[(0-2)工程]
本工程は、図2に示すように、上記下層膜102上に、プレパターン形成用の組成物を用いてプレパターン103を形成する工程である。上記プレパターン103によってパターン形成用自己組織化組成物の相分離が制御され、所望の微細パターンを形成することができる。即ち、パターン形成用自己組織化組成物が含有する重合体のうち、プレパターンの側面と親和性が高い重合体はプレパターンに沿って相を形成し、親和性の低い重合体はプレパターンから離れた位置に相を形成する。これにより所望のパターンを形成することができる。また、プレパターンの材質、長さ、厚さ、形状等により、パターン形成用自己組織化組成物が形成する相分離構造を細かく制御することができる。なお、プレパターンとしては、最終的に形成したいパターンに合わせて適宜選択することができ、例えばラインアンドスペースパターン、ホールパターン、ピラーパターン等を用いることができる。 [Step (0-2)]
In this step, as shown in FIG. 2, aprepattern 103 is formed on the lower layer film 102 using a composition for forming a prepattern. The pre-pattern 103 controls the phase separation of the self-assembling composition for pattern formation, and a desired fine pattern can be formed. That is, among the polymers contained in the self-assembling composition for pattern formation, a polymer having a high affinity with the side surface of the prepattern forms a phase along the prepattern, and a polymer having a low affinity is obtained from the prepattern. Form a phase at a remote location. Thereby, a desired pattern can be formed. Further, the phase separation structure formed by the self-assembling composition for pattern formation can be finely controlled by the material, length, thickness, shape and the like of the prepattern. The pre-pattern can be appropriately selected according to the pattern to be finally formed. For example, a line and space pattern, a hole pattern, a pillar pattern, or the like can be used.
本工程は、図2に示すように、上記下層膜102上に、プレパターン形成用の組成物を用いてプレパターン103を形成する工程である。上記プレパターン103によってパターン形成用自己組織化組成物の相分離が制御され、所望の微細パターンを形成することができる。即ち、パターン形成用自己組織化組成物が含有する重合体のうち、プレパターンの側面と親和性が高い重合体はプレパターンに沿って相を形成し、親和性の低い重合体はプレパターンから離れた位置に相を形成する。これにより所望のパターンを形成することができる。また、プレパターンの材質、長さ、厚さ、形状等により、パターン形成用自己組織化組成物が形成する相分離構造を細かく制御することができる。なお、プレパターンとしては、最終的に形成したいパターンに合わせて適宜選択することができ、例えばラインアンドスペースパターン、ホールパターン、ピラーパターン等を用いることができる。 [Step (0-2)]
In this step, as shown in FIG. 2, a
上記プレパターン103の形成方法としては、公知のレジストパターン形成方法と同様の方法を用いることができる。また、上記プレパターン形成用の組成物としては、従来のレジスト膜形成用組成物を用いることができる。具体的なプレパターン103の形成方法としては、例えば、ARX2928JN(JSR製)等の化学増幅型レジスト組成物を用い、上記下層膜102上に塗布してレジスト膜を形成する。次に、上記レジスト膜の所望の領域に特定パターンのマスクを介して放射線を照射し、液浸露光を行う。上記放射線としては、例えば、紫外線、遠紫外線、X線、荷電粒子線等が挙げられる。これらのうち、ArFエキシマレーザーやKrFエキシマレーザーに代表される遠紫外線が好ましく、ArFエキシマレーザーがより好ましい。次いでポストエクスポージャーベーク(PEB)を行い、アルカリ現像液等の現像液を用いて現像を行い、所望のプレパターン103を形成することができる。
As a method for forming the pre-pattern 103, a method similar to a known resist pattern forming method can be used. Further, as the pre-pattern forming composition, a conventional resist film-forming composition can be used. As a specific method for forming the pre-pattern 103, for example, a chemically amplified resist composition such as ARX2928JN (manufactured by JSR) is used and applied onto the lower layer film 102 to form a resist film. Next, immersion exposure is performed by irradiating a desired region of the resist film with radiation through a mask having a specific pattern. Examples of the radiation include ultraviolet rays, far ultraviolet rays, X-rays, and charged particle beams. Among these, far ultraviolet rays represented by ArF excimer laser and KrF excimer laser are preferable, and ArF excimer laser is more preferable. Next, post-exposure baking (PEB) is performed, and development is performed using a developer such as an alkali developer, so that a desired pre-pattern 103 can be formed.
なお、上記プレパターン103の表面を疎水化処理又は親水化処理してもよい。具体的な処理方法としては、水素プラズマに一定時間さらす水素化処理等が挙げられる。上記プレパターン103の表面の疎水性又は親水性を増長させることにより、パターン形成用自己組織化組成物の自己組織化を促進することができる。
The surface of the pre-pattern 103 may be subjected to a hydrophobic treatment or a hydrophilic treatment. As a specific treatment method, a hydrogenation treatment by exposing to hydrogen plasma for a certain period of time can be cited. By increasing the hydrophobicity or hydrophilicity of the surface of the pre-pattern 103, self-organization of the self-assembling composition for pattern formation can be promoted.
[(1)工程]
本工程は、パターン形成用自己組織化組成物を用い、基板上に相分離構造を有する自己組織化膜を形成する工程である。上記下層膜及びプレパターンを用いない場合には、基板上に直接当該パターン形成用自己組織化組成物を塗布して塗膜を形成し、相分離構造を備える自己組織化膜を形成する。また、上記下層膜及びプレパターンを用いる場合には、プレパターンによって区切られた下層膜上の領域に、当該パターン形成用自己組織化組成物を塗布して塗膜を形成し、相分離構造を備える自己組織化膜を形成する。自己組織化膜の相分離構造を精密に制御できるという観点から、上記下層膜及びプレパターンを用いる方法が好ましい。 [(1) Process]
This step is a step of forming a self-assembled film having a phase separation structure on a substrate using the self-assembled composition for pattern formation. When the lower layer film and the pre-pattern are not used, the self-assembled composition for pattern formation is directly applied on the substrate to form a coating film, thereby forming a self-assembled film having a phase separation structure. Further, when using the lower layer film and the pre-pattern, a coating film is formed by applying the self-assembling composition for pattern formation to a region on the lower layer film delimited by the pre-pattern, and a phase separation structure is formed. A self-assembled film is formed. From the viewpoint that the phase separation structure of the self-assembled film can be precisely controlled, a method using the lower layer film and the prepattern is preferable.
本工程は、パターン形成用自己組織化組成物を用い、基板上に相分離構造を有する自己組織化膜を形成する工程である。上記下層膜及びプレパターンを用いない場合には、基板上に直接当該パターン形成用自己組織化組成物を塗布して塗膜を形成し、相分離構造を備える自己組織化膜を形成する。また、上記下層膜及びプレパターンを用いる場合には、プレパターンによって区切られた下層膜上の領域に、当該パターン形成用自己組織化組成物を塗布して塗膜を形成し、相分離構造を備える自己組織化膜を形成する。自己組織化膜の相分離構造を精密に制御できるという観点から、上記下層膜及びプレパターンを用いる方法が好ましい。 [(1) Process]
This step is a step of forming a self-assembled film having a phase separation structure on a substrate using the self-assembled composition for pattern formation. When the lower layer film and the pre-pattern are not used, the self-assembled composition for pattern formation is directly applied on the substrate to form a coating film, thereby forming a self-assembled film having a phase separation structure. Further, when using the lower layer film and the pre-pattern, a coating film is formed by applying the self-assembling composition for pattern formation to a region on the lower layer film delimited by the pre-pattern, and a phase separation structure is formed. A self-assembled film is formed. From the viewpoint that the phase separation structure of the self-assembled film can be precisely controlled, a method using the lower layer film and the prepattern is preferable.
上記自己組織化膜105の形成は、Walheimらの報告に記載の原理に従ったものである(Macromolecules、vol.30、pp.4995-5003、1997)。即ち、互いに不相溶な2種以上のポリマーを含有する溶液を基板上に塗布し、アニーリング等を行うことで、同じ性質を有するポリマー同士が集積して秩序パターンを自発的に形成する、いわゆる自己組織化を促進させることができる。これにより基板101上に相分離構造が形成される。この相分離構造は、プレパターンに沿って形成されることが好ましく、相分離により形成される界面は、プレパターンの側面と略平行であることがより好ましい。例えば、ラインパターンであるプレパターン103と[B]ポリシロキサンとの親和性が高い場合には、[B]ポリシロキサンの相がプレパターン103に沿って形成され(105b)、[B]ポリシロキサンと不相溶な[A]重合体の相はプレパターンの側面から最も離れた部分、即ちプレパターンで区切られた領域の中央部分に形成され(105a)、ラメラ状(板状)の相が交互に配置されたラメラ状相分離構造を形成する。なお、プレパターンがホールパターンである場合には、プレパターンのホール側面に沿って[B]ポリシロキサンの相が形成され、ホールの中央部分に[B]ポリシロキサンと不相溶な[A]重合体の相が形成される。また、プレパターンがピラーパターンである場合には、プレパターンのピラーの側面に沿って[B]ポリシロキサンの相が形成され、それぞれのピラーから離れた部分に[A]重合体の相が形成される。このプレパターンのピラー間の距離、当該パターン形成用自己組織化組成物の各重合体の配合比率を適宜調節することにより、所望の相分離構造を形成することができる。なお、本工程において形成される相分離構造は、複数の相からなるものであり、これらの相から形成される界面は通常略垂直であるが、界面自体は必ずしも明確でなくてよい。このように、各重合体の配合割合、プレパターン、下層膜等により、得られる相分離構造を精密に制御し、所望の微細パターンを得ることができる。本工程において当該パターン形成用自己組織化組成物を用いることで、相分離が起こり易くなるため、より微細な相分離構造(ミクロドメイン構造)を形成することができる。
The formation of the self-assembled film 105 follows the principle described in the report by Walheim et al. (Macromolecules, vol. 30, pp. 4995-5003, 1997). That is, by applying a solution containing two or more kinds of polymers incompatible with each other on a substrate and performing annealing or the like, polymers having the same properties accumulate to form an ordered pattern spontaneously. Self-organization can be promoted. As a result, a phase separation structure is formed on the substrate 101. This phase separation structure is preferably formed along the pre-pattern, and the interface formed by phase separation is more preferably substantially parallel to the side surface of the pre-pattern. For example, when the affinity between the prepattern 103, which is a line pattern, and [B] polysiloxane is high, a phase of [B] polysiloxane is formed along the prepattern 103 (105b), and [B] polysiloxane is formed. [A] The phase of the polymer incompatible with A is formed in the part farthest from the side of the pre-pattern, that is, the central part of the area delimited by the pre-pattern (105a), and the lamellar (plate-like) phase is formed An alternating lamellar phase separation structure is formed. When the prepattern is a hole pattern, a [B] polysiloxane phase is formed along the hole side surface of the prepattern, and [B] polysiloxane is incompatible with [B] polysiloxane at the center of the hole. A polymer phase is formed. Further, when the pre-pattern is a pillar pattern, a [B] polysiloxane phase is formed along the side surface of the pre-pattern pillar, and a [A] polymer phase is formed at a portion away from each pillar. Is done. A desired phase separation structure can be formed by appropriately adjusting the distance between the pillars of the pre-pattern and the blending ratio of each polymer of the self-assembling composition for pattern formation. Note that the phase separation structure formed in this step is composed of a plurality of phases, and the interface formed from these phases is usually substantially vertical, but the interface itself is not necessarily clear. Thus, the desired fine pattern can be obtained by precisely controlling the obtained phase separation structure by the blending ratio of each polymer, the pre-pattern, the lower layer film, and the like. By using the self-assembling composition for pattern formation in this step, phase separation is likely to occur, so that a finer phase separation structure (microdomain structure) can be formed.
当該パターン形成用自己組織化組成物を基板上に塗布して塗膜104を形成する方法は特に制限されないが、例えば使用される当該パターン形成用自己組織化組成物をスピンコート法等によって塗布する方法等が挙げられる。これにより、当該パターン形成用自己組織化組成物は、上記基板101上、又は上記下層膜102上の上記プレパターン103間に塗布され、塗膜が形成される。
The method for forming the coating film 104 by applying the self-assembling composition for pattern formation onto a substrate is not particularly limited. For example, the self-assembling composition for pattern formation to be used is applied by a spin coating method or the like. Methods and the like. Thereby, the self-assembling composition for pattern formation is applied between the prepatterns 103 on the substrate 101 or the lower layer film 102 to form a coating film.
アニーリングの方法としては、例えばオーブン、ホットプレート等により80℃~400℃の温度で加熱する方法等が挙げられる。アニーリングの時間としては、通常10秒~30分であり、30秒~10分が好ましい。これにより得られる自己組織化膜105の膜厚としては、0.1nm~500nmが好ましく、0.5nm~100nmがより好ましい。
As an annealing method, for example, a method of heating at a temperature of 80 ° C. to 400 ° C. by an oven, a hot plate or the like can be mentioned. The annealing time is usually 10 seconds to 30 minutes, preferably 30 seconds to 10 minutes. The film thickness of the self-assembled film 105 thus obtained is preferably 0.1 nm to 500 nm, and more preferably 0.5 nm to 100 nm.
[(2)工程]
本工程は、図4及び図5に示すように、上記自己組織化膜105が有する相分離構造のうちの[B]ポリシロキサンからなる相105a及び/又はプレパターン103を除去する工程である。自己組織化により相分離した各相のエッチングレートの差を用いて、[A]重合体からなる相105a及び/又はプレパターン103をエッチング処理により除去することができる。相分離構造のうちの[A]重合体からなる相105a及びプレパターン103を除去した後の状態を図5に示す。 [(2) Process]
This step is a step of removing thephase 105a and / or the pre-pattern 103 made of [B] polysiloxane in the phase separation structure of the self-assembled film 105 as shown in FIGS. The phase 105a and / or the pre-pattern 103 made of the [A] polymer can be removed by etching using the difference in the etching rate of each phase separated by self-organization. FIG. 5 shows a state after the phase 105a and the prepattern 103 made of the [A] polymer in the phase separation structure are removed.
本工程は、図4及び図5に示すように、上記自己組織化膜105が有する相分離構造のうちの[B]ポリシロキサンからなる相105a及び/又はプレパターン103を除去する工程である。自己組織化により相分離した各相のエッチングレートの差を用いて、[A]重合体からなる相105a及び/又はプレパターン103をエッチング処理により除去することができる。相分離構造のうちの[A]重合体からなる相105a及びプレパターン103を除去した後の状態を図5に示す。 [(2) Process]
This step is a step of removing the
上記自己組織化膜105が有する相分離構造のうちの[A]重合体からなる相105a又はプレパターン103の除去の方法としては、例えばケミカルドライエッチング、ケミカルウェットエッチング等の反応性イオンエッチング(RIE);スパッタエッチング、イオンビームエッチング等の物理的エッチング等の公知の方法が挙げられる。
これらのうち反応性イオンエッチング(RIE)が好ましく、これらのうち、CF4、O2ガス等を用いたケミカルドライエッチング、メチルイソブチルケトン(MIBK)、2-プロパノール(IPA)といった有機溶剤、フッ酸等の液体のエッチング溶液を用いたケミカルウェットエッチング(湿式現像)がより好ましい。 As a method for removing thephase 105a composed of the polymer [A] or the prepattern 103 in the phase separation structure of the self-assembled film 105, for example, reactive ion etching (RIE) such as chemical dry etching or chemical wet etching. ); Known methods such as physical etching such as sputter etching and ion beam etching.
Of these, reactive ion etching (RIE) is preferable. Among these, chemical dry etching using CF 4 , O 2 gas, etc., organic solvents such as methyl isobutyl ketone (MIBK) and 2-propanol (IPA), hydrofluoric acid Chemical wet etching (wet development) using a liquid etching solution such as is more preferable.
これらのうち反応性イオンエッチング(RIE)が好ましく、これらのうち、CF4、O2ガス等を用いたケミカルドライエッチング、メチルイソブチルケトン(MIBK)、2-プロパノール(IPA)といった有機溶剤、フッ酸等の液体のエッチング溶液を用いたケミカルウェットエッチング(湿式現像)がより好ましい。 As a method for removing the
Of these, reactive ion etching (RIE) is preferable. Among these, chemical dry etching using CF 4 , O 2 gas, etc., organic solvents such as methyl isobutyl ketone (MIBK) and 2-propanol (IPA), hydrofluoric acid Chemical wet etching (wet development) using a liquid etching solution such as is more preferable.
[(3)工程]
本工程は、(2)工程後、残存した相分離膜の一部のブロック相である[B]ポリシロキサンからなる相105bからなるパターンをマスクとして、下層膜及び基板をエッチングすることによりパターニングする工程である。基板へのパターニングが完了した後、マスクとして使用された相は溶解処理等により基板上から除去され、最終的にパターニングされた基板(パターン)を得ることができる。上記エッチングの方法としては、(2)工程と同様の方法を用いることができ、エッチングガス及びエッチング溶液は、下層膜及び基板の材質により適宜選択することができる。例えば、基板がシリコン素材である場合には、フロン系ガスとSF4の混合ガス等を用いることができる。また、基板が金属膜である場合には、BCl3とCl2の混合ガス等を用いることができる。なお、当該パターン形成方法により得られるパターンは半導体素子等に好適に用いられ、さらに上記半導体素子はLED、太陽電池等に広く用いられる。 [(3) Process]
In this step, after the step (2), patterning is performed by etching the lower layer film and the substrate using the pattern made of thephase 105b made of [B] polysiloxane which is a part of the block phase of the remaining phase separation film as a mask. It is a process. After the patterning on the substrate is completed, the phase used as a mask is removed from the substrate by dissolution treatment or the like, and a finally patterned substrate (pattern) can be obtained. As the etching method, the same method as in step (2) can be used, and the etching gas and the etching solution can be appropriately selected depending on the material of the lower layer film and the substrate. For example, when the substrate is a silicon material, a mixed gas of chlorofluorocarbon gas and SF 4 or the like can be used. When the substrate is a metal film, a mixed gas of BCl 3 and Cl 2 or the like can be used. The pattern obtained by the pattern forming method is preferably used for a semiconductor element and the like, and the semiconductor element is widely used for an LED, a solar cell, and the like.
本工程は、(2)工程後、残存した相分離膜の一部のブロック相である[B]ポリシロキサンからなる相105bからなるパターンをマスクとして、下層膜及び基板をエッチングすることによりパターニングする工程である。基板へのパターニングが完了した後、マスクとして使用された相は溶解処理等により基板上から除去され、最終的にパターニングされた基板(パターン)を得ることができる。上記エッチングの方法としては、(2)工程と同様の方法を用いることができ、エッチングガス及びエッチング溶液は、下層膜及び基板の材質により適宜選択することができる。例えば、基板がシリコン素材である場合には、フロン系ガスとSF4の混合ガス等を用いることができる。また、基板が金属膜である場合には、BCl3とCl2の混合ガス等を用いることができる。なお、当該パターン形成方法により得られるパターンは半導体素子等に好適に用いられ、さらに上記半導体素子はLED、太陽電池等に広く用いられる。 [(3) Process]
In this step, after the step (2), patterning is performed by etching the lower layer film and the substrate using the pattern made of the
以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。各物性値の測定方法を下記に示す。
Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to these examples. The measuring method of each physical property value is shown below. *
[重量平均分子量(Mw)及び数平均分子量(Mn)]
重合体のMw及びMnは、ゲルパーミエーションクロマトグラフィー(GPC)により東ソー製のGPCカラム(G2000HXL 2本、G3000HXL 1本、G4000HXL 1本)を使用し、以下の条件により測定した。
溶離液:テトラヒドロフラン(和光純薬工業製)
流量:1.0mL/分
試料濃度:1.0質量%
試料注入量:100μL
検出器:示差屈折計
標準物質:単分散ポリスチレン [Weight average molecular weight (Mw) and number average molecular weight (Mn)]
Mw and Mn of the polymer were measured by gel permeation chromatography (GPC) using Tosoh GPC columns (2 G2000HXL, 1 G3000HXL, 1 G4000HXL) under the following conditions.
Eluent: Tetrahydrofuran (Wako Pure Chemical Industries)
Flow rate: 1.0 mL / min Sample concentration: 1.0% by mass
Sample injection volume: 100 μL
Detector: Differential refractometer Standard material: Monodisperse polystyrene
重合体のMw及びMnは、ゲルパーミエーションクロマトグラフィー(GPC)により東ソー製のGPCカラム(G2000HXL 2本、G3000HXL 1本、G4000HXL 1本)を使用し、以下の条件により測定した。
溶離液:テトラヒドロフラン(和光純薬工業製)
流量:1.0mL/分
試料濃度:1.0質量%
試料注入量:100μL
検出器:示差屈折計
標準物質:単分散ポリスチレン [Weight average molecular weight (Mw) and number average molecular weight (Mn)]
Mw and Mn of the polymer were measured by gel permeation chromatography (GPC) using Tosoh GPC columns (2 G2000HXL, 1 G3000HXL, 1 G4000HXL) under the following conditions.
Eluent: Tetrahydrofuran (Wako Pure Chemical Industries)
Flow rate: 1.0 mL / min Sample concentration: 1.0% by mass
Sample injection volume: 100 μL
Detector: Differential refractometer Standard material: Monodisperse polystyrene
[13C-NMR分析]:
13C-NMR分析は、日本電子製JNM-EX400を使用し、測定溶媒としてDMSO-d6を使用して行った。ポリマーにおける各構造単位の含有率は、13C-NMRで得られたスペクトルにおける各構造単位に対応するピークの面積比から算出した。 [ 13 C-NMR analysis]:
The 13 C-NMR analysis was performed using JNM-EX400 manufactured by JEOL Ltd. and DMSO-d 6 as the measurement solvent. The content of each structural unit in the polymer was calculated from the area ratio of the peak corresponding to each structural unit in the spectrum obtained by 13 C-NMR.
13C-NMR分析は、日本電子製JNM-EX400を使用し、測定溶媒としてDMSO-d6を使用して行った。ポリマーにおける各構造単位の含有率は、13C-NMRで得られたスペクトルにおける各構造単位に対応するピークの面積比から算出した。 [ 13 C-NMR analysis]:
The 13 C-NMR analysis was performed using JNM-EX400 manufactured by JEOL Ltd. and DMSO-d 6 as the measurement solvent. The content of each structural unit in the polymer was calculated from the area ratio of the peak corresponding to each structural unit in the spectrum obtained by 13 C-NMR.
<[A]重合体の合成>
[合成例1]
1Lのフラスコ反応容器を減圧乾燥した後、窒素雰囲気下、蒸留脱水処理を行ったシクロヘキサン500gを注入し、0℃まで冷却した。その後、sec-ブチルリチウム(シクロヘキサン溶液:1.8mol/L)を4.40mL注入し、蒸留脱水処理を行ったスチレン40gを30分かけて滴下注入した。滴下終了後60分間熟成させた後、末端処理剤として1,2-ブチレンオキシド1gを注入し反応させた。反応溶液を室温まで昇温し、濃縮して、プロピレングリコールメチルエーテルアセテート(PGMEA)で置換した。その後、シュウ酸2%水溶液1,000gを注入撹拌し、静置後、下層の水層を取り除いた。この操作を3回繰り返し、リチウム塩を除去した後、超純水1,000gを注入撹拌し、下層の水層を取り除いた。この操作を3回繰り返しシュウ酸除去した後、溶液を濃縮してn-ヘキサン500g中に滴下して、重合体を析出させた。減圧濾過した重合体をn-ヘキサンで2回洗浄した後、60℃で減圧乾燥させることで、白色の重合体(A-1)10.5gを得た。
重合体(A-1)のMwは5,000であり、Mw/Mnは1.13であった。 <[A] Synthesis of polymer>
[Synthesis Example 1]
After drying the 1 L flask reaction vessel under reduced pressure, 500 g of cyclohexane subjected to distillation dehydration treatment was injected under a nitrogen atmosphere and cooled to 0 ° C. Thereafter, 4.40 mL of sec-butyllithium (cyclohexane solution: 1.8 mol / L) was injected, and 40 g of styrene subjected to distillation dehydration was added dropwise over 30 minutes. After completion of the dropping, the mixture was aged for 60 minutes, and 1 g of 1,2-butylene oxide was injected as a terminal treating agent to react. The reaction solution was warmed to room temperature, concentrated, and replaced with propylene glycol methyl ether acetate (PGMEA). Thereafter, 1,000 g of a 2% oxalic acid aqueous solution was injected and stirred, and after standing, the lower aqueous layer was removed. This operation was repeated three times, and after removing the lithium salt, 1,000 g of ultrapure water was injected and stirred, and the lower aqueous layer was removed. This operation was repeated 3 times, and oxalic acid was removed. Then, the solution was concentrated and dropped into 500 g of n-hexane to precipitate a polymer. The polymer filtered under reduced pressure was washed twice with n-hexane and then dried under reduced pressure at 60 ° C. to obtain 10.5 g of a white polymer (A-1).
Mw of the polymer (A-1) was 5,000, and Mw / Mn was 1.13.
[合成例1]
1Lのフラスコ反応容器を減圧乾燥した後、窒素雰囲気下、蒸留脱水処理を行ったシクロヘキサン500gを注入し、0℃まで冷却した。その後、sec-ブチルリチウム(シクロヘキサン溶液:1.8mol/L)を4.40mL注入し、蒸留脱水処理を行ったスチレン40gを30分かけて滴下注入した。滴下終了後60分間熟成させた後、末端処理剤として1,2-ブチレンオキシド1gを注入し反応させた。反応溶液を室温まで昇温し、濃縮して、プロピレングリコールメチルエーテルアセテート(PGMEA)で置換した。その後、シュウ酸2%水溶液1,000gを注入撹拌し、静置後、下層の水層を取り除いた。この操作を3回繰り返し、リチウム塩を除去した後、超純水1,000gを注入撹拌し、下層の水層を取り除いた。この操作を3回繰り返しシュウ酸除去した後、溶液を濃縮してn-ヘキサン500g中に滴下して、重合体を析出させた。減圧濾過した重合体をn-ヘキサンで2回洗浄した後、60℃で減圧乾燥させることで、白色の重合体(A-1)10.5gを得た。
重合体(A-1)のMwは5,000であり、Mw/Mnは1.13であった。 <[A] Synthesis of polymer>
[Synthesis Example 1]
After drying the 1 L flask reaction vessel under reduced pressure, 500 g of cyclohexane subjected to distillation dehydration treatment was injected under a nitrogen atmosphere and cooled to 0 ° C. Thereafter, 4.40 mL of sec-butyllithium (cyclohexane solution: 1.8 mol / L) was injected, and 40 g of styrene subjected to distillation dehydration was added dropwise over 30 minutes. After completion of the dropping, the mixture was aged for 60 minutes, and 1 g of 1,2-butylene oxide was injected as a terminal treating agent to react. The reaction solution was warmed to room temperature, concentrated, and replaced with propylene glycol methyl ether acetate (PGMEA). Thereafter, 1,000 g of a 2% oxalic acid aqueous solution was injected and stirred, and after standing, the lower aqueous layer was removed. This operation was repeated three times, and after removing the lithium salt, 1,000 g of ultrapure water was injected and stirred, and the lower aqueous layer was removed. This operation was repeated 3 times, and oxalic acid was removed. Then, the solution was concentrated and dropped into 500 g of n-hexane to precipitate a polymer. The polymer filtered under reduced pressure was washed twice with n-hexane and then dried under reduced pressure at 60 ° C. to obtain 10.5 g of a white polymer (A-1).
Mw of the polymer (A-1) was 5,000, and Mw / Mn was 1.13.
[合成例2~9]
モノマー化合物、sec-ブチルリチウムの使用量及び末端処理剤の種類を表1に記載の通りとした以外は合成例1と同様の方法により重合体(A-2)~(A-8)及び(a-1)を合成した。各重合体のMw及びMw/Mnは、表1に合わせて示した。 [Synthesis Examples 2 to 9]
Polymers (A-2) to (A-8) and (A-8) and (A-8) and (A) a-1) was synthesized. Mw and Mw / Mn of each polymer are shown in Table 1.
モノマー化合物、sec-ブチルリチウムの使用量及び末端処理剤の種類を表1に記載の通りとした以外は合成例1と同様の方法により重合体(A-2)~(A-8)及び(a-1)を合成した。各重合体のMw及びMw/Mnは、表1に合わせて示した。 [Synthesis Examples 2 to 9]
Polymers (A-2) to (A-8) and (A-8) and (A-8) and (A) a-1) was synthesized. Mw and Mw / Mn of each polymer are shown in Table 1.
[合成例10]
モノマー化合物としてのフェニルメタクリレート100gを2-ブタノン200gに溶解し、ラジカル重合開始剤としてのVA-086(和光純薬工業製、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド])7.10g(モノマー化合物に対して5モル%)を添加して単量体溶液を調製した。100gの2-ブタノンを入れた1,000mLの三口フラスコを30分窒素パージした後、攪拌しながら80℃に加熱し、上記調製した単量体溶液を滴下漏斗にて3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合反応液を水冷して30℃以下に冷却した。この冷却した重合反応液を1,500gのメタノール中に投入し、析出した白色粉末をろ別した。ろ別した白色粉末を300gのメタノールで2回洗浄した後ろ別し、50℃で17時間乾燥させ、白色の重合体(A-9)を71.3g得た。
重合体(A-9)のMwは5,000であり、Mw/Mnは1.23であった。なお、ラジカル重合開始剤VA-086の構造は、下記式(i)の通りである。また、重合体(A-9)は、主鎖の末端に下記式(ii)で表される構造を有する。 [Synthesis Example 10]
100 g of phenyl methacrylate as a monomer compound is dissolved in 200 g of 2-butanone, and VA-086 as a radical polymerization initiator (2,2′-azobis [2-methyl-N- (2-hydroxyethyl) manufactured by Wako Pure Chemical Industries, Ltd. ) Propionamide]) 7.10 g (5 mol% based on monomer compound) was added to prepare a monomer solution. A 1,000 mL three-necked flask containing 100 g of 2-butanone was purged with nitrogen for 30 minutes, then heated to 80 ° C. with stirring, and the monomer solution prepared above was added dropwise over 3 hours using a dropping funnel. The dripping start was set as the polymerization reaction start time, and the polymerization reaction was carried out for 6 hours. After completion of the polymerization reaction, the polymerization reaction solution was cooled with water and cooled to 30 ° C. or lower. This cooled polymerization reaction liquid was put into 1,500 g of methanol, and the precipitated white powder was separated by filtration. The filtered white powder was washed twice with 300 g of methanol and then separated and dried at 50 ° C. for 17 hours to obtain 71.3 g of a white polymer (A-9).
Mw of the polymer (A-9) was 5,000, and Mw / Mn was 1.23. The structure of the radical polymerization initiator VA-086 is as shown in the following formula (i). The polymer (A-9) has a structure represented by the following formula (ii) at the end of the main chain.
モノマー化合物としてのフェニルメタクリレート100gを2-ブタノン200gに溶解し、ラジカル重合開始剤としてのVA-086(和光純薬工業製、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド])7.10g(モノマー化合物に対して5モル%)を添加して単量体溶液を調製した。100gの2-ブタノンを入れた1,000mLの三口フラスコを30分窒素パージした後、攪拌しながら80℃に加熱し、上記調製した単量体溶液を滴下漏斗にて3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合反応液を水冷して30℃以下に冷却した。この冷却した重合反応液を1,500gのメタノール中に投入し、析出した白色粉末をろ別した。ろ別した白色粉末を300gのメタノールで2回洗浄した後ろ別し、50℃で17時間乾燥させ、白色の重合体(A-9)を71.3g得た。
重合体(A-9)のMwは5,000であり、Mw/Mnは1.23であった。なお、ラジカル重合開始剤VA-086の構造は、下記式(i)の通りである。また、重合体(A-9)は、主鎖の末端に下記式(ii)で表される構造を有する。 [Synthesis Example 10]
100 g of phenyl methacrylate as a monomer compound is dissolved in 200 g of 2-butanone, and VA-086 as a radical polymerization initiator (2,2′-azobis [2-methyl-N- (2-hydroxyethyl) manufactured by Wako Pure Chemical Industries, Ltd. ) Propionamide]) 7.10 g (5 mol% based on monomer compound) was added to prepare a monomer solution. A 1,000 mL three-necked flask containing 100 g of 2-butanone was purged with nitrogen for 30 minutes, then heated to 80 ° C. with stirring, and the monomer solution prepared above was added dropwise over 3 hours using a dropping funnel. The dripping start was set as the polymerization reaction start time, and the polymerization reaction was carried out for 6 hours. After completion of the polymerization reaction, the polymerization reaction solution was cooled with water and cooled to 30 ° C. or lower. This cooled polymerization reaction liquid was put into 1,500 g of methanol, and the precipitated white powder was separated by filtration. The filtered white powder was washed twice with 300 g of methanol and then separated and dried at 50 ° C. for 17 hours to obtain 71.3 g of a white polymer (A-9).
Mw of the polymer (A-9) was 5,000, and Mw / Mn was 1.23. The structure of the radical polymerization initiator VA-086 is as shown in the following formula (i). The polymer (A-9) has a structure represented by the following formula (ii) at the end of the main chain.
上記式(ii)中、*は、重合体の主鎖末端の炭素原子に結合する部位を示す。
In the above formula (ii), * indicates a site bonded to the carbon atom at the end of the main chain of the polymer.
[合成例11~12]
モノマー化合物とラジカル重合開始剤の種類を表2に記載の通りとした以外は合成例10と同様の方法により重合体(A-10)及び(A-11)を合成した。各重合体のMw及びMw/Mnを表2に合わせて示した。なお、合成例11で用いたラジカル重合開始剤VA-061(和光純薬工業製、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン])の構造は、下記式(iii)の通りである。また、重合体(A-10)は、主鎖の末端に下記式(iv)で表される構造を有し、重合体(A-11)は、主鎖の末端に上記式(ii)で表される構造を有する。 [Synthesis Examples 11 to 12]
Polymers (A-10) and (A-11) were synthesized by the same method as in Synthesis Example 10 except that the types of the monomer compound and the radical polymerization initiator were as described in Table 2. Mw and Mw / Mn of each polymer are shown in Table 2. The structure of the radical polymerization initiator VA-061 (manufactured by Wako Pure Chemical Industries, Ltd., 2,2′-azobis [2- (2-imidazolin-2-yl) propane]) used in Synthesis Example 11 is represented by the following formula ( iii). The polymer (A-10) has a structure represented by the following formula (iv) at the end of the main chain, and the polymer (A-11) is represented by the above formula (ii) at the end of the main chain. It has the structure represented.
モノマー化合物とラジカル重合開始剤の種類を表2に記載の通りとした以外は合成例10と同様の方法により重合体(A-10)及び(A-11)を合成した。各重合体のMw及びMw/Mnを表2に合わせて示した。なお、合成例11で用いたラジカル重合開始剤VA-061(和光純薬工業製、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン])の構造は、下記式(iii)の通りである。また、重合体(A-10)は、主鎖の末端に下記式(iv)で表される構造を有し、重合体(A-11)は、主鎖の末端に上記式(ii)で表される構造を有する。 [Synthesis Examples 11 to 12]
Polymers (A-10) and (A-11) were synthesized by the same method as in Synthesis Example 10 except that the types of the monomer compound and the radical polymerization initiator were as described in Table 2. Mw and Mw / Mn of each polymer are shown in Table 2. The structure of the radical polymerization initiator VA-061 (manufactured by Wako Pure Chemical Industries, Ltd., 2,2′-azobis [2- (2-imidazolin-2-yl) propane]) used in Synthesis Example 11 is represented by the following formula ( iii). The polymer (A-10) has a structure represented by the following formula (iv) at the end of the main chain, and the polymer (A-11) is represented by the above formula (ii) at the end of the main chain. It has the structure represented.
上記式(iv)中、*は、重合体の主鎖末端の炭素原子に結合する部位を示す。
In the above formula (iv), * indicates a site bonded to the carbon atom at the end of the main chain of the polymer.
<[B]ポリシロキサンの合成>
[B]ポリシロキサンの合成に用いた加水分解性シラン化合物(M-1)~(M-3)を下記式で示した。 <[B] Synthesis of polysiloxane>
[B] Hydrolyzable silane compounds (M-1) to (M-3) used for the synthesis of polysiloxane were represented by the following formulae.
[B]ポリシロキサンの合成に用いた加水分解性シラン化合物(M-1)~(M-3)を下記式で示した。 <[B] Synthesis of polysiloxane>
[B] Hydrolyzable silane compounds (M-1) to (M-3) used for the synthesis of polysiloxane were represented by the following formulae.
[合成例13]
無水マレイン酸5gを水100gに加熱溶解させてマレイン酸水溶液を調製した。次に、フェニルトリエトキシシラン(M-1)23.0g、4-t-ブトキシフェネチルトリエトキシシラン(M-2)34.0g、及びプロピレングリコールモノプロピルエーテル500gをフラスコに入れた。このフラスコに、先に調製しておいたマレイン酸水溶液を入れた滴下ロートとをセットしオイルバスにて60℃で加熱した後、マレイン酸水溶液をゆっくり滴下し、60℃で4時間反応させた。反応終了後、濃塩酸1.0gを入れ、60℃で1時間反応させた。次いで、反応液を冷却後、PGMEA500gを入れて、エバポレータにセットし、反応中生成したメタノール、及びエタノールを除去した。その後、反応液に水500gを入れ、酸を抽出し、洗浄を行った後、さらにエバポレータにより濃縮し、重合体(B-1)を得た。なお、この重合体(B-1)は、固形分濃度が15質量%、Mwが2,000、Mw/Mnが1.13であった。なお、本明細書において「固形分」とは、試料を175℃のホットプレートで1時間乾燥して揮発物質を除いた残分をいう。
1H-NMR、FT-IRから求めたフェニルトリエトキシシランに由来する構造単位の含有率(モル%):4-t-ブトキシフェネチルトリエトキシシランに由来する構造単位の含有率(モル%)は30(モル%):70(モル%)であった。 [Synthesis Example 13]
A maleic acid aqueous solution was prepared by dissolving 5 g of maleic anhydride in 100 g of water by heating. Next, 23.0 g of phenyltriethoxysilane (M-1), 34.0 g of 4-t-butoxyphenethyltriethoxysilane (M-2), and 500 g of propylene glycol monopropyl ether were placed in the flask. To this flask, the dropping funnel containing the maleic acid aqueous solution prepared in advance was set and heated at 60 ° C. in an oil bath, and then the maleic acid aqueous solution was slowly dropped and reacted at 60 ° C. for 4 hours. . After completion of the reaction, 1.0 g of concentrated hydrochloric acid was added and reacted at 60 ° C. for 1 hour. Next, after cooling the reaction solution, 500 g of PGMEA was added and set in an evaporator to remove methanol and ethanol generated during the reaction. Thereafter, 500 g of water was added to the reaction solution, and the acid was extracted, washed, and then concentrated by an evaporator to obtain a polymer (B-1). The polymer (B-1) had a solid content concentration of 15% by mass, Mw of 2,000, and Mw / Mn of 1.13. In the present specification, the “solid content” means a residue obtained by drying a sample on a hot plate at 175 ° C. for 1 hour to remove volatile substances.
Content rate (mol%) of structural units derived from phenyltriethoxysilane determined from 1 H-NMR and FT-IR: Content (mol%) of structural units derived from 4-t-butoxyphenethyltriethoxysilane is 30 (mol%): 70 (mol%).
無水マレイン酸5gを水100gに加熱溶解させてマレイン酸水溶液を調製した。次に、フェニルトリエトキシシラン(M-1)23.0g、4-t-ブトキシフェネチルトリエトキシシラン(M-2)34.0g、及びプロピレングリコールモノプロピルエーテル500gをフラスコに入れた。このフラスコに、先に調製しておいたマレイン酸水溶液を入れた滴下ロートとをセットしオイルバスにて60℃で加熱した後、マレイン酸水溶液をゆっくり滴下し、60℃で4時間反応させた。反応終了後、濃塩酸1.0gを入れ、60℃で1時間反応させた。次いで、反応液を冷却後、PGMEA500gを入れて、エバポレータにセットし、反応中生成したメタノール、及びエタノールを除去した。その後、反応液に水500gを入れ、酸を抽出し、洗浄を行った後、さらにエバポレータにより濃縮し、重合体(B-1)を得た。なお、この重合体(B-1)は、固形分濃度が15質量%、Mwが2,000、Mw/Mnが1.13であった。なお、本明細書において「固形分」とは、試料を175℃のホットプレートで1時間乾燥して揮発物質を除いた残分をいう。
1H-NMR、FT-IRから求めたフェニルトリエトキシシランに由来する構造単位の含有率(モル%):4-t-ブトキシフェネチルトリエトキシシランに由来する構造単位の含有率(モル%)は30(モル%):70(モル%)であった。 [Synthesis Example 13]
A maleic acid aqueous solution was prepared by dissolving 5 g of maleic anhydride in 100 g of water by heating. Next, 23.0 g of phenyltriethoxysilane (M-1), 34.0 g of 4-t-butoxyphenethyltriethoxysilane (M-2), and 500 g of propylene glycol monopropyl ether were placed in the flask. To this flask, the dropping funnel containing the maleic acid aqueous solution prepared in advance was set and heated at 60 ° C. in an oil bath, and then the maleic acid aqueous solution was slowly dropped and reacted at 60 ° C. for 4 hours. . After completion of the reaction, 1.0 g of concentrated hydrochloric acid was added and reacted at 60 ° C. for 1 hour. Next, after cooling the reaction solution, 500 g of PGMEA was added and set in an evaporator to remove methanol and ethanol generated during the reaction. Thereafter, 500 g of water was added to the reaction solution, and the acid was extracted, washed, and then concentrated by an evaporator to obtain a polymer (B-1). The polymer (B-1) had a solid content concentration of 15% by mass, Mw of 2,000, and Mw / Mn of 1.13. In the present specification, the “solid content” means a residue obtained by drying a sample on a hot plate at 175 ° C. for 1 hour to remove volatile substances.
Content rate (mol%) of structural units derived from phenyltriethoxysilane determined from 1 H-NMR and FT-IR: Content (mol%) of structural units derived from 4-t-butoxyphenethyltriethoxysilane is 30 (mol%): 70 (mol%).
[合成例14~18]
使用したモノマーの種類及び量を表3に示した通りとした以外は、合成例13と同様に操作して重合体(B-2)~(B-6)を得た。各重合体のMw及びMw/Mn、並びに各構造単位の含有率は、表3に合わせて示した。 [Synthesis Examples 14 to 18]
Polymers (B-2) to (B-6) were obtained in the same manner as in Synthesis Example 13, except that the types and amounts of the monomers used were as shown in Table 3. The Mw and Mw / Mn of each polymer and the content of each structural unit are shown in Table 3.
使用したモノマーの種類及び量を表3に示した通りとした以外は、合成例13と同様に操作して重合体(B-2)~(B-6)を得た。各重合体のMw及びMw/Mn、並びに各構造単位の含有率は、表3に合わせて示した。 [Synthesis Examples 14 to 18]
Polymers (B-2) to (B-6) were obtained in the same manner as in Synthesis Example 13, except that the types and amounts of the monomers used were as shown in Table 3. The Mw and Mw / Mn of each polymer and the content of each structural unit are shown in Table 3.
<パターン形成用自己組織化組成物の調製>
[実施例1]
重合体(A-1)及び重合体(B-1)を質量比4:6で混合し、それぞれの濃度が1質量%のPGMEA溶液を調製した。この溶液を孔径200nmのメンブレンフィルターで濾過してパターン形成用自己組織化組成物を調製し、下記の方法によりパターンを形成した。 <Preparation of self-assembling composition for pattern formation>
[Example 1]
Polymer (A-1) and polymer (B-1) were mixed at a mass ratio of 4: 6 to prepare a PGMEA solution having a concentration of 1% by mass. This solution was filtered through a membrane filter having a pore diameter of 200 nm to prepare a self-assembling composition for pattern formation, and a pattern was formed by the following method.
[実施例1]
重合体(A-1)及び重合体(B-1)を質量比4:6で混合し、それぞれの濃度が1質量%のPGMEA溶液を調製した。この溶液を孔径200nmのメンブレンフィルターで濾過してパターン形成用自己組織化組成物を調製し、下記の方法によりパターンを形成した。 <Preparation of self-assembling composition for pattern formation>
[Example 1]
Polymer (A-1) and polymer (B-1) were mixed at a mass ratio of 4: 6 to prepare a PGMEA solution having a concentration of 1% by mass. This solution was filtered through a membrane filter having a pore diameter of 200 nm to prepare a self-assembling composition for pattern formation, and a pattern was formed by the following method.
[実施例2~17及び比較例1]
使用した重合体の種類を表4に示した通りとした以外は、実施例1と同様に操作して、パターン形成用自己組織化組成物を調製し、下記の方法によりパターンを形成した。 [Examples 2 to 17 and Comparative Example 1]
A self-assembling composition for pattern formation was prepared in the same manner as in Example 1 except that the type of polymer used was as shown in Table 4, and a pattern was formed by the following method.
使用した重合体の種類を表4に示した通りとした以外は、実施例1と同様に操作して、パターン形成用自己組織化組成物を調製し、下記の方法によりパターンを形成した。 [Examples 2 to 17 and Comparative Example 1]
A self-assembling composition for pattern formation was prepared in the same manner as in Example 1 except that the type of polymer used was as shown in Table 4, and a pattern was formed by the following method.
<パターン形成方法>
12インチシリコンウェハ上に、下層膜(ARC66、ブルワー・サイエンス製)を、CLEAN TRACK ACT12(東京エレクトロン製)を使用してスピンコートした後、205℃ベークして膜厚77nmの下層膜を形成した。形成した下層膜上に、ARX2928JN(JSR製)をスピンコートした後、PB(120℃、60秒)することにより膜厚60nmのレジスト膜を形成した。ArF液浸露光装置(NSR S610C、ニコン製)を使用し、NA;1.30、CrossPole、σ=0.977/0.78の光学条件にて、マスクパターンを介して露光した。その後、115℃で60秒間PEBを行った後、2.38質量%のテトラメチルアンモニウムヒドロキシド水溶液により、23℃で30秒間現像し、水洗し、乾燥することにより、プレパターン(60nmホール/120nmピッチ)を得た。続いて、このプレパターンに254nmの紫外光を150mJ/cm2照射後、170℃で5分間ベークすることにより評価基板を得た。
次に、各パターン形成用自己組織化組成物を上記評価基板上に厚さ15nmになるように塗布し、120℃で1分間焼成して相分離させ、ミクロドメイン構造を形成した。その後、シクロヘキサンに1分間浸漬させて、ポリスチレン部分を除去し、ホールパターンを形成した。 <Pattern formation method>
A 12-inch silicon wafer was spin-coated with an underlayer film (ARC66, manufactured by Brewer Science) using CLEAN TRACK ACT12 (manufactured by Tokyo Electron), and then baked at 205 ° C. to form an underlayer film having a thickness of 77 nm. . On the formed lower layer film, ARX2928JN (manufactured by JSR) was spin-coated and then PB (120 ° C., 60 seconds) was formed to form a resist film having a thickness of 60 nm. Using an ArF immersion exposure apparatus (NSR S610C, manufactured by Nikon), exposure was performed through a mask pattern under optical conditions of NA: 1.30, CrossPole, and σ = 0.777 / 0.78. Thereafter, PEB was performed at 115 ° C. for 60 seconds, and then developed with a 2.38 mass% tetramethylammonium hydroxide aqueous solution at 23 ° C. for 30 seconds, washed with water, and dried to obtain a prepattern (60 nm hole / 120 nm Pitch). Subsequently, the prepattern was irradiated with ultraviolet light of 254 nm at 150 mJ / cm 2 and then baked at 170 ° C. for 5 minutes to obtain an evaluation substrate.
Next, each self-assembling composition for pattern formation was applied on the evaluation substrate so as to have a thickness of 15 nm, and baked at 120 ° C. for 1 minute to cause phase separation to form a microdomain structure. Then, it was immersed in cyclohexane for 1 minute, the polystyrene part was removed, and the hole pattern was formed.
12インチシリコンウェハ上に、下層膜(ARC66、ブルワー・サイエンス製)を、CLEAN TRACK ACT12(東京エレクトロン製)を使用してスピンコートした後、205℃ベークして膜厚77nmの下層膜を形成した。形成した下層膜上に、ARX2928JN(JSR製)をスピンコートした後、PB(120℃、60秒)することにより膜厚60nmのレジスト膜を形成した。ArF液浸露光装置(NSR S610C、ニコン製)を使用し、NA;1.30、CrossPole、σ=0.977/0.78の光学条件にて、マスクパターンを介して露光した。その後、115℃で60秒間PEBを行った後、2.38質量%のテトラメチルアンモニウムヒドロキシド水溶液により、23℃で30秒間現像し、水洗し、乾燥することにより、プレパターン(60nmホール/120nmピッチ)を得た。続いて、このプレパターンに254nmの紫外光を150mJ/cm2照射後、170℃で5分間ベークすることにより評価基板を得た。
次に、各パターン形成用自己組織化組成物を上記評価基板上に厚さ15nmになるように塗布し、120℃で1分間焼成して相分離させ、ミクロドメイン構造を形成した。その後、シクロヘキサンに1分間浸漬させて、ポリスチレン部分を除去し、ホールパターンを形成した。 <Pattern formation method>
A 12-inch silicon wafer was spin-coated with an underlayer film (ARC66, manufactured by Brewer Science) using CLEAN TRACK ACT12 (manufactured by Tokyo Electron), and then baked at 205 ° C. to form an underlayer film having a thickness of 77 nm. . On the formed lower layer film, ARX2928JN (manufactured by JSR) was spin-coated and then PB (120 ° C., 60 seconds) was formed to form a resist film having a thickness of 60 nm. Using an ArF immersion exposure apparatus (NSR S610C, manufactured by Nikon), exposure was performed through a mask pattern under optical conditions of NA: 1.30, CrossPole, and σ = 0.777 / 0.78. Thereafter, PEB was performed at 115 ° C. for 60 seconds, and then developed with a 2.38 mass% tetramethylammonium hydroxide aqueous solution at 23 ° C. for 30 seconds, washed with water, and dried to obtain a prepattern (60 nm hole / 120 nm Pitch). Subsequently, the prepattern was irradiated with ultraviolet light of 254 nm at 150 mJ / cm 2 and then baked at 170 ° C. for 5 minutes to obtain an evaluation substrate.
Next, each self-assembling composition for pattern formation was applied on the evaluation substrate so as to have a thickness of 15 nm, and baked at 120 ° C. for 1 minute to cause phase separation to form a microdomain structure. Then, it was immersed in cyclohexane for 1 minute, the polystyrene part was removed, and the hole pattern was formed.
<評価>
上記のように形成したパターンについて、測長SEM(S9380、日立ハイテクノロジーズ製)を用いて観察し、プレパターンのホールの直径(nm)から、得られたパターンのホールの直径(nm)をひいた値を求め、この値をシュリンク量(nm)とした。
シュリンク量(nm)が10nm以上である場合を良好、10nm未満の場合を不良と判断した。結果を表4に示す。 <Evaluation>
The pattern formed as described above is observed using a length measuring SEM (S9380, manufactured by Hitachi High-Technologies), and the diameter (nm) of the hole of the obtained pattern is subtracted from the diameter (nm) of the hole of the pre-pattern. The value was determined, and this value was defined as the shrink amount (nm).
The case where the shrink amount (nm) was 10 nm or more was judged good, and the case where it was less than 10 nm was judged as bad. The results are shown in Table 4.
上記のように形成したパターンについて、測長SEM(S9380、日立ハイテクノロジーズ製)を用いて観察し、プレパターンのホールの直径(nm)から、得られたパターンのホールの直径(nm)をひいた値を求め、この値をシュリンク量(nm)とした。
シュリンク量(nm)が10nm以上である場合を良好、10nm未満の場合を不良と判断した。結果を表4に示す。 <Evaluation>
The pattern formed as described above is observed using a length measuring SEM (S9380, manufactured by Hitachi High-Technologies), and the diameter (nm) of the hole of the obtained pattern is subtracted from the diameter (nm) of the hole of the pre-pattern. The value was determined, and this value was defined as the shrink amount (nm).
The case where the shrink amount (nm) was 10 nm or more was judged good, and the case where it was less than 10 nm was judged as bad. The results are shown in Table 4.
表4に示されるように、実施例のパターン形成用自己組織化組成物を用いた場合においては、比較例と比べて、パターンのホール径をより小さくすることができ、十分微細なミクロドメイン構造が得られることがわかった。
As shown in Table 4, in the case of using the pattern forming self-assembling composition of the example, the hole diameter of the pattern can be made smaller than that of the comparative example, and the micro domain structure is sufficiently fine. Was found to be obtained.
本発明によると、十分に微細なミクロドメイン構造を有するパターンを形成することができるパターン形成用自己組織化組成物及びこれを用いたパターン形成方法を提供することができる。従って、本発明のパターン形成用自己組織化組成物及びパターン形成方法は、さらなる微細化が要求されている半導体デバイス、液晶デバイス等の各種電子デバイス製造におけるリソグラフィー工程に好適に用いられる。
According to the present invention, it is possible to provide a self-assembling composition for pattern formation that can form a pattern having a sufficiently fine microdomain structure, and a pattern forming method using the same. Therefore, the self-assembling composition for pattern formation and the pattern forming method of the present invention are suitably used for lithography processes in the manufacture of various electronic devices such as semiconductor devices and liquid crystal devices that require further miniaturization.
101.基板
102.下層膜
103.プレパターン
104.塗膜
105.自己組織化膜
105a.[A]重合体からなる相
105b.[B]ポリシロキサンからなる相 101.Substrate 102. Underlayer film 103. Pre-pattern 104. Coating film 105. Self-assembled film 105a. [A] Phase 105b consisting of polymer b. [B] Phase composed of polysiloxane
102.下層膜
103.プレパターン
104.塗膜
105.自己組織化膜
105a.[A]重合体からなる相
105b.[B]ポリシロキサンからなる相 101.
Claims (9)
- [A]ヘテロ原子を含む基(α)を主鎖の少なくとも一方の末端に有する重合体、及び
[B]ポリシロキサン
を含有するパターン形成用自己組織化組成物。 [A] A polymer having a hetero atom-containing group (α) at at least one end of the main chain, and [B] a self-assembling composition for pattern formation, containing polysiloxane. - 上記ヘテロ原子が、酸素原子、窒素原子、硫黄原子、リン原子、スズ原子及びケイ素原子からなる群より選択される少なくとも1種である請求項1に記載のパターン形成用自己組織化組成物。 The self-assembled composition for pattern formation according to claim 1, wherein the heteroatom is at least one selected from the group consisting of an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a tin atom and a silicon atom.
- 上記基(α)が下記式(1)で表される請求項1に記載のパターン形成用自己組織化組成物。
- [A]重合体が、スチレン系重合体である請求項1に記載のパターン形成用自己組織化組成物。 The self-assembled composition for pattern formation according to claim 1, wherein the [A] polymer is a styrene polymer.
- [B]ポリシロキサンが、下記式(2)で表される化合物を含む加水分解性シラン化合物の加水分解縮合物である請求項1に記載のパターン形成用自己組織化組成物。
- [A]重合体100質量部に対する[B]ポリシロキサンの含有量が、20質量部以上200質量部以下である請求項1に記載のパターン形成用自己組織化組成物。 The self-assembling composition for pattern formation according to claim 1, wherein the content of [B] polysiloxane with respect to 100 parts by mass of [A] polymer is 20 parts by mass or more and 200 parts by mass or less.
- (1)請求項1に記載のパターン形成用自己組織化組成物を用い、基板上に相分離構造を有する自己組織化膜を形成する工程、及び
(2)上記自己組織化膜の一部の相を除去する工程
を含むパターン形成方法。 (1) A step of forming a self-assembled film having a phase separation structure on a substrate using the self-assembled composition for pattern formation according to claim 1, and (2) a part of the self-assembled film The pattern formation method including the process of removing a phase. - 上記(1)工程前に、
(0-1)基板上に下層膜を形成する工程、及び
(0-2)上記下層膜上にプレパターンを形成する工程
をさらに有し、
上記(1)工程において、自己組織化膜を上記プレパターンによって区切られた上記下層膜上の領域に形成する請求項7に記載のパターン形成方法。 Before step (1) above,
(0-1) further comprising a step of forming a lower layer film on the substrate, and (0-2) a step of forming a pre-pattern on the lower layer film,
The pattern forming method according to claim 7, wherein in the step (1), a self-assembled film is formed in a region on the lower layer film delimited by the prepattern. - 得られるパターンがラインアンドスペースパターン又はホールパターンである請求項7に記載のパターン形成方法。 The pattern forming method according to claim 7, wherein the obtained pattern is a line and space pattern or a hole pattern.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011248549 | 2011-11-14 | ||
JP2011-248549 | 2011-11-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013073505A1 true WO2013073505A1 (en) | 2013-05-23 |
Family
ID=48429563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/079308 WO2013073505A1 (en) | 2011-11-14 | 2012-11-12 | Self-organizing composition for pattern formation and pattern formation method |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2013073505A1 (en) |
TW (1) | TW201323508A (en) |
WO (1) | WO2013073505A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013146600A1 (en) * | 2012-03-27 | 2013-10-03 | 日産化学工業株式会社 | Underlayer film forming composition for self-assembled films |
KR20150014008A (en) * | 2013-07-25 | 2015-02-06 | 에스케이하이닉스 주식회사 | Method for fabricating semiconductor device |
WO2015041208A1 (en) * | 2013-09-19 | 2015-03-26 | 日産化学工業株式会社 | Composition for forming underlayer film of self-assembling film including aliphatic polycyclic structure |
JP2016108436A (en) * | 2014-12-05 | 2016-06-20 | 東京応化工業株式会社 | Substrate agent and manufacturing method of structure containing phase separation structure |
JP2017505709A (en) * | 2014-01-16 | 2017-02-23 | ブルーワー サイエンス アイ エヌ シー. | High χ block copolymer for guided self-assembly |
US10504726B2 (en) | 2013-07-25 | 2019-12-10 | SK Hynix Inc. | Nano-scale structures |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6023010B2 (en) * | 2013-06-26 | 2016-11-09 | 東京エレクトロン株式会社 | Substrate processing method, program, computer storage medium, and substrate processing system |
KR102308953B1 (en) * | 2017-03-10 | 2021-10-05 | 주식회사 엘지화학 | Preparation method of patterened substrate |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11236416A (en) * | 1997-10-08 | 1999-08-31 | Shin Etsu Chem Co Ltd | Polystyrene-based polymer compound, chemical amplification positive type resist material and pattern formation |
JP2003140350A (en) * | 2001-11-07 | 2003-05-14 | Shin Etsu Chem Co Ltd | Polymer compound, resist material and method for forming pattern |
JP2003255546A (en) * | 2001-12-28 | 2003-09-10 | Fujitsu Ltd | Alkali-soluble siloxane polymer, positive resist composition, resist pattern and method for producing the same, electronic circuit device and method for producing the same |
JP2005126481A (en) * | 2003-10-21 | 2005-05-19 | Nippon Steel Chem Co Ltd | Block copolymer and its manufacturing process |
JP2005340720A (en) * | 2004-05-31 | 2005-12-08 | Jsr Corp | Method of forming pattern and method of manufacturing semiconductor device |
JP2007246600A (en) * | 2006-03-14 | 2007-09-27 | Shin Etsu Chem Co Ltd | Self-organizing polymeric membrane material, self-organizing pattern, and method for forming pattern |
-
2012
- 2012-11-12 JP JP2013544262A patent/JPWO2013073505A1/en active Pending
- 2012-11-12 WO PCT/JP2012/079308 patent/WO2013073505A1/en active Application Filing
- 2012-11-14 TW TW101142445A patent/TW201323508A/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11236416A (en) * | 1997-10-08 | 1999-08-31 | Shin Etsu Chem Co Ltd | Polystyrene-based polymer compound, chemical amplification positive type resist material and pattern formation |
JP2003140350A (en) * | 2001-11-07 | 2003-05-14 | Shin Etsu Chem Co Ltd | Polymer compound, resist material and method for forming pattern |
JP2003255546A (en) * | 2001-12-28 | 2003-09-10 | Fujitsu Ltd | Alkali-soluble siloxane polymer, positive resist composition, resist pattern and method for producing the same, electronic circuit device and method for producing the same |
JP2005126481A (en) * | 2003-10-21 | 2005-05-19 | Nippon Steel Chem Co Ltd | Block copolymer and its manufacturing process |
JP2005340720A (en) * | 2004-05-31 | 2005-12-08 | Jsr Corp | Method of forming pattern and method of manufacturing semiconductor device |
JP2007246600A (en) * | 2006-03-14 | 2007-09-27 | Shin Etsu Chem Co Ltd | Self-organizing polymeric membrane material, self-organizing pattern, and method for forming pattern |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013146600A1 (en) * | 2012-03-27 | 2013-10-03 | 日産化学工業株式会社 | Underlayer film forming composition for self-assembled films |
US10000664B2 (en) | 2012-03-27 | 2018-06-19 | Nissan Chemical Industries, Ltd. | Underlayer film-forming composition for self-assembled films |
KR20150014008A (en) * | 2013-07-25 | 2015-02-06 | 에스케이하이닉스 주식회사 | Method for fabricating semiconductor device |
US10504726B2 (en) | 2013-07-25 | 2019-12-10 | SK Hynix Inc. | Nano-scale structures |
KR102105196B1 (en) * | 2013-07-25 | 2020-04-29 | 에스케이하이닉스 주식회사 | Method for fabricating semiconductor device |
WO2015041208A1 (en) * | 2013-09-19 | 2015-03-26 | 日産化学工業株式会社 | Composition for forming underlayer film of self-assembling film including aliphatic polycyclic structure |
US11674053B2 (en) | 2013-09-19 | 2023-06-13 | Nissan Chemical Industries, Ltd. | Composition for forming underlayer film of self-assembled film including aliphatic polycyclic structure |
JP2017505709A (en) * | 2014-01-16 | 2017-02-23 | ブルーワー サイエンス アイ エヌ シー. | High χ block copolymer for guided self-assembly |
US10421878B2 (en) | 2014-01-16 | 2019-09-24 | Brewer Science, Inc. | High-Chi block copolymers for directed self-assembly |
JP2016108436A (en) * | 2014-12-05 | 2016-06-20 | 東京応化工業株式会社 | Substrate agent and manufacturing method of structure containing phase separation structure |
Also Published As
Publication number | Publication date |
---|---|
TW201323508A (en) | 2013-06-16 |
JPWO2013073505A1 (en) | 2015-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013073505A1 (en) | Self-organizing composition for pattern formation and pattern formation method | |
JP5835123B2 (en) | Self-assembling composition for pattern formation and pattern forming method | |
US20190241695A1 (en) | Composition and pattern-forming method | |
US9738746B2 (en) | Composition for pattern formation, pattern-forming method, and block copolymer | |
JP6394042B2 (en) | Pattern forming composition and pattern forming method | |
WO2014003023A1 (en) | Composition for pattern formation and pattern forming method | |
US20150252216A1 (en) | Pattern-forming method and directed self-assembling composition | |
KR102393027B1 (en) | Composition for pattern formation and pattern formation method | |
JP7044976B2 (en) | Pattern formation method | |
US20150187581A1 (en) | Base film-forming composition, and directed self-assembly lithography method | |
WO2013146715A1 (en) | Pattern forming method | |
JP6652721B2 (en) | Pattern forming composition and pattern forming method | |
WO2014188806A1 (en) | Self-organizing lithography process and underlayer film-formation composition | |
WO2022049968A1 (en) | Self-organizing film-forming composition, and method for forming pattern | |
JP5907009B2 (en) | Pattern formation method | |
JP6788198B2 (en) | Method and composition for forming contact hole pattern | |
JP2015139875A (en) | Self-organizing composition for pattern formation and pattern formation method | |
US20180192524A1 (en) | Forming method of contact hole pattern |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12849777 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013544262 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12849777 Country of ref document: EP Kind code of ref document: A1 |