WO2016159329A1 - Composition for forming pattern, and pattern forming method - Google Patents

Composition for forming pattern, and pattern forming method Download PDF

Info

Publication number
WO2016159329A1
WO2016159329A1 PCT/JP2016/060853 JP2016060853W WO2016159329A1 WO 2016159329 A1 WO2016159329 A1 WO 2016159329A1 JP 2016060853 W JP2016060853 W JP 2016060853W WO 2016159329 A1 WO2016159329 A1 WO 2016159329A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
pattern
self
block
pattern forming
Prior art date
Application number
PCT/JP2016/060853
Other languages
French (fr)
Japanese (ja)
Inventor
裕之 小松
智博 小田
雅史 堀
岳彦 成岡
永井 智樹
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to KR1020177027155A priority Critical patent/KR102604419B1/en
Priority to JP2017510241A priority patent/JP6652721B2/en
Publication of WO2016159329A1 publication Critical patent/WO2016159329A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • the present invention relates to a pattern forming composition and a pattern forming method.
  • pattern miniaturization is required in the pattern formation process.
  • a method of forming a self-organized pattern using a so-called self-organized phase separation (microdomain) structure that spontaneously forms an ordered pattern has been proposed.
  • a method for forming such a self-assembled pattern a block copolymer obtained by copolymerizing a monomer compound having specific properties and a monomer compound having different properties is used, and an ultrafine pattern is formed by self-assembly.
  • There are known methods for forming see JP 2008-149447 A, JP 2002-519728 A and JP 2003-218383 A). According to this method, by annealing the film containing the block copolymer, it is possible to form a pattern in a self-aligning manner by utilizing the property that polymer structures having the same properties are gathered together.
  • the present invention has been made based on the circumstances as described above, and the purpose thereof is a pattern capable of forming a self-assembled film with few defects in a regular arrangement structure and thus forming a pattern with a good shape.
  • the object is to provide a forming composition and a pattern forming method.
  • the invention made in order to solve the above problems includes a block copolymer (hereinafter also referred to as “[A] block copolymer”) that forms a phase separation structure by self-assembly, and a solvent (hereinafter referred to as “[B A first block comprising a substituted or unsubstituted styrene unit (hereinafter also referred to as “repeating unit (I)”). (Hereinafter also referred to as “block (a)”) and a second block (hereinafter also referred to as “block (b)”) comprising a (meth) acrylate unit (hereinafter also referred to as “repeating unit (II)”).
  • group (1) a first group (hereinafter also referred to as “group (1)”) bonded to at least one end of the main chain, and the group (1) binds a methyl group to the main chain side bond.
  • ClogP is -1 or more and 3 or less when Characterized in that it is a monovalent group which forms a compound.
  • Another invention made to solve the above-described problems includes a step of forming a phase-separated self-assembled film on one surface side of the substrate (hereinafter also referred to as a “self-assembled film forming step”), and the self
  • This is a pattern forming method including a step of removing a part of the organized film (hereinafter also referred to as “removing step”), and forming the self-assembled film with the pattern forming composition.
  • Directed Self Assembly refers to a phenomenon in which an organization or structure is spontaneously built without being caused only by control from an external factor.
  • Main chain refers to a chain composed of carbon atoms derived from carbon atoms constituting a polymerizable carbon-carbon double bond of a monomer in a block copolymer. However, the said chain
  • Terminal in “at least one terminal of the main chain” means that no bond is formed with the adjacent repeating unit among the carbon atoms of the main chain of the repeating unit located at the end of the block copolymer. Refers to a carbon atom.
  • ClogP is also referred to as “ClogPow”, and is a value of the octanol / water partition coefficient (logP) calculated by the ClogP method. The larger the value, the higher the hydrophobicity (lipid solubility).
  • the pattern forming composition and the pattern forming method of the present invention it is possible to form a self-assembled film with few defects in a regular array structure, and thus to form a pattern with a good shape. Therefore, they can be suitably used in pattern formation processes in the manufacture of various electronic devices such as semiconductor devices and liquid crystal devices that are required to be further miniaturized.
  • FIG. 2 is a schematic cross-sectional view illustrating an example of a state after forming a pre-pattern on the lower layer film in FIG. 1. It is typical sectional drawing which shows an example after forming a coating film with the composition for pattern formation between the pre-patterns in FIG. It is typical sectional drawing which shows an example of the state after making the coating film in FIG. 3 into a self-organization film
  • FIG. 5 is a schematic cross-sectional view showing an example of a state after removing a part of phases and a pre-pattern of the self-assembled film in FIG. 4.
  • the composition for pattern formation of this invention contains a [A] block copolymer and a [B] solvent.
  • the pattern forming composition may contain other optional components as long as the effects of the present invention are not impaired.
  • the block copolymer has a block (a), a block (b), and a group (1), and forms a phase separation structure by self-assembly.
  • Each of the blocks is composed of a chain structure of repeating units derived from one type of monomer.
  • the same type of blocks are aggregated by heating or the like to form a phase composed of the same type of blocks.
  • phases formed from different types of blocks do not mix with each other, it is presumed that a phase separation structure having an ordered pattern in which different types of phases are periodically and alternately repeated can be formed.
  • the composition can form a self-assembled film with few defects in the ordered arrangement structure.
  • the group (1) is a relatively highly hydrophilic group that forms a compound having a ClogP of ⁇ 1 or more and 3 or less, assuming that a methyl group is bonded to the main chain side bond. Therefore, by bonding the group (1) to at least one terminal of the main chain, the hydrophilicity of the terminal of the block to which the group (1) is connected can be increased. As a result, the physical property difference such as polarity between the block (a) composed of the relatively hydrophobic repeating unit (I) and the block (b) composed of the relatively hydrophilic repeating unit (II) is moderate. Therefore, it is considered that a self-assembled film with few defects in the regular arrangement structure can be formed.
  • the block copolymer may further have a block composed of a repeating unit other than the repeating unit (I) and the repeating unit (II). Moreover, the [A] block copolymer may have 1 type or multiple types of block (a), and may have 1 type or multiple types of block (b).
  • Examples of the block copolymer include a diblock copolymer having 2 blocks, a triblock copolymer having 3 blocks, and a tetrablock copolymer having 4 blocks. .
  • the block copolymer may be either a linear polymer or a branched polymer.
  • the number of arms of the star copolymer can be, for example, 2 or more and 7 or less.
  • the star copolymer examples include an asymmetric star copolymer (Miktoarm copolymer).
  • asymmetric star copolymer refers to a star copolymer in which each arm is formed of a different monomer, and is different from a symmetric star polymer in which each arm is formed of the same monomer. Refers to things.
  • [A] block copolymers are preferably linear polymers.
  • the [A] block copolymer is a diblock copolymer and a triblock copolymer from the viewpoint of easily forming a desired fine pattern. More preferred are polymers, and even more preferred are diblock copolymers.
  • the block copolymer may have a linking group between the blocks. Hereinafter, each block, group (1) and linking group will be described.
  • Block (a) Block (a) consists of repeating unit (I).
  • the repeating unit (I) is a substituted or unsubstituted styrene unit.
  • repeating unit (I) is a substituted styrene unit
  • substituent replacing the styrene unit include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, and an isobutyl group.
  • Alkyl groups having 1 to 20 carbon atoms such as tert-butyl group; An alkenyl group such as an ethenyl group; Alkoxy groups such as methoxy group and tert-butoxy group; Groups containing heteroatoms such as an acetoxy group, a nitro group, a cyano group; Examples thereof include groups containing halogen atoms such as chlorine atom, bromine atom and iodine atom.
  • an alkyl group having 1 to 20 carbon atoms is preferable, an alkyl group having 1 to 6 carbon atoms is more preferable, an alkyl group having 4 carbon atoms is more preferable, and a tert-butyl group is particularly preferable.
  • the bonding site of the substituent may be a main chain portion of the styrene unit (carbon derived from two carbon atoms constituting the polymerizable carbon-carbon double bond of styrene), or the ortho position of the aromatic ring of the styrene unit, It may be in meta or para position.
  • the binding site for the substituent is preferably the para position of the aromatic ring of the styrene unit.
  • the number of the substituents in the substituted styrene unit is not particularly limited, but is preferably 1 to 3, more preferably 1 and 2, and further preferably 1.
  • styrene unit a substituted styrene unit is preferred, a styrene unit substituted with an alkyl group is more preferred, a styrene unit substituted with a tert-butyl group is more preferred, and the para position of the aromatic ring is substituted with a tert-butyl group
  • the styrene units made are particularly preferred.
  • Block (b) consists of repeating unit (II).
  • the repeating unit (II) is a (meth) acrylic acid ester unit.
  • Examples of the monomer giving the (meth) acrylate unit include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and the like.
  • (Meth) acrylic acid alkyl ester (meth) acrylic acid cyclopentyl, (meth) acrylic acid cyclohexyl, (meth) acrylic acid 1-methylcyclopentyl, (meth) acrylic acid 2-ethyladamantyl, (meth) acrylic acid 2- ( (Meth) acrylic acid alicyclic saturated hydrocarbon esters such as adamantane-1-yl) propyl; (Meth) acrylic acid aryl esters such as phenyl (meth) acrylate and naphthyl (meth) acrylate; Examples include (meth) acrylic acid-substituted alkyl esters such as 2-hydroxyethyl (meth) acrylate, 3-hydroxyadamantyl (meth) acrylate, and 3-glycidylpropyl (meth) acrylate.
  • (meth) acrylic acid alkyl ester is preferable from the viewpoint of improving pattern formability and
  • the mass ratio ((I) / (II)) of the content ratio of the repeating unit (I) to the repeating unit (II) in the [A] block copolymer can be appropriately selected according to the line / space width ratio of the desired line and space pattern, the dimensions of the contact hole pattern or the cylinder pattern, and the like.
  • the mass ratio is preferably in the range of 40/60 to 60/40, more preferably 50/50, from the viewpoint of forming a better phase separation structure.
  • the mass ratio is preferably in the range of 30/70 to 40/60, or 70/30 to 60/40.
  • the group (1) is bonded to at least one terminal of the main chain of the [A] block copolymer.
  • the group (1) is preferably linked to the block (b).
  • the group (1) may be bonded to a plurality of terminals of the main chain of the [A] block copolymer. In this case, the plurality of groups (1) may be the same or different.
  • the group (1) is preferably formed by a terminal terminator described later and a group formed by a polymerization initiator, and more preferably formed by a terminal terminator.
  • the group (1) is a monovalent group that forms a compound having a ClogP of ⁇ 1 or more and 3 or less when a methyl group is bonded to the main chain side bond.
  • the lower limit of ClogP is preferably ⁇ 0.7, more preferably ⁇ 0.5, and further preferably ⁇ 0.4.
  • the upper limit of ClogP is preferably 2.5, more preferably 1.8, still more preferably 1.0, and particularly preferably 0.
  • ClogP a value obtained by using molecular model creation software (for example, “Chem Bio Draw Ultra 13.0, Chemical properties window” built in “Chemdraw Ver. 12” of CambridgeSoft) is used.
  • ClogP of the compound formed when a methyl group is bonded to the main chain side bond described above is a parameter that indirectly represents the hydrophilicity of the group (1).
  • the methyl group is a relatively small, simple and non-polar group. Therefore, no matter what structure the group (1) has, the influence of the methyl group on the ClogP is relatively small and substantially constant. Therefore, the ClogP is a parameter that increases or decreases mainly with the hydrophilicity of the group (1), and reflects the tendency of the hydrophilicity of the group (1) with high accuracy.
  • the lower limit of the carbon number of the group (1) is usually 1, preferably 2 and more preferably 3.
  • 20 is preferable, 10 is more preferable, 7 is further more preferable, and 6 is especially preferable.
  • Group (1) usually contains a heteroatom.
  • the number of heteroatoms of group (1) 1 is preferred and 2 is more preferred.
  • the upper limit of the number of heteroatoms in the group (1) is preferably 5, more preferably 4, and even more preferably 3.
  • the “hetero atom” refers to an atom other than a carbon atom and a hydrogen atom.
  • the number of heteroatoms in the group (1) is 2 or more, the 2 or more heteroatoms may be the same or different.
  • the group (1) preferably has 6 or less carbon atoms and 2 or more heteroatoms.
  • the ClogP can be easily adjusted in the above range.
  • hetero atom examples include halogen atoms such as fluorine atom, chlorine atom and bromine atom, oxygen atom, nitrogen atom, sulfur atom, phosphorus atom and silicon atom, and among these, oxygen atom, nitrogen atom and sulfur atom. Atoms are preferred.
  • group (1) for example, a part or all of hydrogen atoms of a group containing a hetero atom-containing group between carbon-carbon of a hydrocarbon group, a hydrocarbon group, or a group containing a hetero atom-containing group described above And a group substituted with.
  • the “hydrocarbon group” includes a chain hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group.
  • the “hydrocarbon group” may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • the “chain hydrocarbon group” refers to a hydrocarbon group that does not include a cyclic structure but includes only a chain structure, and includes both a linear hydrocarbon group and a branched hydrocarbon group.
  • alicyclic hydrocarbon group refers to a hydrocarbon group that includes only an alicyclic structure as a ring structure and does not include an aromatic ring structure, and includes a monocyclic alicyclic hydrocarbon group and a polycyclic alicyclic group. Includes both hydrocarbon groups.
  • alicyclic hydrocarbon group does not need to be composed only of the alicyclic structure, and a part thereof may include a chain structure.
  • “Aromatic hydrocarbon group” refers to a hydrocarbon group containing an aromatic ring structure as a ring structure.
  • the aromatic hydrocarbon group does not need to be composed only of an aromatic ring structure, and a part thereof may include a chain structure or an alicyclic structure.
  • Examples of the monovalent hydrocarbon group include a monovalent chain hydrocarbon group having 1 to 20 carbon atoms, a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, and a monovalent hydrocarbon having 6 to 20 carbon atoms. And aromatic hydrocarbon groups.
  • Examples of the monovalent chain hydrocarbon group include alkyl groups such as a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group; An alkenyl group such as an ethenyl group, a propenyl group, a butenyl group; Examples thereof include alkynyl groups such as ethynyl group and propynyl group.
  • Examples of the monovalent alicyclic hydrocarbon group include monovalent monocyclic alicyclic saturated hydrocarbon groups such as a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cyclooctyl group; A monovalent monocyclic alicyclic unsaturated hydrocarbon group such as a cyclobutenyl group, a cyclopentenyl group, a cyclohexenyl group; Monovalent polycyclic alicyclic saturated hydrocarbon group such as norbornyl group, adamantyl group, tricyclodecyl group, tetracyclododecyl group; And monovalent polycyclic alicyclic unsaturated hydrocarbon groups such as a norbornenyl group, a tricyclodecenyl group, and a tetracyclododecenyl group.
  • Examples of the monovalent aromatic hydrocarbon group include aryl groups such as phenyl group, tolyl group, xylyl group, naphthyl group, anthryl group, and trityl group; Examples include aralkyl groups such as benzyl group, phenethyl group, phenylpropyl group, naphthylmethyl group, and the like.
  • hetero atom-containing group examples include —CO— (carbonyl group), —CS— (thiocarbonyl group), —O— (ether group), —S— (thioether group), —COO— (ester group), And —SO 2 — (sulfonyl group), —SO 2 O— (thioester group), or a combination of these.
  • substituents include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; Alkoxy groups such as methoxy group, ethoxy group, 2-ethylpentoxy group, carboxy group, hydroxy group, cycloalkoxy group, aryloxy group, alkoxycarbonyl group, cycloalkyloxyoxycarbonyl group, aryloxycarbonyl group, acyl group, Examples thereof include polar groups such as amino group, amide group, cyano group, isocyanate group and sulfo group.
  • the amino group includes an amino group in which part or all of the hydrogen atoms are substituted with an alkyl group such as a methyl group or an ethyl group.
  • Examples of the group (1) include groups represented by the following formulas (1-1) to (1-7) (hereinafter also referred to as “group (1-1) to group (1-7)”). It is done.
  • R 1 is a monovalent organic group containing a hetero atom having 1 to 20 carbon atoms.
  • the group represented by the above formula (1-1) does not include the groups represented by the above formulas (1-2) to (1-7).
  • R 2 , R 3 , R 5 and R 6 are each independently an alkyl group having 1 to 10 carbon atoms.
  • R 4 is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • R 7 is a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • t is an integer of 1 to 2.
  • u and v are each independently an integer of 0 to 2.
  • Me is a methyl group. * Indicates a main chain side bond which is a site bonded to the end of the main chain of the [A] block copolymer.
  • Examples of the monovalent organic group containing a hetero atom having 1 to 20 carbon atoms represented by R 1 include a group containing a hetero atom-containing group between carbon-carbon of a hydrocarbon group, a hydrocarbon group, or the above hetero atom. Examples include a group in which part or all of the hydrogen atoms of the group including the containing group are substituted with a substituent. Examples of the hydrocarbon group, heteroatom-containing group, and substituent include the same groups as described above.
  • the monovalent organic group containing a hetero atom having 1 to 20 carbon atoms represented by R 1 is preferably a group containing an ester group, a group containing a carboxy group, or a group containing —SO 2 —.
  • the ester group contained in R 1 may form a lactone structure. Further, the group represented by the above formula (1-1) is preferably introduced into the [A] block copolymer using a halogen compound described later. R 1 preferably does not contain a hydroxy group from the viewpoint of ease of introduction when the group represented by the formula (1-1) is introduced into the [A] block copolymer using a halogen compound. .
  • Examples of the alkyl group represented by R 2 , R 3, and R 6 include a methyl group, an ethyl group, a propyl group, and an isopropyl group. Among these, a methyl group is preferable.
  • Examples of the alkyl group represented by R 5 include a methyl group, an ethyl group, a propyl group, and a 2-ethylhexyl group. Among these, a methyl group and a 2-ethylhexyl group are preferable, and a methyl group is more preferable. .
  • Examples of the monovalent organic group represented by R 4 include the same groups as the monovalent organic group represented by R 1 .
  • R 4 is preferably a methyl group.
  • Examples of the monovalent hydrocarbon group represented by R 7 include a monovalent chain hydrocarbon group having 1 to 10 carbon atoms, a monovalent alicyclic hydrocarbon group having 3 to 10 carbon atoms, and a carbon number. Examples thereof include monovalent aromatic hydrocarbon groups of 6 to 10, among which an aromatic hydrocarbon group is preferable, and a phenyl group is more preferable.
  • the t is preferably 1. Moreover, as said u and v, 0 and 1 are preferable and 1 is more preferable.
  • group (1) examples include groups represented by the following formulas.
  • the value of ClogP of a compound formed when a methyl group is bonded to the main chain side bond of each group is also shown.
  • * indicates a main chain side bond that is a site bonded to the end of the main chain of the [A] block copolymer.
  • Me is a methyl group.
  • Et is an ethyl group.
  • those containing a hydroxy group, an amino group, a carbonyl group, a carboxyl group, a sulfonyl group, an ester group, a thiol group, an alkoxy group and a combination thereof are preferable.
  • a hydroxy group, an amino group, a methoxy group and an ethoxy group are preferable. More preferred are those containing at least two of the groups.
  • the other end of the main chain may be unmodified, and a terminal group other than the group (1) is bonded. You may do it.
  • the terminal group other than the group (1) include an alkyl group having 1 to 10 carbon atoms.
  • the block copolymer may have a linking group between the adjacent block (a) and block (b).
  • the pattern forming composition can form a self-assembled film with fewer defects in the regularly arranged structure because the [A] block copolymer has a linking group.
  • the linking group include divalent organic groups having 1 to 50 carbon atoms.
  • the divalent organic group is preferably a divalent organic group having 1 to 20 carbon atoms having one or more aromatic rings, and two of the hydrogen atoms of the alkanediyl group having 1 to 5 carbon atoms are aromatic.
  • a group substituted with a group hydrocarbon group is more preferred.
  • alkanediyl group examples include a methyl group, an ethyl group, and a propyl group, and an ethyl group is preferable.
  • aromatic hydrocarbon group examples include a phenyl group and a naphthyl group, and a phenyl group is preferable.
  • Examples of the monomer that gives the linking group include diphenylethylene.
  • Diphenylethylene improves the stability of the anion terminal produced in the middle when the [A] block copolymer is synthesized by anionic polymerization. Thereby, the dispersion degree of the obtained [A] block copolymer becomes smaller, and as a result, the variation in the dimension of the pattern formed by the pattern forming composition can be further reduced.
  • the block copolymer may have one or more linking groups.
  • the lower limit of the weight average molecular weight (Mw) of the block copolymer is preferably 5,000, more preferably 10,000, even more preferably 15,000, and particularly preferably 21,000.
  • the upper limit of Mw of the [A] block copolymer is preferably 100,000, more preferably 75,000, still more preferably 40,000, and particularly preferably 24,000.
  • the lower limit of the number average molecular weight (Mn) of the block copolymer is preferably 4,500, more preferably 9,500, still more preferably 14,500, and particularly preferably 20,000.
  • the upper limit of Mn of the [A] block copolymer is preferably 95,000, more preferably 72,000, further preferably 38,000, and particularly preferably 23,500.
  • the lower limit of the degree of dispersion (Mw / Mn) of the block copolymer is usually 1.
  • the upper limit of Mw / Mn of the [A] block copolymer is usually 4, preferably 2, more preferably 1.5, still more preferably 1.2, and particularly preferably 1.1.
  • Mw and Mn of the [A] block copolymer are values measured by GPC under the following conditions.
  • Sample injection volume 100 ⁇ L
  • Detector Differential refractometer Standard material: Monodisperse polystyrene
  • the lower limit of the content of the block copolymer is preferably 80% by mass, more preferably 90% by mass, still more preferably 95% by mass, based on the total solid content in the pattern forming composition. 99 mass% is especially preferable.
  • the lower limit of the concentration of the [A] block copolymer in the pattern forming composition is preferably 0.3% by mass, more preferably 0.7% by mass, still more preferably 1.0% by mass, and 1.3% Mass% is particularly preferred.
  • the upper limit of the concentration of the [A] block copolymer in the pattern forming composition is preferably 5% by mass, more preferably 3% by mass, further preferably 2% by mass, and particularly preferably 1.7% by mass. preferable.
  • [A] Synthesis method of block copolymer for example, a first method in which each block is formed in a desired order and then the group (1) is introduced by treating the polymerization terminal with a terminal stopper, Polymerization is started using the polymerization initiator that forms (1), and the block is formed by treating the polymerization terminal with a terminal terminator after the second method that forms each block in the desired order.
  • the 3rd method etc. which introduce
  • Each block of the block copolymer can be synthesized by, for example, living cation polymerization, living anion polymerization, living radical polymerization, coordination polymerization (Ziegler-Natta catalyst, metallocene catalyst), and the like. Living anionic polymerization is preferable from the viewpoint that (1) can be easily introduced.
  • the block copolymer is an asymmetric star copolymer (Mictoarm type copolymer)
  • the [A] block copolymer is 1,3-bis (1-phenylethenyl) benzene.
  • It can be synthesized from a method using anionic polymerization via a method, a method using a group capable of binding an arm from a method such as click chemistry, a method using a reagent having a different starting point in the polymerization system, and the like.
  • an anionic polymerization initiator is first used as a method of synthesizing each block by living anionic polymerization.
  • the block (a) is formed by polymerization of the monomer that gives the block (a) in an appropriate solvent
  • the monomer that gives the block (b) is added in the same manner, and the block (a) is connected to the block.
  • a linking group may be formed between the block (a) and the block (b) by a reaction such as diphenylethylene.
  • Examples of the solvent used for the polymerization include alkanes such as n-pentane, n-hexane, n-heptane, n-octane, n-nonane and n-decane; Cycloalkanes such as cyclohexane, cycloheptane, cyclooctane, decalin, norbornane; Aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, cumene; Saturated carboxylic acid esters such as ethyl acetate, n-butyl acetate, i-butyl acetate and methyl propionate; Ketones such as acetone, 2-butanone, 4-methyl-2-pentanone, 2-heptanone, cyclohexanone; Ethers such as tetrahydrofuran, dimethoxyethanes, diethoxyethan
  • the reaction temperature in the polymerization may be appropriately determined according to the type of polymerization initiator described later, but the lower limit of the reaction temperature is usually ⁇ 150 ° C., and preferably ⁇ 80 ° C.
  • the upper limit of the reaction temperature is usually 50 ° C, preferably 40 ° C.
  • the lower limit of the reaction time in the polymerization is usually 5 minutes, and preferably 20 minutes.
  • the upper limit of the reaction time in the polymerization is usually 24 hours and preferably 12 hours.
  • polymerization initiator used in the polymerization examples include alkyl lithium, alkyl magnesium halide, sodium naphthalene, alkylated lanthanoid compounds; potassium alkoxides such as t-butoxy potassium and 18-crown-6-ether potassium; dimethyl zinc, Alkyl zinc such as diethyl zinc; alkyl aluminum such as trimethylaluminum; aromatic metal compounds such as benzyl potassium, cumyl potassium, cumyl cesium, and the like.
  • the lower limit of the ClogP of the polymerization initiator is preferably -1, more preferably -0.3, and even more preferably 0.3.
  • the upper limit of ClogP of the polymerization initiator is preferably 2, more preferably 1, and still more preferably 0.4.
  • the initiator (i-1) is 3.17
  • the polymerization initiator (i-2) is 3.57
  • the polymerization initiator (i-3) is 0.368
  • the polymerization initiator (i-4) is 3.3. 21.
  • the polymerization initiator (i-5) is 3.37.
  • ClogP of a polymerization initiator is ClogP calculated
  • the polymerization initiator used for the polymerization is preferably an alkyl lithium compound, more preferably sec-butyl lithium.
  • the polymerization initiator (i-3) is preferred as the polymerization initiator used for the polymerization.
  • examples of the terminal terminator include halogen compounds in which the group (1) and a halogen atom are bonded, dialkylformamide, glycidyl ether, epoxycycloalkane, epoxy compounds (provided that , Except for the above-mentioned glycidyl ether and epoxycycloalkane), substituted or unsubstituted thiirane or substituted or unsubstituted thietane, alkylpyrrolidone, carbon dioxide and the like.
  • the halogen atom include a chlorine atom, a fluorine atom, and a bromine atom. Among these, a chlorine atom and a bromine atom are preferable, and a bromine atom is more preferable.
  • the lower limit of ClogP of the above end terminator is preferably -1.5, more preferably -1.0, still more preferably -0.5, and particularly preferably -0.3.
  • the upper limit of ClogP of the terminal stopper is preferably 4.0, more preferably 3.2, further preferably 2.2, particularly preferably 1.4, and particularly preferably 0.
  • the above halogen compound or carbon dioxide can be used as a terminal terminator.
  • the group (1-2) is introduced, for example, dialkylformamide can be used as the terminal terminator.
  • the group (1-3) is introduced, for example, substituted or unsubstituted thiirane or substituted or unsubstituted thietane can be used as the terminal terminator.
  • glycidyl ether can be used as the terminal terminator.
  • alkylpyrrolidone can be used as the terminal terminator.
  • the group (1-6) is introduced, for example, an epoxy compound described later can be used as the terminal terminator.
  • an epoxycycloalkane can be used as a terminal terminator.
  • a method as shown in the following scheme and the like can be mentioned. That is, the block copolymer obtained by the above-described living anion polymerization or the like is modified by adding a terminal terminator to modify the terminal [A] block copolymer in which the group (1) is introduced at the terminal of the main chain.
  • a polymer can be obtained.
  • block (a) is a polystyrene block
  • block (b) is a methyl (meth) acrylate block
  • a terminal terminator is an epoxy compound described later.
  • the group (1) to be introduced is a group (1-4).
  • n is an integer of 2 or more.
  • m is an integer of 1 or more.
  • R 5 has the same meaning as in the above formula (1-4).
  • the terminal terminator is a halogen compound, dialkylformamide, alkylpyrrolidone, substituted or unsubstituted thiirane, substituted or unsubstituted thietane, glycidyl ether, epoxycycloalkane, carbon dioxide, etc.
  • the main chain is obtained by the same method.
  • the group (1) can be introduced at the end of
  • the above [A] block copolymer is preferably recovered by a reprecipitation method. That is, after completion of the reaction, the target copolymer is recovered as a powder by introducing the reaction solution into a reprecipitation solvent.
  • a reprecipitation solvent alcohols, ultrapure water, alkanes and the like can be used singly or in combination of two or more.
  • the polymer can be recovered by removing low molecular components such as monomers and oligomers by a liquid separation operation, a column operation, an ultrafiltration operation, or the like.
  • the pattern forming composition contains a [B] solvent.
  • the solvent is not particularly limited as long as it can dissolve or disperse at least the [A] block copolymer.
  • Examples of the solvent include alcohol solvents, ether solvents, ketone solvents, amide solvents, ester solvents, hydrocarbon solvents, and the like.
  • alcohol solvent examples include methanol, ethanol, n-propanol, iso-propanol, n-butanol, iso-butanol, sec-butanol, tert-butanol, n-pentanol, iso-pentanol, 2-methylbutanol.
  • ether solvent examples include dialkyl ether solvents such as diethyl ether, dipropyl ether, and dibutyl ether; Cyclic ether solvents such as tetrahydrofuran and tetrahydropyran; And aromatic ring-containing ether solvents such as diphenyl ether and anisole.
  • ketone solvent examples include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-iso-butyl ketone, 2-heptanone, ethyl-n-butyl ketone, and methyl-n-hexyl ketone.
  • Chain ketone solvents such as di-iso-butyl ketone and trimethylnonanone: Cyclic ketone solvents such as cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone and methylcyclohexanone: Examples include 2,4-pentanedione, acetonylacetone, acetophenone, and the like.
  • amide solvents examples include cyclic amide solvents such as N, N′-dimethylimidazolidinone and N-methylpyrrolidone; N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, Examples thereof include chain amide solvents such as N-methylacetamide, N, N-dimethylacetamide, and N-methylpropionamide.
  • ester solvent examples include methyl acetate, ethyl acetate, n-propyl acetate, iso-propyl acetate, n-butyl acetate, iso-butyl acetate, sec-butyl acetate, n-pentyl acetate, i-pentyl acetate, and acetic acid.
  • acetate solvents such as sec-pentyl, 3-methoxybutyl acetate, methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, benzyl acetate, cyclohexyl acetate, methylcyclohexyl acetate, n-nonyl acetate; Ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol mono-n-butyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether
  • Polyhydric alcohol partial ether acetate solvents such as acetate, propylene glycol monobutyl ether acetate, dipropylene
  • hydrocarbon solvent examples include n-pentane, iso-pentane, n-hexane, iso-hexane, n-heptane, iso-heptane, 2,2,4-trimethylpentane, n-octane, iso-octane, Aliphatic hydrocarbon solvents such as cyclohexane and methylcyclohexane; Fragrances such as benzene, toluene, xylene, mesitylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, iso-propylbenzene, diethylbenzene, iso-butylbenzene, triethylbenzene, di-iso-propylbenzene, n-amylnaphthalene Group hydrocarbon solvents and the like.
  • ester solvents and ketone solvents are preferable, ester solvents are more preferable, polyhydric alcohol partial ether acetate solvents are more preferable, and propylene glycol monomethyl ether acetate is particularly preferable.
  • the pattern forming composition may contain one or more [B] solvents.
  • composition for pattern formation may contain, surfactant etc. are mentioned, for example.
  • surfactant As an arbitrary component which the said composition for pattern formation may contain, surfactant etc. are mentioned, for example.
  • the said pattern formation composition can improve the applicability
  • the pattern forming method of the present invention includes a step of forming a self-assembled film with the pattern forming composition and a step of removing a part of the self-assembled film.
  • the pattern forming method includes a step of forming a lower layer film on one surface side of the substrate (hereinafter also referred to as “lower layer film forming step”) and / or one of the substrates before the self-assembled film forming step. You may further provide the process (henceforth a "pre-pattern formation process”) which forms a pre pattern in the surface side.
  • the pattern forming method since the above-described pattern forming composition is used for forming the self-assembled film, it is possible to form a self-assembled film with few defects in the ordered arrangement structure, and thus a good shape. A pattern can be formed.
  • each process will be described with reference to the drawings.
  • This step is a step of forming a lower layer film on one surface side of the substrate.
  • a substrate with a lower layer film in which the lower layer film 102 is formed on one surface (upper surface) side of the substrate 101 can be obtained.
  • the self-assembled film in the self-assembled film forming step described later is formed on the surface of the lower layer film 102 opposite to the substrate 101.
  • the phase-separated structure (microdomain structure) of the self-assembled film has an interaction with the lower layer film 102 in addition to the interaction between each block of the [A] block copolymer contained in the pattern forming composition. Therefore, the structure control may be facilitated by forming the lower layer film 102.
  • the transfer process can be improved by forming it on the lower layer film 102.
  • the substrate 101 a conventionally known substrate such as a silicon wafer or a wafer coated with aluminum can be used.
  • underlayer film forming composition used for forming the underlayer film 102 conventionally known organic underlayer film forming materials and the like can be used, and examples thereof include an underlayer film forming composition containing a crosslinking agent.
  • a method for forming the lower layer film 102 is not particularly limited.
  • the lower layer film forming composition is applied on the substrate 101 by a known method such as a spin coating method, and then cured by exposure and / or heating.
  • the method of forming etc. are mentioned.
  • Examples of radiation used for this exposure include visible light, ultraviolet light, far ultraviolet light, X-rays, electron beams, ⁇ -rays, molecular beams, and ion beams.
  • the upper limit of the heating temperature is not particularly limited, but is preferably 550 ° C, more preferably 450 ° C, and further preferably 300 ° C.
  • the upper limit of the heating time is preferably 1,200 seconds, more preferably 600 seconds, and even more preferably 300 seconds.
  • the lower limit of the average thickness of the lower layer film 102 is not particularly limited, but is preferably 1 nm, more preferably 2 nm, and further preferably 3 nm.
  • the upper limit of the average thickness of the lower layer film 102 is not particularly limited, but is preferably 20,000 nm, more preferably 1,000 nm, still more preferably 100 nm, and particularly preferably 10 nm.
  • This step is a step of forming the pre-pattern 103.
  • This pre-pattern may be formed on the substrate, or may be formed on the surface of the lower layer film 102 opposite to the substrate 101 as shown in FIG.
  • the shape of the phase separation structure by self-organization of a coating film 104 (see FIG. 3) described later is controlled, and a finer pattern can be formed.
  • the phase separation structure of the self-assembled film obtained by the pattern forming composition can be finely controlled by the material, size, shape and the like of the prepattern 103.
  • the pre-pattern 103 can be appropriately selected according to the shape of a desired pattern.
  • a line and space pattern, a hole pattern, a cylinder pattern, or the like can be used.
  • the pattern forming method includes a pre-pattern forming step, a self-assembled film 105 to be described later is formed in a non-stacked region of the normal pre-pattern 103.
  • a method for forming the pre-pattern 103 a method similar to a known resist pattern forming method may be used.
  • a composition used for forming the pre-pattern 103 a conventional resist composition such as a composition containing a polymer having an acid dissociable group, a radiation sensitive acid generator and an organic solvent may be used. it can.
  • a commercially available chemically amplified resist composition is applied onto the substrate 101 or the lower layer film 102 to form a resist film. Next, exposure is performed by irradiating a desired region of the resist film with radiation through a mask having a specific pattern.
  • Examples of the radiation include electromagnetic waves such as ultraviolet rays, far ultraviolet rays, and X-rays; and charged particle beams such as electron beams and ⁇ rays.
  • far ultraviolet rays are preferable
  • ArF excimer laser light and KrF excimer laser are more preferable
  • ArF excimer laser light is more preferable.
  • immersion exposure can also be performed as an exposure method.
  • a desired pre-pattern 103 can be formed by performing post-exposure baking (PEB) and performing development using an alkali developer, a developer containing an organic solvent as a main component, or the like.
  • PEB post-exposure baking
  • the obtained pre-pattern 103 further accelerates curing by, for example, heat treatment after irradiating ultraviolet rays having a wavelength of 254 nm.
  • the lower limit of the heat treatment temperature is 100 ° C., for example.
  • the upper limit of the heat treatment temperature is, for example, 200 ° C.
  • the lower limit of the heat treatment time is, for example, 1 minute.
  • the upper limit of the heat treatment time is, for example, 30 minutes.
  • the surface of the pre-pattern 103 may be subjected to a hydrophobic treatment or a hydrophilic treatment.
  • a hydrogenation treatment by exposing to hydrogen plasma for a certain period of time can be cited.
  • the self-organization of the coating film 104 can be further promoted.
  • This step is a step for forming a phase-separated self-assembled film (self-assembled film having a phase-separated structure) on the substrate using the pattern forming composition.
  • the pattern forming composition is directly applied onto the substrate to form a coating film, thereby forming a self-assembled film having a phase separation structure.
  • the pattern forming composition is applied to a region on the lower layer film 102 sandwiched between the prepatterns 103.
  • a self-assembled film 105 having a phase separation structure is formed on the lower layer film 102 formed on the substrate 101.
  • the self-assembled film to be formed include a film having a phase separation structure having an interface substantially perpendicular to the substrate 101, such as the self-assembled film 105 in FIG.
  • the pattern forming composition it is possible to obtain the self-assembled film 105 with few defects in the regularly arranged structure while suppressing coating defects due to excellent coating properties.
  • the phase separation structure is preferably formed along the pre-pattern, and the interface formed by the phase separation is substantially parallel to the side surface of the pre-pattern. More preferred.
  • a block having high affinity with the side surface of the pre-pattern 103 (referred to as “block ( ⁇ )”) Forms a block ( ⁇ ) phase 105 b along the pre-pattern 103, and a block having a low affinity (referred to as “block ( ⁇ )”) forms a block ( ⁇ ) phase 105 a at a position away from the pre-pattern 103.
  • block ( ⁇ ) a block having high affinity with the side surface of the pre-pattern 103
  • block having a low affinity referred to as “block ( ⁇ )”
  • the method for applying the pattern forming composition to one surface side of the substrate 101 to form the coating film 104 is not particularly limited.
  • the pattern forming composition to be used is applied by a spin coating method or the like. And the like. Thereby, the composition for pattern formation can be applied onto the substrate 101. Further, when the prepattern 103 is formed on the substrate 101, the pattern forming composition can be filled between the prepatterns 103 on the lower layer film 102.
  • the lower limit of the average thickness of the coating film 104 to be formed is, for example, 10 nm.
  • the upper limit of the average thickness of the formed coating film 104 is, for example, 60 nm.
  • Examples of a method for forming the self-assembled film 105 by phase-separating the coating film 104 include an annealing method.
  • Examples of the annealing method include a method of heating with an oven, a hot plate or the like.
  • a minimum of annealing temperature it is usually 80 ° C, 120 ° C is preferred, 160 ° C is more preferred, and 200 ° C is still more preferred.
  • the upper limit of the annealing temperature is usually 400 ° C., preferably 350 ° C., more preferably 300 ° C., and particularly preferably 260 ° C.
  • 10 seconds are preferred, 20 seconds are more preferred, 40 seconds are still more preferred, and 90 seconds are especially preferred.
  • the upper limit of the annealing time is preferably 120 minutes, more preferably 30 minutes, further preferably 10 minutes, and particularly preferably 3 minutes.
  • the lower limit of the average thickness of the self-assembled film 105 thus obtained is preferably 0.1 nm, more preferably 1 nm, and more preferably 5 nm.
  • the upper limit of the average thickness of the self-assembled film 105 is preferably 500 nm, more preferably 100 nm, and even more preferably 50 nm.
  • this step is a step of removing a part of the block ( ⁇ ) phase 105 a in the phase separation structure of the self-assembled film 105.
  • the block ( ⁇ ) phase 105a can be removed by an etching process using the difference in etching rate of each phase separated by self-assembly.
  • the radiation for example, when the phase to be removed by etching is a poly (meth) acrylate block phase, radiation having a wavelength of 254 nm can be used. Since the poly (meth) acrylic acid ester block phase is decomposed by the radiation irradiation, it is more easily etched.
  • Examples of the method for removing the block ( ⁇ ) phase include known methods such as reactive ion etching (RIE) such as chemical dry etching and chemical wet etching; and physical etching such as sputter etching and ion beam etching. Of these, reactive ion etching (RIE) is preferable. Among them, chemical dry etching using CF 4 , O 2 gas, etc., and chemical wet etching (wet development) using a liquid etching solution such as an organic solvent or hydrofluoric acid. Is more preferable.
  • RIE reactive ion etching
  • RIE reactive ion etching
  • wet development using a liquid etching solution such as an organic solvent or hydrofluoric acid. Is more preferable.
  • organic solvent examples include alkanes such as n-pentane, n-hexane and n-heptane; cycloalkanes such as cyclohexane, cycloheptane and cyclooctane; ethyl acetate, n-butyl acetate, i-butyl acetate and propion Saturated carboxylic acid esters such as methyl acetate; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl n-pentyl ketone; methanol, ethanol, 1-propanol, 2-propanol, 4-methyl-2-pentanol, etc. Examples include alcohols. These solvents can be used alone or in combination of two or more. In this step, instead of removing the block phase ( ⁇ ), the block phase ( ⁇ ) may be removed.
  • alkanes such as n-pentane, n-he
  • Pre-pattern removal process When the pre-pattern 103 is formed on the substrate, it is preferable to remove the pre-pattern 103 by this step as shown in FIGS. By removing the pre-pattern 103, it is possible to form a finer and more complicated pattern (pattern consisting of 105b in FIG. 5). Note that the description of the removal method of the block ( ⁇ ) phase 105a described above can be applied to the removal method of the pre-pattern 103. Moreover, this process may be performed simultaneously with the said removal process, and may be performed before or after a removal process.
  • the pattern forming method further includes a normal substrate pattern forming step after the removing step.
  • This step is a step of patterning by etching the lower layer film 102 and the substrate 101 using a part of the remaining self-assembled film (pattern consisting of 105b in FIG. 5) as a mask.
  • the block ( ⁇ ) phase 105b used as a mask is removed from the substrate by a dissolution treatment or the like, and finally a patterned substrate (pattern) can be obtained.
  • Examples of the obtained pattern include a line and space pattern and a hole pattern.
  • the same method as in the removing step can be used, and the etching gas and the etching liquid can be appropriately selected according to the material of the substrate and the like.
  • the substrate is made of a silicon material
  • a mixed gas of chlorofluorocarbon gas and SF 4 can be used.
  • the substrate is a metal film
  • a mixed gas of BCl 3 and Cl 2 or the like can be used.
  • a pattern obtained by the pattern forming method is suitably used for a semiconductor element or the like, and the semiconductor element is widely used for an LED, a solar cell or the like.
  • a self-assembled film having a phase separation structure such as a sea-island structure, a cylinder structure, or a bicontinuous structure. A fine pattern can be obtained.
  • the mixture was aged for 120 minutes, and then 10 g of tetrahydrofuran and 12.7 mL (119.8 mmol) of methyl methacrylate were added dropwise over 30 minutes. After completion of the dropwise addition, the mixture was aged for 120 minutes, and then 0.045 g (1.13 mmol) of methanol as an end terminator (C-1) was added to terminate the polymerization end.
  • the obtained polymer solution was purified by precipitation in methanol, and then filtered to obtain a white solid.
  • the obtained white solid was dissolved in methyl isobutyl ketone to give a 10% by mass solution.
  • 500 g of a 1% by mass oxalic acid aqueous solution was poured and stirred, and after standing, the lower aqueous layer was removed. This operation was repeated three times to remove the Li salt.
  • 500 g of ultrapure water was poured into this solution and stirred, and the lower aqueous layer was removed. This operation was repeated three times to remove oxalic acid.
  • the solution was concentrated and dropped into 2,000 g of methanol to precipitate a polymer. This polymer was filtered under reduced pressure, further washed twice with methanol, and then dried under reduced pressure at 60 ° C.
  • the block copolymer (A-1) was found to contain each of the repeating units (I) derived from 4-tert-butylstyrene and the repeating units (II) derived from methyl methacrylate. Were 50.0 mass% (39 mol%) and 50.0 mass% (61 mol%), respectively.
  • the block copolymer (A-1) is a diblock copolymer.
  • Styrene 22.1 mL (0.192 mol) was added dropwise over 30 minutes to confirm that the polymerization system was orange. At the time of this dropwise injection, care was taken so that the internal temperature of the reaction solution did not exceed -60 ° C. After completion of the dropwise addition, the mixture was aged for 30 minutes, and then 0.21 mL (0.0015 mol) of 1,1-diphenylethylene and 1.96 mL (0.0010 mol) of 0.5N tetrahydrofuran solution of lithium chloride were added, and the polymerization system was dark red It was confirmed that it became.
  • This block copolymer (A-22) had Mw of 42,000, Mn of 40,000, and Mw / Mn of 1.05. Further, as a result of 1 H-NMR analysis, the block copolymer (A-22) had a content ratio of the repeating unit (I) derived from styrene and the repeating unit (II) derived from methyl methacrylate of 50. They were 0 mass% (50.3 mol%) and 50.0 mass% (49.7 mol%).
  • the block copolymer (A-22) is a diblock copolymer.
  • Styrene 22.1 mL (0.192 mol) was added dropwise over 30 minutes to confirm that the polymerization system was orange. At the time of this dropwise injection, care was taken so that the internal temperature of the reaction solution did not exceed -60 ° C. After completion of the dropwise addition, the mixture was aged for 30 minutes, and then 0.11 mL (0.00078 mol) of 1,1-diphenylethylene and 1.04 mL (0.0005 mol) of 0.5N tetrahydrofuran solution of lithium chloride were added, and the polymerization system was dark red It was confirmed that it became.
  • This block copolymer (A-23) had Mw of 81,000, Mn of 77,000, and Mw / Mn of 1.05. Further, as a result of 1 H-NMR analysis, the block copolymer (A-23) has a content ratio of the repeating unit (I) derived from styrene and the repeating unit (II) derived from methyl methacrylate of 50. They were 0 mass% (50.3 mol%) and 50.0 mass% (49.7 mol%).
  • the block copolymer (A-23) is a diblock copolymer.
  • the end terminator used for the synthesis of the block copolymers (A-1) to (A-23) is as follows: the end terminator (C-1) is methanol, and the end terminator (C-2) is ⁇ -bromo- ⁇ . -Butyrolactone, terminal stopper (C-3) is N, N-dimethylformamide, terminal stopper (C-4) is propylene sulfide, terminal stopper (C-5) is glycidyl methyl ether, terminal stopper (C- 6) N-methylpyrrolidone, terminal stopper (C-7) ethyl bromohexanoate, terminal stopper (C-8) carbon dioxide, terminal stopper (C-9) methanesulfonyl chloride, terminal stopper (C-10) is 1,2-epoxycyclohexane, terminal stopper (C-11) is styrene oxide, terminal stopper (C-12) is 2-ethylhexyl glycidyl ether, terminal stop
  • n and m are each independently an integer of 2 or more.
  • Me is a methyl group.
  • Et is an ethyl group.
  • Ph is a phenyl group.
  • ClogP ⁇ Calculation of ClogP>
  • the terminator ClogP used in the synthesis and the compound ClogP formed when the main chain side bond of the end group of the block copolymer is bonded to a methyl group are described in “Chemdraw Ver. 12” of CambridgeSoft. ".
  • the ClogP of the compound formed when the main chain side bond of the terminal group of this block copolymer is bonded to the methyl group is described below as “ClogP of the terminal group linked to block (a) or block (b)”. May be written. When the terminal is unmodified (hydrogen atom), the above calculation was not performed.
  • Table 1 below shows the content of each repeating unit of the block copolymers (A-1) to (A-23), the end terminator used in the synthesis, ClogP of this end terminator, block (a) or block ( The terminal groups ClogP, Mw, Mn, and Mw / Mn linked to b) are shown.
  • ClogP since the terminal terminator (C-1) is a terminal terminator that does not form a terminal group, ClogP is omitted and “ ⁇ ” is displayed.
  • “4TBS” refers to 4-tert-butylstyrene.
  • ST indicates styrene.
  • MMA refers to methyl methacrylate.
  • the 1st arm was put into 1,000 mL of methanol, precipitated and purified, and sufficiently dried in a vacuum dryer at 60 ° C.
  • the Miktoarm type block copolymers (A-24) and (A-25) synthesized in Synthesis Examples 24 and 25 have a structure represented by the following formula (A), and X, Y described in the formulas And Z each represent the following structure.
  • the styrene unit contained in Y in the following formula is the block (a).
  • the methacrylic acid ester unit contained in X and Z in the following formula is the block (b).
  • block (b) included in X of the following formula is block X
  • block (a) included in Y of the following formula is block Y
  • block (b) included in Z of the following formula is block Z, respectively.
  • each n is independently an integer of 2 or more. * Indicates a bond that binds to a site other than X, Y and Z in the formula (A).
  • Table 2 below shows the end terminators used for the synthesis of the block copolymers (A-24) and (A-25), the end groups linked to ClogP, block X, block Y or block Z of this end terminator.
  • ClogP, Mw, Mn, and Mw / Mn are shown.
  • ClogP since the terminal terminator (C-1) is a terminal terminator that does not form a terminal group, ClogP is omitted and “ ⁇ ” is displayed.
  • polymer Polymerized for 3 hours.
  • the obtained polymer solution was purified by precipitation with 3 L of methanol to remove residual monomers, initiators and the like.
  • This polymer had Mw of 8,285, Mn of 5,355, and Mw / Mn of 1.54.
  • the polymer was diluted with propylene glycol monomethyl ether acetate to obtain a 10% by mass polymer solution (N-1).
  • a mixed solution was obtained by mixing and dissolving 150 g of this polymer solution (N-1) and 9,850 g of propylene glycol monomethyl ether acetate as a solvent.
  • the obtained mixed solution was filtered through a membrane filter having a pore size of 0.1 ⁇ m to prepare a composition for forming a lower layer film.
  • the film After applying the pattern-forming compositions (S-1) to (S-25) to the substrate on which the lower layer film is formed so that the average thickness of the coating film to be formed is 35 nm, the film is formed at 230 ° C. for 120 seconds. Baked. By this firing, a self-assembled film having a fingerprint pattern was formed on the substrate on which the lower layer film was formed. About the fingerprint pattern which spreads on this board
  • Pattern Forming Composition For the pattern forming compositions (S-1) to (S-12) and (S-16) to (S22), an ordered arrangement structure (fingerprint pattern) is formed on the substrate by the following method. The self-assembled film was prepared, and the pitch of the fingerprint pattern was measured and the edge roughness was evaluated.
  • Fingerprint pattern pitch measurement was performed by periodic analysis using the IMEC calculation tool built in the SEM from the image with the magnification of 300,000 times.
  • the pitch (nm) of the fingerprint putter indicates that the smaller the value, the finer the pitch in the formed phase separation structure.
  • FER Fingerprint Pattern Edge Roughness Evaluation Fingerprint pattern edge roughness (FER) evaluation was analyzed from the image with a magnification of 300,000 times using a FER calculation tool built in the SEM. The FER (nm) indicates that the smaller the value is, the smaller the edge roughness of the formed fingerprint pattern is, that is, the smaller the occurrence of defects in the ordered structure in the self-assembled film, the better. FER (nm) is evaluated as “good” when it is 3.5 nm or less, and “bad” when it exceeds 3.5 nm.
  • Table 3 below shows the evaluation results of the pattern forming compositions (S-1) to (S-12) and (S-16) to (S22). Table 3 below also shows ClogP of the terminal group linked to the block (a) or the block (b) of the [A] block copolymer contained in the pattern forming composition.
  • Table 4 below shows the evaluation results of the pattern forming compositions (S-13) to (S-15) and (S-23) to (S-25). Table 4 below also shows ClogP of terminal groups linked to the block (a) or the block (b) of the [A] block copolymer contained in the pattern forming composition.
  • the block copolymers (A-24) and (A-25) each have two blocks (b). Therefore, in Table 4, ClogP of each terminal group connected to two blocks (b) is written together.
  • the pattern forming compositions of Examples 1 to 14 can form a self-assembled film with fewer defects in the ordered arrangement structure than the pattern forming compositions of Comparative Examples 1 to 5. I understood. Further, as shown in Table 4, the pattern forming compositions of Examples 15 to 18 formed self-assembled films with fewer defects in the regular arrangement structure than the pattern forming compositions of Comparative Examples 6 and 7. I understood that I could do it. That is, it is judged that the pattern forming compositions of Examples 1 to 18 can be used for forming a pattern having a good shape.
  • the pattern forming composition, the pattern forming method, and the block copolymer of the present invention a self-assembled film with few defects in a regular arrangement structure can be formed, and as a result, a pattern with a good shape can be formed. Therefore, they can be suitably used in pattern formation processes in the manufacture of various electronic devices such as semiconductor devices and liquid crystal devices that are required to be further miniaturized.

Abstract

This composition for forming a pattern contains a solvent and a block copolymer that forms a phase separation structure by self-assembling, and is characterized in that: the block copolymer has a first block that is composed of a substituted or unsubstituted styrene unit, a second block that is composed of a (meth)acrylate ester unit, and a first group that is bonded to at least one end of the main chain; and the first group is a monovalent group that forms a compound having a ClogP of from -1 to 3 (inclusive) when a methyl group is bonded to the main chain-side bonding hand. It is preferable that the first group is formed by means of a chain terminator; and if this is the case, it is preferable that the ClogP of the chain terminator is from -1.5 to 4.0 (inclusive). The ClogP of a compound that is formed when a methyl group is bonded to the main chain-side bonding hand of the first group is preferably 2.5 or less. The number of carbon atoms in the first group is preferably from 1 to 20 (inclusive). The number of heteroatoms in the first group is preferably from 1 to 5 (inclusive).

Description

パターン形成用組成物及びパターン形成方法Pattern forming composition and pattern forming method
 本発明は、パターン形成用組成物及びパターン形成方法に関する。 The present invention relates to a pattern forming composition and a pattern forming method.
 半導体デバイス、液晶デバイス等の各種電子デバイス構造の微細化に伴って、パターン形成工程におけるパターンの微細化が要求されている。現在、例えばArFエキシマレーザーを用いて線幅50nm程度の微細なパターンを形成することができるが、さらに微細なパターン形成が要求されるようになってきている。 With the miniaturization of various electronic device structures such as semiconductor devices and liquid crystal devices, pattern miniaturization is required in the pattern formation process. At present, it is possible to form a fine pattern with a line width of about 50 nm using, for example, an ArF excimer laser, but further fine pattern formation has been required.
 上記要求に対し、秩序パターンを自発的に形成するいわゆる自己組織化による相分離(ミクロドメイン)構造を利用した自己組織化パターンの形成方法が提案されている。かかる自己組織化パターンの形成方法として、特定の性質を有する単量体化合物と、それと性質の異なる単量体化合物とを共重合してなるブロック共重合体を用い、自己組織化により超微細パターンを形成する方法が知られている(特開2008-149447号公報、特表2002-519728号公報及び特開2003-218383号公報参照)。この方法によると、上記ブロック共重合体を含む膜をアニーリングすることにより、同じ性質を持つポリマー構造同士が集まろうとする性質を利用し、自己整合的にパターンを形成することができる。 In response to the above requirements, a method of forming a self-organized pattern using a so-called self-organized phase separation (microdomain) structure that spontaneously forms an ordered pattern has been proposed. As a method for forming such a self-assembled pattern, a block copolymer obtained by copolymerizing a monomer compound having specific properties and a monomer compound having different properties is used, and an ultrafine pattern is formed by self-assembly. There are known methods for forming (see JP 2008-149447 A, JP 2002-519728 A and JP 2003-218383 A). According to this method, by annealing the film containing the block copolymer, it is possible to form a pattern in a self-aligning manner by utilizing the property that polymer structures having the same properties are gathered together.
 しかし、上記従来の方法で得られるパターンは十分に微細であるとは言えないため、上記ブロック共重合体の構造等について種々の技術が検討され、例えばブロック共重合体の一部のブロックにケイ素原子を導入するものが知られている(特開2013-528664号公報、特開2013-166932号公報及びACS Macro Lett., 1, 1279(2012)参照)。しかし、上記従来のブロック共重合体を含有する組成物を用いても、形成される規則配列構造の欠陥の発生を十分に抑制できないという不都合がある。 However, since the pattern obtained by the conventional method cannot be said to be sufficiently fine, various techniques for the structure of the block copolymer and the like have been studied. Those in which atoms are introduced are known (see JP2013-528664A, JP2013-166932A, and ACS Macro Lett., 1, 1279 (2012)). However, even when a composition containing the above conventional block copolymer is used, there is a disadvantage that the occurrence of defects in the formed regular array structure cannot be sufficiently suppressed.
特開2008-149447号公報JP 2008-149447 A 特表2002-519728号公報JP-T-2002-519728 特開2003-218383号公報JP 2003-218383 A 特開2013-528664号公報JP 2013-528664 A 特開2013-166932号公報JP 2013-166932 A
 本発明は、以上のような事情に基づいてなされたものであり、その目的は、規則配列構造の欠陥の少ない自己組織化膜を形成でき、ひいては良好な形状のパターンを形成することができるパターン形成用組成物及びパターン形成方法を提供することにある。 The present invention has been made based on the circumstances as described above, and the purpose thereof is a pattern capable of forming a self-assembled film with few defects in a regular arrangement structure and thus forming a pattern with a good shape. The object is to provide a forming composition and a pattern forming method.
 上記課題を解決するためになされた発明は、自己組織化により相分離構造を形成するブロック共重合体(以下、「[A]ブロック共重合体」ともいう)、及び溶媒(以下、「[B]溶媒」ともいう)を含有するパターン形成用組成物であって、上記ブロック共重合体が、置換又は非置換のスチレン単位(以下、「繰り返し単位(I)」ともいう)からなる第1ブロックと(以下、「ブロック(a)」ともいう)と、(メタ)アクリル酸エステル単位(以下、「繰り返し単位(II)」ともいう)からなる第2ブロック(以下、「ブロック(b)」ともいう)と、主鎖の少なくとも一方の末端に結合する第1基(以下、「基(1)」ともいう)とを有し、基(1)が、主鎖側結合手にメチル基を結合させたときにClogPが-1以上3以下の化合物を形成する1価の基であることを特徴とする。 The invention made in order to solve the above problems includes a block copolymer (hereinafter also referred to as “[A] block copolymer”) that forms a phase separation structure by self-assembly, and a solvent (hereinafter referred to as “[B A first block comprising a substituted or unsubstituted styrene unit (hereinafter also referred to as “repeating unit (I)”). (Hereinafter also referred to as “block (a)”) and a second block (hereinafter also referred to as “block (b)”) comprising a (meth) acrylate unit (hereinafter also referred to as “repeating unit (II)”). And a first group (hereinafter also referred to as “group (1)”) bonded to at least one end of the main chain, and the group (1) binds a methyl group to the main chain side bond. ClogP is -1 or more and 3 or less when Characterized in that it is a monovalent group which forms a compound.
 上記課題を解決するためになされた別の発明は、基板の一方の面側に相分離した自己組織化膜を形成する工程(以下、「自己組織化膜形成工程」ともいう)、及び上記自己組織化膜の一部を除去する工程(以下、「除去工程」ともいう)を備え、上記自己組織化膜を当該パターン形成用組成物により形成するパターン形成方法である。 Another invention made to solve the above-described problems includes a step of forming a phase-separated self-assembled film on one surface side of the substrate (hereinafter also referred to as a “self-assembled film forming step”), and the self This is a pattern forming method including a step of removing a part of the organized film (hereinafter also referred to as “removing step”), and forming the self-assembled film with the pattern forming composition.
 ここで、「自己組織化(Directed Self Assembly)」とは、外的要因からの制御のみに起因せず、自発的に組織や構造を構築する現象をいう。「主鎖」とは、ブロック共重合体において、単量体の重合性炭素-炭素二重結合を構成する炭素原子に由来する炭素原子により構成される鎖をいう。但し、上記鎖は、間に連結基を含んでいてもよい。「主鎖の少なくとも一方の末端」における「末端」とは、ブロック共重合体の端部に位置する繰り返し単位が有する主鎖の炭素原子のうち、隣接する繰り返し単位との結合を形成していない炭素原子をいう。「ClogP」とは、「ClogPow」ともいい、ClogP法により算出したオクタノール/水分配係数(logP)の値であり、数値が大きいほど疎水性(脂溶性)が高いことを意味する。 Here, “Directed Self Assembly” refers to a phenomenon in which an organization or structure is spontaneously built without being caused only by control from an external factor. “Main chain” refers to a chain composed of carbon atoms derived from carbon atoms constituting a polymerizable carbon-carbon double bond of a monomer in a block copolymer. However, the said chain | strand may contain the coupling group in between. “Terminal” in “at least one terminal of the main chain” means that no bond is formed with the adjacent repeating unit among the carbon atoms of the main chain of the repeating unit located at the end of the block copolymer. Refers to a carbon atom. “ClogP” is also referred to as “ClogPow”, and is a value of the octanol / water partition coefficient (logP) calculated by the ClogP method. The larger the value, the higher the hydrophobicity (lipid solubility).
 本発明のパターン形成用組成物及びパターン形成方法によれば、規則配列構造の欠陥の少ない自己組織化膜を形成でき、ひいては良好な形状のパターンを形成することができる。従って、これらはさらなる微細化が要求されている半導体デバイス、液晶デバイス等の各種電子デバイス製造におけるパターン形成工程に好適に用いることができる。 According to the pattern forming composition and the pattern forming method of the present invention, it is possible to form a self-assembled film with few defects in a regular array structure, and thus to form a pattern with a good shape. Therefore, they can be suitably used in pattern formation processes in the manufacture of various electronic devices such as semiconductor devices and liquid crystal devices that are required to be further miniaturized.
基板上に下層膜を形成した後の状態の一例を示す模式的断面図である。It is a typical sectional view showing an example of the state after forming a lower layer film on a substrate. 図1における下層膜上にプレパターンを形成した後の状態の一例を示す模式的断面図である。FIG. 2 is a schematic cross-sectional view illustrating an example of a state after forming a pre-pattern on the lower layer film in FIG. 1. 図2におけるプレパターン間にパターン形成用組成物により塗膜を形成した後の状態の一例を示す模式的断面図である。It is typical sectional drawing which shows an example after forming a coating film with the composition for pattern formation between the pre-patterns in FIG. 図3における塗膜を自己組織化膜とした後の状態の一例を示す模式的断面図である。It is typical sectional drawing which shows an example of the state after making the coating film in FIG. 3 into a self-organization film | membrane. 図4における自己組織化膜の一部の相及びプレパターンを除去した後の状態の一例を示す模式的断面図である。FIG. 5 is a schematic cross-sectional view showing an example of a state after removing a part of phases and a pre-pattern of the self-assembled film in FIG. 4.
<パターン形成用組成物>
 本発明のパターン形成用組成物は、[A]ブロック共重合体及び[B]溶媒を含有する。当該パターン形成用組成物は、本発明の効果を損なわない範囲において、他の任意成分を含有していてもよい。当該パターン形成用組成物により、基板の一方の面側に自己組織化による相分離構造を有する膜(自己組織化膜)を形成し、この自己組織化膜の一部の相を除去することにより、パターンを形成することができる。以下、各成分について説明する。
<Pattern forming composition>
The composition for pattern formation of this invention contains a [A] block copolymer and a [B] solvent. The pattern forming composition may contain other optional components as long as the effects of the present invention are not impaired. By forming a film (self-assembled film) having a phase separation structure by self-assembly on one surface side of the substrate with the pattern forming composition, and removing a part of the phase of the self-assembled film A pattern can be formed. Hereinafter, each component will be described.
[[A]ブロック共重合体]
 [A]ブロック共重合体は、ブロック(a)とブロック(b)と基(1)とを有し、自己組織化により相分離構造を形成する。上記ブロックのそれぞれは1種類の単量体に由来する繰り返し単位の連鎖構造からなる。このような複数のブロックを有する[A]ブロック共重合体は、加熱等により、同じ種類のブロック同士が凝集し、同種のブロックからなる相を形成する。このとき異なる種類のブロックから形成される相同士は互いに混ざり合うことがないため、異種の相が周期的に交互に繰り返される秩序パターンを有する相分離構造を形成することができると推察される。
[[A] block copolymer]
[A] The block copolymer has a block (a), a block (b), and a group (1), and forms a phase separation structure by self-assembly. Each of the blocks is composed of a chain structure of repeating units derived from one type of monomer. In the [A] block copolymer having such a plurality of blocks, the same type of blocks are aggregated by heating or the like to form a phase composed of the same type of blocks. At this time, since phases formed from different types of blocks do not mix with each other, it is presumed that a phase separation structure having an ordered pattern in which different types of phases are periodically and alternately repeated can be formed.
 [A]ブロック共重合体が置換又は非置換のスチレンからなるブロック(a)と、(メタ)アクリル酸エステルからなるブロック(b)と、主鎖の少なくとも一方の末端に結合する基(1)とを有し、基(1)が、主鎖側結合手にメチル基を結合させたときにClogPが-1以上3以下の化合物を形成する1価の基であることにより、当該パターン形成用組成物は、規則配列構造の欠陥の少ない自己組織化膜を形成できる。当該パターン形成用組成物が上記構成を有することで上記効果を奏する理由については必ずしも明確ではないが、例えば以下のように推察することができる。すなわち、基(1)は、主鎖側結合手にメチル基を結合させたと仮定した場合にClogPが-1以上3以下の化合物を形成する比較的親水性の高い基である。そのため、基(1)を主鎖の少なくとも一方の末端に結合させることにより、この基(1)が連結するブロックの末端の親水性を高めることができる。その結果、比較的疎水性の高い繰り返し単位(I)からなるブロック(a)と、比較的親水性の高い繰り返し単位(II)からなるブロック(b)との極性等の物性差を適度なものに調整することができるため、規則配列構造の欠陥の少ない自己組織化膜を形成できると考えられる。 [A] Block (a) where the block copolymer is made of substituted or unsubstituted styrene, block (b) made of (meth) acrylic acid ester, and group (1) bonded to at least one terminal of the main chain And the group (1) is a monovalent group that forms a compound having a ClogP of −1 or more and 3 or less when a methyl group is bonded to the main chain side bond, The composition can form a self-assembled film with few defects in the ordered arrangement structure. Although it is not necessarily clear why the pattern forming composition has the above configuration, the following effects can be inferred, for example. That is, the group (1) is a relatively highly hydrophilic group that forms a compound having a ClogP of −1 or more and 3 or less, assuming that a methyl group is bonded to the main chain side bond. Therefore, by bonding the group (1) to at least one terminal of the main chain, the hydrophilicity of the terminal of the block to which the group (1) is connected can be increased. As a result, the physical property difference such as polarity between the block (a) composed of the relatively hydrophobic repeating unit (I) and the block (b) composed of the relatively hydrophilic repeating unit (II) is moderate. Therefore, it is considered that a self-assembled film with few defects in the regular arrangement structure can be formed.
 [A]ブロック共重合体は、繰り返し単位(I)及び繰り返し単位(II)以外の繰り返し単位からなるブロックをさらに有していてもよい。また、[A]ブロック共重合体は、ブロック(a)を1種又は複数種有していてもよく、ブロック(b)を1種又は複数種有していてもよい。 [A] The block copolymer may further have a block composed of a repeating unit other than the repeating unit (I) and the repeating unit (II). Moreover, the [A] block copolymer may have 1 type or multiple types of block (a), and may have 1 type or multiple types of block (b).
 [A]ブロック共重合体としては、例えばブロック数が2であるジブロック共重合体、ブロック数が3であるトリブロック共重合体、ブロック数が4であるテトラブロック共重合体等が挙げられる。[A]ブロック共重合体としては、直鎖状高分子及び分岐状高分子のいずれもよい。分岐状高分子である[A]ブロック共重合体の具体例としては、中心部と、この中心部に一端が結合する3個以上の直鎖状ブロック(以下、「腕部」ともいう)とにより形成される星形共重合体等が挙げられる。この星形共重合体の腕部の数としては、例えば2個以上7個以下とすることができる。この星型共重合体としては、非対称型星形共重合体(ミクトアーム型共重合体)などが挙げられる。ここでいう非対称型星形共重合体とは、各腕部が異なるモノマーにより形成される星形共重合体を指し、各腕部が同じモノマーにより形成される対称型星形重合体とは異なるものを指す。 [A] Examples of the block copolymer include a diblock copolymer having 2 blocks, a triblock copolymer having 3 blocks, and a tetrablock copolymer having 4 blocks. . [A] The block copolymer may be either a linear polymer or a branched polymer. As a specific example of the [A] block copolymer which is a branched polymer, a central part and three or more linear blocks (hereinafter also referred to as “arm part”) having one end bonded to the central part And a star-shaped copolymer formed by. The number of arms of the star copolymer can be, for example, 2 or more and 7 or less. Examples of the star copolymer include an asymmetric star copolymer (Miktoarm copolymer). As used herein, the asymmetric star copolymer refers to a star copolymer in which each arm is formed of a different monomer, and is different from a symmetric star polymer in which each arm is formed of the same monomer. Refers to things.
 [A]ブロック共重合体としては、これらの中で、直鎖状高分子が好ましい。[A]ブロック共重合体が直鎖状高分子である場合、[A]ブロック共重合体としては、所望の微細なパターンをより容易に形成する観点から、ジブロック共重合体及びトリブロック共重合体がより好ましく、ジブロック共重合体がさらに好ましい。[A]ブロック共重合体は、上記ブロック間に連結基を有していてもよい。以下、各ブロック、基(1)及び連結基について説明する。 Among these, [A] block copolymers are preferably linear polymers. [A] When the block copolymer is a linear polymer, the [A] block copolymer is a diblock copolymer and a triblock copolymer from the viewpoint of easily forming a desired fine pattern. More preferred are polymers, and even more preferred are diblock copolymers. [A] The block copolymer may have a linking group between the blocks. Hereinafter, each block, group (1) and linking group will be described.
(ブロック(a))
 ブロック(a)は、繰り返し単位(I)からなる。繰り返し単位(I)は、置換又は非置換のスチレン単位である。
(Block (a))
Block (a) consists of repeating unit (I). The repeating unit (I) is a substituted or unsubstituted styrene unit.
 繰り返し単位(I)が置換のスチレン単位である場合、上記スチレン単位を置換する置換基としては、例えば
 メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基等の炭素数1~20のアルキル基;
 エテニル基等のアルケニル基;
 メトキシ基、tert-ブトキシ基等のアルコキシ基;
 アセトキシ基、ニトロ基、シアノ基等のヘテロ原子を含む基;
 塩素原子、臭素原子、ヨウ素原子等のハロゲン原子を含む基などが挙げられる。上記置換基としては、炭素数1~20のアルキル基が好ましく、炭素数1~6のアルキル基がより好ましく、炭素数4のアルキル基がさらに好ましく、tert-ブチル基が特に好ましい。
When the repeating unit (I) is a substituted styrene unit, examples of the substituent replacing the styrene unit include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, and an isobutyl group. Alkyl groups having 1 to 20 carbon atoms such as tert-butyl group;
An alkenyl group such as an ethenyl group;
Alkoxy groups such as methoxy group and tert-butoxy group;
Groups containing heteroatoms such as an acetoxy group, a nitro group, a cyano group;
Examples thereof include groups containing halogen atoms such as chlorine atom, bromine atom and iodine atom. As the substituent, an alkyl group having 1 to 20 carbon atoms is preferable, an alkyl group having 1 to 6 carbon atoms is more preferable, an alkyl group having 4 carbon atoms is more preferable, and a tert-butyl group is particularly preferable.
 上記置換基の結合部位としては、スチレン単位の主鎖部分(スチレンの重合性炭素-炭素二重結合を構成する2つの炭素原子に由来する炭素)でもよく、スチレン単位の芳香環のオルト位、メタ位又はパラ位でもよい。上記置換基の結合部位としては、スチレン単位の芳香環のパラ位が好ましい。 The bonding site of the substituent may be a main chain portion of the styrene unit (carbon derived from two carbon atoms constituting the polymerizable carbon-carbon double bond of styrene), or the ortho position of the aromatic ring of the styrene unit, It may be in meta or para position. The binding site for the substituent is preferably the para position of the aromatic ring of the styrene unit.
 置換のスチレン単位の有する上記置換基の数としては、特に限定されないが、1~3が好ましく、1及び2がより好ましく、1がさらに好ましい。 The number of the substituents in the substituted styrene unit is not particularly limited, but is preferably 1 to 3, more preferably 1 and 2, and further preferably 1.
 スチレン単位としては、置換のスチレン単位が好ましく、アルキル基で置換されたスチレン単位がより好ましく、tert-ブチル基で置換されたスチレン単位がさらに好ましく、芳香環のパラ位がtert-ブチル基で置換されたスチレン単位が特に好ましい。 As the styrene unit, a substituted styrene unit is preferred, a styrene unit substituted with an alkyl group is more preferred, a styrene unit substituted with a tert-butyl group is more preferred, and the para position of the aromatic ring is substituted with a tert-butyl group The styrene units made are particularly preferred.
(ブロック(b))
 ブロック(b)は、繰り返し単位(II)からなる。繰り返し単位(II)は、(メタ)アクリル酸エステル単位である。この(メタ)アクリル酸エステル単位を与える単量体としては、例えば
 (メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸2-エチルヘキシル等の(メタ)アクリル酸アルキルエステル; (メタ)アクリル酸シクロペンチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸1-メチルシクロペンチル、(メタ)アクリル酸2-エチルアダマンチル、(メタ)アクリル酸2-(アダマンタン-1-イル)プロピル等の(メタ)アクリル酸脂環式飽和炭化水素エステル;
 (メタ)アクリル酸フェニル、(メタ)アクリル酸ナフチル等の(メタ)アクリル酸アリールエステル;
 (メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシアダマンチル、(メタ)アクリル酸3-グリシジルプロピル等の(メタ)アクリル酸置換アルキルエステルなどが挙げられる。(メタ)アクリル酸エステル単位を与える単量体としては、パターンの形成性の向上とパターン形成後のパターン高さの増加との観点から、(メタ)アクリル酸アルキルエステルが好ましく、(メタ)アクリル酸メチルがより好ましい。
(Block (b))
Block (b) consists of repeating unit (II). The repeating unit (II) is a (meth) acrylic acid ester unit. Examples of the monomer giving the (meth) acrylate unit include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and the like. (Meth) acrylic acid alkyl ester; (meth) acrylic acid cyclopentyl, (meth) acrylic acid cyclohexyl, (meth) acrylic acid 1-methylcyclopentyl, (meth) acrylic acid 2-ethyladamantyl, (meth) acrylic acid 2- ( (Meth) acrylic acid alicyclic saturated hydrocarbon esters such as adamantane-1-yl) propyl;
(Meth) acrylic acid aryl esters such as phenyl (meth) acrylate and naphthyl (meth) acrylate;
Examples include (meth) acrylic acid-substituted alkyl esters such as 2-hydroxyethyl (meth) acrylate, 3-hydroxyadamantyl (meth) acrylate, and 3-glycidylpropyl (meth) acrylate. As the monomer that gives the (meth) acrylic acid ester unit, (meth) acrylic acid alkyl ester is preferable from the viewpoint of improving pattern formability and increasing the pattern height after pattern formation. Methyl acid is more preferred.
 [A]ブロック共重合体がジブロック共重合体の場合、[A]ブロック共重合体における繰り返し単位(I)の繰り返し単位(II)に対する含有割合の質量比((I)/(II))は、所望するラインアンドスペースパターンのライン/スペース幅比、コンタクトホールパターン又はシリンダーパターンの寸法等に応じて適宜選択できる。ラインアンドスペースパターンを形成する場合には、上記質量比としては、より良好な相分離構造を形成できる観点から、40/60~60/40の範囲にあることが好ましく、50/50がより好ましい。また、ホールパターンを形成する場合には、上記質量比としては、30/70~40/60、又は70/30~60/40の範囲にあることが好ましい。このように、上記質量比を上記範囲、すなわち35/65又は65/35に比較的近い範囲とすることで、良好なホールパターンを形成し易くなる。 [A] When the block copolymer is a diblock copolymer, the mass ratio ((I) / (II)) of the content ratio of the repeating unit (I) to the repeating unit (II) in the [A] block copolymer Can be appropriately selected according to the line / space width ratio of the desired line and space pattern, the dimensions of the contact hole pattern or the cylinder pattern, and the like. When forming a line and space pattern, the mass ratio is preferably in the range of 40/60 to 60/40, more preferably 50/50, from the viewpoint of forming a better phase separation structure. . When forming a hole pattern, the mass ratio is preferably in the range of 30/70 to 40/60, or 70/30 to 60/40. Thus, it becomes easy to form a favorable hole pattern by making the said mass ratio into the said range, ie, the range comparatively close to 35/65 or 65/35.
(基(1))
 基(1)は、[A]ブロック共重合体の主鎖の少なくとも一方の末端に結合する。基(1)は、ブロック(b)に連結することが好ましい。なお、基(1)は、[A]ブロック共重合体の主鎖の複数の末端に結合してもよく、その場合、複数の基(1)は同一でもよく、異なっていてもよい。
(Group (1))
The group (1) is bonded to at least one terminal of the main chain of the [A] block copolymer. The group (1) is preferably linked to the block (b). The group (1) may be bonded to a plurality of terminals of the main chain of the [A] block copolymer. In this case, the plurality of groups (1) may be the same or different.
 基(1)は、後述する末端停止剤により形成されるもの、及び重合開始剤により形成されるものが好ましく、末端停止剤により形成されるものがより好ましい。 The group (1) is preferably formed by a terminal terminator described later and a group formed by a polymerization initiator, and more preferably formed by a terminal terminator.
 基(1)は、主鎖側結合手にメチル基を結合させたときにClogPが-1以上3以下の化合物を形成する1価の基である。上記ClogPの下限としては、-0.7が好ましく、-0.5がより好ましく、-0.4がさらに好ましい。一方、上記ClogPの上限としては、2.5が好ましく、1.8がより好ましく、1.0がさらに好ましく、0が特に好ましい。上記ClogPを上記範囲とすることで、当該パターン形成用組成物は規則配列構造の欠陥のより少ない自己組織化膜を形成できる。 The group (1) is a monovalent group that forms a compound having a ClogP of −1 or more and 3 or less when a methyl group is bonded to the main chain side bond. The lower limit of ClogP is preferably −0.7, more preferably −0.5, and further preferably −0.4. On the other hand, the upper limit of ClogP is preferably 2.5, more preferably 1.8, still more preferably 1.0, and particularly preferably 0. By setting the ClogP in the above range, the pattern forming composition can form a self-assembled film with fewer defects in the ordered arrangement structure.
 上記ClogPとしては、分子モデル作成ソフト(例えばCambridgeSoft社の「Chemdraw Ver.12」に内蔵の「Chem Bio Draw Ultra13.0、Chemical properties window」)を用いて求めた値を用いることとする。 As the above ClogP, a value obtained by using molecular model creation software (for example, “Chem Bio Draw Ultra 13.0, Chemical properties window” built in “Chemdraw Ver. 12” of CambridgeSoft) is used.
 なお、上述の主鎖側結合手にメチル基を結合させたときに形成される化合物のClogPは、基(1)の親水性を間接的に表すパラメータである。ここで、メチル基は、比較的小さく、単純で、かつ極性を有さない基である。そのため、基(1)がどのような構造をしていても、メチル基が上記ClogPに与える影響は比較的小さく、かつ略一定である。そのため、上記ClogPは、主として基(1)の親水性に伴って増減するパラメータであり、基(1)の親水性の傾向を高い精度で反映する。 In addition, ClogP of the compound formed when a methyl group is bonded to the main chain side bond described above is a parameter that indirectly represents the hydrophilicity of the group (1). Here, the methyl group is a relatively small, simple and non-polar group. Therefore, no matter what structure the group (1) has, the influence of the methyl group on the ClogP is relatively small and substantially constant. Therefore, the ClogP is a parameter that increases or decreases mainly with the hydrophilicity of the group (1), and reflects the tendency of the hydrophilicity of the group (1) with high accuracy.
 基(1)の炭素数の下限としては、通常1であり、2が好ましく、3がより好ましい。一方、基(1)の炭素数の上限としては、20が好ましく、10がより好ましく、7がさらに好ましく、6が特に好ましい。基(1)が含む炭素原子数を上記範囲とすることで、上記ClogPを上記範囲に調整し易くなる。 The lower limit of the carbon number of the group (1) is usually 1, preferably 2 and more preferably 3. On the other hand, as an upper limit of carbon number of group (1), 20 is preferable, 10 is more preferable, 7 is further more preferable, and 6 is especially preferable. By setting the number of carbon atoms contained in the group (1) within the above range, the ClogP can be easily adjusted to the above range.
 基(1)は、通常へテロ原子を含む。基(1)のヘテロ原子数の下限としては、1が好ましく、2がより好ましい。一方、基(1)のヘテロ原子数の上限としては、5が好ましく、4がより好ましく、3がさらに好ましい。基(1)のヘテロ原子数を上記範囲とすることで、上記ClogPを上記範囲に調整し易くなる。ここで「ヘテロ原子」とは、炭素原子及び水素原子以外の原子をいう。なお、基(1)のヘテロ原子数が2以上である場合、2以上のヘテロ原子は、それぞれ同一でもよく、異なっていてもよい。 Group (1) usually contains a heteroatom. As a minimum of the number of heteroatoms of group (1), 1 is preferred and 2 is more preferred. On the other hand, the upper limit of the number of heteroatoms in the group (1) is preferably 5, more preferably 4, and even more preferably 3. By making the number of heteroatoms of group (1) into the said range, it becomes easy to adjust the said ClogP to the said range. Here, the “hetero atom” refers to an atom other than a carbon atom and a hydrogen atom. When the number of heteroatoms in the group (1) is 2 or more, the 2 or more heteroatoms may be the same or different.
 特に、基(1)は、炭素数が6以下、かつヘテロ原子数が2以上であるとよい。このように、基(1)の炭素数が比較的少なく、かつヘテロ原子数が比較的多いことで、上記ClogPを上記範囲により調整し易くなる。 Particularly, the group (1) preferably has 6 or less carbon atoms and 2 or more heteroatoms. Thus, since the number of carbon atoms in the group (1) is relatively small and the number of heteroatoms is relatively large, the ClogP can be easily adjusted in the above range.
 上記ヘテロ原子としては、例えばフッ素原子、塩素原子、臭素原子等のハロゲン原子、酸素原子、窒素原子、硫黄原子、リン原子、ケイ素原子などが挙げられ、これらの中で酸素原子、窒素原子及び硫黄原子が好ましい。 Examples of the hetero atom include halogen atoms such as fluorine atom, chlorine atom and bromine atom, oxygen atom, nitrogen atom, sulfur atom, phosphorus atom and silicon atom, and among these, oxygen atom, nitrogen atom and sulfur atom. Atoms are preferred.
 基(1)としては、例えば炭化水素基の炭素-炭素間にヘテロ原子含有基を含む基、炭化水素基又は上記へテロ原子含有基を含む基の有する水素原子の一部若しくは全部が置換基で置換された基等が挙げられる。 As the group (1), for example, a part or all of hydrogen atoms of a group containing a hetero atom-containing group between carbon-carbon of a hydrocarbon group, a hydrocarbon group, or a group containing a hetero atom-containing group described above And a group substituted with.
 ここで「炭化水素基」とは、鎖状炭化水素基、脂環式炭化水素基及び芳香族炭化水素基が含まれる。この「炭化水素基」は、飽和炭化水素基でも不飽和炭化水素基でもよい。「鎖状炭化水素基」とは、環状構造を含まず、鎖状構造のみで構成された炭化水素基をいい、直鎖状炭化水素基及び分岐状炭化水素基の両方を含む。「脂環式炭化水素基」とは、環構造としては脂環構造のみを含み、芳香環構造を含まない炭化水素基をいい、単環の脂環式炭化水素基及び多環の脂環式炭化水素基の両方を含む。但し、脂環式炭化水素基は、脂環構造のみで構成されている必要はなく、その一部に鎖状構造を含んでいてもよい。「芳香族炭化水素基」とは、環構造として芳香環構造を含む炭化水素基をいう。但し、芳香族炭化水素基は、芳香環構造のみで構成されている必要はなく、その一部に鎖状構造や脂環構造を含んでいてもよい。 Here, the “hydrocarbon group” includes a chain hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group. The “hydrocarbon group” may be a saturated hydrocarbon group or an unsaturated hydrocarbon group. The “chain hydrocarbon group” refers to a hydrocarbon group that does not include a cyclic structure but includes only a chain structure, and includes both a linear hydrocarbon group and a branched hydrocarbon group. The term “alicyclic hydrocarbon group” refers to a hydrocarbon group that includes only an alicyclic structure as a ring structure and does not include an aromatic ring structure, and includes a monocyclic alicyclic hydrocarbon group and a polycyclic alicyclic group. Includes both hydrocarbon groups. However, the alicyclic hydrocarbon group does not need to be composed only of the alicyclic structure, and a part thereof may include a chain structure. “Aromatic hydrocarbon group” refers to a hydrocarbon group containing an aromatic ring structure as a ring structure. However, the aromatic hydrocarbon group does not need to be composed only of an aromatic ring structure, and a part thereof may include a chain structure or an alicyclic structure.
 上記1価の炭化水素基としては、例えば炭素数1~20の1価の鎖状炭化水素基、炭素数3~20の1価の脂環式炭化水素基、炭素数6~20の1価の芳香族炭化水素基等が挙げられる。 Examples of the monovalent hydrocarbon group include a monovalent chain hydrocarbon group having 1 to 20 carbon atoms, a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, and a monovalent hydrocarbon having 6 to 20 carbon atoms. And aromatic hydrocarbon groups.
 上記1価の鎖状炭化水素基としては、例えば
 メチル基、エチル基、プロピル基、ブチル基、ペンチル基等のアルキル基;
 エテニル基、プロペニル基、ブテニル基等のアルケニル基;
 エチニル基、プロピニル基等のアルキニル基などが挙げられる。
Examples of the monovalent chain hydrocarbon group include alkyl groups such as a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group;
An alkenyl group such as an ethenyl group, a propenyl group, a butenyl group;
Examples thereof include alkynyl groups such as ethynyl group and propynyl group.
 上記1価の脂環式炭化水素基としては、例えば
 シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等の1価の単環の脂環式飽和炭化水素基;
 シクロブテニル基、シクロペンテニル基、シクロヘキセニル基等の1価の単環の脂環式不飽和炭化水素基;
 ノルボルニル基、アダマンチル基、トリシクロデシル基、テトラシクロドデシル基等の1価の多環の脂環式飽和炭化水素基;
 ノルボルネニル基、トリシクロデセニル基、テトラシクロドデセニル基等の1価の多環の脂環式不飽和炭化水素基などが挙げられる。
Examples of the monovalent alicyclic hydrocarbon group include monovalent monocyclic alicyclic saturated hydrocarbon groups such as a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cyclooctyl group;
A monovalent monocyclic alicyclic unsaturated hydrocarbon group such as a cyclobutenyl group, a cyclopentenyl group, a cyclohexenyl group;
Monovalent polycyclic alicyclic saturated hydrocarbon group such as norbornyl group, adamantyl group, tricyclodecyl group, tetracyclododecyl group;
And monovalent polycyclic alicyclic unsaturated hydrocarbon groups such as a norbornenyl group, a tricyclodecenyl group, and a tetracyclododecenyl group.
 上記1価の芳香族炭化水素基としては、例えば
 フェニル基、トリル基、キシリル基、ナフチル基、アントリル基、トリチル等のアリール基;
 ベンジル基、フェネチル基、フェニルプロピル基、ナフチルメチル基等のアラルキル基などが挙げられる。
Examples of the monovalent aromatic hydrocarbon group include aryl groups such as phenyl group, tolyl group, xylyl group, naphthyl group, anthryl group, and trityl group;
Examples include aralkyl groups such as benzyl group, phenethyl group, phenylpropyl group, naphthylmethyl group, and the like.
 上記ヘテロ原子含有基としては、例えば-CO-(カルボニル基)、-CS-(チオカルボニル基)、-O-(エーテル基)、-S-(チオエーテル基)、-COO-(エステル基)、-SO-(スルホニル基)、-SOO-(チオエステル基)、又はこれらを組み合わせた基等が挙げられる。 Examples of the hetero atom-containing group include —CO— (carbonyl group), —CS— (thiocarbonyl group), —O— (ether group), —S— (thioether group), —COO— (ester group), And —SO 2 — (sulfonyl group), —SO 2 O— (thioester group), or a combination of these.
 上記置換基としては、例えば
 フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;
 メトキシ基、エトキシ基、2-エチルペントキシ基等のアルコキシ基、カルボキシ基、ヒドロキシ基、シクロアルコキシ基、アリールオキシ基、アルコキシカルボニル基、シクロアルキルオキシオキシカルボニル基、アリールオキシカルボニル基、アシル基、アミノ基、アミド基、シアノ基、イソシアネート基、スルホ基等の極性基などが挙げられる。なお、上記アミノ基は、水素原子の一部又は全部がメチル基、エチル基等のアルキル基などで置換されたアミノ基を含む。
Examples of the substituent include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom;
Alkoxy groups such as methoxy group, ethoxy group, 2-ethylpentoxy group, carboxy group, hydroxy group, cycloalkoxy group, aryloxy group, alkoxycarbonyl group, cycloalkyloxyoxycarbonyl group, aryloxycarbonyl group, acyl group, Examples thereof include polar groups such as amino group, amide group, cyano group, isocyanate group and sulfo group. The amino group includes an amino group in which part or all of the hydrogen atoms are substituted with an alkyl group such as a methyl group or an ethyl group.
 基(1)としては、例えば下記式(1-1)~(1-7)で表される基(以下、「基(1-1)~基(1-7)」ともいう)等が挙げられる。 Examples of the group (1) include groups represented by the following formulas (1-1) to (1-7) (hereinafter also referred to as “group (1-1) to group (1-7)”). It is done.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式(1-1)~(1-7)中、Rは、炭素数1~20のヘテロ原子を含む1価の有機基である。但し、上記式(1-1)で表される基は、上記式(1-2)~(1-7)で表される基を含まないものとする。R、R、R及びRは、それぞれ独立して、炭素数1~10のアルキル基である。Rは、水素原子又は炭素数1~20の1価の有機基である。Rは、炭素数1~10の1価の炭化水素基である。tは、1~2の整数である。u及びvは、それぞれ独立して、0~2の整数である。Meは、メチル基である。*は、[A]ブロック共重合体の主鎖の末端に結合する部位である主鎖側結合手を示す。 In the above formulas (1-1) to (1-7), R 1 is a monovalent organic group containing a hetero atom having 1 to 20 carbon atoms. However, the group represented by the above formula (1-1) does not include the groups represented by the above formulas (1-2) to (1-7). R 2 , R 3 , R 5 and R 6 are each independently an alkyl group having 1 to 10 carbon atoms. R 4 is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms. R 7 is a monovalent hydrocarbon group having 1 to 10 carbon atoms. t is an integer of 1 to 2. u and v are each independently an integer of 0 to 2. Me is a methyl group. * Indicates a main chain side bond which is a site bonded to the end of the main chain of the [A] block copolymer.
 上記Rで表される炭素数1~20のヘテロ原子を含む1価の有機基としては、例えば炭化水素基の炭素-炭素間にヘテロ原子含有基を含む基、炭化水素基又は上記ヘテロ原子含有基を含む基の有する水素原子の一部又は全部が置換基で置換された基等が挙げられる。上記炭化水素基、ヘテロ原子含有基及び置換基としては、上述したものと同様の基等が挙げられる。上記Rで表される炭素数1~20のヘテロ原子を含む1価の有機基としては、エステル基を含む基、カルボキシ基を含む基、及び-SO-を含む基が好ましい。上記Rが含むエステル基は、ラクトン構造を形成するものであってもよい。また、上記式(1-1)で表される基は、後述するハロゲン化合物を用いて[A]ブロック共重合体に導入することが好ましい。上記Rは、上記式(1-1)で表される基をハロゲン化合物を用いて[A]ブロック共重合体に導入する際の導入容易性の観点から、ヒドロキシ基を含まないことが好ましい。 Examples of the monovalent organic group containing a hetero atom having 1 to 20 carbon atoms represented by R 1 include a group containing a hetero atom-containing group between carbon-carbon of a hydrocarbon group, a hydrocarbon group, or the above hetero atom. Examples include a group in which part or all of the hydrogen atoms of the group including the containing group are substituted with a substituent. Examples of the hydrocarbon group, heteroatom-containing group, and substituent include the same groups as described above. The monovalent organic group containing a hetero atom having 1 to 20 carbon atoms represented by R 1 is preferably a group containing an ester group, a group containing a carboxy group, or a group containing —SO 2 —. The ester group contained in R 1 may form a lactone structure. Further, the group represented by the above formula (1-1) is preferably introduced into the [A] block copolymer using a halogen compound described later. R 1 preferably does not contain a hydroxy group from the viewpoint of ease of introduction when the group represented by the formula (1-1) is introduced into the [A] block copolymer using a halogen compound. .
 上記R、R及びRで表されるアルキル基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基等が挙げられ、これらの中でメチル基が好ましい。 Examples of the alkyl group represented by R 2 , R 3, and R 6 include a methyl group, an ethyl group, a propyl group, and an isopropyl group. Among these, a methyl group is preferable.
 上記Rで表されるアルキル基としては、例えばメチル基、エチル基、プロピル基、2-エチルヘキシル基等が挙げられ、これらの中でメチル基及び2-エチルヘキシル基が好ましく、メチル基がより好ましい。 Examples of the alkyl group represented by R 5 include a methyl group, an ethyl group, a propyl group, and a 2-ethylhexyl group. Among these, a methyl group and a 2-ethylhexyl group are preferable, and a methyl group is more preferable. .
 上記Rで表される1価の有機基としては、例えば上記Rで表される1価の有機基と同様の基等が挙げられる。上記Rとしては、メチル基が好ましい。 Examples of the monovalent organic group represented by R 4 include the same groups as the monovalent organic group represented by R 1 . R 4 is preferably a methyl group.
 上記Rで表される1価の炭化水素基としては、例えば炭素数1~10の1価の鎖状炭化水素基、炭素数3~10の1価の脂環式炭化水素基、炭素数6~10の1価の芳香族炭化水素基等が挙げられ、これらの中で芳香族炭化水素基が好ましく、フェニル基がより好ましい。 Examples of the monovalent hydrocarbon group represented by R 7 include a monovalent chain hydrocarbon group having 1 to 10 carbon atoms, a monovalent alicyclic hydrocarbon group having 3 to 10 carbon atoms, and a carbon number. Examples thereof include monovalent aromatic hydrocarbon groups of 6 to 10, among which an aromatic hydrocarbon group is preferable, and a phenyl group is more preferable.
 上記tとしては、1が好ましい。また、上記u及びvとしては、0及び1が好ましく、1がより好ましい。 The t is preferably 1. Moreover, as said u and v, 0 and 1 are preferable and 1 is more preferable.
 具体的な基(1)としては、例えば下記式で表される基等が挙げられる。なお、下記式には、各基の主鎖側結合手にメチル基を結合させた際に形成する化合物のClogPの値を併記している。 Specific examples of the group (1) include groups represented by the following formulas. In the following formula, the value of ClogP of a compound formed when a methyl group is bonded to the main chain side bond of each group is also shown.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記式中、*は、[A]ブロック共重合体の主鎖の末端に結合する部位である主鎖側結合手を示す。Meは、メチル基である。Etは、エチル基である。 In the above formula, * indicates a main chain side bond that is a site bonded to the end of the main chain of the [A] block copolymer. Me is a methyl group. Et is an ethyl group.
 基(1)としては、ヒドロキシ基、アミノ基、カルボニル基、カルボキシル基、スルホニル基、エステル基、チオール基、アルコキシ基及びこれらの組み合わせを含むものが好ましく、ヒドロキシ基、アミノ基、メトキシ基及びエトキシ基のうちの少なくとも2種を含むものがより好ましい。 As the group (1), those containing a hydroxy group, an amino group, a carbonyl group, a carboxyl group, a sulfonyl group, an ester group, a thiol group, an alkoxy group and a combination thereof are preferable. A hydroxy group, an amino group, a methoxy group and an ethoxy group are preferable. More preferred are those containing at least two of the groups.
 なお、基(1)が[A]ブロック共重合体の主鎖の一方の末端にのみ結合する場合、上記主鎖の他方の末端は未変性でもよく、基(1)以外の末端基が結合していてもよい。基(1)以外の末端基としては、例えば炭素数1~10のアルキル基等が挙げられる。 In addition, when the group (1) is bonded only to one end of the main chain of the [A] block copolymer, the other end of the main chain may be unmodified, and a terminal group other than the group (1) is bonded. You may do it. Examples of the terminal group other than the group (1) include an alkyl group having 1 to 10 carbon atoms.
(連結基)
 [A]ブロック共重合体は、隣接するブロック(a)とブロック(b)との間に連結基を有していてもよい。当該パターン形成用組成物は、[A]ブロック共重合体が連結基を有することで、規則配列構造の欠陥のより少ない自己組織化膜を形成できる場合がある。上記連結基としては、例えば炭素数1~50の2価の有機基等が挙げられる。上記2価の有機基としては、1又は複数の芳香環を有する炭素数1~20の2価の有機基が好ましく、炭素数1~5のアルカンジイル基の有する水素原子のうち2個を芳香族炭化水素基で置換した基がより好ましい。上記アルカンジイル基としては、メチル基、エチル基、プロピル基等が挙げられ、エチル基が好ましい。また、上記芳香族炭化水素基としては、フェニル基、ナフチル基等が挙げられ、フェニル基が好ましい。
(Linking group)
[A] The block copolymer may have a linking group between the adjacent block (a) and block (b). In some cases, the pattern forming composition can form a self-assembled film with fewer defects in the regularly arranged structure because the [A] block copolymer has a linking group. Examples of the linking group include divalent organic groups having 1 to 50 carbon atoms. The divalent organic group is preferably a divalent organic group having 1 to 20 carbon atoms having one or more aromatic rings, and two of the hydrogen atoms of the alkanediyl group having 1 to 5 carbon atoms are aromatic. A group substituted with a group hydrocarbon group is more preferred. Examples of the alkanediyl group include a methyl group, an ethyl group, and a propyl group, and an ethyl group is preferable. Examples of the aromatic hydrocarbon group include a phenyl group and a naphthyl group, and a phenyl group is preferable.
 上記連結基を与える単量体としては、例えばジフェニルエチレン等が挙げられる。ジフェニルエチレンは、[A]ブロック共重合体をアニオン重合で合成する際に、途中で生成するアニオン末端の安定性を向上する。それにより、得られる[A]ブロック共重合体の分散度がより小さくなり、その結果、当該パターン形成用組成物により形成されるパターンの寸法のばらつきをより小さくすることができる。[A]ブロック共重合体は、連結基を1種又は2種以上有していてもよい。 Examples of the monomer that gives the linking group include diphenylethylene. Diphenylethylene improves the stability of the anion terminal produced in the middle when the [A] block copolymer is synthesized by anionic polymerization. Thereby, the dispersion degree of the obtained [A] block copolymer becomes smaller, and as a result, the variation in the dimension of the pattern formed by the pattern forming composition can be further reduced. [A] The block copolymer may have one or more linking groups.
 [A]ブロック共重合体の重量平均分子量(Mw)の下限としては、5,000が好ましく、10,000がより好ましく、15,000がさらに好ましく、21,000が特に好ましい。一方、[A]ブロック共重合体のMwの上限としては、100,000が好ましく、75,000がより好ましく、40,000がさらに好ましく、24,000が特に好ましい。[A]ブロック共重合体のMwを上記範囲とすることで、より良好な相分離構造を形成することができる。 [A] The lower limit of the weight average molecular weight (Mw) of the block copolymer is preferably 5,000, more preferably 10,000, even more preferably 15,000, and particularly preferably 21,000. On the other hand, the upper limit of Mw of the [A] block copolymer is preferably 100,000, more preferably 75,000, still more preferably 40,000, and particularly preferably 24,000. [A] By making Mw of a block copolymer into the said range, a more favorable phase-separation structure can be formed.
 [A]ブロック共重合体の数平均分子量(Mn)の下限としては、4,500が好ましく、9,500がより好ましく、14,500がさらに好ましく、20,000が特に好ましい。一方、[A]ブロック共重合体のMnの上限としては、95,000が好ましく、72,000がより好ましく、38,000がさらに好ましく、23,500が特に好ましい。[A]ブロック共重合体のMnを上記範囲とすることで、より良好な相分離構造を形成することができる。 [A] The lower limit of the number average molecular weight (Mn) of the block copolymer is preferably 4,500, more preferably 9,500, still more preferably 14,500, and particularly preferably 20,000. On the other hand, the upper limit of Mn of the [A] block copolymer is preferably 95,000, more preferably 72,000, further preferably 38,000, and particularly preferably 23,500. [A] By making Mn of a block copolymer into the said range, a more favorable phase-separation structure can be formed.
 [A]ブロック共重合体の分散度(Mw/Mn)の下限としては、通常1である。一方、[A]ブロック共重合体のMw/Mnの上限としては、通常4であり、2が好ましく、1.5がより好ましく、1.2がさらに好ましく、1.1が特に好ましい。[A]ブロック共重合体のMw/Mnを上記範囲とすることで、より良好な相分離構造を形成することができる。 [A] The lower limit of the degree of dispersion (Mw / Mn) of the block copolymer is usually 1. On the other hand, the upper limit of Mw / Mn of the [A] block copolymer is usually 4, preferably 2, more preferably 1.5, still more preferably 1.2, and particularly preferably 1.1. [A] By making Mw / Mn of a block copolymer into the said range, a more favorable phase-separation structure can be formed.
 ここで、[A]ブロック共重合体のMw及びMnは、GPCにより、下記条件で測定した値をいう。
 GPCカラム:東ソー社製の「G2000HXL」2本、「G3000HXL」1本、及び「G4000HXL」1本
 溶離液:テトラヒドロフラン(例えば和光純薬工業社製)
 流量:1.0mL/分
 試料濃度:1.0質量%
 試料注入量:100μL
 カラム温度:40℃
 検出器:示差屈折計
 標準物質:単分散ポリスチレン
Here, Mw and Mn of the [A] block copolymer are values measured by GPC under the following conditions.
GPC column: 2 "G2000HXL" manufactured by Tosoh Corporation, 1 "G3000HXL" and 1 "G4000HXL" Eluent: Tetrahydrofuran (for example, manufactured by Wako Pure Chemical Industries, Ltd.)
Flow rate: 1.0 mL / min Sample concentration: 1.0% by mass
Sample injection volume: 100 μL
Column temperature: 40 ° C
Detector: Differential refractometer Standard material: Monodisperse polystyrene
 [A]ブロック共重合体の含有量の下限としては、当該パターン形成用組成物中の全固形分に対して、80質量%が好ましく、90質量%がより好ましく、95質量%がさらに好ましく、99質量%が特に好ましい。 [A] The lower limit of the content of the block copolymer is preferably 80% by mass, more preferably 90% by mass, still more preferably 95% by mass, based on the total solid content in the pattern forming composition. 99 mass% is especially preferable.
 当該パターン形成用組成物における[A]ブロック共重合体の濃度の下限としては、0.3質量%が好ましく、0.7質量%がより好ましく、1.0質量%がさらに好ましく、1.3質量%が特に好ましい。一方、当該パターン形成用組成物における[A]ブロック共重合体の濃度の上限としては、5質量%が好ましく、3質量%がより好ましく、2質量%がさらに好ましく、1.7質量%が特に好ましい。 The lower limit of the concentration of the [A] block copolymer in the pattern forming composition is preferably 0.3% by mass, more preferably 0.7% by mass, still more preferably 1.0% by mass, and 1.3% Mass% is particularly preferred. On the other hand, the upper limit of the concentration of the [A] block copolymer in the pattern forming composition is preferably 5% by mass, more preferably 3% by mass, further preferably 2% by mass, and particularly preferably 1.7% by mass. preferable.
([A]ブロック共重合体の合成方法)
 [A]ブロック共重合体を合成する方法としては、例えば各ブロックを所望の順で形成した後、末端停止剤で重合末端を処理することで基(1)を導入する第1の方法、基(1)を形成する重合開始剤を用いて重合を開始し、各ブロックを所望の順で形成する第2の方法、第2の方法の後、末端停止剤で重合末端を処理することで基(1)を両末端に導入する第3の方法等が挙げられ、これらの中で第1の方法が好ましい。[A]ブロック共重合体の各ブロックは、例えばリビングカチオン重合、リビングアニオン重合、リビングラジカル重合、配位重合(チーグラー・ナッタ触媒、メタロセン触媒)等によって合成することができ、これらの中で基(1)を容易に導入できる観点から、リビングアニオン重合が好ましい。また、[A]ブロック共重合体が非対称型星形共重合体(ミクトアーム型共重合体)である場合、[A]ブロック共重合体は、1,3-ビス(1-フェニルエテニル)ベンゼンなどを介したアニオン重合を利用する方法、クリックケミストリー等の手法からアームを結合できる基を利用する方法、重合系の異なる開始点をもつ試剤を用いる方法などから合成することができる。
([A] Synthesis method of block copolymer)
[A] As a method for synthesizing a block copolymer, for example, a first method in which each block is formed in a desired order and then the group (1) is introduced by treating the polymerization terminal with a terminal stopper, Polymerization is started using the polymerization initiator that forms (1), and the block is formed by treating the polymerization terminal with a terminal terminator after the second method that forms each block in the desired order. The 3rd method etc. which introduce | transduce (1) into both ends are mentioned, Among these, the 1st method is preferable. [A] Each block of the block copolymer can be synthesized by, for example, living cation polymerization, living anion polymerization, living radical polymerization, coordination polymerization (Ziegler-Natta catalyst, metallocene catalyst), and the like. Living anionic polymerization is preferable from the viewpoint that (1) can be easily introduced. [A] When the block copolymer is an asymmetric star copolymer (Mictoarm type copolymer), the [A] block copolymer is 1,3-bis (1-phenylethenyl) benzene. It can be synthesized from a method using anionic polymerization via a method, a method using a group capable of binding an arm from a method such as click chemistry, a method using a reagent having a different starting point in the polymerization system, and the like.
 例えば[A]ブロック共重合体がブロック(a)及びブロック(b)を有するジブロック共重合体である場合、リビングアニオン重合で各ブロックを合成する方法としては、まずアニオン重合開始剤を使用して適当な溶媒中でブロック(a)を与える単量体の重合によりブロック(a)を形成した後、ブロック(b)を与える単量体を同様に添加し、ブロック(a)に繋げてブロック(b)を形成する。ブロック(a)とブロック(b)との間に、ジフェニルエチレン等の反応により連結基を形成させてもよい。 For example, when the block copolymer [A] is a diblock copolymer having a block (a) and a block (b), an anionic polymerization initiator is first used as a method of synthesizing each block by living anionic polymerization. After the block (a) is formed by polymerization of the monomer that gives the block (a) in an appropriate solvent, the monomer that gives the block (b) is added in the same manner, and the block (a) is connected to the block. (B) is formed. A linking group may be formed between the block (a) and the block (b) by a reaction such as diphenylethylene.
 上記重合に使用される溶媒としては、例えば
 n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカン等のアルカン類;
 シクロヘキサン、シクロヘプタン、シクロオクタン、デカリン、ノルボルナン等のシクロアルカン類;
 ベンゼン、トルエン、キシレン、エチルベンゼン、クメン等の芳香族炭化水素類;
 酢酸エチル、酢酸n-ブチル、酢酸i-ブチル、プロピオン酸メチル等の飽和カルボン酸エステル類;
 アセトン、2-ブタノン、4-メチル-2-ペンタノン、2-ヘプタノン、シクロヘキサノン等のケトン類;
 テトラヒドロフラン、ジメトキシエタン類、ジエトキシエタン類等のエーテル類;
 メタノール、エタノール、1-プロパノール、2-プロパノール、4-メチル-2-ペンタノール等のアルコール類などが挙げられる。これらの溶媒は、1種単独で又は2種以上を組み合わせて用いることができる。
Examples of the solvent used for the polymerization include alkanes such as n-pentane, n-hexane, n-heptane, n-octane, n-nonane and n-decane;
Cycloalkanes such as cyclohexane, cycloheptane, cyclooctane, decalin, norbornane;
Aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, cumene;
Saturated carboxylic acid esters such as ethyl acetate, n-butyl acetate, i-butyl acetate and methyl propionate;
Ketones such as acetone, 2-butanone, 4-methyl-2-pentanone, 2-heptanone, cyclohexanone;
Ethers such as tetrahydrofuran, dimethoxyethanes, diethoxyethanes;
Examples thereof include alcohols such as methanol, ethanol, 1-propanol, 2-propanol and 4-methyl-2-pentanol. These solvents can be used alone or in combination of two or more.
 上記重合における反応温度は、後述する重合開始剤の種類に応じて適宜決定すればよいが、上記反応温度の下限としては、通常-150℃であり、-80℃が好ましい。一方、上記反応温度の上限としては、通常50℃であり、40℃が好ましい。上記重合における反応時間の下限としては、通常5分であり、20分が好ましい。一方、上記重合における反応時間の上限としては、通常24時間であり、12時間が好ましい。 The reaction temperature in the polymerization may be appropriately determined according to the type of polymerization initiator described later, but the lower limit of the reaction temperature is usually −150 ° C., and preferably −80 ° C. On the other hand, the upper limit of the reaction temperature is usually 50 ° C, preferably 40 ° C. The lower limit of the reaction time in the polymerization is usually 5 minutes, and preferably 20 minutes. On the other hand, the upper limit of the reaction time in the polymerization is usually 24 hours and preferably 12 hours.
 上記重合に使用される重合開始剤としては、例えばアルキルリチウム、アルキルマグネシウムハライド、ナフタレンナトリウム、アルキル化ランタノイド系化合物;t-ブトキシカリウム、18-クラウン-6-エーテルカリウム等のカリウムアルコキシド;ジメチル亜鉛、ジエチル亜鉛等のアルキル亜鉛;トリメチルアルミニウム等のアルキルアルミニウム;ベンジルカリウム、クミルカリウム、クミルセシウム等の芳香族系金属化合物などが挙げられる。 Examples of the polymerization initiator used in the polymerization include alkyl lithium, alkyl magnesium halide, sodium naphthalene, alkylated lanthanoid compounds; potassium alkoxides such as t-butoxy potassium and 18-crown-6-ether potassium; dimethyl zinc, Alkyl zinc such as diethyl zinc; alkyl aluminum such as trimethylaluminum; aromatic metal compounds such as benzyl potassium, cumyl potassium, cumyl cesium, and the like.
 基(1)を上記重合開始剤で形成する場合、上記重合開始剤のClogPの下限としては、-1が好ましく、-0.3がより好ましく、0.3がさらに好ましい。一方、上記重合開始剤のClogPの上限としては、2が好ましく、1がより好ましく、0.4がさらに好ましい。このように、上記重合開始剤のClogPを上記範囲とすることで、[A]ブロック共重合体に比較的親水性の高い基(1)を導入し易くなる。なお、下記式(i-1)~(i-5)で表される重合開始剤(以下、「重合開始剤(i-1)~(i-5)」ともいう)のClogPは、それぞれ重合開始剤(i-1)が3.17、重合開始剤(i-2)でが3.57、重合開始剤(i-3)が0.368、重合開始剤(i-4)が3.21、重合開始剤(i-5)が3.37である。なお、重合開始剤のClogPとは、重合開始剤そのものの構造から求めたClogPであり、重合開始剤がイオン化合物である場合はアニオン及びカチオンが結合した状態の構造から求めたClogPをいう。 When the group (1) is formed with the polymerization initiator, the lower limit of the ClogP of the polymerization initiator is preferably -1, more preferably -0.3, and even more preferably 0.3. On the other hand, the upper limit of ClogP of the polymerization initiator is preferably 2, more preferably 1, and still more preferably 0.4. Thus, by making ClogP of the said polymerization initiator into the said range, it becomes easy to introduce | transduce relatively high hydrophilic group (1) into a [A] block copolymer. ClogP of the polymerization initiators represented by the following formulas (i-1) to (i-5) (hereinafter also referred to as “polymerization initiators (i-1) to (i-5)”) are polymerized respectively. The initiator (i-1) is 3.17, the polymerization initiator (i-2) is 3.57, the polymerization initiator (i-3) is 0.368, and the polymerization initiator (i-4) is 3.3. 21. The polymerization initiator (i-5) is 3.37. In addition, ClogP of a polymerization initiator is ClogP calculated | required from the structure of the polymerization initiator itself, and when a polymerization initiator is an ionic compound, ClogP calculated | required from the structure of the state in which the anion and the cation couple | bonded.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 重合する単量体がスチレン、4-tert-ブチルスチレン又はメタクリル酸メチルの場合、上記重合に使用される重合開始剤としては、アルキルリチウム化合物が好ましく、sec-ブチルリチウムがより好ましい。また、基(1)を上記重合開始剤で形成する場合、上記重合に使用される重合開始剤としては、重合開始剤(i-3)が好ましい。 When the monomer to be polymerized is styrene, 4-tert-butylstyrene or methyl methacrylate, the polymerization initiator used for the polymerization is preferably an alkyl lithium compound, more preferably sec-butyl lithium. When the group (1) is formed with the polymerization initiator, the polymerization initiator (i-3) is preferred as the polymerization initiator used for the polymerization.
 基(1)の導入に末端停止剤を用いる場合、この末端停止剤としては、例えば基(1)とハロゲン原子とが結合したハロゲン化合物、ジアルキルホルムアミド、グリシジルエーテル、エポキシシクロアルカン、エポキシ化合物(但し、上述のグリシジルエーテル及びエポキシシクロアルカンを除く)、置換若しくは非置換のチイラン又は置換若しくは非置換のチエタン、アルキルピロリドン、二酸化炭素等が挙げられる。上記ハロゲン原子としては、例えば塩素原子、フッ素原子、臭素原子等が挙げられ、これらの中で塩素原子及び臭素原子が好ましく、臭素原子がより好ましい。 When a terminal terminator is used for introducing the group (1), examples of the terminal terminator include halogen compounds in which the group (1) and a halogen atom are bonded, dialkylformamide, glycidyl ether, epoxycycloalkane, epoxy compounds (provided that , Except for the above-mentioned glycidyl ether and epoxycycloalkane), substituted or unsubstituted thiirane or substituted or unsubstituted thietane, alkylpyrrolidone, carbon dioxide and the like. Examples of the halogen atom include a chlorine atom, a fluorine atom, and a bromine atom. Among these, a chlorine atom and a bromine atom are preferable, and a bromine atom is more preferable.
 上記末端停止剤のClogPの下限としては、-1.5が好ましく、-1.0がより好ましく、-0.5がさらに好ましく、-0.3が特に好ましい。一方、上記末端停止剤のClogPの上限としては、4.0が好ましく、3.2がより好ましく、2.2がさらに好ましく、1.4が特に好ましく、0がさらに特に好ましい。上記末端停止剤のClogPを上記範囲とすることで、[A]ブロック共重合体に比較的親水性の高い基(1)を導入し易くなる。 The lower limit of ClogP of the above end terminator is preferably -1.5, more preferably -1.0, still more preferably -0.5, and particularly preferably -0.3. On the other hand, the upper limit of ClogP of the terminal stopper is preferably 4.0, more preferably 3.2, further preferably 2.2, particularly preferably 1.4, and particularly preferably 0. By making ClogP of the said terminal terminator into the said range, it becomes easy to introduce | transduce group (1) with comparatively high hydrophilicity into a [A] block copolymer.
 基(1-1)を導入する場合、末端停止剤としては例えば上記ハロゲン化合物や二酸化炭素を用いることができる。基(1-2)を導入する場合、末端停止剤としては例えばジアルキルホルムアミドを用いることができる。基(1-3)を導入する場合、末端停止剤としては例えば置換若しくは非置換のチイラン又は置換若しくは非置換のチエタンを用いることができる。基(1-4)を導入する場合、末端停止剤としては例えばグリシジルエーテルを用いることができる。基(1-5)を導入する場合、末端停止剤としては例えばアルキルピロリドンを用いることができる。基(1-6)を導入する場合、末端停止剤としては例えば後述するエポキシ化合物を用いることができる。基(1-7)を導入する場合、末端停止剤としては例えばエポキシシクロアルカンを用いることができる。 In the case of introducing the group (1-1), for example, the above halogen compound or carbon dioxide can be used as a terminal terminator. When the group (1-2) is introduced, for example, dialkylformamide can be used as the terminal terminator. When the group (1-3) is introduced, for example, substituted or unsubstituted thiirane or substituted or unsubstituted thietane can be used as the terminal terminator. When introducing the group (1-4), for example, glycidyl ether can be used as the terminal terminator. When introducing the group (1-5), for example, alkylpyrrolidone can be used as the terminal terminator. When the group (1-6) is introduced, for example, an epoxy compound described later can be used as the terminal terminator. When introducing the group (1-7), for example, an epoxycycloalkane can be used as a terminal terminator.
 末端停止剤で重合末端を処理することで基(1)を導入する具体的な方法としては、例えば下記スキームに示すような方法等が挙げられる。即ち、上述したリビングアニオン重合等によって得られたブロック共重合体に、末端停止剤を添加して末端を変性させることにより、主鎖の末端に基(1)が導入された[A]ブロック共重合体を得ることができる。なお、下記スキームにおいて、ブロック(a)はポリスチレンブロック、ブロック(b)は(メタ)アクリル酸メチルブロック、末端停止剤は後述するエポキシ化合物である。導入される基(1)は、基(1-4)である。 As a specific method for introducing the group (1) by treating the polymerization terminal with a terminal terminator, for example, a method as shown in the following scheme and the like can be mentioned. That is, the block copolymer obtained by the above-described living anion polymerization or the like is modified by adding a terminal terminator to modify the terminal [A] block copolymer in which the group (1) is introduced at the terminal of the main chain. A polymer can be obtained. In the following scheme, block (a) is a polystyrene block, block (b) is a methyl (meth) acrylate block, and a terminal terminator is an epoxy compound described later. The group (1) to be introduced is a group (1-4).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記スキーム中、nは、2以上の整数である。mは、1以上の整数である。Rは、上記式(1-4)と同義である。 In the above scheme, n is an integer of 2 or more. m is an integer of 1 or more. R 5 has the same meaning as in the above formula (1-4).
 なお、末端停止剤がハロゲン化合物、ジアルキルホルムアミド、アルキルピロリドン、置換若しくは非置換のチイラン又は置換若しくは非置換のチエタン、グリシジルエーテル、エポキシシクロアルカン、二酸化炭素等である場合も、同様の方法により主鎖の末端に基(1)を導入できる。 Even when the terminal terminator is a halogen compound, dialkylformamide, alkylpyrrolidone, substituted or unsubstituted thiirane, substituted or unsubstituted thietane, glycidyl ether, epoxycycloalkane, carbon dioxide, etc., the main chain is obtained by the same method. The group (1) can be introduced at the end of
 上記[A]ブロック共重合体は、再沈殿法により回収することが好ましい。すなわち、反応終了後、反応液を再沈溶媒に投入することにより目的の共重合体を粉体として回収する。再沈溶媒としては、アルコール類、超純水、アルカン類等を1種単独で又は2種以上を組み合わせて用いることができる。再沈殿法の他に、分液操作やカラム操作、限外ろ過操作等により、単量体、オリゴマー等の低分子成分を除去して重合体を回収することもできる。 The above [A] block copolymer is preferably recovered by a reprecipitation method. That is, after completion of the reaction, the target copolymer is recovered as a powder by introducing the reaction solution into a reprecipitation solvent. As the reprecipitation solvent, alcohols, ultrapure water, alkanes and the like can be used singly or in combination of two or more. In addition to the reprecipitation method, the polymer can be recovered by removing low molecular components such as monomers and oligomers by a liquid separation operation, a column operation, an ultrafiltration operation, or the like.
[[B]溶媒]
 当該パターン形成用組成物は、[B]溶媒を含有する。[B]溶媒は、少なくとも[A]ブロック共重合体を溶解又は分散可能な溶媒であれば特に限定されない。
[[B] solvent]
The pattern forming composition contains a [B] solvent. [B] The solvent is not particularly limited as long as it can dissolve or disperse at least the [A] block copolymer.
 [B]溶媒としては、例えばアルコール系溶媒、エーテル系溶媒、ケトン系溶媒、アミド系溶媒、エステル系溶媒、炭化水素系溶媒等が挙げられる。 [B] Examples of the solvent include alcohol solvents, ether solvents, ketone solvents, amide solvents, ester solvents, hydrocarbon solvents, and the like.
 上記アルコール系溶媒としては、例えば
 メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、iso-ブタノール、sec-ブタノール、tert-ブタノール、n-ペンタノール、iso-ペンタノール、2-メチルブタノール、sec-ペンタノール、tert-ペンタノール、3-メトキシブタノール、n-ヘキサノール、2-メチルペンタノール、sec-ヘキサノール、2-エチルブタノール、sec-ヘプタノール、3-ヘプタノール、n-オクタノール、2-エチルヘキサノール、sec-オクタノール、n-ノニルアルコール、2,6-ジメチル-4-ヘプタノール、n-デカノール、sec-ウンデシルアルコール、トリメチルノニルアルコール、sec-テトラデシルアルコール、sec-ヘプタデシルアルコール、フルフリルアルコール、フェノール、シクロヘキサノール、メチルシクロヘキサノール、3,3,5-トリメチルシクロヘキサノール、ベンジルアルコール、ジアセトンアルコール等のモノアルコール系溶媒;
 エチレングリコール、1,2-プロピレングリコール、1,3-ブチレングリコール、2,4-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2,5-ヘキサンジオール、2,4-ヘプタンジオール、2-エチル-1,3-ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等の多価アルコール系溶媒;
 エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールモノ-2-エチルブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノヘキシルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル等の多価アルコール部分エーテル系溶媒などが挙げられる。
Examples of the alcohol solvent include methanol, ethanol, n-propanol, iso-propanol, n-butanol, iso-butanol, sec-butanol, tert-butanol, n-pentanol, iso-pentanol, 2-methylbutanol. , Sec-pentanol, tert-pentanol, 3-methoxybutanol, n-hexanol, 2-methylpentanol, sec-hexanol, 2-ethylbutanol, sec-heptanol, 3-heptanol, n-octanol, 2-ethyl Hexanol, sec-octanol, n-nonyl alcohol, 2,6-dimethyl-4-heptanol, n-decanol, sec-undecyl alcohol, trimethylnonyl alcohol, sec-tetradecyl alcohol, s monoalcohol solvents such as ec-heptadecyl alcohol, furfuryl alcohol, phenol, cyclohexanol, methylcyclohexanol, 3,3,5-trimethylcyclohexanol, benzyl alcohol, diacetone alcohol;
Ethylene glycol, 1,2-propylene glycol, 1,3-butylene glycol, 2,4-pentanediol, 2-methyl-2,4-pentanediol, 2,5-hexanediol, 2,4-heptanediol, 2 Polyhydric alcohol solvents such as ethyl-1,3-hexanediol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol;
Ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monohexyl ether, ethylene glycol monophenyl ether, ethylene glycol mono-2-ethylbutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl Ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, diethylene glycol monohexyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol Monomethyl ether, dipropylene glycol monoethyl ether, and polyhydric alcohol partial ether solvents such as dipropylene glycol monopropyl ether.
 上記エーテル系溶媒としては、例えば
 ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル等のジアルキルエーテル系溶媒;
 テトラヒドロフラン、テトラヒドロピラン等の環状エーテル系溶媒;
 ジフェニルエーテル、アニソール等の芳香環含有エーテル系溶媒などが挙げられる。
Examples of the ether solvent include dialkyl ether solvents such as diethyl ether, dipropyl ether, and dibutyl ether;
Cyclic ether solvents such as tetrahydrofuran and tetrahydropyran;
And aromatic ring-containing ether solvents such as diphenyl ether and anisole.
 上記ケトン系溶媒としては、例えば
 アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン、メチル-iso-ブチルケトン、2-ヘプタノン、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジ-iso-ブチルケトン、トリメチルノナノン等の鎖状ケトン系溶媒:
 シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルシクロヘキサノン等の環状ケトン系溶媒:
 2,4-ペンタンジオン、アセトニルアセトン、アセトフェノン等が挙げられる。
Examples of the ketone solvent include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-iso-butyl ketone, 2-heptanone, ethyl-n-butyl ketone, and methyl-n-hexyl ketone. Chain ketone solvents such as di-iso-butyl ketone and trimethylnonanone:
Cyclic ketone solvents such as cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone and methylcyclohexanone:
Examples include 2,4-pentanedione, acetonylacetone, acetophenone, and the like.
 上記アミド系溶媒としては、例えば
 N,N’-ジメチルイミダゾリジノン、N-メチルピロリドン等の環状アミド系溶媒; N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド等の鎖状アミド系溶媒などが挙げられる。
Examples of the amide solvents include cyclic amide solvents such as N, N′-dimethylimidazolidinone and N-methylpyrrolidone; N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, Examples thereof include chain amide solvents such as N-methylacetamide, N, N-dimethylacetamide, and N-methylpropionamide.
 上記エステル系溶媒としては、例えば
 酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸iso-プロピル、酢酸n-ブチル、酢酸iso-ブチル、酢酸sec-ブチル、酢酸n-ペンチル、酢酸i-ペンチル、酢酸sec-ペンチル、酢酸3-メトキシブチル、酢酸メチルペンチル、酢酸2-エチルブチル、酢酸2-エチルヘキシル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸n-ノニル等の酢酸エステル系溶媒;
 エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノ-n-ブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテルアセテート等の多価アルコール部分エーテルアセテート系溶媒;
 γ-ブチロラクトン、バレロラクトン等のラクトン系溶媒;
 ジメチルカーボネート、ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒;
 ジ酢酸グリコール、酢酸メトキシトリグリコール、プロピオン酸エチル、プロピオン酸n-ブチル、プロピオン酸iso-アミル、シュウ酸ジエチル、シュウ酸ジ-n-ブチル、アセト酢酸メチル、アセト酢酸エチル、乳酸メチル、乳酸エチル、乳酸n-ブチル、乳酸n-アミル、マロン酸ジエチル、フタル酸ジメチル、フタル酸ジエチルなどが挙げられる。
Examples of the ester solvent include methyl acetate, ethyl acetate, n-propyl acetate, iso-propyl acetate, n-butyl acetate, iso-butyl acetate, sec-butyl acetate, n-pentyl acetate, i-pentyl acetate, and acetic acid. acetate solvents such as sec-pentyl, 3-methoxybutyl acetate, methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, benzyl acetate, cyclohexyl acetate, methylcyclohexyl acetate, n-nonyl acetate;
Ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol mono-n-butyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether Polyhydric alcohol partial ether acetate solvents such as acetate, propylene glycol monobutyl ether acetate, dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate;
Lactone solvents such as γ-butyrolactone and valerolactone;
Carbonate solvents such as dimethyl carbonate, diethyl carbonate, ethylene carbonate, propylene carbonate;
Diethyl acetate, methoxytriglycol acetate, ethyl propionate, n-butyl propionate, iso-amyl propionate, diethyl oxalate, di-n-butyl oxalate, methyl acetoacetate, ethyl acetoacetate, methyl lactate, ethyl lactate N-butyl lactate, n-amyl lactate, diethyl malonate, dimethyl phthalate, diethyl phthalate and the like.
 上記炭化水素系溶媒としては、例えば
 n-ペンタン、iso-ペンタン、n-ヘキサン、iso-ヘキサン、n-ヘプタン、iso-ヘプタン、2,2,4-トリメチルペンタン、n-オクタン、iso-オクタン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素系溶媒;
 ベンゼン、トルエン、キシレン、メシチレン、エチルベンゼン、トリメチルベンゼン、メチルエチルベンゼン、n-プロピルベンゼン、iso-プロピルベンゼン、ジエチルベンゼン、iso-ブチルベンゼン、トリエチルベンゼン、ジ-iso-プロピルベンセン、n-アミルナフタレン等の芳香族炭化水素系溶媒などが挙げられる。
Examples of the hydrocarbon solvent include n-pentane, iso-pentane, n-hexane, iso-hexane, n-heptane, iso-heptane, 2,2,4-trimethylpentane, n-octane, iso-octane, Aliphatic hydrocarbon solvents such as cyclohexane and methylcyclohexane;
Fragrances such as benzene, toluene, xylene, mesitylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, iso-propylbenzene, diethylbenzene, iso-butylbenzene, triethylbenzene, di-iso-propylbenzene, n-amylnaphthalene Group hydrocarbon solvents and the like.
 これらの中で、エステル系溶媒及びケトン系溶媒が好ましく、エステル系溶媒がより好ましく、多価アルコール部分エーテルアセテート系溶媒がさらに好ましく、プロピレングリコールモノメチルエーテルアセテートが特に好ましい。当該パターン形成用組成物は、[B]溶媒を1種又は2種以上含有していてもよい。 Among these, ester solvents and ketone solvents are preferable, ester solvents are more preferable, polyhydric alcohol partial ether acetate solvents are more preferable, and propylene glycol monomethyl ether acetate is particularly preferable. The pattern forming composition may contain one or more [B] solvents.
[任意成分]
 当該パターン形成用組成物が含有していてもよい任意成分としては、例えば界面活性剤等が挙げられる。当該パターン形成用組成物は、界面活性剤を含有することで、基板等への塗布性をより向上できる。
[Optional ingredients]
As an arbitrary component which the said composition for pattern formation may contain, surfactant etc. are mentioned, for example. The said pattern formation composition can improve the applicability | paintability to a board | substrate etc. more by containing surfactant.
<パターン形成方法>
 本発明のパターン形成方法は、当該パターン形成用組成物により自己組織化膜を形成する工程、及び上記自己組織化膜の一部を除去する工程を備える。当該パターン形成方法は、上記自己組織化膜形成工程の前に、基板の一方の面側に下層膜を形成する工程(以下、「下層膜形成工程」ともいう)及び/又は上記基板の一方の面側にプレパターンを形成する工程(以下、「プレパターン形成工程」ともいう)をさらに備えてもよい。当該パターン形成方法によれば、自己組織化膜の形成に上述の当該パターン形成用組成物を用いるため、規則配列構造の欠陥の少ない自己組織化膜の形成が可能であり、ひいては良好な形状のパターンを形成することができる。以下、各工程について図面を参照しつつ説明する。
<Pattern formation method>
The pattern forming method of the present invention includes a step of forming a self-assembled film with the pattern forming composition and a step of removing a part of the self-assembled film. The pattern forming method includes a step of forming a lower layer film on one surface side of the substrate (hereinafter also referred to as “lower layer film forming step”) and / or one of the substrates before the self-assembled film forming step. You may further provide the process (henceforth a "pre-pattern formation process") which forms a pre pattern in the surface side. According to the pattern forming method, since the above-described pattern forming composition is used for forming the self-assembled film, it is possible to form a self-assembled film with few defects in the ordered arrangement structure, and thus a good shape. A pattern can be formed. Hereinafter, each process will be described with reference to the drawings.
[下層膜形成工程]
 本工程は、基板の一方の面側に下層膜を形成する工程である。これにより、図1に示すように、基板101の一方の面(上面)側に下層膜102が形成された下層膜付き基板を得ることができる。後述する自己組織化膜形成工程における自己組織化膜はこの下層膜102の上記基板101とは反対の面側に形成される。自己組織化膜が有する相分離構造(ミクロドメイン構造)は、当該パターン形成用組成物が含有する[A]ブロック共重合体の各ブロック間の相互作用に加えて、下層膜102との相互作用によっても変化するため、下層膜102を形成することで構造制御がより容易となる場合がある。さらに、自己組織化膜が薄膜である場合、下層膜102上に形成することでその転写プロセスを改善することができる。
[Lower layer formation process]
This step is a step of forming a lower layer film on one surface side of the substrate. Thereby, as shown in FIG. 1, a substrate with a lower layer film in which the lower layer film 102 is formed on one surface (upper surface) side of the substrate 101 can be obtained. The self-assembled film in the self-assembled film forming step described later is formed on the surface of the lower layer film 102 opposite to the substrate 101. The phase-separated structure (microdomain structure) of the self-assembled film has an interaction with the lower layer film 102 in addition to the interaction between each block of the [A] block copolymer contained in the pattern forming composition. Therefore, the structure control may be facilitated by forming the lower layer film 102. Furthermore, when the self-assembled film is a thin film, the transfer process can be improved by forming it on the lower layer film 102.
 上記基板101としては、例えばシリコンウェハ、アルミニウムで被覆されたウェハ等の従来公知の基板を使用できる。 As the substrate 101, a conventionally known substrate such as a silicon wafer or a wafer coated with aluminum can be used.
 下層膜102の形成に用いられる下層膜形成用組成物としては、従来公知の有機下層膜形成材料等を用いることができ、例えば架橋剤を含む下層膜形成用組成物などが挙げられる。 As the underlayer film forming composition used for forming the underlayer film 102, conventionally known organic underlayer film forming materials and the like can be used, and examples thereof include an underlayer film forming composition containing a crosslinking agent.
 下層膜102の形成方法としては、特に限定されないが、例えば基板101上に下層膜形成用組成物をスピンコート法等の公知の方法により塗布した後、露光及び/又は加熱することにより硬化して形成する方法等が挙げられる。この露光に用いられる放射線としては、例えば可視光線、紫外線、遠紫外線、X線、電子線、γ線、分子線、イオンビーム等が挙げられる。上記加熱温度の下限としては、特に限定されないが、90℃が好ましい。一方、上記加熱温度の上限としては、特に限定されないが、550℃が好ましく、450℃がより好ましく、300℃がさらに好ましい。上記加熱時間の下限としては、5秒が好ましく、10秒がより好ましく、20秒がさらに好ましい。一方、上記加熱時間の上限としては、1,200秒が好ましく、600秒がより好ましく、300秒がさらに好ましい。下層膜102の平均厚さの下限としては、特に限定されないが、1nmが好ましく、2nmがより好ましく、3nmがさらに好ましい。一方、下層膜102の平均厚さの上限としては、特に限定されないが、20,000nmが好ましく、1,000nmがより好ましく、100nmがさらに好ましく、10nmが特に好ましい。 A method for forming the lower layer film 102 is not particularly limited. For example, the lower layer film forming composition is applied on the substrate 101 by a known method such as a spin coating method, and then cured by exposure and / or heating. The method of forming etc. are mentioned. Examples of radiation used for this exposure include visible light, ultraviolet light, far ultraviolet light, X-rays, electron beams, γ-rays, molecular beams, and ion beams. Although it does not specifically limit as a minimum of the said heating temperature, 90 degreeC is preferable. On the other hand, the upper limit of the heating temperature is not particularly limited, but is preferably 550 ° C, more preferably 450 ° C, and further preferably 300 ° C. As a minimum of the above-mentioned heating time, 5 seconds are preferred, 10 seconds are more preferred, and 20 seconds are still more preferred. On the other hand, the upper limit of the heating time is preferably 1,200 seconds, more preferably 600 seconds, and even more preferably 300 seconds. The lower limit of the average thickness of the lower layer film 102 is not particularly limited, but is preferably 1 nm, more preferably 2 nm, and further preferably 3 nm. On the other hand, the upper limit of the average thickness of the lower layer film 102 is not particularly limited, but is preferably 20,000 nm, more preferably 1,000 nm, still more preferably 100 nm, and particularly preferably 10 nm.
[プレパターン形成工程]
 本工程は、プレパターン103を形成する工程である。このプレパターンは、基板上に形成してもよく、図2に示すように下層膜102における基板101とは反対の面側に形成してもよい。プレパターン103を形成することにより、後述する塗膜104(図3参照)の自己組織化による相分離構造の形状が制御され、より微細なパターンの形成が可能となる。また、プレパターン103の材質、サイズ、形状等により、当該パターン形成用組成物によって得られる自己組織化膜の相分離構造を細かく制御することができる。なお、プレパターン103としては、所望のパターンの形状に合わせて適宜選択することができ、例えばラインアンドスペースパターン、ホールパターン、シリンダーパターン等を用いることができる。当該パターン形成方法がプレパターン形成工程を備える場合、通常プレパターン103の非積層領域に後述する自己組織化膜105を形成する。
[Pre-pattern forming process]
This step is a step of forming the pre-pattern 103. This pre-pattern may be formed on the substrate, or may be formed on the surface of the lower layer film 102 opposite to the substrate 101 as shown in FIG. By forming the pre-pattern 103, the shape of the phase separation structure by self-organization of a coating film 104 (see FIG. 3) described later is controlled, and a finer pattern can be formed. Further, the phase separation structure of the self-assembled film obtained by the pattern forming composition can be finely controlled by the material, size, shape and the like of the prepattern 103. Note that the pre-pattern 103 can be appropriately selected according to the shape of a desired pattern. For example, a line and space pattern, a hole pattern, a cylinder pattern, or the like can be used. When the pattern forming method includes a pre-pattern forming step, a self-assembled film 105 to be described later is formed in a non-stacked region of the normal pre-pattern 103.
 プレパターン103を形成する方法としては、公知のレジストパターン形成方法と同様の方法等が挙げられる。また、このプレパターン103の形成に用いられる組成物としては、酸解離性基を有する重合体、感放射線性酸発生剤及び有機溶媒を含有する組成物等の従来のレジスト組成物を用いることができる。具体的には、例えば市販の化学増幅型レジスト組成物を基板101又は下層膜102上に塗布してレジスト膜を形成する。次に、上記レジスト膜の所望の領域に特定パターンのマスクを介して放射線を照射し、露光を行う。上記放射線としては、例えば紫外線、遠紫外線、X線等の電磁波;電子線、α線等の荷電粒子線などが挙げられる。これらの中で、遠紫外線が好ましく、ArFエキシマレーザー光及びKrFエキシマレーザーがより好ましく、ArFエキシマレーザー光がさらに好ましい。また、露光方法としては液浸露光を行うこともできる。次いでポストエクスポージャーベーク(PEB)を行い、アルカリ現像液、有機溶媒を主成分とする現像液等を用いて現像を行うことにより、所望のプレパターン103を形成することができる。得られたプレパターン103は、例えば波長254nmの紫外線等を照射した後、加熱処理により硬化をより促進させることが好ましい。上記加熱処理温度の下限としては、例えば100℃である。一方、上記加熱処理温度の上限としては、例えば200℃である。上記加熱処理時間の下限としては、例えば1分である。一方、上記加熱処理時間の上限としては、例えば30分である。 As a method for forming the pre-pattern 103, a method similar to a known resist pattern forming method may be used. In addition, as a composition used for forming the pre-pattern 103, a conventional resist composition such as a composition containing a polymer having an acid dissociable group, a radiation sensitive acid generator and an organic solvent may be used. it can. Specifically, for example, a commercially available chemically amplified resist composition is applied onto the substrate 101 or the lower layer film 102 to form a resist film. Next, exposure is performed by irradiating a desired region of the resist film with radiation through a mask having a specific pattern. Examples of the radiation include electromagnetic waves such as ultraviolet rays, far ultraviolet rays, and X-rays; and charged particle beams such as electron beams and α rays. Among these, far ultraviolet rays are preferable, ArF excimer laser light and KrF excimer laser are more preferable, and ArF excimer laser light is more preferable. Moreover, immersion exposure can also be performed as an exposure method. Subsequently, a desired pre-pattern 103 can be formed by performing post-exposure baking (PEB) and performing development using an alkali developer, a developer containing an organic solvent as a main component, or the like. It is preferable that the obtained pre-pattern 103 further accelerates curing by, for example, heat treatment after irradiating ultraviolet rays having a wavelength of 254 nm. The lower limit of the heat treatment temperature is 100 ° C., for example. On the other hand, the upper limit of the heat treatment temperature is, for example, 200 ° C. The lower limit of the heat treatment time is, for example, 1 minute. On the other hand, the upper limit of the heat treatment time is, for example, 30 minutes.
 なお、プレパターン103の表面を疎水化処理又は親水化処理してもよい。具体的な処理方法としては、水素プラズマに一定時間さらす水素化処理等が挙げられる。プレパターン103の表面の疎水性又は親水性を増長させることにより、塗膜104の自己組織化をより促進することができる。 Note that the surface of the pre-pattern 103 may be subjected to a hydrophobic treatment or a hydrophilic treatment. As a specific treatment method, a hydrogenation treatment by exposing to hydrogen plasma for a certain period of time can be cited. By increasing the hydrophobicity or hydrophilicity of the surface of the pre-pattern 103, the self-organization of the coating film 104 can be further promoted.
[自己組織化膜形成工程]
 本工程は、当該パターン形成用組成物を用い、基板上に相分離した自己組織化膜(相分離構造を有する自己組織化膜)を形成する工程である。上記下層膜及びプレパターンを用いない場合には、基板上に直接当該パターン形成用組成物を塗布して塗膜を形成し、相分離構造を有する自己組織化膜を形成する。また、上記下層膜及びプレパターンを用いる場合には、図3及び図4に示すように、当該パターン形成用組成物をプレパターン103によって挟まれた下層膜102上の領域に塗布して塗膜104を形成し、基板101上に形成された下層膜102上に、相分離構造を有する自己組織化膜105を形成する。形成される自己組織化膜としては、例えば図4における自己組織化膜105のように、基板101に対して略垂直な界面を有する相分離構造を有するもの等が挙げられる。本工程において、当該パターン形成用組成物を用いることで、優れた塗布性により塗布欠陥を抑制しつつ規則配列構造の欠陥の少ない自己組織化膜105が得られる。
[Self-assembled film formation process]
This step is a step for forming a phase-separated self-assembled film (self-assembled film having a phase-separated structure) on the substrate using the pattern forming composition. When the lower layer film and the prepattern are not used, the pattern forming composition is directly applied onto the substrate to form a coating film, thereby forming a self-assembled film having a phase separation structure. When the lower layer film and the prepattern are used, as shown in FIGS. 3 and 4, the pattern forming composition is applied to a region on the lower layer film 102 sandwiched between the prepatterns 103. 104 is formed, and a self-assembled film 105 having a phase separation structure is formed on the lower layer film 102 formed on the substrate 101. Examples of the self-assembled film to be formed include a film having a phase separation structure having an interface substantially perpendicular to the substrate 101, such as the self-assembled film 105 in FIG. In this step, by using the pattern forming composition, it is possible to obtain the self-assembled film 105 with few defects in the regularly arranged structure while suppressing coating defects due to excellent coating properties.
 基板101上にプレパターンが形成されている場合、この相分離構造はプレパターンに沿って形成されることが好ましく、相分離により形成される界面は、プレパターンの側面と略平行であることがより好ましい。例えば図4に示すラメラ状の相分離構造を形成する場合、[A]ブロック共重合体が有するブロックのうち、プレパターン103の側面と親和性が高いブロック(「ブロック(β)」とする)がプレパターン103に沿ってブロック(β)相105bを形成し、親和性の低いブロック(「ブロック(α)」とする)がプレパターン103から離れた位置にブロック(α)相105aを形成する。なお、本工程において形成される相分離構造は、複数の相からなるものであるが、界面自体は必ずしも明確でなくてもよい。 When a pre-pattern is formed on the substrate 101, the phase separation structure is preferably formed along the pre-pattern, and the interface formed by the phase separation is substantially parallel to the side surface of the pre-pattern. More preferred. For example, when the lamellar phase separation structure shown in FIG. 4 is formed, among the blocks of the [A] block copolymer, a block having high affinity with the side surface of the pre-pattern 103 (referred to as “block (β)”) Forms a block (β) phase 105 b along the pre-pattern 103, and a block having a low affinity (referred to as “block (α)”) forms a block (α) phase 105 a at a position away from the pre-pattern 103. . The phase separation structure formed in this step is composed of a plurality of phases, but the interface itself is not necessarily clear.
 当該パターン形成用組成物を基板101の一方の面側に塗布して塗膜104を形成する方法としては、特に限定されないが、例えば使用される当該パターン形成用組成物をスピンコート法等によって塗布する方法等が挙げられる。これにより、当該パターン形成用組成物を基板101上に塗布することができる。また、基板101上にプレパターン103が形成されている場合、当該パターン形成用組成物を下層膜102上のプレパターン103間に充填することができる。形成される塗膜104の平均厚さの下限としては、例えば10nmである。一方、形成される塗膜104の平均厚さの上限としては、例えば60nmである。 The method for applying the pattern forming composition to one surface side of the substrate 101 to form the coating film 104 is not particularly limited. For example, the pattern forming composition to be used is applied by a spin coating method or the like. And the like. Thereby, the composition for pattern formation can be applied onto the substrate 101. Further, when the prepattern 103 is formed on the substrate 101, the pattern forming composition can be filled between the prepatterns 103 on the lower layer film 102. The lower limit of the average thickness of the coating film 104 to be formed is, for example, 10 nm. On the other hand, the upper limit of the average thickness of the formed coating film 104 is, for example, 60 nm.
 塗膜104を相分離させることにより自己組織化膜105とする方法としては、例えばアニーリングする方法等が挙げられる。アニーリングの方法としては、例えばオーブン、ホットプレート等により加熱する方法等が挙げられる。アニーリング温度の下限としては、通常80℃であり、120℃が好ましく、160℃がより好ましく、200℃がさらに好ましい。一方、アニーリング温度の上限としては、通常400℃であり、350℃が好ましく、300℃がより好ましく、260℃が特に好ましい。アニーリング時間の下限としては、10秒が好ましく、20秒がより好ましく、40秒がさらに好ましく、90秒が特に好ましい。一方、アニーリング時間の上限としては、120分が好ましく、30分がより好ましく、10分がさらに好ましく、3分が特に好ましい。これにより得られる自己組織化膜105の平均厚さの下限としては、0.1nmが好ましく、1nmがより好ましく、5nmがより好ましい。一方、自己組織化膜105の平均厚さの上限としては、500nmが好ましく、100nmがより好ましく、50nmがさらに好ましい。 Examples of a method for forming the self-assembled film 105 by phase-separating the coating film 104 include an annealing method. Examples of the annealing method include a method of heating with an oven, a hot plate or the like. As a minimum of annealing temperature, it is usually 80 ° C, 120 ° C is preferred, 160 ° C is more preferred, and 200 ° C is still more preferred. On the other hand, the upper limit of the annealing temperature is usually 400 ° C., preferably 350 ° C., more preferably 300 ° C., and particularly preferably 260 ° C. As a minimum of annealing time, 10 seconds are preferred, 20 seconds are more preferred, 40 seconds are still more preferred, and 90 seconds are especially preferred. On the other hand, the upper limit of the annealing time is preferably 120 minutes, more preferably 30 minutes, further preferably 10 minutes, and particularly preferably 3 minutes. The lower limit of the average thickness of the self-assembled film 105 thus obtained is preferably 0.1 nm, more preferably 1 nm, and more preferably 5 nm. On the other hand, the upper limit of the average thickness of the self-assembled film 105 is preferably 500 nm, more preferably 100 nm, and even more preferably 50 nm.
[除去工程]
 本工程は、図4及び図5に示すように、自己組織化膜105が有する相分離構造のうちの一部のブロック(α)相105aを除去する工程である。自己組織化により相分離した各相のエッチングレートの差を用いて、ブロック(α)相105aをエッチング処理により除去することができる。なお、上記エッチング処理の前に、必要に応じて放射線を照射してもよい。上記放射線としては、例えばエッチングにより除去する相がポリ(メタ)アクリル酸エステルブロック相である場合には、波長254nmの放射線を用いることができる。上記放射線照射により、ポリ(メタ)アクリル酸エステルブロック相が分解されるため、よりエッチングされ易くなる。
[Removal process]
As shown in FIGS. 4 and 5, this step is a step of removing a part of the block (α) phase 105 a in the phase separation structure of the self-assembled film 105. The block (α) phase 105a can be removed by an etching process using the difference in etching rate of each phase separated by self-assembly. In addition, you may irradiate a radiation before the said etching process as needed. As the radiation, for example, when the phase to be removed by etching is a poly (meth) acrylate block phase, radiation having a wavelength of 254 nm can be used. Since the poly (meth) acrylic acid ester block phase is decomposed by the radiation irradiation, it is more easily etched.
 ブロック(α)相の除去方法としては、例えばケミカルドライエッチング、ケミカルウェットエッチング等の反応性イオンエッチング(RIE);スパッタエッチング、イオンビームエッチング等の物理的エッチングなどの公知の方法が挙げられる。これらのうち反応性イオンエッチング(RIE)が好ましく、中でもCF、Oガス等を用いたケミカルドライエッチング、及び有機溶媒、フッ酸等の液体のエッチング液を用いたケミカルウェットエッチング(湿式現像)がより好ましい。上記有機溶媒としては、例えばn-ペンタン、n-ヘキサン、n-ヘプタン等のアルカン類;シクロヘキサン、シクロヘプタン、シクロオクタン等のシクロアルカン類;酢酸エチル、酢酸n-ブチル、酢酸i-ブチル、プロピオン酸メチル等の飽和カルボン酸エステル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルn-ペンチルケトン等のケトン類;メタノール、エタノール、1-プロパノール、2-プロパノール、4-メチル-2-ペンタノール等のアルコール類などが挙げられる。これらの溶媒は、1種単独で又は2種以上を組み合わせて用いることができる。なお、本工程では、ブロック相(α)を除去する代わりに、ブロック相(β)を除去してもよい。 Examples of the method for removing the block (α) phase include known methods such as reactive ion etching (RIE) such as chemical dry etching and chemical wet etching; and physical etching such as sputter etching and ion beam etching. Of these, reactive ion etching (RIE) is preferable. Among them, chemical dry etching using CF 4 , O 2 gas, etc., and chemical wet etching (wet development) using a liquid etching solution such as an organic solvent or hydrofluoric acid. Is more preferable. Examples of the organic solvent include alkanes such as n-pentane, n-hexane and n-heptane; cycloalkanes such as cyclohexane, cycloheptane and cyclooctane; ethyl acetate, n-butyl acetate, i-butyl acetate and propion Saturated carboxylic acid esters such as methyl acetate; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl n-pentyl ketone; methanol, ethanol, 1-propanol, 2-propanol, 4-methyl-2-pentanol, etc. Examples include alcohols. These solvents can be used alone or in combination of two or more. In this step, instead of removing the block phase (α), the block phase (β) may be removed.
[プレパターン除去工程]
 基板上にプレパターン103が形成されている場合、本工程により、図4及び図5に示すようにプレパターン103を除去することが好ましい。プレパターン103を除去することにより、より微細かつ複雑なパターン(図5における105bからなるパターン)を形成することが可能となる。なお、プレパターン103の除去方法については、上述のブロック(α)相105aの除去方法の説明を適用できる。また、本工程は、上記除去工程と同時に行ってもよいし、除去工程の前又は後に行ってもよい。
[Pre-pattern removal process]
When the pre-pattern 103 is formed on the substrate, it is preferable to remove the pre-pattern 103 by this step as shown in FIGS. By removing the pre-pattern 103, it is possible to form a finer and more complicated pattern (pattern consisting of 105b in FIG. 5). Note that the description of the removal method of the block (α) phase 105a described above can be applied to the removal method of the pre-pattern 103. Moreover, this process may be performed simultaneously with the said removal process, and may be performed before or after a removal process.
[基板パターン形成工程]
 当該パターン形成方法は、上記除去工程の後に、通常基板パターン形成工程をさらに有する。本工程は、残存した自己組織化膜の一部(図5における105bからなるパターン)をマスクとして、下層膜102及び基板101をエッチングすることによりパターニングする工程である。基板101へのパターニングが完了した後、マスクとして使用されたブロック(β)相105bは溶解処理等により基板上から除去され、最終的に、パターニングされた基板(パターン)を得ることができる。この得られるパターンとしては、例えばラインアンドスペースパターン、ホールパターン等が挙げられる。上記エッチングの方法としては、上記除去工程と同様の方法を用いることができ、エッチングガス及びエッチング液は、基板の材質等に合わせて適宜選択することができる。例えば基板がシリコン素材である場合、フロン系ガスとSFとの混合ガス等を用いることができる。また、基板が金属膜である場合には、BClとClとの混合ガス等を用いることができる。当該パターン形成方法により得られるパターンは半導体素子等に好適に用いられ、さらにこの半導体素子はLED、太陽電池等に広く用いられる。
[Substrate pattern formation process]
The pattern forming method further includes a normal substrate pattern forming step after the removing step. This step is a step of patterning by etching the lower layer film 102 and the substrate 101 using a part of the remaining self-assembled film (pattern consisting of 105b in FIG. 5) as a mask. After the patterning on the substrate 101 is completed, the block (β) phase 105b used as a mask is removed from the substrate by a dissolution treatment or the like, and finally a patterned substrate (pattern) can be obtained. Examples of the obtained pattern include a line and space pattern and a hole pattern. As the etching method, the same method as in the removing step can be used, and the etching gas and the etching liquid can be appropriately selected according to the material of the substrate and the like. For example, when the substrate is made of a silicon material, a mixed gas of chlorofluorocarbon gas and SF 4 can be used. When the substrate is a metal film, a mixed gas of BCl 3 and Cl 2 or the like can be used. A pattern obtained by the pattern forming method is suitably used for a semiconductor element or the like, and the semiconductor element is widely used for an LED, a solar cell or the like.
 なお、[A]ブロック共重合体分子における各ブロックの長さの比、[A]ブロック共重合体分子の長さ(重量平均分子量等)、下層膜、プレパターン等により、得られる相分離構造を精密に制御することで、図4に示すラメラ構造以外にも、海島構造、シリンダ構造、共連続構造等の相分離構造を有する自己組織化膜を形成することができ、その結果、所望の微細パターンを得ることができる。 [A] The ratio of the length of each block in the block copolymer molecule, [A] the length of the block copolymer molecule (weight average molecular weight, etc.), the lower layer film, the prepattern, etc. In addition to the lamellar structure shown in FIG. 4, it is possible to form a self-assembled film having a phase separation structure such as a sea-island structure, a cylinder structure, or a bicontinuous structure. A fine pattern can be obtained.
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。各物性値の測定方法を下記に示す。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to these examples. The measuring method of each physical property value is shown below.
[Mw及びMn]
 各重合体のMw及びMnは、GPCにより、下記条件で測定した。
 GPCカラム:東ソー社の「G2000HXL」2本、「G3000HXL」1本、及び「G4000HXL」1本
 溶離液:テトラヒドロフラン(和光純薬工業社製)
 流量:1.0mL/分
 試料濃度:1.0質量%
 試料注入量:100μL
 カラム温度:40℃
 検出器:示差屈折計
 標準物質:単分散ポリスチレン
[Mw and Mn]
Mw and Mn of each polymer were measured by GPC under the following conditions.
GPC column: two "G2000HXL", one "G3000HXL", and one "G4000HXL" manufactured by Tosoh Corporation Eluent: Tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.)
Flow rate: 1.0 mL / min Sample concentration: 1.0% by mass
Sample injection volume: 100 μL
Column temperature: 40 ° C
Detector: Differential refractometer Standard material: Monodisperse polystyrene
H-NMR分析]
 H-NMR分析は、核磁気共鳴装置(日本電子社の「JNM-ECX400」)を使用して行った。各重合体における各繰り返し単位の含有割合は、H-NMRで得られたスペクトルにおける各繰り返し単位に対応するピークの面積比から算出した。
[ 1 H-NMR analysis]
1 H-NMR analysis was performed using a nuclear magnetic resonance apparatus (“JNM-ECX400” manufactured by JEOL Ltd.). The content ratio of each repeating unit in each polymer was calculated from the area ratio of peaks corresponding to each repeating unit in the spectrum obtained by 1 H-NMR.
[合成例1](ブロック共重合体(A-1)の合成)
 500mLのフラスコ反応容器を減圧乾燥した後、窒素雰囲気下、蒸留脱水処理を行ったテトラヒドロフラン168gを注入し、-78℃まで冷却した。このテトラヒドロフランに塩化リチウムの0.5Nテトラヒドロフラン溶液4.52mL(2.26mmol)を加え十分に撹拌した。その後、この攪拌した溶液にsec-ブチルリチウム(sec-BuLi)の1Nシクロヘキサン溶液1.26mL(1.13mmol)を注入した後、蒸留脱水処理を行った4-tert-ブチルスチレン13.7mL(74.8mmol)と蒸留処理を行ったテトラヒドロフラン10gとの混合溶液を30分かけて滴下注入した。この滴下注入のとき、反応溶液の内温が-65℃以上にならないように注意した。滴下終了後に120分間熟成し、その後、蒸留脱水処理を行ったテトラヒドロフラン10gとメタクリル酸メチル12.7mL(119.8mmol)とを30分かけて滴下注入した。滴下終了後に120分間熟成し、その後、末端停止剤(C-1)としてのメタノール0.045g(1.13mmol)を加え、重合末端の停止反応を行った。得られた重合体溶液をメタノール中で沈殿精製し、その後、濾過をすることで白色固体を得た。
[Synthesis Example 1] (Synthesis of block copolymer (A-1))
After drying the 500 mL flask reaction vessel under reduced pressure, 168 g of tetrahydrofuran that had been subjected to distillation dehydration treatment was injected under a nitrogen atmosphere and cooled to −78 ° C. To this tetrahydrofuran, 4.52 mL (2.26 mmol) of 0.5N tetrahydrofuran solution of lithium chloride was added and stirred sufficiently. Thereafter, 1.26 mL (1.13 mmol) of a 1N cyclohexane solution of sec-butyllithium (sec-BuLi) was injected into the stirred solution, and then 13.7 mL (74%) of 4-tert-butylstyrene subjected to distillation dehydration treatment. .8 mmol) and 10 g of tetrahydrofuran that had been subjected to distillation treatment were added dropwise over 30 minutes. At the time of this dropwise injection, care was taken that the internal temperature of the reaction solution did not exceed -65 ° C. After completion of the dropwise addition, the mixture was aged for 120 minutes, and then 10 g of tetrahydrofuran and 12.7 mL (119.8 mmol) of methyl methacrylate were added dropwise over 30 minutes. After completion of the dropwise addition, the mixture was aged for 120 minutes, and then 0.045 g (1.13 mmol) of methanol as an end terminator (C-1) was added to terminate the polymerization end. The obtained polymer solution was purified by precipitation in methanol, and then filtered to obtain a white solid.
 得られた上記白色固体をメチルイソブチルケトンに溶解させて10質量%溶液とした。この溶液に1質量%のシュウ酸水溶液500gを注入撹拌し、静置後、下層の水層を取り除いた。この操作を3回繰り返し、Li塩を除去した。その後、この溶液に超純水500gを注入して撹拌し、下層の水層を取り除いた。この操作を3回繰り返し、シュウ酸を除去した。その後、溶液を濃縮し、メタノール2,000g中に滴下することで重合体を析出させた。この重合体を減圧濾過し、さらにメタノールで2回洗浄した後、60℃で減圧乾燥させることで白色のブロック共重合体(A-1)を得た。このブロック共重合体(A-1)は、Mwが22,274、Mnが21,584、Mw/Mnが1.03であった。また、H-NMR分析の結果、ブロック重合体(A-1)は、4-tert-ブチルスチレンに由来する繰り返し単位(I)及びメタクリル酸メチルに由来する繰り返し単位(II)の各含有割合が、それぞれ50.0質量%(39モル%)及び50.0質量%(61モル%)であった。なお、ブロック共重合体(A-1)はジブロック共重合体である。 The obtained white solid was dissolved in methyl isobutyl ketone to give a 10% by mass solution. To this solution, 500 g of a 1% by mass oxalic acid aqueous solution was poured and stirred, and after standing, the lower aqueous layer was removed. This operation was repeated three times to remove the Li salt. Thereafter, 500 g of ultrapure water was poured into this solution and stirred, and the lower aqueous layer was removed. This operation was repeated three times to remove oxalic acid. Thereafter, the solution was concentrated and dropped into 2,000 g of methanol to precipitate a polymer. This polymer was filtered under reduced pressure, further washed twice with methanol, and then dried under reduced pressure at 60 ° C. to obtain a white block copolymer (A-1). This block copolymer (A-1) had Mw of 22,274, Mn of 21,584, and Mw / Mn of 1.03. Further, as a result of 1 H-NMR analysis, the block polymer (A-1) was found to contain each of the repeating units (I) derived from 4-tert-butylstyrene and the repeating units (II) derived from methyl methacrylate. Were 50.0 mass% (39 mol%) and 50.0 mass% (61 mol%), respectively. The block copolymer (A-1) is a diblock copolymer.
[合成例2~12、及び16~21](ブロック共重合体(A-2)~(A-12)及び(A-16)~(A-21)の合成)
 下記表1に示す末端停止剤を用いた以外は、合成例1と同様に操作してブロック共重合体(A-2)~(A-12)及び(A-16)~(A-21)を合成した。
[Synthesis Examples 2 to 12, and 16 to 21] (Synthesis of Block Copolymers (A-2) to (A-12) and (A-16) to (A-21))
The block copolymers (A-2) to (A-12) and (A-16) to (A-21) were prepared in the same manner as in Synthesis Example 1 except that the terminal terminator shown in Table 1 was used. Was synthesized.
[合成例13~15](ブロック共重合体(A-13)~(A-15)の合成)
 4-tert-ブチルスチレンの代わりにスチレン13.3ml(115.2mmol)を用い、かつ下記表1に示す末端停止剤を用いた以外は、合成例1と同様に操作してブロック共重合体(A-13)~(A-15)を合成した。
[Synthesis Examples 13 to 15] (Synthesis of block copolymers (A-13) to (A-15))
A block copolymer (1) was prepared in the same manner as in Synthesis Example 1 except that 13.3 ml (115.2 mmol) of styrene was used in place of 4-tert-butylstyrene, and the terminal terminator shown in Table 1 below was used. A-13) to (A-15) were synthesized.
[合成例22](ブロック共重合体(A-22)の合成)
 500mLのフラスコ反応容器を減圧乾燥した後、窒素雰囲気下、蒸留脱水処理を行ったテトラヒドロフラン200gを注入し、-78℃まで冷却した。その後、このテトラヒドロフランにsec-ブチルリチウム(sec-BuLi)の1Nシクロヘキサン溶液を0.55mL(0.49mmol)注入し、その後、重合禁止剤除去のためのシリカゲルによる吸着濾別と蒸留脱水処理とを行ったスチレン22.1mL(0.192mol)を30分かけて滴下注入し、重合系が橙色であることを確認した。この滴下注入のとき、反応溶液の内温が-60℃以上にならないように注意した。滴下終了後に30分間熟成し、その後、1,1-ジフェニルエチレン0.21mL(0.0015mol)、及び塩化リチウムの0.5Nテトラヒドロフラン溶液1.96mL(0.0010mol)を加え、重合系が暗赤色になったことを確認した。さらに、重合禁止剤除去のためのシリカゲルによる吸着濾別と蒸留脱水処理とを行ったメタクリル酸メチル20.3mL(0.192mol)をこの溶液に30分かけて滴下注入して重合系が薄黄色になったことを確認し、その後120分間反応させた。この後、末端停止剤(C-1)としてのメタノール1mL(24.7mmol)を注入し重合末端の停止反応を行った。この反応溶液を室温まで昇温し、得られた反応溶液を濃縮してメチルイソブチルケトン(MIBK)で置換した。その後、シュウ酸2%水溶液1,000gを注入撹拌し、静置後、下層の水層を取り除いた。この操作を3回繰り返し、金属Liを除去した。その後、超純水1,000gを注入撹拌し、下層の水層を取り除いた。この操作を3回繰り返しシュウ酸を除去した後、溶液を濃縮してメタノール500g中に滴下することで重合体を析出させた。この重合体を減圧濾過し、さらにメタノールで2回洗浄した後、60℃で減圧乾燥させることで白色のブロック共重合体(A-22)38.5gを得た。
[Synthesis Example 22] (Synthesis of block copolymer (A-22))
After drying the 500 mL flask reaction vessel under reduced pressure, 200 g of tetrahydrofuran that had been subjected to distillation dehydration treatment was injected under a nitrogen atmosphere and cooled to −78 ° C. Thereafter, 0.55 mL (0.49 mmol) of a 1N cyclohexane solution of sec-butyllithium (sec-BuLi) is injected into this tetrahydrofuran, and thereafter, adsorption filtration with silica gel for removing the polymerization inhibitor and distillation dehydration treatment are performed. Styrene 22.1 mL (0.192 mol) was added dropwise over 30 minutes to confirm that the polymerization system was orange. At the time of this dropwise injection, care was taken so that the internal temperature of the reaction solution did not exceed -60 ° C. After completion of the dropwise addition, the mixture was aged for 30 minutes, and then 0.21 mL (0.0015 mol) of 1,1-diphenylethylene and 1.96 mL (0.0010 mol) of 0.5N tetrahydrofuran solution of lithium chloride were added, and the polymerization system was dark red It was confirmed that it became. Further, 20.3 mL (0.192 mol) of methyl methacrylate subjected to adsorption filtration with silica gel for removing the polymerization inhibitor and distilled and dehydrated was added dropwise to this solution over 30 minutes to make the polymerization system light yellow. After that, it was reacted for 120 minutes. Thereafter, 1 mL (24.7 mmol) of methanol as a terminal terminator (C-1) was injected to terminate the polymerization terminal. The reaction solution was warmed to room temperature, and the resulting reaction solution was concentrated and replaced with methyl isobutyl ketone (MIBK). Thereafter, 1,000 g of a 2% oxalic acid aqueous solution was injected and stirred, and after standing, the lower aqueous layer was removed. This operation was repeated three times to remove metallic Li. Thereafter, 1,000 g of ultrapure water was injected and stirred, and the lower aqueous layer was removed. After this operation was repeated three times to remove oxalic acid, the solution was concentrated and dropped into 500 g of methanol to precipitate a polymer. This polymer was filtered under reduced pressure, further washed twice with methanol, and then dried under reduced pressure at 60 ° C. to obtain 38.5 g of a white block copolymer (A-22).
 このブロック共重合体(A-22)は、Mwが42,000、Mnが40,000、Mw/Mnが1.05であった。また、H-NMR分析の結果、ブロック共重合体(A-22)は、スチレンに由来する繰り返し単位(I)及びメタクリル酸メチルに由来する繰り返し単位(II)の含有割合が、それぞれ50.0質量%(50.3モル%)及び50.0質量%(49.7モル%)であった。なお、ブロック共重合体(A-22)はジブロック共重合体である。 This block copolymer (A-22) had Mw of 42,000, Mn of 40,000, and Mw / Mn of 1.05. Further, as a result of 1 H-NMR analysis, the block copolymer (A-22) had a content ratio of the repeating unit (I) derived from styrene and the repeating unit (II) derived from methyl methacrylate of 50. They were 0 mass% (50.3 mol%) and 50.0 mass% (49.7 mol%). The block copolymer (A-22) is a diblock copolymer.
[合成例23](ブロック共重合体(A-23)の合成)
 500mLのフラスコ反応容器を減圧乾燥した後、窒素雰囲気下、蒸留脱水処理を行ったテトラヒドロフラン200gを注入し、-78℃まで冷却した。その後、このテトラヒドロフランにsec-ブチルリチウム(sec-BuLi)の1Nシクロヘキサン溶液を0.30mL(0.28mmol)注入し、その後、重合禁止剤除去のためのシリカゲルによる吸着濾別と蒸留脱水処理とを行ったスチレン22.1mL(0.192mol)を30分かけて滴下注入し、重合系が橙色であることを確認した。この滴下注入のとき、反応溶液の内温が-60℃以上にならないように注意した。滴下終了後に30分間熟成し、その後、1,1-ジフェニルエチレン0.11mL(0.00078mol)、及び塩化リチウムの0.5Nテトラヒドロフラン溶液1.04mL(0.0005mol)を加え、重合系が暗赤色になったことを確認した。さらに、重合禁止剤除去のためのシリカゲルによる吸着濾別と蒸留脱水処理とを行ったメタクリル酸メチル21.2mL(0.200mol)をこの溶液に30分かけて滴下注入して重合系が薄黄色になったことを確認し、その後120分間反応させた。この後、末端停止剤(C-1)としてのメタノール1mL(24.7mmol)を注入し重合末端の停止反応を行った。この反応溶液を室温まで昇温し、得られた反応溶液を濃縮してメチルイソブチルケトン(MIBK)で置換した。その後、シュウ酸2%水溶液1,000gを注入撹拌し、静置後、下層の水層を取り除いた。この操作を3回繰り返し、金属Liを除去した。その後、超純水1,000gを注入撹拌し、下層の水層を取り除いた。この操作を3回繰り返しシュウ酸を除去した後、溶液を濃縮してメタノール500g中に滴下することで重合体を析出させた。この重合体を減圧濾過し、さらにメタノールで2回洗浄した後、60℃で減圧乾燥させることで白色のブロック共重合体(A-23)38.5gを得た。
[Synthesis Example 23] (Synthesis of block copolymer (A-23))
After drying the 500 mL flask reaction vessel under reduced pressure, 200 g of tetrahydrofuran that had been subjected to distillation dehydration treatment was injected under a nitrogen atmosphere and cooled to −78 ° C. Thereafter, 0.30 mL (0.28 mmol) of a 1N cyclohexane solution of sec-butyllithium (sec-BuLi) is injected into this tetrahydrofuran, and thereafter, adsorption filtration with silica gel for removing the polymerization inhibitor and distillation dehydration treatment are performed. Styrene 22.1 mL (0.192 mol) was added dropwise over 30 minutes to confirm that the polymerization system was orange. At the time of this dropwise injection, care was taken so that the internal temperature of the reaction solution did not exceed -60 ° C. After completion of the dropwise addition, the mixture was aged for 30 minutes, and then 0.11 mL (0.00078 mol) of 1,1-diphenylethylene and 1.04 mL (0.0005 mol) of 0.5N tetrahydrofuran solution of lithium chloride were added, and the polymerization system was dark red It was confirmed that it became. Further, 21.2 mL (0.200 mol) of methyl methacrylate subjected to adsorption filtration with silica gel for removing the polymerization inhibitor and distilled and dehydrated was added dropwise to this solution over 30 minutes to make the polymerization system light yellow. After that, it was reacted for 120 minutes. Thereafter, 1 mL (24.7 mmol) of methanol as a terminal terminator (C-1) was injected to terminate the polymerization terminal. The reaction solution was warmed to room temperature, and the resulting reaction solution was concentrated and replaced with methyl isobutyl ketone (MIBK). Thereafter, 1,000 g of a 2% oxalic acid aqueous solution was injected and stirred, and after standing, the lower aqueous layer was removed. This operation was repeated three times to remove metallic Li. Thereafter, 1,000 g of ultrapure water was injected and stirred, and the lower aqueous layer was removed. After this operation was repeated three times to remove oxalic acid, the solution was concentrated and dropped into 500 g of methanol to precipitate a polymer. The polymer was filtered under reduced pressure, further washed twice with methanol, and then dried under reduced pressure at 60 ° C. to obtain 38.5 g of a white block copolymer (A-23).
 このブロック共重合体(A-23)は、Mwが81,000、Mnが77,000、Mw/Mnが1.05であった。また、H-NMR分析の結果、ブロック共重合体(A-23)は、スチレンに由来する繰り返し単位(I)及びメタクリル酸メチルに由来する繰り返し単位(II)の含有割合が、それぞれ50.0質量%(50.3モル%)及び50.0質量%(49.7モル%)であった。なお、ブロック共重合体(A-23)はジブロック共重合体である。 This block copolymer (A-23) had Mw of 81,000, Mn of 77,000, and Mw / Mn of 1.05. Further, as a result of 1 H-NMR analysis, the block copolymer (A-23) has a content ratio of the repeating unit (I) derived from styrene and the repeating unit (II) derived from methyl methacrylate of 50. They were 0 mass% (50.3 mol%) and 50.0 mass% (49.7 mol%). The block copolymer (A-23) is a diblock copolymer.
 ブロック共重合体(A-1)~(A-23)の合成に用いた末端停止剤は、末端停止剤(C-1)がメタノール、末端停止剤(C-2)がα-ブロモ-γ-ブチロラクトン、末端停止剤(C-3)がN,N-ジメチルホルムアミド、末端停止剤(C-4)がプロピレンスルフィド、末端停止剤(C-5)がグリシジルメチルエーテル、末端停止剤(C-6)がN-メチルピロリドン、末端停止剤(C-7)がブロモヘキサン酸エチル、末端停止剤(C-8)が二酸化炭素、末端停止剤(C-9)がメタンスルホニルクロリド、末端停止剤(C-10)が1,2-エポキシシクロヘキサン、末端停止剤(C-11)がスチレンオキシド、末端停止剤(C-12)が2-エチルヘキシルグリシジルエーテル、末端停止剤(C-13)がブロモナフタレン、末端停止剤(C-14)が1-ブロモデカン、末端停止剤(C-15)が2-ブロモアダマンタン、(C-16)がプロピレンオキシド、(C-17)が1,2-ブチレンオキシド、(C-18)がブチルグリシジルエーテルである。これら末端停止剤(C-1)~(C-18)の構造を下記式に示す。 The end terminator used for the synthesis of the block copolymers (A-1) to (A-23) is as follows: the end terminator (C-1) is methanol, and the end terminator (C-2) is α-bromo-γ. -Butyrolactone, terminal stopper (C-3) is N, N-dimethylformamide, terminal stopper (C-4) is propylene sulfide, terminal stopper (C-5) is glycidyl methyl ether, terminal stopper (C- 6) N-methylpyrrolidone, terminal stopper (C-7) ethyl bromohexanoate, terminal stopper (C-8) carbon dioxide, terminal stopper (C-9) methanesulfonyl chloride, terminal stopper (C-10) is 1,2-epoxycyclohexane, terminal stopper (C-11) is styrene oxide, terminal stopper (C-12) is 2-ethylhexyl glycidyl ether, terminal stopper (C-13) is bromonaphth Talene, terminal stopper (C-14) is 1-bromodecane, terminal stopper (C-15) is 2-bromoadamantane, (C-16) is propylene oxide, (C-17) is 1,2-butylene oxide , (C-18) is butyl glycidyl ether. The structures of these end terminators (C-1) to (C-18) are shown in the following formula.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 合成例1~23で合成したブロック共重合体(A-1)~(A-23)の構造を下記式に示す。 The structures of the block copolymers (A-1) to (A-23) synthesized in Synthesis Examples 1 to 23 are shown in the following formula.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記式(A-1)~(A-23)中、n及びmは、それぞれ独立して、2以上の整数である。Meは、メチル基である。Etは、エチル基である。Phは、フェニル基である。 In the above formulas (A-1) to (A-23), n and m are each independently an integer of 2 or more. Me is a methyl group. Et is an ethyl group. Ph is a phenyl group.
<ClogPの算出>
 合成に使用した末端停止剤のClogPと、ブロック共重合体の末端基の主鎖側結合手をメチル基に結合させたときに形成される化合物のClogPとは、CambridgeSoft社の「Chemdraw Ver.12」を用いて算出した。このブロック共重合体の末端基の主鎖側結合手をメチル基に結合させたときに形成される化合物のClogPは、以下で「ブロック(a)又はブロック(b)に連結する末端基のClogP」と記載する場合がある。なお、末端が未変性(水素原子)である場合、上記算出は行わなかった。
<Calculation of ClogP>
The terminator ClogP used in the synthesis and the compound ClogP formed when the main chain side bond of the end group of the block copolymer is bonded to a methyl group are described in “Chemdraw Ver. 12” of CambridgeSoft. ". The ClogP of the compound formed when the main chain side bond of the terminal group of this block copolymer is bonded to the methyl group is described below as “ClogP of the terminal group linked to block (a) or block (b)”. May be written. When the terminal is unmodified (hydrogen atom), the above calculation was not performed.
 下記表1に、ブロック共重合体(A-1)~(A-23)の各繰り返し単位の含有割合、合成に用いた末端停止剤、この末端停止剤のClogP、ブロック(a)又はブロック(b)に連結する末端基のClogP、Mw、Mn、及びMw/Mnを示す。下記表1において、末端停止剤(C-1)は、末端基を形成しない末端停止剤であるため、ClogPは省略して「-」と表示する。「4TBS」は、4-tert-ブチルスチレンを示す。「ST」は、スチレンを示す。「MMA」は、メタクリル酸メチルを示す。 Table 1 below shows the content of each repeating unit of the block copolymers (A-1) to (A-23), the end terminator used in the synthesis, ClogP of this end terminator, block (a) or block ( The terminal groups ClogP, Mw, Mn, and Mw / Mn linked to b) are shown. In Table 1 below, since the terminal terminator (C-1) is a terminal terminator that does not form a terminal group, ClogP is omitted and “−” is displayed. “4TBS” refers to 4-tert-butylstyrene. “ST” indicates styrene. “MMA” refers to methyl methacrylate.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
[合成例24](ミクトアーム型ブロック共重合体(A-24)の合成)
 500mLのフラスコ反応容器を減圧乾燥した後、窒素雰囲気下、蒸留脱水処理を行ったテトラヒドロフラン200gを注入し、-78℃まで冷却した。その後、このテトラヒドロフランにsec-ブチルリチウム(sec-BuLi)の1Nシクロヘキサン溶液を0.55mL(0.49mmol)注入し、その後、重合禁止剤除去のためのシリカゲルによる吸着濾別と蒸留脱水処理とを行ったスチレン11.0mL(0.096mol)を30分かけて滴下注入し、重合系が橙色であることを確認した。この滴下注入のとき、反応溶液の内温が-60℃以上にならないように注意した。滴下終了後に30分間熟成し、その後1,3-ビス(1-フェニルエテニル)ベンゼン0.14mL(0.49mmol)を加え、さらにメタノール0.02mLを加え、ミクトアーム型共重合体の1stアームの重合を完了させた。
[Synthesis Example 24] (Synthesis of Miktoarm Block Copolymer (A-24))
After drying the 500 mL flask reaction vessel under reduced pressure, 200 g of tetrahydrofuran that had been subjected to distillation dehydration treatment was injected under a nitrogen atmosphere and cooled to −78 ° C. Thereafter, 0.55 mL (0.49 mmol) of a 1N cyclohexane solution of sec-butyllithium (sec-BuLi) is injected into this tetrahydrofuran, and thereafter, adsorption filtration with silica gel for removing the polymerization inhibitor and distillation dehydration treatment are performed. 11.0 mL (0.096 mol) of styrene was added dropwise over 30 minutes to confirm that the polymerization system was orange. At the time of this dropwise injection, care was taken so that the internal temperature of the reaction solution did not exceed -60 ° C. After completion of the dropwise addition, the mixture was aged for 30 minutes, and then 0.13 mL (0.49 mmol) of 1,3-bis (1-phenylethenyl) benzene was added, and 0.02 mL of methanol was further added, and the 1st arm of the Miktoarm type copolymer was added. Polymerization was completed.
 1stアームは、1,000mLのメタノールへ投入し、沈殿精製させ60℃の減圧乾燥器にて十分に乾燥させた。 The 1st arm was put into 1,000 mL of methanol, precipitated and purified, and sufficiently dried in a vacuum dryer at 60 ° C.
 次に、別途1,000mLのフラスコ反応容器を減圧乾燥した後、窒素雰囲気化、蒸留脱水処理したテトラヒドロフラン200gを注入し、-78℃まで冷却した。その後、テトラヒドロフランにsec-ブチルリチウム(sec-BuLi)の1Nシクロヘキサン溶液を0.55mL(0.49mmol)を加え、重合禁止剤除去のためのシリカゲルによる吸着濾別と蒸留脱水処理とを行ったスチレン11.0mL(0.096mol)を30分かけて滴下注入し、重合系が橙色であることを確認した。次に、塩化リチウムの0.5Nテトラヒドロフラン溶液4.00mL(2.00mmol)を加え、先に重合完了させた1stアーム全量を100mLのテトラヒドロフランに溶解させ、滴下ロートより30分かけて滴下し、重合系が暗赤色になったことを確認し、2ndアームを挿入した。さらに、重合禁止剤除去のためのシリカゲルによる吸着濾別と蒸留脱水処理とを行ったメタクリル酸メチル20.3mL(0.192mol)をこの溶液に30分かけて滴下注入して重合系が薄黄色になったことを確認し、その後120分間反応させた。この後、末端停止剤(C-1)としてのメタノール1mL(24.7mmol)を注入し重合末端の停止反応を行った。この反応溶液を室温まで昇温し、得られた反応溶液を濃縮してメチルイソブチルケトン(MIBK)で置換した。その後、シュウ酸2%水溶液1,000gを注入撹拌し、静置後、下層の水層を取り除いた。この操作を3回繰り返し、金属Liを除去した。その後、超純水1,000gを注入撹拌し、下層の水層を取り除いた。この操作を3回繰り返しシュウ酸を除去した後、溶液を濃縮してメタノール500g中に滴下することで重合体を析出させた。この重合体を減圧濾過し、さらにメタノールで2回洗浄した後、60℃で減圧乾燥させることで白色のブロック共重合体(A-24)38.0gを得た。 Next, after separately drying a 1,000 mL flask reaction vessel under reduced pressure, 200 g of tetrahydrofuran that had been subjected to a nitrogen atmosphere and distilled and dehydrated was injected and cooled to −78 ° C. Thereafter, 0.55 mL (0.49 mmol) of a 1N cyclohexane solution of sec-butyllithium (sec-BuLi) was added to tetrahydrofuran, followed by adsorption separation with silica gel to remove the polymerization inhibitor and distillation dehydration treatment. 11.0 mL (0.096 mol) was added dropwise over 30 minutes to confirm that the polymerization system was orange. Next, 4.00 mL (2.00 mmol) of a 0.5N tetrahydrofuran solution of lithium chloride was added, and the entire amount of the 1st arm that had been previously polymerized was dissolved in 100 mL of tetrahydrofuran, and added dropwise from a dropping funnel over 30 minutes to polymerize. After confirming that the system became dark red, a 2nd arm was inserted. Further, 20.3 mL (0.192 mol) of methyl methacrylate subjected to adsorption filtration with silica gel for removing the polymerization inhibitor and distilled and dehydrated was added dropwise to this solution over 30 minutes to make the polymerization system light yellow. After that, it was reacted for 120 minutes. Thereafter, 1 mL (24.7 mmol) of methanol as a terminal terminator (C-1) was injected to terminate the polymerization terminal. The reaction solution was warmed to room temperature, and the resulting reaction solution was concentrated and replaced with methyl isobutyl ketone (MIBK). Thereafter, 1,000 g of a 2% oxalic acid aqueous solution was injected and stirred, and after standing, the lower aqueous layer was removed. This operation was repeated three times to remove metallic Li. Thereafter, 1,000 g of ultrapure water was injected and stirred, and the lower aqueous layer was removed. After this operation was repeated three times to remove oxalic acid, the solution was concentrated and dropped into 500 g of methanol to precipitate a polymer. This polymer was filtered under reduced pressure, further washed twice with methanol, and then dried under reduced pressure at 60 ° C. to obtain 38.0 g of a white block copolymer (A-24).
[合成例25](ミクトアーム型ブロック共重合体(A-25)の合成)
 500mLのフラスコ反応容器を減圧乾燥した後、窒素雰囲気下、蒸留脱水処理を行ったテトラヒドロフラン200gを注入し、-78℃まで冷却した。その後、このテトラヒドロフランにsec-ブチルリチウム(sec-BuLi)の1Nシクロヘキサン溶液を0.55mL(0.49mmol)注入し、その後、重合禁止剤除去のためのシリカゲルによる吸着濾別と蒸留脱水処理とを行ったスチレン11.0mL(0.096mol)を30分かけて滴下注入し、重合系が橙色であることを確認した。この滴下注入のとき、反応溶液の内温が-60℃以上にならないように注意した。滴下終了後に30分間熟成し、その後1,3-ビス(1-フェニルエテニル)ベンゼン0.14mL(0.49mmol)、さらにメタノール0.02mL(0.49mmol)を加え1stアームの重合を完了させた。1stアームは、1Lのメタノールへ投入し、沈殿精製させ60℃の減圧乾燥器にて十分に乾燥させた。
[Synthesis Example 25] (Synthesis of Miktoarm type block copolymer (A-25))
After drying the 500 mL flask reaction vessel under reduced pressure, 200 g of tetrahydrofuran that had been subjected to distillation dehydration treatment was injected under a nitrogen atmosphere and cooled to −78 ° C. Thereafter, 0.55 mL (0.49 mmol) of a 1N cyclohexane solution of sec-butyllithium (sec-BuLi) is injected into this tetrahydrofuran, and thereafter, adsorption filtration with silica gel for removing the polymerization inhibitor and distillation dehydration treatment are performed. 11.0 mL (0.096 mol) of styrene was added dropwise over 30 minutes to confirm that the polymerization system was orange. At the time of this dropwise injection, care was taken so that the internal temperature of the reaction solution did not exceed -60 ° C. After completion of the dropwise addition, the mixture was aged for 30 minutes, and then 0.13-mL (0.49 mmol) of 1,3-bis (1-phenylethenyl) benzene and 0.02 mL (0.49 mmol) of methanol were added to complete the 1st arm polymerization. It was. The 1st arm was put into 1 L of methanol, purified by precipitation, and sufficiently dried in a vacuum dryer at 60 ° C.
 次に、別途1,000mLのフラスコ反応容器を減圧乾燥した後、窒素雰囲気化、蒸留脱水処理したテトラヒドロフラン200gを注入し、-78℃まで冷却した。その後、テトラヒドロフランにsec-ブチルリチウム(sec-BuLi)の1Nシクロヘキサン溶液を0.55mL(0.49mmol)を加え、重合禁止剤除去のためのシリカゲルによる吸着濾別と蒸留脱水処理とを行ったスチレン11.0mL(0.096mol)を30分かけて滴下注入し、重合系が橙色であることを確認した。次に、塩化リチウムの0.5Nテトラヒドロフラン溶液2.00mL(1.00mmol)を加え、さらに先に重合完了させた1stアームを100mLのテトラヒドロフランに溶解させた溶液を、滴下ロートより30分かけて滴下し、重合系が暗赤色になったことを確認し、2ndアームを挿入した。さらに、重合禁止剤除去のためのシリカゲルによる吸着濾別と蒸留脱水処理とを行ったメタクリル酸メチル20.3mL(0.192mol)をこの溶液に30分かけて滴下注入して重合系が薄黄色になったことを確認し、その後120分間反応させた。この後、末端停止剤(C-12)として2-エチルヘキシルグリシジルエーテル0.2mL(1.00mmol)を加え30分間撹拌した後、メタノール1mL(24.7mmol)を注入し重合末端の停止反応を行った。この反応溶液を室温まで昇温し、得られた反応溶液を濃縮してメチルイソブチルケトン(MIBK)で置換した。その後、シュウ酸2%水溶液1,000gを注入撹拌し、静置後、下層の水層を取り除いた。この操作を3回繰り返し、金属Liを除去した。その後、超純水1,000gを注入撹拌し、下層の水層を取り除いた。この操作を3回繰り返しシュウ酸を除去した後、溶液を濃縮してメタノール500g中に滴下することで重合体を析出させた。この重合体を減圧濾過し、さらにメタノールで2回洗浄した後、60℃で減圧乾燥させることで白色のブロック共重合体(A-25)38.1gを得た。 Next, after separately drying a 1,000 mL flask reaction vessel under reduced pressure, 200 g of tetrahydrofuran that had been subjected to a nitrogen atmosphere and distilled and dehydrated was injected and cooled to −78 ° C. Thereafter, 0.55 mL (0.49 mmol) of a 1N cyclohexane solution of sec-butyllithium (sec-BuLi) was added to tetrahydrofuran, followed by adsorption separation with silica gel to remove the polymerization inhibitor and distillation dehydration treatment. 11.0 mL (0.096 mol) was added dropwise over 30 minutes to confirm that the polymerization system was orange. Next, 2.00 mL (1.00 mmol) of a 0.5N tetrahydrofuran solution of lithium chloride was added, and a solution in which the first arm that had been previously polymerized was dissolved in 100 mL of tetrahydrofuran was added dropwise from a dropping funnel over 30 minutes. After confirming that the polymerization system became dark red, a 2nd arm was inserted. Further, 20.3 mL (0.192 mol) of methyl methacrylate subjected to adsorption filtration with silica gel for removing the polymerization inhibitor and distilled and dehydrated was added dropwise to this solution over 30 minutes to make the polymerization system light yellow. After that, it was reacted for 120 minutes. Thereafter, 0.2 mL (1.00 mmol) of 2-ethylhexyl glycidyl ether was added as a terminal terminator (C-12) and stirred for 30 minutes, and then 1 mL (24.7 mmol) of methanol was injected to terminate the polymerization terminal. It was. The reaction solution was warmed to room temperature, and the resulting reaction solution was concentrated and replaced with methyl isobutyl ketone (MIBK). Thereafter, 1,000 g of a 2% oxalic acid aqueous solution was injected and stirred, and after standing, the lower aqueous layer was removed. This operation was repeated three times to remove metallic Li. Thereafter, 1,000 g of ultrapure water was injected and stirred, and the lower aqueous layer was removed. After this operation was repeated three times to remove oxalic acid, the solution was concentrated and dropped into 500 g of methanol to precipitate a polymer. This polymer was filtered under reduced pressure, further washed twice with methanol, and then dried under reduced pressure at 60 ° C. to obtain 38.1 g of a white block copolymer (A-25).
 合成例24及び25で合成したミクトアーム型ブロック共重合体(A-24)及び(A-25)は、下記式(A)で表される構造を有し、式中に記載されたX、Y及びZがそれぞれ下記の構造を示す。下記式のYに含まれるスチレン単位がブロック(a)である。下記式のX及びZに含まれるメタアクリル酸エステル単位がブロック(b)である。なお、以下で下記式のXに含まれるブロック(b)をブロックX、下記式のYに含まれるブロック(a)をブロックY、下記式のZに含まれるブロック(b)をブロックZとそれぞれ称する場合がある。 The Miktoarm type block copolymers (A-24) and (A-25) synthesized in Synthesis Examples 24 and 25 have a structure represented by the following formula (A), and X, Y described in the formulas And Z each represent the following structure. The styrene unit contained in Y in the following formula is the block (a). The methacrylic acid ester unit contained in X and Z in the following formula is the block (b). In the following, block (b) included in X of the following formula is block X, block (a) included in Y of the following formula is block Y, and block (b) included in Z of the following formula is block Z, respectively. Sometimes called.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 上記式中、nは、それぞれ独立して2以上の整数である。*は、上記式(A)のX、Y及びZ以外の部位に結合する結合手を示す。 In the above formula, each n is independently an integer of 2 or more. * Indicates a bond that binds to a site other than X, Y and Z in the formula (A).
 下記表2に、ブロック共重合体(A-24)及び(A-25)の合成に用いた末端停止剤、この末端停止剤のClogP、ブロックX、ブロックY又はブロックZに連結する末端基のClogP、Mw、Mn、及びMw/Mnを示す。下記表2において、末端停止剤(C-1)は、末端基を形成しない末端停止剤であるため、ClogPは省略して「-」と表示する。 Table 2 below shows the end terminators used for the synthesis of the block copolymers (A-24) and (A-25), the end groups linked to ClogP, block X, block Y or block Z of this end terminator. ClogP, Mw, Mn, and Mw / Mn are shown. In Table 2 below, since the terminal terminator (C-1) is a terminal terminator that does not form a terminal group, ClogP is omitted and “−” is displayed.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
[実施例1~18及び比較例1~7](パターン形成用組成物(S-1)~(S-25)の調製)
 プロピレングリコールモノメチルエーテルアセテート(PGMEA)にブロック共重合体(A-1)を溶解し、1.5質量%溶液とした。この溶液を孔径40nmのメンブランフィルターで濾過し、パターン形成用組成物(S-1)を調製した。以下、ブロック共重合体として(A-2)~(A-25)を用いた以外はパターン形成用組成物(S-1)の調製と同様に操作し、パターン形成用組成物(S-2)~(S-25)を調製した。
[Examples 1 to 18 and Comparative Examples 1 to 7] (Preparation of pattern forming compositions (S-1) to (S-25))
The block copolymer (A-1) was dissolved in propylene glycol monomethyl ether acetate (PGMEA) to give a 1.5% by mass solution. This solution was filtered through a membrane filter having a pore diameter of 40 nm to prepare a pattern forming composition (S-1). Thereafter, the same operation as in the preparation of the pattern forming composition (S-1) was conducted except that (A-2) to (A-25) were used as the block copolymers. ) To (S-25) were prepared.
[合成例26](下層膜形成用組成物の調製)
 冷却管と攪拌機とを備えたフラスコに、メチルエチルケトン100gを仕込んで窒素置換した。このフラスコを85℃に加熱し、加熱後の温度を保持しつつメチルエチルケトン100g、スチレン51.0g(0.49mol)、メチルメタクリレート49.0g(0.49mol)、3-メルカプト-1,2-プロパンジオール3.00g(0.027mol)、及び2,2’-アゾビス(2-メチルプロピオニトリル)1.00g(0.0061mol)の混合溶液を3時間かけて滴下し、さらに温度を保持しつつ3時間重合した。得られた重合体溶液を3Lのメタノールにて沈殿精製を行い残留したモノマー、開始剤等を除いた。この重合体は、Mwが8,285、Mnが5,355、Mw/Mnが1.54であった。次に重合体をプロピレングリコールモノメチルエーテルアセテートにて希釈し、10質量%の重合体溶液(N-1)とした。
[Synthesis Example 26] (Preparation of composition for forming underlayer film)
A flask equipped with a condenser and a stirrer was charged with 100 g of methyl ethyl ketone and purged with nitrogen. The flask was heated to 85 ° C., and while maintaining the temperature after the heating, 100 g of methyl ethyl ketone, 51.0 g (0.49 mol) of styrene, 49.0 g (0.49 mol) of methyl methacrylate, 3-mercapto-1,2-propane A mixed solution of 3.00 g (0.027 mol) of diol and 1.00 g (0.0061 mol) of 2,2′-azobis (2-methylpropionitrile) was added dropwise over 3 hours, and the temperature was further maintained. Polymerized for 3 hours. The obtained polymer solution was purified by precipitation with 3 L of methanol to remove residual monomers, initiators and the like. This polymer had Mw of 8,285, Mn of 5,355, and Mw / Mn of 1.54. Next, the polymer was diluted with propylene glycol monomethyl ether acetate to obtain a 10% by mass polymer solution (N-1).
 この重合体溶液(N-1)150gと、溶媒としてのプロピレングリコールモノメチルエーテルアセテート9,850gとを混合及び溶解させることで混合溶液を得た。得られた混合溶液を孔径0.1μmのメンブランフィルターでろ過し、下層膜形成用組成物を調製した。 A mixed solution was obtained by mixing and dissolving 150 g of this polymer solution (N-1) and 9,850 g of propylene glycol monomethyl ether acetate as a solvent. The obtained mixed solution was filtered through a membrane filter having a pore size of 0.1 μm to prepare a composition for forming a lower layer film.
<評価>
(自己組織化膜の形成)
 基板としての12インチシリコンウエハーの表面に、形成する塗膜の平均厚さが5nmとなるように上記下層膜形成用組成物を塗布した後、220℃で120秒間焼成し、下層膜が形成された基板を得た。
<Evaluation>
(Formation of self-assembled film)
After applying the above composition for forming a lower layer film on the surface of a 12-inch silicon wafer as a substrate so that the average thickness of the coating film to be formed is 5 nm, baking is performed at 220 ° C. for 120 seconds to form the lower layer film. Obtained substrate.
 上記下層膜が形成された基板に、形成する塗膜の平均厚さが35nmとなるようにパターン形成用組成物(S-1)~(S-25)を塗布した後、230℃で120秒間焼成した。この焼成により、フィンガープリントパターンを有する自己組織化膜を上記下層膜が形成された基板上に形成した。この基板上に広がるフィンガープリントパターンについて、SEM(日立ハイテクノロジー社の「CG4000」)を用いて倍率30万倍の画像を取得した。 After applying the pattern-forming compositions (S-1) to (S-25) to the substrate on which the lower layer film is formed so that the average thickness of the coating film to be formed is 35 nm, the film is formed at 230 ° C. for 120 seconds. Baked. By this firing, a self-assembled film having a fingerprint pattern was formed on the substrate on which the lower layer film was formed. About the fingerprint pattern which spreads on this board | substrate, the image of 300,000 times magnification was acquired using SEM ("CG4000" of Hitachi High-Technology company).
(フィンガープリントパターンの評価1)
 パターン形成用組成物パターン形成用組成物(S-1)~(S-12)及び(S-16)~(S22)について、以下に示す方法によって基板上に規則配列構造(フィンガープリントパターン)を有する自己組織化膜を作成し、このフィンガープリントパターンのピッチの測定及びエッジラフネスの評価を行った。
(Fingerprint pattern evaluation 1)
Pattern Forming Composition For the pattern forming compositions (S-1) to (S-12) and (S-16) to (S22), an ordered arrangement structure (fingerprint pattern) is formed on the substrate by the following method. The self-assembled film was prepared, and the pitch of the fingerprint pattern was measured and the edge roughness was evaluated.
1.フィンガープリントパターンのピッチ測定
 フィンガープリントパターンのピッチ測定は、上記倍率30万倍の画像から上記SEMに内蔵されたIMEC計算ツールを用いた周期解析により行った。フィンガープリントパターのピッチ(nm)は、その値が小さいほど形成された相分離構造におけるピッチが微細であることを示す。
1. Fingerprint pattern pitch measurement Fingerprint pattern pitch measurement was performed by periodic analysis using the IMEC calculation tool built in the SEM from the image with the magnification of 300,000 times. The pitch (nm) of the fingerprint putter indicates that the smaller the value, the finer the pitch in the formed phase separation structure.
2.フィンガープリントパターンエッジラフネス(FER)評価
 フィンガープリントパターンエッジラフネス(FER)評価は、上記倍率30万倍の画像から上記SEMに内蔵されたFER計算ツールを用いて解析した。FER(nm)は、その値が小さいほど形成されたフィンガープリントパターンのエッジラフネスが少ない、つまり自己組織化膜における規則配列構造の欠陥の発生が少なく良好であることを示す。FER(nm)は、3.5nm以下の場合は「良好」、3.5nmを超える場合は「不良」と評価される。
2. Fingerprint Pattern Edge Roughness (FER) Evaluation Fingerprint pattern edge roughness (FER) evaluation was analyzed from the image with a magnification of 300,000 times using a FER calculation tool built in the SEM. The FER (nm) indicates that the smaller the value is, the smaller the edge roughness of the formed fingerprint pattern is, that is, the smaller the occurrence of defects in the ordered structure in the self-assembled film, the better. FER (nm) is evaluated as “good” when it is 3.5 nm or less, and “bad” when it exceeds 3.5 nm.
 下記表3に、パターン形成用組成物(S-1)~(S-12)及び(S-16)~(S22)の評価結果を示す。下記表3には、上記パターン形成用組成物が含有する[A]ブロック共重合体のブロック(a)又はブロック(b)に連結する末端基のClogPを合わせて示す。 Table 3 below shows the evaluation results of the pattern forming compositions (S-1) to (S-12) and (S-16) to (S22). Table 3 below also shows ClogP of the terminal group linked to the block (a) or the block (b) of the [A] block copolymer contained in the pattern forming composition.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
(フィンガープリントパターンの評価2)
 パターン形成用組成物(S-13)~(S-15)及び(S-23)~(S-25)について、評価基準を以下の通りに変更した以外は、パターン形成用組成物(S-1)~(S-12)及び(S-16)~(S22)と同様に操作してピッチの測定及びエッジラフネスの評価を行った。FER(nm)は、5nm以下の場合は「良好」、5nmを超える場合は「不良」と評価される。
(Fingerprint pattern evaluation 2)
With regard to the pattern forming compositions (S-13) to (S-15) and (S-23) to (S-25), except that the evaluation criteria were changed as follows, the pattern forming compositions (S- Pitch measurement and edge roughness evaluation were performed in the same manner as in 1) to (S-12) and (S-16) to (S22). FER (nm) is evaluated as “good” when 5 nm or less, and “bad” when exceeding 5 nm.
 下記の表4に、パターン形成用組成物(S-13)~(S-15)及び(S-23)~(S-25)の評価結果を示す。下記表4には、上記パターン形成用組成物が含有する[A]ブロック共重合体のブロック(a)又はブロック(b)に連結する末端基のClogPを合わせて示す。なお、ブロック共重合体(A-24)及び(A-25)は、それぞれブロック(b)を2つ有する。そのため、表4には、2つのブロック(b)に連結する各末端基のClogPを併記している。 Table 4 below shows the evaluation results of the pattern forming compositions (S-13) to (S-15) and (S-23) to (S-25). Table 4 below also shows ClogP of terminal groups linked to the block (a) or the block (b) of the [A] block copolymer contained in the pattern forming composition. The block copolymers (A-24) and (A-25) each have two blocks (b). Therefore, in Table 4, ClogP of each terminal group connected to two blocks (b) is written together.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表3に示されるように、実施例1~14のパターン形成用組成物は、比較例1~5のパターン形成用組成物に比べ、規則配列構造の欠陥の少ない自己組織化膜を形成できることが分かった。また、表4に示されるように、実施例15~18のパターン形成用組成物は、比較例6及び7のパターン形成用組成物に比べ、規則配列構造の欠陥の少ない自己組織化膜を形成できることが分かった。すなわち、実施例1~18のパターン形成用組成物は、良好な形状のパターン形成に用いることができると判断される。 As shown in Table 3, the pattern forming compositions of Examples 1 to 14 can form a self-assembled film with fewer defects in the ordered arrangement structure than the pattern forming compositions of Comparative Examples 1 to 5. I understood. Further, as shown in Table 4, the pattern forming compositions of Examples 15 to 18 formed self-assembled films with fewer defects in the regular arrangement structure than the pattern forming compositions of Comparative Examples 6 and 7. I understood that I could do it. That is, it is judged that the pattern forming compositions of Examples 1 to 18 can be used for forming a pattern having a good shape.
 本発明のパターン形成用組成物、パターン形成方法及びブロック共重合体によれば、規則配列構造の欠陥の少ない自己組織化膜を形成でき、ひいては良好な形状のパターンを形成することができる。従って、これらはさらなる微細化が要求されている半導体デバイス、液晶デバイス等の各種電子デバイス製造におけるパターン形成工程に好適に用いることができる。 According to the pattern forming composition, the pattern forming method, and the block copolymer of the present invention, a self-assembled film with few defects in a regular arrangement structure can be formed, and as a result, a pattern with a good shape can be formed. Therefore, they can be suitably used in pattern formation processes in the manufacture of various electronic devices such as semiconductor devices and liquid crystal devices that are required to be further miniaturized.
101 基板
102 下層膜
103 プレパターン
104 塗膜
105 自己組織化膜
105a ブロック(α)相
105b ブロック(β)相
101 Substrate 102 Lower layer film 103 Pre-pattern 104 Coating film 105 Self-assembled film 105a Block (α) phase 105b Block (β) phase

Claims (14)

  1.  自己組織化により相分離構造を形成するブロック共重合体、及び
     溶媒
    を含有するパターン形成用組成物であって、
     上記ブロック共重合体が、置換又は非置換のスチレン単位からなる第1ブロックと、(メタ)アクリル酸エステル単位からなる第2ブロックと、主鎖の少なくとも一方の末端に結合する第1基とを有し、
     上記第1基が、主鎖側結合手にメチル基を結合させたときにClogPが-1以上3以下の化合物を形成する1価の基であることを特徴とするパターン形成用組成物。
    A block copolymer that forms a phase-separated structure by self-assembly, and a pattern-forming composition containing a solvent,
    The block copolymer includes a first block composed of a substituted or unsubstituted styrene unit, a second block composed of a (meth) acrylic ester unit, and a first group bonded to at least one terminal of the main chain. Have
    The pattern forming composition, wherein the first group is a monovalent group that forms a compound having a ClogP of −1 or more and 3 or less when a methyl group is bonded to the main chain side bond.
  2.  上記第1基が末端停止剤によって形成され、
     この末端停止剤のClogPが-1.5以上4.0以下である請求項1に記載のパターン形成用組成物。
    The first group is formed by a terminal terminator;
    The pattern forming composition according to claim 1, wherein ClogP of the terminal stopper is from -1.5 to 4.0.
  3.  上記第1基が、主鎖側結合手にメチル基を結合させたときにClogPが2.5以下の化合物を形成する1価の基である請求項1又は請求項2に記載のパターン形成用組成物。 3. The pattern forming device according to claim 1, wherein the first group is a monovalent group that forms a compound having a ClogP of 2.5 or less when a methyl group is bonded to the main chain side bond. 4. Composition.
  4.  上記第1基の炭素数が1以上20以下、かつヘテロ原子数が1以上5以下である請求項1、請求項2又は請求項3に記載のパターン形成用組成物。 The pattern forming composition according to claim 1, 2 or 3, wherein the first group has 1 to 20 carbon atoms and 1 to 5 heteroatoms.
  5.  上記第1基の炭素数が6以下、かつヘテロ原子数が2以上である請求項4に記載のパターン形成用組成物。 The pattern forming composition according to claim 4, wherein the first group has 6 or less carbon atoms and 2 or more heteroatoms.
  6.  上記第1基が、ヒドロキシ基、アミノ基、カルボニル基、カルボキシル基、スルホニル基、エステル基、チオール基、アルコキシ基又はこれらの組み合わせを含む請求項1から請求項5のいずれか1項に記載のパターン形成用組成物。 The said 1st group of any one of Claims 1-5 containing a hydroxyl group, an amino group, a carbonyl group, a carboxyl group, a sulfonyl group, an ester group, a thiol group, an alkoxy group, or these combination. Pattern forming composition.
  7.  上記第1基が、ヒドロキシ基、アミノ基、メトキシ基及びエトキシ基のうちの少なくとも2種を含む請求項6に記載のパターン形成用組成物。 The pattern forming composition according to claim 6, wherein the first group includes at least two of a hydroxy group, an amino group, a methoxy group, and an ethoxy group.
  8.  上記第1基が上記第2ブロックに連結する請求項1から請求項7のいずれか1項に記載のパターン形成用組成物。 The pattern forming composition according to any one of claims 1 to 7, wherein the first group is connected to the second block.
  9.  上記スチレン単位が、tert-ブチル基で置換されたスチレン単位である請求項1から請求項8のいずれか1項に記載のパターン形成用組成物。 The pattern forming composition according to any one of claims 1 to 8, wherein the styrene unit is a styrene unit substituted with a tert-butyl group.
  10.  上記ブロック共重合体が、ジブロック共重合体又はトリブロック共重合体である請求項1から請求項9のいずれか1項に記載のパターン形成用組成物。 The pattern forming composition according to any one of claims 1 to 9, wherein the block copolymer is a diblock copolymer or a triblock copolymer.
  11.  基板の一方の面側に相分離した自己組織化膜を形成する工程、及び
     上記自己組織化膜の一部を除去する工程
    を備え、
     上記自己組織化膜を請求項1から請求項10のいずれか1項に記載のパターン形成用組成物により形成するパターン形成方法。
    Forming a phase-separated self-assembled film on one side of the substrate, and removing a part of the self-assembled film,
    The pattern formation method which forms the said self-assembled film with the composition for pattern formation of any one of Claims 1-10.
  12.  上記自己組織化膜形成工程前に、上記基板の一方の面側に下層膜を形成する工程をさらに備え、
     上記自己組織化膜形成工程において、上記自己組織化膜を上記下層膜の上記基板とは反対の面側に形成する請求項11に記載のパターン形成方法。
    Before the self-assembled film forming step, further comprising a step of forming a lower layer film on one surface side of the substrate,
    The pattern forming method according to claim 11, wherein, in the self-assembled film forming step, the self-assembled film is formed on a surface of the lower layer film opposite to the substrate.
  13.  上記自己組織化膜形成工程前に、上記基板の一方の面側にプレパターンを形成する工程をさらに備え、
     上記自己組織化膜形成工程において、上記自己組織化膜を上記プレパターンの非積層領域に形成する請求項11又は請求項12に記載のパターン形成方法。
    Before the self-assembled film forming step, further comprising a step of forming a pre-pattern on one surface side of the substrate,
    The pattern forming method according to claim 11 or 12, wherein, in the self-assembled film forming step, the self-assembled film is formed in a non-stacked region of the pre-pattern.
  14.  ラインアンドスペースパターン又はホールパターンを形成する請求項11、請求項12又は請求項13に記載のパターン形成方法。 The pattern forming method according to claim 11, 12 or 13, wherein a line and space pattern or a hole pattern is formed.
PCT/JP2016/060853 2015-04-01 2016-03-31 Composition for forming pattern, and pattern forming method WO2016159329A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020177027155A KR102604419B1 (en) 2015-04-01 2016-03-31 Pattern forming composition and pattern forming method
JP2017510241A JP6652721B2 (en) 2015-04-01 2016-03-31 Pattern forming composition and pattern forming method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-075500 2015-04-01
JP2015075500 2015-04-01

Publications (1)

Publication Number Publication Date
WO2016159329A1 true WO2016159329A1 (en) 2016-10-06

Family

ID=57006909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060853 WO2016159329A1 (en) 2015-04-01 2016-03-31 Composition for forming pattern, and pattern forming method

Country Status (4)

Country Link
JP (1) JP6652721B2 (en)
KR (1) KR102604419B1 (en)
TW (1) TW201700595A (en)
WO (1) WO2016159329A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022020519A (en) * 2020-07-20 2022-02-01 東京応化工業株式会社 Resin composition for forming phase separation structure, method for producing structure body including phase separation structure, and block copolymer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120116007A1 (en) * 2010-10-11 2012-05-10 Wisconsin Alumni Research Foundation Patternable polymer block brush layers
WO2013069544A1 (en) * 2011-11-09 2013-05-16 Jsr株式会社 Self-organization composition for pattern formation and pattern formation method
JP2014070154A (en) * 2012-09-28 2014-04-21 Fujifilm Corp Self-organizing composition for pattern formation, pattern forming method by self-organization of block copolymer using the same and pattern
JP2014531615A (en) * 2011-09-06 2014-11-27 コーネル ユニバーシティー Block copolymer and lithographic patterning using the block copolymer
JP2015216180A (en) * 2014-05-08 2015-12-03 Jsr株式会社 Composition for pattern formation, and method for forming pattern

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19829172A1 (en) 1998-06-30 2000-01-05 Univ Konstanz Process for the production of anti-reflective coatings
JP3782357B2 (en) 2002-01-18 2006-06-07 株式会社東芝 Manufacturing method of semiconductor light emitting device
JP2007070453A (en) * 2005-09-06 2007-03-22 Nippon Soda Co Ltd Method for producing block copolymer
US20080038467A1 (en) 2006-08-11 2008-02-14 Eastman Kodak Company Nanostructured pattern method of manufacture
KR20130039727A (en) 2010-03-18 2013-04-22 보드 오브 리전츠, 더 유니버시티 오브 텍사스 시스템 Silicon-containing block co-polymers, methods for synthesis and use
US8697810B2 (en) 2012-02-10 2014-04-15 Rohm And Haas Electronic Materials Llc Block copolymer and methods relating thereto
US9127113B2 (en) * 2012-05-16 2015-09-08 Rohm And Haas Electronic Materials Llc Polystyrene-polyacrylate block copolymers, methods of manufacture thereof and articles comprising the same
WO2014003023A1 (en) * 2012-06-29 2014-01-03 Jsr株式会社 Composition for pattern formation and pattern forming method
US9975984B2 (en) * 2013-09-20 2018-05-22 Dic Corporation Method for producing block copolymer, and block copolymer obtained using same
JP6264148B2 (en) * 2014-03-28 2018-01-24 Jsr株式会社 Pattern forming composition and pattern forming method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120116007A1 (en) * 2010-10-11 2012-05-10 Wisconsin Alumni Research Foundation Patternable polymer block brush layers
JP2014531615A (en) * 2011-09-06 2014-11-27 コーネル ユニバーシティー Block copolymer and lithographic patterning using the block copolymer
WO2013069544A1 (en) * 2011-11-09 2013-05-16 Jsr株式会社 Self-organization composition for pattern formation and pattern formation method
JP2014070154A (en) * 2012-09-28 2014-04-21 Fujifilm Corp Self-organizing composition for pattern formation, pattern forming method by self-organization of block copolymer using the same and pattern
JP2015216180A (en) * 2014-05-08 2015-12-03 Jsr株式会社 Composition for pattern formation, and method for forming pattern

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022020519A (en) * 2020-07-20 2022-02-01 東京応化工業株式会社 Resin composition for forming phase separation structure, method for producing structure body including phase separation structure, and block copolymer
JP7213495B2 (en) 2020-07-20 2023-01-27 東京応化工業株式会社 Resin composition for forming phase-separated structure, method for producing structure containing phase-separated structure, and block copolymer

Also Published As

Publication number Publication date
KR20170134401A (en) 2017-12-06
TW201700595A (en) 2017-01-01
JP6652721B2 (en) 2020-02-26
JPWO2016159329A1 (en) 2018-02-01
KR102604419B1 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
JP6413888B2 (en) Pattern forming composition, pattern forming method, and block copolymer
JP7184036B2 (en) Underlayer film forming composition, pattern forming method and pattern forming underlayer film forming copolymer
WO2013069544A1 (en) Self-organization composition for pattern formation and pattern formation method
JP6394042B2 (en) Pattern forming composition and pattern forming method
TW201627755A (en) Defect reduction methods and composition for via formation in directed self-assembly patterning
WO2013073505A1 (en) Self-organizing composition for pattern formation and pattern formation method
JP2023107809A (en) Pattern-forming material, pattern-forming method, and monomer for pattern-forming material
JP2022517412A (en) Enhanced induced self-assembly in the presence of low Tg oligomers for pattern formation
KR102393027B1 (en) Composition for pattern formation and pattern formation method
JP6652721B2 (en) Pattern forming composition and pattern forming method
JP7044976B2 (en) Pattern formation method
JP6813028B2 (en) Pattern formation method, base material and laminate
JP2024514938A (en) Multipitch-tolerant block copolymers with enhanced speed for guided self-assembly applications
JP2021073354A (en) Novel compositions and processes for self-assembly of block copolymers
WO2022102304A1 (en) Composition for underlayer film formation, underlayer film, and lithography process
JP2016134580A (en) Patterning composition, patterning method, and block-copolymer
JP6788198B2 (en) Method and composition for forming contact hole pattern
JP2015139875A (en) Self-organizing composition for pattern formation and pattern formation method
US20180192524A1 (en) Forming method of contact hole pattern
WO2023021016A2 (en) Development of novel hydrophilic pinning mat
KR20180029853A (en) Resin composition for forming phase-separated structure and method for producing structure including phase-separated structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773209

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017510241

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177027155

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16773209

Country of ref document: EP

Kind code of ref document: A1