WO2022049779A1 - コンプレッサハウジングおよび遠心圧縮機 - Google Patents

コンプレッサハウジングおよび遠心圧縮機 Download PDF

Info

Publication number
WO2022049779A1
WO2022049779A1 PCT/JP2020/033826 JP2020033826W WO2022049779A1 WO 2022049779 A1 WO2022049779 A1 WO 2022049779A1 JP 2020033826 W JP2020033826 W JP 2020033826W WO 2022049779 A1 WO2022049779 A1 WO 2022049779A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffuser
impeller
compressor housing
axial direction
shroud
Prior art date
Application number
PCT/JP2020/033826
Other languages
English (en)
French (fr)
Inventor
健一郎 岩切
直志 神坂
豊 藤田
Original Assignee
三菱重工エンジン&ターボチャージャ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工エンジン&ターボチャージャ株式会社 filed Critical 三菱重工エンジン&ターボチャージャ株式会社
Priority to DE112020007267.3T priority Critical patent/DE112020007267T5/de
Priority to US18/018,213 priority patent/US11988227B2/en
Priority to CN202080104714.0A priority patent/CN116157601A/zh
Priority to PCT/JP2020/033826 priority patent/WO2022049779A1/ja
Priority to JP2022546861A priority patent/JP7445005B2/ja
Publication of WO2022049779A1 publication Critical patent/WO2022049779A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/685Inducing localised fluid recirculation in the stator-rotor interface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4213Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports

Definitions

  • the present disclosure relates to a compressor housing for rotatably accommodating an impeller of a centrifugal compressor, and a centrifugal compressor including the compressor housing.
  • Centrifugal compressors used in the compressor section of turbochargers for vehicles or ships use centrifugal force to apply kinetic energy to a fluid (for example, air) by rotating the impeller and discharge the fluid outward in the radial direction. The pressure rise of the fluid is obtained.
  • a centrifugal compressor is required to have a high pressure ratio and high efficiency in a wide operating range, and various measures have been taken.
  • Patent Document 1 the recessed portion formed in the wall surface of the inflow flow path that guides the air to the impeller guides the above-mentioned backflow inward in the radial direction and pressurizes the air flowing toward the impeller to suppress the backflow. Is disclosed. In order to improve the efficiency of the centrifugal compressor, it is necessary to suppress the pressure loss of the working fluid flowing in the compressor housing as much as possible.
  • an object of at least one embodiment of the present disclosure is to provide a compressor housing capable of improving the efficiency of a centrifugal compressor, and a centrifugal compressor including the compressor housing.
  • the compressor housing according to the present disclosure is A compressor housing for rotatably accommodating the impeller of a centrifugal compressor.
  • the intake port side in the axial direction of the centrifugal compressor is defined as the front side
  • the side opposite to the intake port side in the axial direction is defined as the rear side.
  • a shroud surface including a surface facing the tip of the impeller blade of the impeller with a predetermined gap, and a shroud surface.
  • a front inner peripheral surface formed on the front side of the shroud surface in the axial direction and located outside the front end of the shroud surface in the radial direction.
  • Each of the plurality of grooves is An inclined portion whose depth gradually increases in the direction of rotation of the impeller, and A step portion formed at the downstream end of the inclined portion in the rotational direction, and a step portion. including.
  • the centrifugal compressor according to the present disclosure includes the compressor housing.
  • a compressor housing capable of improving the efficiency of the centrifugal compressor, and a centrifugal compressor including the compressor housing.
  • FIG. 3 is a schematic cross-sectional view schematically showing a cross section taken along line AB in FIG. It is explanatory drawing for demonstrating the modification of the compressor housing which concerns on 1st Embodiment. It is explanatory drawing for demonstrating the compressor which concerns on 2nd Embodiment.
  • FIG. 7 is a schematic view schematically showing a state in which the vicinity of the pinch surface of the compressor housing shown in FIG. 7 is viewed from the rear side in the axial direction.
  • expressions such as “same”, “equal”, and “homogeneous” that indicate that things are in the same state not only represent exactly the same state, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the existing state.
  • the expression representing a shape such as a quadrangular shape or a cylindrical shape not only represents a shape such as a quadrangular shape or a cylindrical shape in a geometrically strict sense, but also an uneven portion or a chamfer within the range where the same effect can be obtained. It shall also represent the shape including the part and the like.
  • the expression “includes”, “includes”, or “has” one component is not an exclusive expression that excludes the existence of another component.
  • the same reference numerals may be given to the same configurations, and the description thereof may be omitted.
  • FIG. 1 is an explanatory diagram for explaining a configuration of a turbocharger including a centrifugal compressor according to an embodiment.
  • FIG. 2 is a schematic cross-sectional view schematically showing a compressor side of a turbocharger including a centrifugal compressor according to an embodiment, and is a schematic cross-sectional view including an axis of the centrifugal compressor.
  • Centrifugal compressors 1 according to some embodiments of the present disclosure include an impeller 2 and a compressor housing 3 that rotatably houses the impeller 2, as shown in FIGS. 1 and 2.
  • the centrifugal compressor 1 can be applied to, for example, a turbocharger 10 for automobiles, marine or power generation, other industrial centrifugal compressors, blowers and the like.
  • the centrifugal compressor 1 is mounted on the turbocharger 10.
  • the turbocharger 10 includes a centrifugal compressor 1, a turbine 11, and a rotary shaft 12.
  • the turbine 11 includes a turbine rotor 13 mechanically connected to the impeller 2 via a rotary shaft 12 and a turbine housing 14 that rotatably accommodates the turbine rotor 13.
  • the turbocharger 10 further comprises a bearing 15 that rotatably supports the rotary shaft 12 and a bearing housing 16 configured to accommodate the bearing 15, as shown in FIG. Be prepared.
  • the bearing housing 16 is arranged between the compressor housing 3 and the turbine housing 14, and is mechanically connected to the compressor housing 3 and the turbine housing 14 by a fastening member (for example, a fastening bolt).
  • the direction in which the axis CA of the centrifugal compressor 1, that is, the axis of the impeller 2 extends is defined as the axial direction X
  • the direction orthogonal to the axis CA is defined as the radial direction Y.
  • the upstream side in the suction direction of the centrifugal compressor 1 (the direction in which the mainstream is introduced into the impeller 2), that is, the side where the intake port 31 is located with respect to the impeller 2 (left side in the figure) is the front side XF.
  • the side opposite to the front side XF, that is, the downstream side (right side in the figure) in the suction direction of the centrifugal compressor 1 is defined as the rear side XR.
  • the compressor housing 3 has an intake port 31 for introducing a fluid (for example, air) from the outside to the inside of the compressor housing 3, and a fluid that has passed through the impeller 2 of the compressor housing 3.
  • a discharge port 32 for discharging to the outside is formed.
  • the turbine housing 14 has a turbine-side introduction port 141 for introducing a working fluid (for example, exhaust gas) that rotates the turbine rotor 13 from the outside to the inside of the turbine housing 14, and the working fluid that has passed through the turbine rotor 13 is introduced into the turbine.
  • a turbine-side discharge port 142 for discharging to the outside of the housing 14 is formed.
  • the rotary shaft 12 has a longitudinal direction along the axial direction X.
  • the impeller 2 is mechanically connected to one side (front side XF) of the rotary shaft 12 in the longitudinal direction, and the turbine rotor 13 is mechanically connected to the other side (rear side XR) in the longitudinal direction thereof. There is.
  • the turbocharger 10 rotates the turbine rotor 13 by the working fluid introduced inside the turbine housing 14 through the turbine side introduction port 141.
  • the working fluid include exhaust gas generated from an exhaust gas generator (for example, an internal combustion engine such as an engine) (not shown). Since the impeller 2 is mechanically connected to the turbine rotor 13 via the rotary shaft 12, it rotates in conjunction with the rotation of the turbine rotor 13.
  • the turbocharger 10 compresses the fluid introduced into the inside of the compressor housing 3 through the intake port 31 by rotating the impeller 2, and supplies the compressed fluid through the discharge port 32 (for example, an internal combustion engine such as an engine). It is supposed to be sent to the institution).
  • the impeller 2 includes a hub 21 and a plurality of impeller blades 23 provided on the outer surface 22 of the hub 21. Since the hub 21 is mechanically fixed to one side of the rotary shaft 12, the hub 21 and the plurality of impeller blades 23 are provided so as to be rotatable integrally with the rotary shaft 12 around the axis CA of the impeller 2. ing.
  • the impeller 2 is housed in the compressor housing 3 and is configured to guide the fluid introduced from the front side XF in the axial direction X to the outside in the radial direction Y.
  • the outer surface 22 of the hub 21 is formed in a concave curved shape in which the distance from the axis CA of the impeller 2 increases from the front side XF toward the rear side XR.
  • Each of the plurality of impeller blades 23 is arranged so as to be spaced apart from each other in the circumferential direction around the axis CA.
  • the shroud surface 4 includes a surface 41 formed in a convex curved shape in which the distance from the axis CA of the impeller 2 increases from the front side XF to the rear side XR.
  • the tip (chip side end) 24 of the impeller blade 23 is located on the side opposite to the connection portion (hub side end) of the hub 21 with the outer surface 22.
  • the tip 24 has a gap G (clearance) formed between the tip 24 and a surface 41 that is convexly curved so as to face the tip 24.
  • the compressor housing 3 includes a shroud portion 33 including the above-mentioned shroud surface 4, an intake introduction portion 34 forming an intake introduction path 50 of the centrifugal compressor 1, and an intake introduction portion 34. It includes a diffuser unit 35 that forms the diffuser flow path 60 of the centrifugal compressor 1 and a scroll unit 36 that forms the scroll flow path 360 of the centrifugal compressor 1.
  • the intake intake passage 50 is a flow path for guiding the intake air (for example, a fluid such as air) introduced from the intake port 31 of the compressor housing 3 toward the impeller blade 23.
  • the diffuser flow path 60 is a flow path for guiding the fluid that has passed through the impeller 2 to the spiral scroll flow path 360 provided around the impeller 2.
  • the scroll flow path 360 is a flow path for guiding the fluid that has passed through the impeller 2 and the diffuser flow path 60 to the outside of the compressor housing 3 through the discharge port 32 (see FIG. 1).
  • the intake intake portion 34 has a front inner peripheral surface 5 that forms an intake intake introduction path 50.
  • the front inner peripheral surface 5 is formed on the front XF in the axial direction of the shroud surface 4 and is located outside the front end 42 (front XF end) of the shroud surface 4 in the radial direction Y. Further, the above-mentioned intake port 31 is formed at the front end of the intake intake portion 34.
  • the scroll flow path 360 is formed so as to surround the periphery of the impeller 2 housed in the compressor housing 3 and to be located outside in the radial direction Y with respect to the impeller 2.
  • the scroll portion 36 has a flow path wall surface 361 that forms the scroll flow path 360.
  • the compressor housing 3 is combined with another member (bearing housing 16 in the illustrated example) to form the diffuser flow path 60 described above. ..
  • the diffuser flow path 60 is formed by a diffuser surface 6 and a surface 161 of a bearing housing 16 facing the diffuser surface 6.
  • the diffuser flow path 60 may be formed inside the compressor housing 3.
  • the above-mentioned shroud portion 33 is provided between the intake intake introduction portion 34 and the diffuser portion 35.
  • the outlet of the intake air inlet 50 communicates with the inlet of the diffuser flow path 60, and the outlet of the diffuser flow path 60 communicates with the inlet of the scroll flow path 360.
  • the fluid introduced into the inside of the compressor housing 3 through the intake port 31 flows to the rear side XR through the intake introduction path 50, and then is sent to the impeller 2.
  • the fluid sent to the impeller 2 flows through the diffuser flow path 60 and the scroll flow path 360 in this order, and then is discharged to the outside of the compressor housing 3 from the discharge port 32 (see FIG. 1).
  • FIG. 3 is an explanatory diagram for explaining the compressor housing according to the first embodiment.
  • FIG. 4 is a schematic cross-sectional view schematically showing a cross section taken along line AB in FIG.
  • FIG. 3 schematically shows a cross section of the impeller 2 of the centrifugal compressor 1 along the axis CA.
  • the compressor housing 3 according to some embodiments has the above-mentioned shroud surface 4 including a surface 41 facing the tip 24 of the impeller blade 23 of the impeller 2 with a predetermined gap G.
  • the front inner peripheral surface 5 formed on the front XF in the axial direction of the shroud surface 4 and located outside the front end 42 of the shroud surface 4 in the radial direction Y, and the radial direction from the front inner peripheral surface 5. It is provided with a plurality of convex portions 7A protruding inward.
  • each of the plurality of convex portions 7A is formed on the front side inner peripheral surface 5 at intervals in the circumferential direction. It is formed between adjacent groove portions 7B among the plurality of groove portions 7B. Further, in the cross-sectional view, each of the plurality of groove portions 7B is formed at the inclined portion 71 whose depth gradually increases toward the rotation direction RD of the impeller 2 and the downstream end 72 in the rotation direction RD of the inclined portion 71. The step portion 73 and the like are included.
  • the convex portion 7A is located radially outward of the tip 24A at the leading edge 25 of the impeller 2.
  • the compressor housing 3 is formed with a plurality of groove portions 7B each including an inclined portion 71 and a step portion 73.
  • backflow RF may occur in the vicinity of the shroud surface 4.
  • the backflow RF has a strong centrifugal action because the rotation of the impeller 2 imparts a swirling direction component directed to the rotation direction RD of the impeller 2.
  • the inclined portion 71 guides the backflow RF having such a strong centrifugal action in the rotation direction RD along the inclined portion 71, and collides with the step portion 73 formed at the downstream end 72 in the rotation direction RD of the inclined portion 71. By making it, the backflow RF can be suppressed. By suppressing the backflow RF, the surge flow rate in the low flow rate side operating region can be reduced, and the efficiency of the centrifugal compressor 1 can be improved.
  • the flow that has entered the groove portion 7B of the mainstream MF introduced into the impeller 2 Is extruded inward in the radial direction from the groove portion 7B in the direction opposite to the rotation direction RD.
  • the mainstream MF introduced into the impeller 2 can be pre-turned in the direction opposite to the rotation direction RD of the impeller 2, and the relative inflow speed of the mainstream MF when introduced into the impeller 2 by the pre-turn can be increased.
  • the tilted portion 71 described above includes an arcuate portion 71A that curves concavely outward in the radial direction, as shown in FIG.
  • the backflow RF can be smoothly guided in the rotation direction RD along the arcuate portion 71A, the collision between the backflow RF and the step portion 73 is promoted. Thereby, the backflow RF can be effectively suppressed.
  • the groove portion 7B having the arcuate portion 71A can increase the space in the groove portion 7B, a large amount of the mainstream MF introduced into the impeller 2 flows into the groove portion 7B, and the groove portion is in the direction opposite to the rotation direction RD.
  • the stepped portion 73 described above includes a stepped surface 73A having an angle ⁇ with the inclined portion 71 of 120 degrees or less, as shown in FIG.
  • the angle ⁇ is 90 degrees or less. If the angle ⁇ formed by the stepped portion 73 and the inclined portion 71 is large, the backflow RF flowing in the rotation direction RD along the inclined portion 71 of the groove portion 7B flows as it is along the stepped surface 73A (stepped portion 73). There is a risk that the collision between the backflow RF and the stepped surface 73A will be insufficient.
  • the stepped portion 73 includes a stepped surface 73A having an angle of 120 degrees or less with the inclined portion 71. In this case, since the collision angle between the backflow RF and the stepped surface 73A is small, the backflow RF can be sufficiently collided with the stepped surface 73A, and the backflow RF can be effectively suppressed.
  • the rear end 74 of the groove 7B is configured to connect to the front end 42 of the shroud surface 4.
  • the groove portion 7B is provided near the leading edge 25 of the impeller 2 in the axial direction X, the effect of suppressing the backflow RF is higher.
  • the groove 7B is located near the leading edge 25 in the axial direction X, so that the backflow RF is effective. Can be suppressed.
  • the surge flow rate in the low flow rate side operating region can be reduced, and the efficiency of the centrifugal compressor 1 can be improved.
  • the inclined portion 71 of the groove portion 7B includes at least a tapered surface 75 whose diameter increases from the rear end 74 of the groove portion 7B toward the front side XF.
  • the inclined portion 71 of the groove portion 7B further includes a bottom surface 77 extending from the front end 76 of the tapered surface 75 to the front side XF along the axial direction X.
  • the bottom portion (for example, the bottom surface 77) of the groove portion 7B is formed inside the axial plane 53 in the radial direction.
  • the inclined portion 71 since the inclined portion 71 includes the tapered surface 75, it is possible to suppress a sudden reduction loss of the flow of the mainstream MF introduced into the impeller 2. Further, since the inclined portion 71 can smoothly guide the backflow RF in the rotation direction RD along the tapered surface 75, the collision between the backflow RF and the step portion 73 is promoted. Thereby, the backflow RF can be effectively suppressed.
  • FIG. 5 is an explanatory diagram for explaining a modification of the compressor housing according to the first embodiment.
  • FIG. 5 schematically shows a cross section of the impeller 2 of the centrifugal compressor 1 along the axis CA.
  • the above-mentioned front inner peripheral surface 5 has a tapered surface 51 whose diameter increases from the front end 42 of the above-mentioned shroud surface 4 toward the front XF. And an axial surface 53 extending from the front end 52 of the tapered surface 51 to the front side XF along the axial direction X.
  • the above-mentioned convex portion 7A is configured to project from only the tapered surface 51 on the front inner peripheral surface 5.
  • the convex portion 7A extends at least over the entire axial direction X of the tapered surface 51.
  • the backflow RF can be effectively suppressed by providing the convex portion 7A and the groove portion 7B on the tapered surface 51.
  • the convex portion 7A only on the tapered surface 51 on the front inner peripheral surface 5, that is, not providing the convex portion 7A on the axial surface 53 of the front inner peripheral surface 5, the mainstream MF due to the collision with the convex portion 7A. Collision loss can be suppressed.
  • the convex portion 7A described above may be configured to protrude from both the tapered surface 51 and the axial surface 53, as shown in FIG.
  • FIG. 6 is an explanatory diagram for explaining the compressor according to the second embodiment.
  • FIG. 6 schematically shows a state in which a plurality of convex portions 7A and a plurality of groove portions 7B are viewed from the inside in the radial direction of the impeller 2.
  • the compressor housing 3 includes the above-mentioned shroud including a surface 41 facing the tip 24 of the impeller blade 23 of the impeller 2 with a predetermined gap G.
  • the front inner peripheral surface 5 formed on the surface 4 and the front XF in the axial direction of the shroud surface 4 and located outside the front end 42 of the shroud surface 4 in the radial direction Y, and the front inner peripheral surface 5 A plurality of convex portions 7A protruding inward in the radial direction from the surface are provided.
  • each of the plurality of convex portions 7A is formed on the front side inner peripheral surface 5 at intervals in the circumferential direction. It is formed between adjacent groove portions 7B among the plurality of groove portions 7B. As shown in FIG. 6, each of the plurality of groove portions 7B is configured such that the rear end 74 of the groove portion 7B is located upstream of the front end 78 of the groove portion 7B in the rotational direction RD of the impeller 2. ..
  • the groove portion 7B extends along the axial direction X, and the rear end 74 of the groove portion 7B is the same in the rotation direction RD of the impeller 2 with respect to the front end 78 of the groove portion 7B. It is configured to be located in position.
  • the rear end 74 of the groove 7B is configured to be connected to the front end 42 of the shroud surface 4.
  • the groove portion 7B is formed linearly from the front end 78 to the rear end 74.
  • the rear end 74 of the groove portion 7B is configured to be located on the upstream side in the rotation direction RD of the impeller 2 with respect to the front end 78 of the groove portion 7B.
  • the present embodiment may be applied to the groove portion 7B including the inclined portion 71 and the step portion 73 described above, and the present embodiment may be applied to the concave groove portion other than the groove portion 7B. You may.
  • each of the plurality of convex portions 7A described above is machined or cast into the above-mentioned front inner peripheral surface 5 (eg, tapered surface 51). Formed integrally.
  • the convex portion 7A is integrally formed with the front inner peripheral surface 5 by machined processing or casting.
  • the convex portion 7A and the groove portion 7B have a convex portion 7A and a groove portion 7B as compared with the case where the convex portion 7A produced separately from the front inner peripheral surface 5 is fixed to the front inner peripheral surface 5 by welding or bolt fastening.
  • the surface roughness can be improved.
  • the pressure loss of the mainstream MF introduced into the impeller 2 can be reduced. In some embodiments, as shown in FIG.
  • the above-mentioned convex portion 7A may be manufactured separately from the above-mentioned front side inner peripheral surface 5.
  • an annular body 7 having an inner surface on which a plurality of convex portions 7A and a plurality of groove portions 7B are formed is supported inside the front inner peripheral surface 5.
  • the convex portion 7A and the groove portion 7B described above are provided on the upstream side of the impeller 2, but by providing such the convex portion 7A and the groove portion 7B on the downstream side of the impeller 2, the impeller is provided. Backflow on the downstream side of 2 can be suppressed, and the efficiency of the centrifugal compressor 1 can be improved.
  • FIG. 7 is an explanatory diagram for explaining the compressor housing according to the third embodiment.
  • FIG. 8 is a schematic view schematically showing a state in which the vicinity of the pinch surface of the compressor housing shown in FIG. 7 is viewed from the rear side in the axial direction.
  • FIG. 7 schematically shows a cross section of the impeller 2 of the centrifugal compressor 1 along the axis CA.
  • the compressor housing 3 according to some embodiments has the above-mentioned shroud surface 4 including a surface 41 facing the tip 24 of the impeller blade 23 of the impeller 2 with a predetermined gap G.
  • a diffuser surface 6 located on the back surface 26 side (rear side XR) of the impeller 2 in the axial direction from the rear end 43 of the shroud surface 4, and has a radial surface 61 extending along the radial direction Y and a diameter.
  • a diffuser surface 6 including a pinch surface 63 connecting the inner end 62 of the direction surface 61 and the rear end 43 of the shroud surface 4, and from the pinch surface 63 to the back surface 26 side (rear side XR) of the impeller 2 in the axial direction.
  • a plurality of diffuser-side convex portions 8A protruding toward the surface are provided.
  • each of the plurality of diffuser side convex portions 8A is formed on the diffuser surface 6 at intervals in the circumferential direction. It was formed between the adjacent diffuser gutters 8B of the diffuser gutters 8B.
  • the compressor housing 3 includes a plurality of diffuser gutter portions 8B formed at intervals in the circumferential direction on the pinch surface 63.
  • the plurality of diffuser side grooves 8B can suppress the backflow RF2 having a swirling direction component directed to the rotation direction RD of the impeller 2 generated near the pinch surface 63, and suppress the swirling pressure loss of the mainstream MF on the downstream side of the impeller 2. can.
  • a non-uniform flow velocity distribution occurs on the downstream side of the impeller 2 in the centrifugal compressor 1.
  • the plurality of diffuser-side convex portions 8A act as a vortex generator and suppress the boundary layer peeling. Therefore, the efficiency of the centrifugal compressor 1 can be improved not only when a swirling stall occurs at the inlet of the diffuser flow path 60 but also at the normal operating point of the centrifugal compressor 1.
  • each of the plurality of diffuser gutters 8B described above faces the rotation direction RD of the impeller 2. It includes a diffuser side inclined portion 81 whose depth is gradually increased, and a diffuser side step portion 83 formed at a downstream end 82 in the rotation direction RD of the diffuser side inclined portion 81.
  • each of the plurality of diffuser side groove portions 8B includes a diffuser side inclined portion 81 and a diffuser side step portion 83.
  • the backflow RF2 having a turning direction component generated in the vicinity of the pinch surface 63 is guided in the rotation direction RD along the diffuser side inclined portion 81, and is described above on the diffuser side step portion 83 formed at the downstream end 82 of the diffuser side inclined portion 81. By colliding the backflow RF2, the backflow RF2 can be suppressed.
  • the diffuser-side inclined portion 81 described above includes an arcuate portion 81A that curves concavely toward the outside in the radial direction.
  • the backflow RF2 can be smoothly guided along the arcuate portion 81A in the rotation direction RD, the collision between the backflow RF2 and the diffuser side step portion 83 is promoted. Thereby, the backflow RF2 can be effectively suppressed.
  • the diffuser side groove portion 8B having the arc-shaped portion 81A can increase the space in the diffuser side groove portion 8B, a large amount of the mainstream MF introduced into the impeller 2 flows into the diffuser side groove portion 8B, and the rotation direction RD A large amount can be extruded inward in the radial direction from the diffuser gutter 8B in the opposite direction. This makes it possible to suppress a non-uniform flow velocity distribution.
  • the diffuser side step portion 83 described above includes a stepped surface 83A having an angle ⁇ 1 with the diffuser side inclined portion 81 of 120 degrees or less.
  • the angle ⁇ 1 is 90 degrees or less. If the angle ⁇ 1 formed by the diffuser side step portion 83 and the diffuser side inclined portion 81 is large, the backflow RF2 flowing in the rotation direction RD along the diffuser side inclined portion 81 of the diffuser side groove portion 8B is directed to follow the step surface 83A as it is. There is a possibility that the collision between the backflow RF2 and the stepped surface 83A will be insufficient.
  • the diffuser side step portion 83 includes a stepped surface 83A having an angle of 120 degrees or less with the diffuser side inclined portion 81.
  • the collision angle between the backflow RF2 and the stepped surface 83A is small, the backflow RF2 can be sufficiently collided with the stepped surface 83A, and the backflow RF2 can be effectively suppressed.
  • the compressor housing 3 may include the above-mentioned convex portion 7A and the above-mentioned diffuser side convex portion 8A.
  • the efficiency of the centrifugal compressor 1 can be effectively improved by the synergistic effect of the convex portion 7A and the diffuser side convex portion 8A. can.
  • the diffuser side convex portion 8A described above is integrally formed with the diffuser surface 6 (eg, pinch surface 63) described above by machining or casting. rice field.
  • the diffuser side convex portion 8A is integrally formed with the diffuser surface 6 by machined processing or casting.
  • the surface roughness of the diffuser side groove portion 8B is improved as compared with the case where the diffuser side convex portion 8A manufactured separately from the diffuser surface 6 is fixed to the diffuser surface 6 by welding or bolt fastening. be able to.
  • the diffuser side convex portion 8A described above may be manufactured separately from the diffuser surface 6 described above.
  • the centrifugal compressor 1 includes the above-mentioned compressor housing 3 as shown in FIGS. 1 and 2. In this case, the pressure loss of the working fluid flowing in the compressor housing 3 can be effectively suppressed, so that the efficiency of the centrifugal compressor 1 can be improved.
  • the present disclosure is not limited to the above-mentioned embodiment, and includes a form in which the above-mentioned embodiment is modified and a form in which these forms are appropriately combined.
  • the compressor housing (3) is A compressor housing (3) for rotatably accommodating the impeller (2) of the centrifugal compressor (1).
  • the intake port side in the axial direction of the centrifugal compressor is defined as the front side
  • the side opposite to the intake port side in the axial direction is defined as the rear side.
  • a shroud surface (4) including a surface (41) facing the tip (24) of the impeller blade (23) of the impeller with a predetermined gap (G).
  • a front inner peripheral surface (5) formed on the front side of the shroud surface (4) in the axial direction and located outside the front end (42) of the shroud surface (4) in the radial direction.
  • Each of the plurality of grooves (7B) An inclined portion (71) whose depth gradually increases toward the rotation direction (RD) of the impeller (2), A step portion (73) formed at the downstream end (72) of the inclined portion (71) in the rotation direction (RD), and a step portion (73). including.
  • the compressor housing is formed with a plurality of grooves, each of which includes an inclined portion and a stepped portion.
  • Backflow may occur near the shroud surface when the intake flow rate of the centrifugal compressor is low and the flow rate is low.
  • the backflow has a strong centrifugal action because the rotation of the impeller imparts a turning direction component directed in the rotation direction of the impeller.
  • the inclined portion can suppress the backflow by guiding the backflow having such a strong centrifugal action in the rotational direction along the inclined portion and colliding with the step portion formed at the downstream end in the rotational direction of the inclined portion. ..
  • the depth of the groove portion gradually increases toward the rotation direction of the impeller, so that the flow that has entered the groove portion of the mainstream introduced into the impeller flows in the rotation direction. It is extruded inward in the radial direction from the groove in the opposite direction to the above.
  • the mainstream introduced into the impeller can be pre-turned in the direction opposite to the rotation direction of the impeller, and the relative inflow speed of the mainstream when introduced into the impeller by the pre-turning can be increased.
  • the relative inflow rate of the mainstream By increasing the relative inflow rate of the mainstream, the surge flow rate in the low flow rate side operating region can be reduced, and the efficiency of the centrifugal compressor can be improved.
  • the inclined portion (71) includes an arc-shaped portion (71A) that curves concavely toward the outside in the radial direction.
  • the inclined portion includes an arc-shaped portion that curves concavely toward the outside in the radial direction.
  • the backflow can be smoothly guided in the rotation direction along the arcuate portion, the collision between the backflow and the step portion is promoted. As a result, backflow can be effectively suppressed.
  • the groove portion having the arcuate portion can increase the space in the groove portion, a large amount of the mainstream introduced into the impeller flows in, and a large amount is inward from the groove portion in the radial direction in the direction opposite to the rotation direction. Can be extruded. As a result, the pre-turning can be effectively applied to the mainstream introduced into the impeller, and the relative inflow speed of the mainstream when introduced into the impeller can be increased.
  • the step portion (73) includes a stepped surface (73A) having an angle ( ⁇ ) formed with the inclined portion (71) of 120 degrees or less.
  • the stepped portion includes a stepped surface having an angle of 120 degrees or less with the inclined portion. In this case, since the collision angle between the backflow and the stepped surface is small, the backflow can be sufficiently collided with the stepped surface, and the backflow can be effectively suppressed.
  • the compressor housing (3) according to any one of 1) to 3) above.
  • Each of the plurality of grooves (7B) The rear end (74) of the groove is configured to be located upstream of the front end (78) of the groove in the rotational direction (RD) of the impeller (2).
  • the rear end of the groove is configured to be located on the upstream side in the rotation direction of the impeller with respect to the front end of the groove, so that the groove guides the mainstream introduced into the impeller.
  • the pre-turn can be given to the mainstream in the direction opposite to the rotation direction of the impeller.
  • the relative inflow speed of the mainstream when introduced into the impeller can be increased.
  • the surge flow rate in the low flow rate side operating region can be reduced, and the efficiency of the centrifugal compressor can be improved.
  • the groove portion includes the inclined portion and the step portion, the synergistic effect with the pre-turning caused by the flow extruded from the groove portion in the direction opposite to the rotation direction effectively pre-turns the mainstream introduced into the impeller. Can be granted.
  • each of the plurality of convex portions (7A) was integrally formed with the front inner peripheral surface (5) by machined processing or casting.
  • the convex portion is integrally formed with the inner peripheral surface on the front side by cutting or casting.
  • the surface roughness of the convex portion and the groove portion is improved as compared with the case where the convex portion made separately from the front inner peripheral surface is fixed to the front inner peripheral surface by welding or bolting. Can be made to.
  • the compressor housing (3) according to any one of 1) to 5) above.
  • a diffuser surface (6) located on the back surface (26) side of the impeller (2) in the axial direction from the rear end (43) of the shroud surface (4), and extends along the radial direction.
  • a diffuser surface including a radial surface (61) and a pinch surface (63) connecting the inner end (62) of the radial surface (61) and the rear end (43) of the shroud surface (4).
  • (6) and A plurality of diffuser-side convex portions (8A) protruding from the pinch surface (63) toward the back surface side of the impeller in the axial direction, and formed at intervals in the circumferential direction on the diffuser surface (6).
  • a plurality of diffuser side convex portions (8A) formed between adjacent diffuser side groove portions (8B) among the plurality of diffuser side groove portions (8B) are further provided.
  • the compressor housing includes a plurality of diffuser gutters formed at intervals in the circumferential direction on the pinch surface.
  • the plurality of diffuser gutters can suppress backflow having a swirling direction component directed in the rotation direction of the impeller generated near the pinch surface, and can suppress mainstream swirling pressure loss on the downstream side of the impeller.
  • a non-uniform flow velocity distribution occurs on the downstream side of the impeller in the centrifugal compressor.
  • the plurality of diffuser gutters act as a vortex generator to suppress boundary layer detachment. Therefore, the efficiency of the centrifugal compressor can be improved not only when a swirling stall occurs at the inlet of the diffuser flow path but also at the normal operating point of the centrifugal compressor.
  • each of the plurality of diffuser gutters (8B) The diffuser side inclined portion (81) whose depth gradually increases in the rotation direction of the impeller, and It includes a diffuser side step portion (83) formed at a downstream end (82) of the diffuser side inclined portion (81) in the rotation direction.
  • each of the plurality of diffuser side grooves includes a diffuser side inclined portion and a diffuser side step portion.
  • the backflow (RF2) having a swirling direction component generated near the pinch surface is guided in the rotational direction along the diffuser side inclined portion, and the above backflow is made to collide with the diffuser side step portion formed at the downstream end of the diffuser side inclined portion. Therefore, the above-mentioned backflow can be suppressed.
  • each of the plurality of diffuser-side convex portions (8A) was integrally formed with the diffuser surface (6) by machining or casting.
  • the convex portion on the diffuser side is integrally formed with the diffuser surface by machined processing or casting.
  • the surface roughness of the diffuser side groove portion can be improved as compared with the case where the diffuser side convex portion manufactured separately from the diffuser surface is fixed to the diffuser surface by welding, bolting, or the like.
  • the compressor housing (3) is A compressor housing (3) for rotatably accommodating the impeller (2) of the centrifugal compressor (1).
  • the intake port side in the axial direction of the centrifugal compressor is defined as the front side
  • the side opposite to the intake port side in the axial direction is defined as the rear side.
  • a shroud surface (4) including a surface (41) facing the tip (24) of the impeller blade (23) of the impeller with a predetermined gap (G).
  • a front inner peripheral surface (5) formed on the front side of the shroud surface (4) in the axial direction and located outside the front end (42) of the shroud surface (4) in the radial direction.
  • Each of the plurality of grooves (7B) The rear end (74) of the groove is configured to be located upstream of the front end (78) of the groove in the rotational direction (RD) of the impeller (2).
  • the rear end of the groove is configured to be located on the upstream side in the rotation direction of the impeller with respect to the front end of the groove, so that the groove guides the mainstream introduced into the impeller.
  • the pre-turn can be given to the mainstream in the direction opposite to the rotation direction of the impeller.
  • the relative inflow speed of the mainstream when introduced into the impeller can be increased.
  • the surge flow rate in the low flow rate side operating region can be reduced, and the efficiency of the centrifugal compressor can be improved.
  • the compressor housing (3) is A compressor housing (3) for rotatably accommodating the impeller (2) of the centrifugal compressor (1).
  • the intake port side in the axial direction of the centrifugal compressor is defined as the front side, and the side opposite to the intake port side in the axial direction is defined as the rear side.
  • a shroud surface (4) including a surface (41) facing the tip (24) of the impeller blade (23) of the impeller with a predetermined gap (G).
  • a diffuser surface (6) located on the back surface (26) side of the impeller (2) in the axial direction from the rear end (43) of the shroud surface (4), and extends along the radial direction.
  • a diffuser surface including a radial surface (61) and a pinch surface (63) connecting the inner end (62) of the radial surface (61) and the rear end (43) of the shroud surface (4).
  • a plurality of diffuser-side convex portions (8A) formed between adjacent diffuser-side groove portions (8B) among the plurality of diffuser-side groove portions (8B) are provided.
  • Each of the plurality of diffuser gutters (8B) The diffuser side inclined portion (81) whose depth gradually increases in the rotation direction of the impeller, and It includes a diffuser side step portion (83) formed at a downstream end (82) of the diffuser side inclined portion (81) in the rotation direction.
  • the compressor housing includes a plurality of diffuser gutters formed at intervals in the circumferential direction on the pinch surface.
  • Each of the plurality of diffuser gutter portions includes a diffuser side inclined portion and a diffuser side step portion.
  • the backflow having a turning direction component that is directed to the rotation direction of the impeller generated near the pinch surface is guided in the rotation direction along the diffuser side inclined portion, and is guided to the diffuser side step portion formed at the downstream end of the diffuser side inclined portion.
  • the backflow can be suppressed.
  • the mainstream turning pressure loss on the downstream side of the impeller can be suppressed. Therefore, according to the configuration of 10) above, the swirling stall at the inlet of the diffuser flow path in the low flow rate side operating region can be suppressed, and the efficiency of the centrifugal compressor can be improved.
  • a non-uniform flow velocity distribution occurs on the downstream side of the impeller in the centrifugal compressor.
  • the plurality of diffuser gutters act as a vortex generator to suppress boundary layer detachment. Therefore, the efficiency of the centrifugal compressor can be improved not only when a swirling stall occurs at the inlet of the diffuser flow path but also at the normal operating point of the centrifugal compressor.
  • the centrifugal compressor (1) according to at least one embodiment of the present disclosure includes the compressor housing (3) according to any one of 1) to 10) above. According to the configuration of 11) above, the pressure loss of the fluid flowing in the compressor housing (3) can be effectively suppressed, so that the efficiency of the centrifugal compressor (1) can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

コンプレッサハウジングは、遠心圧縮機の軸方向における吸気口側を前方側、軸方向における吸気口側と反対側を後方側と定義した場合に、インペラのインペラ翼の先端と所定の隙間を有して対向する面を含むシュラウド面と、シュラウド面の軸方向における前方側に形成されるとともにシュラウド面の前方端よりも径方向において外側に位置する前方側内周面と、前方側内周面において周方向に間隔を空けて形成された複数の溝部と、を備え、複数の溝部の夫々は、インペラの回転方向に向かって徐々に深さが大きくなる傾斜部と、傾斜部の前記回転方向における下流端に形成された段部と、を含む。

Description

コンプレッサハウジングおよび遠心圧縮機
 本開示は、遠心圧縮機のインペラを回転可能に収容するためのコンプレッサハウジング、および該コンプレッサハウジングを備える遠心圧縮機に関する。
 車両用又は舶用のターボチャージャのコンプレッサ部などに用いられる遠心圧縮機は、インペラの回転によって流体(例えば、空気)に運動エネルギを与えて径方向の外側に流体を吐出し、遠心力を利用して流体の圧力上昇を得るものである。かかる遠心圧縮機には、広い運転範囲において高圧力比と高効率化が求められており、種々の工夫が施されている。
 例えば、遠心圧縮機の吸気流量が少ない低流量時において、流体の流れ方向に流体が激しく振動するサージングと呼ばれる不安定現象が発生することがある。サージングが発生すると、シュラウド面近傍に、吸気口から導入された空気の流れとは逆方向に向かって流れる逆流が発生し、この逆流により、遠心圧縮機の効率低下を招く虞がある。
特開2017-210902号公報
 特許文献1には、インペラへ空気を導く流入流路の壁面に形成された凹部により、上述した逆流を径方向における内側に案内してインペラ側に流れる空気を加圧することで、逆流を抑制することが開示されている。
 遠心圧縮機の高効率化を図るためには、コンプレッサハウジング内を流れる作動流体の圧力損失をできる限り抑制する必要がある。
 上述した事情に鑑みて、本開示の少なくとも一実施形態の目的は、遠心圧縮機の効率を向上させることができるコンプレッサハウジング、および該コンプレッサハウジングを備える遠心圧縮機を提供することにある。
 本開示にかかるコンプレッサハウジングは、
 遠心圧縮機のインペラを回転可能に収容するためのコンプレッサハウジングであって、
 前記遠心圧縮機の軸方向における吸気口側を前方側、前記軸方向における前記吸気口側と反対側を後方側と定義した場合に、
 前記インペラのインペラ翼の先端と所定の隙間を有して対向する面を含むシュラウド面と、
 前記シュラウド面の前記軸方向における前記前方側に形成されるとともに前記シュラウド面の前方端よりも径方向において外側に位置する前方側内周面と、
 前記前方側内周面から前記径方向の内側に向かって突出する複数の凸部であって、前記前方側内周面において周方向に間隔を空けて形成された複数の溝部のうちの隣接する溝部の間に形成された複数の凸部と、を備え、
 前記複数の溝部の夫々は、
 前記インペラの回転方向に向かって徐々に深さが大きくなる傾斜部と、
 前記傾斜部の前記回転方向における下流端に形成された段部と、
を含む。
 本開示にかかる遠心圧縮機は、前記コンプレッサハウジングを備える。
 本開示の少なくとも一実施形態によれば、遠心圧縮機の効率を向上させることができるコンプレッサハウジング、および該コンプレッサハウジングを備える遠心圧縮機が提供される。
一実施形態にかかる遠心圧縮機を備えるターボチャージャの構成を説明するための説明図である。 一実施形態にかかる遠心圧縮機を備えるターボチャージャのコンプレッサ側を概略的に示す概略断面図であって、遠心圧縮機の軸線を含む概略断面図である。 第1の実施形態にかかるコンプレッサハウジングを説明するための説明図である。 図3におけるA-B線断面を概略的に示す概略断面図である。 第1の実施形態にかかるコンプレッサハウジングの変形例を説明するための説明図である。 第2の実施形態にかかるコンプレッサを説明するための説明図である。 第3の実施形態にかかるコンプレッサハウジングを説明するための説明図である。 図7に示されるコンプレッサハウジングのピンチ面近傍を軸方向における後方側から視た状態を概略的に示す概略図である。
 以下、添付図面を参照して本開示の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本開示の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
 なお、同様の構成については同じ符号を付し説明を省略することがある。
(遠心圧縮機、ターボチャージャ)
 図1は、一実施形態にかかる遠心圧縮機を備えるターボチャージャの構成を説明するための説明図である。図2は、一実施形態にかかる遠心圧縮機を備えるターボチャージャのコンプレッサ側を概略的に示す概略断面図であって、遠心圧縮機の軸線を含む概略断面図である。
 本開示の幾つかの実施形態にかかる遠心圧縮機1は、図1、図2に示されるように、インペラ2と、インペラ2を回転可能に収容するコンプレッサハウジング3と、を備える。
 遠心圧縮機1は、例えば、自動車用、舶用又は発電用のターボチャージャ10や、その他産業用遠心圧縮機、送風機などに適用可能である。図示される実施形態では、遠心圧縮機1は、ターボチャージャ10に搭載される。ターボチャージャ10は、図1に示されるように、遠心圧縮機1と、タービン11と、回転シャフト12と、を備える。タービン11は、回転シャフト12を介してインペラ2に機械的に連結されたタービンロータ13と、タービンロータ13を回転可能に収容するタービンハウジング14と、を備える。
 図示される実施形態では、ターボチャージャ10は、図1に示されるように、回転シャフト12を回転可能に支持する軸受15と、軸受15を収容するように構成された軸受ハウジング16と、をさらに備える。軸受ハウジング16は、コンプレッサハウジング3とタービンハウジング14との間に配置され、締結部材(例えば、締結ボルトなど)により、コンプレッサハウジング3やタービンハウジング14に機械的に連結されている。
 以下、例えば図1に示されるように、遠心圧縮機1の軸線CA、すなわちインペラ2の軸線が延在する方向を軸方向Xとし、軸線CAに直交する方向を径方向Yと定義する。軸方向Xのうち、遠心圧縮機1の吸入方向(インペラ2への主流の導入方向)における上流側、すなわち、インペラ2に対して吸気口31が位置する側(図中左側)を前方側XFと定義する。また、軸方向Xのうち、前方側XFとは反対側、すなわち、遠心圧縮機1の吸入方向における下流側(図中右側)を後方側XRと定義する。
 図1に示される実施形態では、コンプレッサハウジング3には、コンプレッサハウジング3の外部から内部に流体(例えば、空気)を導入するための吸気口31と、インペラ2を通過した流体をコンプレッサハウジング3の外部に排出するための排出口32と、が形成されている。タービンハウジング14には、タービンハウジング14の外部から内部に、タービンロータ13を回転させる作動流体(例えば、排ガス)を導入するためのタービン側導入口141と、タービンロータ13を通過した作動流体をタービンハウジング14の外部に排出するためのタービン側排出口142と、が形成されている。
 回転シャフト12は、図1に示されるように、軸方向Xに沿って長手方向を有する。回転シャフト12は、その長手方向の一方側(前方側XF)にインペラ2が機械的に連結されており、その長手方向の他方側(後方側XR)にタービンロータ13が機械的に連結されている。
 ターボチャージャ10は、タービン側導入口141を通じてタービンハウジング14の内部に導入された作動流体により、タービンロータ13を回転させる。上記作動流体として、不図示の排ガス発生装置(例えば、エンジンなどの内燃機関)から生じた排ガスが挙げられる。インペラ2は、回転シャフト12を介してタービンロータ13に機械的に連結されているので、タービンロータ13の回転に連動して回転する。ターボチャージャ10は、インペラ2を回転させることにより、吸気口31を通って、コンプレッサハウジング3の内部に導入された流体を圧縮し、排出口32を通じて圧縮流体の供給先(例えば、エンジンなどの内燃機関)に送るようになっている。
(インペラ)
 インペラ2は、図2に示されるように、ハブ21と、ハブ21の外面22に設けられた複数のインペラ翼23と、を含む。ハブ21は、回転シャフト12の一方側に機械的に固定されているため、ハブ21や複数のインペラ翼23は、インペラ2の軸線CAを中心として回転シャフト12と一体的に回転可能に設けられている。インペラ2は、コンプレッサハウジング3に収納され、軸方向Xの前方側XFから導入される流体を径方向Yにおける外側に導くように構成されている。
 図示される実施形態では、ハブ21の外面22は、前方側XFから後方側XRに向かうにつれてインペラ2の軸線CAからの距離が大きくなる凹湾曲状に形成されている。複数のインペラ翼23の夫々は、軸線CA周りの周方向に互いに間隔を開けて配置されている。シュラウド面4は、前方側XFから後方側XRに向かうにつれてインペラ2の軸線CAからの距離が大きくなる凸湾曲状に形成された面41を含む。インペラ翼23の先端(チップ側端)24は、ハブ21の外面22との接続部(ハブ側端)とは反対側に位置している。先端24は、先端24に対向するように凸状に湾曲する面41との間に隙間G(クリアランス)が形成されている。
(コンプレッサハウジング)
 図示される実施形態では、コンプレッサハウジング3は、図2に示されるように、上述したシュラウド面4を含むシュラウド部33と、遠心圧縮機1の吸気導入路50を形成する吸気導入部34と、遠心圧縮機1のディフューザ流路60を形成するディフューザ部35と、遠心圧縮機1のスクロール流路360を形成するスクロール部36と、を備える。
 吸気導入路50は、コンプレッサハウジング3の吸気口31から導入した吸気(例えば、空気などの流体)をインペラ翼23に向かって導くための流路である。ディフューザ流路60は、インペラ2を通過した流体を、インペラ2の周囲に設けられた渦巻状のスクロール流路360に導くための流路である。スクロール流路360は、インペラ2およびディフューザ流路60を通過した流体を、排出口32(図1参照)を通じてコンプレッサハウジング3の外部へ導くための流路である。
 吸気導入路50およびスクロール流路360の夫々は、コンプレッサハウジング3の内部に形成されている。吸気導入部34は、吸気導入路50を形成する前方側内周面5を有する。前方側内周面5は、シュラウド面4の軸方向における前方側XFに形成されるとともにシュラウド面4の前方端42(前方側XF端)よりも径方向Yにおいて外側に位置している。また、吸気導入部34の前方端には、上述した吸気口31が形成されている。
 スクロール流路360は、コンプレッサハウジング3に収納されたインペラ2の周囲を囲むように、インペラ2に対して径方向Yにおける外側に位置するように形成されている。スクロール部36は、スクロール流路360を形成する流路壁面361を有する。
 また、図示される実施形態では、コンプレッサハウジング3は、図2に示されるように、他の部材(図示例では、軸受ハウジング16)と組み合わされることで、上述したディフューザ流路60が形成される。ディフューザ流路60は、ディフューザ面6と、ディフューザ面6に対向する軸受ハウジング16の面161と、により形成されている。なお、他の幾つかの実施形態では、コンプレッサハウジング3の内部にディフューザ流路60が形成されていてもよい。
 上述したシュラウド部33は、吸気導入部34とディフューザ部35との間に設けられる。吸気導入路50の出口は、ディフューザ流路60の入口に連通し、ディフューザ流路60の出口は、スクロール流路360の入口に連通している。吸気口31を通じてコンプレッサハウジング3の内部に導入された流体は、吸気導入路50を後方側XRに向かって流れた後に、インペラ2に送られる。インペラ2に送られた流体は、ディフューザ流路60およびスクロール流路360をこの順に流れた後に、排出口32(図1参照)からコンプレッサハウジング3の外部に排出される。
 遠心圧縮機1の吸気流量(吸気口31を通じて吸気導入路50に流入し、インペラ2へ流れる主流MFの流量)が少ない低流量時において、流体の流れ方向に流体が激しく振動するサージングと呼ばれる不安定現象が発生することがある。サージングが発生すると、シュラウド面4近傍に、主流MFとは逆方向、すなわち軸方向Xにおける前方側XFに向かって流れる逆流RFが発生し、遠心圧縮機1の効率低下を招く虞がある。
 図3は、第1の実施形態にかかるコンプレッサハウジングを説明するための説明図である。図4は、図3におけるA-B線断面を概略的に示す概略断面図である。図3では、遠心圧縮機1のインペラ2の軸線CAに沿った断面が概略的に示されている。
 幾つかの実施形態にかかるコンプレッサハウジング3は、図3に示されるように、インペラ2のインペラ翼23の先端24と所定の隙間Gを有して対向する面41を含む上述したシュラウド面4と、シュラウド面4の軸方向における前方側XFに形成されるとともにシュラウド面4の前方端42よりも径方向Yにおいて外側に位置する前方側内周面5と、前方側内周面5から径方向の内側に向かって突出する複数の凸部7Aと、を備える。
 図4に示されるような、インペラ2の軸方向における前方側XFから視た断面視において、複数の凸部7Aの夫々は、前方側内周面5において周方向に間隔を空けて形成された複数の溝部7Bのうちの隣接する溝部7Bの間に形成されている。また、上記断面視において、複数の溝部7Bの夫々は、インペラ2の回転方向RDに向かって徐々に深さが大きくなる傾斜部71と、傾斜部71の回転方向RDにおける下流端72に形成された段部73と、を含む。図示される実施形態では、凸部7Aは、インペラ2の前縁25における先端24Aよりも径方向における外側に位置している。
 上記の構成によれば、コンプレッサハウジング3には、各々が傾斜部71および段部73を含む複数の溝部7Bが形成されている。上述したように、遠心圧縮機1の吸気流量が少ない低流量時において、シュラウド面4近傍に逆流RFが生じることがある。逆流RFは、インペラ2の回転によりインペラ2の回転方向RDに指向する旋回方向成分が付与されるので、強い遠心作用を有する。傾斜部71は、このような強い遠心作用を有する逆流RFを、傾斜部71に沿って回転方向RDに案内し、傾斜部71の回転方向RDにおける下流端72に形成された段部73に衝突させることで、逆流RFを抑制できる。上記逆流RFを抑制することで、低流量側作動域におけるサージ流量を低減でき、ひいては遠心圧縮機1の効率を向上させることができる。
 また、上記の構成によれば、上記溝部7Bは、インペラ2の回転方向RDに向かって徐々に深さが大きくなっているので、インペラ2に導入される主流MFのうち溝部7Bに入り込んだ流れが、回転方向RDとは逆向きに溝部7Bから径方向における内側に押し出される。これにより、インペラ2に導入される主流MFにインペラ2の回転方向RDとは逆方向に予旋回を与えることができ、上記予旋回によりインペラ2に導入される際の主流MFの相対流入速度を増加させることができる。主流MFの相対流入速度を増加させることで、低流量側作動域におけるサージ流量を低減でき、ひいては遠心圧縮機1の効率を向上させることができる。
 幾つかの実施形態では、上述した傾斜部71は、図4に示されるように、径方向の外側に向かって凹状に湾曲する円弧状部71Aを含む。この場合には、円弧状部71Aに沿って回転方向RDに逆流RFを滑らかに案内できるため、逆流RFと段部73との衝突が促進される。これにより、逆流RFを効果的に抑制できる。また、円弧状部71Aを有する溝部7Bは、溝部7B内の空間を大きなものにできるため、インペラ2に導入される主流MFを溝部7Bに大量に流入させ、回転方向RDとは逆向きに溝部7Bから径方向における内側に大量に押し出せる。これにより、インペラ2に導入される主流MFに上記予旋回を効果的に付与でき、インペラ2に導入される際の主流MFの相対流入速度を増加させることができる。
 幾つかの実施形態では、上述した段部73は、図4に示されるような、傾斜部71とのなす角度θが120度以下である段差面73Aを含む。好ましくは、上記角度θは、90度以下である。仮に段部73と傾斜部71とのなす角度θが大きいと、溝部7Bの傾斜部71に沿って回転方向RDに流れる逆流RFが、そのまま段差面73A(段部73)に沿うように流れて逆流RFと段差面73Aとの衝突が不十分になる虞がある。上記の構成によれば、段部73は、傾斜部71とのなす角度が120度以下である段差面73Aを含む。この場合には、逆流RFと段差面73Aとの衝突角度が小さいので、逆流RFを段差面73Aに十分に衝突させることができ、逆流RFを効果的に抑制できる。
 幾つかの実施形態では、図3に示されるように、溝部7Bの後方端74が、シュラウド面4の前方端42と接続するように構成されている。上記溝部7Bは、軸方向Xにおいてインペラ2の前縁25の近くに設けた方が逆流RFの抑制効果が高い。上記の構成によれば、溝部7Bの後方端74が、シュラウド面4の前方端42と接続しているので、溝部7Bが軸方向Xにおいて前縁25の近くに位置するため、逆流RFを効果的に抑制できる。上記逆流RFを抑制することで、低流量側作動域におけるサージ流量を低減でき、ひいては遠心圧縮機1の効率を向上させることができる。
 幾つかの実施形態では、図3に示されるように、溝部7Bの傾斜部71は、溝部7Bの後方端74から前方側XFに向かって拡径するテーパ面75を少なくとも含む。図示される実施形態では、溝部7Bの傾斜部71は、テーパ面75の前方端76から軸方向Xに沿って前方側XFに延在する底面77をさらに含む。図3に示される実施形態では、溝部7Bの底部(例えば、底面77)は、軸方向面53よりも径方向における内側に形成されている。上記の構成によれば、傾斜部71は、テーパ面75を含むので、インペラ2に導入される主流MFの流れの急縮小損失を抑制できる。また、傾斜部71は、テーパ面75に沿って回転方向RDに逆流RFを滑らかに案内できるため、逆流RFと段部73との衝突が促進される。これにより、逆流RFを効果的に抑制できる。
 図5は、第1の実施形態にかかるコンプレッサハウジングの変形例を説明するための説明図である。図5では、遠心圧縮機1のインペラ2の軸線CAに沿った断面が概略的に示されている。
 幾つかの実施形態では、図3、図5に示されるように、上述した前方側内周面5は、上述したシュラウド面4の前方端42から前方側XFに向かって拡径するテーパ面51と、テーパ面51の前方端52から軸方向Xに沿って前方側XFに延在する軸方向面53と、を含む。上述した凸部7Aは、図5に示されるように、前方側内周面5においてテーパ面51のみから突出するように構成された。図示される実施形態では、凸部7Aは、少なくともテーパ面51の軸方向Xの全体に亘って延在する。この場合には、凸部7Aや溝部7Bをテーパ面51に設けることで、逆流RFを効果的に抑制できる。また、凸部7Aを前方側内周面5におけるテーパ面51のみに設ける、すなわち前方側内周面5のうちの軸方向面53には設けないことで、凸部7Aとの衝突による主流MFの衝突損失を抑制できる。
 なお、他の幾つかの実施形態では、上述した凸部7Aは、図3に示されるように、テーパ面51および軸方向面53の両方から突出するように構成されていてもよい。
 図6は、第2の実施形態にかかるコンプレッサを説明するための説明図である。図6では、複数の凸部7Aや複数の溝部7Bをインペラ2の径方向における内側から視た状態を概略的に示している。
 幾つかの実施形態にかかるコンプレッサハウジング3は、図3、図5に示されるように、インペラ2のインペラ翼23の先端24と所定の隙間Gを有して対向する面41を含む上述したシュラウド面4と、シュラウド面4の軸方向における前方側XFに形成されるとともにシュラウド面4の前方端42よりも径方向Yにおいて外側に位置する前方側内周面5と、前方側内周面5から径方向の内側に向かって突出する複数の凸部7Aと、を備える。
 図4に示されるような、インペラ2の軸方向における前方側XFから視た断面視において、複数の凸部7Aの夫々は、前方側内周面5において周方向に間隔を空けて形成された複数の溝部7Bのうちの隣接する溝部7Bの間に形成されている。図6に示されるように、複数の溝部7Bの夫々は、溝部7Bの後方端74が、溝部7Bの前方端78よりも、インペラ2の回転方向RDにおける上流側に位置するように構成された。
 なお、上述した幾つかの実施形態では、溝部7Bは、軸方向Xに沿って延在し、溝部7Bの後方端74は、溝部7Bの前方端78に対してインペラ2の回転方向RDにおいて同じ位置に位置するように構成されている。
 図示される実施形態では、溝部7Bの後方端74は、シュラウド面4の前方端42と接続するように構成されている。図6に示されるような、インペラ2の径方向における内側から視たときに、溝部7Bは、前方端78から後方端74までに亘り直線状に形成されている。
 上記の構成によれば、溝部7Bの後方端74が、溝部7Bの前方端78よりもインペラ2の回転方向RDにおける上流側に位置するように構成されているので、溝部7Bにより、インペラ2に導入される主流MFを案内することで、上記主流MFにインペラ2の回転方向RDとは逆方向に予旋回を与えることができる。主流MFに上記予旋回を与えることで、インペラ2に導入される際の主流MFの相対流入速度を増加させることができる。主流MFの相対流入速度を増加させることで、低流量側作動域におけるサージ流量を低減でき、ひいては遠心圧縮機1の効率を向上させることができる。
 なお、本実施形態は、上述した幾つかの実施形態と組み合わせてもよいし、独立して実施してもよい。例えば、図4に示されるような、上述した傾斜部71および段部73を含む溝部7Bに対して本実施形態を適用してもよく、溝部7B以外の凹形状の溝部に本実施形態を適用してもよい。
 幾つかの実施形態では、図3に示されるように、上述した複数の凸部7Aの夫々は、削り出し加工、又は鋳造によって、上述した前方側内周面5(例えば、テーパ面51)と一体的に形成された。
 上記の構成によれば、凸部7Aは、削り出し加工、又は鋳造によって、前方側内周面5と一体的に形成されている。この場合には、前方側内周面5とは別体に作製された凸部7Aを溶接やボルト締結などにより前方側内周面5に固定する場合と比べて、凸部7Aや溝部7Bの面粗度を向上させることができる。凸部7Aや溝部7Bの面粗度を向上させることで、インペラ2に導入される主流MFの圧力損失を低減できる。
 なお、幾つかの実施形態では、図5に示されるように、上述した凸部7Aは、上述した前方側内周面5とは別体に作製されていてもよい。図5に示される実施形態では、複数の凸部7Aおよび複数の溝部7Bが形成された内面を有する環状体7が前方側内周面5の内側に支持されている。
 上述した幾つかの実施形態では、上述した凸部7Aや溝部7Bをインペラ2の上流側に設けていたが、このような凸部7Aや溝部7Bをインペラ2の下流側に設けることによって、インペラ2の下流側における逆流を抑制することができ、遠心圧縮機1の効率の向上が図れる。
 図7は、第3の実施形態にかかるコンプレッサハウジングを説明するための説明図である。図8は、図7に示されるコンプレッサハウジングのピンチ面近傍を軸方向における後方側から視た状態を概略的に示す概略図である。図7では、遠心圧縮機1のインペラ2の軸線CAに沿った断面が概略的に示されている。
 幾つかの実施形態にかかるコンプレッサハウジング3は、図7に示されるように、インペラ2のインペラ翼23の先端24と所定の隙間Gを有して対向する面41を含む上述したシュラウド面4と、シュラウド面4の後方端43よりも軸方向においてインペラ2の背面26側(後方側XR)に位置するディフューザ面6であって、径方向Yに沿って延在する径方向面61と、径方向面61の内側端62とシュラウド面4の後方端43とを接続するピンチ面63と、を含むディフューザ面6と、ピンチ面63から軸方向におけるインペラ2の背面26側(後方側XR)に向かって突出する複数のディフューザ側凸部8Aと、を備える。
 図8に示されるような、インペラ2の軸方向における後方側XRから視たときに、複数のディフューザ側凸部8Aの夫々は、ディフューザ面6において周方向に間隔を空けて形成された複数のディフューザ側溝部8Bのうちの隣接するディフューザ側溝部8Bの間に形成された。
 上記の構成によれば、コンプレッサハウジング3は、ピンチ面63において周方向に間隔を空けて形成された複数のディフューザ側溝部8Bを備える。複数のディフューザ側溝部8Bによって、ピンチ面63近傍に生じたインペラ2の回転方向RDに指向する旋回方向成分を有する逆流RF2を抑制でき、インペラ2よりも下流側における主流MFの旋回圧力損失を抑制できる。
 遠心圧縮機1におけるインペラ2よりも下流側では、不均一な流速分布が発生する。複数のディフューザ側凸部8Aは、ヴォルテックスジェネレータとして作用して、境界層剥離を抑制する。このため、ディフューザ流路60の入口における旋回失速の発生時だけでなく、遠心圧縮機1の通常作動点においても、遠心圧縮機1の効率を向上させることができる。
 幾つかの実施形態では、図8に示されるような、インペラ2の軸方向における後方側XRから視たときに、上述した複数のディフューザ側溝部8Bの夫々は、インペラ2の回転方向RDに向かって徐々に深さが大きくなるディフューザ側傾斜部81と、ディフューザ側傾斜部81の回転方向RDにおける下流端82に形成されたディフューザ側段部83と、を含む。
 上記の構成によれば、複数のディフューザ側溝部8Bの夫々は、ディフューザ側傾斜部81と、ディフューザ側段部83と、を含む。ピンチ面63近傍に生じた旋回方向成分を有する逆流RF2をディフューザ側傾斜部81に沿って回転方向RDに案内し、ディフューザ側傾斜部81の下流端82に形成されたディフューザ側段部83に上記逆流RF2を衝突させることで、上記逆流RF2を抑制できる。
 幾つかの実施形態では、図8に示されるように、上述したディフューザ側傾斜部81は、径方向の外側に向かって凹状に湾曲する円弧状部81Aを含む。この場合には、円弧状部81Aに沿って回転方向RDに逆流RF2を滑らかに案内できるため、逆流RF2とディフューザ側段部83との衝突が促進される。これにより、逆流RF2を効果的に抑制できる。また、円弧状部81Aを有するディフューザ側溝部8Bは、ディフューザ側溝部8B内の空間を大きなものにできるため、インペラ2に導入される主流MFをディフューザ側溝部8Bに大量に流入させ、回転方向RDとは逆向きにディフューザ側溝部8Bから径方向における内側に大量に押し出せる。これにより、不均一な流速分布を抑制できる。
 幾つかの実施形態では、図8に示されるように、上述したディフューザ側段部83は、ディフューザ側傾斜部81とのなす角度θ1が120度以下である段差面83Aを含む。好ましくは、上記角度θ1は、90度以下である。仮にディフューザ側段部83とディフューザ側傾斜部81とのなす角度θ1が大きいと、ディフューザ側溝部8Bのディフューザ側傾斜部81に沿って回転方向RDに流れる逆流RF2が、そのまま段差面83Aに沿うように流れて逆流RF2と段差面83Aとの衝突が不十分になる虞がある。上記の構成によれば、ディフューザ側段部83は、ディフューザ側傾斜部81とのなす角度が120度以下である段差面83Aを含む。この場合には、逆流RF2と段差面83Aとの衝突角度が小さいので、逆流RF2を段差面83Aに十分に衝突させることができ、逆流RF2を効果的に抑制できる。
 なお、本実施形態は、上述した幾つかの実施形態と組み合わせてもよいし、独立して実施してもよい。例えば、コンプレッサハウジング3は、上述した凸部7Aと、上述したディフューザ側凸部8Aと、を備えていてもよい。この場合には、インペラ2の上流側および下流側における旋回失速を抑制できるので、凸部7Aとディフューザ側凸部8Aとの相乗効果により、遠心圧縮機1の効率を効果的に向上させることができる。
 幾つかの実施形態では、図7に示されるように、上述したディフューザ側凸部8Aは、削り出し加工、又は鋳造によって、上述したディフューザ面6(例えば、ピンチ面63)と一体的に形成された。
 上記の構成によれば、ディフューザ側凸部8Aは、削り出し加工、又は鋳造によって、ディフューザ面6と一体的に形成されている。この場合には、ディフューザ面6とは別体に作製されたディフューザ側凸部8Aを溶接やボルト締結などによりディフューザ面6に固定する場合と比べて、ディフューザ側溝部8Bの面粗度を向上させることができる。ディフューザ側溝部8Bの面粗度を向上させることで、インペラ2を通過後の主流MFの圧力損失を低減できる。
 なお、他の幾つかの実施形態では、上述したディフューザ側凸部8Aは、上述したディフューザ面6とは別体に作製されていてもよい。
 幾つかの実施形態にかかる遠心圧縮機1は、図1、図2に示されるように、上述したコンプレッサハウジング3を備える。この場合には、コンプレッサハウジング3内を流れる作動流体の圧力損失を効果的に抑制できるため、遠心圧縮機1の効率を向上させることができる。
 本開示は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
 上述した幾つかの実施形態に記載の内容は、例えば以下のように把握されるものである。
1)本開示の少なくとも一実施形態にかかるコンプレッサハウジング(3)は、
 遠心圧縮機(1)のインペラ(2)を回転可能に収容するためのコンプレッサハウジング(3)であって、
 前記遠心圧縮機の軸方向における吸気口側を前方側、前記軸方向における前記吸気口側と反対側を後方側と定義した場合に、
 前記インペラのインペラ翼(23)の先端(24)と所定の隙間(G)を有して対向する面(41)を含むシュラウド面(4)と、
 前記シュラウド面(4)の前記軸方向における前記前方側に形成されるとともに前記シュラウド面(4)の前方端(42)よりも径方向において外側に位置する前方側内周面(5)と、
 前記前方側内周面(5)から前記径方向の内側に向かって突出する複数の凸部(7A)であって、前記前方側内周面(5)において周方向に間隔を空けて形成された複数の溝部(7B)のうちの隣接する溝部(7B)の間に形成された複数の凸部(7A)と、を備え、
 前記複数の溝部(7B)の夫々は、
 前記インペラ(2)の回転方向(RD)に向かって徐々に深さが大きくなる傾斜部(71)と、
 前記傾斜部(71)の前記回転方向(RD)における下流端(72)に形成された段部(73)と、
を含む。
 上記1)の構成によれば、コンプレッサハウジングには、各々が傾斜部および段部を含む複数の溝部が形成されている。遠心圧縮機の吸気流量が少ない低流量時において、シュラウド面近傍に逆流が生じることがある。逆流は、インペラの回転によりインペラの回転方向に指向する旋回方向成分が付与されるので、強い遠心作用を有する。傾斜部は、このような強い遠心作用を有する逆流を、傾斜部に沿って回転方向に案内し、傾斜部の回転方向における下流端に形成された段部に衝突させることで、逆流を抑制できる。上記逆流を抑制することで、低流量側作動域におけるサージ流量を低減でき、ひいては遠心圧縮機の効率を向上させることができる。
 また、上記1)の構成によれば、上記溝部は、インペラの回転方向に向かって徐々に深さが大きくなっているので、インペラに導入される主流のうち溝部に入り込んだ流れが、回転方向とは逆向きに溝部から径方向における内側に押し出される。これにより、インペラに導入される主流にインペラの回転方向とは逆方向に予旋回を与えることができ、上記予旋回によりインペラに導入される際の主流の相対流入速度を増加させることができる。主流の相対流入速度を増加させることで、低流量側作動域におけるサージ流量を低減でき、ひいては遠心圧縮機の効率を向上させることができる。
2)幾つかの実施形態では、上記1)に記載のコンプレッサハウジング(3)であって、
 前記傾斜部(71)は、前記径方向の外側に向かって凹状に湾曲する円弧状部(71A)を含む。
 上記2)の構成によれば、傾斜部は、前記径方向の外側に向かって凹状に湾曲する円弧状部を含む。この場合には、円弧状部に沿って回転方向に逆流を滑らかに案内できるため、逆流と段部との衝突が促進される。これにより、逆流を効果的に抑制できる。また、上記円弧状部を有する溝部は、溝部内の空間を大きなものにできるため、インペラに導入される主流を大量に流入させ、回転方向とは逆向きに溝部から径方向における内側に大量に押し出せる。これにより、インペラに導入される主流に上記予旋回を効果的に付与でき、インペラに導入される際の主流の相対流入速度を増加させることができる。
3)幾つかの実施形態では、上記1)又は2)に記載のコンプレッサハウジング(3)であって、
 前記段部(73)は、前記傾斜部(71)とのなす角度(θ)が120度以下である段差面(73A)を含む。
 仮に段部と傾斜部とのなす角度が大きいと、溝部の傾斜部に沿って回転方向に流れる逆流が、そのまま段差面(段部)に沿うように流れて逆流と段差面との衝突が不十分になる虞がある。上記3)の構成によれば、段部は、傾斜部とのなす角度が120度以下である段差面を含む。この場合には、逆流と段差面との衝突角度が小さいので、逆流を段差面に十分に衝突させることができ、逆流を効果的に抑制できる。
4)幾つかの実施形態では、上記1)~3)の何れかに記載のコンプレッサハウジング(3)であって、
 前記複数の溝部(7B)の夫々は、
 前記溝部の後方端(74)が、前記溝部の前方端(78)よりも、前記インペラ(2)の回転方向(RD)における上流側に位置するように構成された。
 上記4)の構成によれば、溝部の後方端が、溝部の前方端よりもインペラの回転方向における上流側に位置するように構成されているので、溝部により、インペラに導入される主流を案内することで、上記主流にインペラの回転方向とは逆方向に予旋回を与えることができる。主流に上記予旋回を与えることで、インペラに導入される際の主流の相対流入速度を増加させることができる。主流の相対流入速度を増加させることで、低流量側作動域におけるサージ流量を低減でき、ひいては遠心圧縮機の効率を向上させることができる。また、溝部が上記傾斜部と上記段部を含むので、溝部から回転方向とは逆向きに押し出された流れにより生じる予旋回との相乗効果により、インペラに導入される主流に効果的に予旋回を付与できる。
5)幾つかの実施形態では、上記1)~4)の何れかに記載のコンプレッサハウジング(3)であって、
 前記複数の凸部(7A)の夫々は、削り出し加工、又は鋳造によって、前記前方側内周面(5)と一体的に形成された。
 上記5)の構成によれば、凸部は、削り出し加工、又は鋳造によって、前方側内周面と一体的に形成されている。この場合には、前方側内周面とは別体に作製された凸部を溶接やボルト締結などにより前方側内周面に固定する場合と比べて、凸部や溝部の面粗度を向上させることができる。凸部や溝部の面粗度を向上させることで、インペラに導入される主流の圧力損失を低減できる。
6)幾つかの実施形態では、上記1)~5)の何れかに記載のコンプレッサハウジング(3)であって、
 前記シュラウド面(4)の後方端(43)よりも前記軸方向において前記インペラ(2)の背面(26)側に位置するディフューザ面(6)であって、前記径方向に沿って延在する径方向面(61)と、前記径方向面(61)の内側端(62)と前記シュラウド面(4)の前記後方端(43)とを接続するピンチ面(63)と、を含むディフューザ面(6)と、
 前記ピンチ面(63)から前記軸方向における前記インペラの背面側に向かって突出する複数のディフューザ側凸部(8A)であって、前記ディフューザ面(6)において前記周方向に間隔を空けて形成された複数のディフューザ側溝部(8B)のうちの隣接するディフューザ側溝部(8B)の間に形成された複数のディフューザ側凸部(8A)と、をさらに備える。
 上記6)の構成によれば、コンプレッサハウジングは、ピンチ面において周方向に間隔を空けて形成された複数のディフューザ側溝部を備える。複数のディフューザ側溝部によって、ピンチ面近傍に生じたインペラの回転方向に指向する旋回方向成分を有する逆流を抑制でき、インペラよりも下流側における主流の旋回圧力損失を抑制できる。
 遠心圧縮機におけるインペラよりも下流側では、不均一な流速分布が発生する。複数のディフューザ側溝部は、ヴォルテックスジェネレータとして作用して、境界層剥離を抑制する。このため、ディフューザ流路の入口における旋回失速の発生時だけでなく、遠心圧縮機の通常作動点においても、遠心圧縮機の効率を向上させることができる。
7)幾つかの実施形態では、上記6)に記載のコンプレッサハウジング(3)であって、
 前記複数のディフューザ側溝部(8B)の夫々は、
 前記インペラの回転方向に向かって徐々に深さが大きくなるディフューザ側傾斜部(81)と、
 前記ディフューザ側傾斜部(81)の前記回転方向における下流端(82)に形成されたディフューザ側段部(83)と、を含む。
 上記7)の構成によれば、複数のディフューザ側溝部の夫々は、ディフューザ側傾斜部と、ディフューザ側段部と、を含む。ピンチ面近傍に生じた旋回方向成分を有する逆流(RF2)をディフューザ側傾斜部に沿って回転方向に案内し、ディフューザ側傾斜部の下流端に形成されたディフューザ側段部に上記逆流を衝突させることで、上記逆流を抑制できる。
8)幾つかの実施形態では、上記6)又は7)に記載のコンプレッサハウジング(3)であって、
 前記複数のディフューザ側凸部(8A)の夫々は、削り出し加工、又は鋳造によって、前記ディフューザ面(6)と一体的に形成された。
 上記8)の構成によれば、ディフューザ側凸部は、削り出し加工、又は鋳造によって、ディフューザ面と一体的に形成されている。この場合には、ディフューザ面とは別体に作製されたディフューザ側凸部を溶接やボルト締結などによりディフューザ面に固定する場合と比べて、ディフューザ側溝部の面粗度を向上させることができる。ディフューザ側溝部の面粗度を向上させることで、インペラを通過後の主流の圧力損失を低減できる。
9)本開示の少なくとも一実施形態にかかるコンプレッサハウジング(3)は、
 遠心圧縮機(1)のインペラ(2)を回転可能に収容するためのコンプレッサハウジング(3)であって、
 前記遠心圧縮機の軸方向における吸気口側を前方側、前記軸方向における前記吸気口側と反対側を後方側と定義した場合に、
 前記インペラのインペラ翼(23)の先端(24)と所定の隙間(G)を有して対向する面(41)を含むシュラウド面(4)と、
 前記シュラウド面(4)の前記軸方向における前記前方側に形成されるとともに前記シュラウド面(4)の前方端(42)よりも径方向において外側に位置する前方側内周面(5)と、
 前記前方側内周面(5)から前記径方向の内側に向かって突出する複数の凸部(7A)であって、前記前方側内周面(5)において周方向に間隔を空けて形成された複数の溝部(7B)のうちの隣接する溝部(7B)の間に形成された複数の凸部(7A)と、を備え、
 前記複数の溝部(7B)の夫々は、
 前記溝部の後方端(74)が、前記溝部の前方端(78)よりも、前記インペラ(2)の回転方向(RD)における上流側に位置するように構成された。
 上記9)の構成によれば、溝部の後方端が、溝部の前方端よりもインペラの回転方向における上流側に位置するように構成されているので、溝部により、インペラに導入される主流を案内することで、上記主流にインペラの回転方向とは逆方向に予旋回を与えることができる。主流に上記予旋回を与えることで、インペラに導入される際の主流の相対流入速度を増加させることができる。主流の相対流入速度を増加させることで、低流量側作動域におけるサージ流量を低減でき、ひいては遠心圧縮機の効率を向上させることができる。
10)本開示の少なくとも一実施形態にかかるコンプレッサハウジング(3)は、
 遠心圧縮機(1)のインペラ(2)を回転可能に収容するためのコンプレッサハウジング(3)であって、
 前記遠心圧縮機の軸方向における吸気口側を前方側、前記軸方向における前記吸気口側と反対側を後方側と定義した場合に、
 前記インペラのインペラ翼(23)の先端(24)と所定の隙間(G)を有して対向する面(41)を含むシュラウド面(4)と、
 前記シュラウド面(4)の後方端(43)よりも前記軸方向において前記インペラ(2)の背面(26)側に位置するディフューザ面(6)であって、前記径方向に沿って延在する径方向面(61)と、前記径方向面(61)の内側端(62)と前記シュラウド面(4)の前記後方端(43)とを接続するピンチ面(63)と、を含むディフューザ面(6)と、
 前記ピンチ面(63)から前記軸方向における前記インペラの背面側に向かって突出する複数のディフューザ側凸部(8A)であって、前記ディフューザ面(6)において周方向に間隔を空けて形成された複数のディフューザ側溝部(8B)のうちの隣接するディフューザ側溝部(8B)の間に形成された複数のディフューザ側凸部(8A)と、を備え、
 前記複数のディフューザ側溝部(8B)の夫々は、
 前記インペラの回転方向に向かって徐々に深さが大きくなるディフューザ側傾斜部(81)と、
 前記ディフューザ側傾斜部(81)の前記回転方向における下流端(82)に形成されたディフューザ側段部(83)と、を含む。
 上記10)の構成によれば、コンプレッサハウジングは、ピンチ面において周方向に間隔を空けて形成された複数のディフューザ側溝部を備える。複数のディフューザ側溝部の夫々は、ディフューザ側傾斜部と、ディフューザ側段部と、を含む。ピンチ面近傍に生じたインペラの回転方向に指向する旋回方向成分を有する逆流を、ディフューザ側傾斜部に沿って回転方向に案内し、ディフューザ側傾斜部の下流端に形成されたディフューザ側段部に上記逆流を衝突させることで、上記逆流を抑制できる。これにより、インペラよりも下流側における主流の旋回圧力損失を抑制できる。よって、上記10)の構成によれば、低流量側作動域におけるディフューザ流路の入口における旋回失速を抑制でき、ひいては遠心圧縮機の効率を向上させることができる。
 遠心圧縮機におけるインペラよりも下流側では、不均一な流速分布が発生する。複数のディフューザ側溝部は、ヴォルテックスジェネレータとして作用して、境界層剥離を抑制する。このため、ディフューザ流路の入口における旋回失速の発生時だけでなく、遠心圧縮機の通常作動点においても、遠心圧縮機の効率を向上させることができる。
11)本開示の少なくとも一実施形態にかかる遠心圧縮機(1)は、上記1)~10)の何れかに記載のコンプレッサハウジング(3)を備える。
 上記11)の構成によれば、コンプレッサハウジング(3)内を流れる流体の圧力損失を効果的に抑制できるため、遠心圧縮機(1)の効率を向上させることができる。
1     遠心圧縮機
2     インペラ
21    ハブ
22    外面
23    インペラ翼
24    先端
25    前縁
26    背面
3     コンプレッサハウジング
31    吸気口
32    排出口
33    シュラウド部
34    吸気導入部
35    ディフューザ部
36    スクロール部
360   スクロール流路
361   流路壁面
4     シュラウド面
41    面
42    前方端
43    後方端
5     前方側内周面
50    吸気導入路
51    テーパ面
52    前方端
53    軸方向面
6     ディフューザ面
60    ディフューザ流路
61    径方向面
62    内側端
63    ピンチ面
7     環状体
7A    凸部
7B    溝部
71    傾斜部
71A   円弧状部
72    下流端
73    段部
73A   段差面
74    後方端
75    テーパ面
76,78 前方端
77    底面
8A    ディフューザ側凸部
8B    ディフューザ側溝部
81    ディフューザ側傾斜部
81A   円弧状部
82    下流端
83    ディフューザ側段部
83A   段差面
10    ターボチャージャ
11    タービン
12    回転シャフト
13    タービンロータ
14    タービンハウジング
141   タービン側導入口
142   タービン側排出口
15    軸受
16    軸受ハウジング
CA   軸線
G    隙間
MF   主流
RD   回転方向
RF,RF2 逆流
X    軸方向
XF   (軸方向の)前方側
XR   (軸方向の)後方側
Y    径方向

Claims (11)

  1.  遠心圧縮機のインペラを回転可能に収容するためのコンプレッサハウジングであって、
     前記遠心圧縮機の軸方向における吸気口側を前方側、前記軸方向における前記吸気口側と反対側を後方側と定義した場合に、
     前記インペラのインペラ翼の先端と所定の隙間を有して対向する面を含むシュラウド面と、
     前記シュラウド面の前記軸方向における前記前方側に形成されるとともに前記シュラウド面の前方端よりも径方向において外側に位置する前方側内周面と、
     前記前方側内周面から前記径方向の内側に向かって突出する複数の凸部であって、前記前方側内周面において周方向に間隔を空けて形成された複数の溝部のうちの隣接する溝部の間に形成された複数の凸部と、を備え、
     前記複数の溝部の夫々は、
     前記インペラの回転方向に向かって徐々に深さが大きくなる傾斜部と、
     前記傾斜部の前記回転方向における下流端に形成された段部と、
    を含む、
    コンプレッサハウジング。
  2.  前記傾斜部は、前記径方向の外側に向かって凹状に湾曲する円弧状部を含む、
    請求項1に記載のコンプレッサハウジング。
  3.  前記段部は、前記傾斜部とのなす角度が120度以下である段差面を含む、
    請求項1又は2に記載のコンプレッサハウジング。
  4.  前記複数の溝部の夫々は、
     前記溝部の後方端が、前記溝部の前方端よりも、前記インペラの回転方向における上流側に位置するように構成された、
    請求項1乃至3の何れか1項に記載のコンプレッサハウジング。
  5.  前記複数の凸部の夫々は、削り出し加工、又は鋳造によって、前記前方側内周面と一体的に形成された、
     請求項1乃至4の何れか1項に記載のコンプレッサハウジング。
  6.  前記シュラウド面の後方端よりも前記軸方向において前記インペラの背面側に位置するディフューザ面であって、前記径方向に沿って延在する径方向面と、前記径方向面の内側端と前記シュラウド面の前記後方端とを接続するピンチ面と、を含むディフューザ面と、
     前記ピンチ面から前記軸方向における前記インペラの背面側に向かって突出する複数のディフューザ側凸部であって、前記ディフューザ面において前記周方向に間隔を空けて形成された複数のディフューザ側溝部のうちの隣接するディフューザ側溝部の間に形成された複数のディフューザ側凸部と、をさらに備える、
     請求項1乃至5の何れか1項に記載のコンプレッサハウジング。
  7.  前記複数のディフューザ側溝部の夫々は、
     前記インペラの回転方向に向かって徐々に深さが大きくなるディフューザ側傾斜部と、
     前記ディフューザ側傾斜部の前記回転方向における下流端に形成されたディフューザ側段部と、を含む、
     請求項6に記載のコンプレッサハウジング。
  8.  前記複数のディフューザ側凸部の夫々は、削り出し加工、又は鋳造によって、前記ディフューザ面と一体的に形成された、
     請求項6又は7に記載のコンプレッサハウジング。
  9.  遠心圧縮機のインペラを回転可能に収容するためのコンプレッサハウジングであって、
     前記遠心圧縮機の軸方向における吸気口側を前方側、前記軸方向における前記吸気口側と反対側を後方側と定義した場合に、
     前記インペラのインペラ翼の先端と所定の隙間を有して対向する面を含むシュラウド面と、
     前記シュラウド面の前記軸方向における前記前方側に形成されるとともに前記シュラウド面の前方端よりも径方向において外側に位置する前方側内周面と、
     前記前方側内周面から前記径方向の内側に向かって突出する複数の凸部であって、前記前方側内周面において周方向に間隔を空けて形成された複数の溝部のうちの隣接する溝部の間に形成された複数の凸部と、を備え、
     前記複数の溝部の夫々は、
     前記溝部の後方端が、前記溝部の前方端よりも、前記インペラの回転方向における上流側に位置するように構成された、
    コンプレッサハウジング。
  10.  遠心圧縮機のインペラを回転可能に収容するためのコンプレッサハウジングであって、
     前記遠心圧縮機の軸方向における吸気口側を前方側、前記軸方向における前記吸気口側と反対側を後方側と定義した場合に、
     前記インペラのインペラ翼の先端と所定の隙間を有して対向する面を含むシュラウド面と、
     前記シュラウド面の後方端よりも前記軸方向において前記インペラの背面側に位置するディフューザ面であって、径方向に沿って延在する径方向面と、前記径方向面の内側端と前記シュラウド面の前記後方端とを接続するピンチ面と、を含むディフューザ面と、
     前記ピンチ面から前記軸方向における前記インペラの背面側に向かって突出する複数のディフューザ側凸部であって、前記ディフューザ面において周方向に間隔を空けて形成された複数のディフューザ側溝部のうちの隣接するディフューザ側溝部の間に形成された複数のディフューザ側凸部と、を備え、
     前記複数のディフューザ側溝部の夫々は、
     前記インペラの回転方向に向かって徐々に深さが大きくなるディフューザ側傾斜部と、
     前記ディフューザ側傾斜部の前記回転方向における下流端に形成されたディフューザ側段部と、を含む、
    コンプレッサハウジング。
  11.  請求項1乃至10の何れか1項に記載のコンプレッサハウジングを備える遠心圧縮機。
PCT/JP2020/033826 2020-09-07 2020-09-07 コンプレッサハウジングおよび遠心圧縮機 WO2022049779A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112020007267.3T DE112020007267T5 (de) 2020-09-07 2020-09-07 Verdichtergehäuse und Zentrifugalverdichter
US18/018,213 US11988227B2 (en) 2020-09-07 2020-09-07 Compressor housing and centrifugal compressor
CN202080104714.0A CN116157601A (zh) 2020-09-07 2020-09-07 压气机壳和离心压缩机
PCT/JP2020/033826 WO2022049779A1 (ja) 2020-09-07 2020-09-07 コンプレッサハウジングおよび遠心圧縮機
JP2022546861A JP7445005B2 (ja) 2020-09-07 2020-09-07 コンプレッサハウジングおよび遠心圧縮機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/033826 WO2022049779A1 (ja) 2020-09-07 2020-09-07 コンプレッサハウジングおよび遠心圧縮機

Publications (1)

Publication Number Publication Date
WO2022049779A1 true WO2022049779A1 (ja) 2022-03-10

Family

ID=80490924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033826 WO2022049779A1 (ja) 2020-09-07 2020-09-07 コンプレッサハウジングおよび遠心圧縮機

Country Status (5)

Country Link
US (1) US11988227B2 (ja)
JP (1) JP7445005B2 (ja)
CN (1) CN116157601A (ja)
DE (1) DE112020007267T5 (ja)
WO (1) WO2022049779A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175124A (ja) * 2007-01-18 2008-07-31 Ihi Corp 遠心圧縮機
JP2019019765A (ja) * 2017-07-18 2019-02-07 株式会社豊田中央研究所 遠心圧縮機、ターボチャージャ
JP2019218941A (ja) * 2018-06-22 2019-12-26 株式会社豊田中央研究所 遠心圧縮機、ターボチャージャ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5277541A (en) * 1991-12-23 1994-01-11 Allied-Signal Inc. Vaned shroud for centrifugal compressor
US7189059B2 (en) * 2004-10-27 2007-03-13 Honeywell International, Inc. Compressor including an enhanced vaned shroud
JP5720267B2 (ja) 2011-01-21 2015-05-20 株式会社Ihi 遠心圧縮機
JP6263997B2 (ja) 2013-12-02 2018-01-24 株式会社豊田中央研究所 過給機用圧縮機
JP6279524B2 (ja) 2015-08-27 2018-02-14 株式会社豊田中央研究所 遠心圧縮機、ターボチャージャ
JP6800609B2 (ja) 2016-05-24 2020-12-16 株式会社豊田中央研究所 遠心圧縮機、ターボチャージャ
JP6806551B2 (ja) 2016-12-14 2021-01-06 株式会社豊田中央研究所 遠心圧縮機、ターボチャージャ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175124A (ja) * 2007-01-18 2008-07-31 Ihi Corp 遠心圧縮機
JP2019019765A (ja) * 2017-07-18 2019-02-07 株式会社豊田中央研究所 遠心圧縮機、ターボチャージャ
JP2019218941A (ja) * 2018-06-22 2019-12-26 株式会社豊田中央研究所 遠心圧縮機、ターボチャージャ

Also Published As

Publication number Publication date
US11988227B2 (en) 2024-05-21
US20230304507A1 (en) 2023-09-28
JP7445005B2 (ja) 2024-03-06
CN116157601A (zh) 2023-05-23
DE112020007267T5 (de) 2023-03-30
JPWO2022049779A1 (ja) 2022-03-10

Similar Documents

Publication Publication Date Title
JP5221985B2 (ja) 遠心圧縮機
EP2960528B1 (en) Centrifugal compressor
JP5444836B2 (ja) 遠心圧縮機
RU2591750C2 (ru) Сверхзвуковая компрессорная установка (варианты) и способ ее сборки
JP2016539276A (ja) 遠心圧縮機の湾曲した拡散流路部
EP3421811A1 (en) Compressor impeller and turbocharger
JP6234480B2 (ja) コンプレッサ
WO2022049779A1 (ja) コンプレッサハウジングおよび遠心圧縮機
WO2022049773A1 (ja) コンプレッサハウジングおよび遠心圧縮機
JP2020186649A (ja) 遠心圧縮機のインペラ、遠心圧縮機及びターボチャージャ
JP2014234713A (ja) ラジアルタービン及び過給機
WO2021234886A1 (ja) コンプレッサハウジングおよび遠心圧縮機
CN110770449B (zh) 压缩机叶轮、压缩机以及涡轮增压器
US11982292B2 (en) Scroll casing and centrifugal compressor
JP4402503B2 (ja) 風力機械のディフューザおよびディフューザ
JP7413514B2 (ja) スクロールケーシングおよび遠心圧縮機
JP2020084874A (ja) 過給機用サイレンサ装置
JP7123029B2 (ja) 遠心圧縮機
JP7444799B2 (ja) 可変容量タービンおよび過給機
JP7232352B2 (ja) コンプレッサおよび該コンプレッサを備えるターボチャージャ
JP7303763B2 (ja) 排気ディフューザ及びタービンハウジング、並びに過給機
WO2023085178A1 (ja) タービンおよび過給機
CN118176365A (zh) 离心压缩机的叶轮、离心压缩机以及涡轮增压器
CN116066412A (zh) 有叶扩散器以及离心压缩机
JP2023007748A (ja) 遠心式回転装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952513

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022546861

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20952513

Country of ref document: EP

Kind code of ref document: A1