WO2022048615A1 - 一种电致变色器件及电子设备 - Google Patents

一种电致变色器件及电子设备 Download PDF

Info

Publication number
WO2022048615A1
WO2022048615A1 PCT/CN2021/116339 CN2021116339W WO2022048615A1 WO 2022048615 A1 WO2022048615 A1 WO 2022048615A1 CN 2021116339 W CN2021116339 W CN 2021116339W WO 2022048615 A1 WO2022048615 A1 WO 2022048615A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
conductive
electrochromic
transparent conductive
bus bar
Prior art date
Application number
PCT/CN2021/116339
Other languages
English (en)
French (fr)
Inventor
李佳城
胡国阳
陈海峰
史智睿
曹超月
刘振钊
彭剑瑜
Original Assignee
深圳市光羿科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010920683.8A external-priority patent/CN112394581A/zh
Priority claimed from CN202110084919.3A external-priority patent/CN114815431A/zh
Priority claimed from CN202110826680.2A external-priority patent/CN113568233B/zh
Application filed by 深圳市光羿科技有限公司 filed Critical 深圳市光羿科技有限公司
Priority to EP21863679.3A priority Critical patent/EP4202542A1/en
Publication of WO2022048615A1 publication Critical patent/WO2022048615A1/zh
Priority to US18/117,684 priority patent/US20230221608A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/1533Constructional details structural features not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/161Gaskets; Spacers; Sealing of cells; Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/1533Constructional details structural features not otherwise provided for
    • G02F2001/1536Constructional details structural features not otherwise provided for additional, e.g. protective, layer inside the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/16Materials and properties conductive
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements

Definitions

  • the present application belongs to the technical field of color-changing devices, and in particular relates to an electrochromic device and electronic equipment.
  • Electrochromic phenomenon refers to the reversible redox reaction of the material under the action of the external electric field, which leads to the change of its optical properties (such as transmittance, absorptivity, and reflectance), which is manifested as a reversible change in color and transparency in appearance. . Therefore, electrochromic devices have been widely used in electrochromic energy-saving smart windows, automotive rear-view anti-glare mirrors, and display devices.
  • CN111142303A discloses an improved structure of an electrochromic rearview mirror, which includes: a rearview mirror body, and the rear side of the rearview mirror can be assembled A display is set up, and the rearview mirror body includes: a first lens group, a second lens group, an electrochromic layer, two conductive sheets, a first conductive glue and a second conductive glue, and the first lens group is provided with a first coating layer, The second lens group is provided with a second plating layer.
  • the electrochromic layer includes an encapsulation sealant and an electrochromic material.
  • One of the two conductive sheets is a conductive portion and the other is a contact portion.
  • the conductive portions of the two conductive sheets They are respectively bonded to the second lens group, and the display is electrically connected with the contact parts of the two conductive sheets.
  • CN213365229U discloses an electrochromic device.
  • the electrochromic device includes a first conductive layer, an electrochromic layer, a second conductive layer and a lead-out electrode. The first conductive layer, the electrochromic layer and the second conductive layer are stacked set up.
  • the first conductive layer includes a first overlapping area and a first offset area
  • the second conductive layer includes a second overlapping area and a second offset area, and at least part of the first offset area and the second offset area are located on the same side of the electrochromic layer
  • a first bus bar is arranged on the first conductive layer
  • a second bus bar is arranged on the second conductive layer
  • the lead-out electrodes are respectively connected to the first bus bar and the second bus bar.
  • the electrode leads connected to the first conductive layer and the electrode leads connected to the second conductive layer are usually drawn out from the upper and lower conductive substrates, respectively, and the lead electrodes are bound. It is necessary to carry out two hot pressure welding, for example, after welding the electrode leads of the lower sheet, then flip the electrochromic device, and weld the electrode leads of the upper sheet, the process is complicated, which is not conducive to automatic production, low production efficiency, and unfavorable yield improve. Therefore, there is an urgent need in the art to develop an electrochromic device with a simpler extraction method and a simpler preparation process.
  • the present application provides an electrochromic device and electronic equipment.
  • the electrochromic device only needs one thermal pressure welding to complete the electrode extraction process, the process is simple, the production efficiency is greatly improved, and the product yield is improved.
  • the present application provides an electrochromic device, the electrochromic device comprising a first conductive base layer, an electrochromic layer and a second conductive base layer that are stacked in sequence; wherein the first conductive base layer is The base layer includes a first transparent conductive layer and a first base material layer that are stacked in sequence, and the first transparent conductive layer is adhered to one side of the electrochromic layer; wherein, the second conductive base layer includes sequentially The second transparent conductive layer and the second base material layer are superposed and arranged, and the second transparent conductive layer is adhered to the other side of the electrochromic layer;
  • a partition groove is arranged on the second transparent conductive layer to divide it into a first conductive area and a second conductive area that are independent of each other;
  • the transparent conductive layer is electrically connected to the second conductive region.
  • the second transparent conductive layer is divided into two regions separated from each other by arranging a partition groove on the second transparent conductive layer, and the first conductive region and the second conductive region will not be electrically connected to each other.
  • the first transparent conductive layer and the second conductive area are electrically connected through the conductive member, so as to realize the extraction of the same side electrode; the electrode lead used to connect the first transparent conductive layer and the electrode used to connect the second transparent conductive layer
  • the leads can all be drawn out from the second transparent conductive base layer, which is convenient for welding the two electrode leads of the electrochromic device at the same time by one thermal pressure welding.
  • the process is simple, the production efficiency and product yield are improved, and it is conducive to the realization of automatic production. , and it is beneficial to minimize the area of the electrode lead-out region where discoloration (ie, color/transmittance change) cannot occur.
  • At least part of the electrochromic layer corresponding to the second conductive region is removed to form a via hole, and the via hole is filled with the conductive member having conductivity.
  • the electrochromic device is prepared by the following method, the method comprising: firstly etching the second transparent conductive layer, thereby opening a partition groove so that the second transparent conductive layer is divided into mutually independent first A conductive area and a second conductive area, at least part of the electrochromic layer corresponding to the second conductive area is removed to form a via, the via is filled with the material of the conductive member in liquid form, and the material in liquid form is turned into a solid state After the form of conduction member, the conduction member is respectively connected with the first transparent conductive layer and the second conductive area located at the conduction port, and the first transparent conductive layer and the second conductive area are electrically connected, so as to realize the extraction of the same side electrode. .
  • the electrode leads used for connecting the first transparent conductive layer and the electrode leads used for connecting the second transparent conductive layer can both be drawn out from the second conductive base layer, which is convenient for the two parts of the electrochromic device to be simultaneously welded by one thermocompression.
  • the welding of each electrode lead is completed, and the process is simple, which is conducive to the realization of automatic production, and improves the work efficiency and product yield.
  • the conducting member can be prevented from contacting the first conductive region, so that the first conductive region and the second conductive region are not electrically connected, thereby avoiding the short circuit of the electrochromic device.
  • At least part of the surface of the peripheral side of the conducting member is in close proximity to the electrochromic layer, so as to support and fix the conducting member, ensuring that the first transparent conductive layer communicates with the second conductive member through the conducting member.
  • At least a part of the surface of the peripheral side of the conducting member is not close to the electrochromic layer; thus, during the preparation of the electrochromic device, the process is easier to implement, thereby improving the product yield.
  • the conductive opening penetrates the first conductive base layer; thus, it is convenient to pour the material of the conductive member in liquid form into the conductive opening from the top along the side of the electrochromic device close to the conductive opening,
  • the electrical connection between the conducting member and the first transparent conductive layer and the second conductive region is more stable.
  • At least part of the surface of the top side of the conduction member overflows the conduction opening and covers at least part of the side of the first conductive base layer that is far from the electrochromic layer;
  • the end faces of the conducting member and the first conductive base layer are not easily cracked, the electrical connection failure of the first transparent conductive layer and the second conductive region is avoided, the bonding effect is better, the stability is higher, and the production yield is improved.
  • the electrochromic layer includes an electrochromic material layer, an electrolyte layer and an ion storage layer that are stacked in sequence.
  • the materials of the electrochromic material layer, the electrolyte layer and the ion storage layer can be materials known in the prior art.
  • the material of the electrochromic material layer can be specifically selected from color-changing materials capable of forming solid thin films in the prior art, such as NiO, WO 3 , Nb 2 O 5 , TiO 2 etc. in inorganic materials; organic Polythiophene derivatives and copolymer systems in materials; metal conjugated systems, such as Prussian blue, etc.
  • the electrolyte layer is preferably a solid electrolyte layer.
  • the solid electrolyte layer is formed by solidifying an electrolyte solution.
  • the material of the electrolyte layer includes a mixture of high molecular polymers, metal ion salts and additives.
  • the material of the ion storage layer includes a metal oxide formed by one or at least two metal elements of Groups 4 to 12, or a mixture of metal oxides, or a metal oxide doped with any other metal oxide .
  • the electrochromic material layer has a thickness of 1 nm ⁇ 10 ⁇ m, such as 1 nm, 5 nm, 10 nm, 50 nm, 80 nm, 100 nm, 200 nm, 500 nm, 1 ⁇ m, 5 ⁇ m, or 10 ⁇ m.
  • the thickness of the electrochromic material layer is moderately increased, which is beneficial to deepen the color effect of the electrochromic device.
  • the thickness of the electrolyte layer is 5-200 ⁇ m; , 180 ⁇ m or 200 ⁇ m, etc.
  • the thickness of the ion storage layer is 1 nm ⁇ 10 ⁇ m, such as 1 nm, 5 nm, 10 nm, 50 nm, 80 nm, 100 nm, 200 nm, 500 nm, 1 ⁇ m, 5 ⁇ m or 10 ⁇ m.
  • the electrochromic device further includes a first bus bar, the first bus bar is disposed on the surface and/or inside of the first transparent conductive layer, and is connected with the conducting member; thereby helping It is used to rapidly transfer electrons from the conduction member to the entire first transparent conductive layer, thereby increasing the conduction rate and the discoloration rate.
  • a first bus bar is disposed on the surface and/or inside of the first transparent conductive layer, and is connected with the conducting member; thereby helping It is used to rapidly transfer electrons from the conduction member to the entire first transparent conductive layer, thereby increasing the conduction rate and the discoloration rate.
  • a second bus bar can also be arranged on the first conductive area and the second conductive area, and on the basis that the first conductive area and the second conductive area can conduct electricity, the conductivity is further improved, so that further improved turn-on yield.
  • the materials of the first bus bar and the second bus bar are independently metal materials with high conductivity, such as conductive silver paste, conductive copper paste, conductive carbon paste, nano-silver conductive ink, copper foil, copper Any one or a combination of at least two of silk or conductive adhesive film; more preferably conductive silver paste.
  • a first substrate (a first water and oxygen barrier layer) is disposed on the side of the first substrate layer away from the electrochromic layer, and/or, the second substrate layer is away from the electrochromic layer.
  • a second substrate (a second water-oxygen barrier layer) is arranged on one side of the color-changing layer; thus, the external water vapor and oxygen are better isolated, thereby preventing water vapor and oxygen from entering the electrochromic layer and affecting its normal operation.
  • the water-oxygen barrier layer may be hard glass or a flexible water-oxygen barrier film in the prior art, which will not be repeated here.
  • the electrochromic device further comprises an optical adhesive layer, and the optical adhesive layer is adhered on the side of the first substrate layer and/or the second substrate layer away from the electrochromic layer; the optical adhesive layer The water-oxygen barrier layer can be effectively connected with the first base material layer and/or the second base material layer, the connection is firm and stable, and the bonding strength is good.
  • the optical adhesive layer between the first substrate layer and the first substrate (the first water and oxygen barrier layer) is defined as the first optical adhesive layer; the second substrate layer and the second substrate (the second The optical adhesive layer between the water and oxygen barrier layers) is defined as the second optical adhesive layer.
  • the material of the optical adhesive layer includes polyvinyl butyral (Poly Vinyl Butyral, PVB), ethylene-vinyl acetate copolymer (Ethylene-vinyl Acetate Copolymer, EVA), OCA (Optically Clear Adhesive) optical adhesive , SCA optical adhesive, ionic intermediate film (Surper Safe Glas, SGP), liquid optical adhesive LOCA (Liquid Optical Clear Adhesive) or acrylic any one or a combination of at least two.
  • polyvinyl butyral Poly Vinyl Butyral, PVB
  • ethylene-vinyl acetate copolymer Ethylene-vinyl Acetate Copolymer
  • OCA Optically Clear Adhesive
  • SCA optical adhesive ionic intermediate film
  • LOCA Liquid Optical Clear Adhesive
  • the top side of the conduction member is covered under the first conductive base layer; thus, the contact area between the conduction member and the first conductive base layer is larger, thereby improving the conduction yield .
  • the conducting member includes a first conducting body and a second conducting body that are connected to each other, and the first conducting body is connected to a portion of the first transparent conductive layer far away from the first base material layer.
  • the second conductive body is disposed on the side of the second conductive region away from the second base material layer.
  • the first conductive body and the second conductive body are butted together; the first conductive region is connected to the first lead-out electrode, and the second conductive region is connected to the second lead-out electrode;
  • the electrochromic layer includes an electrochromic material layer, an electrolyte layer and an ion storage layer that are stacked in sequence; the electrochromic layer is provided with a second blocking area, and the second blocking area is located on the second transparent conductive layer.
  • the projection at least partially coincides with the blocking groove.
  • the "abutting" means that the side of the first conductive body that is far away from the first transparent conductive layer and the side of the second conductive body that are far away from the second conductive region are in contact with each other.
  • the first lead-out electrode and the second lead-out electrode are made of conductive materials, such as metals, alloys, wires, flexible circuit boards, and the like.
  • the second transparent conductive layer of the electrochromic device is divided into two mutually independent regions by a partition groove, and both the first lead-out electrode and the second lead-out electrode are led out from the second transparent conductive base layer , during welding, a flexible circuit board integrating two lead-out lines can be used, so that one hot-pressure welding can be performed on one side of the second transparent conductive layer, and the welding and extraction of the first lead-out electrode and the second lead-out electrode can be realized at the same time, which simplifies production.
  • the process improves production efficiency and product yield, and is beneficial to reduce the area of the electrode lead-out region where discoloration (ie, color/transmittance change) cannot occur.
  • a second partition area is set on the electrochromic layer, so as to prevent the conductive substances or conductive particles in the electrochromic layer from filling the partition groove and avoid the interruption of the partition groove. Risk of isolation failure.
  • the electrochromic device is prepared by the following method.
  • the method includes: firstly preparing a first laminate and a second laminate respectively, wherein the first laminate comprises sequentially stacked a first substrate layer, a first transparent conductive layer and an electrochromic material layer, the second laminate includes a second substrate layer, a second transparent conductive layer and an ion storage layer stacked in sequence, or, the first The laminate includes a first substrate layer, a first transparent conductive layer and an ion storage layer stacked in sequence, and the second laminate includes a second substrate layer, a second transparent conductive layer and an electrochromic material layer stacked in sequence; An electrolyte layer is then disposed between the first laminate and the second laminate, and the first laminate and the second laminate are combined.
  • the first conductive body and the second conductive body By pre-arranging the first conductive body and the second conductive body, the first conductive body and the second conductive body can be aligned when the first stack member and the second stack member are aligned. , the first transparent conductive layer and the second conductive area can be closely connected easily, so as to ensure that the second electrode drawn from the second conductive area of the second transparent conductive layer can supply power to the first transparent conductive layer well. Simple and convenient, greatly improve the production capacity.
  • the surface roughness of the first conducting body is greater than or equal to 3 ⁇ m, and/or the surface roughness of the second conducting body is greater than or equal to 3 ⁇ m.
  • the contact points of the mating surfaces of the first conducting body and the second conducting body can be increased, thereby improving the
  • the tightness of the contact between the first conductive body and the second conductive body ensures the effectiveness of the electrical connection between the first conductive body and the second conductive body, so as to ensure that the second electrode drawn from the second conductive area can be well
  • the first transparent conductive layer supplies power.
  • the side surfaces of the first conducting body and the second conducting body are in contact with the electrochromic layer; wherein, the electrochromic material layer is located near a part of the second transparent conductive layer side, the second blocking area is disposed on the electrochromic material layer, and divides the electrochromic material layer into two areas that are not connected to each other; or, the ion storage layer is located close to the second On one side of the transparent conductive layer, the second blocking region is disposed on the ion storage layer, and divides the ion storage layer into two regions that are not connected to each other.
  • the side surfaces of the first conductive body and the second conductive body of the present application are at least partially in contact with the electrochromic layer, so that there is no electrochromic layer between the first conductive body, the second conductive body and the electrochromic layer.
  • the material is vacant, reducing the area of the non-discoloring area. It should be noted that the area lacking the material of the electrochromic layer will form a non-discoloring area; moreover, the materials of the electrochromic material layer and the ion storage layer have minute electronic conductivity under certain circumstances.
  • the present application further improves the product stability and service life of the electrochromic device by providing the second blocking region on the ion storage layer or the electrochromic material layer.
  • the second blocking region is opened from the side of the electrochromic material layer or the ion storage layer that is away from the second transparent conductive layer.
  • the second blocking region is opened from the side of the second substrate layer that is remote from the electrochromic material layer or the ion storage layer.
  • the second isolation region is filled with the same electrolyte material as that of the electrolyte layer, so that the electrolyte layer is in contact with the isolation groove through the electrolyte material in the second isolation region.
  • the material of the electrolyte layer is an electronic insulator. Therefore, in the present application, by filling the electrolyte material in the second partition area, the occurrence of internal micro-short circuits is better avoided, and the product stability and service life of the electrochromic device are further improved.
  • a second bus bar is provided on the second transparent conductive layer.
  • the second bus bar is used to improve the voltage distribution uniformity of the second transparent conductive layer, thereby improving the discoloration speed and discoloration uniformity of the electrochromic device.
  • a first bus bar is disposed on the first transparent conductive layer, and the first conducting body is a partial part of the first bus bar, or, the first conducting body and the first bus bar bar connection;
  • the projection of the second bus bar on the first transparent conductive layer does not coincide with the projection of the first bus bar on the first transparent conductive layer.
  • the first bus bar is used to improve the voltage distribution uniformity of the first transparent conductive layer, thereby improving the discoloration speed and discoloration uniformity of the electrochromic device.
  • the first conducting body as a part of the first bus bar, or extending the first bus bar to the first conducting body, there is no need to separately set the first conducting body, and when manufacturing the first bus bar
  • the first conductive body can be fabricated, which simplifies the processing steps and improves the production capacity.
  • the first bus bar and the second bus bar will not contact up and down in the direction from the second transparent conductive layer to the first transparent conductive layer , because once the first bus bar and the second bus bar come into contact, a short-circuit failure of the electrochromic device will result.
  • the present application further improves the product reliability of the electrochromic device through the design.
  • the surface resistance of the second transparent conductive layer is greater than the surface resistance of the first transparent conductive layer, and the second bus bars are arranged along the periphery of the first conductive region.
  • the electrochromic device is synergistically realized to display the color of the electrochromic layer vividly, and to quickly, Uniform discoloration effect.
  • a second bus bar needs to be arranged on the second transparent conductive layer, so as to improve the voltage distribution uniformity of the second transparent conductive layer.
  • the peripheral setting can improve the discoloration speed and discoloration uniformity of the electrochromic device while ensuring that the electrochromic device has as large a discoloration area as possible.
  • a second bus bar may not be provided on the periphery of the first conductive area adjacent to the second conductive area, so as to reduce the possibility of short circuit. Since the surface resistance of the first transparent conductive layer is small, the first bus bar may not be provided on the first transparent conductive layer, and only the first conductive body may be provided, thereby saving product cost. Through this design, the present application greatly improves the color display effect of the electrochromic layer, as well as the product reliability, discoloration speed and discoloration uniformity of the electrochromic device.
  • the second bus bar and the electrochromic layer are not in contact, so as to prevent the metal of the second bus bar from participating in the redox reaction of the electrochromic device.
  • the material surface of the second bus bar is passivated or covered with an insulating layer or the like, the second bus bar and the electrochromic layer may also be in contact.
  • the ratio of the area resistance of the second transparent conductive layer to the area resistance of the first transparent conductive layer is greater than or equal to 1.5, such as 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6 , 7, 8, 9, 10, 15 or 20, and specific point values between the above-mentioned point values, due to space limitations and for the sake of brevity, this application will not exhaustively list the specific point values included in the range.
  • the second transparent conductive layer is provided with a second bus bar, and the first transparent conductive layer is not provided with a bus bar, which can better synergistically realize the bright and clear electrochromic device. Demonstrate the color of the electrochromic layer and the effect of rapid, uniform color change.
  • the surface resistance of the second transparent conductive layer is greater than the surface resistance of the first transparent conductive layer, and the electrochromic material layer is located on a side close to the second transparent conductive layer.
  • the electrochromic material layer is disposed on the side close to the second transparent conductive layer, and the color display effect of the electrochromic device is better when the user views from the outside of the first transparent conductive layer.
  • a first substrate is provided on a side of the first substrate layer away from the first transparent conductive layer
  • a second substrate is provided on a side of the second substrate layer away from the second transparent conductive layer
  • the partition a groove penetrates through the second base material layer
  • the side surface of the first conductive body is in contact with the side surface of the second conductive body
  • the area between the isolation groove and the first transparent conductive layer is a first conduction area, and the first conduction area includes a first conduction body and a first sealant; wherein, the first conduction body The first sealant is covered on at least part of the surface, so that the first conductive body is not in contact with the electrochromic layer and the second transparent conductive layer;
  • the area between the second conductive area and the first substrate is a second conductive area, and the second conductive area includes a second conductive body and a second sealant; wherein, the second conductive body At least part of the surface is covered with the second sealant.
  • the "side surface” of the first conductive body means the surface of the first conductive body that is perpendicular to the first transparent conductive layer;
  • the "side surface” of the second conductive body means the second conductive body The face of the body perpendicular to the second conductive region.
  • the electrochromic device can be drawn out by one-time thermal pressure welding, which simplifies the production process and improves the production efficiency and product yield;
  • the side surfaces of the second conducting body are in contact and conducting, which greatly increases the contact area between the two, thereby avoiding poor contact and improving the conducting effect; at the same time, the peripheral sides of the first conducting body and the second conducting body are sealed with glue Filling, on the one hand, can ensure the close contact between the first conductive body and the second conductive body, and on the other hand, it can play a sealing effect to prevent water vapor from invading the electrochromic area.
  • the whole body is isolated from the first conductive area, which has an insulating effect and avoids short circuits.
  • the electrochromic device is prepared by the following method, the method comprising:
  • electrochromic laminate comprising a first substrate layer, a first transparent conductive layer, an electrochromic layer, a second transparent conductive layer and a second substrate layer stacked in sequence;
  • the preparation method of the first conduction area includes: cutting from one side of the second base material layer to form a partition groove, and the second base material layer, the second transparent conductive layer and the electrochromic layer in the partition groove are All removed; pour conductive material into the isolation groove to form a first conductive body, and then fill the surface of the first conductive body with a first sealant; set a second substrate outside the second substrate layer, forming the first conduction region;
  • the preparation method of the second conduction area includes: cutting from one side of the first base material layer to form a second groove, and the first base material layer, the first transparent conductive layer and the electrical conductor in the second groove are formed.
  • the discoloration layer is completely removed; the conductive material is poured into the second groove to form a second conductive body, and then the surface of the second conductive body is filled with a second sealant; the first substrate layer is A first substrate is disposed on the outside to form the second conduction region.
  • the partition groove divides the second base material layer and the second transparent conductive layer into two regions that are not in contact with each other.
  • the method for preparing the first conduction region further includes: after disposing a second substrate outside the second substrate layer, curing the first sealant.
  • the method for preparing the second conduction region further includes: after disposing the first substrate outside the first substrate layer, curing the second sealant.
  • step (2) further comprises: after the preparation of the first conduction region is completed, inverting the electrochromic stack on which the first conduction region has been formed, so as to prepare the second conduction region; or After the preparation of the second conduction region is completed, the electrochromic stack on which the second conduction region has been formed is turned over to prepare the first conduction region.
  • the conducting material is injected (perfused) from both sides, thereby increasing the contact area between the first conducting body and the second conducting body, thereby avoiding poor contact and improving the conducting effect;
  • the first conductive body and the second conductive body are directly dispensed with sealant to seal the device, thereby improving the water and oxygen barrier effect of the electrochromic device.
  • the electrochromic layer is etched.
  • the outer surface of the first substrate layer is further provided with a first optical adhesive layer and a first back film
  • the outer surface of the second base material layer is also provided with a second optical adhesive layer and a second back film.
  • step (2) the step of disposing a first substrate outside the first substrate layer includes removing the first back film and attaching the first substrate on the first optical adhesive layer.
  • the step of disposing a second substrate outside the second substrate layer includes removing the second back film and attaching the second substrate on the second optical adhesive layer.
  • step (2) the electrochromic stack near the outer side of the second conduction region is cut along the edge of the second sealant.
  • a first bus bar is disposed between the first conductive body and the first transparent conductive layer.
  • the width of the first bus bar is greater than the width of the first conductive body.
  • the width of the gap between the first conductive body and the electrochromic layer is greater than the width of the gap between the first bus bar and the electrochromic layer.
  • a certain gap width is set between the first conductive body and the electrochromic layer, so as to prevent the first conductive body from directly contacting the electrochromic layer, thereby avoiding the ion storage layer and the electrochromic layer of the electrochromic layer.
  • the layer of photochromic material is shorted by the first conductor.
  • the space at least includes: the gap between the first conducting body and the electrochromic layer, and the space between the first conducting body and the isolation groove (the second substrate). gap between.
  • a first sealant is filled in the gap between the first conduction body and the electrochromic layer, and a first sealant is filled between the first conduction body and the isolation groove, and the first conduction is ensured by the insulating sealant
  • the body does not come into contact with the electrochromic layer and the first conductive region, thereby further achieving an insulating effect and avoiding short-circuit failure of the electrochromic device.
  • the first sealant seals the periphery of the electrochromic layer, and also has the effect of isolating water vapor, preventing water vapor from invading the electrochromic area, and prolonging the service life of the electrochromic device.
  • a second bus bar is disposed between the second conductive region and the second conductive body.
  • the width of the second bus bar is greater than the width of the second conductive body.
  • the space at least includes: a gap between the second conductive body and the outer edge of the electrochromic device, and the second conductive body The gap between the whole body and the first substrate.
  • the outer peripheral side of the second conductive body can be wrapped in the second sealant to avoid oxidation of the second conductive body in contact with the air.
  • the second conductive body can further reduce the electrochromic effect.
  • the peripheral side of the layer is sealed to enhance the effect of water and oxygen sealing.
  • the interface between the first conducting region and the first conducting region is denoted as the first interface
  • the interface between the first conducting region and the second conducting region is denoted as the second interface
  • the One end of the first bus bar is located at the second interface
  • the other end of the first bus bar is located at the first interface, or there is a space between the first bus bar and the first interface.
  • the width of the first bus bar may be equal to the width of the first conduction region, that is, the first bus bar is laid from the first interface to the second interface.
  • the width of the first bus bar is slightly shorter than the width of the first conduction region, one end of the first bus bar is flush with the second interface, and a certain interval is left between the other end and the first interface, and the first bus bar is also filled with the first interface.
  • a sealant; the reason for leaving the space is to facilitate the process operation, and enough operating space can be reserved when the first conductive body is arranged to reduce the possibility of short circuit.
  • one end surface of the first conductive body and one end surface of the second conductive body form surface contact at the second interface, and a gap is reserved between the other end surface of the first conductive body and the first interface and filling the space with a first sealant, leaving a space between the other end of the second conducting body and the outer edge of the electrochromic device and filling with a second sealant.
  • the gap between the first conductive body and the electrochromic layer is filled with a first sealant to ensure that the first conductive body does not contact the electrochromic layer and the first conductive area , so as to have an insulating effect and avoid short-circuit failure of the electrochromic device.
  • the first sealant seals the periphery of the electrochromic layer, and also has the effect of isolating water vapor, preventing water vapor from invading the electrochromic area, and prolonging the service life of the electrochromic device.
  • the second sealant wraps the outer peripheral side of the second conductive body in the sealant to avoid oxidation of the second conductive body in contact with the air.
  • the second sealant can further seal the peripheral side of the electrochromic layer. , to strengthen the water-oxygen sealing effect.
  • one end of the first conducting body and one end of the first bus bar are in surface contact with one end of the second conducting body at the second interface.
  • this application does not make specific requirements or special restrictions on the contact state of the first conductive body and the second conductive body, as long as the following two requirements are met at the same time:
  • the side surface of the first conductive body is in contact with the side surface of the second conductive body, and the two are connected to form a conductive member;
  • the contact state of the first conductive body and the second conductive body and the height positional relationship of each surface can be changed in various ways.
  • the two side surfaces of the first conducting body and the second conducting body are named respectively: the contact surface of the first conducting body and the first bus bar is recorded as the first contact surface, and the contact surface of the first contact surface The surface on the opposite side is denoted as the first surface; similarly, the contact surface between the second conducting body and the second bus bar is denoted as the second contact surface, and the surface on the opposite side of the second contact surface is denoted as the second surface.
  • the present application provides the following four optional height and low position relationships of each surface:
  • the first contact surface is higher than the second surface, and the extended surface of the first surface is located between the second surface and the second contact surface, which is equivalent to the thickness of the first conductive body and the thickness of the second conductive body.
  • the extended surface of the first contact surface and the extended surface of the first surface are both located between the second surface and the second contact surface; equivalent to the thickness of the first conducting body is less than the thickness of the second conducting body, the second The contact side surface of the conductive body completely covers the contact side surface of the first conductive body;
  • the extension surface of the first contact surface is located between the second surface and the second contact surface, the first surface is lower than the second contact surface, and the extension line of the first surface is located between the two side surfaces of the second bus bar, Equivalent to the thickness of the first conductive body and the thickness of the second conductive body, the contact side surface of the first conductive body and the contact side surface of the second conductive body are staggered from each other, and the overall thickness of the first conductive body is lower than that of the second conductive body. conductor; or
  • the first contact surface is higher than the second surface, the extended surface of the second surface is located between the first surface and the first contact surface, and the extended surface of the first surface is located between the two side surfaces of the second bus bar; Since the thickness of the first conductive body is greater than the thickness of the second conductive body, the contact side surface of the first conductive body completely covers the contact side surface of the second conductive body.
  • a first optical adhesive layer is disposed between the first substrate and the first substrate layer, and a second optical adhesive layer is disposed between the second substrate and the second substrate layer.
  • the first substrate and/or the second substrate is a water-oxygen barrier film.
  • the first substrate and/or the second substrate is an appearance textured film.
  • the appearance textured film is a film with a textured pattern effect.
  • the first transparent conductive layer and the second transparent conductive layer have good light transmittance and are used to display the optical property change of the electrochromic device, and the materials thereof include but are not limited to indium tin oxide (ITO), Any one or a combination of at least two of aluminum zinc oxide (AZO), fluorine-doped tin oxide (FTO), nanosilver wires, graphene, carbon nanotubes, metal meshes, or silver nanoparticles.
  • ITO indium tin oxide
  • AZO aluminum zinc oxide
  • FTO fluorine-doped tin oxide
  • nanosilver wires graphene
  • carbon nanotubes carbon nanotubes
  • metal meshes metal meshes
  • silver nanoparticles silver nanoparticles.
  • the thicknesses of the first transparent conductive layer and the second transparent conductive layer are independently 0.1 nm to 10 ⁇ m, such as 0.1 nm, 0.5 nm, 1 nm, 5 nm, 10 nm, 100 nm, 500 nm, 1 ⁇ m, 3 ⁇ m, 5 ⁇ m, 7 ⁇ m or 10 ⁇ m, and specific point values between the above-mentioned point values, due to space limitations and for the sake of brevity, this application will not exhaustively list the specific point values included in the range, more preferably 0.1 nm to 1 ⁇ m.
  • At least one of the first substrate layer and the second substrate layer is preferably transparent for exhibiting changes in optical properties of the electrochromic device.
  • the materials of the first substrate layer and the second substrate layer each independently include glass, plastic, and metal.
  • the plastic includes, but is not limited to, any one or a combination of at least two of polyethylene terephthalate (PET), cyclic olefin copolymer, or cellulose triacetate.
  • the thicknesses of the first substrate layer and the second substrate layer are independently 20 to 500 ⁇ m, for example, 20 ⁇ m, 50 ⁇ m, 100 ⁇ m, 150 ⁇ m, 200 ⁇ m, 250 ⁇ m, 300 ⁇ m, 350 ⁇ m, 400 ⁇ m, 450 ⁇ m or 500 ⁇ m , and the specific point values between the above-mentioned point values, due to space limitations and for the sake of brevity, the present application will not exhaustively list the specific point values included in the range.
  • the thickness of the base material layer is not limited too much, and those skilled in the art can select it reasonably according to the actual application.
  • the first substrate layer and/or the second substrate layer is a flexible substrate layer.
  • At least one of the first base material layer and the second base material layer is configured as a bendable and flexible base material layer, so as to reduce the impact on the conduction member (the first conduction body and the second base material layer).
  • the accuracy of the thickness of the two conductive bodies requires that the first transparent conductive layer and the second conductive region can still be guaranteed when the conductive member (the first conductive body or the second conductive body) is slightly thicker or thinner.
  • the tight connection reduces the possibility of disconnection inside the conducting member (for example, between the first conducting body and the second conducting body), avoids the open circuit of the electrochromic device, and improves the realizability of the process and the durability of the electrochromic device.
  • Product yield is the accuracy of the thickness of the two conductive bodies
  • the material of the conduction member includes any one or a combination of at least two of conductive silver paste, conductive copper paste, conductive carbon paste, and nano-silver conductive ink, more preferably conductive silver paste.
  • the electrochromic device further includes a sealing member, and the sealing member is arranged along the peripheral side of the electrochromic layer; thus, the peripheral side of the electrochromic layer can be sealed to prevent the intrusion of water vapor and the like, Thus, the service life of the electrochromic device is improved.
  • the present application provides an electronic device comprising the electrochromic device according to the first aspect.
  • the electronic device of the present application including the above electrochromic device has the advantages of low production cost, simple production process, high production efficiency, high product yield and good product stability.
  • the second transparent conductive layer is divided into two regions separated from each other by arranging a partition groove on the second transparent conductive layer, and then the first transparent conductive layer and the second transparent conductive layer are separated from each other by a conducting member.
  • the two conductive areas are electrically connected to achieve the same-side electrode extraction; the electrode leads used to connect the first transparent conductive layer and the electrode leads used to connect the second transparent conductive layer can both be extracted from the second transparent conductive base layer, which is convenient for one-time heat transfer.
  • FIG. 1 is a schematic structural diagram of an electrochromic device without a conducting member provided by the specific embodiment
  • Example 2 is a schematic structural diagram of the electrochromic device provided in Example 1;
  • Example 3 is a schematic structural diagram of the electrochromic device provided in Example 2.
  • Example 4 is a schematic structural diagram of the electrochromic device provided in Example 3.
  • Example 5 is a schematic structural diagram of the electrochromic device provided in Example 4.
  • Example 6 is a schematic structural diagram of the electrochromic device provided in Example 5.
  • FIG. 7 is a schematic top-view structural diagram of the electrochromic device provided in Examples 6-10;
  • Example 8 is a schematic structural diagram of the A-A section of the electrochromic device provided in Example 6;
  • Example 9 is a schematic structural diagram of the A-A section of the electrochromic device provided in Example 7.
  • Example 10 is a schematic structural diagram of the A-A section of the electrochromic device provided in Example 8.
  • Example 11 is a schematic structural diagram of the B-B section of the electrochromic device provided in Example 9;
  • Example 12 is a schematic structural diagram of the C-C section of the electrochromic device provided in Example 9;
  • Example 13 is a schematic structural diagram of the B-B section of the electrochromic device provided in Example 10;
  • Example 14 is a schematic structural diagram of the C-C section of the electrochromic device provided in Example 10.
  • Example 15 is a schematic structural diagram of the electrochromic device provided in Example 12.
  • Example 16 is a schematic structural diagram of the electrochromic device provided in Example 13;
  • Example 17 is a schematic structural diagram of the electrochromic device provided in Example 14.
  • Example 18 is a schematic structural diagram of the electrochromic device provided in Example 15;
  • Example 19 is a schematic structural diagram of the electrochromic device provided in Example 16.
  • Example 20 is a schematic structural diagram of the electrochromic device provided in Example 17;
  • FIG. 21 is a schematic structural diagram of the electronic device provided in Application Example 1.
  • FIG. 21 is a schematic structural diagram of the electronic device provided in Application Example 1.
  • the electrochromic device includes a first conductive base layer 1 , an electrochromic layer 2 and a second conductive base layer 3 that are stacked in sequence.
  • the base layer 1 includes a first transparent conductive layer 11 and a first base material layer 12 that are stacked in sequence.
  • the first transparent conductive layer 11 is adhered to one side of the electrochromic layer 2
  • the second conductive base layer 3 includes a sequence of stacked layers.
  • the second transparent conductive layer 31 and the second base material layer 32, the second transparent conductive layer 31 is bonded to the other side of the electrochromic layer 2;
  • the conductive layer 31 is divided into two mutually independent first conductive regions 311 and second conductive regions 312 , and at least part of the electrochromic layer 2 corresponding to the second conductive regions 312 is removed to form a via 5 .
  • Conductive members 6 with conductivity are injected, and the conductive members 6 are used to electrically connect the first transparent conductive layer 11 and the second conductive region 312 .
  • the second transparent conductive layer 31 is first etched, thereby opening the isolation groove 4 so that the second transparent conductive layer 31 is divided into two mutually independent first conductive regions 311 and second conductive regions 312. At least a portion of the electrochromic layer 2 corresponding to the two conductive regions 312 is removed to form a conductive port 5, which is filled with a conductive material in liquid form, and then converted into a conductive member 6 in a solid form, and the conductive member 6 It is connected with the first transparent conductive layer 11 and the second conductive area 312 located in the conduction port 5 respectively, and the first transparent conductive layer 11 and the second conductive area 312 are electrically connected, so as to realize the extraction of the electrodes on the same side.
  • the electrode leads connected to the first transparent conductive layer 11 and the electrode leads used to connect the second transparent conductive layer 31 can both be drawn out from the second conductive base layer 3, which is convenient for the two electrodes of the electrochromic device to be simultaneously welded by one thermal pressure welding.
  • the electrode leads are welded, and the process is simple, which is conducive to the realization of automatic production, and greatly improves the work efficiency and product yield.
  • At least the surface of the first conductive region 311 on the side close to the isolation groove 4 is covered by the electrochromic layer 2 .
  • the electrochromic layer 2 since the surface of the first conductive region 311 on the side close to the isolation groove 4 is covered by the electrochromic layer 2, it can be ensured that after the conductive member 6 is filled with the conductive port 5, the conductive member 6 will not contact to the first conductive region 311, so that the first conductive region 311 and the second conductive region 312 are not electrically connected, thereby avoiding the short circuit of the electrochromic device.
  • At least part of the surface of the peripheral side of the conducting member 6 is adjacent to the electrochromic layer 2 .
  • the conducting member 6 since at least part of the surface of the peripheral side of the conducting member 6 is in close proximity to the electrochromic layer 2, it plays a role of supporting and fixing the conducting member 6, thereby ensuring that the first transparent conductive layer 11 passes through the conducting member 6 and is connected to the electrochromic layer 2.
  • the reliability of the electrical connection of the second conductive region 312 In some embodiments shown in FIGS. 2 and 3 , a part of the surface of the peripheral side of the conducting member 6 is adjacent to the electrochromic layer 2 , and the conducting openings 5 are all open; In the embodiment, the entire surface of the peripheral side of the conducting member 6 is in close proximity to the electrochromic layer 2, and the conducting opening 5 is in the form of an accommodating groove or an accommodating cavity. The entire surface of the peripheral side of the conducting member 6 is close to the electrochromic layer 2, and its supporting effect is better and more stable than that of part of the surface close to the electrochromic layer 2.
  • the via 5 penetrates through the first conductive base layer 1 .
  • the conducting port 5 is arranged through the first conductive base layer 1, so that the conducting member 6 in liquid form can be poured into the conducting port 5 from the top along the side of the electrochromic device close to the conducting port 5. , so that the electrical connection between the conducting member 6 and the first transparent conductive layer 11 and the second conductive region 312 is more stable.
  • At least part of the surface of the top side of the conduction member 6 overflows the conduction opening 5 and covers at least part of the side of the first conductive base layer 1 away from the electrochromic layer 2 .
  • At least part of the surface of the peripheral side of the conducting member 6 is not close to the electrochromic layer 2 .
  • the first conductive base layer 1 corresponding to the via 5 area can be removed by laser cutting, and then the material of the electrochromic layer 2 in the via 5 can be removed by wiping, as shown in Figure 2
  • the right side of the conduction port 5 shown in 3 and 3 is not blocked by materials such as materials, so that when the first conductive base layer 1 and the electrochromic layer 2 are removed, it is easier to implement in the process, and the product yield is greatly improved.
  • the conducting member 6 covers the side wall on the left side of the conducting port 5 , and is attached to the sides of the first conductive base layer 1 and the electrochromic layer 2 to realize the first transparent conductive layer. 11 and the electrical connection of the second conductive region 312.
  • the top portion of the conduction member 6 is covered on the surface of the first conductive base layer 1, thereby enhancing the conduction
  • the connection stability of the through piece 6 to the side of the first conductive base layer 1 and the electrochromic layer 2 ensures the reliability of the electrical connection between the first transparent conductive layer 11 and the second conductive region 312, and avoids the failure of the product due to disconnection. , greatly improving the yield of the product.
  • the top side of the conduction member 6 is covered under the first conductive base layer 1 .
  • at least two adjacent sides of the first conductive base layer 1 corresponding to the top side of the via 5 are etched, and the first conductive base layer 1 of the etched part is opened. Or take it out, use a needle to paste the conductive member 6 in the conductive port 5, and then fix the first conductive base layer 1 in the original position, the contact area between the conductive member 6 and the first bus bar 10A in this way is more large, which greatly improves the turn-on yield.
  • the conduction structure of the electrochromic device further includes a first bus bar 10A, the first bus bar 10A is arranged on the surface and/or inside of the first transparent conductive layer 11 , and the first bus bar 10A is A bus bar 10A is connected to the conducting member 6 .
  • first bus bar 10A is disposed on the surface and/or inside of the first transparent conductive layer 11, and the first bus bar 10A is connected to the conducting member 6, disposing the first bus bar 10A helps to transfer electrons from the first transparent conductive layer 11.
  • the conduction member 6 is quickly transferred to the entire first transparent conductive layer 11, thereby increasing the conduction rate and the discoloration rate.
  • the second bus bar 10B can also be arranged on the first conductive area 311 and the second conductive area 312 , and the conductivity is further improved on the basis that the first conductive area 311 and the second conductive area 312 can conduct electricity. performance, thereby further improving the turn-on yield.
  • the electrochromic layer 2 includes a superimposed electrochromic material layer, an electrolyte layer and an ion storage layer.
  • the materials of the electrochromic material layer, the electrolyte layer and the ion storage layer can be materials in the prior art, which are not specifically limited in this application.
  • a first substrate 111 (a first water and oxygen barrier layer) is arranged on the side of the first substrate layer 12 away from the electrochromic layer 2 ; a second substrate is arranged on the side of the second substrate layer 32 away from the electrochromic layer 2 112 (second water and oxygen barrier layer).
  • a water-oxygen barrier layer on one side of the first substrate layer 12 and the second substrate layer 32 can better isolate external water vapor and oxygen, so as to prevent water vapor and oxygen from entering the electrochromic layer 2 and affecting it. phenomenon of normal work.
  • the electrochromic device further includes an optical adhesive layer (a first optical adhesive layer 121 and a second optical adhesive layer 122 ), and the optical adhesive layer is adhered to the first substrate layer 12 and/or the second optical adhesive layer
  • the two substrate layers 32 are on one side away from the electrochromic layer 2 .
  • the optical adhesive layer can effectively connect the water-oxygen barrier layer with the first substrate layer 12 and/or the second substrate layer 32, and the connection is firm and stable, and the bonding strength is good.
  • An electrochromic device includes a first conductive base layer 1, an electrochromic layer 2 and a second conductive base layer 3 that are stacked in sequence, and the first conductive base layer 1 includes stacked sequentially.
  • the first transparent conductive layer 11 and the first base material layer 12 are arranged, the first transparent conductive layer 11 is connected to one side of the electrochromic layer 2, and the second conductive base layer 3 includes the second transparent conductive layer 31 arranged in sequence.
  • the second transparent conductive layer 31 is connected to the other side of the electrochromic layer 2, and a partition groove 4 is opened on the second transparent conductive layer 31 so that the second transparent conductive layer 31 is divided into two
  • the first conductive area 311 and the second conductive area 312 are independent, and at least part of the electrochromic layer 2 corresponding to the second conductive area 312 is removed to form a conducting port 5 .
  • Conductive members 6 with conductivity are injected, and the conductive members 6 are used to electrically connect the first transparent conductive layer 11 and the second conductive region 312 .
  • the surface of the first conductive region 311 on the side close to the partition groove 4 is covered by the electrochromic layer 2 , part of the surface of the peripheral side of the conducting member 6 is close to the electrochromic layer 2 , and part of the surface is not close to the electrochromic layer 2 , and the conduction
  • the opening 5 penetrates through the first conductive base layer 1 .
  • Embodiment 1 An electrochromic device, the schematic structure of which is shown in FIG. 3 , the difference from Embodiment 1 is that at least part of the surface of the top side of the conducting member 6 overflows the conducting port 5 and covers at least part of the first. A side of the conductive base layer 1 away from the electrochromic layer 2 .
  • An electrochromic device the schematic diagram of which is shown in FIG. 4 , the only difference from Embodiment 1 is that the conducting port 5 is an accommodating groove with an upward opening, and the entire surface of the peripheral side of the conducting member 6 is adjacent to the electrochromic device.
  • Chromatic layer 2 is an accommodating groove with an upward opening, and the entire surface of the peripheral side of the conducting member 6 is adjacent to the electrochromic device.
  • An electrochromic device the schematic diagram of which is shown in FIG. 5 , the difference from Embodiment 1 is that the conducting port 5 is a closed accommodating cavity, and the entire surface of the peripheral side of the conducting member 6 is adjacent to the electrochromic device. layer 2 , and the top side of the conductive member 6 is covered under the first conductive base layer 1 .
  • Example 2 An electrochromic device, the schematic diagram of which is shown in FIG. 6 , the difference from Example 1 is that the first substrate (water and oxygen barrier layer) 111 is bonded to the first substrate through the first optical adhesive layer 121 On the side of the layer 12 away from the electrochromic layer 2, the second substrate (water-oxygen barrier layer) 112 is bonded on the side of the second base material layer 32 away from the electrochromic layer 2 through the second optical adhesive layer 122; wherein, The width of the first substrate 111 and the first optical adhesive layer 121 is narrower than that of the first base material layer 12, so that the top part of the conductive member 6 can be covered on the surface of the first base material layer 12, and the connection between the conductive member 6 and the first base material layer 12 can be strengthened.
  • connection stability of the conductive base layer 1 and the side surface of the electrochromic layer 2 ensures the reliability of the electrical connection between the first transparent conductive layer 11 and the second conductive area 312, avoids the failure of the product due to disconnection, and greatly improves the product yield rate.
  • the first substrate 111 and the first optical adhesive layer 121 can be pasted at a certain distance from the side of the first base material layer 12 in advance to provide a certain area of the first base material layer.
  • the surface of 12 is for the attachment of the conductive member 6; it is also possible to first attach the first optical adhesive layer 121 and the first substrate 111 with the same width as the first base material layer 12, and then cut off a portion along the side of the first base material layer 12.
  • a small section of the first substrate 111 and the first optical adhesive layer 121 is formed to form the exposed surface of the first substrate layer 12 as shown in FIG. 6 for the conductive member 6 to be attached.
  • the electrochromic device 100 includes an electrode lead-out region 101 .
  • the schematic structural diagram of the AA section of the electrochromic device is shown in FIG. 8 , including a second substrate layer 32 , a second transparent conductive layer 31 , an electrochromic layer 2 , a first transparent conductive layer 11 and The first substrate layer 12 ;
  • the electrochromic layer 2 includes an electrochromic material layer 21 , an electrolyte layer 22 and an ion storage layer 23 that are stacked in sequence, and the electrochromic material layer 21 is disposed adjacent to the second transparent conductive layer 31 . side.
  • the second transparent conductive layer 31 is made of conductive material ITO, and a partition groove 4 (with a width of 0.1 mm) is opened on the second transparent conductive layer 31 to divide the second transparent conductive layer 31 into mutually independent first conductive regions 311 and second conductive regions 312 .
  • the second conductive body 62 is provided on the side of the second conductive region 312 away from the second base material layer 32 , and the side of the first transparent conductive layer 11 away from the first base material layer 12 is provided with a second conductive body 62 .
  • a first conducting body 61 is arranged on one side, and the first conducting body 61 and the second conducting body 62 are combined to form a conducting member; the surface roughness of the first conducting body 61 is 3 ⁇ m, and the surface of the second conducting body 62 is The roughness is 3 ⁇ m.
  • the first conductive area 311 is connected to the first lead-out electrode (not shown in the figure), and the second conductive area 312 is connected to the second lead-out electrode (not shown in the figure); the conducting member (the first conducting body 61 and at least part of the side surface of the second conductive body 62) is in contact with the electrochromic layer.
  • the electrochromic material layer 21 is provided with a second blocking area 211 ; in the preparation process, the electrochromic material layer 21 is coated on the surface of the second transparent conductive layer 31 to form a first laminate, and then the electrochromic material layer 21 is removed from the A second partition area 211 (with a width of 0.2 mm) is opened on the side away from the second transparent conductive layer 31 , and the projection of the second partition area 211 on the second transparent conductive layer 31 partially overlaps with the partition groove 4 . not coincident.
  • a second laminate is prepared, including the first substrate layer 12 , the first transparent conductive layer 11 and the ion storage layer 23 that are stacked in sequence.
  • An electrolyte material is added between the first laminate and the second laminate, and the first laminate and the second laminate are laminated together, and the second isolation region 211 is filled with the same electrolyte material as the electrolyte layer 22 , the electrolyte layer 22 is in contact with the isolation groove 4 through the electrolyte material in the second isolation region 211 .
  • the thickness of the electrochromic layer was 50 ⁇ m, the thickness of the first conductive body was 25 ⁇ m, and the thickness of the second conductive body was 25 ⁇ m. Both the first substrate layer and the second substrate layer are flexible PET layers.
  • a partition groove is provided on the second transparent conductive layer, so that it is divided into two regions that are isolated from each other and cannot be electrically connected to each other, and then the first lead-out electrode is drawn from the first conductive region, and the first lead-out electrode is drawn from the first conductive region.
  • the second lead-out electrode is drawn from the second conductive area, so that both the first lead-out electrode and the second lead-out electrode are drawn out from the second transparent conductive layer of the electrochromic device.
  • a flexible circuit board integrating two lead-out lines can be used.
  • the first conductive layer of the electrochromic device is subjected to one-time hot-pressure welding, so that the first lead-out electrode and the second lead-out electrode can be welded and drawn out through one-time hot-pressure welding, which greatly simplifies the production process and improves the production efficiency. And help to improve product yield.
  • a second partition area is further arranged on the electrochromic layer, so as to prevent the conductive substances or conductive particles in the electrochromic layer from filling the partition groove, resulting in the failure of the partition groove. .
  • the first conductive body and the second conductive body when the first laminated member and the second laminated member are assembled, the first conductive body and the second conductive body can be assembled, which can be very convenient
  • the first transparent conductive layer and the second conductive area are closely connected, so as to ensure that the second electrode drawn from the second conductive area of the second transparent conductive layer can well supply power to the first transparent conductive layer, the process is simple and the process is greatly improved. production capacity.
  • the contact points of the mating surfaces of the two are increased, thereby improving the contact tightness of the first conducting body and the second conducting body, ensuring that the Effectiveness of electrical communication between the first via and the second via.
  • the electrochromic device 100 includes an electrode lead-out region 101 .
  • the schematic structural diagram of the AA section of the electrochromic device is shown in FIG. 9, including the second substrate layer 32, the second transparent conductive layer 31, the electrochromic layer, the first transparent conductive layer 11 and the first A base material layer 12 ; the electrochromic layer includes an ion storage layer 23 , an electrolyte layer 22 and an electrochromic material layer 21 stacked in sequence, and the ion storage layer 23 is disposed on the side close to the second transparent conductive layer 31 .
  • the second transparent conductive layer 31 is made of conductive material ITO, and the partition groove 4 opened on the second transparent conductive layer 31 divides the second transparent conductive layer 31 into mutually independent first conductive regions 311 and second conductive regions 312. The two conductive regions 312 overlap with the isolation groove 4 .
  • the second conductive body 62 is provided on the side of the second conductive region 312 away from the second base material layer 32 , and the side of the first transparent conductive layer 11 away from the first base material layer 12 is provided with a second conductive body 62 .
  • a first conducting body 61 is arranged on one side, and the first conducting body 61 and the second conducting body 62 are combined to form a conducting member; the surface roughness of the first conducting body 61 is 4 ⁇ m, and the surface of the second conducting body 62 is The roughness is 4 ⁇ m.
  • the first conductive area 311 is connected to the first lead-out electrode (not shown in the figure), and the second conductive area 312 is connected to the second lead-out electrode (not shown in the figure); the conducting member (the first conducting body 61 and at least part of the side surface of the second conductive body 62) is in contact with the electrochromic layer.
  • the ion storage layer 23 is provided with a second blocking region 211; during the preparation process, the ion storage layer 23 is coated on the surface of the second transparent conductive layer 31 to form a first laminate, and the electrochromic material layer 21 is coated on the first layer.
  • a second laminate is formed on the surface of the transparent conductive layer 11, an electrolyte material is added between the first laminate and the second laminate, and the first laminate and the second laminate are laminated together;
  • the side away from the ion storage layer 23 is provided with a second blocking region 221, the second blocking region 221 runs through the second base material layer 32, the second transparent conductive layer 31 and the ion storage layer 23, and the width of the second blocking region 221 is 0.2mm , the projections of the second isolation region 221 on the second transparent conductive layer 31 all fall into the isolation groove 4 . There is no filling material in the second blocking region 221 .
  • the thickness of the electrochromic layer was 40 ⁇ m, the thickness of the first conductive body was 20 ⁇ m, and the thickness of the second conductive body was 20 ⁇ m.
  • the material used for the first base material layer is ITO glass, and the material used for the second base material layer is flexible PET.
  • a partition groove is provided on the second transparent conductive layer, so that it is divided into two regions that are isolated from each other and cannot be electrically connected to each other, and then the first lead-out electrode is drawn from the first conductive region, and the first lead-out electrode is drawn from the first conductive region.
  • the second lead-out electrode is drawn from the second conductive area, so that both the first lead-out electrode and the second lead-out electrode are drawn out from the second transparent conductive layer of the electrochromic device.
  • a flexible circuit board integrating two lead-out lines can be used.
  • the first conductive layer of the electrochromic device is subjected to one-time hot-pressure welding, so that the first lead-out electrode and the second lead-out electrode can be welded and drawn out through one-time hot-pressure welding, which greatly simplifies the production process and improves the production efficiency. And help to improve product yield. Further, the second partition area is opened from the ion storage layer, which is convenient for processing and high in production efficiency.
  • the first conductive body and the second conductive body when the first laminated member and the second laminated member are assembled, the first conductive body and the second conductive body can be assembled, which can be very convenient
  • the first transparent conductive layer and the second conductive area are closely connected, so as to ensure that the second electrode drawn from the second conductive area of the second transparent conductive layer can well supply power to the first transparent conductive layer, the process is simple and the process is greatly improved. production capacity.
  • the contact points of the mating surfaces of the two are increased, thereby improving the contact tightness of the first conducting body and the second conducting body, ensuring that the Effectiveness of electrical communication between the first via and the second via.
  • the second blocking region 211 may further penetrate the second base material layer 32 , the second transparent conductive layer 31 and the ion storage layer 23 on the basis of further extending in the longitudinal direction. Part or all of the electrolyte layer 22 is penetrated, or further, the electrolyte layer 22 and part or all of the electrochromic material layer 21 are penetrated in the longitudinal direction.
  • FIG. 7 An electrochromic device, its schematic top view structure is shown in FIG. 7 , the electrochromic device 100 includes an electrode lead-out area 101 ; the structure schematic diagram of the AA section of the electrochromic device is shown in FIG. 10 , which is the same as the embodiment The only difference is that the projections of the second blocking region 211 on the second transparent conductive layer 31 all fall into the blocking groove 4 .
  • the surface roughness of the first conductive body 61 is 4 ⁇ m, and the surface roughness of the second conductive body 62 is 3 ⁇ m.
  • the thickness of the electrochromic layer was 30 ⁇ m, the thickness of the first conductive body 61 was 15 ⁇ m, and the thickness of the second conductive body 62 was 15 ⁇ m.
  • the electrochromic device of this embodiment has the same beneficial effect as that of Embodiment 6.
  • FIG. 7 An electrochromic device, its schematic top view structure is shown in FIG. 7 , the electrochromic device 100 includes an electrode lead-out region 101 ; the structure schematic diagram of the BB section of the electrochromic device is shown in FIG. 11 , and the CC section structure is shown in FIG. 11 .
  • the schematic diagram is shown in FIG. 12 , the only difference from Embodiment 8 is that the first bus bar 10A is provided on the first transparent conductive layer 11 , and the second bus bar 10B is provided on the second transparent conductive layer 31 .
  • the conductive body 61 is a part of the end of the first bus bar 10A.
  • the projection of the second bus bar 10B on the first transparent conductive layer 11 does not coincide with the projection of the first bus bar 10A on the first transparent conductive layer 11 .
  • the electrochromic device of the present embodiment further improves the voltage distribution uniformity of the first transparent conductive layer and the second transparent conductive layer by arranging the first bus bar and the second bus bar , thereby improving the discoloration speed and discoloration uniformity of the electrochromic device.
  • the first conductive body as a part of the first bus bar, there is no need to separately set the first conductive body, and the first conductive body can be fabricated when the first bus bar is made, which simplifies the processing steps and improves the production capacity.
  • FIG. 7 An electrochromic device, the schematic top view structure is shown in FIG. 7 , the electrochromic device 100 includes an electrode lead-out region 101 ; the structure schematic diagram of the BB section of the electrochromic device is shown in FIG. 13 , and the structure of the CC section is shown in FIG. 13 .
  • the schematic diagram is shown in FIG. 14 , the only difference from the embodiment 6 is that the surface resistance of the second transparent conductive layer 31 is greater than that of the first transparent conductive layer 11 , wherein the surface resistance of the second transparent conductive layer 31 is 90 ⁇ , the surface resistance of the first transparent conductive layer 11 is 45 ⁇ , a second bus bar 10B is arranged on the second transparent conductive layer 31 , and the second bus bar 10B is not in contact with the electrochromic layer.
  • the second bus bar 10B is disposed along the periphery of the first conductive region 311 , and is not disposed in the adjacent periphery of the first conductive region 311 and the second conductive region 312 .
  • the electrochromic material layer 21 is located on a side close to the second transparent conductive layer 31 , and the second blocking region 211 is disposed on the electrochromic material layer 21 .
  • the electrochromic device of this embodiment further matches the second transparent conductive layer with higher surface resistance and the first transparent conductive layer with lower surface resistance, wherein the electrochromic device has The light transmittance of the second transparent conductive layer with higher surface resistance is higher, and the conduction speed of the first transparent conductive layer with lower surface resistance is faster, so as to synergistically realize the vivid display of the electrochromic device. color, and the effect of fast, even color change.
  • a second bus bar is arranged on the second transparent conductive layer to improve the voltage distribution uniformity of the second transparent conductive layer, thereby further improving the discoloration speed and discoloration uniformity of the electrochromic device.
  • the color of the electrochromic device is mainly displayed by the electrochromic material layer. Therefore, in this embodiment, the electrochromic material layer is further arranged near the second transparent conductive layer. On one side, when the user views from the outside of the second transparent conductive layer, the color display effect of the electrochromic device is better.
  • An electrochromic device which differs from Embodiment 10 only in that the ion storage layer is located on the side close to the second transparent conductive layer, and the second blocking region is arranged on the ion storage layer.
  • the surface resistance of the second transparent conductive layer is 90 ⁇ , and the surface resistance of the first transparent conductive layer is 30 ⁇ .
  • the electrochromic device of this embodiment further matches the second transparent conductive layer with higher areal resistance and the first transparent conductive layer with lower areal resistance, wherein the electrochromic device has The light transmittance of the second transparent conductive layer with higher surface resistance is higher, and the conduction speed of the first transparent conductive layer with lower surface resistance is faster, so as to synergistically realize the vivid display of the electrochromic device. color, and the effect of fast, even color change.
  • a second bus bar is arranged on the second transparent conductive layer to improve the voltage distribution uniformity of the second transparent conductive layer, thereby further improving the discoloration speed and discoloration uniformity of the electrochromic device.
  • the first substrate 111 , the second substrate 112 and the sealing member 130 may be further provided.
  • An electrochromic device the schematic structure of which is shown in FIG. 15 , the difference from Example 11 is only that the side of the first substrate layer 12 away from the first transparent conductive layer 11 passes through the first optical adhesive layer 121 is connected to the first substrate 111 ; the side of the second substrate layer 32 away from the second transparent conductive layer 31 is connected to the second substrate 112 through a second optical adhesive layer 122 .
  • the sealing member 130 is provided along the peripheral side of the electrochromic layer. The sealing member 130 is disposed between the first substrate 111 and the second substrate 112 , at least one edge of the first substrate 111 is longer than the first substrate layer 12 , and at least one edge of the second substrate 112 is longer than the second substrate 112 .
  • the projection of the outer surface of the sealing member 130 on the first substrate 111 coincides with the outer circumference of the first substrate 111, and the projection of the outer surface of the sealing member 130 on the second substrate 112 is the same as the projection of the first substrate 111.
  • the outer peripheries of the two substrates 112 are coincident.
  • the first substrate 111 is a flexible water and oxygen barrier film
  • the second substrate 112 is glass.
  • the material of the second optical adhesive layer 122 can block ultraviolet light.
  • the electrochromic device of this embodiment can further improve the protection of the electrochromic device and the mechanical structural strength of the electrochromic device by providing the first substrate and the second substrate. , and further avoid the invasion of water, oxygen, etc. from the external environment from the first substrate to affect the service life of the electrochromic device; and the sealing member is filled between the first substrate and the second substrate, and is located on the peripheral side of the electrochromic material layer Therefore, the sealing effect can be well achieved, and the influence of water and oxygen on the electrochromic layer can be avoided, thereby improving the service life of the electrochromic device.
  • the material of the second optical adhesive layer as an optical adhesive layer that can block ultraviolet light, the material aging of the solid electrolyte layer can be slowed down, and the service life of the electrochromic device can be improved.
  • An electrochromic device includes a first substrate layer 12, a first transparent conductive layer 11, an electrochromic layer, a second transparent conductive layer 31, and a second base layer 12, which are stacked in sequence.
  • a second optical adhesive layer 122 and a second substrate 112 are arranged on one side of the conductive layer 31 in sequence; a partition groove 4 is formed on the second transparent conductive layer 31 to divide the second transparent conductive layer 31 into two mutually independent first conductive regions 311 and the second conductive region 312 , and the isolation groove 4 penetrates the second base material layer 32 .
  • the conducting member is used to electrically connect the first transparent conductive layer 11 and the second conducting region 312, and the conducting member includes a first conducting body 61 and a second conducting body 62, and the first conducting body 61 is connected to The side of the first transparent conductive layer 11 away from the first base material layer 12 is connected, and the second conductive body 62 is disposed on a side of the second conductive region 312 away from the second base material layer 32 . side; the side surface of the first conducting body 61 is in contact with the side surface of the second conducting body 62 .
  • the area between the partition groove 4 and the first transparent conductive layer 11 is the first conduction area, and the first conduction area includes the first conduction body 61 and the first sealant 141; the first conduction area includes the first conduction body 61 and the first sealant 141; At least part of the surface of the through body 61 is covered with the first sealant 141, so that the first through body 61 is not in contact with the electrochromic layer and the second transparent conductive layer 31; the second conductive region
  • the area between 312 and the first substrate 111 is the second conduction area, and the second conduction area includes the second conduction body 62 and the second sealant 142; at least part of the second conduction body 62
  • the second sealant 142 is covered on the surface.
  • the interface between the first conductive region 311 and the first conducting region is denoted as the first interface
  • the interface between the first conducting region and the second conducting region is denoted as the second interface.
  • One end surface of the first conductive body 61 is located at the second interface, and a gap is reserved between the other end surface and the first interface, and the first sealant 141 is filled in the gap.
  • One end surface of the second conducting body 62 is located at the second interface and is in contact with one end surface of the first conducting body 61 , and the other end of the second conducting body 62 and the outer edge of the electrochromic device are spaced and filled The second sealant 142 .
  • one end surface of the second conductive body 62 forms partial surface contact with one end surface of the first conductive body 61 .
  • the surfaces are named: the first conductive body 61 is in contact with the first transparent body 61 .
  • the contact surface of the conductive layer 11 is denoted as the first contact surface, and the surface on the opposite side of the first contact surface is denoted as the first surface; similarly, the contact surface between the second conductive body 62 and the second conductive region 312 is denoted as the second surface
  • the surface on the opposite side of the second contact surface is denoted as the second surface.
  • the first contact surface is higher than the second surface, and the extended surface of the first surface is located between the second surface and the second contact surface, which is equivalent to the thickness of the first conductive body 61 and the thickness of the second conductive body 62.
  • the contact side surface of the first conductive body 61 and the contact side surface of the second conductive body 62 have mutually staggered regions, and the first conductive body 61 is overall higher than the second conductive body 62 .
  • the electrochromic layer includes an ion storage layer 23 , an electrolyte layer 22 and an electrochromic material layer 21 stacked in sequence, and the ion storage layer 23 is disposed on the side close to the first transparent conductive layer 11 .
  • the first substrate 111 is a water and oxygen barrier film
  • the second substrate 112 is an appearance texture film
  • the materials of the first conductive body 61 and the second conductive body 62 are silver paste
  • the first substrate layer 12 and the second substrate are Layers 32 are both PET layers.
  • This embodiment also provides a method for preparing the electrochromic device, which specifically includes the following steps:
  • the electrochromic laminate includes a first substrate layer 12, a first transparent conductive layer 11, an electrochromic layer, a second transparent conductive layer 31 and a second substrate layer stacked in sequence 32; the outer side of the first base material layer 12 is provided with a first optical adhesive layer 121 and a back film;
  • the second groove is formed by cutting from one side of the first base material layer 12, and the first base material layer 12, the first transparent conductive layer 11 and the electrochromic layer in the second groove are all removed;
  • the electrochromic stack near the outer side of the second conduction region is cut along the edge of the second sealant 141 to obtain the electrochromic device of the present application.
  • the second conduction region may be prepared first, and then the first conduction region may be prepared, that is, steps (2)-(4) and steps (5)-(7) in this embodiment exchange.
  • the electrochromic laminate prepared in step (1) does not have the first optical adhesive layer 121 and the backside on the outside of the first substrate layer 12 film, an adhesive layer needs to be additionally provided when attaching the first substrate 111 .
  • the electrochromic laminate prepared in step (1) has a first optical adhesive layer 121 and a backside on the outer side of the first substrate layer 12 film, and the outer side of the second base material layer 32 is provided with the second optical adhesive layer 122 and the back film; then there is no need to provide an additional adhesive layer when attaching the first substrate 111 and the second substrate 112 .
  • the electrochromic laminate prepared in Example 1 does not have the first optical adhesive layer 121 and the back film on the outside of the first substrate layer 12 , and the outer side of the second base material layer 32 is provided with a second optical adhesive layer 122 and a back film; then an adhesive layer needs to be additionally provided when attaching the first substrate 111 .
  • An electrochromic device the schematic structural diagram of which is shown in FIG. 17 , the difference from Embodiment 13 is that a first bus bar 10A is arranged between the first transparent conductive layer 11 and the first conducting body 61 , and the first The width of the bus bar 10A is greater than the width of the first conductive body 61 . Except for the space occupied by the first conductive body 61 and the first bus bar 10A, all other spaces in the first conductive region are filled with the first sealant 141 .
  • a second bus bar 10B is disposed between the second conductive region 312 and the second conducting body 62 , and the width of the second bus bar 10B is greater than that of the second conducting body 62 , except for the second conducting body 62 and the second conducting body 62 . Except for the space occupied by the two bus bars 10B, the other spaces in the second conduction region are all filled with the second sealant 142 .
  • the interface between the first conductive region 311 and the first conducting region is denoted as the first interface
  • the interface between the first conducting region and the second conducting region is denoted as the second interface.
  • One end of the first bus bar 10A is aligned with one end surface of the first conductive body 61 and both are located at the second interface, and the other end of the first bus bar 10A is spaced from the first interface.
  • the first conductive body 61 An interval is reserved between the other end face of the 10A and the first interface, the interval width between the first conductive body 61 and the first interface is greater than the interval width between the first bus bar 10A and the first interface, and the first Sealant 141.
  • One end surface of the second conductive body 62 is located at the second interface and is in contact with one end surface of the first conductive body 61 , and the other end is spaced from the outer edge of the electrochromic device and filled with the second sealant 142 .
  • one end face of the second conducting body 62 is in complete surface contact with one end face of the first conducting body 61 .
  • the faces are named: the first conducting body 61 and the first bus
  • the contact surface of the bar 10A is denoted as the first contact surface, and the surface on the opposite side of the first contact surface is denoted as the first surface; similarly, the contact surface of the second conducting body 62 and the second bus bar 10B is denoted as the second contact
  • the surface on the opposite side of the second contact surface is denoted as the second surface.
  • the extended surface of the first contact surface and the extended surface of the first surface are both located between the second surface and the second contact surface; equivalent to the thickness of the first conductive body 61 is smaller than the thickness of the second conductive body 62, the second conductive body 62.
  • the contact flank of the through body 62 completely covers the contact flank of the first conducting body 61 .
  • An electrochromic device the schematic structural diagram of which is shown in FIG. 18 , the difference from Embodiment 14 is that at the second interface, one end face of the second conducting body 62 and one end face of the first conducting body 61 are Partial surface contact is formed; the extended surface of the first contact surface is located between the second surface and the second contact surface, the first surface is lower than the second contact surface, and the extended line of the first surface is located on both sides of the second bus bar 10B
  • the thickness of the first conductive body 61 is equivalent to the thickness of the second conductive body 62, the contact side surface of the first conductive body 61 and the contact side surface of the second conductive body 62 are staggered from each other, and the first conductive body 61 is staggered.
  • the entirety of the body 61 is lower than the second conductive body 62 .
  • An electrochromic device the schematic diagram of which is shown in Figure 19, the difference from Example 14 is that the first contact surface is higher than the second surface, and the extended surface of the second surface is located between the first surface and the first contact surface.
  • the extension surface of the first surface is located between the two side surfaces of the second bus bar 10B; equivalent to the thickness of the first conducting body 61 is greater than the thickness of the second conducting body 62, the contact of the first conducting body 61
  • the flanks completely cover the contact flanks of the second vias 62 .
  • An electrochromic device the schematic structural diagram of which is shown in FIG. 20 , the difference from Embodiment 14 is that at the second interface, one end face of the second conducting body 62 and one end face of the first conducting body 61 are Partial surface contact is formed; the first contact surface is higher than the second surface, and the extended surface of the first surface is located between the second surface and the second contact surface, which is equivalent to the thickness of the first conductive body 61 and the thickness of the second conductive body 62 The thickness of the first conducting body 61 and the contacting side surface of the second conducting body 62 are staggered from each other, and the whole of the first conducting body 61 is higher than the second conducting body 62 .
  • An electronic device 200 includes any one of the electrochromic devices 100 of the foregoing embodiments 1-17.
  • the second substrate layer 32 of the electrochromic device 100 is close to the side where ambient light is incident.
  • the electronic device of this application example includes the electrochromic device provided in any of the above embodiments, and has low production cost, simple production process, high production efficiency, high product yield, and good product stability.
  • the second substrate layer is arranged on the incident side close to the ambient light, so that it is convenient to adjust the thickness of the second transparent conductive layer on the side close to the second substrate layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

一种电致变色器件,包括依次叠加设置的第一导电基底层(1)、电致变色层(2)和第二导电基底层(3);第一导电基底层(1)包括依次叠加设置的第一透明导电层(11)和第一基材层(12),第一透明导电层(11)粘接在电致变色层(2)的一侧;第二导电基底层(3)包括依次叠加设置的第二透明导电层(31)和第二基材层(32),第二透明导电层(31)粘接在电致变色层(2)的另一侧;第二透明导电层(31)上设置隔断槽(4)使其分为相互独立的第一导电区域(311)和第二导电区域(312);第二导电区域(312)上设置导通件(6),导通件(6)将第一透明导电层(11)与第二导电区域(312)电连接。电致变色器件仅需要一次热压焊即可完成电极引出过程。还提供一种电子设备。

Description

一种电致变色器件及电子设备 技术领域
本申请属于变色器件技术领域,具体涉及一种电致变色器件及电子设备。
背景技术
电致变色现象是指在外界电场的作用下,材料发生可逆的氧化还原反应导致其光学性能(如透射率、吸收率、反射率)的变化,在外观上表现为颜色及透明度的可逆变化现象。因此,电致变色器件已被广泛应用于电致变色节能灵巧窗、汽车后视防眩镜和显示器件等行业领域。
目前有很多研究人员致力于新型电致变色器件以及装置的研究,例如CN111142303A公开了一种电致变色后视镜的改良结构,包含:一后视镜本体,该后视镜后侧面可供组设一显示器,后视镜本体包含:第一镜片组、第二镜片组、电致变色层、两个导电片、第一导电胶及第二导电胶,第一镜片组设有一第一镀层,第二镜片组设有一第二镀层,电致变色层包含有一封装框胶及一电致变色材料,该两个导电片一方为导电部,另一方为接点部,该两个导电片的导电部分别黏结于第二镜片组上,显示器与两个导电片的接点部焊结电性连接。CN213365229U公开了一种该电致变色器件,该电致变色器件包括第一导电层、电致变色层、第二导电层和引出电极,第一导电层、电致变色层及第二导电层层叠设置。第一导电层包括第一重叠区和第一错开区,第二导电层包括第二重叠区和第二错开区,第一错开区及第二错开区的至少部分位于电致变色层的同一侧,且第一导电层上设有第一汇流条,第二导电层上设有第二汇流条,引出电极分别与第一汇流条及第二汇流条导通。
在现有技术中,电致变色器件在进行电极引出时,通常分别将连接第一导电层的电极引线和连接第二导电层的电极引线从上下两片导电基底上分别引出,引出电极绑定时需要进行两次热压焊,例如焊接下片的电极引线后,再翻转电致变色器件,焊接上片的电极引线,工艺复杂,不利于自动化生产,生产效率低下,且不利于良率的提高。因此,本领域亟待开发一种引出方式更加简化、制备工艺简单的电致变色器件。
发明内容
本申请提供了一种电致变色器件及电子设备,所述电致变色器件仅需要一次热压焊即可完成电极引出过程,工艺简便,生产效率大大提高,且有利于改善产品良率。
第一方面,本申请提供了一种电致变色器件,所述电致变色器件包括依次叠加设置的第一导电基底层、电致变色层和第二导电基底层;其中,所述第一导电基底层包括依次叠加设置的第一透明导电层和第一基材层,所述第一透明导电层粘接在所述电致变色层的一侧;其中,所述第二导电基底层包括依次叠加设置的第二透明导电层和第二基材层,所述第二透明导电层粘接在所述电致变色层的另一侧;
所述第二透明导电层上设置隔断槽使其分为相互独立的第一导电区域和第二导电区域;所述第二导电区域上设置导通件,所述导通件将所述第一透明导电层与所述第二导电区域电连接。
本申请提供的电致变色器件中,通过在第二透明导电层上设置隔断槽,将第二透明导电 层分为相互隔断的两个区域,第一导电区域和第二导电区域不会互相电联通,进而通过导通件将第一透明导电层和第二导电区域电连接,从而实现同侧电极引出;用于连接第一透明导电层的电极引线和用于连接第二透明导电层的电极引线可以均从第二透明导电基底层引出,便于通过一次热压焊即同时对电致变色器件的两个电极引线完成焊接,工艺简单,提高了生产效率和产品良率,有利于实现自动化生产,且有利于尽可能减小无法发生变色(即颜色/透过率变化)的电极引出区域的面积。
优选地,所述第二导电区域对应的至少部分电致变色层被去除以形成导通口,所述导通口内灌注具有导电性的所述导通件。
示例性地,所述电致变色器件通过如下方法进行制备,所述方法包括:首先对第二透明导电层进行蚀刻,从而开设出隔断槽以使第二透明导电层分为相互独立的第一导电区域和第二导电区域,第二导电区域对应的至少部分电致变色层被去除以形成导通口,导通口灌注有液态形式的导通件的材料,待液态形式的材料变为固态形式的导通件之后,导通件分别与第一透明导电层和位于导通口的第二导电区域相连通,将第一透明导电层和第二导电区域电连接,从而实现同侧电极引出。因此,用于连接第一透明导电层的电极引线和用于连接第二透明导电层的电极引线可以均从第二导电基底层引出,便于通过一次热压焊即同时对电致变色器件的两个电极引线完成焊接,工艺简单,有利于实现自动化生产,提高了工作效率和产品良率。
优选地,所述第一导电区域至少靠近所述隔断槽一侧的表面被所述电致变色层覆盖。由此,可以使所述导通件不会接触到第一导电区域,从而不会导致第一导电区域和第二导电区域发生电连接,进而避免电致变色器件发生短路的情况。
优选地,所述导通件的周侧的至少部分表面紧邻所述电致变色层,从而起到支撑和固定导通件的作用,确保所述第一透明导电层通过导通件与第二导电区域电连接的可靠性;进一步优选地,所述导通件的周侧的全部表面紧邻电致变色层,可以获得更好的支撑效果和稳定性。
优选地,所述导通件的周侧的至少部分表面不贴近所述电致变色层;由此,在制备电致变色器件时,工艺上更易于实现,进而提高产品良率。
优选地,所述导通口贯穿所述第一导电基底层;由此,便于将液态形式的导通件的材料从顶部沿着电致变色器件靠近导通口的侧面灌注到导通口内,使所述导通件与第一透明导电层与第二导电区域的电连接更加稳定。
优选地,所述导通件的顶侧的至少部分表面溢出所述导通口,且覆盖至少部分所述第一导电基底层的远离所述电致变色层的一面;由此,能够使所述导通件和第一导电基底层的端面不易开裂,避免第一透明导电层和第二导电区域的电连接失效,黏合效果更好,稳定性更高,提高了生产良率。
优选地,所述电致变色层包括依次叠加的电致变色材料层、电解质层和离子储存层。
本申请中,所述电致变色材料层、电解质层和离子储存层的材料可以采用现有技术中已知的材料。示例性地,所述电致变色材料层的材料具体地可以选自现有技术中能形成固体薄膜的变色材料,例如无机材料中的NiO、WO 3、Nb 2O 5、TiO 2等;有机材料中的聚噻吩衍生物及共聚物体系等;金属共轭体系,如普鲁士蓝,等。所述电解质层优选为固态电解质层, 由电解质溶液经固化后形成固态电解质层,电解质层的材料包括高分子聚合物、金属离子盐和添加剂混合而成。所述离子存储层的材料包括第4~12族中的一种或者至少两种的金属元素形成的金属氧化物,或金属氧化物的混合物,或被其它任何金属氧化物掺杂的金属氧化物。
优选地,所述电致变色材料层的厚度为1nm~10μm,例如可以为1nm、5nm、10nm、50nm、80nm、100nm、200nm、500nm、1μm、5μm或10μm等。电致变色材料层的厚度适度增加,有利于加深电致变色器件的颜色效果。
优选地,所述电解质层的厚度为5~200μm;例如可以为5μm、8μm、10μm、20μm、30μm、40μm、50μm、60μm、70μm、80μm、90μm、100μm、110μm、120μm、130μm、150μm、160μm、180μm或200μm等。
优选地,所述离子存储层的厚度为1nm~10μm,例如可以是1nm、5nm、10nm、50nm、80nm、100nm、200nm、500nm、1μm、5μm或10μm等。
优选地,所述电致变色器件还包括第一汇流条,所述第一汇流条设置于所述第一透明导电层的表面和/或内部,且与所述导通件连接;从而有助于将电子从导通件快速传递到整片第一透明导电层中,提高导电速率,提高变色速度。
补充说明的是,也可在第一导电区域和第二导电区域上设置第二汇流条,在第一导电区域和第二导电区域能够导电的基础上,进一步地提高了导电性能,从而再进一步地提高了导通良率。
优选地,所述第一汇流条、第二汇流条的材料各自独立地为导电率较高的金属材料,例如导电银浆、导电铜浆、导电碳浆、纳米银导电油墨、铜箔、铜丝或导电胶膜中的任意一种或至少两种的组合;进一步优选为导电银浆。
优选地,所述第一基材层的远离所述电致变色层的一面设置第一基底(第一水氧阻隔层),和/或,所述第二基材层的远离所述电致变色层的一面设置第二基底(第二水氧阻隔层);从而更好地隔绝外部的水汽和氧气,从而避免水汽和氧气进入电致变色层内影响其正常工作。
本申请中,所述水氧阻隔层可以为硬质玻璃或者现有技术中的柔性水氧阻隔膜,此处不再赘述。
优选地,所述电致变色器件还包括光学胶层,所述光学胶层粘接在第一基材层和/或第二基材层远离电致变色层的一面上;所述光学胶层能够有效地将水氧阻隔层与第一基材层和/或第二基材层相连接,连接牢固、稳定,粘接强度好。清楚起见,所述第一基材层与第一基底(第一水氧阻隔层)之间的光学胶层定义为第一光学胶层;所述第二基材层与第二基底(第二水氧阻隔层)之间的光学胶层定义为第二光学胶层。
优选地,所述光学胶层的材料包括聚乙烯醇缩丁醛酯(Poly Vinyl Butyral,PVB)、乙烯-醋酸乙烯共聚物(Ethylene-vinyl Acetate Copolymer,EVA)、OCA(Optically Clear Adhesive)光学胶、SCA光学胶、离子性中间膜(Surper Safe Glas,SGP)、液态光学胶LOCA(Liquid Optical Clear Adhesive)或亚克力中的任意一种或至少两种的组合。
优选地,所述导通件的顶侧覆盖于所述第一导电基底层之下;由此,所述导通件与第一导电基底层的接触面积更大,从而提升了导通良率。
优选地,所述导通件包括相互连接的第一导通体和第二导通体,所述第一导通体与所述第一透明导电层的远离所述第一基材层的一侧连接,所述第二导通体设置于所述第二导电区 域的远离第二基材层的一侧。
优选地,所述第一导通体和所述第二导通体对合;所述第一导电区域连接第一引出电极,所述第二导电区域连接第二引出电极;
所述电致变色层包括依次叠加的电致变色材料层、电解质层和离子储存层;所述电致变色层设置第二隔断区,所述第二隔断区在所述第二透明导电层的投影与所述隔断槽至少部分重合。
本申请中,所述“对合”意指第一导通体的远离第一透明导电层的一面与第二导通体的远离第二导电区域的一面相互贴合。
本申请中,所述第一引出电极和第二引出电极采用导电材料,例如金属、合金、导线、柔性线路板等。
作为本申请的优选技术方案,所述电致变色器件的第二透明导电层被隔断槽分割成相互独立的两个区域,第一引出电极和第二引出电极均从第二透明导电基底层引出,在焊接时可以采用集成两条引出线路的柔性线路板,从而在第二透明导电层一面进行一次热压焊,即可同时实现对第一引出电极和第二引出电极的焊接引出,简化生产工艺,提高了生产效率和产品良率,且有利于减小无法发生变色(即颜色/透过率变化)的电极引出区域的面积。同时,为了避免电致变色器件内部微短路的发生,所述电致变色层上设置第二隔断区,从而避免电致变色层中的导电物质或导电微粒等填充隔断槽,规避了隔断槽的隔断失效的风险。
作为本申请的优选技术方案,所述电致变色器件采用如下方法进行制备,所述方法包括:先分别制备第一层叠件和第二层叠件,其中,所述第一层叠件包括依次层叠的第一基材层、第一透明导电层和电致变色材料层,所述第二层叠件包括依次层叠的第二基材层、第二透明导电层和离子存储层,或,所述第一层叠件包括依次层叠的第一基材层、第一透明导电层和离子存储层,所述第二层叠件包括依次层叠的第二基材层、第二透明导电层和电致变色材料层;再在所述第一层叠件和所述第二层叠件中间设置电解质层,并对合所述第一层叠件和所述第二层叠件。通过预先设置上述的第一导通体和第二导通体,在对合所述第一层叠件和所述第二层叠件时,第一导通体和第二导通体即可对合,可以很方便地将第一透明导电层和第二导电区域紧密连接,从而确保从第二透明导电层的第二导电区域引出的第二电极可以很好地为第一透明导电层供电,工艺简便,大大提高了生产产能。
优选地,所述第一导通体的表面粗糙度大于等于3μm,和/或,所述第二导通体的表面粗糙度大于等于3μm。
作为本申请的优选技术方案,通过对第一导通体和第二导通体的表面粗糙度设置,可以增加第一导通体和第二导通体的对合面的接触点,从而提高第一导通体和第二导通体的接触紧密程度,确保第一导通体和第二导通体的电连通有效性,从而确保第二导电区域引出的第二电极可以很好地为第一透明导电层供电。
优选地,所述第一导通体和第二导通体的侧面的至少部分与所述电致变色层接触;其中,所述电致变色材料层位于靠近所述第二透明导电层的一侧,所述第二隔断区设置于所述电致变色材料层,并将所述电致变色材料层分为相互不连接的两个区域;或,所述离子存储层位于靠近所述第二透明导电层的一侧,所述第二隔断区设置于所述离子存储层,并将所述离子存储层分为相互不连接的两个区域。
本申请的第一导通体和第二导通体的侧面至少部分与电致变色层接触,使得第一导通体、第二导通体和电致变色层之间没有电致变色层的材料空缺,减少了不变色区域的面积。需要说明的是,缺少电致变色层的材料的区域即会形成不变色区域;而且,电致变色材料层和离子存储层的材料在一定情况下具有微小的电子导电率。因此,如果电致变色材料层、离子存储层的材料填充入隔断槽,会导致第一导电区域和第二导电区域的导电材料还是能通过隔断槽内填充的电致变色材料层或离子存储层的材料发生导通,从而导致内部微短路的发生。此外,所述隔断槽也可能由工艺加工过程中的导电颗粒填充,从而导致内部微短路的发生。因此,本申请通过在离子存储层或电致变色材料层上开设第二隔断区,进一步提高了电致变色器件的产品稳定性和使用寿命。
在一种可能的实施方式中,从电致变色材料层或离子存储层的远离第二透明导电层的一面开设第二隔断区。
在另一种可能的实施方式中,从第二基材层的远离电致变色材料层或离子存储层的一面开设第二隔断区。
优选地,所述第二隔断区内填充与所述电解质层的材料相同的电解质材料,以使得所述电解质层通过所述第二隔断区内的电解质材料与所述隔断槽接触。
本申请研究发现,电解质层的材料为电子绝缘体。因此,本申请通过在第二隔断区内填充电解质材料,从而更好地避免内部微短路的发生,进一步提高所述电致变色器件的产品稳定性和使用寿命。
优选地,所述第二透明导电层上设置第二汇流条。
本申请中,所述第二汇流条用于提高第二透明导电层的电压分布均匀性,从而提高电致变色器件的变色速度和变色均匀性。
优选地,所述第一透明导电层上设置第一汇流条,所述第一导通体为所述第一汇流条的局部部分,或,所述第一导通体与所述第一汇流条连接;
所述第二汇流条在所述第一透明导电层上的投影与所述第一汇流条在所述第一透明导电层上的投影互不重合。
本申请中,所述第一汇流条用于提高第一透明导电层的电压分布均匀性,从而提高电致变色器件的变色速度和变色均匀性。通过将所述第一导通体作为第一汇流条的一部分,或将第一汇流条延伸至第一导通体处,从而无需再单独设置第一导通体,在制作第一汇流条时即可将第一导通体制作好,简化了加工步骤,提高了生产产能。通过调节第一汇流条和第二汇流条在平面上的分布情况,使得在由第二透明导电层指向第一透明导电层的方向上,第一汇流条和第二汇流条不会发生上下接触,因为一旦第一汇流条和第二汇流条发生接触,就会导致电致变色器件的短路失效。本申请通过该设计,进一步提高了电致变色器件的产品可靠性。
优选地,所述第二透明导电层的面阻大于所述第一透明导电层的面阻,所述第二汇流条沿所述第一导电区域的周边设置。
本申请中,当第一透明导电层和第二透明导电层的导电材料相同时,面阻越大,导电材料的厚度越小,导电层的光透过率越高,可以提高对电致变色层的颜色的展示效果,但也会导致导电层上的电压分布不均匀,降低电致变色层的变色速率和变色均匀性。因此,本申请通过具有较高面阻的第二透明导电层和具有较低面阻的第一透明导电层的匹配,协同实现电 致变色器件的鲜明地展示电致变色层颜色,以及快速、均匀变色的效果。由于第二透明导电层的面阻较大,因此需要在第二透明导电层上设置第二汇流条,从而提高第二透明导电层的电压分布均匀性,第二汇流条沿第一导电区域的周边设置,从而可以在保证电致变色器件拥有尽可能大的变色区域的同时,提高电致变色器件的变色速度和变色均匀性。在第一导电区域与第二导电区域相邻的周边,可以不设置第二汇流条,以减少短路可能性。由于第一透明导电层的面阻较小,因此,在第一透明导电层上可以不设置第一汇流条,仅设置第一导通体,从而节约产品成本。本申请通过该设计,从而大大提高了对电致变色层颜色的展示效果,以及电致变色器件的产品可靠性、变色速度和变色均匀性。
可选地,所述第二汇流条和电致变色层不相接触,从而避免第二汇流条的金属参与电致变色器件的氧化还原反应。当第二汇流条的材料表面被钝化或覆盖绝缘层等时,第二汇流条和电致变色层也可以接触。
优选地,所述第二透明导电层的面阻与所述第一透明导电层的面阻的比值大于等于1.5,例如可以是1.5、2、2.5、3、3.5、4、4.5、5、6、7、8、9、10、15或20,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举所述范围包括的具体点值。
本申请中,在上述的面阻比值范围下,在所述第二透明导电层设置第二汇流条,第一透明导电层不设置汇流条,可以更优地协同实现电致变色器件的鲜明地展示电致变色层颜色,以及快速、均匀变色的效果。
优选地,所述第二透明导电层的面阻大于所述第一透明导电层的面阻,所述电致变色材料层位于靠近所述第二透明导电层的一侧。
作为本申请的优选技术方案,所述电致变色材料层设置在靠近第二透明导电层的一侧,用户从第一透明导电层的外侧观看时,电致变色器件的颜色展示效果更优。
优选地,所述第一基材层的远离第一透明导电层的一侧设置第一基底,所述第二基材层的远离第二透明导电层的一侧设置第二基底;所述隔断槽贯穿所述第二基材层;所述第一导通体的侧面与所述第二导通体的侧面接触连接;
所述隔断槽与第一透明导电层之间的区域为第一导通区,所述第一导通区内包括第一导通体和第一密封胶;其中,所述第一导通体的至少部分表面上覆盖第一密封胶,以使得所述第一导通体不与所述电致变色层以及所述第二透明导电层接触;
所述第二导电区域与第一基底之间的区域为第二导通区,所述第二导通区内包括第二导通体和第二密封胶;其中,所述第二导通体的至少部分表面上覆盖第二密封胶。
本申请中,所述第一导通体的“侧面”意指第一导通体中与第一透明导电层垂直的面;所述第二导通体的“侧面”意指第二导通体中与第二导电区域垂直的面。
作为本申请的优选技术方案,所述电致变色器件能够通过一次热压焊实现焊接引出,简化生产工艺,提高了生产效率和产品良率;同时,所述第一导通体的侧面与所述第二导通体的侧面接触导通,大大提高了二者的接触面积,从而避免接触不良,提高导通效果;同时,第一导通体和第二导通体的周侧用密封胶填充,一方面可以确保第一导通体和第二导通体的紧密接触,另一方面可以起到密封效果,避免水汽侵入电致变色区,此外还将第一导通体、第二导通体与第一导电区域隔离,起到绝缘效果,避免发生短路。
示例性地,所述电致变色器件通过如下方法进行制备,所述方法包括:
(1)制备电致变色叠层,所述电致变色叠层包括依次层叠的第一基材层、第一透明导电层、电致变色层、第二透明导电层和第二基材层;
(2)分别制备第一导通区和第二导通区;
其中,所述第一导通区的制备方法包括:从第二基材层一侧切割形成隔断槽,所述隔断槽内的第二基材层、第二透明导电层和电致变色层被全部去除;在所述隔断槽内灌注导通材料形成第一导通体,再在所述第一导通体表面填充第一密封胶;在所述第二基材层外侧设置第二基底,形成所述第一导通区;
所述第二导通区的制备方法包括:从所述第一基材层一侧切割形成第二凹槽,所述第二凹槽内的第一基材层、第一透明导电层和电致变色层被全部去除;在所述第二凹槽内灌注导通材料形成第二导通体,再在所述第二导通体表面填充第二密封胶;在所述第一基材层外侧设置第一基底,形成所述第二导通区。
其中,所述隔断槽将所述第二基材层和第二透明导电层分割为互不接触的两个区域。
作为本申请一种优选的技术方案,所述第一导通区的制备方法还包括:在所述第二基材层外侧设置第二基底后,将所述第一密封胶进行固化。
优选地,所述第二导通区的制备方法还包括:在所述第一基材层外侧设置第一基底后,将所述第二密封胶进行固化。
优选地,步骤(2)还包括:所述第一导通区制备完成后,将已形成第一导通区的电致变色叠层翻转,以进行所述第二导通区的制备;或所述第二导通区制备完成后,将已形成第二导通区的电致变色叠层翻转,以进行所述第一导通区的制备。
本申请通过双面切割,从两面点入(灌注)导通材料,从而增大了第一导通体与第二导通体的接触面积,从而避免接触不良,提高导通效果;再通过在第一导通体与第二导通体处直接点密封胶,进行器件密封,从而提高了电致变色器件的水氧阻隔效果,密封胶层还能够起到绝缘效果,从而无需再对导电层或电致变色层进行刻蚀。
作为本申请一种优选的技术方案,在步骤(1)制得的所述电致变色叠层中,所述第一基材层的外表面还设置有第一光学胶层和第一背膜,所述第二基材层的外表面还设置有第二光学胶层和第二背膜。
步骤(2)中,在所述第一基材层外侧设置第一基底的步骤,包括去除所述第一背膜,将所述第一基底贴设于所述第一光学胶层上。
在所述第二基材层外侧设置第二基底的步骤,包括去除所述第二背膜,将所述第二基底贴设于所述第二光学胶层上。
作为本申请一种优选的技术方案,步骤(2)结束后,将靠近所述第二导通区外侧的电致变色叠层,沿所述第二密封胶的边缘切除。
优选地,所述第一导通体与所述第一透明导电层之间设置有第一汇流条。
优选地,所述第一汇流条的宽度大于第一导通体的宽度。
优选地,所述第一导通体与所述电致变色层之间的间隙宽度大于所述第一汇流条与所述电致变色层之间的间隙宽度。
优选地,除所述第一导通体和第一汇流条占据的空间外,所述第一导通区内其它空间全部填充所述第一密封胶。
本申请中,通过在第一导通体和电致变色层之间设置一定的间隙宽度,从而避免第一导通体直接接触电致变色层,进而避免电致变色层的离子存储层和电致变色材料层通过第一导通体短路。所述除第一导通体和第一汇流条占据的空间外至少包括:第一导通体和电致变色层之间的间隙,以及第一导通体和隔断槽(第二基底)之间的间隙。在第一导通体和电致变色层之间的间隙中填充第一密封胶,以及在第一导通体和隔断槽之间填充第一密封胶,通过绝缘的密封胶确保第一导通体不会接触到电致变色层以及第一导电区域,从而进一步起到绝缘效果,避免电致变色器件发生短路失效。同时,第一密封胶将电致变色层周侧密封,还可以起到隔绝水汽的效果,避免水汽侵入电致变色区,延长电致变色器件使用寿命。
优选地,所述第二导电区域与第二导通体之间设置有第二汇流条。
优选地,所述第二汇流条的宽度大于第二导通体的宽度。
优选地,除所述第二导通体和第二汇流条占据的空间外,所述第二导通区内其它空间全部填充所述第二密封胶。
本申请中,所述除第二导通体和第二汇流条占据的空间外至少包括:所述第二导通体与电致变色器件的外边缘之间的间隙,以及所述第二导通体与第一基底之间的间隙。通过填充第二密封胶,可以将第二导通体的外周侧包裹在第二密封胶内,避免第二导通体与空气接触发生氧化,此外第二导通体还可以进一步对电致变色层的周侧密封,加强水氧密封的效果。
优选地,所述第一导通区与第一导电区域的交界面记为第一界面,所述第一导通区与第二导通区的交界面记为第二界面;其中,所述第一汇流条的一端位于第二界面处,所述第一汇流条的另一端位于第一界面处,或与第一界面之间保留间隔。
需要说明的是,所述第一汇流条的宽度可以等于第一导通区的宽度,即第一汇流条由第一界面一直铺设至第二界面。优选地,所述第一汇流条的宽度略短于第一导通区的宽度,其一端与第二界面平齐,另一端与第一界面之间留有一定间隔,间隔内同样会填充第一密封胶;留有间隔的原因是便于工艺操作,在设置第一导通体时可以留有足够的操作空间,减少短路可能性。
优选地,所述第一导通体的一端面与第二导通体的一端面于第二界面处形成面接触,所述第一导通体的另一端面与第一界面之间保留间隔并在间隔内填充第一密封胶,所述第二导通体的另一端与所述电致变色器件的外边缘之间保留间隔并填充第二密封胶。
作为本申请的优选技术方案,所述第一导通体和电致变色层之间的间隙中填充第一密封胶,确保第一导通体不会接触到电致变色层和第一导电区域,从而起到绝缘效果,避免电致变色器件发生短路失效。同时,第一密封胶将电致变色层周侧密封,还可以起到隔绝水汽的效果,避免水汽侵入电致变色区,延长电致变色器件使用寿命。所述第二密封胶将第二导通体的外周侧包裹在密封胶内,避免第二导通体与空气接触发生氧化,此外第二密封胶还可以进一步对电致变色层的周侧密封,加强水氧密封的效果。
优选地,所述第一导通体的一端面和所述第一汇流条的一端均与所述第二导通体的一端面于第二界面处形成面接触。
作为进一步优选的技术方案,本申请对第一导通体和第二导通体的接触状态不作具体要求和特殊限定,只要同时满足如下两个要求即可:
(1)第一导通体的侧面与第二导通体的侧面接触,二者连接构成导通件;
(2)第一导通体的表面不会直接接触到相对另一侧的结构层,同样地,第二导通体的表面也不会直接接触到相对另一侧的结构层。
在满足上述要求的前提下,第一导通体和第二导通体的接触状态和各表面高度位置关系可以有多种变化,为了清楚描述第一导通体和第二导通体各表面高度位置关系,对第一导通体和第二导通体的两侧表面分别进行了命名:第一导通体与第一汇流条的接触面记为第一接触面,第一接触面的相对一侧表面记为第一表面;同样地,第二导通体与第二汇流条的接触面记为第二接触面,第二接触面的相对一侧表面记为第二表面。
示例性地,本申请提供了如下四种可选地各表面高低位置关系:
(1)第一接触面高于第二表面,第一表面的延长面位于第二表面和第二接触面之间,相当于第一导通体的厚度与第二导通体的厚度相当,第一导通体的接触侧面与第二导通体的接触侧面存在相互错开的区域,第一导通体的整体高于第二导通体;
(2)第一接触面的延长面和第一表面的延长面均位于第二表面和第二接触面之间;相当于第一导通体的厚度小于第二导通体的厚度,第二导通体的接触侧面完全覆盖了第一导通体的接触侧面;
(3)第一接触面的延长面位于第二表面和第二接触面之间,第一表面低于第二接触面,且第一表面的延长线位于第二汇流条两侧表面之间,相当于第一导通体的厚度与第二导通体的厚度相当,第一导通体的接触侧面与第二导通体的接触侧面相互错开,第一导通体的整体低于第二导通体;或
(4)第一接触面高于第二表面,第二表面的延长面位于第一表面和第一接触面之间,第一表面的延长面位于第二汇流条的两侧表面之间;相当于第一导通体的厚度大于第二导通体的厚度,第一导通体的接触侧面完全覆盖了第二导通体的接触侧面。
当然以上四种位置关系仅作示例性表述,不代表仅包括如上四种情形,只要能满足导通要求的任意一种位置状态均可用于本申请中。
优选地,所述第一基底与第一基材层之间设置第一光学胶层,所述第二基底与第二基材层之间设置第二光学胶层。
优选地,所述第一基底和/或所述第二基底为水氧阻隔膜。
优选地,所述第一基底和/或所述第二基底为外观纹理膜。
在本申请中,所述外观纹理膜为带有纹理图案效果的膜片。
本申请中,所述第一透明导电层和第二透明导电层具有良好的光透光性,用于展示电致变色器件的光学性质变化,其材料包括但不限于氧化铟锡(ITO)、氧化铝锌(AZO)、氟掺杂氧化锡(FTO)、纳米银线、石墨烯、碳纳米管、金属网格或银纳米颗粒中的任意一种或至少两种的组合。
优选地,所述第一透明导电层和第二透明导电层的厚度各自独立地为0.1nm~10μm,例如可以为0.1nm、0.5nm、1nm、5nm、10nm、100nm、500nm、1μm、3μm、5μm、7μm或10μm,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举所述范围包括的具体点值,进一步优选为0.1nm~1μm。
优选地,所述第一基材层和第二基材层中的至少一个优选为透明的,以用于展示电致变色器件的光学性质变化。
优选地,所述第一基材层、第二基材层的材料各自独立地包括玻璃、塑料、金属。所述塑料包括但不限于聚对苯二甲酸乙二醇酯(PET)、环烯烃共聚物或三醋酸纤维素中的任意一种或至少两种的组合。
优选地,所述第一基材层、第二基材层的厚度各自独立地为20~500μm,例如可以为20μm、50μm、100μm、150μm、200μm、250μm、300μm、350μm、400μm、450μm或500μm,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举所述范围包括的具体点值。当基材层的材料为玻璃时,不对基材层的厚度做过多限定,本领域技术人员可以根据实际应用进行合理地选择。
优选地,所述第一基材层和/或所述第二基材层为柔性基材层。
作为本申请的优选技术方案,所述第一基材层和第二基材层中的至少一个设置为可弯曲的柔性基材层,从而可以降低对导通件(第一导通体和第二导通体)厚度的精度要求,在导通件(第一导通体或第二导通体)略微偏厚或偏薄的情况下,依然能保证第一透明导电层和第二导电区域紧密连接,降低导通件内部(例如第一导通体与第二导通体之间)断开的可能性,避免电致变色器件发生断路,提高工艺的可实现性和电致变色器件的产品良率。
优选地,所述导通件的材料包括导电银浆、导电铜浆、导电碳浆、纳米银导电油墨中的任意一种或至少两种的组合,进一步优选为导电银浆。
优选地,所述电致变色器件还包括密封件,所述密封件沿所述电致变色层的周侧设置;由此,可以对电致变色层的周侧进行密封,防止水汽等入侵,从而提高电致变色器件的使用寿命。
第二方面,本申请提供了一种电子设备,所述电子设备包括如第一方面所述的电致变色器件。
本申请的包括上述电致变色器件的电子设备,生产成本低,生产工艺简便,生产效率高,产品良率高,产品稳定性好。
相对于现有技术,本申请具有以下有益效果:
本申请提供的电致变色器件中,通过在第二透明导电层上设置隔断槽,将第二透明导电层分为相互隔断的两个区域,进而通过导通件将第一透明导电层和第二导电区域电连接,实现同侧电极引出;用于连接第一透明导电层的电极引线和用于连接第二透明导电层的电极引线可以均从第二透明导电基底层引出,便于通过一次热压焊即同时对电致变色器件的两个电极引线完成焊接,工艺简便,提高了生产效率和产能,改善了产品良率,有利于实现自动化生产,且有利于尽可能减小无法发生变色的电极引出区域的面积。
附图说明
图1为具体实施方式提供的还未设置导通件的电致变色器件的结构示意图;
图2为实施例1提供的电致变色器件的结构示意图;
图3为实施例2提供的电致变色器件的结构示意图;
图4为实施例3提供的电致变色器件的结构示意图;
图5为实施例4提供的电致变色器件的结构示意图;
图6为实施例5提供的电致变色器件的结构示意图;
图7为实施例6~10提供的电致变色器件的俯视结构示意图;
图8为实施例6提供的电致变色器件的A-A剖面的结构示意图;
图9为实施例7提供的电致变色器件的A-A剖面的结构示意图;
图10为实施例8提供的电致变色器件的A-A剖面的结构示意图;
图11为实施例9提供的电致变色器件的B-B剖面的结构示意图;
图12为实施例9提供的电致变色器件的C-C剖面的结构示意图;
图13为实施例10提供的电致变色器件的B-B剖面的结构示意图;
图14为实施例10提供的电致变色器件的C-C剖面的结构示意图;
图15为实施例12提供的电致变色器件的结构示意图;
图16为实施例13提供的电致变色器件的结构示意图;
图17为实施例14提供的电致变色器件的结构示意图;
图18为实施例15提供的电致变色器件的结构示意图;
图19为实施例16提供的电致变色器件的结构示意图;
图20为实施例17提供的电致变色器件的结构示意图;
图21为应用例1提供的电子设备的结构示意图。
具体实施方式
下面通过具体实施方式来进一步说明本申请的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
在一个具体实施方式中,如图1至图6所示,所述电致变色器件包括依次叠加设置的第一导电基底层1、电致变色层2和第二导电基底层3,第一导电基底层1包括依次叠加设置的第一透明导电层11和第一基材层12,第一透明导电层11粘接在电致变色层2的一侧,第二导电基底层3包括依次叠加设置的第二透明导电层31和第二基材层32,第二透明导电层31粘接在电致变色层2的另一侧;第二透明导电层31上开设隔断槽4以使得第二透明导电层31分为两个相互独立的第一导电区域311和第二导电区域312,至少部分第二导电区域312对应的电致变色层2被去除以形成导通口5,导通口5内灌注具有导电性的导通件6,导通件6用于将第一透明导电层11和第二导电区域312电连接。
需要说明的是,首先对第二透明导电层31进行蚀刻,从而开设出隔断槽4以使得第二透明导电层31分为两个相互独立的第一导电区域311和第二导电区域312,第二导电区域312对应的至少部分电致变色层2被去除以形成导通口5,导通口5灌注有液态形式的导通材料,进而转变为固态形式的导通件6,导通件6分别与第一透明导电层11和位于导通口5的第二导电区域312相连通,将第一透明导电层11和第二导电区域312电连接,从而实现同侧电极引出,因此,用于连接第一透明导电层11的电极引线和用于连接第二透明导电层31的电极引线可以均从第二导电基底层3引出,便于通过一次热压焊即同时对电致变色器件的两个电极引线完成焊接,工艺简单,有利于实现自动化生产,大大提高了工作效率和产品良率。
可选地,如图1至图6所示,第一导电区域311至少靠近隔断槽4一侧的表面被电致变色层2覆盖。
需要解释说明的是,由于第一导电区域311靠近隔断槽4一侧的表面被电致变色层2覆 盖,因此,可以确保导通口5灌注导通件6之后,导通件6不会接触到第一导电区域311,从而不会导致第一导电区域311和第二导电区域312发生电连接,进而避免电致变色器件发生短路的情况。
可选地,如图2、图3、图4、图5和图6所示,导通件6的周侧的至少部分表面紧邻电致变色层2。
需要说明的是,由于导通件6的周侧的至少部分表面紧邻电致变色层2,起到支撑和固定导通件6的作用,从而确保第一透明导电层11通过导通件6与第二导电区域312电连接的可靠性。如图2和图3所示的一些实施例中,导通件6的周侧的部分表面紧邻电致变色层2,导通口5均为敞开设置;如图4和图5所示的一些实施例中,导通件6的周侧的全部表面紧邻电致变色层2,导通口5呈容纳槽或者容纳腔的形式。导通件6的周侧的全部表面紧邻电致变色层2相比部分表面紧邻电致变色层2而言,其支撑效果更好、更加稳定。
可选地,如图1至图4以及图6所示,导通口5贯穿第一导电基底层1。可以理解的是,将导通口5贯穿第一导电基底层1设置,便于将液态形式的导通件6从顶部沿着电致变色器件靠近导通口5的侧面灌注到导通口5内,使得导通件6与第一透明导电层11与第二导电区域312的电连接更加稳定。
可选地,如图3所示,导通件6的顶侧的至少部分表面溢出导通口5,且覆盖至少部分第一导电基底层1远离电致变色层2的一面。
需要解释说明的是,如图3所示的实施例中,由于导通件6的顶侧的至少部分表面溢出导通口5,且覆盖至少部分第一导电基底层1远离电致变色层2的一面,则导通件6和第一基材层12的端面不易裂开,避免了第一透明导电层11和第二导电区域312的电连接失效,黏合效果更好,提高了生产良率。
可选地,如图2和图3所示,导通件6的周侧的至少部分表面不贴近电致变色层2。
可以理解的是,如图2和图3所示的实施例,均为导通件6的周侧的至少部分表面不贴近电致变色层2。在形成导通口5时,例如可以通过激光切割后去除导通口5区域对应的第一导电基底层1,然后通过擦拭去除导通口5内的电致变色层2的材料,如图2、3所示的导通口5的右侧无材料等遮挡,这样在去除第一导电基底层1和电致变色层2时,在工艺上都更易于实现,大大提高产品良率。对于如图2和图3的结构,导通件6覆盖在导通口5左侧的侧壁上,依附于第一导电基底层1、电致变色层2的侧面,实现第一透明导电层11和第二导电区域312的电连接。作为优选方案,为了避免导通件6从第一导电基底层1和电致变色层2的侧面裂开,将导通件6的顶部部分覆盖于第一导电基底层1的表面,从而加强导通件6与第一导电基底层1和电致变色层2的侧面的连接稳定性,确保第一透明导电层11和第二导电区域312的电连接的可靠性,避免产品由于断路造成的失效,大大提高了产品的良率。
可选地,如图5所示,导通件6的顶侧覆盖于第一导电基底层1下。如图5所示的实施例中,首先将与导通口5顶侧对应部分的第一导电基底层1的至少相邻的两侧进行蚀刻,将蚀刻部分的第一导电基底层1掀开或取出,用针头将导通件6点浆在导通口5内,再将第一导电基底层1固定在原来的位置,该方式的导通件6与第一汇流条10A的接触面积更大,大大提高了导通良率。
可选地,如图1至图5所示,电致变色器件的导通结构还包括第一汇流条10A,第一汇 流条10A设置于第一透明导电层11表面和/或内部,且第一汇流条10A与导通件6连接。
可以理解的是,由于第一汇流条10A设置于第一透明导电层11表面和/或内部,且第一汇流条10A与导通件6连接,设置第一汇流条10A有助于将电子从导通件6快速传递到整片第一透明导电层11中,提高导电速率,提高变色速度。
补充说明的是,也可在第一导电区域311和第二导电区域312上设置第二汇流条10B,在第一导电区域311和第二导电区域312能够导电的基础上,进一步地提高了导电性能,从而再进一步地提高了导通良率。
可选地,电致变色层2包括叠加的电致变色材料层、电解质层和离子储存层。电致变色材料层、电解质层和离子储存层的材料可以采用现有技术中的材料,本申请对此不作特殊限定。
可选地,第一基材层12远离电致变色层2的一面设置第一基底111(第一水氧阻隔层);第二基材层32远离电致变色层2的一面设置第二基底112(第二水氧阻隔层)。可以理解的是,第一基材层12和第二基材层32的一面采用水氧阻隔层能够较好地隔绝外部的水汽和氧气,从而避免水汽和氧气进入电致变色层2内影响其正常工作的现象。
有利地,如图6所示,电致变色器件还包括光学胶层(第一光学胶层121和第二光学胶层122),光学胶层粘接在第一基材层12和/或第二基材层32远离电致变色层2的一面上。可以理解的是,光学胶层能够有效地将水氧阻隔层与第一基材层12和/或第二基材层32相连接,连接牢固、稳定,粘接强度好。
下面结合图2至图6对进行详细说明。
实施例1
一种电致变色器件,其结构示意图如图2所示,包括依次叠加设置的第一导电基底层1、电致变色层2和第二导电基底层3,第一导电基底层1包括依次叠加设置的第一透明导电层11和第一基材层12,第一透明导电层11连接在电致变色层2的一侧,第二导电基底层3包括依次叠加设置的第二透明导电层31和第二基材层32,第二透明导电层31连接在电致变色层2的另一侧,第二透明导电层31上开设隔断槽4以使得第二透明导电层31分为两个相互独立的第一导电区域311和第二导电区域312,至少部分第二导电区域312对应的电致变色层2被去除以形成导通口5,导通口5为敞开设置,导通口5内灌注具有导电性的导通件6,导通件6用于将第一透明导电层11和第二导电区域312电连接。第一导电区域311靠近隔断槽4一侧的表面被电致变色层2覆盖,导通件6的周侧的部分表面紧邻电致变色层2,部分表面不贴近电致变色层2,导通口5贯穿第一导电基底层1。
实施例2
一种电致变色器件,其结构示意图如图3所示,其与实施例1的区别仅在于,所述导通件6的顶侧的至少部分表面溢出导通口5,且覆盖至少部分第一导电基底层1远离电致变色层2的一面。
实施例3
一种电致变色器件,其结构示意图如图4所示,其与实施例1的区别仅在于,导通口5为开口朝上的容纳槽,导通件6的周侧的全部表面紧邻电致变色层2。
实施例4
一种电致变色器件,其结构示意图如图5所示,其与实施例1的区别仅在于,导通口5为封闭的容纳腔,导通件6的周侧的全部表面紧邻电致变色层2,且导通件6的顶侧覆盖于第一导电基底层1之下。
实施例5
一种电致变色器件,其结构示意图如图6所示,其与实施例1的区别仅在于,第一基底(水氧阻隔层)111通过第一光学胶层121粘接在第一基材层12远离电致变色层2的一面上,第二基底(水氧阻隔层)112通过第二光学胶层122粘接在第二基材层32远离电致变色层2的一面上;其中,第一基底111和第一光学胶层121的宽度窄于第一基材层12,从而可以将导通件6的顶部部分覆盖于第一基材层12的表面,加强导通件6与第一导电基底层1和电致变色层2的侧面的连接稳定性,确保第一透明导电层11和第二导电区域312的电连接的可靠性,避免产品由于断路造成的失效,大大提高了产品的良率。
所述电致变色器件在制备过程中,可以预先将第一基底111和第一光学胶层121距离第一基材层12的侧边一定距离贴合,以提供一定面积的第一基材层12表面供导通件6附着;也可以先贴合与第一基材层12同宽的第一光学胶层121和第一基底111,再沿第一基材层12的侧边切除掉一小段第一基底111和第一光学胶层121,以形成如图6上裸露的第一基材层12表面,供导通件6附着。
实施例6
一种电致变色器件,其俯视结构示意图如图7所示,电致变色器件100包括电极引出区域101。
所述电致变色器件的A-A剖面的结构示意图如图8所示,包括依次叠加设置的第二基材层32、第二透明导电层31、电致变色层2、第一透明导电层11和第一基材层12;所述电致变色层2包括依次层叠的电致变色材料层21、电解质层22和离子存储层23,电致变色材料层21设置于靠近第二透明导电层31的一侧。所述第二透明导电层31由导电材料ITO构成,其上开设隔断槽4(宽度为0.1mm),将第二透明导电层31分割为相互独立的第一导电区域311和第二导电区域312。
在电致变色器件的电极引出区域101中,第二导电区域312的远离第二基材层32的一面设置第二导通体62,第一透明导电层11的远离第一基材层12的一面设置第一导通体61,第一导通体61和第二导通体62对合形成导通件;第一导通体61的表面粗糙度为3μm,第二导通体62的表面粗糙度为3μm。所述第一导电区域311连接第一引出电极(图中未示出),所述第二导电区域312连接第二引出电极(图中未示出);导通件(第一导通体61和第二导通体62)的侧面的至少部分与所述电致变色层接触。电致变色材料层21设置第二隔断区211;在制备过程中,将电致变色材料层21涂布于第二透明导电层31表面形成第一层叠件,再从电致变色材料层21的远离第二透明导电层31的一面开设第二隔断区211(宽度为0.2mm),所述第二隔断区211在所述第二透明导电层31的投影与所述隔断槽4部分重合,部分不重合。制备第二层叠件,包括依次层叠的第一基材层12、第一透明导电层11和离子存储层23。
在第一层叠件和第二层叠件之间加入电解质材料,对合层压第一层叠件和第二层叠件,则第二隔断区211内填充与所述电解质层22的材料相同的电解质材料,所述电解质层22通过所述第二隔断区211内的电解质材料与所述隔断槽4接触。
电致变色层的厚度为50μm,第一导通体的厚度为25μm,第二导通体的厚度为25μm。第一基材层和第二基材层均为柔性PET层。
本实施例的电致变色器件通过在第二透明导电层上设置隔断槽,使其分为相互隔断、不会互相电连通的两个区域,进而从第一导电区域引出第一引出电极,从第二导电区域引出第二引出电极,使得第一引出电极和第二引出电极均从电致变色器件的第二透明导电层引出,在焊接时可以采用集成两条引出线路的柔性线路板,从电致变色器件的第一导电层一面进行一次热压焊,从而通过一次热压焊即可实现对第一引出电极和第二引出电极的焊接引出,大大简化了生产工艺,提高了生产效率,且有利于提高产品良率。为了避免电致变色器件内部微短路的发生,还进一步在电致变色层上设置第二隔断区,从而避免电致变色层中的导电物质或导电微粒等填充隔断槽,造成隔断槽的隔断失效。通过预先设置的第一导通体和第二导通体,在对合第一层叠件和第二层叠件时,第一导通体和第二导通体即可对合,可以很方便地将第一透明导电层和第二导电区域紧密连接,从而确保从第二透明导电层的第二导电区域引出的第二电极可以很好地为第一透明导电层供电,工艺简便,大大提高了生产产能。通过对第一导通体和第二导通体的表面粗糙度进行调节,增加二者的对合面的接触点,从而提高第一导通体和第二导通体的接触紧密程度,确保第一导通体和第二导通体的电连通有效性。
实施例7
一种电致变色器件,其俯视结构示意图如图7所示,电致变色器件100包括电极引出区域101。
所述电致变色器件的A-A剖面的结构示意图如图9所示,包括依次叠加设置的第二基材层32、第二透明导电层31、电致变色层、第一透明导电层11和第一基材层12;所述电致变色层包括依次层叠的离子存储层23、电解质层22和电致变色材料层21,离子存储层23设置于靠近第二透明导电层31的一侧。所述第二透明导电层31由导电材料ITO构成,其上开设的隔断槽4将第二透明导电层31分割为相互独立的第一导电区域311和第二导电区域312,本实施例的第二导电区域312与隔断槽4重合。
在电致变色器件的电极引出区域101中,第二导电区域312的远离第二基材层32的一面设置第二导通体62,第一透明导电层11的远离第一基材层12的一面设置第一导通体61,第一导通体61和第二导通体62对合形成导通件;第一导通体61的表面粗糙度为4μm,第二导通体62的表面粗糙度为4μm。所述第一导电区域311连接第一引出电极(图中未示出),所述第二导电区域312连接第二引出电极(图中未示出);导通件(第一导通体61和第二导通体62)的侧面的至少部分与所述电致变色层接触。离子存储层23设置第二隔断区211;在制备过程中,将离子存储层23涂布于第二透明导电层31表面形成第一层叠件,以及将电致变色材料层21涂布于第一透明导电层11表面形成第二层叠件,再在第一层叠件和第二层叠件之间加入电解质材料,对合层压第一层叠件和第二层叠件;再从第二基材层32的远离离子存储层23的一面开设第二隔断区221,第二隔断区221贯穿第二基材层32、第二透明导电层31和离子存储层23,第二隔断区221的宽度为0.2mm,所述第二隔断区221在所述第二透明导电层31的投影全部落入隔断槽4内。第二隔断区221内无填充物质。
电致变色层的厚度为40μm,第一导通体的厚度为20μm,第二导通体的厚度为20μm。第一基材层采用的材料为ITO玻璃,第二基材层采用的材料为柔性PET。
本实施例的电致变色器件通过在第二透明导电层上设置隔断槽,使其分为相互隔断、不会互相电连通的两个区域,进而从第一导电区域引出第一引出电极,从第二导电区域引出第二引出电极,使得第一引出电极和第二引出电极均从电致变色器件的第二透明导电层引出,在焊接时可以采用集成两条引出线路的柔性线路板,从电致变色器件的第一导电层一面进行一次热压焊,从而通过一次热压焊即可实现对第一引出电极和第二引出电极的焊接引出,大大简化了生产工艺,提高了生产效率,且有利于提高产品良率。进一步从离子存储层上开设第二隔断区,加工便利,生产效率高。通过预先设置的第一导通体和第二导通体,在对合第一层叠件和第二层叠件时,第一导通体和第二导通体即可对合,可以很方便地将第一透明导电层和第二导电区域紧密连接,从而确保从第二透明导电层的第二导电区域引出的第二电极可以很好地为第一透明导电层供电,工艺简便,大大提高了生产产能。通过对第一导通体和第二导通体的表面粗糙度进行调节,增加二者的对合面的接触点,从而提高第一导通体和第二导通体的接触紧密程度,确保第一导通体和第二导通体的电连通有效性。
可选地,在本实施例的其它替代实施例中,第二隔断区211还可以在贯穿第二基材层32、第二透明导电层31和离子存储层23的基础上,进一步再在纵向贯穿部分或全部电解质层22,或进一步再在纵向贯穿电解质层22和部分或全部电致变色材料层21。
实施例8
一种电致变色器件,其俯视结构示意图如图7所示,电致变色器件100包括电极引出区域101;所述电致变色器件的A-A剖面的结构示意图如图10所示,其与实施例6的区别仅在于,所述第二隔断区211在所述第二透明导电层31的投影全部落入所述隔断槽4内。第一导通体61的表面粗糙度为4μm,第二导通体62的表面粗糙度为3μm。电致变色层的厚度为30μm,第一导通体61的厚度为15μm,第二导通体62的厚度为15μm。
本实施例的电致变色器件具有与实施例6相同的有益效果。
实施例9
一种电致变色器件,其俯视结构示意图如图7所示,电致变色器件100包括电极引出区域101;所述电致变色器件的B-B剖面的结构示意图如图11所示,C-C剖面的结构示意图如图12所示,其与实施例8的区别仅在于,第一透明导电层11上设置第一汇流条10A,在第二透明导电层31上设置第二汇流条10B,所述第一导通体61为所述第一汇流条10A的端部的部分。所述第二汇流条10B在所述第一透明导电层11上的投影和所述第一汇流条10A在所述第一透明导电层11上的投影互不重合。
本实施例的电致变色器件在具备实施例8的有益效果的基础上,进一步通过设置第一汇流条和第二汇流条以提高第一透明导电层和第二透明导电层的电压分布均匀性,从而提高电致变色器件的变色速度和变色均匀性。通过将第一导通体作为第一汇流条的一部分,从而无需再单独设置第一导通体,在制作第一汇流条时即可将第一导通体制作好,简化了加工步骤,提高了生产产能。此外再进一步通过调节第一汇流条和第二汇流条在平面上的分布,使得二者不会发生上下接触而导致电致变色器件的短路失效。本实施例大大提高了电致变色器件的变色速度、变色均匀性和产品可靠性。
实施例10
一种电致变色器件,其俯视结构示意图如图7所示,电致变色器件100包括电极引出区 域101;所述电致变色器件的B-B剖面的结构示意图如图13所示,C-C剖面的结构示意图如图14所示,其与实施例6的区别仅在于,第二透明导电层31的面阻大于第一透明导电层11的面阻,其中,第二透明导电层31的面阻为90Ω,第一透明导电层11的面阻为45Ω,第二透明导电层31上设置第二汇流条10B,所述第二汇流条10B与所述电致变色层不相接触。在本实施例中,由于第一透明导电层11的面阻较小,因此其上不设置汇流条。第二汇流条10B沿第一导电区域311的周边设置,且不设置于第一导电区域311和第二导电区域312相邻的周边。所述电致变色材料层21位于靠近所述第二透明导电层31的一侧,所述第二隔断区211设置于所述电致变色材料层21上。
本实施例的电致变色器件在具备实施例6的有益效果的基础上,进一步将具有较高面阻的第二透明导电层和具有较低面阻的第一透明导电层的匹配,其中具有较高面阻的第二透明导电层的光透过率更高,具有较低面阻的第一透明导电层的导电速度更快,从而协同实现电致变色器件的鲜明地展示电致变色层颜色,以及快速、均匀变色的效果。同时,在第二透明导电层上设置第二汇流条,以提高第二透明导电层的电压分布均匀性,从而进一步提高电致变色器件的变色速度和变色均匀性。由于第二透明导电层具有更高的光透过率,电致变色器件的颜色主要由电致变色材料层显示,因此本实施例进一步将电致变色材料层设置在靠近第二透明导电层的一侧,当用户从第二透明导电层的外侧观看时,电致变色器件的颜色展示效果更优。
实施例11
一种电致变色器件,其与实施例10的区别仅在于,离子存储层位于靠近所述第二透明导电层的一侧,第二隔断区设置于离子存储层。第二透明导电层的面阻为90Ω,第一透明导电层的面阻为30Ω。
本实施例的电致变色器件在具备实施例6的有益效果的基础上,进一步通过具有较高面阻的第二透明导电层和具有较低面阻的第一透明导电层的匹配,其中具有较高面阻的第二透明导电层的光透过率更高,具有较低面阻的第一透明导电层的导电速度更快,从而协同实现电致变色器件的鲜明地展示电致变色层颜色,以及快速、均匀变色的效果。并在第二透明导电层上设置第二汇流条,以提高第二透明导电层的电压分布均匀性,从而进一步提高电致变色器件的变色速度和变色均匀性。
实施例12
在前述实施例6~11的任意一个实施例的基础上,均可再进一步设置第一基底111、第二基底112和密封件130。
一种电致变色器件,其结构示意图如图15所示,其与实施例11的区别仅在于,第一基材层12的远离所述第一透明导电层11的一面通过第一光学胶层121与所述第一基底111连接;在所述第二基材层32的远离所述第二透明导电层31的一面通过第二光学胶层122与所述第二基底112连接。密封件130沿所述电致变色层的周侧设置。所述密封件130设置于所述第一基底111与第二基底112之间,第一基底111的至少一侧边缘长于第一基材层12,第二基底112的至少一侧边缘长于第二基材层32,密封件130的外侧面在所述第一基底111的投影与所述第一基底111的外周重合,密封件130的外侧面在所述第二基底112的投影与所述第二基底112的外周重合。
第一基底111为柔性水氧阻隔膜,第二基底112为玻璃。第二光学胶层122的材料可以阻隔紫外光。
本实施例的电致变色器件在具备实施例11的有益效果的基础上,进一步通过设置第一基底和第二基底,能够提高对电致变色器件的保护,提高电致变色器件的机械结构强度,并进一步避免外部环境的水氧等从第一基底入侵而影响电致变色器件的使用寿命;以及将密封件填充于第一基底和第二基底之间,且位于电致变色材料层周侧的空间区域,从而可以很好地起到密封效果,避免水氧等对电致变色层的影响,从而提高电致变色器件的使用寿命。本实施例进一步通过将第二光学胶层的材料设置为可以阻隔紫外光的光学胶层,可以减缓固态电解质层的材料老化,提高电致变色器件的使用寿命。
实施例13
一种电致变色器件,其结构示意图如图16所示,包括依次叠加设置的第一基材层12、第一透明导电层11、电致变色层、第二透明导电层31和第二基材层32;所述第一基材层12的远离第一透明导电层11的一侧依次设置第一光学胶层121和第一基底111,所述第二基材层32的远离第二透明导电层31的一侧依次设置第二光学胶层122和第二基底112;第二透明导电层31上开设隔断槽4以使第二透明导电层31分为两个相互独立的第一导电区域311和第二导电区域312,且所述隔断槽4贯穿所述第二基材层32。
导通件用于将第一透明导电层11和第二导电区域312电连接,所述导通件包括第一导通体61和第二导通体62,所述第一导通体61与所述第一透明导电层11的远离所述第一基材层12的一侧连接,所述第二导通体62设置于所述第二导电区域312的远离第二基材层32的一侧;所述第一导通体61的侧面与所述第二导通体62的侧面接触连接。
所述隔断槽4与第一透明导电层11之间的区域为第一导通区,所述第一导通区内包括第一导通体61和第一密封胶141;所述第一导通体61的至少部分表面上覆盖第一密封胶141,以使得所述第一导通体61不与所述电致变色层以及所述第二透明导电层31接触;所述第二导电区域312与第一基底111之间的区域为第二导通区,所述第二导通区内包括第二导通体62和第二密封胶142;所述第二导通体62的至少部分表面上覆盖第二密封胶142。除第一导通体61占据的空间外,第一导通区内其它空间全部填充第一密封胶141;除第二导通体62占据的空间外,第二导通区内其它空间全部填充第二密封胶142。
所述第一导电区域311与第一导通区的交界面记为第一界面,第一导通区和第二导通区的交界面记为第二界面。第一导通体61的一端面位于第二界面处,另一端面与第一界面之间保留间隔并在间隔内填充第一密封胶141。第二导通体62的一端面位于第二界面处且与第一导通体61的一端面接触,第二导通体62的另一端与电致变色器件的外边缘之间保留间隔并填充第二密封胶142。
在第二界面处,第二导通体62的一端面与第一导通体61的一端面形成部分面接触,为了便于描述,对各面进行命名:第一导通体61与第一透明导电层11的接触面记为第一接触面,第一接触面的相对一侧表面记为第一表面;同样地,第二导通体62与第二导电区域312的接触面记为第二接触面,第二接触面的相对一侧表面记为第二表面。第一接触面高于第二表面,第一表面的延长面位于第二表面和第二接触面之间,相当于第一导通体61的厚度与第二导通体62的厚度相当,第一导通体61的接触侧面与第二导通体62的接触侧面存在相互错 开的区域,第一导通体61的整体高于第二导通体62。
电致变色层包括依次层叠的离子存储层23、电解质层22和电致变色材料层21,离子存储层23设置于靠近第一透明导电层11的一侧。
第一基底111为水氧阻隔膜,第二基底112为外观纹理膜,第一导通体61和第二导通体62的材料均为银浆,第一基材层12和第二基材层32均为PET层。
本实施例还提供了所述电致变色器件的制备方法,具体包括如下步骤:
(1)制备电致变色叠层,电致变色叠层包括依次层叠的第一基材层12、第一透明导电层11、电致变色层、第二透明导电层31和第二基材层32;第一基材层12的外侧带有第一光学胶层121和背膜;
(2)从第一基材层12一侧切割形成第二凹槽,将第二凹槽内的第一基材层12、第一透明导电层11、电致变色层全部去除;
(3)向第二凹槽内填充第二导通体62,在第二导通体62表面填充第二密封胶142;
(4)去除第一基材层12外侧的背膜,在第一基材层12外表面设置第一基底111,固化第二密封胶142,形成第二导通区;
(5)从第二基材层32一侧切割形成隔断槽4,将隔断槽4内的第二基材层32、第二透明导电层31和电致变色层全部去除;其中,隔断槽4和第二凹槽水平相邻设置,隔断槽4将第二基材层32和第二透明导电层31分割为两个互不接触的第一导电区域311和第二导电区域312;
(6)在隔断槽4内填充第一导通体61,再在第一导通体61表面填充第一密封胶141;
(7)在第二基材层32外表面依次设置第二光学胶层122和第二基底112,固化第一密封胶141,形成第一导通区;
(8)将靠近第二导通区外侧的电致变色叠层,沿第二密封胶141的边缘切除,即制得本申请的电致变色器件。
在本申请的一些其它实施例中,可以先制备第二导通区,再制备第一导通区,即将本实施例中的步骤(2)-(4)与步骤(5)-(7)交换。
在本申请的一些其它实施例中,与本实施例不同的是,在步骤(1)中制备的电致变色叠层,第一基材层12外侧不带有第一光学胶层121和背膜,则在贴附第一基底111时需要另外设置胶层。
在本申请的一些其它实施例中,与本实施例不同的是,在步骤(1)中制备的电致变色叠层,第一基材层12的外侧带有第一光学胶层121和背膜,且第二基材层32的外侧带有第二光学胶层122和背膜;则在贴附第一基底111和第二基底112时无需再另外设置胶层。
在本申请的一些其它实施例中,与本实施例不同的是,在实施例1中制备的电致变色叠层,第一基材层12外侧不带有第一光学胶层121和背膜,且第二基材层32的外侧带有第二光学胶层122和背膜;则在贴附第一基底111时需要另外设置胶层。
实施例14
一种电致变色器件,其结构示意图如图17所示,其与实施例13的区别在于,第一透明导电层11与第一导通体61之间设置有第一汇流条10A,第一汇流条10A的宽度大于第一导通体61的宽度,除第一导通体61和第一汇流条10A占据的空间外,第一导通区内其它空间 全部填充第一密封胶141。
所述第二导电区域312与第二导通体62之间设置有第二汇流条10B,第二汇流条10B的宽度大于第二导通体62的宽度,除第二导通体62和第二汇流条10B占据的空间外,第二导通区内其它空间全部填充第二密封胶142。
所述第一导电区域311与第一导通区的交界面记为第一界面,第一导通区和第二导通区的交界面记为第二界面。第一汇流条10A的一端与第一导通体61的一端面对齐且均位于第二界面处,第一汇流条10A的另一端与第一界面之间保留间隔,第一导通体61的另一端面与第一界面之间保留间隔,第一导通体61与第一界面之间的间隔宽度大于第一汇流条10A与第一界面之间的间隔宽度,在间隔内填充第一密封胶141。第二导通体62的一端面位于第二界面处且与第一导通体61的一端面接触,另一端与电致变色器件的外边缘之间保留间隔并填充第二密封胶142。
在第二界面处,第二导通体62的一端面与第一导通体61的一端面形成完全面接触,为了便于描述,对各面进行命名:第一导通体61与第一汇流条10A的接触面记为第一接触面,第一接触面的相对一侧表面记为第一表面;同样地,第二导通体62与第二汇流条10B的接触面记为第二接触面,第二接触面的相对一侧表面记为第二表面。第一接触面的延长面和第一表面的延长面均位于第二表面和第二接触面之间;相当于第一导通体61的厚度小于第二导通体62的厚度,第二导通体62的接触侧面完全覆盖了第一导通体61的接触侧面。
实施例15
一种电致变色器件,其结构示意图如图18所示,其与实施例14的区别在于,在第二界面处,第二导通体62的一端面与第一导通体61的一端面形成部分面接触;第一接触面的延长面位于第二表面和第二接触面之间,第一表面低于第二接触面,且第一表面的延长线位于第二汇流条10B两侧表面之间,相当于第一导通体61的厚度与第二导通体62的厚度相当,第一导通体61的接触侧面与第二导通体62的接触侧面相互错开,第一导通体61的整体低于第二导通体62。
实施例16
一种电致变色器件,其结构示意图如图19所示,其与实施例14的区别在于,第一接触面高于第二表面,第二表面的延长面位于第一表面和第一接触面之间,第一表面的延长面位于第二汇流条10B的两侧表面之间;相当于第一导通体61的厚度大于第二导通体62的厚度,第一导通体61的接触侧面完全覆盖了第二导通体62的接触侧面。
实施例17
一种电致变色器件,其结构示意图如图20所示,其与实施例14的区别在于,在第二界面处,第二导通体62的一端面与第一导通体61的一端面形成部分面接触;第一接触面高于第二表面,第一表面的延长面位于第二表面和第二接触面之间,相当于第一导通体61的厚度与第二导通体62的厚度相当,第一导通体61的接触侧面与第二导通体62的接触侧面相互错开,第一导通体61的整体高于第二导通体62。
应用例1
一种电子设备200,其结构示意图如图21所示,包含前述实施例1~17的任意一种电致变色器件100。所述电致变色器件100的第二基材层32靠近环境光线入射的一侧。
本应用例的电子设备包含上述任一实施例提供的电致变色器件,生产成本低,生产工艺简便,生产效率高,产品良率高,产品稳定性好。当仅从电致变色器件100的一侧入射环境光线时,将第二基材层设置在靠近环境光线的入射侧,从而便于通过调节靠近第二基材层一侧的第二透明导电层的面阻、电致变色材料层的材料、厚度等,使得电子设备具有更好的颜色展示效果、快速变色和均匀变色效果。

Claims (14)

  1. 一种电致变色器件,其包括依次叠加设置的第一导电基底层、电致变色层和第二导电基底层;其中,所述第一导电基底层包括依次叠加设置的第一透明导电层和第一基材层,所述第一透明导电层粘接在所述电致变色层的一侧;其中,所述第二导电基底层包括依次叠加设置的第二透明导电层和第二基材层,所述第二透明导电层粘接在所述电致变色层的另一侧;
    所述第二透明导电层上设置隔断槽使其分为相互独立的第一导电区域和第二导电区域;所述第二导电区域上设置导通件,所述导通件将所述第一透明导电层与所述第二导电区域电连接。
  2. 根据权利要求1所述的电致变色器件,其中,所述第二导电区域对应的至少部分电致变色层被去除以形成导通口,所述导通口内灌注具有导电性的所述导通件。
  3. 根据权利要求1或2所述的电致变色器件,其中,所述第一导电区域至少靠近所述隔断槽一侧的表面被所述电致变色层覆盖。
  4. 根据权利要求1~3任一项所述的电致变色器件,其中,所述导通件的周侧的至少部分表面紧邻所述电致变色层。
  5. 根据权利要求1~4任一项所述的电致变色器件,其中,所述导通件的周侧的至少部分表面不贴近所述电致变色层。
  6. 根据权利要求1~5任一项所述的电致变色器件,其中,所述导通口贯穿所述第一导电基底层;
    优选地,所述导通件的顶侧的至少部分表面溢出所述导通口,且覆盖至少部分所述第一导电基底层的远离所述电致变色层的一面。
  7. 根据权利要求1或2所述的电致变色器件,其中,所述电致变色器件还包括第一汇流条,所述第一汇流条设置于所述第一透明导电层的表面和/或内部,且与所述导通件连接。
  8. 根据权利要求1~6任一项所述的电致变色器件,其中,所述导通件的顶侧覆盖于所述第一导电基底层之下;
    优选地,所述导通件包括相互连接的第一导通体和第二导通体,所述第一导通体与所述第一透明导电层的远离所述第一基材层的一侧连接,所述第二导通体设置于所述第二导电区域的远离第二基材层的一侧。
  9. 根据权利要求8所述的电致变色器件,其中,所述第一导通体和所述第二导通体对合;所述第一导电区域连接第一引出电极,所述第二导电区域连接第二引出电极;
    所述电致变色层包括依次叠加的电致变色材料层、电解质层和离子储存层;所述电致变色层设置第二隔断区,所述第二隔断区在所述第二透明导电层的投影与所述隔断槽至少部分重合;
    优选地,所述第一导通体的表面粗糙度大于等于3μm,和/或,所述第二导通体的表面粗糙度大于等于3μm;
    优选地,所述第一导通体和第二导通体的侧面的至少部分与所述电致变色层接触;其中,
    所述电致变色材料层位于靠近所述第二透明导电层的一侧,所述第二隔断区设置于所述电致变色材料层,并将所述电致变色材料层分为相互不连接的两个区域;或,所述离子存储层位于靠近所述第二透明导电层的一侧,所述第二隔断区设置于所述离子存储层,并将所述离子存储层分为相互不连接的两个区域;
    优选地,所述第二隔断区内填充与所述电解质层的材料相同的电解质材料,以使得所述电解质层通过所述第二隔断区内的电解质材料与所述隔断槽接触。
  10. 根据权利要求9所述的电致变色器件,其中,所述第二透明导电层上设置第二汇流条;
    优选地,所述第一透明导电层上设置第一汇流条,所述第一导通体为所述第一汇流条的局部部分,或,所述第一导通体与所述第一汇流条连接;
    所述第二汇流条在所述第一透明导电层上的投影与所述第一汇流条在所述第一透明导电层上的投影互不重合;
    优选地,所述第二透明导电层的面阻大于所述第一透明导电层的面阻,所述第二汇流条沿所述第一导电区域的周边设置;
    优选地,所述第二透明导电层的面阻大于所述第一透明导电层的面阻,所述电致变色材料层位于靠近所述第二透明导电层的一侧。
  11. 根据权利要求8所述的电致变色器件,其中,所述第一基材层的远离第一透明导电层的一侧设置第一基底,所述第二基材层的远离第二透明导电层的一侧设置第二基底;所述隔断槽贯穿所述第二基材层;所述第一导通体的侧面与所述第二导通体的侧面接触连接;
    所述隔断槽与第一透明导电层之间的区域为第一导通区,所述第一导通区内包括第一导通体和第一密封胶;所述第一导通体的至少部分表面上覆盖第一密封胶,以使得所述第一导通体不与所述电致变色层以及所述第二透明导电层接触;以及
    所述第二导电区域与第一基底之间的区域为第二导通区,所述第二导通区内包括第二导通体和第二密封胶;所述第二导通体的至少部分表面上覆盖第二密封胶。
  12. 根据权利要求11所述的电致变色器件,其中,所述第一导通体与所述第一透明导电层之间设置有第一汇流条;
    优选地,所述第一汇流条的宽度大于第一导通体的宽度;
    优选地,所述第一导通体与所述电致变色层之间的间隙宽度大于所述第一汇流条与所述电致变色层之间的间隙宽度;
    优选地,除所述第一导通体和第一汇流条占据的空间外,所述第一导通区内其它空间全部填充所述第一密封胶;
    优选地,所述第二导电区域与第二导通体之间设置有第二汇流条;
    优选地,所述第二汇流条的宽度大于第二导通体的宽度;
    优选地,除所述第二导通体和第二汇流条占据的空间外,所述第二导通区内其它空间全部填充所述第二密封胶。
  13. 根据权利要求11或12所述的电致变色器件,其中,所述第一导通区与第一导电区域的交界面记为第一界面,所述第一导通区与第二导通区的交界面记为第二界面;其中,
    所述第一汇流条的一端位于第二界面处,所述第一汇流条的另一端位于第一界面处,或与第一界面之间保留间隔;
    优选地,所述第一导通体的一端面与第二导通体的一端面于第二界面处形成面接触,所述第一导通体的另一端面与第一界面之间保留间隔并在间隔内填充第一密封胶,所述第二导通体的另一端与所述电致变色器件的外边缘之间保留间隔并填充第二密封胶;
    优选地,所述第一导通体的一端面和所述第一汇流条的一端均与所述第二导通体的一端面于第二界面处形成面接触;
    优选地,所述第一基底与第一基材层之间设置第一光学胶层,所述第二基底与第二基材层之间设置第二光学胶层;
    优选地,所述第一基底和/或所述第二基底为水氧阻隔膜;
    优选地,所述第一基底和/或所述第二基底为外观纹理膜。
  14. 根据权利要求1~13任一项所述的电致变色器件,其中,所述第一基材层和/或所述第二基材层为柔性基材层;
    优选地,所述导通件的材料包括导电银浆、导电铜浆、导电碳浆、纳米银导电油墨中的任意一种或至少两种的组合,进一步优选为导电银浆。
PCT/CN2021/116339 2020-09-04 2021-09-03 一种电致变色器件及电子设备 WO2022048615A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21863679.3A EP4202542A1 (en) 2020-09-04 2021-09-03 Electrochromic device and electronic device
US18/117,684 US20230221608A1 (en) 2020-09-04 2023-03-06 Electrochromic device and electronic device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202010920683.8 2020-09-04
CN202010920683.8A CN112394581A (zh) 2020-09-04 2020-09-04 一种电致变色器件的导通结构
CN202110084919.3 2021-01-22
CN202110084919.3A CN114815431A (zh) 2021-01-22 2021-01-22 一种电致变色器件及电子设备
CN202110826680.2A CN113568233B (zh) 2021-07-21 2021-07-21 一种电致变色器件及其制备方法
CN202110826680.2 2021-07-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/117,684 Continuation-In-Part US20230221608A1 (en) 2020-09-04 2023-03-06 Electrochromic device and electronic device

Publications (1)

Publication Number Publication Date
WO2022048615A1 true WO2022048615A1 (zh) 2022-03-10

Family

ID=80492180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116339 WO2022048615A1 (zh) 2020-09-04 2021-09-03 一种电致变色器件及电子设备

Country Status (3)

Country Link
US (1) US20230221608A1 (zh)
EP (1) EP4202542A1 (zh)
WO (1) WO2022048615A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115185130A (zh) * 2022-08-16 2022-10-14 福耀玻璃工业集团股份有限公司 分区电致变色器件
WO2023241169A1 (zh) * 2022-06-16 2023-12-21 光羿智能科技(苏州)有限公司 一种电致变色膜片及变色玻璃
WO2023241168A1 (zh) * 2022-06-16 2023-12-21 光羿智能科技(苏州)有限公司 一种电致变色膜片及变色玻璃

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180081249A1 (en) * 2016-09-22 2018-03-22 Samsung Display Co., Ltd. Display device
CN108646497A (zh) * 2018-07-17 2018-10-12 合肥威驰科技有限公司 采用激光刻槽电路布置的交通用电致变色玻璃及玻璃组件
CN108646495A (zh) * 2018-07-17 2018-10-12 合肥威驰科技有限公司 用于交通工具的可分区变色调光玻璃
WO2018193822A1 (ja) * 2017-04-21 2018-10-25 コニカミノルタ株式会社 電子デバイスおよびその製造方法
US20190006538A1 (en) * 2017-06-30 2019-01-03 Korea Institute Of Energy Research Solar cell having electrochromic portion inserted thereinto and method of fabricating the same
CN111142303A (zh) 2018-11-06 2020-05-12 宁波铼康光电有限公司 电致变色后视镜的改良结构
CN112394581A (zh) * 2020-09-04 2021-02-23 深圳市光羿科技有限公司 一种电致变色器件的导通结构
CN213365229U (zh) 2020-10-29 2021-06-04 深圳市光羿科技有限公司 一种电致变色器件

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180081249A1 (en) * 2016-09-22 2018-03-22 Samsung Display Co., Ltd. Display device
WO2018193822A1 (ja) * 2017-04-21 2018-10-25 コニカミノルタ株式会社 電子デバイスおよびその製造方法
US20190006538A1 (en) * 2017-06-30 2019-01-03 Korea Institute Of Energy Research Solar cell having electrochromic portion inserted thereinto and method of fabricating the same
CN108646497A (zh) * 2018-07-17 2018-10-12 合肥威驰科技有限公司 采用激光刻槽电路布置的交通用电致变色玻璃及玻璃组件
CN108646495A (zh) * 2018-07-17 2018-10-12 合肥威驰科技有限公司 用于交通工具的可分区变色调光玻璃
CN111142303A (zh) 2018-11-06 2020-05-12 宁波铼康光电有限公司 电致变色后视镜的改良结构
CN112394581A (zh) * 2020-09-04 2021-02-23 深圳市光羿科技有限公司 一种电致变色器件的导通结构
CN213365229U (zh) 2020-10-29 2021-06-04 深圳市光羿科技有限公司 一种电致变色器件

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023241169A1 (zh) * 2022-06-16 2023-12-21 光羿智能科技(苏州)有限公司 一种电致变色膜片及变色玻璃
WO2023241168A1 (zh) * 2022-06-16 2023-12-21 光羿智能科技(苏州)有限公司 一种电致变色膜片及变色玻璃
CN115185130A (zh) * 2022-08-16 2022-10-14 福耀玻璃工业集团股份有限公司 分区电致变色器件
CN115185130B (zh) * 2022-08-16 2024-02-20 福耀玻璃工业集团股份有限公司 分区电致变色器件

Also Published As

Publication number Publication date
US20230221608A1 (en) 2023-07-13
EP4202542A1 (en) 2023-06-28

Similar Documents

Publication Publication Date Title
WO2022048615A1 (zh) 一种电致变色器件及电子设备
WO2021227885A1 (zh) 一种边缘密封导电基体与电致变色器件
JP5400273B2 (ja) 色素増感太陽電池及びこれを備えた複合型機器
JP5052768B2 (ja) 太陽電池モジュールおよびその製造方法
WO2023005913A1 (zh) 太阳能电池串及其制备方法和应用
CN101232052A (zh) 染料敏化太阳能电池模块
JP2009169229A (ja) エレクトロクロミック素子およびその製造方法
JP2008153180A (ja) 光電変換素子および光電変換素子用の対極の製造方法
CN108761951B (zh) 电致变色玻璃的电极焊点结构及全固态电致变色玻璃
CN108169975B (zh) 一种集成电致变色与电双层电容结构的器件及其激光加工方法
CN112394581A (zh) 一种电致变色器件的导通结构
WO2024055644A1 (zh) 一种导电基底、可调光器件及后视镜
CN113568233B (zh) 一种电致变色器件及其制备方法
CN212623492U (zh) 一种电致变色器件的导通结构
CN116500831A (zh) 光电功能膜、透光组件及其制备方法与车辆
JP5082303B2 (ja) 太陽電池及びその製造法
CN114815431A (zh) 一种电致变色器件及电子设备
JP6918521B2 (ja) 電気モジュールおよび電気モジュールの製造方法
JP5095148B2 (ja) 作用極用基板及び光電変換素子
CN216118323U (zh) 一种电致变色器件及电致变色装置
CN115509054A (zh) 一种电致变色器件及其制备方法和应用
CN113219755A (zh) 电致变色器件用导电结构及电致变色器件
WO2022156659A1 (zh) 电致变色装置及其制备方法、电子设备
CN210666280U (zh) 一种电致变色镜片结构
WO2022048122A1 (zh) 电致变色器件及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863679

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021863679

Country of ref document: EP

Effective date: 20230322

NENP Non-entry into the national phase

Ref country code: DE