WO2022048190A1 - 一种多工作模式机车的预热系统及其控制方法 - Google Patents

一种多工作模式机车的预热系统及其控制方法 Download PDF

Info

Publication number
WO2022048190A1
WO2022048190A1 PCT/CN2021/094766 CN2021094766W WO2022048190A1 WO 2022048190 A1 WO2022048190 A1 WO 2022048190A1 CN 2021094766 W CN2021094766 W CN 2021094766W WO 2022048190 A1 WO2022048190 A1 WO 2022048190A1
Authority
WO
WIPO (PCT)
Prior art keywords
preheater
solenoid valve
temperature sensor
diesel engine
controller
Prior art date
Application number
PCT/CN2021/094766
Other languages
English (en)
French (fr)
Inventor
王位
马晓宁
邢涛
许良中
孙晓涛
黄子侯
Original Assignee
中车株洲电力机车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车株洲电力机车有限公司 filed Critical 中车株洲电力机车有限公司
Publication of WO2022048190A1 publication Critical patent/WO2022048190A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/02Aiding engine start by thermal means, e.g. using lighted wicks
    • F02N19/04Aiding engine start by thermal means, e.g. using lighted wicks by heating of fluids used in engines
    • F02N19/10Aiding engine start by thermal means, e.g. using lighted wicks by heating of fluids used in engines by heating of engine coolants

Definitions

  • the invention belongs to the field of rail transportation, and in particular relates to a preheating system of a multi-working mode locomotive and a control method thereof.
  • a fuel preheater is often used to preheat the cooling water of the diesel engine in advance, thereby increasing the oil temperature and facilitating the start.
  • a urea purification system is used for the exhaust gas of the diesel engine, and the urea will crystallize in a low temperature environment. Therefore, in the initial working stage of the diesel engine, the urea purification system cannot work normally, resulting in the emission in the initial stage not meeting the standard.
  • the purpose of the present invention is to provide a preheating system for a multi-working-mode locomotive and a control method thereof in view of the preheating problem of each system before the diesel engine is started in a multi-working-mode locomotive and the problem of raising the locomotive emission standard, which can solve the problem of multi-working-mode locomotives.
  • Various preheating problems of locomotives have raised the emission standards of locomotives.
  • the technical scheme adopted in the present invention is:
  • a preheating system for a multi-working mode locomotive includes a fuel tank, a preheater, a water pump, a first solenoid valve, a second solenoid valve and a stop valve.
  • the fuel tank and the preheater are connected to form a circulating oil circuit for preheating.
  • the outlet end of the preheater is connected with the inlet of the outlet pipe through the water pump, the return end of the preheater is communicated with the outlet of the return pipe, the water cooling system of the diesel engine is connected between the outlet of the outlet pipe and the inlet of the return pipe, and the water heating system of the urea tank It is connected in series with the first solenoid valve between the outlet of the outlet pipe and the inlet of the return pipe, and the cab plumbing system and the second solenoid valve are connected in series between the outlet of the outlet pipe and the inlet of the return pipe.
  • a shut-off valve a first temperature sensor for detecting the temperature of the urea in the urea tank, a second temperature sensor for detecting the temperature of the coolant in the water-cooling system of the diesel engine, a diesel engine working detection unit for detecting whether the diesel engine is working, for determining
  • the working mode determination unit of the locomotive operation mode, the heat preservation state setting unit used to set whether the preheater is kept warm, the time setting unit used to set the startup time of the cab water heating system; the cut-off valve and the cab water heating system and the first Two solenoid valves are connected in series between the outlet of the water outlet and the inlet of the return pipe; the first temperature sensor, the second temperature sensor, the diesel engine work detection unit, the work mode determination unit, the heat preservation state setting unit, the time setting unit, the cut-off unit
  • the output ends of the valve are all electrically connected with the input end of the controller; the control ends of the preheater, the first solenoid valve and the second solenoid valve are all electrically connected
  • the present invention also provides a control method for the preheating system of a multi-working mode locomotive, which is characterized by including:
  • the controller determines the running mode of the locomotive according to the working mode determination unit, the detection temperature of the first temperature sensor, the detection temperature of the second temperature sensor, the detection signal of the diesel engine operation detection unit, whether the heat preservation state setting unit sets the preheater heat preservation, The starting time of the cab water heating system set by the time setting unit, the opening and closing state of the shut-off valve, control whether the preheater works, and control the on-off state of the first solenoid valve and the second solenoid valve.
  • the second solenoid valve is controlled to be turned off, and at the same time:
  • the controller judges whether it receives the heat preservation signal sent by the heat preservation state setting unit, and if not, controls the preheater to stop working;
  • the controller controls the preheater to work and controls the first solenoid valve to open; the temperature signal detected by the second temperature sensor is greater than the set value.
  • the controller controls the preheater to stop working and controls the first solenoid valve to turn off; where T2>T1.
  • the operation mode determination unit determines that the operation mode of the locomotive is the diesel engine mode or the hybrid mode, wherein the hybrid mode is the hybrid mode of the diesel engine and the battery, then:
  • the controller controls the preheater to work and controls the first solenoid valve to open; when the temperature signal detected by the second temperature sensor is greater than the set value T2, Then the controller controls the preheater to stop working and controls the first solenoid valve to turn off; wherein T2>T1;
  • the controller After the temperature signal detected by the second temperature sensor is greater than the set value T2, and the controller receives the diesel engine starting signal sent by the diesel engine operation detection unit, if the controller detects that the cut-off valve is in the open state, it controls the second electromagnetic The valve opens.
  • the working mode determination unit determines that the operation mode of the locomotive is the in-storey mode, then after the start time of the cab plumbing system set by the arrival time setting unit:
  • the controller controls the preheater to work
  • the controller controls the first solenoid valve to open;
  • the second solenoid valve When the shut-off valve is in an open state, the second solenoid valve is controlled to open;
  • the preheater When the temperature signal detected by the second temperature sensor is greater than the set value T3, the preheater is controlled to stop working and the second solenoid valve is controlled to be turned off;
  • the controller controls the first solenoid valve to turn off;
  • the preheater is activated only once.
  • T1 is 10°C
  • T2 is 20°C
  • T3 is 60°C.
  • the present invention has the following beneficial effects:
  • the controller is a preheating centralized control system for multi-working mode locomotives. It adopts digital and analog input/output signals to solve the preheating of the cab, urea tank and diesel engine under various locomotive conditions.
  • FIG. 1 is a schematic structural diagram of the preheating circuit of the preheating system of the present invention.
  • FIG. 2 is a schematic diagram of the electric control structure of the preheating system of the present invention.
  • FIG. 3 is a schematic diagram of the input and output signals of the preheating system of the present invention.
  • 1 is the fuel tank
  • 2 is the preheater
  • 3 is the water pump
  • 4 is the first solenoid valve
  • 5 is the second solenoid valve
  • 6 is the stop valve
  • 7 is the water outlet pipe
  • 8 is the return pipe
  • 9 is the diesel engine water cooling system
  • 10 is the urea tank water heating system
  • 11 is the cab water heating system
  • 12 is the controller
  • 14 is the first temperature sensor
  • 15 is the second temperature sensor
  • 16 is the diesel engine work detection unit
  • 17 is the work mode determination unit
  • 18 19 is the time setting unit
  • 20 is the oil inlet pipe
  • 21 is the oil return pipe.
  • the preheating system of a multi-working-mode locomotive includes a fuel tank 1, a preheater 2, a water pump 3, a first solenoid valve 4, a second solenoid valve 5 and a shut-off valve 6.
  • the fuel tank 1 and the The preheaters 2 are connected to form a circulating oil circuit.
  • the water outlet end of the preheater 2 is connected to the inlet of the water outlet pipe 7 through the water pump 3, and the return water end of the preheater 2 is connected to the outlet of the water return pipe 8.
  • the diesel engine is water-cooled.
  • the system 9 is connected between the outlet of the water outlet pipe 7 and the inlet of the return pipe 8
  • the urea tank water heating system 10 and the first solenoid valve 4 are connected in series between the outlet of the water outlet pipe 7 and the inlet of the water return pipe 8
  • the cab water heating system 11 and the second solenoid valve 5 are connected in series between the outlet of the water outlet pipe 7 and the inlet of the water return pipe 8 .
  • the preheating system of the multi-working mode locomotive further includes a controller 12, a shut-off valve 6, a first temperature sensor 14 for detecting the temperature of urea in the urea tank, and a second temperature sensor 15 for detecting the temperature of the coolant in the water-cooling system 9 of the diesel engine.
  • the diesel engine operation detection unit 16 for detecting whether the diesel engine is working
  • the working mode determination unit 17 for determining the operation mode of the locomotive
  • the heat preservation state setting unit 18 for setting whether the preheater 2 is kept warm, for setting the driver
  • the time setting unit 19 for the startup time of the room water heating system 11;
  • the shut-off valve 6 is connected in series with the cab water heating system 11 and the second solenoid valve 5 between the outlet of the water outlet pipe 7 and the inlet of the return water pipe 8;
  • the first temperature sensor 14 the output end of the second temperature sensor 15, the diesel engine work detection unit 16, the work mode determination unit 17, the heat preservation state setting unit 18, the time setting unit 19, and the output end of the cut-off valve 6 are all electrically connected to the input end of the controller 12;
  • the control ends of the heater 2 , the first solenoid valve 4 and the second solenoid valve 5 are all electrically connected to the output end of the controller 12 .
  • the preheater 2 uses fuel combustion as a heat source, and is connected to the locomotive fuel tank 1 through an oil inlet pipe 20 and an oil return pipe 21 to form a circulating oil circuit.
  • the preheater 2 is connected to the water cooling system 9 of the diesel engine through a water outlet pipe 7 and a water return pipe 8 to form a loop, and the cooling water of the water cooling system 9 of the diesel engine is heated to provide the equipment (diesel engine, driver's cab and urea tank) that needs to be preheated. heat.
  • the inlets of the urea tank water heating system 10 and the cab water heating system 11 are respectively provided with a first solenoid valve 4 and a second solenoid valve 5, which are used to control the off and on of hot water, and the cab water heating system 11 circuit is also provided with
  • the shut-off valve 6 has an electrical signal output function (reflecting the on-off state of the shut-off valve 6).
  • the controller 12 is the core of the whole preheating system, and the output signal of the working mode determination unit 17 adopts digital input (DI), which are “diesel engine mode” and “mixed mode” (the diesel engine and the battery work in a mixed manner). mode), “grid mode”, “battery mode” and “depot mode”; the operation mode means that the locomotive is running under the corresponding working power supply.
  • DI digital input
  • the two analog input signals (AI) are respectively the "coolant temperature” detected by the second temperature sensor 15 and the “urea tank temperature” detected by the first temperature sensor 14 (urea temperature sensor).
  • DI digital input signals
  • Time setting set by the driver through the time setting unit 19, which can realize the timing start of the heating of the cab water heating system 11. For example, some users hope that before the driver enters the cab the next morning, the cab has been preheated in advance, which can be achieved through the "time setting" function.
  • the globe valve 6 is located on the preheating circuit of the cab, and is closed and opened by manual operation, usually closed in summer and opened in winter.
  • the on-off state of the shut-off valve 6 has an electrical signal output function.
  • the function of the "keep warm" signal is: when the locomotive runs in the grid mode or the battery mode, if the running time is long, then in the low temperature environment, because the diesel engine is in a shutdown state, the temperature of the coolant will continue to decrease. Diesel engine mode traction, the diesel engine preheating time will be longer, resulting in the inability to start work immediately; at the same time, the temperature of the urea tank is too low, the urea solution may crystallize, and it cannot be used immediately.
  • the controller 12 receives the "keep warm” signal (given by the driver's operation) at this time, even if the locomotive works in grid mode or battery mode, the preheater 2 will still work, so as to ensure that the diesel engine coolant and urea solution are always in In the heat preservation state, that is, in the hot standby state, it can be put into use quickly.
  • DO 4-channel digital output signal
  • the present invention also provides a control method for the preheating system of the multi-working mode locomotive, including:
  • the controller 12 determines the operation mode of the locomotive determined by the operation mode determination unit 17, the detected temperature of the first temperature sensor 14, the detected temperature of the second temperature sensor 15, the detection signal of the diesel engine operation detection unit 16, and whether the heat preservation state setting unit 18 is set.
  • the controller 12 first determines the operation mode of the locomotive, and its logical function is as follows:
  • the operation mode determination unit 17 determines that the operation mode of the locomotive is the grid mode or the battery mode, the second solenoid valve 5 is controlled to be turned off, and at the same time:
  • the controller 12 judges whether it receives the heat preservation signal sent by the heat preservation state setting unit 18, and if not, controls the preheater 2 to stop working;
  • the controller 12 controls the preheater 2 to work and controls the first solenoid valve 4 to open; the temperature detected by the second temperature sensor 15 When the signal is greater than the set value T2, the controller 12 controls the preheater 2 to stop working and controls the first solenoid valve 4 to turn off; wherein T2>T1.
  • the operation mode determination unit 17 determines that the operation mode of the locomotive is the diesel engine mode or the hybrid mode, wherein the hybrid mode is the hybrid operation mode of the diesel engine and the battery, then:
  • the controller 12 controls the preheater 2 to work and controls the first solenoid valve 4 to open; when the temperature signal detected by the second temperature sensor 15 is greater than the set value T1 When the value is T2, the controller 12 controls the preheater 2 to stop working and controls the first solenoid valve 4 to turn off; wherein T2>T1;
  • the controller 12 After the temperature signal detected by the second temperature sensor 15 is greater than the set value T2, and after the controller 12 receives the diesel engine operation signal sent by the diesel engine operation detection unit 16, if the controller 12 detects that the shut-off valve 6 is in the open state, Then the second solenoid valve 5 is controlled to open.
  • the working mode determination unit 17 determines that the operation mode of the locomotive is the in-house mode, then after the start time of the cab plumbing system 11 set by the arrival time setting unit 19:
  • the controller 12 controls the preheater 2 to work;
  • the controller 12 controls the first solenoid valve 4 to open;
  • the preheater 2 is controlled to stop working and the second solenoid valve 5 is controlled to be turned off;
  • the controller 12 controls the first solenoid valve 4 to turn off;
  • the preheater 2 is activated only once.
  • T1 is 10°C
  • T2 is 20°C
  • T3 is 60°C.
  • the controller 12 detects the "coolant temperature”: when the temperature is less than T1 (for example, it can generally be set to 10°C), the "preheater working" signal is output to preheat the water cooling system 9 of the diesel engine;
  • the controller 12 outputs the "first solenoid valve” opening signal to preheat the urea tank water heating system 10;
  • the "second solenoid valve" is always off, because in this mode, the cab can be quickly preheated by the electric air conditioner, and no plumbing heating is required.
  • the controller 12 detects that the "coolant temperature” is greater than T2 (for example, it can be generally set to 20°C), it outputs the "preheater stop” signal, and the diesel engine water cooling system 9 stops heating; the controller 12 outputs "the first stop” signal. A solenoid valve “off” signal, the urea tank water heating system 10 stops heating.
  • T2 for example, it can be generally set to 20°C
  • the controller 12 first detects the "coolant temperature", and when the temperature is less than T1 (for example, it can generally be set to 10°C), it outputs a "preheater working” signal to preheat the water cooling system 9 of the diesel engine;
  • the controller 12 outputs the "first solenoid valve” opening signal to preheat the urea tank water heating system 10;
  • the "second solenoid valve” is always turned off before the diesel engine is turned on, because at this time the "coolant temperature” is only T2 degrees (generally can be set to 20°C), and it takes a long time to pre-condition the cab. hot.
  • the controller 12 detects that the "coolant temperature” is greater than T2 (generally it can be set to 20°C), it outputs the "preheater stop” signal, and the diesel engine water cooling system 9 stops heating; the controller 12 outputs the "first stop” signal. Solenoid valve “off signal, urea tank water heating system 10 stops heating.
  • the diesel engine can be started; after starting, the controller 12 will receive the "diesel engine working" signal, and the preheater 2 will no longer work at this time, and the preheating is performed by the water cooling system 9 of the diesel engine. of circulating water.
  • the opening and closing of the "first solenoid valve” is determined by the "urea tank temperature”: when the “urea tank temperature” is less than T1 (generally can be set to 10°C), the controller 12 outputs "the first solenoid valve". "Valve" open signal, preheat the water heating system 10 of the urea tank;
  • the controller 12 After the diesel engine is started, if the controller 12 detects that the "stop valve” is in the open state (winter), it outputs the "second solenoid valve” open signal, and the circulating water of the diesel engine water cooling system 9 starts to continuously heat the cab water heating system. 11; When it is detected that the "stop valve” is in the off state (summer), the "second solenoid valve” opening signal is not output, and the cab plumbing system 11 is not heated.
  • Locomotive "in-garage mode" is a situation in which the locomotive sits in a parking lot and is not used for a short period of time, such as after get off work and before use the next morning. Since the locomotive has been standing all night, the temperature of the diesel engine coolant has dropped to the ambient temperature in winter. If it needs to be used the next morning, the preheating process is long and the driver needs to come to work early. Therefore, the present invention preheats the water cooling system 9 of the diesel engine in advance before the locomotive is officially used, so that when the driver arrives, the diesel engine can be started immediately and use a locomotive.
  • controller 12 If the controller 12 detects the "in-bank mode” and "time setting" signals, when the preset time is reached:
  • the controller 12 detects the "coolant temperature", when the temperature is lower than T2 (generally it can be set to 20°C), it outputs the "preheater working” signal to preheat the water cooling system 9 of the diesel engine;
  • the controller 12 detects the "urea tank temperature", and when the temperature is less than T1 (generally can be set to 10°C), it outputs the "first solenoid valve” opening signal to preheat the urea tank water heating system 10;
  • the controller 12 detects that the "stop valve” is in the open state (winter), and outputs the "second solenoid valve” open signal, and the cab is heated.
  • the controller 12 detects that the "coolant temperature” is greater than T3 (generally it can be set to 60°C), it outputs the "preheater stop” signal, and the diesel engine water cooling system 9 stops heating; at the same time, it outputs the "second solenoid valve". "turn off the signal, the cab water heating system 11 stops heating.
  • T3 generally it can be set to 60°C
  • the controller 12 detects the "urea tank temperature", and when the temperature is greater than T2 (generally can be set to 20°C), it outputs the "first solenoid valve” shut-off signal to stop preheating the urea tank water heating system 10;
  • T3 (usually can be set to 60 °C)
  • the preheating temperature is high, there are Conducive to the heating effect of the cab. Because after preheating, the driver will operate and may switch to other working modes, so only one preheating is performed.

Abstract

本发明公开了一种多工作模式机车的预热系统及其控制方法,预热系统包括燃油箱、预热器、水泵、第一电磁阀、第二电磁阀、截止阀、控制器、截止阀、第一温度传感器、第二温度传感器、柴油机工作检测单元、工作模式判定单元、保温状态设定单元、时间设定单元;截止阀与司机室水暖系统及第二电磁阀串接在出水管的出口与回水管的入口之间;第一温度传感器、第二温度传感器、柴油机工作检测单元、工作模式判定单元、保温状态设定单元、时间设定单元、截止阀的输出端均与控制器的输入端电连接;预热器、第一电磁阀、第二电磁阀的控制端均与控制器的输出端电连接。本发明能够解决多工作模式机车的多种预热问题,提升了机车排放标准。

Description

一种多工作模式机车的预热系统及其控制方法 技术领域
本发明属于轨道交通领域,特别涉及一种多工作模式机车的预热系统及其控制方法。
背景技术
内燃机车由于使用柴油机,当环境温度较低时,为了使柴油机容易启动,且为了降低磨损,常使用燃油预热器提前预热柴油机的冷却水,从而提升机油温度,便于启动。
但是,对于多工作模式的机车,例如可以采用柴油机、蓄电池、接触网等多种能源牵引的机车,传统的内燃机车预热系统就无法满足不同模式下的预热要求。
此外,为了提升排放标准,柴油机尾气使用了尿素净化系统,尿素在低温环境时会结晶,因此在柴油机初始工作阶段,尿素净化系统无法正常工作,导致初始阶段的排放不达标。
发明内容
本发明的目的在于,针对多工作模式机车中柴油机启动前的各个系统的预热问题以及机车排放标准提升问题,提供一种多工作模式机车的预热系统及其控制方法,能够解决多工作模式机车的多种预热问题,提升了机车排放标准。
为解决上述技术问题,本发明所采用的技术方案是:
一种多工作模式机车的预热系统,包括燃油箱、预热器、水泵、第一电磁阀、第二电磁阀和截止阀,燃油箱与预热器之间连成循环油路,预热器的出水端通过水泵与出水管的入口相连通,预热器的回水端与回水管的出口相连通,柴油机水冷系统接在出水管的出口与回水管的入口之间,尿素箱水暖系统与第一电磁阀串接在出水管的出口与回水管的入口之间,司机室水暖系统与第二电磁阀串接在出水管的出口与回水管的入口之间,其特点是还包括控制器、截止阀、用于检测尿素箱中尿素温度的第一温度传感器、用于检测柴油机水冷系统中冷却液温度的第二温度传感器、用于检测柴油机是否工作的柴油机工作检测单元、用于判定机车运行模式的工作模式判定单元、用于设定预热器是否保温的保温状态设定单元、用于设定司机室水暖系统启动时间的时间设定单元;截止阀与司机室水暖系统及第二电磁阀串接在出水管的出口与回水管的入口之间;第一温度传感器、第二温度传感器、柴油机工作检测单元、工作模式判定单元、保温状态设定单元、时间设定单元、截止阀的输出端均与控制器的输入端电连接;预热器、第一电磁阀、第二电磁阀的控制端均与控制器的输出端电连接。
基于同一个发明构思,本发明还提供了一种多工作模式机车的预热系统的控 制方法,其特点是包括:
控制器根据工作模式判定单元判定的机车运行模式、第一温度传感器的检测温度、第二温度传感器的检测温度、柴油机工作检测单元的检测信号、保温状态设定单元是否设定预热器保温、时间设定单元设定的司机室水暖系统启动时间、截止阀的启闭状态,控制预热器是否工作、控制第一电磁阀及第二电磁阀的通断转态。
作为一种优选方式,若工作模式判定单元判定机车的运行模式为电网模式或蓄电池模式,则控制第二电磁阀关断,同时:
控制器判断是否收到保温状态设定单元发送的保温信号,若否,则控制预热器停止工作;
若是,则在第二温度传感器检测到的温度信号小于设定值T1时,则控制器控制预热器工作并控制第一电磁阀开启;在第二温度传感器检测到的温度信号大于设定值T2时,则控制器控制预热器停止工作并控制第一电磁阀关断;其中T2>T1。
作为一种优选方式,若工作模式判定单元判定机车的运行模式为柴油机模式或混合模式,其中混合模式为柴油机与蓄电池混合工作模式,则:
在第二温度传感器检测到的温度信号小于设定值T1时,则控制器控制预热器工作并控制第一电磁阀开启;在第二温度传感器检测到的温度信号大于设定值T2时,则控制器控制预热器停止工作并控制第一电磁阀关断;其中T2>T1;
在第二温度传感器检测到的温度信号大于设定值T2后,且控制器接收到柴油机工作检测单元发送的柴油机开始工作信号后,若控制器检测到截止阀处于开启状态,则控制第二电磁阀开启。
作为一种优选方式,若工作模式判定单元判定机车的运行模式为库内模式,则在到达时间设定单元设定的司机室水暖系统启动时间后:
在第二温度传感器检测到的温度信号小于设定值T2时,则控制器控制预热器工作;
在第一温度传感器检测到的温度信号小于设定值T1时,则控制器控制第一电磁阀开启;
在截止阀处于开启状态时,则控制第二电磁阀开启;
在第二温度传感器检测到的温度信号大于设定值T3时,则控制预热器停止工作并控制第二电磁阀关断;
在第一温度传感器检测到的温度信号大于设定值T2时,则控制器控制第一电磁阀关断;
其中,T3>T2>T1。
作为一种优选方式,仅启动一次预热器。
作为一种优选方式,T1为10℃,T2为20℃,T3为60℃。
与现有技术相比,本发明具有以下有益效果:
1)控制器是一种多工作模式机车的预热集中控制系统,采用数字量和模拟量输入/输出信号,解决了司机室、尿素箱和柴油机的各种机车工况下的预热。
2)水循环预热回路加入了电磁阀等简单控制设备,有效配合了控制器在各种工况下的工作。
3)合理设置机车在多工作模式下,柴油机、司机室和尿素箱的内部温度控制逻辑和三者之间的相互关系,并设置了三个合理的控制温度,在满足不同设备预热的同时,简化了控制逻辑。
附图说明
图1为本发明预热系统的预热回路结构示意图。
图2为本发明预热系统的电控结构示意图。
图3为本发明预热系统的输入输出信号示意图。
图4(a)、(b)为本发明预热系统的控制方法流程图。
其中,1为燃油箱,2为预热器,3为水泵,4为第一电磁阀,5为第二电磁阀,6为截止阀,7为出水管,8为回水管,9为柴油机水冷系统,10为尿素箱水暖系统,11为司机室水暖系统,12为控制器,14为第一温度传感器,15为第二温度传感器,16为柴油机工作检测单元,17为工作模式判定单元,18为保温状态设定单元,19为时间设定单元,20为进油管,21为回油管。
具体实施方式
如图1和图2所示,多工作模式机车的预热系统包括燃油箱1、预热器2、水泵3、第一电磁阀4、第二电磁阀5和截止阀6,燃油箱1与预热器2之间连成循环油路,预热器2的出水端通过水泵3与出水管7的入口相连通,预热器2的回水端与回水管8的出口相连通,柴油机水冷系统9接在出水管7的出口与回水管8的入口之间,尿素箱水暖系统10与第一电磁阀4串接在出水管7的出口与回水管8的入口之间,司机室水暖系统11与第二电磁阀5串接在出水管7的出口与回水管8的入口之间。
多工作模式机车的预热系统还包括控制器12、截止阀6、用于检测尿素箱中尿素温度的第一温度传感器14、用于检测柴油机水冷系统9中冷却液温度的第二温度传感器15、用于检测柴油机是否工作的柴油机工作检测单元16、用于判定机车运行模式的工作模式判定单元17、用于设定预热器2是否保温的保温状态设定单元18、用于设定司机室水暖系统11启动时间的时间设定单元19;截止阀6与司机室水暖系统11及第二电磁阀5串接在出水管7的出口与回水管8 的入口之间;第一温度传感器14、第二温度传感器15、柴油机工作检测单元16、工作模式判定单元17、保温状态设定单元18、时间设定单元19、截止阀6的输出端均与控制器12的输入端电连接;预热器2、第一电磁阀4、第二电磁阀5的控制端均与控制器12的输出端电连接。
图1中,预热器2使用燃油燃烧做为热量来源,通过一根进油管20和一根回油管21与机车燃油箱1相连,形成循环油路。预热器2通过一根出水管7和一根回水管8与柴油机水冷系统9连成回路,通过加热柴油机水冷系统9的冷却水向需要预热的设备(柴油机、司机室和尿素箱)提供热量。其中,尿素箱水暖系统10和司机室水暖系统11入口分别设置了第一电磁阀4和第二电磁阀5,用于控制热水的关断和接通,司机室水暖系统11回路上还设置了截止阀6,截止阀6具备电信号输出功能(反映截止阀6的通断状态)。
如图3所示,控制器12是整个预热系统的核心,工作模式判定单元17的输出信号采用数字量输入(DI),分别是“柴油机模式”、“混合模式”(柴油机与蓄电池混合工作模式)、“电网模式”、“蓄电池模式”和“库内模式”;运行模式表示机车在相应的工作电源情况下运行。
两路模拟量输入信号(AI),分别是第二温度传感器15检测到的“冷却液温度”、第一温度传感器14(尿素温度传感器)检测到的“尿素箱温度”。
4路数字量输入信号(DI),分别是“柴油机工作”、“时间设定”、“截止阀通断”、“保温”信号。
“柴油机工作”:当柴油机启动后,获得该信号。
“时间设定”:由司机通过时间设定单元19进行设定,可以实现司机室水暖系统11的加热定时启动。例如:有些用户希望在第二天早上司机进入司机室前,司机室已经提前预热,通过“时间设定”功能就可以实现。
“截止阀通断”:截止阀6位于司机室预热回路上,由人工操作关断和开启,通常在夏季时关断,冬季时开启。截止阀6的通断状态具有电信号输出功能。
“保温”信号,其作用在于:当机车运行在电网模式或蓄电池模式下时,如果运行时间较长,那么在低温环境下,由于柴油机处于停机状态,会导致冷却液的温度不断降低,一旦需要柴油机模式牵引,则柴油机预热时间会较长,造成无法立即启动工作;同时,尿素箱温度过低,尿素溶液可能出现结晶现象,也无法立即使用。如果此时控制器12接收到“保温”信号(通过司机操作给出),则即使机车在电网模式或蓄电池模式下工作,预热器2仍将工作,从而保证柴油机冷却液和尿素溶液始终处于保温状态,即处于热备用状态,可以快速投入使用。
4路数字量输出信号(DO):包括预热器2工作、预热器2停止、第一电磁阀4和第二电磁阀5的启/停控制。
本发明还提供了所述多工作模式机车的预热系统的控制方法,包括:
控制器12根据工作模式判定单元17判定的机车运行模式、第一温度传感器14的检测温度、第二温度传感器15的检测温度、柴油机工作检测单元16的检测信号、保温状态设定单元18是否设定预热器2保温、时间设定单元19设定的司机室水暖系统11启动时间、截止阀6的启闭状态,控制预热器2是否工作、控制第一电磁阀4及第二电磁阀5的通断转态。
如图4(a)、(b)所示,控制器12首先判断机车的运行模式,其逻辑功能如下:
若工作模式判定单元17判定机车的运行模式为电网模式或蓄电池模式,则控制第二电磁阀5关断,同时:
控制器12判断是否收到保温状态设定单元18发送的保温信号,若否,则控制预热器2停止工作;
若是,则在第二温度传感器15检测到的温度信号小于设定值T1时,则控制器12控制预热器2工作并控制第一电磁阀4开启;在第二温度传感器15检测到的温度信号大于设定值T2时,则控制器12控制预热器2停止工作并控制第一电磁阀4关断;其中T2>T1。
若工作模式判定单元17判定机车的运行模式为柴油机模式或混合模式,其中混合模式为柴油机与蓄电池混合工作模式,则:
在第二温度传感器15检测到的温度信号小于设定值T1时,则控制器12控制预热器2工作并控制第一电磁阀4开启;在第二温度传感器15检测到的温度信号大于设定值T2时,则控制器12控制预热器2停止工作并控制第一电磁阀4关断;其中T2>T1;
在第二温度传感器15检测到的温度信号大于设定值T2后,且控制器12接收到柴油机工作检测单元16发送的柴油机开始工作信号后,若控制器12检测到截止阀6处于开启状态,则控制第二电磁阀5开启。
若工作模式判定单元17判定机车的运行模式为库内模式,则在到达时间设定单元19设定的司机室水暖系统11启动时间后:
在第二温度传感器15检测到的温度信号小于设定值T2时,则控制器12控制预热器2工作;
在第一温度传感器14检测到的温度信号小于设定值T1时,则控制器12控制第一电磁阀4开启;
在截止阀6处于开启状态时,则控制第二电磁阀5开启;
在第二温度传感器15检测到的温度信号大于设定值T3时,则控制预热器2停止工作并控制第二电磁阀5关断;
在第一温度传感器14检测到的温度信号大于设定值T2时,则控制器12控制第一电磁阀4关断;
其中,T3>T2>T1。
优选地,库内模式下,仅启动一次预热器2。
上述T1为10℃,T2为20℃,T3为60℃。
综上,各工作模式下预热系统的控制过程及原理如下:
1)在“电网模式”和“蓄电池模式”下,如果控制器12没有收到“保温”信号,则输出“预热器停止”信号;因为这两种模式下,机车当前不需要柴油机工作,因此也不需要预热器2持续工作,从而降低能量消耗。
如果司机给出了“保温”信号,则
1.1)控制器12检测“冷却液温度”:当温度小于T1时(例如一般可以设定为10℃),则输出“预热器工作”信号,预热柴油机水冷系统9;
1.2)控制器12输出“第一电磁阀”开启信号,预热尿素箱水暖系统10;
1.3)“第二电磁阀”则始终关断,因为该模式下,司机室可以由电空调实现快速预热,不需要进行水暖加热。
1.4)当控制器12检测到“冷却液温度”大于T2时(例如一般可以设定为20℃),则输出“预热器停止”信号,柴油机水冷系统9停止加热;控制器12输出“第一电磁阀”关断信号,尿素箱水暖系统10停止加热。
2)在柴油机模式和混合模式下,则
2.1)控制器12首先检测“冷却液温度”,当温度小于T1时(例如一般可以设定为10℃),则输出“预热器工作”信号,预热柴油机水冷系统9;
2.2)控制器12输出“第一电磁阀”开启信号,预热尿素箱水暖系统10;
2.3)“第二电磁阀”则在柴油机开启前始终关断,因为此时“冷却液温度”最高仅有T2度(一般可以设定为20℃),需要很长时间才能够将司机室预热。
2.4)当控制器12检测到“冷却液温度”大于T2时(一般可以设定为20℃),则输出“预热器停止”信号,柴油机水冷系统9停止加热;控制器12输出“第一电磁阀”关断信号,尿素箱水暖系统10停止加热。
2.5)当“冷却液温度”大于T2后,柴油机方可启动;启动后,控制器12将接收到“柴油机工作”信号,此时预热器2不再工作,预热由柴油机水冷系统9内的循环水实现。
2.5.1)“第一电磁阀”的开启和关断由“尿素箱温度”决定:当“尿素箱温度”小于T1时(一般可以设定为10℃),控制器12输出“第一电磁阀”开启信号,预热尿素箱水暖系统10;
2.5.2)当“尿素箱温度”大于T2时(一般可以设定为20℃),则输出“第一电 磁阀”关断信号。
2.5.3)柴油机启动后,如果控制器12检测到“截止阀”在开启状态(冬季),则输出“第二电磁阀”开启信号,柴油机水冷系统9的循环水开始持续加热司机室水暖系统11;当检测到“截止阀”在关断状态(夏季),则不输出“第二电磁阀”开启信号,不进行司机室水暖系统11的加热。
3)机车“库内模式”
机车“库内模式”是一种机车静置在停车场且短时间内不使用的情况,例如下班后至第二天早上使用前的时间。由于机车静置整个晚上,冬季时,柴油机冷却液温度都已经降到了环境温度。如果第二天早上需要使用,则预热过程较长,司机需要提前很早来上班,因此,本发明在机车正式使用前提前预热柴油机水冷系统9,这样当司机抵达后,就可以立刻启动柴油机并使用机车。
机车“库内模式”预热的控制如下:
如果控制器12检测到“库内模式”和“时间设定”信号,当到达预设的时间后:
3.1)控制器12检测“冷却液温度”,当温度小于T2时(一般可以设定为20℃),则输出“预热器工作”信号,预热柴油机水冷系统9;
3.2)控制器12检测“尿素箱温度”,当温度小于T1时(一般可以设定为10℃),则输出“第一电磁阀”开启信号,预热尿素箱水暖系统10;
3.3)控制器12检测到“截止阀”在开启状态(冬季),输出“第二电磁阀”开启信号,司机室加热。
3.4)当控制器12检测到“冷却液温度”大于T3时(一般可以设定为60℃),则输出“预热器停止”信号,柴油机水冷系统9停止加热;同时输出“第二电磁阀”关断信号,司机室水暖系统11停止加热。
3.5)控制器12检测“尿素箱温度”,当温度大于T2时(一般可以设定为20℃),则输出“第一电磁阀”关断信号,停止预热尿素箱水暖系统10;
6)当一次预热过程完成后,不再启动预热器2。
之所以将“库内模式”下的“冷却液温度”加热至T3(一般可以设定为60℃),是因为在该模式下预热,有充足的时间,而且预热温度较高,有利于司机室的加热效果。因为预热后,司机将进行操作,可能切换至其它工作模式,故只进行一次预热。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是局限性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护范围之内。

Claims (8)

  1. 一种多工作模式机车的预热系统,包括燃油箱、预热器、水泵、第一电磁阀、第二电磁阀,燃油箱与预热器之间连成循环油路,预热器的出水端通过水泵与出水管的入口相连通,预热器的回水端与回水管的出口相连通,柴油机水冷系统接在出水管的出口与回水管的入口之间,尿素箱水暖系统与第一电磁阀串接在出水管的出口与回水管的入口之间,司机室水暖系统与第二电磁阀串接在出水管的出口与回水管的入口之间,其特征在于:
    还包括控制器、截止阀、用于检测尿素箱中尿素温度的第一温度传感器、用于检测柴油机水冷系统中冷却液温度的第二温度传感器、用于检测柴油机是否工作的柴油机工作检测单元、用于判定机车运行模式的工作模式判定单元、用于设定预热器是否保温的保温状态设定单元、用于设定司机室水暖系统启动时间的时间设定单元;截止阀与司机室水暖系统及第二电磁阀串接在出水管的出口与回水管的入口之间;
    第一温度传感器、第二温度传感器、柴油机工作检测单元、工作模式判定单元、保温状态设定单元、时间设定单元、截止阀的输出端均与控制器的输入端电连接;预热器、第一电磁阀、第二电磁阀的控制端均与控制器的输出端电连接。
  2. 一种预热系统的控制方法,其特征在于,包括如下步骤:
    若工作模式判定单元判定机车的运行模式为电网模式或蓄电池模式,则控制第二电磁阀关断,同时:
    控制器判断是否收到保温状态设定单元发送的保温信号,若否,则控制预热器停止工作;
    若是,则在第二温度传感器检测到的温度信号小于设定值T1时,则控制器控制预热器工作并控制第一电磁阀开启;在第二温度传感器检测到的温度信号大于设定值T2时,则控制器控制预热器停止工作并控制第一电磁阀关断;其中T2>T1。
  3. 如权利要求2所述的预热系统的控制方法,其特征在于,T1为10℃,T2为20℃。
  4. 一种预热系统的控制方法,其特征在于,包括如下步骤:
    若工作模式判定单元判定机车的运行模式为柴油机模式或混合模式,其中混合模式为柴油机与蓄电池混合工作模式,则:
    在第二温度传感器检测到的温度信号小于设定值T1时,则控制器控制预热器工作并控制第一电磁阀开启;在第二温度传感器检测到的温度信号大于设定值T2时,则控制器控制预热器停止工作并控制第一电磁阀关断;其中T2>T1;
    在第二温度传感器检测到的温度信号大于设定值T2后,且控制器接收到柴 油机工作检测单元发送的柴油机开始工作信号后,若控制器检测到截止阀处于开启状态,则控制第二电磁阀开启。
  5. 如权利要求4所述的预热系统的控制方法,其特征在于,T1为10℃,T2为20℃。
  6. 一种预热系统的控制方法,其特征在于,包括如下步骤:
    若工作模式判定单元判定机车的运行模式为库内模式,则在到达时间设定单元设定的司机室水暖系统启动时间后:
    在第二温度传感器检测到的温度信号小于设定值T2时,则控制器控制预热器工作;
    在第一温度传感器检测到的温度信号小于设定值T1时,则控制器控制第一电磁阀开启;
    在截止阀处于开启状态时,则控制第二电磁阀开启;
    在第二温度传感器检测到的温度信号大于设定值T3时,则控制预热器停止工作并控制第二电磁阀关断;
    在第一温度传感器检测到的温度信号大于设定值T2时,则控制器控制第一电磁阀关断;
    其中,T3>T2>T1。
  7. 如权利要求6所述的预热系统的控制方法,其特征在于,仅启动一次预热器。
  8. 如权利要求6或7所述的预热系统的控制方法,其特征在于,T1为10℃,T2为20℃,T3为60℃。
PCT/CN2021/094766 2020-09-01 2021-05-20 一种多工作模式机车的预热系统及其控制方法 WO2022048190A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010903635.8A CN112012864A (zh) 2020-09-01 2020-09-01 一种多工作模式机车的预热系统及其控制方法
CN202010903635.8 2020-09-01

Publications (1)

Publication Number Publication Date
WO2022048190A1 true WO2022048190A1 (zh) 2022-03-10

Family

ID=73517122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094766 WO2022048190A1 (zh) 2020-09-01 2021-05-20 一种多工作模式机车的预热系统及其控制方法

Country Status (2)

Country Link
CN (1) CN112012864A (zh)
WO (1) WO2022048190A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112012864A (zh) * 2020-09-01 2020-12-01 中车株洲电力机车有限公司 一种多工作模式机车的预热系统及其控制方法
CN114263556B (zh) * 2021-12-09 2023-11-07 中车株洲电力机车有限公司 内电双源动车组及其内燃机保温控制方法、系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015023199A2 (en) * 2013-06-03 2015-02-19 Mihai Marcu Independent installation to keep warm and economic operation of the locomotive diesel engine
CN208267952U (zh) * 2018-02-11 2018-12-21 江苏兴云动力科技有限公司 混动汽车的发动机快速暖机的整车热管理系统
CN109795300A (zh) * 2017-11-17 2019-05-24 爱信精机株式会社 车辆用热交换装置
CN110985261A (zh) * 2019-11-25 2020-04-10 一汽解放汽车有限公司 一种商用车驻车加热系统及其控制方法
CN210622946U (zh) * 2019-10-21 2020-05-26 山推工程机械股份有限公司 一种工程机械的冷启动控制系统及平地机
CN112012864A (zh) * 2020-09-01 2020-12-01 中车株洲电力机车有限公司 一种多工作模式机车的预热系统及其控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB717225A (en) * 1951-11-21 1954-10-20 Otto Baier Improvements in and relating to a heating-plant, particularly for motor-vehicles
US4706644A (en) * 1985-11-12 1987-11-17 Nakai Gary T Engine Heater
JP2003090271A (ja) * 2001-07-11 2003-03-28 Toyota Motor Corp 内燃機関
US7769537B2 (en) * 2008-05-01 2010-08-03 Power Drives, Inc Auxiliary locomotive engine warming system
CN106401834B (zh) * 2016-06-23 2019-01-01 席瑾 一种柴油发动机低温加热系统
CN107246335A (zh) * 2017-07-31 2017-10-13 安徽安凯汽车股份有限公司 燃油加热装置的控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015023199A2 (en) * 2013-06-03 2015-02-19 Mihai Marcu Independent installation to keep warm and economic operation of the locomotive diesel engine
CN109795300A (zh) * 2017-11-17 2019-05-24 爱信精机株式会社 车辆用热交换装置
CN208267952U (zh) * 2018-02-11 2018-12-21 江苏兴云动力科技有限公司 混动汽车的发动机快速暖机的整车热管理系统
CN210622946U (zh) * 2019-10-21 2020-05-26 山推工程机械股份有限公司 一种工程机械的冷启动控制系统及平地机
CN110985261A (zh) * 2019-11-25 2020-04-10 一汽解放汽车有限公司 一种商用车驻车加热系统及其控制方法
CN112012864A (zh) * 2020-09-01 2020-12-01 中车株洲电力机车有限公司 一种多工作模式机车的预热系统及其控制方法

Also Published As

Publication number Publication date
CN112012864A (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
WO2022048190A1 (zh) 一种多工作模式机车的预热系统及其控制方法
CN108716433B (zh) 发动机热管理系统及其控制方法
JP5120319B2 (ja) エンジンの廃熱制御装置
WO2015103924A1 (zh) 混合动力车辆及其空调系统
CN108223099A (zh) 混动汽车的发动机快速暖机的整车热管理系统
CN202851187U (zh) 同时利用内燃机排气和冷却余热的发电系统
CN104632499B (zh) 混合动力车辆热量控制方法及系统
WO2020038221A1 (zh) 一种发动机的冷却系统
CN108518253A (zh) 一种热电联产机组汽轮机节能供热系统
CN208267952U (zh) 混动汽车的发动机快速暖机的整车热管理系统
CN108798885A (zh) 一种冷热电三联供分布式能源系统
CN111188688B (zh) 一种燃气发动机分布式能源系统热电比调节方法
CN109339931B (zh) 混合动力车辆冷却系统及混合动力车辆
CN217632644U (zh) 主动倒拖冷却增压器应用的混合动力汽车系统
CN205593216U (zh) 一种基于内燃机的集中冷热源空调系统
JPH077573Y2 (ja) 船用エンジンの吸気加熱装置
CN112627967B (zh) 一种中冷器及热管理方法
CN105291764B (zh) 一种混合动力车辆及其独立水暖系统及相关的控制方法
CN217270576U (zh) 一种发动机冷启动辅助系统
CN209409757U (zh) 一种增程式电动车的暖风控制系统
CN220728564U (zh) 一种冷热电联供的分布式能源系统
CN212869835U (zh) 一种用于调节空预器出口温度的风器系统
CN220366464U (zh) 一种与三联供结合的供暖供冷分布式能源系统
CN215719042U (zh) 一种旁通型汽车发动机催化器快速起燃系统
CN212406854U (zh) 一种混合动力汽车发动机预热系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21863260

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21863260

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20.09.2023)