CN202851187U - 同时利用内燃机排气和冷却余热的发电系统 - Google Patents

同时利用内燃机排气和冷却余热的发电系统 Download PDF

Info

Publication number
CN202851187U
CN202851187U CN2012201539631U CN201220153963U CN202851187U CN 202851187 U CN202851187 U CN 202851187U CN 2012201539631 U CN2012201539631 U CN 2012201539631U CN 201220153963 U CN201220153963 U CN 201220153963U CN 202851187 U CN202851187 U CN 202851187U
Authority
CN
China
Prior art keywords
exhaust
working medium
conduction oil
loop
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2012201539631U
Other languages
English (en)
Inventor
马重芳
张红光
王恩华
范伯元
杨凯
吴玉庭
王伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN2012201539631U priority Critical patent/CN202851187U/zh
Application granted granted Critical
Publication of CN202851187U publication Critical patent/CN202851187U/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

同时利用内燃机排气和冷却余热的发电系统,利用有机朗肯循环回路中的预热器将内燃机冷却液的余热传递给有机工质,利用导热油回路将内燃机的排气带走的余热传递给有机朗肯循环回路的工质,实现工质的蒸发气化,利用单螺杆膨胀机将高焓工质膨胀过程中的焓变转换为有用功输出,带动发电机发电,以排气管出口的尾气温度为反馈量实现导热油流量的闭环控制,以单螺杆膨胀机的入口工质温度为反馈量来实现有机工质流量的闭环控制,以冷凝器出口工质温度为反馈量来实现冷凝器风扇电机的闭环控制。本实用新型利用分段PI控制调节有机朗肯循环回路和导热油回路的工质流量,充分利用内燃机废弃的余热,提高内燃机的热效率,降低排气对环境造成的危害。

Description

同时利用内燃机排气和冷却余热的发电系统
技术领域
本实用新型属于余热回收技术领域,涉及一种同时利用内燃机排气和冷却余热的有机朗肯循环发电系统。该系统采用有机朗肯循环回路中的预热器将内燃机冷却液的余热传递给有机工质,采用导热油回路将内燃机的排气余热传递给有机朗肯循环回路蒸发器中的工质,采用单螺杆膨胀机输出有用功带动发电机发电,通过设计的闭环控制系统根据内燃机的工作状态分别调节导热油回路和有机朗肯循环回路的热力循环工作状态。
背景技术
当前车用内燃机的燃料燃烧产生的热能只有一小部份被转换为有用功输出,还有近三分之二的热能被发动机的排气、冷却系统和发动机本体的对流和辐射散热白白消耗掉。如果这部份浪费的能量能得到有效利用,一方面可以提高发动机燃料的总热效率,节省能源消耗量,另一方面,可以降低内燃机做功时向环境的散热,改善环境质量,减缓全球变暖的趋势。
目前利用内燃机废弃的余热的方法主要有:利用余热取暖,利用废气高温的温差发电,利用余热的吸附式热泵制冷和利用余热的有机朗肯循环发电或输出有用功。利用余热取暖在冬季可以较好的利用发动机的余热,但在其它季节不需要取暖时无法充分利用内燃机的余热。利用温差发电技术受到转换效率低的限制,目前还无法实现实用化的应用。利用吸附式热泵制冷装置往往体积太大,效率不高,也不适合车用内燃机应用。利用有机朗肯循环的余热回收技术在当前效率是最高的,采用有机朗肯循环系统目前还在研究阶段,当前的型式都很少考虑车用内燃机工作工况变化范围广,持续时间长的特点,在某一个工况点能实现内燃机余热的最大化利用,但在其它工况点则很难做到。
实用新型内容
本实用新型的目的在于提出一种同时利用内燃机排气和冷却余热的有机朗肯循环发电系统及控制方法。针对车用内燃机排气余热火用与冷却余热火用差异大的特点,利用导热油传热,结合自动控制技术,实现利用一个有机朗肯循环回路来完成内燃机的余热能的热功转换,并带动发电机发电。
为了实现上述目标,本实用新型采用如下的技术解决方案:
利用排气温度闭环反馈控制的导热油回路将内燃机排气带走的余热充分传递给有机朗肯循环回路的有机工质,利用过热温度、冷凝温度分别闭环反馈控制的有机朗肯循环将内燃机冷却系统带走的余热和导热油回路传递过来的余热转换为有用功输出,带动发电机发电,导热油回路和有机朗肯循环回路通过蒸发器耦合在一起。
本实用新型的一种同时利用内燃机排气和冷却余热的有机朗肯循环发电系统,包括导热油回路,有机朗肯循环回路和控制通路。上述用于吸收内燃机废气余热的导热油回路包含的部件有:导热油回路工质泵、导热油回路压力调节阀、导热油回路调节电机、排气热交换器、蒸发器、排气常开开关阀、排气常闭开关阀以及连接它们的管路。上述用于回收内燃机冷却液余热和导热油热量的有机朗肯循环回路包含的部件有:有机朗肯循环回路工质泵、有机朗肯循环回路压力调节阀、有机朗肯循环回路调节电机、预热器、蒸发器、单螺杆膨胀机、发电机、冷凝器、冷凝器风扇、冷凝器风扇调节电机、储液罐以及连接它们的管路。上述用于控制导热油回路和有机朗肯循环回路运行的控制通路包含的部件有:控制单元、发动机转速传感器、油门踏板位置传感器、大气环境温度传感器、起动开关、排气温度传感器、导热油温度传感器、有机工质过热温度传感器、有机工质冷凝温度传感器、导热油回路调节电机、有机朗肯循环回路调节电机、冷凝器风扇调节电机、排气常开开关阀、排气常闭开关阀以及连接这些部件的线束。
导热油回路各部件的连接关系是:导热油回路工质泵,排气热交换器和蒸发器通过管道依次首尾相连组成循环回路,排气热交换器串接在涡轮出口的排气管上,导热油回路调节电机与导热油回路工质泵相连并驱动其运转,通过调节电机转速来控制导热油的流量,导热油回路压力调节阀与导热油回路工质泵并联,用以限制导热油最高工作压力,排气常开开关阀串接在排气热交换器入口前的管道上,排气常闭开关阀并接在排气热交换器入口前的管道上。
有机朗肯循环回路各部件的连接关系是:有机朗肯循环回路工质泵、预热器、蒸发器、单螺杆膨胀机、冷凝器和储液罐通过管道依次首尾相连组成循环回路,有机朗肯循环回路调节电机与有机朗肯循环回路工质泵相连并驱动其运转,通过调节电机转速来控制有机工质的流量,有机朗肯循环回路压力调节阀与有机朗肯循环回路工质泵并联,用以限制最高蒸发压力,发动机水套出口的高温冷却液流入预热器,在将余热能传递给另一侧的有机工质以后,从预热器的冷却液侧出口流出,进入发动机水套的入口,通过发动机冷却水泵的驱动进行下一次的循环,在预热器中利用内燃机冷却液对有机工质进行预热,在蒸发器中利用导热油的热量对有机工质进行蒸发,单螺杆膨胀机的输出轴与发电机的输入轴相连,带动发电机发电,冷凝器风扇安装在冷凝器的正前方,由与其同轴的冷凝器风扇调节电机驱动,通过调节电机转速来调节冷凝器风扇转速,从而控制流过冷凝器的冷空气流量,以此来调节有机工质冷凝温度。
用于控制导热油回路和有机朗肯循环回路运行的控制通路各部件的连接关系是:发动机转速传感器、油门踏板位置传感器、大气环境温度传感器、起动开关、排气温度传感器、导热油温度传感器、有机工质过热温度传感器、有机工质冷凝温度传感器、导热油回路调节电机、有机朗肯循环回路调节电机、冷凝器风扇调节电机、排气常开开关阀、排气常闭开关阀分别与控制单元通过线束相连,排气温度传感器安装在排气热交换器的排气侧出口的管道上,导热油温度传感器安装在排气热交换器的导热油侧出口的管道上,有机工质过热温度传感器安装在单螺杆膨胀机入口侧的管道上,有机工质冷凝温度传感器安装在冷凝器出口侧的管道上。
上述的控制通路中的控制单元含有电源电路、主单片机电路、模拟量输入电路、数字量输入电路、复位电路、时钟电路、电机驱动电路、开关驱动电路和通讯电路。模拟量输入电路对油门踏板位置传感器、排气温度传感器、导热油温度传感器、有机工质过热温度传感器、有机工质冷凝温度传感器和大气环境温度传感器输出的模拟量进行信号调理;数字量输入电路对发动机转速传感器和起动开关输出的数字量进行信号调理;模拟量输入电路的输出端与主单片机电路中的单片机的模拟量采集端口连接;数字量输入电路输出端与主单片机电路中的单片机的数字输入输出端口连接;所述的电机驱动电路的输入端与主单片机电路的输出端相连,单片机中的程序采集输入的信号,并进行数字滤波处理,计算驱动信号的值,从单片机的脉冲宽度调制(PWM)端口输出控制信号给电机驱动电路;电机驱动电路的输出端分别与导热油回路调节电机、有机朗肯循环回路调节电机和冷凝器风扇调节电机连接;所述的开关驱动电路的输入端与主单片机电路的输出端相连,单片机中的程序在检测到系统故障时从单片机的数字输出端口输出控制信号给开关驱动电路,开关驱动电路的输出端分别与排气常开开关阀和排气常闭开关阀连接;所述的通讯电路一端与主单片机电路中的单片机的CAN接口相连,另一端与计算机或其它电控单元的CAN总线通讯端口相连,实现与计算机的监控通讯以及与其它电控单元的数据通讯功能。
一种同时利用内燃机排气和冷却余热的有机朗肯循环发电控制方法,包括:采集有机工质过热温度传感器的信号,与程序预先设定的过热温度目标值比较,利用分段比例积分(PI)控制器计算驱动有机朗肯循环回路调节电机的PWM信号占空比值,输出给有机朗肯循环回路调节电机的电机驱动电路,分段PI控制器的参数计算:程序采集发动机转速传感器和油门踏板位置传感器的信号,以它们作为输入参数,分别查2维MAP图得到PI控制的比例系数Kp_ORC和积分系数Ki_ORC
控制单元中的程序采集排气管出口尾气温度传感器的信号,与程序预先设定的尾气温度目标值比较,利用分段PI控制器计算驱动导热油回路调节电机的PWM信号占空比值,输出给导热油回路调节电机的电机驱动电路,分段PI控制器的参数计算过程如下:程序采集发动机转速传感器和油门踏板位置传感器的信号,以它们作为输入参数,分别查2维MAP图得到PI控制的比例系数Kp_oil和积分系数Ki_oil
控制单元中的程序采集大气环境温度传感器信号为输入参数,查1维表计算有机朗肯循环回路目标冷凝温度,并与从冷凝温度传感器采集的冷凝温度实际值比较,将冷凝温度的目标值与实际值的差值作为输入采用PI控制器计算驱动冷凝器风扇调节电机的PWM信号占空比值,输出给电机驱动电路。
在正常工作时,控制单元中的程序控制排气常开开关阀打开,排气常闭开关阀关闭,当采集的传感器信号出现异常时,控制单元中的程序控制排气常开开关阀关闭,排气常闭开关阀打开,同时关闭整个余热发电系统,并通过通讯端口发送报警信号。
本实用新型与现有技术相比,具有以下优点和有益效果:
1.采用导热油回路和有机朗肯循环回路耦合的方式,能充分利用内燃机工作时排出的废气能量和冷却液带走的热量,比单一的针对内燃机排气的有机朗肯循环的方式输出有用功高。
2.利用导热油作为传热的媒介,将排气余热传递给有机工质,一方面提高排气热交换器和蒸发器的导热系数,减少了它们的换热面积和体积,另一方面,只采用一个有机朗肯循环实现了两种不同品味的余热的利用,减少了膨胀机和发电机的个数,节约了系统成本。
3.根据车用内燃机工作时排气和冷却液的不同热力状态,选择了工作温度范围在-25~315℃的合成导热油
Figure BDA0000152451750000041
55,同时采用了有机工质R245fa作为有机朗肯循环回路的工质,与其它材料相比,它们具有良好的安全性,对环境的破坏小,在车用内燃机工作的大部份工作工况下都可以实现高的有用功输出。
3.针对车用内燃机工作时,工况变化范围大的特点,控制系统根据发动机的不同工况采用闭环控制来调节导热油回路和有机朗肯循环回路的工作状态,实现在瞬态工况下的内燃机余热的充分利用。
4.由于利用余热发电,提高内燃机的有用功输出,在同样的功率输出情况下,节省了燃油的消耗率。
5.减少内燃机向大气环境的散热量,减缓温室效应的影响。减少内燃机尾气温度,提高城市环境的舒适性。
本实用新型可应用于各种车用内燃机,尤其是大功率的车用柴油机。
附图说明
图1为本实用新型的余热发电系统连接图。
图2为电控单元的硬件结构简图。
图3为导热油回路控制方法原理图。
图4为有机朗肯循环回路调节电机控制方法原理图。
图5为冷凝器风扇调节电机控制方法原理图。
图6为故障保护控制方法原理图
图7为程序总体流程图。
图中:1-压气机;2-内燃机缸体;3-排气涡轮;4-排气热交换器;5-排气常开开关阀;6-排气常闭开关阀;7-排气温度传感器;8-导热油温度传感器;9-蒸发器;10-导热油回路压力调节阀;11-导热油回路工质泵;12-导热油回路调节电机;13-预热器;14-有机朗肯循环回路压力调节阀;15-有机朗肯循环回路工质泵;16-有机朗肯循环回路调节电机;17-储液罐;18-有机工质冷凝温度传感器;19-冷凝器;20-冷凝器风扇;21-冷凝器风扇调节电机;22-单螺杆膨胀机;23-发电机;24-有机工质过热温度传感器;25-大气环境温度传感器;26-发动机转速传感器;27-油门踏板位置传感器;28-控制单元;29-起动开关。
具体实施方式
下面结合附图对本实用新型作进一步的详细说明。
本实用新型的一种同时利用内燃机排气和冷却余热的有机朗肯循环发电系统,其连接图如图1所示,包括导热油回路,有机朗肯循环回路和控制通路。上述用于吸收内燃机排气余热的导热油回路包含的部件有:工质泵11、调节电机12、压力调节阀10、排气热交换器4和蒸发器9、排气常开开关阀5、排气常闭开关阀6以及连接它们的管路。上述用于回收内燃机冷却液余热和导热油传递的热量的有机朗肯循环回路包含的部件有:工质泵15,调节电机16、压力调节阀14、预热器13,蒸发器9,单螺杆膨胀机22,发电机23、冷凝器19、冷凝器风扇20、冷凝器风扇调节电机21和储液罐17以及连接它们的管路。上述用于控制导热油回路和有机朗肯循环回路运行的控制通路包含的部件有:控制单元28、发动机转速传感器26、油门踏板位置传感器27、起动开关29、大气环境温度传感器25、排气管出口尾气温度传感器7、导热油温度传感器8、有机工质冷凝温度传感器18、有机工质过热温度传感器24、排气常开开关阀5、排气常闭开关阀6、导热油回路调节电机12、有机朗肯循环回路调节电机15、冷凝器风扇调节电机21以及连接这些部件的线束。
上述一种同时利用内燃机排气和冷却余热的有机朗肯循环发电系统内各部件的连接关系是:
导热油回路各部件的连接关系是:工质泵11,排气热交换器4,蒸发器9依次通过管道首尾相连组成;排气热交换器4串接在涡轮3出口的排气管上,调节电机12与工质泵11相连并驱动其运转,压力调节阀10与工质泵11并联,导热油温度传感器8安装在排气热交换器4出口侧的管道上,排气常开开关阀5串接在排气热交换器4入口前的管道上,排气常闭开关阀6并接在排气热交换器4入口前的管道上。
有机朗肯循环回路各部件的连接关系是:工质泵15,预热器13,蒸发器9,单螺杆膨胀机22,冷凝器19和储液罐17依次通过管道首尾相连组成;发动机水套出口与预热器13的冷却液入口相连,预热器13的冷却液出口与发动机水套的入口相连,调节电机16与工质泵15相连并驱动其运转,压力调节阀14与工质泵15并联,单螺杆膨胀机22的输出轴与发电机23的输入轴相连,有机工质过热温度传感器24安装在单螺杆膨胀机22入口侧的管道上,冷凝器风扇20安装在冷凝器19的正前方,由与其同轴的冷凝器风扇调节电机21驱动,冷凝温度传感器18安装在冷凝器19出口侧的管道上。
用于控制导热油回路和有机朗肯循环回路运行的控制通路各部件的连接关系是:起动开关29、发动机转速传感器26、油门踏板位置传感器27、大气环境温度传感器25、排气管出口尾气温度传感器7,导热油温度传感器8,有机工质冷凝温度传感器18,有机工质过热温度传感器24,排气常开开关阀5,排气常闭开关阀6,导热油回路调节电机12,有机朗肯循环回路调节电机15,冷凝器风扇调节电机21分别与控制单元28通过线束相连。
上述的一种同时利用内燃机排气和冷却余热的有机朗肯循环发电系统的控制通路的结构连接简图如图2所示。控制单元中含有电源电路、主单片机电路、模拟量输入电路、数字量输入电路、复位电路、时钟电路、电机驱动电路、开关驱动电路和通讯电路。模拟量输入电路对油门踏板位置传感器27、排气管出口尾气温度传感器7、导热油温度传感器8、有机工质过热温度传感器24、有机工质冷凝温度传感器18和大气环境温度传感器25输出的模拟量进行信号调理;数字量输入电路对发动机转速传感器26和起动开关29输出的数字量进行信号调理;模拟量输入电路的输出端与主单片机电路中的单片机的模拟量采集端口连接;数字量输入电路输出端与主单片机电路中的单片机的数字输入输出端口连接;所述的电机驱动电路的输入端与主单片机电路的输出端相连,单片机中的程序采集输入的信号,并进行数字滤波处理,计算驱动信号的值,从单片机的脉冲宽度调制(PWM)端口输出控制信号给电机驱动电路;电机驱动电路的输出端分别与导热油回路调节电机12、有机朗肯循环回路调节电机16和冷凝器风扇调节电机21连接;所述的开关驱动电路的输入端与主单片机电路的输出端相连,单片机中的程序在检测到系统故障时从单片机的数字输出端口输出控制信号给开关驱动电路,开关驱动电路的输出端分别与排气常开开关阀5和排气常闭开关阀6连接;
所述的通讯电路一端与主单片机电路中的单片机的CAN接口相连,另一端与计算机或其它电控单元的CAN总线通讯端口相连,实现与计算机的监控通讯以及与其它电控单元的数据通讯功能。
上述的导热油回路的工质为
Figure BDA0000152451750000071
55,用于有机朗肯循环回路的工质为R245fa。
本实用新型的工作原理如下:
在车用内燃机开始点火起动时,起动开关29接通,控制单元28上电开始工作,预先存储在控制单元28中的程序采集油门踏板位置传感器27、发动机转速传感器26、大气环境温度传感器25、排气温度传感器7、导热油温度传感器8、有机工质过热温度传感器24和有机工质冷凝温度传感器18的信号,分别采用闭环反馈控制计算输出驱动信号,控制导热油回路调节电机12、有机朗肯循环回路调节电机16和冷凝器风扇调节电机21的转速;当程序检测到的传感器信号正常时,保持排气常开开关阀5打开,排气常闭开关阀6关闭,当程序检测到传感器的信号出现异常时,关闭排气常开开关阀5,打开排气常闭开关阀6。
上述的导热油回路控制方法原理如图3所示,控制单元28中的程序采集排气管出口处尾气温度传感器7的信号,与预先通过计算选定的尾气温度最优目标值比较,利用分段PI控制器计算驱动导热油回路调节电机12的驱动信号值,随后输出给导热油回路调节电机驱动电路。PI控制器包含比例调节环节和积分调节环节。比例调节的作用为按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差,比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。积分调节的作用为使系统消除稳态误差,提高无差度,如果有误差,积分调节就进行,直至无差,积分调节才停止。由于车用内燃机工作在不同转速不同负荷状态时,导热油回路工质流量控制部份的非线性很大,所以采用分段PI控制器来选择不同的PI控制器参数,来提高车用内燃机大范围变化工作时控制的速度和精度。分段PI控制器的比例系数和积分系数计算方法如下:程序采集发动机转速传感器26和油门踏板位置传感器27的信号,分别查2个2维MAP图得到PI控制的Kp_oil和Ki_oil控制参数。PI控制器的计算式如下:
PWM oil = K p _ oil ( T exh _ t - T exh _ r ) n + K i _ oil Σ k = 1 n ( T exh _ t - T exh _ r ) k
其中PWMoil为导热油回路调节电机12的驱动信号的占空比值,Kp_oil为导热油回路PI控制器的比例系数,Ki_oil为导热油回路PI控制器的积分系数,Texh_t为排气尾气温度的目标值,Texh_r为排气尾气温度的实际值,下标n表示当前时刻的数值,k表示所有时刻的数值。
上述的有机朗肯循环回路调节电机控制方法原理如图4所示,控制单元28中的程序采集有机工质过热温度传感器24的信号,与预先通过计算选定的最优目标过热温度值比较,利用分段PI控制器计算驱动有机朗肯循环回路调节电机16的驱动信号值,随后输出给有机朗肯循环回路调节电机16的驱动电路。由于车用内燃机工作在不同转速不同负荷状态时,有机朗肯循环回路工质流量控制部份的非线性很大,所以采用分段PI控制器来选择不同的PI控制器参数,来提高车用内燃机大范围变化工作时控制的速度和精度。分段PI控制器的参数计算过程如下:程序采集发动机转速传感器26和油门踏板位置传感器27的信号,分别查2个2维MAP图得到PI控制的Kp_ORC和Ki_ORC控制参数。PI控制器的计算式如下:
PWM ORC = K p _ ORC ( T sup _ t - T sup _ r ) n + K i _ ORC Σ k = 1 n ( T sup _ t - T sup _ r ) k
其中PWMORC为有机朗肯循环回路调节电机16的驱动信号的占空比值,Kp_ORC为有机朗肯循环回路PI控制器的比例系数,Ki_ORC为有机朗肯循环回路PI控制器的积分系数,Tsup_t为有机工质过热温度的目标值,Tsup_r为有机工质过热温度的实际值,下标n表示当前时刻的数值,k表示所有时刻的数值。
上述的冷凝器风扇调节电机控制方法原理如图5所示,控制单元28中的程序采集大气环境温度传感器25信号,查1维表判断有机工质冷凝温度的目标值,该目标冷凝温度根据不同的大气环境温度条件,通过计算预先设定并作为1维表的形式存储在程序中,计算的目标冷凝温度与采集的实际有机工质冷凝温度传感器18的信号值比较,将冷凝温度的目标值与实际值的差值作为输入采用PI控制器计算驱动冷凝器风扇调节电机21的控制信号值,随后输出给冷凝器风扇调节电机21的驱动电路。
上述的故障保护控制方法原理如图6所示,控制单元28中的程序检测排气尾气温度传感器7、有机工质过热温度传感器24、有机工质冷凝温度传感器18和导热油温度传感器8的信号值,当检测它们的值都在正常范围内时,认定系统工作正常,程序控制排气常开开关阀5打开,排气常闭开关阀6关闭;当检测以上传感器的值至少有一个大于设定的最大值或低于设定的最小值时,判定系统工作出现异常,控制单元28中的程序控制排气常开开关阀5关闭,排气常闭开关阀6打开,同时关闭整个余热发电系统,并通过通讯端口发送报警信号。
本实用新型的工作过程如下:
在车用内燃机开始点火起动时,起动开关29接通,控制单元28上电,控制程序开始工作,主程序的流程图如图7所示。首先,控制程序进行初始化操作,设定有关寄存器的值,将相关的控制参数调入到RAM中。随后,控制程序进行开中断操作,打开以10毫秒为周期的主循环控制程序。之后主循环控制程序判断10毫秒时间周期是否到达,如果没有,继续等待,如果到达,则进入传感器信号采集模块。传感器信号采集模块采集油门踏板位置传感器27、发动机转速传感器26、大气环境温度传感器25、排气尾气温度传感器7、有机工质过热温度传感器24、有机工质冷凝温度传感器18和导热油传感器8的信号,分别进行数字滤波后存入RAM中,作为当前的实际信号值。之后,主循环控制程序判断传感器的信号是否在正常工作范围内,如果正常,程序进行正常的系统控制程序。首先程序调用导热油回路调节电机驱动模块,按照上述的导热油回路控制方法原理的要求,计算驱动信号值,输出给导热油回路调节电机12的驱动电路。之后进入有机朗肯循环回路调节电机驱动模块,按照上述的有机朗肯循环回路调节电机控制方法原理中有机工质过热温度的控制部份原理的要求,计算驱动信号值,输出给有机朗肯循环回路调节电机16的驱动电路。接着,冷凝器风扇调节电机驱动模块按照上述的冷凝器风扇调节电机控制方法原理的要求,计算驱动信号值,输出给冷凝器风扇调节电机21的驱动电路。最后,主循环控制程序进入CAN通讯模块,检查是否发生上位机的通讯请求,如果有,CAN通讯模块按照上位机的要求发送相关的信息,如果没有,则结束此次10毫秒周期的控制任务,进入等待,直到下一个10毫秒时间周期的到来。如果检测到有传感器的信号出现异常,程序首先打开排气常闭开关阀6,随后关闭排气常开开关阀5,并通过CAN通讯发送报警信号,之后,程序关闭余热发电机,以此关闭导热油调节电机12、有机朗肯循环回路调节电机16和冷凝器风扇调节电机21,完成以上动作以后程序停止运行,等待维修人员来进行检修。

Claims (6)

1.同时利用内燃机排气和冷却余热的发电系统,利用有机朗肯循环回路中的预热器将内燃机冷却液的余热传递给有机工质,利用导热油回路将内燃机的排气带走的余热传递给有机朗肯循环回路的工质,实现工质的蒸发气化,利用单螺杆膨胀机将高焓工质膨胀过程中的焓变转换为有用功输出,带动发电机发电;其特征在于: 
所述的有机朗肯循环回路,由有机朗肯循环回路工质泵(15),预热器(13),蒸发器(9),单螺杆膨胀机(22),冷凝器(19)和储液罐(17)依次通过管道首尾相连组成;有机朗肯循环回路调节电机(16)与有机朗肯循环回路工质泵(15)相连并驱动其运转,有机朗肯循环回路压力调节阀(14)与有机朗肯循环回路工质泵(15)并联,用于限制有机朗肯循环回路的最高蒸发压力,单螺杆膨胀机(22)与发电机(23)相连,带动其发电,有机工质过热温度传感器(24)安装在单螺杆膨胀机(22)入口侧的管道上,冷凝器风扇(20)安装在冷凝器(19)的正前方,由与其同轴的冷凝器风扇调节电机(21)驱动,有机工质冷凝温度传感器(18)安装在冷凝器(19)出口侧的管道上,发动机水套出口的高温冷却液流入预热器(13),在将余热能传递给另一侧的有机工质以后,从预热器的冷却液侧出口流出,进入发动机水套的入口,通过发动机冷却水泵的驱动进行下一次的循环; 
所述的导热油回路,包含导热油回路工质泵(11),排气热交换器(4),蒸发器(9),排气常开开关阀(5),排气常闭开关阀(6)以及连接它们的管道;导热油回路调节电机(12)与导热油回路工质泵(11)相连并驱动其运转,导热油回路压力调节阀(10)与导热油回路工质泵(11)并联,用于限制导热油回路的最高压力差,排气热交换器(4)串接在涡轮出口的排气管上,排气热交换器(4)的壳侧流体为高温废气,管侧流体为导热油,导热油温度传感器(8)安装在排气热交换器(4)出口侧的管道上,在排气热交换器(4)的废气入口前的管道上串接排气常开开关阀(5),在排气常开开关阀(5)的入口前的管道上的旁路排气管上串接排气常闭开关阀(6)。 
2.根据权利要求1所述的同时利用内燃机排气和冷却余热的发电系统,其特征在于: 
其还包括有控制系统,由发动机转速传感器(26),油门踏板位置传感器(27),起动开关(29),大气环境温度传感器(25),排气管出口尾气温度传感器(7),导热油温度传感器(8),有机工质冷凝温度传感器(18),有机工质过热温度传感器(24),排气常开开关阀(5),排气常闭开关阀(6),导热油回路调节电机(12),有机朗肯循环回路调节电机(16),冷凝器风扇调节电机(21)与控制单元(28)通过线束相连组成。 
3.根据权利要求1所述的同时利用内燃机排气和冷却余热的发电系统,其特征在于: 所述的控制单元(28)包括:电源电路、主单片机电路、模拟量输入电路、数字量输入电路、复位电路、时钟电路、电机驱动电路、开关驱动电路和通讯电路。 
4.根据权利要求3所述的同时利用内燃机排气和冷却余热的发电系统,其特征在于:所述的模拟量输入电路对油门踏板位置传感器(27)、排气管出口尾气温度传感器(7)、导热油温度传感器(8)、有机工质过热温度传感器(24)、有机工质冷凝温度传感器(18)和大气环境温度传感器(25)输出的模拟量进行信号调理;数字量输入电路对发动机转速传感器(26)和起动开关(29)输出的数字量进行信号调理;模拟量输入电路的输出端与主单片机电路中的单片机的模拟量采集端口连接;数字量输入电路输出端与主单片机电路中的单片机的数字输入输出端口连接。 
5.根据权利要求3所述的同时利用内燃机排气和冷却余热的发电系统,其特征在于:所述的电机驱动电路的输入端与主单片机电路的输出端相连,单片机中的程序采集输入的信号,并进行数字滤波处理,计算驱动信号的值,从单片机的脉冲宽度调制(PWM)端口输出控制信号给电机驱动电路;电机驱动电路的输出端分别与导热油回路调节电机(12)、有机朗肯循环回路调节电机(16)和冷凝器风扇调节电机(21)连接;所述的开关驱动电路的输入端与主单片机电路的输出端相连,单片机中的程序在检测到系统故障时从单片机的数字输出端口输出控制信号给开关驱动电路,开关驱动电路的输出端分别与排气常开开关阀(5)和排气常闭开关阀(6)连接; 
所述的通讯电路一端与主单片机电路中的单片机的CAN接口相连,另一端与计算机或其它电控单元的CAN总线通讯端口相连,实现与计算机的监控通讯以及与其它电控单元的数据通讯。 
6.根据权利要求1所述的同时利用内燃机排气和冷却余热的发电系统,其特征在于:用于导热油回路的工质为高温合成导热油,用于有机朗肯循环回路的工质为R245fa。 
CN2012201539631U 2012-04-12 2012-04-12 同时利用内燃机排气和冷却余热的发电系统 Expired - Fee Related CN202851187U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012201539631U CN202851187U (zh) 2012-04-12 2012-04-12 同时利用内燃机排气和冷却余热的发电系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012201539631U CN202851187U (zh) 2012-04-12 2012-04-12 同时利用内燃机排气和冷却余热的发电系统

Publications (1)

Publication Number Publication Date
CN202851187U true CN202851187U (zh) 2013-04-03

Family

ID=47982395

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012201539631U Expired - Fee Related CN202851187U (zh) 2012-04-12 2012-04-12 同时利用内燃机排气和冷却余热的发电系统

Country Status (1)

Country Link
CN (1) CN202851187U (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102619641A (zh) * 2012-04-12 2012-08-01 北京工业大学 同时利用内燃机排气和冷却余热的发电系统及控制方法
CN103726950A (zh) * 2013-12-27 2014-04-16 天津大学 二冲程内燃机双回路余热回收系统
CN104727873A (zh) * 2015-01-25 2015-06-24 北京工业大学 抽气回热式有机朗肯循环发动机余热回收系统及控制方法
CN104727910A (zh) * 2013-12-18 2015-06-24 石仁泉 燃料车辆高温尾气发电装置系统
CN103850826B (zh) * 2014-03-13 2016-03-16 四川京典能源科技有限公司 氨电活塞内燃发动机及使用该发动机的车辆
CN105599888A (zh) * 2014-11-14 2016-05-25 株式会社神户制钢所 船舶推进系统和船舶、以及船舶推进系统的运转方法
CN107110067A (zh) * 2015-03-05 2017-08-29 富士电机株式会社 双发电系统、控制装置及程序
WO2017194259A1 (de) * 2016-05-10 2017-11-16 Robert Bosch Gmbh Abwärmenutzungsanordnung einer brennkraftmaschine und verfahren zum betrieb der abwärmenutzungsanordnung

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102619641A (zh) * 2012-04-12 2012-08-01 北京工业大学 同时利用内燃机排气和冷却余热的发电系统及控制方法
CN104727910A (zh) * 2013-12-18 2015-06-24 石仁泉 燃料车辆高温尾气发电装置系统
CN103726950A (zh) * 2013-12-27 2014-04-16 天津大学 二冲程内燃机双回路余热回收系统
CN103726950B (zh) * 2013-12-27 2016-01-20 天津大学 二冲程内燃机双回路余热回收系统
CN103850826B (zh) * 2014-03-13 2016-03-16 四川京典能源科技有限公司 氨电活塞内燃发动机及使用该发动机的车辆
CN105599888A (zh) * 2014-11-14 2016-05-25 株式会社神户制钢所 船舶推进系统和船舶、以及船舶推进系统的运转方法
CN104727873A (zh) * 2015-01-25 2015-06-24 北京工业大学 抽气回热式有机朗肯循环发动机余热回收系统及控制方法
CN107110067A (zh) * 2015-03-05 2017-08-29 富士电机株式会社 双发电系统、控制装置及程序
CN107110067B (zh) * 2015-03-05 2020-05-05 富士电机株式会社 双工质发电系统、控制装置及记录介质
US11105225B2 (en) 2015-03-05 2021-08-31 Fuji Electric Co., Ltd. Binary power generation system and control apparatus
WO2017194259A1 (de) * 2016-05-10 2017-11-16 Robert Bosch Gmbh Abwärmenutzungsanordnung einer brennkraftmaschine und verfahren zum betrieb der abwärmenutzungsanordnung
US20190203615A1 (en) * 2016-05-10 2019-07-04 Robert Bosch Gmbh Waste-heat utilization assembly of an internal combustion engine, and method for operating the waste-heat utilization assembly
US10767514B2 (en) 2016-05-10 2020-09-08 Robert Bosch Gmbh Waste-heat utilization assembly of an internal combustion engine, and method for operating the waste-heat utilization assembly

Similar Documents

Publication Publication Date Title
CN102691555B (zh) 带蓄热器的内燃机排气余热回收系统及控制方法
CN102619641A (zh) 同时利用内燃机排气和冷却余热的发电系统及控制方法
CN202851187U (zh) 同时利用内燃机排气和冷却余热的发电系统
CN102003229B (zh) 一种车用柴油机余热发电控制系统及控制方法
CN102900562A (zh) 变蒸发器面积的发动机排气余热回收有机朗肯循环系统
CN201963362U (zh) 一种车用柴油机余热发电控制系统
CN102094690B (zh) 基于单螺杆膨胀机的发动机排气余热利用系统
CN104564422A (zh) 内燃机余热综合利用系统
CN202970867U (zh) 带蓄热器的内燃机排气余热回收系统
CN104727873B (zh) 抽气回热式有机朗肯循环发动机余热回收系统及控制方法
CN103615310B (zh) 内燃机冷却循环与排气能量回收orc的复合装置及控制方法
CN106837440B (zh) 一种再热式有机朗肯循环发动机余热回收系统及控制方法
CN103334820B (zh) 一种汽车发动机的热控制系统及热控制方法
CN109899122B (zh) 船用发动机的排气余热回收系统的控制方法
CN102840026A (zh) 一种利用空气循环回收内燃机废气余热能的系统
CN111075601A (zh) 一种车用发动机有机朗肯循环余热回收装置
CN108457744A (zh) 一种装备机电耦合增压器的发动机余热回收系统
CN203223307U (zh) 变蒸发器面积的发动机排气余热回收有机朗肯循环系统
CN207466293U (zh) 一种车辆热能回收采暖系统
CN105697189A (zh) 一种提高egr发动机能源利用率的系统及控制方法
CN110332729B (zh) 一种基于吸收式热泵和有机朗肯循环系统及运行方法
CN104500159B (zh) 发动机能量综合利用系统及控制方法
CN203362285U (zh) 一种汽车发动机的热控制系统
CN202902689U (zh) 利用内燃机尾气的冷热电联产能源回收系统
CN102678287A (zh) 发动机排气能量缸内回收系统及其回收方法

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130403

Termination date: 20200412

CF01 Termination of patent right due to non-payment of annual fee