WO2022047853A1 - 一种智能交互式运动人体减压方法及装置 - Google Patents

一种智能交互式运动人体减压方法及装置 Download PDF

Info

Publication number
WO2022047853A1
WO2022047853A1 PCT/CN2020/117132 CN2020117132W WO2022047853A1 WO 2022047853 A1 WO2022047853 A1 WO 2022047853A1 CN 2020117132 W CN2020117132 W CN 2020117132W WO 2022047853 A1 WO2022047853 A1 WO 2022047853A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
axis
user
coordinate system
cantilever
Prior art date
Application number
PCT/CN2020/117132
Other languages
English (en)
French (fr)
Inventor
刘涛
张仕宏
钟驰
李文莲
Original Assignee
四川爱派机器人科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川爱派机器人科技有限公司 filed Critical 四川爱派机器人科技有限公司
Publication of WO2022047853A1 publication Critical patent/WO2022047853A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0062Monitoring athletic performances, e.g. for determining the work of a user on an exercise apparatus, the completed jogging or cycling distance
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • A63B71/0619Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2230/00Measuring physiological parameters of the user
    • A63B2230/62Measuring physiological parameters of the user posture
    • A63B2230/625Measuring physiological parameters of the user posture used as a control parameter for the apparatus

Definitions

  • the invention relates to the field of mechanical equipment, in particular to an intelligent interactive exercise human body decompression method and device.
  • the present application provides an intelligent interactive exercise human body decompression method and device, which relates to a display exercise method and device, which can guide the user to perform corresponding follow-up movements, so as to adjust the posture of the human body, decompress the human body, and guide the user to return to the human body. To the purpose of correct human body posture.
  • the monitor In daily work and life, people often need to face the monitor for a long time. During this process, the monitor is generally in a fixed state, and the relative position between the human and the computer is relatively fixed. The human eye stares at the fixed monitor for a long time, and the sight distance between the human eye and the computer is in a fixed range for a long time, which will cause The risk of myopia is greatly increased.
  • the pressure in the cervical intervertebral disc increases, the neck muscles are in a state of uncoordinated stress, and the muscles and ligaments at the back of the neck are easily stretched and Injury, the anterior edge of the vertebral body rubs against each other, which is easy to proliferate.
  • Some people will experience neck, shoulder and back pain symptoms, and some people also have a heavy tingling sensation in the shoulders, interscapular area and upper arms.
  • One is to connect the display to the bracket, and the bracket is provided with a damping member, and the position of the display can be changed by adjusting the bracket.
  • the movement of the display belongs to the slave state, and the user needs to adjust it manually, and its movement is not continuous;
  • the other type is to drive the monitor to move in a set way through the stand.
  • the stand drives the monitor to move in a circle.
  • This method realizes the continuous movement of the monitor.
  • This method can adjust the distance between the user's eyes and the monitor. When in the wrong body posture, it cannot guide the user accordingly, which has certain limitations.
  • the purpose of the present invention is to provide an intelligent interactive exercise human body decompression method and device, which can realize the intelligent interactive movement of the display and the human body, and change the relative position between the display and the user through the movement of the display to guide
  • the human body posture is adjusted synchronously, so as to achieve the purpose of decompressing the human body and guiding the user to return to the correct human body posture.
  • the intelligent interactive exercise human body decompression method of the present application realizes the adjustment of the display position movement through benchmark confirmation, first position definition, first threshold judgment, first movement, secondary judgment, and reverse movement. Then, through the movement of the display, the user can be guided to follow the movement, adjust the posture of the human body, reduce the pressure of the human body, and guide the user to return to the correct posture of the human body.
  • An intelligent interactive exercise human body decompression method comprising the following steps:
  • the middle point of the line connecting the user's eyes is set as the first coordinate origin, and a first space Cartesian coordinate system is established.
  • the three coordinate axes are X axis, Y axis and Z axis respectively;
  • the projection point on the horizontal plane where the first coordinate origin is located is marked as the X-axis positive value point, the direction from the first coordinate origin to the X-axis positive value point is the X-axis positive value direction, and the Y-axis is set along the horizontal plane direction, along the direction perpendicular to the horizontal plane Set the Z axis;
  • the three-dimensional coordinates of the key points of the user's human skeleton in the first space rectangular coordinate system are collected by the attitude information collection device, and the obtained coordinates are marked as the first coordinate information;
  • the display working surface Move the center point of the display working surface to the same height as the middle point of the user's eyes in the first coordinate information, the display working surface is located directly in front of the user's eyes, and the distance between the middle point of the binocular connecting line and the center point of the display working surface is the first setting. value, the position of the display at this time is defined as the first position of the display; after the display reaches the first position, the first movement is performed;
  • the gesture information collection device is used to determine whether the user's gesture exceeds the first threshold; if the user's gesture exceeds the first threshold, the display is controlled to return to the first position of the display; if the user's gesture is in the first position Within the threshold range, the display performs the first movement;
  • step S05 is performed;
  • the first space rectangular coordinate system is established to form 8 hexagram limits, and the values of x1, y1 and z1 in the coordinates (x1, y1, z1) of any point within these hexagram limits are not 0;
  • the X-axis and the Y-axis, the X-axis and the Z-axis, and the Y-axis and the Z-axis form 3 planes, and each plane has 4 quadrants.
  • One of the values in z2 is 0;
  • the positive and negative semi-axes of the X-axis, the positive and negative semi-axes of the Y-axis, and the positive and negative semi-axes of the Z-axis of the first space rectangular coordinate system form 6 semi-axes, and the coordinates of any point in these semi-axes ( Two values of x3, y3, z3 in x3, y3, z3) are 0;
  • the center point of the display working surface is set as the second coordinate origin, and a second space Cartesian coordinate system is established; the X' axis, Y' axis, Z' axis of the second space Cartesian coordinate system
  • the axes are respectively arranged in parallel with the X-axis, Y-axis, and Z-axis of the first space rectangular coordinate system, and the positive value direction of the X-axis in the first space rectangular coordinate system is the positive value direction of the X'-axis in the second space rectangular coordinate system.
  • the value direction is the same;
  • the first threshold is set as follows:
  • step S01 Based on the first coordinate information under the correct human body posture in step S01, calculate the displacement distance of the middle point of the line connecting the user's two eyes, the displacement distance of the middle point of the line connecting the key points of the two shoulder bones, and the line between the eye connecting line and the horizontal plane. Angle, line and surface angle between the line connecting the key points of the shoulder bones and the horizontal plane, line and surface angle between the line connecting the eyes and the monitor work surface, line and surface clamp between the key point connecting line of the shoulder bones and the monitor work surface Angle, take one or more of the above data, and set it as the first threshold.
  • the first movement of the display includes one or more of the following operations:
  • the mechanical arm drives the center point of the display working surface to move along the X' axis direction of the second space rectangular coordinate system
  • the mechanical arm drives the center point of the display working surface to move along the Y' axis direction of the second space rectangular coordinate system
  • the mechanical arm drives the center point of the display working surface to move along the Z' axis direction of the second space rectangular coordinate system.
  • the first movement of the display includes one or more of the following operations:
  • the mechanical arm drives the center point of the working surface of the display to move along the positive value direction of the X' axis of the second space rectangular coordinate system, to the maximum value that the display can move;
  • the mechanical arm drives the center point of the working surface of the display to move along the negative direction of the X' axis of the second space rectangular coordinate system, to the maximum value that the display can move;
  • the mechanical arm drives the center point of the working surface of the display to move along the positive value direction of the Y' axis of the second space rectangular coordinate system, to the maximum value that the display can move;
  • the mechanical arm drives the center point of the working surface of the display to move along the negative value direction of the Y' axis of the second space rectangular coordinate system to the maximum value that the display can move;
  • the mechanical arm drives the center point of the display working surface to move along the positive value direction of the Z' axis of the second space rectangular coordinate system, to the maximum value that the display can move;
  • the mechanical arm drives the center point of the working surface of the display to move along the negative value direction of the Z' axis of the second space rectangular coordinate system to the maximum value that the display can move.
  • the distance between the middle point of the line connecting the eyes and the center point of the working surface of the display is 30-120 cm; preferably, the distance is 75 cm.
  • a device for the aforementioned method comprising a robotic arm, a display, an attitude information acquisition device, and a control system;
  • the mechanical arm includes a base, a vertical lifting device, and a horizontal rotating device.
  • the vertical lifting device is connected to the base and the base can provide support for the vertical lifting device.
  • the horizontal rotating device is connected to the vertical lifting device and The vertical direction lifting device can drive the horizontal direction rotating device to move in the vertical direction, the display is connected with the horizontal direction rotating device, and the horizontal direction rotating device can drive the display to rotate relative to the vertical direction lifting device;
  • the attitude information collecting device is connected with the base or the vertical lifting device, and the attitude information collecting device can keep still relative to the base or the vertical lifting device;
  • the vertical direction lifting device, the horizontal direction rotating device, and the attitude information collecting device are respectively connected with the control system;
  • the attitude information collection device is a depth image collection device.
  • the horizontal rotation device includes a first cantilever and a first rotation assembly
  • One end of the first cantilever is movably connected with the vertical lifting device, the other end of the first cantilever is connected with the display, and the first cantilever can drive the display to move synchronously;
  • the vertical lifting device is connected with the first rotating assembly, and the vertical lifting device can provide support for the first rotating assembly, the first rotating assembly is connected with the first cantilever, and the first rotating assembly can drive the first cantilever relative to the vertical direction Lifting device rotation;
  • the first rotating assembly is connected to a control system.
  • the first rotating assembly includes a first motor and a first reducer, the first motor is connected to a vertical lifting device, and the vertical lifting device can provide support for the first motor, and the first motor passes through the first reducer. connected with the first cantilever;
  • the first reducer is connected to a vertical lifting device and the vertical lifting device can provide support for the first reducer, and the first reducer is connected to the first cantilever through the first motor;
  • the first motor is connected to the control system.
  • first angle measurer is connected with the control system, and the first angle measurer can measure the rotation angle information of the first cantilever relative to its rotational center axis and transmit it to the control system.
  • It also includes a second rotating assembly, the first cantilever is connected with the display through the second rotating assembly, and the display can be rotated relative to the first cantilever through the second rotating assembly.
  • the second rotating assembly includes a second motor, a second reducer, and a second angle measurer, the first cantilever is connected to the second motor, and the second motor is connected to the display through the second reducer;
  • first cantilever is connected to the second reducer, and the second reducer is connected to the display through the second motor;
  • the second angle measurer is connected to the control system, and the second angle measurer can measure the rotation angle of the display relative to the first cantilever;
  • the second motor is connected to the control system, and the control system can control the rotation of the second motor to adjust the rotation of the display relative to the first cantilever.
  • the first angle measurer and the second angle measurer are independent sensors or the same sensor.
  • the depth image acquisition device is one or more of a lidar depth imaging device, a computer stereo vision imaging device, a Moiré fringe depth imaging device, and a structured light depth image acquisition device.
  • the present application provides an intelligent interactive exercise human body decompression method and device.
  • the user is first confirmed with the benchmark, the first position of the display is defined, and whether the user is within the first threshold is judged; when the user is within the range of the first threshold, the first movement is performed, that is, when the user is within the range of the first threshold When it is within the first threshold range, the display performs the first movement, which drives the user to follow the position movement of the display to simultaneously perform eye movement, head and neck movement, etc., to achieve the purpose of decompressing the human body; when the user exceeds the first threshold range, The display performs reverse movement, that is, based on the user's human body posture, the display reverses movement, the user will realize that his posture is in a wrong state, and then can make corresponding adjustments to return to the correct human body posture range to correct the human body posture. the goal of.
  • the present application provides a device for the aforementioned intelligent interactive exercise human body decompression method.
  • the device includes a robotic arm, a display, an attitude information collection device, and a control system;
  • the robotic arm includes a base, a vertical lifting device, and a horizontal rotating device.
  • the vertical lifting device is connected to the base and the base can provide support for the vertical lifting device.
  • the direction rotating device is connected with the vertical direction lifting device and the vertical direction lifting device can drive the horizontal direction rotating device to move in the vertical direction
  • the display is connected with the horizontal direction rotating device and the horizontal direction rotating device can drive the display to rotate relative to the vertical direction lifting device
  • the collecting device is connected with the base or the vertical lifting device, and the attitude information collecting device can remain stationary relative to the base or the vertical lifting device
  • the vertical lifting device, the horizontal rotating device and the attitude information collecting device are respectively connected with the control system.
  • the vertical direction lifting device and the horizontal direction rotating device cooperate with each other to realize the movement of the display in three-dimensional space
  • the setting of the posture information acquisition device can realize the collection of the depth image of the human body posture, thereby realizing the benchmark confirmation, the first A threshold judgment and other operations.
  • the application uses the cooperation of the motor and the reducer to realize the movement of the display in the horizontal direction; each rotating mechanical arm is provided with an angle measurement device, and the angle measurement device can measure the components in the robot arm. rotation position.
  • the attitude information collection device is connected to the base or the vertical lifting device, and keeps the two relatively static; in this application, the function of the attitude information collection device is mainly to capture the depth image information of the human body.
  • attitude information acquisition device of the present application adopts one or more of a laser radar depth imaging device, a computer stereo vision imaging device, a moiré fringe depth imaging device, and a structured light depth image acquisition device.
  • the innovation of the present application is: the intelligent interactive motion human body decompression method of the present application is not a mechanical repetitive motion, but real-time collection of depth image information of the human body posture, and then the information is input into the control system. , to determine whether the key point data of the user's human skeleton is within the threshold of the correct posture. If the data exceeds the threshold, the control system adjusts the position of the display, so that the display moves in the opposite direction relative to the user, and guides the user's posture to follow the movement of the display to make corresponding adjustments, so that the key point data of the user's human skeleton returns to within the threshold of the correct posture.
  • FIG. 1 is a schematic diagram of the folding state of the intelligent interactive exercise human body decompression device in the first embodiment.
  • FIG. 2 is a top view of FIG. 1 .
  • FIG. 3 is a top view of the base in FIG. 2 being unfolded.
  • FIG. 4 is a schematic diagram of the partially unfolded state of the vertical direction lifting device in Embodiment 1.
  • FIG. 4 is a schematic diagram of the partially unfolded state of the vertical direction lifting device in Embodiment 1.
  • FIG. 5 is a schematic diagram of a state in which the vertical direction lifting device in FIG. 4 is fully unfolded.
  • FIG. 6 is a top view of the unfolded intelligent interactive exercise human body decompression device in Embodiment 1.
  • FIG. 6 is a top view of the unfolded intelligent interactive exercise human body decompression device in Embodiment 1.
  • FIG. 7 is a schematic diagram 1 of the intelligent interactive exercise human body decompression device in Embodiment 1.
  • FIG. 7 is a schematic diagram 1 of the intelligent interactive exercise human body decompression device in Embodiment 1.
  • FIG. 8 is a plan view of FIG. 7 .
  • FIG. 9 is a second schematic diagram of the intelligent interactive exercise human body decompression device in Embodiment 1.
  • FIG. 9 is a second schematic diagram of the intelligent interactive exercise human body decompression device in Embodiment 1.
  • FIG. 10 is a schematic diagram 3 of the intelligent interactive exercise human body decompression device in Embodiment 1.
  • FIG. 10 is a schematic diagram 3 of the intelligent interactive exercise human body decompression device in Embodiment 1.
  • FIG. 11 is a plan view of FIG. 10 .
  • This embodiment provides an intelligent interactive exercise human body decompression device, which includes a robotic arm, a display, a posture information collection device, and a control system.
  • the mechanical arm includes a base, a vertical lifting device, and a horizontal rotating device.
  • the vertical lifting device is connected to the base, and the base provides support for the vertical lifting device;
  • the horizontal rotating device is connected to the vertical lifting device, and the vertical lifting device is connected through the vertical lifting device
  • the device drives the horizontal rotation device to move in the vertical direction.
  • the base includes a center support and base side plates.
  • the base side plates are a group and the base side plates are symmetrically arranged on both sides of the center support.
  • the base side plates are movably connected to the center support, and the base side plates can be opposed to each other.
  • the center support rotates.
  • a storage space for the display is formed between the two base side panels, and the display can be placed in the storage space.
  • the horizontal rotation device includes a first cantilever and a rotating assembly.
  • One end of the first cantilever is movably connected to the vertical lifting device, and the other end of the first cantilever is connected to the display.
  • the first cantilever can drive the display to move synchronously.
  • the rotating assembly includes a first motor and a reducer, the first motor is connected to a vertical lifting device, and the vertical lifting device can provide support for the first motor; the first motor is connected to the first cantilever through the reducer.
  • the rotating assembly further includes a first angle measurer, the first angle measurer is connected to the first cantilever, and the first angle measurer is used to measure the rotation angle of the first cantilever.
  • the attitude information collection device is connected with the base, and the attitude information collection device can remain stationary relative to the base.
  • the attitude information acquisition device Through the attitude information acquisition device, the user in front of the robotic arm can be measured in real time.
  • the vertical lifting device, the attitude information collecting device, the first motor, and the first angle measuring device are respectively connected with the control system.
  • the attitude information collection device is a depth image collection device; preferably, the attitude information collection device adopts a computer stereo vision imaging device.
  • the intelligent interactive exercise human body decompression method in this embodiment includes the following steps.
  • the reference data under the correct human body posture is collected to obtain the first coordinate information.
  • the intelligent interactive exercise human body decompression device When the user is directly in front of the intelligent interactive exercise human body decompression device, his head is facing the front of the body, the eyes are looking straight ahead, the torso is kept perpendicular to the ground, the spine is in a neutral position, maintain a normal state of curvature and balance, the cervical spine and The muscles of the back that maintain the spine maintain a normal ergonomic state, and the shoulders droop naturally and are parallel to the horizontal plane. At this time, the user's posture is the correct human posture.
  • the middle point of the line connecting the user's eyes is set as the first coordinate origin, and a first space Cartesian coordinate system is established, and the three coordinate axes are X axis, Y axis and Z axis respectively;
  • the projection point on the horizontal plane where the first coordinate origin is located is recorded as the X-axis positive value point, the direction from the first coordinate origin to the X-axis positive value point is the X-axis positive value direction, and the Y-axis is set along the horizontal plane direction, along the direction perpendicular to the horizontal plane set the Z axis;
  • the three-dimensional coordinates of the key points of the user's human skeleton in the first space rectangular coordinate system are collected by the attitude information collection device, and the obtained coordinates are marked as the first coordinate information.
  • the position of the display is defined as the first position of the display; after the display reaches the first position, the first movement is performed.
  • the gesture information collection device is used to determine whether the user's gesture exceeds the first threshold; if the user's gesture exceeds the first threshold, the display is controlled to return to the first position of the display; if the user's gesture is in the first position Within the threshold range, the display performs the first movement.
  • step S05 is performed.
  • the first space rectangular coordinate system is established to form 8 hexagram limits, and the values of x1, y1 and z1 in the coordinates (x1, y1, z1) of any point within these hexagram limits are not 0;
  • the X-axis and the Y-axis, the X-axis and the Z-axis, and the Y-axis and the Z-axis form 3 planes, and each plane has 4 quadrants.
  • One of the values in z2 is 0;
  • the positive and negative semi-axes of the X-axis, the positive and negative semi-axes of the Y-axis, and the positive and negative semi-axes of the Z-axis of the first space rectangular coordinate system form 6 semi-axes, and the coordinates of any point in these semi-axes (
  • the two values of x3, y3, and z3 in x3, y3, z3) are 0;
  • the display When the display is in the first position of the display, set the center point of the working surface of the display as the second coordinate origin, and establish a second space Cartesian coordinate system;
  • the X' axis, Y' axis, Z' axis of the second space Cartesian coordinate system They are respectively arranged in parallel with the X-axis, Y-axis, and Z-axis of the first space rectangular coordinate system, and the positive value direction of the X-axis in the first space rectangular coordinate system is the positive value of the X'-axis in the second space rectangular coordinate system. the same direction;
  • the maximum length of the rotating arm for horizontal rotation is set to 60cm, and the movement range of the center point of the display surface cannot exceed the length limit of the rotating arm and the telescopic range limit of the vertical lifting structure;
  • the movement speed of the center point of the display working surface is set to 1cm/s.
  • the first threshold is set as follows:
  • step S01 Based on the first coordinate information under the correct human body posture in step S01, calculate the displacement distance of the middle point of the line connecting the user's two eyes, the displacement distance of the middle point of the line connecting the key points of the two shoulder bones, and the line between the eye connecting line and the horizontal plane. Angle, line and surface angle between the line connecting the key points of the shoulder bones and the horizontal plane, line and surface angle between the line connecting the eyes and the monitor work surface, line and surface clamp between the key point connecting line of the shoulder bones and the monitor work surface Angle, take one or more of the above data, and set it as the first threshold.
  • the distance between the middle point of the line connecting the eyes and the center point of the working surface of the display is 30-120 cm; preferably, the distance is 75 cm.
  • this embodiment further includes an angle adjustment assembly, the first cantilever is connected to the display through the angle adjustment assembly, and the display can be rotated relative to the first cantilever through the angle adjustment assembly.
  • the angle adjustment assembly includes a second motor and a second angle measurer.
  • the first cantilever is connected to the display through the second motor.
  • the second angle measurer is arranged on the rotating shaft of the second motor.
  • the angle measurers are respectively connected with the control system.
  • the rotation angle of the second motor can be measured by the second angle measuring device, and the second angle measuring device can transmit the measured angle information to the control system.
  • the central axis of the rotating shaft of the second motor is perpendicular to the first cantilever, that is, the display can rotate around its connection with the first cantilever.
  • the robotic arm drives the display to perform multi-degree-of-freedom movements within a certain range; the state of the human body is captured in real time through the attitude information acquisition device, and the three-dimensional space coordinates of the key points of the human skeleton are acquired in real time; the human body posture is measured in real time through the control system Analyze and calculate the optimal position that the display should be in, and then the control system sends adjustment instructions to the robotic arm to move the display to the optimal position.
  • all the connection support structures should play a supporting role while being connected, and all the loads carried are shared by the connected support parts, which is equivalent to that the motor only overcomes the frictional force of rotation.
  • the present invention is not limited to the foregoing specific embodiments.
  • the present invention extends to any new features or any new combination disclosed in this specification, as well as any new method or process steps or any new combination disclosed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种智能交互式运动人体减压方法及装置,该方法包括如下步骤:S01、基准确认,S02、显示器(1)第一位置定义,S03、第一阈值判断,S04、二次判断,S05、显示器(1)反向运动。该方法能实现显示器(1)与人体的智能交互式运动,通过显示器(1)的运动,改变显示器(1)与使用者之间的相对位置,引导人体姿态同步进行调整,从而达到人体减压,引导用户回到正确人体姿态的目的。该智能交互式运动人体减压方法,通过基准确认、第一位置定义、第一阈值判断、第一运动、二次判断、反向运动实现对显示器(1)位置运动的调整,进而通过显示器(1)的运动,实现引导用户进行跟随运动,调节人体姿态,达到人体减压,引导用户回到正确人体姿态的目的。

Description

一种智能交互式运动人体减压方法及装置 技术领域
本发明涉及机械设备领域,具体为一种智能交互式运动人体减压方法及装置。本申请提供一种智能交互式运动人体减压方法及装置,其涉及一种显示器运动方法及装置,其能引导用户进行相应的跟随运动,以达到调节人体姿态,进行人体减压,引导用户回到正确人体姿态的目的。
背景技术
在日常工作和生活中,人们往往需要长时间面对显示器。在此过程中,显示器一般处于固定状态,人与电脑之间的相对位置也相对固定,人眼长时间盯着固定的显示器,人眼与电脑之间的视距长期处于固定范围内,会导致近视发生的几率大幅增加。同时,当人体处于不健康的姿态,颈椎长时间处于屈曲位或某些特定体位时,颈椎间盘内的压力增高,颈部肌肉处于非协调受力状态,颈后部肌肉和韧带易受牵拉而损伤,椎体前缘相互摩擦,容易增生。有的人会出现颈肩背酸痛的症状,部分人还在肩部、肩胛间区和上臂部有沉重麻胀感。
近视形成、颈椎骨骼病变等健康问题,大多数是不可逆的。针对这些问题,目前主要采用后期治疗的方式,多以手术等外部治疗手段为主,治疗费用高、患者需要忍受相应的痛苦。为此,最佳的方式应当是进行前期干预,减少相应病症的发生。
目前,市场上现有的显示器运动装置,主要分为两类:
一类是将显示器与支架相连,支架上设置有阻尼件,可以通过调节支架,改变显示器的位置,显示器的运动属于从动状态,需要用户手动进行调整,其运动并非连续运动;
另一类是通过支架带动显示器按设定的方式进行运动,如支架带动显示器进行圆周运动,这种方式实现了显示器的连续运动,该方式能调整用户双眼与显示器之间的距离;但当用户处于错误的身体姿态时,其无法对用户进行相应的引导,具有一定的局限性。
为此,迫切需要一种新的方法和/或装置,以解决上述问题。
发明内容
本发明的发明目的在于,提供一种智能交互式运动人体减压方法及装置,其能实现显示器与人体的智能交互式运动,通过显示器的运动,改变显示器与使用者之间的相对位置,引导人体姿态同步进行调整,从而达到人体减压,引导用户回到正确人体姿态的目的。本申请的智能交互式运动人体减压方法,通过基准确认、第一位置定义、第一阈值判断、第一运动、二次判断、反向运动实现对显示器位置运动的调整。进而通过显示器的运动,实现引导用户进行跟随运动,调节人体姿态,达到人体减压,引导用户回到正确人体姿态的 目的。
为了实现上述目的,本发明采用如下技术方案:
一种智能交互式运动人体减压方法,包括如下步骤:
S01、基准确认
采集正确人体姿态下的基准数据,得到第一坐标信息;
用户在智能交互式运动人体减压装置正前方时,其头部朝向身体正前方,眼睛水平直视前方,躯干保持与地面垂直,脊柱处于中立位,保持正常的曲度和平衡状态,其双肩自然下垂且双肩与水平面平行,此时用户的姿态即为正确人体姿态;
在用户处于正确人体姿态下时,将用户双眼连线中间点设为第一坐标原点,建立第一空间直角坐标系,3个坐标轴分别为X轴、Y轴、Z轴;将用户右眼在第一坐标原点所在水平面的投影点记为X轴正值点,以第一坐标原点到X轴正值点的方向为X轴正值方向,沿水平面方向设置Y轴,沿垂直于水平面方向设置Z轴;
通过姿态信息采集装置采集用户人体骨骼关键点在第一空间直角坐标系中的三维坐标,将所得的坐标记为第一坐标信息;
S02、显示器第一位置定义
将显示器工作面中心点移动到第一坐标信息中用户双眼连线中间点的同样高度,显示器工作面位于用户双眼正前方,双眼连线中间点与显示器工作面中心点的距离为第一设定值,将此时显示器的位置定义为显示器第一位置;显示器达到第一位置后,进行第一运动;
S03、第一阈值判断
在显示器进行第一运动过程中,通过姿态信息采集装置判断用户的姿态是否超出第一阈值;若用户的姿态超出第一阈值,则控制显示器回到显示器第一位置;若用户的姿态处于第一阈值范围内,则显示器进行第一运动;
S04、二次判断
当显示器回到显示器第一位置后,用姿态信息采集装置捕捉用户此时的人体姿态;若用户此时的人体姿态处于正确人体姿态的第一阈值范围内,则显示器进行第一运动;若用户此时的人体姿态超出正确人体姿态的第一阈值范围,则进行步骤S05;
S05、显示器反向运动
以建立的第一空间直角坐标系形成8个卦限,这些卦限内的任意一点坐标(x1,y1,z1)中的x1、y1、z1数值均不为0;第一空间直角坐标系的X轴与Y轴、X轴与Z轴、Y轴与Z轴形成3个平面,每个平面有4个象限,这些象限内的任意一点坐标(x2,y2,z2)中的x2、y2、z2中的一个值为0;第一空间直角坐标系的X轴正负半轴、Y轴正负半轴、Z轴正负半轴形成6个半轴,这些半轴内的任意一点坐标(x3,y3,z3)中的x3、y3、z3中的两个值 为0;
判断用户此时双眼连线中间点所处第一空间直角坐标系内的区域,将此区域记为第一区域;将此时用户双眼连线中间点在第一空间直角坐标系内的坐标设为P1(a,b,c);
以显示器处于显示器第一位置时,将显示器工作面的中心点设为第二坐标原点,建立第二空间直角坐标系;所述第二空间直角坐标系的X'轴、Y'轴、Z'轴分别与第一空间直角坐标系的X轴、Y轴、Z轴对应平行设置,所述第一空间直角坐标系内X轴的正值方向与第二空间直角坐标系内X'轴的正值方向相同;
将坐标P1(a,b,c)中的a、b、c数值,依次取相反数-a、-b、-c,将显示器工作面中心点运动至第二空间直角坐标系的坐标P2(-a,-b,-c)所在区域,此区域为第一区域在第二空间直角坐标系内的相反区域,记为第一相反区域;显示器工作面中心点在第一相反区域内运动,用户视线跟随显示器工作面运动,从而带动用户头部做跟随运动,用户头部运动带动身体运动,即可实现显示器运动带动用户人体姿态改变,引导用户回到正确人体姿态;
所述第一阈值采用如下方式进行设定:
以步骤S01中正确人体姿态下第一坐标信息为基础,计算用户两眼连线中间点的位移距离、两肩骨骼关键点连线中间点的位移距离、双眼连接直线与水平面之间的线面夹角、双肩骨骼关键点连接直线与水平面之间的线面夹角、双眼连接直线和显示器工作面之间的线面夹角、双肩骨骼关键点连接直线和显示器工作面之间的线面夹角,取以上数据中的一个或多个,设定为第一阈值。
显示器的第一运动包括如下操作中的一个或多个:
S31、机械臂带动显示器工作面中心点沿第二空间直角坐标系的X'轴方向运动;
S32、机械臂带动显示器工作面中心点沿第二空间直角坐标系的Y'轴方向运动;
S33、机械臂带动显示器工作面中心点沿第二空间直角坐标系的Z'轴方向运动。
显示器的第一运动包括如下操作中的一个或多个:
S311、机械臂带动显示器工作面中心点沿第二空间直角坐标系X'轴正值方向运动,至显示器所能运动到的最大值;
S312、机械臂带动显示器工作面中心点沿第二空间直角坐标系X'轴负值方向运动,至显示器所能运动到的最大值;
S321、机械臂带动显示器工作面中心点沿第二空间直角坐标系Y'轴正值方向运动,至显示器所能运动到的最大值;
S322、机械臂带动显示器工作面中心点沿第二空间直角坐标系Y'轴负值方向运动,至显示器所能运动到的最大值;
S331、机械臂带动显示器工作面中心点沿第二空间直角坐标系Z'轴正值方向运动,至 显示器所能运动到的最大值;
S332、机械臂带动显示器工作面中心点沿第二空间直角坐标系Z'轴负值方向运动,至显示器所能运动到的最大值。
所述步骤S02中,双眼连线中间点与显示器工作面中心点的距离为30-120cm;优选地,距离为75cm。
一种用于前述方法的装置,包括机械臂、显示器、姿态信息采集装置、控制系统;
所述机械臂包括底座、垂直方向升降装置、水平方向旋转装置,所述垂直方向升降装置与底座相连且底座能为垂直方向升降装置提供支撑,所述水平方向旋转装置与垂直方向升降装置相连且垂直方向升降装置能带动水平方向旋转装置沿竖直方向运动,所述显示器与水平方向旋转装置相连且水平方向旋转装置能带动显示器相对垂直方向升降装置旋转;
所述姿态信息采集装置与底座或垂直方向升降装置相连且姿态信息采集装置能相对底座或垂直方向升降装置保持静止;
所述垂直方向升降装置、水平方向旋转装置、姿态信息采集装置分别与控制系统相连;
所述姿态信息采集装置为深度图像采集装置。
所述水平方向旋转装置包括第一悬臂、第一旋转组件;
所述第一悬臂的一端与垂直方向升降装置活动连接,所述第一悬臂的另一端与显示器相连且第一悬臂能带动显示器同步运动;
所述垂直方向升降装置与第一旋转组件相连且垂直方向升降装置能为第一旋转组件提供支撑,所述第一旋转组件与第一悬臂相连且第一旋转组件能带动第一悬臂相对垂直方向升降装置旋转;
所述第一旋转组件与控制系统相连。
所述第一旋转组件包括第一电机、第一减速器,所述第一电机与垂直方向升降装置相连且垂直方向升降装置能为第一电机提供支撑,所述第一电机通过第一减速器与第一悬臂相连;
或所述第一减速器与垂直方向升降装置相连且垂直方向升降装置能为第一减速器提供支撑,所述第一减速器通过第一电机与第一悬臂相连;
所述第一电机与控制系统相连。
还包括第一角度测量器,所述第一角度测量器与控制系统相连且第一角度测量器能测定第一悬臂相对于其转动中心轴向的旋转角度信息并传递给控制系统。
还包括第二旋转组件,所述第一悬臂通过第二旋转组件与显示器相连且显示器通过第二旋转组件能相对第一悬臂转动。
所述第二旋转组件包括第二电机、第二减速器、第二角度测量器,所述第一悬臂与第 二电机相连,所述第二电机通过第二减速器与显示器相连;
或所述第一悬臂与第二减速器相连,所述第二减速器通过第二电机与显示器相连;
所述第二角度测量器与控制系统相连且第二角度测量器能对显示器相对第一悬臂的转动角度进行测量;
所述第二电机与控制系统相连且控制系统能对第二电机的转动进行控制以调整显示器相对第一悬臂的转动。
所述第一角度测量器、第二角度测量器为独立的传感器或同一个传感器。
所述深度图像采集装置为激光雷达深度成像装置、计算机立体视觉成像装置、莫尔条纹深度成像装置、结构光深度图像采集装置中的一种或多种。
针对前述问题,本申请提供一种智能交互式运动人体减压方法及装置。采用该方法,先对用户进行基准确认,并对显示器第一位置进行定义,并对用于是否处于第一阈值进行判断;当用户处于第一阈值范围内时,进行第一运动,即当用户处于第一阈值范围内时,显示器进行第一运动,带动用户跟随显示器的位置运动而同步进行眼部运动、头颈部运动等,达到人体减压的目的;当用户超出第一阈值范围时,显示器进行反向运动,即基于用户的人体姿态,显示器反向运动,用户会意识到自身姿态处于错误状态下,进而能够进行相应的调整,从而回到正确的人体姿态范围内,达到纠正人体姿态的目的。
进一步,本申请提供用于前述智能交互式运动人体减压方法的装置。该装置包括机械臂、显示器、姿态信息采集装置、控制系统;机械臂包括底座、垂直方向升降装置、水平方向旋转装置,垂直方向升降装置与底座相连且底座能为垂直方向升降装置提供支撑,水平方向旋转装置与垂直方向升降装置相连且垂直方向升降装置能带动水平方向旋转装置沿竖直方向运动,显示器与水平方向旋转装置相连且水平方向旋转装置能带动显示器相对垂直方向升降装置转动;姿态信息采集装置与底座或垂直方向升降装置相连且姿态信息采集装置能相对底座或垂直方向升降装置保持静止;垂直方向升降装置、水平方向旋转装置、姿态信息采集装置分别与控制系统相连。该结构中,垂直方向升降装置、水平方向旋转装置相互配合,即可实现显示器在三维空间内的运动,而姿态信息采集装置的设置则能实现采集人体姿态的深度图像,进而实现基准确认、第一阈值判断等操作。
同时,在旋转方面,本申请采用了电机、减速器的配合,即可实现显示器在水平方向的运动;旋转的机械臂每一个都设置有角度测量的,通过角度测量器能够测量机械臂中部件的旋转位置。本申请中,姿态信息采集装置与底座或垂直方向升降装置相连,并保持两者的相对静止;本申请中,姿态信息采集装置的作用主要为捕捉人体的深度图像信息。
进一步,本申请的姿态信息采集装置采用激光雷达深度成像装置、计算机立体视觉成像装置、莫尔条纹深度成像装置、结构光深度图像采集装置中的一种或多种。
与现有技术相比,本申请的创新之处在于:本申请的智能交互式运动人体减压方法不是机械性的反复运动,而是实时采集人体姿态的深度图像信息,然后将信息输入控制系统,判断用户人体骨骼关键点数据是否在正确姿态的阈值以内。如果该数据超出阈值,控制系统调整显示器的位置,让显示器相对用户进行反向运动,引导用户姿态跟随显示器运动进行相应的调整,让用户人体骨骼关键点数据回到正确姿态的阈值以内。
附图说明
本发明将通过例子并参照附图的方式说明,其中:
图1为本实施例1中智能交互式运动人体减压装置的折叠状态示意图。
图2为图1的俯视图。
图3为图2中底座展开的俯视图。
图4为实施例1中垂直方向升降装置部分展开的状态示意图。
图5为图4中垂直方向升降装置全部展开的状态示意图。
图6为实施例1中智能交互式运动人体减压装置展开的俯视图。
图7为实施例1中智能交互式运动人体减压装置的示意图一。
图8为图7的俯视图。
图9为实施例1中智能交互式运动人体减压装置的示意图二。
图10为实施例1中智能交互式运动人体减压装置的示意图三。
图11为图10的俯视图。
图中标记:1、显示器,2、底座,3、垂直方向升降装置,4、水平方向旋转装置,5、中心支座,6、底座侧板,7、角度调节组件。
具体实施方式
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
本说明书中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
实施例1
本实施例提供一种智能交互式运动人体减压装置,其包括机械臂、显示器、姿态信息采集装置和控制系统。其中,机械臂包括底座、垂直方向升降装置、水平方向旋转装置,垂直方向升降装置与底座相连,通过底座为垂直方向升降装置提供支撑;水平方向旋转装置与垂直方向升降装置相连,通过垂直方向升降装置带动水平方向旋转装置沿竖直方向运 动。
本实施例中,底座包括中心支座、底座侧板,底座侧板为一组且底座侧板对称设置在中心支座两侧,底座侧板与中心支座活动连接,且底座侧板能相对中心支座转动。本实施例中,当底座侧板沿竖向折叠式,两个底座侧板之间构成显示器的盛放空间,显示器可置于盛放空间内。采用该结构,当垂直方向升降装置、水平方向旋转装置底座侧板、显示器均处于收纳状态时,能使得整体结构最小,便于用户移动和携带。
本实施例中,水平方向旋转装置包括第一悬臂、旋转组件,第一悬臂的一端与垂直方向升降装置活动连接,第一悬臂的另一端与显示器相连,通过第一悬臂能带动显示器同步运动。同时,旋转组件包括第一电机、减速器,第一电机与垂直方向升降装置相连,垂直方向升降装置能为第一电机提供支撑;第一电机通过减速器与第一悬臂相连。
进一步,本实施例中,旋转组件还包括第一角度测量器,第一角度测量器与第一悬臂相连,第一角度测量器用于对第一悬臂的旋转角度进行测定。
同时,姿态信息采集装置与底座相连,姿态信息采集装置能相对底座保持静止。通过姿态信息采集装置,能够对机械臂前的用户进行实时测定。
本实施例中,垂直方向升降装置、姿态信息采集装置、第一电机、第一角度测量器分别与控制系统相连。本实施例中,姿态信息采集装置为深度图像采集装置;优选地,姿态信息采集装置采用计算机立体视觉成像装置。
进一步,本实施例中智能交互式运动人体减压方法包括如下步骤。
S01、基准确认
采集正确人体姿态下的基准数据,得到第一坐标信息。
用户在智能交互式运动人体减压装置正前方时,其头部朝向身体正前方,眼睛水平直视前方,躯干保持与地面垂直,脊柱处于中立位,保持正常的曲度和平衡状态,颈椎以及后背维持脊柱的肌肉保持正常的人体力学状态,其双肩自然下垂且双肩与水平面平行,此时用户的姿态即为正确人体姿态。
在用户处于正确人体姿态下时,将用户双眼连线中间点设为第一坐标原点,建立第一空间直角坐标系,3个坐标轴分别为X轴、Y轴、Z轴;将用户右眼在第一坐标原点所在水平面的投影点记为X轴正值点,以第一坐标原点到X轴正值点的方向为X轴正值方向,沿水平面方向设置Y轴,沿垂直于水平面方向设置Z轴;
通过姿态信息采集装置采集用户人体骨骼关键点在第一空间直角坐标系中的三维坐标,将所得的坐标记为第一坐标信息。
S02、显示器第一位置定义
将显示器工作面中心点移动到用户双眼连线中间点的同样高度,显示器工作面位于用 户双眼正前方,双眼连线中间点与显示器工作面中心点的距离为第一设定值,将此时显示器的位置定义为显示器第一位置;显示器达到第一位置后,进行第一运动。
S03、第一阈值判断
在显示器进行第一运动过程中,通过姿态信息采集装置判断用户的姿态是否超出第一阈值;若用户的姿态超出第一阈值,则控制显示器回到显示器第一位置;若用户的姿态处于第一阈值范围内,则显示器进行第一运动。
S04、二次判断
当显示器回到显示器第一位置后,用姿态信息采集装置捕捉用户此时的人体姿态;若用户此时的人体姿态处于正确人体姿态的第一阈值范围内,则显示器进行第一运动;若用户此时的人体姿态超出正确人体姿态的第一阈值范围内,则进行步骤S05。
S05、显示器反向运动
以建立的第一空间直角坐标系形成8个卦限,这些卦限内的任意一点坐标(x1,y1,z1)中的x1、y1、z1数值均不为0;第一空间直角坐标系的X轴与Y轴、X轴与Z轴、Y轴与Z轴形成3个平面,每个平面有4个象限,这些象限内的任意一点坐标(x2,y2,z2)中的x2、y2、z2中的一个值为0;第一空间直角坐标系的X轴正负半轴、Y轴正负半轴、Z轴正负半轴形成6个半轴,这些半轴内的任意一点坐标(x3,y3,z3)中的x3、y3、z3中的两个值为0;
判断用户此时双眼连线中间点所处第一空间直角坐标系内的区域,将此区域记为第一区域;将此时用户双眼连线中间点在第一空间直角坐标系内的坐标设为P1(a,b,c);
以显示器处于显示器第一位置时,设显示器工作面的中心点为第二坐标原点,建立第二空间直角坐标系;所述第二空间直角坐标系的X'轴、Y'轴、Z'轴分别与第一空间直角坐标系的X轴、Y轴、Z轴对应平行设置,所述第一空间直角坐标系内X轴的正值方向与第二空间直角坐标系内X'轴的正值方向相同;
将坐标P1(a,b,c)中的a、b、c数值,依次取相反数-a、-b、-c,将显示器工作面中心点运动至第二空间直角坐标系的坐标P2(-a,-b,-c)所在区域,此区域为第一区域在第二空间直角坐标系内的相反区域,记为第一相反区域;显示器工作面中心点在第一相反区域内运动,用户视线跟随显示器工作面运动,从而带动用户头部做跟随运动,用户头部运动带动身体运动,即可实现显示器运动带动用户人体姿态改变,引导用户回到正确人体姿态。
本实例设定做水平旋转运动的旋转臂最大长度为60cm,显示器工作面中心点的移动范围,不能超出旋转臂的长度限制和垂直升降结构的伸缩范围限制;
本实例设定显示器工作面中心点运动速度为1cm/s。
第一阈值采用如下方式进行设定:
以步骤S01中正确人体姿态下第一坐标信息为基础,计算用户两眼连线中间点的位移距离、两肩骨骼关键点连线中间点的位移距离、双眼连接直线与水平面之间的线面夹角、双肩骨骼关键点连接直线与水平面之间的线面夹角、双眼连接直线和显示器工作面之间的线面夹角、双肩骨骼关键点连接直线和显示器工作面之间的线面夹角,取以上数据中的一个或多个,设定为第一阈值。
所述步骤S02中,双眼连线中间点与显示器工作面中心点的距离为30-120cm;优选地,距离为75cm。
优选地,本实施例还包括角度调节组件,第一悬臂通过角度调节组件与显示器相连且显示器通过角度调节组件能相对第一悬臂转动。
本实施例中,角度调节组件包括第二电机、第二角度测量器,第一悬臂通过第二电机与显示器相连,第二角度测量器设置在第二电机的转轴上,第二电机、第二角度测量器分别与控制系统相连。该结构中,通过第二角度测量器能对第二电机的转动角度进行测量,而第二角度测量器能将测定的角度信息传递给控制系统。本实施例中第二电机转轴的中心轴线与第一悬臂相垂直,即显示器能绕其与第一悬臂的连接处旋转。
本实施例中,机械臂带动显示器,做一定范围内的多自由度运动;通过姿态信息采集装置实时捕捉人体状态,并实时获取人体骨骼关键点的三维空间坐标;通过控制系统对人体姿态进行实时分析,并计算出显示器应当处于的最佳位置,再由控制系统向机械臂发出调整指令,让显示器运动到最佳位置。本实施例中,所有的连接支撑结构,连接的同时要起到支撑作用,所有承载的负重都是连接的支撑部分分担掉,相当于电机只是克服旋转的摩擦力。
本发明并不局限于前述的具体实施方式。本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。

Claims (12)

  1. 一种智能交互式运动人体减压方法,其特征在于,包括如下步骤:
    S01、基准确认
    采集正确人体姿态下的基准数据,得到第一坐标信息;
    用户在智能交互式运动人体减压装置正前方时,其头部朝向身体正前方,眼睛水平直视前方,躯干保持与地面垂直,脊柱处于中立位,保持正常的曲度和平衡状态,其双肩自然下垂且双肩与水平面平行,此时用户的姿态即为正确人体姿态;
    在用户处于正确人体姿态下时,将用户双眼连线中间点设为第一坐标原点,建立第一空间直角坐标系,3个坐标轴分别为X轴、Y轴、Z轴;将用户右眼在第一坐标原点所在水平面的投影点记为X轴正值点,以第一坐标原点到X轴正值点的方向为X轴正值方向,沿水平面方向设置Y轴,沿垂直于水平面方向设置Z轴;
    通过姿态信息采集装置采集用户人体骨骼关键点在第一空间直角坐标系中的三维坐标,将所得的坐标记为第一坐标信息;
    S02、显示器第一位置定义
    将显示器工作面中心点移动到第一坐标信息中用户双眼连线中间点的同样高度,显示器工作面位于用户双眼正前方,双眼连线中间点与显示器工作面中心点的距离为第一设定值,将此时显示器的位置定义为显示器第一位置;显示器达到第一位置后,进行第一运动;
    S03、第一阈值判断
    在显示器进行第一运动过程中,通过姿态信息采集装置判断用户的姿态是否超出第一阈值;若用户的姿态超出第一阈值,则控制显示器回到显示器第一位置;若用户的姿态处于第一阈值范围内,则显示器进行第一运动;
    S04、二次判断
    当显示器回到显示器第一位置后,用姿态信息采集装置捕捉用户此时的人体姿态;若用户此时的人体姿态处于正确人体姿态的第一阈值范围内,则显示器进行第一运动;若用户此时的人体姿态超出正确人体姿态的第一阈值范围,则进行步骤S05;
    S05、显示器反向运动
    判断用户此时双眼连线中间点所处第一空间直角坐标系内的区域,将此区域记为第一区域;将此时用户双眼连线中间点在第一空间直角坐标系内的坐标设为P1(a,b,c);
    以显示器处于显示器第一位置时,将显示器工作面的中心点设为第二坐标原点,建立第二空间直角坐标系;所述第二空间直角坐标系的X'轴、Y'轴、Z'轴分别与第一空间直角坐标系的X轴、Y轴、Z轴对应平行设置,所述第一空间直角坐标系内X轴的正值方向与第二空间直角坐标系内X'轴的正值方向相同;
    将坐标P1(a,b,c)中的a、b、c数值,依次取相反数-a、-b、-c,将显示器工作面中心 点运动至第二空间直角坐标系的坐标P2(-a,-b,-c)所在区域,此区域为第一区域在第二空间直角坐标系内的相反区域,记为第一相反区域;显示器工作面中心点在第一相反区域内运动,用户视线跟随显示器工作面运动,从而带动用户头部做跟随运动,用户头部运动带动身体运动,即可实现显示器运动带动用户人体姿态改变,引导用户回到正确人体姿态;
    所述第一阈值采用如下方式进行设定:
    以步骤S01中正确人体姿态下第一坐标信息为基础,计算用户两眼连线中间点的位移距离、两肩骨骼关键点连线中间点的位移距离、双眼连接直线与水平面之间的线面夹角、双肩骨骼关键点连接直线与水平面之间的线面夹角、双眼连接直线和显示器工作面之间的线面夹角、双肩骨骼关键点连接直线和显示器工作面之间的线面夹角,取以上数据中的一个或多个,设定为第一阈值。
  2. 根据权利要求1所述方法,其特征在于,显示器的第一运动包括如下操作中的一个或多个:
    S31、机械臂带动显示器工作面中心点沿第二空间直角坐标系的X'轴方向运动;
    S32、机械臂带动显示器工作面中心点沿第二空间直角坐标系的Y'轴方向运动;
    S33、机械臂带动显示器工作面中心点沿第二空间直角坐标系的Z'轴方向运动。
  3. 根据权利要求2所述方法,其特征在于,显示器的第一运动包括如下操作中的一个或多个:
    S311、机械臂带动显示器工作面中心点沿第二空间直角坐标系X'轴正值方向运动,至显示器所能运动到的最大值;
    S312、机械臂带动显示器工作面中心点沿第二空间直角坐标系X'轴负值方向运动,至显示器所能运动到的最大值;
    S321、机械臂带动显示器工作面中心点沿第二空间直角坐标系Y'轴正值方向运动,至显示器所能运动到的最大值;
    S322、机械臂带动显示器工作面中心点沿第二空间直角坐标系Y'轴负值方向运动,至显示器所能运动到的最大值;
    S331、机械臂带动显示器工作面中心点沿第二空间直角坐标系Z'轴正值方向运动,至显示器所能运动到的最大值;
    S332、机械臂带动显示器工作面中心点沿第二空间直角坐标系Z'轴负值方向运动,至显示器所能运动到的最大值。
  4. 根据权利要求1所述方法,其特征在于,所述步骤S02中,双眼连线中间点与显示器工作面中心点的距离为30-120cm;优选地,距离为75cm。
  5. 一种用于前述权利要求1~4任一项方法的装置,其特征在于,包括机械臂、显示器、 姿态信息采集装置、控制系统;
    所述机械臂包括底座、垂直方向升降装置、水平方向旋转装置,所述垂直方向升降装置与底座相连且底座能为垂直方向升降装置提供支撑,所述水平方向旋转装置与垂直方向升降装置相连且垂直方向升降装置能带动水平方向旋转装置沿竖直方向运动,所述显示器与水平方向旋转装置相连且水平方向旋转装置能带动显示器相对垂直方向升降装置旋转;
    所述姿态信息采集装置与底座或垂直方向升降装置相连且姿态信息采集装置能相对底座或垂直方向升降装置保持静止;
    所述垂直方向升降装置、水平方向旋转装置、姿态信息采集装置分别与控制系统相连;
    所述姿态信息采集装置为深度图像采集装置。
  6. 根据权利要求5所述的装置,其特征在于,所述水平方向旋转装置包括第一悬臂、第一旋转组件;
    所述第一悬臂的一端与垂直方向升降装置活动连接,所述第一悬臂的另一端与显示器相连且第一悬臂能带动显示器同步运动;
    所述垂直方向升降装置与第一旋转组件相连且垂直方向升降装置能为第一旋转组件提供支撑,所述第一旋转组件与第一悬臂相连且第一旋转组件能带动第一悬臂相对垂直方向升降装置旋转;
    所述第一旋转组件与控制系统相连。
  7. 根据权利要求6所述的装置,其特征在于,所述第一旋转组件包括第一电机、第一减速器,所述第一电机与垂直方向升降装置相连且垂直方向升降装置能为第一电机提供支撑,所述第一电机通过第一减速器与第一悬臂相连;
    或所述第一减速器与垂直方向升降装置相连且垂直方向升降装置能为第一减速器提供支撑,所述第一减速器通过第一电机与第一悬臂相连;
    所述第一电机与控制系统相连。
  8. 根据权利要求6所述的装置,其特征在于,还包括第一角度测量器,所述第一角度测量器与控制系统相连且第一角度测量器能测定第一悬臂相对于其转动中心轴向的旋转角度信息并传递给控制系统。
  9. 根据权利要求5~8任一项所述的装置,其特征在于,还包括第二旋转组件,所述第一悬臂通过第二旋转组件与显示器相连且显示器通过第二旋转组件能相对第一悬臂转动。
  10. 根据权利要求9所述的装置,其特征在于,所述第二旋转组件包括第二电机、第二减速器、第二角度测量器,所述第一悬臂与第二电机相连,所述第二电机通过第二减速器与显示器相连;
    或所述第一悬臂与第二减速器相连,所述第二减速器通过第二电机与显示器相连;
    所述第二角度测量器与控制系统相连且第二角度测量器能对显示器相对第一悬臂的转动角度进行测量;
    所述第二电机与控制系统相连且控制系统能对第二电机的转动进行控制以调整显示器相对第一悬臂的转动。
  11. 根据权利要求10所述的装置,其特征在于,所述第一角度测量器、第二角度测量器为独立的传感器或同一个传感器。
  12. 根据权利要求5所述的装置,其特征在于,所述深度图像采集装置为激光雷达深度成像装置、计算机立体视觉成像装置、莫尔条纹深度成像装置、结构光深度图像采集装置中的一种或多种。
PCT/CN2020/117132 2020-09-01 2020-09-23 一种智能交互式运动人体减压方法及装置 WO2022047853A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010902594.0A CN114100085B (zh) 2020-09-01 2020-09-01 一种智能交互式运动人体减压方法及装置
CN202010902594.0 2020-09-01

Publications (1)

Publication Number Publication Date
WO2022047853A1 true WO2022047853A1 (zh) 2022-03-10

Family

ID=80360242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117132 WO2022047853A1 (zh) 2020-09-01 2020-09-23 一种智能交互式运动人体减压方法及装置

Country Status (2)

Country Link
CN (1) CN114100085B (zh)
WO (1) WO2022047853A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115877899A (zh) * 2023-02-08 2023-03-31 北京康桥诚品科技有限公司 一种漂浮舱内的液体控制方法、装置、漂浮舱和介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060075933A1 (en) * 2003-02-06 2006-04-13 Carl-Eric Ohlson Supporting arrangement for a presentation device
US20080006749A1 (en) * 2006-07-05 2008-01-10 Ferritto George A Multi-purpose utility-stand suitable for laptop-PC's
CN102419632A (zh) * 2011-11-04 2012-04-18 上海大学 可调节的视线跟踪人机交互装置
CN104635755A (zh) * 2014-12-03 2015-05-20 北京智谷睿拓技术服务有限公司 显示器调整方法和设备
CN105242787A (zh) * 2015-10-22 2016-01-13 京东方科技集团股份有限公司 一种显示装置及其调节方法
CN105807902A (zh) * 2014-12-30 2016-07-27 Tcl集团股份有限公司 稳定移动终端屏幕内容显示的方法和一种移动终端
CN109323099A (zh) * 2018-12-11 2019-02-12 陕西师范大学 一种能够预防颈椎病的计算机显示器支座
CN110750156A (zh) * 2019-09-29 2020-02-04 上海掌门科技有限公司 一种用于姿势矫正提醒的方法和装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8487750B2 (en) * 2006-08-07 2013-07-16 Koninklijke Philips Electronics N.V. Method and apparatus for monitoring user activity at a computer screen to stimulate motility
CN101055772A (zh) * 2007-03-30 2007-10-17 王运章 运动式电脑显示器
CN103558910B (zh) * 2013-10-17 2016-05-11 北京理工大学 一种自动跟踪头部姿态的智能显示器系统
CN206817087U (zh) * 2017-04-26 2017-12-29 上海工程技术大学 一种智能多关节显示器支撑调节装置
CN209458599U (zh) * 2019-01-28 2019-10-01 西安驰高电子科技有限公司 显示器智能支架
CN211344614U (zh) * 2019-09-30 2020-08-25 张瀚文 一种智能随动调节显示器支架

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060075933A1 (en) * 2003-02-06 2006-04-13 Carl-Eric Ohlson Supporting arrangement for a presentation device
US20080006749A1 (en) * 2006-07-05 2008-01-10 Ferritto George A Multi-purpose utility-stand suitable for laptop-PC's
CN102419632A (zh) * 2011-11-04 2012-04-18 上海大学 可调节的视线跟踪人机交互装置
CN104635755A (zh) * 2014-12-03 2015-05-20 北京智谷睿拓技术服务有限公司 显示器调整方法和设备
CN105807902A (zh) * 2014-12-30 2016-07-27 Tcl集团股份有限公司 稳定移动终端屏幕内容显示的方法和一种移动终端
CN105242787A (zh) * 2015-10-22 2016-01-13 京东方科技集团股份有限公司 一种显示装置及其调节方法
CN109323099A (zh) * 2018-12-11 2019-02-12 陕西师范大学 一种能够预防颈椎病的计算机显示器支座
CN110750156A (zh) * 2019-09-29 2020-02-04 上海掌门科技有限公司 一种用于姿势矫正提醒的方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115877899A (zh) * 2023-02-08 2023-03-31 北京康桥诚品科技有限公司 一种漂浮舱内的液体控制方法、装置、漂浮舱和介质

Also Published As

Publication number Publication date
CN114100085A (zh) 2022-03-01
CN114100085B (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
US7997730B2 (en) Explicit raytracing for gimbal-based gazepoint trackers
CN202631839U (zh) 一种医疗用显微手术设备
CA3049379A1 (en) Improved accuracy of displayed virtual data with optical head mount displays for mixed reality
CN102657512B (zh) 一种应用于角膜地形图仪中的图像采集设备
JP2018538047A (ja) 独立ロール、ピッチ、及びヨースケーリングを備えたロボット外科用システム
CN110177517A (zh) 具有包含修整和翻转算法的横滚、俯仰和偏转重新对准的机器人手术系统
WO2022047853A1 (zh) 一种智能交互式运动人体减压方法及装置
Yu et al. Quantitative posture analysis of 2D, 3D, and optical microscope visualization methods for microsurgery tasks
Chen et al. Application of wearable device HTC VIVE in upper limb rehabilitation training
WO2016154709A1 (en) A counterbalancing apparatus for gimbal joints and/or a method for counterbalancing a load on a gimbal joint
CN114795495A (zh) 一种主从操作微创手术机器人系统
Tan et al. A flexible and fully autonomous breast ultrasound scanning system
WO2016026819A1 (en) Medical procedure simulator
US20210121245A1 (en) Surgeon interfaces using augmented reality
CN212421309U (zh) 一种足式机器人的远程操控装置
Zhang et al. Using the motion of the head-neck as a joystick for orientation control
CN213046832U (zh) 一种眼底旋转斜视追踪眼底照相装置
US20240000534A1 (en) Techniques for adjusting a display unit of a viewing system
CN109907834A (zh) 一种具有3d功能的机器人外视镜
JP3204503U (ja) 拡大観察装置
CN211836110U (zh) 颈椎康复训练系统
KR20040097477A (ko) 응시방향 기반의 머리착용형 컴퓨터 인터페이스 장치 및방법
Chang et al. Bio-inspired gaze-driven robotic neck brace
JP7356697B2 (ja) 画像観察システム
US20210014459A1 (en) Stereo Microscope for use in Microsurgical Operations on a Patient and Method for Controlling the Stereo Microscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20952095

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20952095

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22.08.2023)