WO2022047748A1 - 盲重传方法、装置、设备及介质 - Google Patents

盲重传方法、装置、设备及介质 Download PDF

Info

Publication number
WO2022047748A1
WO2022047748A1 PCT/CN2020/113604 CN2020113604W WO2022047748A1 WO 2022047748 A1 WO2022047748 A1 WO 2022047748A1 CN 2020113604 W CN2020113604 W CN 2020113604W WO 2022047748 A1 WO2022047748 A1 WO 2022047748A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
feedback information
data packet
blind
transmissions
Prior art date
Application number
PCT/CN2020/113604
Other languages
English (en)
French (fr)
Inventor
顾昕钰
赵振山
丁伊
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2020/113604 priority Critical patent/WO2022047748A1/zh
Priority to CN202080104066.9A priority patent/CN116134764A/zh
Publication of WO2022047748A1 publication Critical patent/WO2022047748A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems

Definitions

  • the present application relates to the field of terminal-to-terminal (Device to Device, D2D) communication, and in particular, to a blind retransmission method, apparatus, device and medium.
  • D2D Terminal to Device
  • D2D communication refers to direct communication between user equipments within a certain distance, without the need for relays by base stations. Using D2D communication in unlicensed spectrum has become a solution to improve the throughput of the communication system.
  • the sender will use the blind retransmission mechanism to send packets to the receiver.
  • the blind retransmission mechanism means that: without relying on the HARQ feedback of the receiving end, the transmitting end repeatedly sends the same data packet to the receiving end according to the number of blind retransmissions N. For example, the sender sends the same data packet to the receiver 7 times in a row.
  • Embodiments of the present application provide a blind retransmission method, apparatus, device, and storage medium.
  • the technical solution is as follows.
  • a blind retransmission method which is applied to a first terminal, and the method includes:
  • feedback information is used to represent information related to the number of transmissions required by the second terminal to successfully decode the first data packet
  • the second data packet is sent to the second terminal according to the second number of blind retransmissions, where the second number of blind retransmissions is determined according to the feedback information.
  • a blind retransmission method which is applied to a second terminal, and the method includes:
  • the first data packet is sent by the first terminal according to the first number of blind retransmissions
  • Receive a second data packet where the second data packet is sent by the first terminal according to the second number of blind retransmissions, and the second number of blind retransmissions is determined according to the feedback information.
  • a blind retransmission apparatus includes:
  • a sending module configured to send the first data packet to the second terminal according to the first number of blind retransmissions
  • a receiving module configured to feed back information, where the feedback information is used to represent information related to the number of transmissions required by the second terminal to successfully decode the first data packet;
  • the sending module is configured to send a second data packet to the second terminal according to a second number of blind retransmissions, where the second number of blind retransmissions is determined according to the feedback information.
  • a blind retransmission apparatus includes:
  • a receiving module configured to receive the first data packet, the first data packet is sent by the first terminal according to the first blind retransmission times;
  • a sending module configured to send feedback information to the first terminal, where the feedback information is used to represent information related to the number of transmissions required by the device to successfully decode the first data packet;
  • the receiving module is configured to receive a second data packet, the second data packet is sent by the first terminal according to a second number of blind retransmissions, and the second number of blind retransmissions is determined according to the feedback information of.
  • a terminal includes: a processor; a transceiver connected to the processor; a memory for storing executable instructions of the processor; The processor is configured to load and execute the executable instructions to implement the blind retransmission method as described in the above aspects.
  • a computer-readable storage medium where executable instructions are stored in the readable storage medium, and the executable instructions are loaded and executed by the processor to implement the above aspect The blind retransmission method.
  • a computer program product wherein executable instructions are stored in the readable storage medium, and the executable instructions are loaded and executed by the processor to implement the above aspects. blind retransmission method.
  • a chip is provided, and the chip is configured to implement the blind retransmission method described in the foregoing aspect.
  • the receiver sends information related to the number of transmissions required to successfully decode the first data packet to the sender, and the sender can dynamically change the number of blind retransmissions, thereby Improve the success rate of communication and avoid waste of transmission resources.
  • FIG. 1 is an architecture diagram of a communication system provided by an exemplary embodiment of the present application
  • FIG. 2 is a flowchart of a blind retransmission method provided by an exemplary embodiment of the present application
  • FIG. 3 is a flowchart of a blind retransmission method provided by an exemplary embodiment of the present application.
  • FIG. 4 is a flowchart of a blind retransmission method provided by an exemplary embodiment of the present application.
  • FIG. 5 is a schematic diagram of a unicast scenario provided by an exemplary embodiment of the present application.
  • FIG. 6 is a schematic diagram of a multicast scenario provided by an exemplary embodiment of the present application.
  • FIG. 7 is a block diagram of an apparatus for blind retransmission provided by an exemplary embodiment of the present application.
  • FIG. 8 is a block diagram of an apparatus for blind retransmission provided by an exemplary embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an exemplary embodiment of the present application.
  • the sender uses a blind retransmission mechanism to send data packets to the receiver.
  • the sending end uses a preset number of blind retransmissions to send data packets to the receiving end. For example, for each data packet, the sender repeatedly sends 5 times. Among them, the selection of the number of blind retransmissions is more difficult. On the one hand, when the number of blind retransmissions selected by the sender is too small, the probability of successful decoding at the receiver may be low; on the other hand, when the number of blind retransmissions selected by the sender is too many, it will occupy too many unnecessary channel resources. .
  • This embodiment of the present application provides a mechanism for selecting the number of blind retransmissions based on feedback information.
  • the sender uses the number of blind retransmissions to send data to the receiver
  • the receiver sends feedback information to the sender
  • the feedback information is used to represent the number of transmissions required by the receiver to successfully decode the data packet in the historical reception process.
  • Information After receiving the feedback information, the sender readjusts its own blind retransmission times to obtain a more reasonable blind retransmission times.
  • FIG. 1 shows a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • the communication system may include: a terminal 10 and a network device 20 .
  • the number of terminals 10 is usually multiple, and one or more terminals 10 may be distributed in a cell managed by each network device 20 .
  • the terminal 10 may include various handheld devices, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to the wireless modem with wireless communication functions, as well as various forms of user equipment (User Equipment, UE), mobile stations ( Mobile Station, MS) and so on.
  • UE User Equipment
  • MS Mobile Station
  • D2D communication is used for communication between multiple terminals 10 .
  • the network device 20 is a device deployed in the access network to provide the terminal 10 with a wireless communication function.
  • the network device 20 may include various forms of macro base stations, micro base stations, relay stations, access points, and the like.
  • the names of devices with network device functions may vary, for example, in 5G NR systems, they are called gNodeBs or gNBs.
  • the name "network equipment” may change.
  • network devices for the convenience of description, in the embodiments of the present application, the above-mentioned apparatuses for providing a wireless communication function for the terminal 10 are collectively referred to as network devices.
  • the "5G NR system" in the embodiments of the present disclosure may also be referred to as a 5G system or an NR system, and the NR system may be a communication system supporting NR-U, but those skilled in the art can understand its meaning.
  • the technical solutions described in the embodiments of the present disclosure may be applicable to the 5G NR system, and may also be applicable to the subsequent evolution system of the 5G NR system.
  • FIG. 2 shows a flowchart of a blind retransmission method provided by an exemplary embodiment of the present application.
  • the method is applied to the communication system shown in FIG. 1 as an example for illustration as the first terminal of the transmitting end.
  • the method includes:
  • Step 202 Send the first data packet to the second terminal according to the first number of blind retransmissions
  • Step 204 Receive feedback information, where the feedback information is used to represent information related to the number of transmissions required by the second terminal to successfully decode the first data packet;
  • Step 206 Send the second data packet to the second terminal according to the second number of blind retransmissions, where the second number of blind retransmissions is determined according to the feedback information.
  • the receiving end sends information related to the number of transmissions required to successfully decode the first data packet to the transmitting end.
  • the sender can dynamically change the number of blind retransmissions, thereby improving the success rate of communication and avoiding waste of transmission resources.
  • FIG. 3 shows a flowchart of a blind retransmission method provided by an exemplary embodiment of the present application.
  • the method is applied to the communication system shown in FIG. 1 as an example of the second terminal of the receiving end.
  • the method includes:
  • Step 302 Receive a first data packet, the first data packet is sent by the first terminal according to the first number of blind retransmissions;
  • Step 304 Send feedback information to the first terminal, where the feedback information is used to represent information related to the number of transmissions required by the second terminal to successfully decode the first data packet;
  • Step 306 Receive a second data packet, the second data packet is sent by the first terminal according to the second blind retransmission times, and the second blind retransmission times is determined according to the feedback information.
  • the receiving end sends information related to the number of transmissions required to successfully decode the first data packet to the transmitting end.
  • the sender can dynamically change the number of blind retransmissions, thereby improving the success rate of communication and avoiding waste of transmission resources.
  • a blind retransmission mechanism is used to send data between the first terminal and the second terminal.
  • the first terminal is a sender, a sending end or a sending terminal
  • the second terminal is a receiver, a receiving end or a receiving terminal.
  • the roles and identities of the first terminal and the second terminal can be interchanged. For example, in a period of time, the first terminal is the sender, and in another period of time, the second terminal is sender.
  • the first number of blind retransmissions is the preset number of blind retransmissions, or the number of blind retransmissions determined in a certain manner, or the number of blind retransmissions adjusted in the previous adjustment process according to the solution in the embodiment of the present application. This embodiment does not limit the selection manner of the number of times of the first blind retransmission.
  • the actual number of transmissions of the first data packet in this application is equal to the number of blind retransmissions, that is, the number of blind retransmissions includes the first transmission.
  • the actual number of transmissions of the first data packet is equal to the number of blind retransmissions + 1, that is, the number of blind retransmissions does not include the first transmission, but only includes the second transmission to the last transmission. number of retransmissions.
  • the first data packet is one or more data packets sent using the first number of blind retransmissions.
  • the number of the first data packets is taken as an example for illustration.
  • the feedback information is generated by the second terminal, that is, generated by the second terminal after receiving the first data packet.
  • the feedback information is information related to the number of transmissions required to successfully decode the first data packet recorded by the second terminal. For example, the distribution of the number of transmissions required to successfully decode the first data packet, the proportion of the number of transmissions required to successfully decode the first data packet, and the probability information of the number of transmissions required to successfully decode the first data packet, etc.
  • This embodiment does not limit the specific content of the feedback information, as long as it can represent the information related to the number of transmissions required by the second terminal to successfully decode the first data packet. It is not excluded that in some embodiments, the failure to decode the first data packet is used. Packet information to reverse expression.
  • the first terminal determines a reasonable second number of blind retransmissions according to the feedback information.
  • the number of times of second blind retransmission is different from the number of times of first blind retransmission, but it does not exclude the situation that the number of times of second blind retransmission is the same as the number of times of first blind retransmission.
  • the second data packet is one or more data packets sent using the second number of blind retransmissions.
  • the above adjustment process of the number of blind retransmissions may be performed repeatedly at predetermined time intervals, for example, the number of blind retransmissions is adjusted every second.
  • FIG. 4 shows a flowchart of a blind retransmission method provided by an exemplary embodiment of the present application.
  • the method in this embodiment is applied between at least two terminals shown in FIG. 1 , and D2D communication is adopted between the at least two terminals.
  • the method includes:
  • Step 401 the first terminal sends the first data packet to the second terminal according to the first number of blind retransmissions
  • a blind retransmission mechanism is used to send data between the first terminal and the second terminal.
  • the first terminal and the second terminal communicate in a D2D communication manner.
  • the first terminal and the second terminal use a blind retransmission mechanism to send data on the unlicensed spectrum.
  • the first number of blind retransmissions is the preset number of blind retransmissions, or the number of blind retransmissions determined in a certain manner, or the number of blind retransmissions adjusted in the previous adjustment process according to the solution in the embodiment of the present application. This embodiment does not limit the selection manner of the number of times of the first blind retransmission.
  • the first data packet is one or more data packets sent using the first number of blind retransmissions.
  • the number of the first data packets is taken as an example for illustration.
  • the second terminal receives one or more first data packets.
  • Step 402 the second terminal receives the first data packet, and the first data packet is sent by the first terminal according to the first number of blind retransmissions;
  • Step 403 the second terminal generates feedback information
  • the second terminal generates feedback information according to the number of transmissions required to successfully decode the first data packet within the first time period.
  • the first time period is a time period after the second terminal sends the last feedback information.
  • the first time period is a time period determined according to a timer, the timer may be started after sending the last feedback information, and the first time period is between the start time of the timer and the end time of the timer.
  • the manner of determining the first time period is not limited.
  • the feedback information includes at least one of the following:
  • the number of successfully decoded first data packets under each transmission number includes: the number of successfully decoded first data packets when the number of transmissions is 1; when the number of transmissions is 2 The number of successfully decoded first data packets; the number of successfully decoded first data packets when the number of transmissions is 3; ...; the number of successfully decoded first data packets when the number of transmissions is N.
  • the feedback information includes: N success_1_trans , N success_2_trans , ...N success_1_trans .
  • the number of successfully decoded first data packets under each transmission number is also referred to as the first type of feedback information.
  • the percentage of successfully decoded first packet for each number of transmissions either the actual value or the quantized value
  • the proportion of successfully decoding the first data packet under each transmission number includes: when the number of transmissions is 1, the proportion of the first data packet successfully decoded in all first data packets; When the number of transmissions is 2, the proportion of successfully decoded first data packets in all first data packets; when the number of transmissions is 3, the proportion of successfully decoded first data packets in all first data packets; ...; when the number of transmissions is N, decoding is successful The ratio of the first data packets to all the first data packets.
  • the feedback information includes: P success_1 , P success_2 ,...P success_N .
  • the ratio For the ratio of successfully decoding the first data packet under each transmission number, the ratio is rounded up to retain 1 decimal point to obtain an approximate ratio value. Then, according to the corresponding relationship in Table 1, the approximate scale value is converted into a quantized value. The quantized value only needs 4 bits to complete the feedback, which can effectively reduce the number of information bits required for the feedback information.
  • the proportion of successfully decoding the first data packet under each number of transmissions is also referred to as the second type of feedback information.
  • the second terminal may also determine the number of blind retransmissions for reference, that is, the number of recommended blind retransmissions, by itself according to the first two kinds of feedback information.
  • the reference number of blind retransmissions is determined as feedback information for the first terminal to refer to when determining the second number of blind retransmissions.
  • the first terminal may use the reference number of blind retransmissions as the second number of blind retransmissions, or may not use the reference number of blind retransmissions as the second number of blind retransmissions.
  • the second number of blind retransmissions is greater than or equal to the reference number of blind retransmissions.
  • the number of blind retransmissions for reference also referred to as the third type of feedback information.
  • the second terminal may also determine the indicated number of blind retransmissions by itself according to the first two kinds of feedback information.
  • the indicated number of blind retransmissions is determined as feedback information for the first terminal to use as the second blind retransmission times.
  • the first terminal directly uses the indicated number of blind retransmissions as the second number of blind retransmissions.
  • the indicated number of blind retransmissions also referred to as the fourth type of feedback information.
  • Step 404 the second terminal sends feedback information to the first terminal
  • the second terminal when the trigger condition is satisfied, the second terminal sends feedback information to the first terminal.
  • the trigger condition includes at least one of the following conditions:
  • the first number of received first data packets is greater than or equal to the first threshold
  • the first threshold is a quantity threshold.
  • the first threshold is 100 or 200.
  • the second number of successfully decoded first packets is greater than or equal to the second threshold
  • the second threshold is a quantity threshold.
  • the second threshold is 50 or 100.
  • the time interval from sending the last feedback information is greater than or equal to the third threshold
  • the third threshold is the duration threshold.
  • the third threshold is 1 second, 5 seconds or 10 seconds.
  • COT shared resources are transmission resources shared or shared, provided or indicated by the first terminal to the second terminal.
  • the COT shared resource is a time slot or multiple time slots in the COT occupied by the first terminal after a successful Listen Before Talk (LBT).
  • LBT Listen Before Talk
  • the COT shared resource is used for the second terminal to send feedback information to the first terminal.
  • the timer times out
  • the timer is set by the second terminal, and the start moment of the timer is the moment when the last feedback information is sent.
  • the ratio of the second number to the first number is greater than the fourth threshold
  • the first number is the number of first packets received and the second number is the number of first packets successfully decoded.
  • the ratio of the second number to the first number is greater than the fourth threshold, it means that the number of times of the first blind retransmission is too high.
  • the ratio of the second number to the first number is less than the fifth threshold
  • the first number is the number of first packets received and the second number is the number of first packets successfully decoded.
  • the ratio of the second number to the first number is greater than the fourth threshold, it indicates that the first number of blind retransmissions is low.
  • the indication information is information used to instruct the second terminal to send feedback information.
  • the indication information is sent by the first terminal.
  • the indication information can use PC5-Radio Resource Control (PC5-RRC) signaling, Medium Access Control Control Element (MAC CE) signaling and sideline control information (SideLink Control Information, SCI) carry at least one.
  • PC5-RRC PC5-Radio Resource Control
  • MAC CE Medium Access Control Control Element
  • SCI Sideline control information
  • the manner in which the second terminal sends the feedback information to the first terminal includes but is not limited to at least one of the following:
  • the second terminal performs LBT on an unlicensed spectrum, and after the LBT succeeds, sends feedback information to the first terminal by using the unlicensed spectrum.
  • Step 405 The first terminal receives feedback information, where the feedback information is used to represent information related to the number of transmissions required by the second terminal to successfully decode the first data packet;
  • the manner in which the first terminal receives the feedback information includes but is not limited to at least one of the following:
  • COT shared resources Provide COT shared resources to the second terminal; receive feedback information sent by the second terminal using COT shared resources;
  • Step 406 the first terminal determines the second number of blind retransmissions according to the feedback information
  • the first terminal determines the proportion of successfully decoded first data packets under each transmission number of times according to the number of successfully decoded first data packets under each transmission number of times;
  • the second number of blind retransmissions is determined according to the proportion of successfully decoding the first data packet under each transmission number.
  • the first terminal determines the second number of blind retransmissions according to the proportion of successfully decoding the first data packet under each transmission number of times.
  • the first terminal determines the second blind retransmission times according to the reference blind retransmission times.
  • the second number of blind retransmissions is greater than or equal to the reference number of blind retransmissions.
  • the first terminal determines the second number of blind retransmissions according to the indicated number of blind retransmissions.
  • the second number of blind retransmissions is equal to the indicated number of blind retransmissions.
  • the number of uploads including:
  • the proportion of successfully decoding the first data packet is not greater than the number of transmissions n and the sum is greater than the sixth threshold, and the number of transmissions n is the number of transmissions with the highest proportion of successfully decoding the first data packet among all the times of transmission, the number of times of transmission n is Determined as the second blind retransmission times.
  • the proportion of successfully decoding the first data packet is not greater than the number of transmissions n and less than the sixth threshold, and the number of transmissions n is the number of transmissions with the highest proportion of successfully decoding the first data packet among all the times of transmission, the number of transmissions n is +1 is determined as the second number of blind retransmissions.
  • the feedback information includes the proportion P success_1 of successfully decoding the first data packet when the number of transmissions is 1, and the percentage of successfully decoding the first data packet when the number of transmissions is 2.
  • Example 1 If P success_1 ⁇ P success_2 ⁇ P success_3 , and P success_1 +P success_2 +P success_3 ⁇ ⁇ , it is determined that the number of second blind retransmissions is 3.
  • is a threshold value, and the value range is 0 ⁇ 1, that is, most of the first data packets can be guaranteed to be correctly received after three transmissions.
  • P success_1 0.1
  • P success_2 0.1
  • P success_3 0.78
  • 0.95, which means that 98% of the first packets can be received correctly after three transmissions, but the first packets less than three transmissions are The probability of successful reception is low, and the number of second blind retransmissions is 3 at this time.
  • Example 3 P success_1 ⁇ P success_2 ⁇ P success_3 , and P success_1 +P success_2 ⁇ ⁇ , then it is determined that the second blind retransmission number is 2.
  • P success_1 0.1
  • P success_2 0.85
  • P success_3 0.05
  • 0.95
  • Example 4 P success_1 ⁇ P success_3 +P success_2 , and P success_1 ⁇ ⁇ , then it is determined that the second blind retransmission times is 1.
  • P success_1 0.96
  • P success_2 0.01
  • P success_3 0.02
  • 0.95
  • data is sent between a first terminal 1 and a plurality of second terminals 2 .
  • the first terminal determines the number of candidate blind retransmission times corresponding to each second terminal according to the feedback information of each second terminal; calculates the ratio of the second terminal corresponding to each candidate blind retransmission number to all the second terminals; selects the ratio The minimum number of candidate blind retransmissions not less than the seventh threshold is determined as the second blind retransmission number.
  • the manner of determining the number of candidate blind retransmissions for a single second terminal is the same as the number of second blind retransmissions in the unicast scenario, and will not be described again.
  • Example 5 The first terminal receives feedback information from multiple second terminals. First, determine the number of candidate blind retransmissions suitable for each second terminal by using the above method for determining the number of blind retransmissions in the unicast scenario, and then calculate the proportion of the second terminals that select the number of candidate blind retransmissions, for example
  • the number of second blind retransmissions finally determined is N, and the proportion of receivers that select m times of transmission is N m , then the number of second blind retransmissions N finally determined is the vast majority that can satisfy the threshold of ⁇
  • the minimum number of transmissions when the second terminal needs to receive as shown below
  • the second blind retransmission times can be determined as 2 times.
  • each second terminal in the group may be set with the same trigger condition to ensure that each second terminal sends the feedback information within a similar time.
  • Step 407 The first terminal sends the second data packet to the second terminal according to the second number of blind retransmissions.
  • the receiving end sends information related to the number of transmissions required to successfully decode the first data packet to the transmitting end.
  • the sender can dynamically change the number of blind retransmissions, thereby improving the success rate of communication and avoiding waste of transmission resources.
  • the feedback information can be sent by the second terminal autonomously, and in this case, the calculation pressure of the first terminal can be reduced.
  • the calculation pressure will be relatively large;
  • the information can also be triggered by the first terminal to send the second terminal through the indication information or COT shared resources, which is convenient for the first terminal to obtain feedback information from the second terminal in a manner similar to active inquiry according to its own requirements for sending data packets, thereby improving the first terminal. autonomy of the terminal.
  • the second blind retransmission times are reasonably set according to the receiving requirements of most second terminals.
  • avoiding too few blind retransmissions selected by the sender may result in a low probability of successful decoding at the receiver; The problem of necessary channel resources.
  • the manner in which the second terminal determines the number of reference blind retransmissions or the number of indicated blind retransmissions is the same as the manner in which the first terminal determines the second number of blind retransmissions in a unicast scenario. That is:
  • the number of transmissions n is the number of transmissions with the highest proportion of successfully decoding the first data packet among all the times of transmission
  • the number of times of transmission n is The number of blind retransmissions determined as the reference or the number of blind retransmissions indicated.
  • the number of transmissions n is +1 is determined as the number of blind retransmissions for reference or the number of blind retransmissions for indication.
  • the feedback information includes the proportion P success_1 that successfully decodes the first data packet in the case of the number of transmissions 1, and the successful decoding in the case of the number of transmissions 2
  • Example 1 If P success_1 ⁇ P success_2 ⁇ P success_3 , and P success_1 +P success_2 +P success_3 ⁇ ⁇ , the number of blind retransmissions of reference or the number of indicated blind retransmissions is determined to be 3.
  • is a threshold value, and the value range is 0 ⁇ 1, that is, most of the first data packets can be guaranteed to be correctly received after three transmissions.
  • P success_1 0.1
  • P success_2 0.1
  • P success_3 0.78
  • 0.95
  • Example 3 P success_1 ⁇ P success_2 ⁇ P success_3 , and P success_1 +P success_2 ⁇ ⁇ , then it is determined that the number of blind retransmissions of reference or the number of indicated blind retransmissions is 2.
  • P success_1 0.1
  • P success_2 0.85
  • P success_3 0.05
  • 0.95, which means that 95% of the data packets can be received correctly after two transmissions, and the number of blind retransmissions for reference or the indicated number of retransmissions is determined at this time.
  • the number of blind retransmissions is 2.
  • Example 4 P success_1 ⁇ P success_3 +P success_2 , and P success_1 ⁇ ⁇ , then it is determined that the number of blind retransmissions for reference or the number of blind retransmissions for indication is 1.
  • P success_1 0.96
  • P success_2 0.01
  • the number of blind retransmissions for reference or the number of blind retransmissions for indication is determined at this time.
  • the number of retransmissions is 1.
  • FIG. 7 shows a block diagram of an apparatus for blind retransmission provided by an exemplary embodiment of the present application.
  • the apparatus can be implemented as the first terminal, or implemented as a part of the first terminal, or applied in the first terminal, and the apparatus includes:
  • a sending module 720 configured to send the first data packet to the second terminal according to the first number of blind retransmissions
  • a receiving module 740 configured to feed back information, where the feedback information is used to represent information related to the number of transmissions required by the second terminal to successfully decode the first data packet;
  • the sending module 720 is configured to send a second data packet to the second terminal according to a second number of blind retransmissions, where the second number of blind retransmissions is determined according to the feedback information.
  • the feedback information is generated by the second terminal according to the number of transmissions required to successfully decode each first data packet within a first time period;
  • the first time period is a time period after the second terminal sends the last feedback information; or, the first time period is a time period determined according to a timer.
  • the feedback information is sent by the second terminal when a trigger condition is met, and the trigger condition includes at least one of the following conditions:
  • the first number is greater than or equal to the first threshold, and the first number is the number of the received first data packets
  • the second number is greater than or equal to the second threshold, and the second number is the number of the successfully decoded first data packets
  • the time interval from sending the last feedback information is greater than or equal to the third threshold
  • the ratio of the second number to the first number is greater than a fourth threshold
  • the ratio of the second number to the first number is less than a fifth threshold
  • the indication information sent by the first terminal is received.
  • the feedback information includes at least one of the following:
  • the proportion of successfully decoding the first data packet under each number of transmissions the proportion being an actual value or a quantized value
  • the receiving module 740 is configured to receive the feedback information sent by the second terminal using an unlicensed spectrum; or, the receiving module 740 is configured to send the feedback information to the The second terminal provides COT shared resources; receives the feedback information sent by the second terminal using the COT shared resources; or, the receiving module 740 is configured to receive PC5-RRC signaling sent by the second terminal , the PC5-RRC signaling carries the feedback information; or, the receiving module 740 is configured to receive the MAC CE signaling sent by the second terminal, where the MAC CE signaling carries the feedback information ; or, the receiving module 740 is configured to receive the SCI sent by the second terminal, where the SCI carries the feedback information.
  • the device further includes:
  • a determination module 760 configured to determine the second number of blind retransmissions according to the feedback information.
  • the determining module 760 is configured to determine, according to the number of the first data packets successfully decoded under each transmission number, that the first data packet is successfully decoded under each transmission number of times The ratio of the first data packet; the second blind retransmission times is determined according to the ratio of successfully decoding the first data packet under each transmission number; or, the determining module 760 is configured to The ratio of successfully decoding the first data packet under the number of times determines the second number of blind retransmissions.
  • the determining module 760 is configured to successfully decode the ratio of the first data packet when the number of transmissions n is not greater than a sixth threshold, and the number of transmissions is greater than a sixth threshold.
  • n is the transmission times with the highest proportion of successfully decoding the first data packet among all the transmission times, the transmission times n is determined as the second blind retransmission times.
  • the determining module 760 is configured to successfully decode the ratio of the first data packet when the number of transmissions is not greater than the sum of the first data packets is less than a sixth threshold, and the number of transmissions is less than a sixth threshold.
  • n is the number of transmissions with the highest proportion of successfully decoding the first data packet among all the times of transmission
  • the number of times of transmission n+1 is determined as the number of times of the second blind retransmission.
  • the second terminals are multiple in a multicast scenario
  • the determining module 760 is configured to determine each second terminal according to feedback information of each second terminal The corresponding number of candidate blind retransmissions; calculate the ratio of the second terminal corresponding to each candidate blind retransmission number to all second terminals; select the minimum candidate blind retransmission number whose ratio is not less than the seventh threshold, and determine as the Second blind retransmission times.
  • FIG. 8 shows a block diagram of an apparatus for blind retransmission provided by an exemplary embodiment of the present application.
  • the apparatus can be implemented as a second terminal, or implemented as a part of the second terminal, or applied in the second terminal, and the apparatus includes:
  • a receiving module 820 configured to receive a first data packet, where the first data packet is sent by the first terminal according to the first number of blind retransmissions;
  • a sending module 840 configured to send feedback information to the first terminal, where the feedback information is used to represent information related to the number of transmissions required by the device to successfully decode the first data packet;
  • the receiving module 820 is configured to receive a second data packet, the second data packet is sent by the first terminal according to the second number of blind retransmissions, and the second number of blind retransmissions is based on the feedback information definite.
  • the device further includes:
  • a generating module 860 configured to generate the feedback information according to the number of transmissions required to successfully decode each first data packet within the first time period
  • the first time period is a time period after the second terminal sends the last feedback information; or, the first time period is a time period determined according to a timer.
  • the sending module 840 is configured to send feedback information to the first terminal when a trigger condition is met; wherein the trigger condition includes at least one of the following conditions :
  • the first number is greater than or equal to the first threshold, and the first number is the number of the received first data packets
  • the second number is greater than or equal to the second threshold, and the second number is the number of the successfully decoded first data packets
  • the time interval from sending the last feedback information is greater than or equal to the third threshold
  • the ratio of the second number to the first number is greater than a fourth threshold
  • the ratio of the second number to the first number is less than a fifth threshold
  • the indication information sent by the first terminal is received.
  • the feedback information includes at least one of the following:
  • the proportion of successfully decoding the first data packet under each number of transmissions the proportion being an actual value or a quantized value
  • the sending module 840 is configured to send the feedback information to the first terminal by using an unlicensed spectrum; or, the sending module 840 is configured to receive the first terminal.
  • COT shared resources provided by a terminal; use the COT shared resources to send the feedback information to the first terminal; or, the sending module 840 is configured to send PC5-RRC signaling to the first terminal, where the The PC5-RRC signaling carries the feedback information; or, the sending module 840 is configured to send MAC CE signaling to the first terminal, where the MAC CE signaling carries the feedback information; or, The sending module 840 is configured to send the SCI to the first terminal, where the SCI carries the feedback information.
  • the device further includes:
  • the generating module 860 is configured to determine the recommended number of blind retransmissions according to the ratio of successfully decoding the first data packet under each transmission number.
  • the generating module 860 is configured to successfully decode the ratio of the first data packet when the number of transmissions n is not greater than the sixth threshold, and the number of transmissions is greater than a sixth threshold.
  • n is the transmission times with the highest proportion of successfully decoding the first data packet among all transmission times, the transmission times n is determined as the reference blind retransmission times or the indicated blind retransmission times.
  • the generating module 860 is configured to successfully decode the ratio of the first data packet when the number of transmissions is not greater than n and is less than a sixth threshold, and the number of transmissions is less than a sixth threshold.
  • n is the transmission times with the highest proportion of successfully decoding the first data packet among all transmission times
  • the transmission times n+1 is determined as the reference blind retransmission times or the indicated blind retransmission times.
  • FIG. 9 shows a schematic structural diagram of a communication device (network device or terminal) provided by an exemplary embodiment of the present application.
  • the communication device includes: a processor 101 , a receiver 102 , a transmitter 103 , a memory 104 and a bus 105 .
  • the processor 101 includes one or more processing cores, and the processor 101 executes various functional applications and information processing by running software programs and modules.
  • the receiver 102 and the transmitter 103 may be implemented as a communication component, which may be a communication chip.
  • the memory 104 is connected to the processor 101 through the bus 105 .
  • the memory 104 may be configured to store at least one instruction, and the processor 101 may be configured to execute the at least one instruction, so as to implement various steps in the foregoing method embodiments.
  • memory 104 may be implemented by any type or combination of volatile or non-volatile storage devices including, but not limited to, magnetic or optical disks, electrically erasable programmable Read Only Memory (Erasable Programmable Read Only Memory, EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Random Access Memory (SRAM), Read Only Memory (Read -Only Memory, ROM), magnetic memory, flash memory, programmable read-only memory (Programmable Read-Only Memory, PROM).
  • volatile or non-volatile storage devices including, but not limited to, magnetic or optical disks, electrically erasable programmable Read Only Memory (Erasable Programmable Read Only Memory, EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Random Access Memory (SRAM), Read Only Memory (Read -Only Memory, ROM), magnetic memory, flash memory, programmable read-only memory (Programmable Read-Only Memory, PROM).
  • a computer-readable storage medium stores at least one instruction, at least one piece of program, code set or instruction set, the at least one instruction, the At least one piece of program, the code set or the instruction set is loaded and executed by the processor to implement the blind retransmission method provided by the above method embodiments and executed by the first terminal or the second terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Communication Control (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种盲重传方法、装置、设备及存储介质,涉及D2D通信领域,所述盲重传方法包括:第一终端按照第一盲重传次数向第二终端发送第一数据包;第一终端接收反馈信息,所述反馈信息用于表征与所述第二终端成功解码所述第一数据包所需要的传输次数相关的信息;第一终端按照第二盲重传次数向所述第二终端发送第二数据包,所述第二盲重传次数是根据所述反馈信息确定的。

Description

盲重传方法、装置、设备及介质 技术领域
本申请涉及终端到终端(Device to Device,D2D)通信领域,特别涉及一种盲重传方法、装置、设备及介质。
背景技术
D2D通信是指一定距离范围内的用户设备直接通信,不需要基站的中转。在非授权频谱使用D2D通信,成为了提高通信系统的吞吐量的解决方案。
由于接收端能否及时占用非授权频谱是不确定的,因此无法保证HARQ反馈的及时性。发送端会采用盲重传机制向接收端发送数据包。盲重传机制是指:在不依赖接收端的HARQ反馈的情况下,发送端将同一个数据包按照盲重传次数N重复发送至接收端。比如,将同一个数据包,发送端连续向接收端发送7次。
其中,发送端如何准确选择盲重传次数,是亟待解决的技术问题。
发明内容
本申请实施例提供了一种盲重传方法、装置、设备及存储介质。所述技术方案如下。
根据本申请实施例的一个方面,提供了一种盲重传方法,应用于第一终端中,所述方法包括:
按照第一盲重传次数向第二终端发送第一数据包;
接收反馈信息,所述反馈信息用于表征与所述第二终端成功解码所述第一数据包所需要的传输次数相关的信息;
按照第二盲重传次数向所述第二终端发送第二数据包,所述第二盲重传次数是根据所述反馈信息确定的。
根据本申请实施例的一个方面,提供了一种盲重传方法,应用于第二终端中,所述方法包括:
接收第一数据包,所述第一数据包是第一终端按照第一盲重传次数发送的;
向所述第一终端发送反馈信息,所述反馈信息用于表征与所述第二终端成功解码所述第一数据包所需要的传输次数相关的信息;
接收第二数据包,所述第二数据包是所述第一终端按照第二盲重传次数发送的,所述第二盲重传次数是根据所述反馈信息确定的。
根据本申请实施例的一个方面,提供了一种盲重传装置,所述装置包括:
发送模块,用于按照第一盲重传次数向第二终端发送第一数据包;
接收模块,用于反馈信息,所述反馈信息用于表征与所述第二终端成功解码所述第一数据包所需要的传输次数相关的信息;
所述发送模块,用于按照第二盲重传次数向所述第二终端发送第二数据包,所述第二盲重传次数是根据所述反馈信息确定的。
根据本申请实施例的一个方面,提供了一种盲重传装置,所述装置包括:
接收模块,用于接收第一数据包,所述第一数据包是第一终端按照第一盲重传次数发送 的;
发送模块,用于向所述第一终端发送反馈信息,所述反馈信息用于表征与所述装置成功解码所述第一数据包所需要的传输次数相关的信息;
所述接收模块,用于接收第二数据包,所述第二数据包是所述第一终端按照第二盲重传次数发送的,所述第二盲重传次数是根据所述反馈信息确定的。
根据本申请实施例的一个方面,提供了一种终端,所述终端包括:处理器;与所述处理器相连的收发器;用于存储所述处理器的可执行指令的存储器;其中,所述处理器被配置为加载并执行所述可执行指令以实现如上述方面所述的盲重传方法。
根据本申请实施例的一个方面,提供了一种计算机可读存储介质,所述可读存储介质中存储有可执行指令,所述可执行指令由所述处理器加载并执行以实现如上述方面所述的盲重传方法。
根据本申请实施例的一个方面,提供了一种计算机程序产品,所述可读存储介质中存储有可执行指令,所述可执行指令由所述处理器加载并执行以实现如上述方面所述的盲重传方法。
根据本申请实施例的一个方面,提供了一种芯片,所述芯片用于执行以实现如上述方面所述的盲重传方法。
本申请实施例提供的技术方案至少包括如下有益效果:
通过在发送端使用盲重传机制进行数据发送的场景下,由接收端向发送端发送与成功解码第一数据包所需要的传输次数相关的信息,发送端可以动态改变盲重传次数,从而提高通信成功率且避免传输资源的浪费。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请实施例的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个示例性实施例提供的通信系统的架构图;
图2是本申请一个示例性实施例提供的盲重传方法的流程图;
图3是本申请一个示例性实施例提供的盲重传方法的流程图;
图4是本申请一个示例性实施例提供的盲重传方法的流程图;
图5是本申请一个示例性实施例提供的单播场景的示意图;
图6是本申请一个示例性实施例提供的组播场景的示意图;
图7是本申请一个示例性实施例提供的盲重传装置的框图;
图8是本申请一个示例性实施例提供的盲重传装置的框图;
图9是本申请一个示例性实施例提供的通信设备的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
在非授权频谱中使用D2D通信时,发送端采用盲重传机制向接收端发送数据包。相关技术中,发送端采用预设的盲重传次数向接收端发送数据包。比如针对每个数据包,发送端都重复发送5次。其中,盲重传次数的选择是较为困难的。一方面,发送端选择的盲重传次数太少时,可能会导致接收端的成功解码概率比较低;另一方面,发送端选择的盲重传次数太多时,会导致占据太多不必要的信道资源。
本申请实施例提供了一种基于反馈信息的盲重传次数选择机制。在发送端采用盲重传次数向接收端发送数据的场景中,由接收端向发送端发送反馈信息,该反馈信息用于表征接收端在历史接收过程中成功解码数据包所需要的传输次数相关的信息。发送端在接收到反馈信息后,重新调整自身的盲重传次数,得到较为合理的盲重传次数。
图1示出了本申请一个实施例提供的通信系统的架构示意图。该通信系统可以包括:终端10和网络设备20。
终端10的数量通常为多个,每一个网络设备20所管理的小区内可以分布一个或多个终端10。终端10可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS)等等。为方便描述,本申请实施例中,上面提到的设备统称为终端。在一些情况下,多个终端10之间采用D2D通信方式进行通信。
网络设备20是一种部署在接入网中用以为终端10提供无线通信功能的装置。网络设备20可以包括各种形式的宏基站,微基站,中继站,接入点等等。在使用不同的无线接入技术的系统中,具备网络设备功能的设备的名称可能会有所不同,例如在5G NR系统中,称为gNodeB或者gNB。随着通信技术的演进,“网络设备”这一名称可能会变化。为方便描述,本申请实施例中,上述为终端10提供无线通信功能的装置统称为网络设备。
本公开实施例中的“5G NR系统”也可以称为5G系统或者NR系统,该NR系统可以是支持NR-U的通信系统,但本领域技术人员可以理解其含义。本公开实施例描述的技术方案可以适用于5G NR系统,也可以适用于5G NR系统后续的演进系统。
图2示出了本申请一个示例性实施例提供的盲重传方法的流程图。本实施例以该方法应用于图1所示的通信系统中,作为发送端的第一终端来举例说明。该方法包括:
步骤202:按照第一盲重传次数向第二终端发送第一数据包;
步骤204:接收反馈信息,反馈信息用于表征与第二终端成功解码第一数据包所需要的传输次数相关的信息;
步骤206:按照第二盲重传次数向第二终端发送第二数据包,第二盲重传次数是根据反馈信息确定的。
综上所述,本实施例提供的方法,通过在发送端使用盲重传机制进行数据发送的场景下,由接收端向发送端发送与成功解码第一数据包所需要的传输次数相关的信息,发送端可以动态改变盲重传次数,从而提高通信成功率且避免传输资源的浪费。
图3示出了本申请一个示例性实施例提供的盲重传方法的流程图。本实施例以该方法应用于图1所示的通信系统中,作为接收端的第二终端来举例说明。该方法包括:
步骤302:接收第一数据包,第一数据包是第一终端按照第一盲重传次数发送的;
步骤304:向第一终端发送反馈信息,反馈信息用于表征与第二终端成功解码第一数据包所需要的传输次数相关的信息;
步骤306:接收第二数据包,第二数据包是第一终端按照第二盲重传次数发送的,第二盲重传次数是根据反馈信息确定的。
综上所述,本实施例提供的方法,通过在发送端使用盲重传机制进行数据发送的场景下,由接收端向发送端发送与成功解码第一数据包所需要的传输次数相关的信息,发送端可以动态改变盲重传次数,从而提高通信成功率且避免传输资源的浪费。
在基于图2或图3的可选实施例中,第一终端和第二终端之间采用盲重传机制发送数据。其中,第一终端是发送方、发送端或发送终端,第二终端是接收方、接收端或接收终端。在不同的时域和/或频域,第一终端和第二终端之间的角色身份可以互换,比如在一段时间内,第一终端是发送端,在另一段时间内,第二终端是发送端。
第一盲重传次数是预设的盲重传次数,或按照某种方式确定的盲重传次数,或,按照本申请实施例的方案在上一次调整过程中调整后的盲重传次数。本实施例对第一盲重传次数的选择方式不加以限定。
需要说明的是,在本申请中的第一数据包的实际传输次数等于盲重传次数,也即盲重传次数包括首次传输。在不排除在其它实施例中,将第一数据包的实际传输次数等于盲重传次数+1的计数方式,也即盲重传次数不包括首次传输,仅包括第二次传输至最后一次传输的重传次数。在采用实际传输次数等于盲重传次数+1的计数方式时,仅需对下述实施例中确定的第二盲重传次数减一即可,此乃本领域技术人员易于思及的内容,不再赘述。
第一数据包是采用第一盲重传次数发送的一个或多个数据包。本申请以第一数据包为多个来举例说明。
反馈信息是由第二终端生成的,也即由第二终端在接收第一数据包之后生成的。反馈信息是第二终端记录的成功解码第一数据包所需要的传输次数相关的信息。比如,成功解码第一数据包所需要的传输次数的分布情况、成功解码第一数据包所需要的传输次数的比例情况、成功解码第一数据包所需要的传输次数的概率信息等。
本实施例对反馈信息的具体内容不加以限定,只要能表征第二终端在成功解码第一数据包所需要的传输次数相关的信息即可,不排除某些实施例中采用失败解码第一数据包的信息来反向表达。
第一终端根据反馈信息确定出合理的第二盲重传次数。通常情况下,第二盲重传次数与第一盲重传次数不同,但不排除第二盲重传次数与第一盲重传次数相同的情形。
第二数据包是采用第二盲重传次数发送的一个或多个数据包。
上述盲重传次数的调整过程可以每隔预定时间间隔重复执行,比如每隔一秒对盲重传次数进行调整。
图4示出了本申请一个示例性实施例提供的盲重传方法的流程图。本实施例以该方法应用于图1所示的至少两个终端之间,至少两个终端之间采用D2D通信。该方法包括:
步骤401:第一终端按照第一盲重传次数向第二终端发送第一数据包;
第一终端和第二终端之间采用盲重传机制发送数据。示意性的,第一终端和第二终端采 用D2D通信方式进行通信。第一终端和第二终端在非授权频谱上采用盲重传机制发送数据。
第一盲重传次数是预设的盲重传次数,或按照某种方式确定的盲重传次数,或,按照本申请实施例的方案在上一次调整过程中调整后的盲重传次数。本实施例对第一盲重传次数的选择方式不加以限定。
第一数据包是采用第一盲重传次数发送的一个或多个数据包。本申请以第一数据包为多个来举例说明。对应的,第二终端接收一个或多个第一数据包。
步骤402:第二终端接收第一数据包,第一数据包是第一终端按照第一盲重传次数发送的;
步骤403:第二终端生成反馈信息;
第二终端根据第一时间段内成功解码第一数据包所需要的传输次数生成反馈信息。示意性的,在第二终端历史发送过上一个反馈信息时,第一时间段是第二终端在发送上一个反馈信息之后的时间段。示意性的,第一时间段是根据定时器确定的时间段,该定时器可以是在发送上一个反馈信息后开启的,在该定时器的开启时刻至结束时刻之间是第一时间段。但本申请实施例,对第一时间段的确定方式不加以限定。
可选地,反馈信息包括如下至少之一:
·在每种传输次数下成功解码第一数据包的个数
假设第一盲重传次数是N,则在每种传输次数下成功解码第一数据包的个数包括:在传输次数为1时成功解码第一数据包的个数;在传输次数为2时成功解码第一数据包的个数;在传输次数为3时成功解码第一数据包的个数;…;在传输次数为N时成功解码第一数据包的个数。
比如,假设Φ为第一时间段内所有第一数据包的集合,则一次传输即成功解码的数据包数
Figure PCTCN2020113604-appb-000001
即经过一次传输就正确解码的第一数据包个数的总和。类似的,假设目前的第一盲重传次数为N,可以得到经过n(2≤n≤N)次传输才能正确解码的数据包个数
Figure PCTCN2020113604-appb-000002
反馈信息包括:N success_1_trans,N success_2_trans,…N success_1_trans
在每种传输次数下成功解码第一数据包的个数,也称为第一种类型的反馈信息。
·在每种传输次数下成功解码第一数据包的比例,该比例为实际值或量化值
假设第一盲重传次数是N,则在每种传输次数下成功解码第一数据包的比例包括:在传输次数为1时成功解码第一数据包占所有第一数据包的比例;在传输次数为2时成功解码第一数据包占所有第一数据包的比例;在传输次数为3时成功解码第一数据包占所有第一数据包的比例;…;在传输次数为N时成功解码第一数据包占所有第一数据包的比例。
以该比例为实际值为例,假设Φ为第一时间段内所有第一数据包的集合,经过传输次数i时,接收端成功解码第一数据包的个数占所有第一数据包的比例为P success_i,i为不大于N的正整数,目前的第一盲重传次数为N,则在传输次数为i时成功解码第一数据包占所有第一数据包的比例为:
Figure PCTCN2020113604-appb-000003
反馈信息包括:P success_1,P success_2,…P success_N
以该比例为量化值为例,存在如下量化表格:
表一
比例(实际值或实际值的四舍五入值) 量化值
0.1 1
0.2 2
0.3 3
0.4 4
0.5 5
0.6 6
0.7 7
0.8 8
0.9 9
1 10
对于每种传输次数下成功解码第一数据包的比例,将该比例按照四舍五入保留1位小数点的方式进行处理,得到近似比例值。再按照表一中的对应关系,将近似比例值转换为量化值。量化值仅需要4个比特即可完成反馈,可以有效降低反馈信息所需要的信息比特数。
在每种传输次数下成功解码第一数据包的比例,也称为第二种类型的反馈信息。
·参考的盲重传次数
第二终端也可以根据前两种反馈信息,自行确定出参考的盲重传次数,也即推荐的盲重传次数。将参考的盲重传次数,确定为反馈信息供第一终端在确定第二盲重传次数时进行参考。第一终端可以采用参考的盲重传次数作为第二盲重传次数,也可以不采用参考的盲重传次数作为第二盲重传次数。第二盲重传次数大于或等于参考的盲重传次数。
参考的盲重传次数,也称为第三种反馈信息。
·指示的盲重传次数
第二终端也可以根据前两种反馈信息,自行确定出指示的盲重传次数。将指示的盲重传次数,确定为反馈信息供第一终端作为第二盲重传次数。第一终端直接采用指示的盲重传次数作为第二盲重传次数。
指示的盲重传次数,也称为第四种反馈信息。
步骤404:第二终端向第一终端发送反馈信息;
示意性的,第二终端在满足触发条件时,向第一终端发送反馈信息。其中,触发条件包括如下条件中的至少一个条件:
·接收到的第一数据包的第一个数大于或等于第一阈值;
第一阈值为数量阈值。比如,第一阈值为100个或200个。
·成功解码的第一数据包的第二个数大于或等于第二阈值;
第二阈值为数量阈值。比如,第二阈值为50个或100个。
·距离发送上一个反馈信息的时间间隔大于或等于第三阈值;
第三阈值是时长阈值。比如,第三阈值为1秒、5秒或10秒。
·接收到第一终端预留的COT共享资源;
COT共享资源是第一终端向第二终端分享或共享或提供或指示的传输资源。COT共享资源是第一终端在先听后说(Listen Before Talk,LBT)成功后占用的COT中的一个时隙或多个时隙。
COT共享资源用于供第二终端向第一终端发送反馈信息。
·定时器超时;
示意性的,该定时器是由第二终端设置的,该定时器的开始时刻是发送上一个反馈信息的时刻。
·第二个数和第一个数的比值大于第四阈值;
第一个数是接收到的第一数据包的个数,第二个数是成功解码的第一数据包的个数。
当第二个数和第一个数的比值大于第四阈值时,说明第一盲重传次数偏高。
·第二个数和第一个数的比值小于第五阈值;
第一个数是接收到的第一数据包的个数,第二个数是成功解码的第一数据包的个数。
当第二个数和第一个数的比值大于第四阈值时,说明第一盲重传次数偏低。
·接收到第一终端发送的指示信息。
指示信息是用于指示第二终端发送反馈信息的信息。该指示信息是由第一终端发送的。该指示信息可以采用PC5接口的无线资源控制(PC5-Radio Resource Control,PC5-RRC)信令、媒体接入控制控制单元(Medium Access Control Control Element,MAC CE)信令和侧行控制信息(SideLink Control Information,SCI)中的至少一种携带。
示意性的,第二终端向第一终端发送反馈信息的方式,包括但不限于如下至少之一:
·采用非授权频谱向第一终端发送反馈信息;
比如,第二终端在非授权频谱进行LBT,在LBT成功后,采用非授权频谱向第一终端发送反馈信息。
·接收第一终端提供的COT共享资源;采用COT共享资源向第一终端发送反馈信息;
·向第一终端发送PC5-RRC信令,PC5-RRC信令携带有反馈信息;
·向第一终端发送MAC CE信令,MAC CE信令携带有反馈信息;
·向第一终端发送SCI,SCI携带有反馈信息。
步骤405:第一终端接收反馈信息,反馈信息用于表征与第二终端成功解码第一数据包所需要的传输次数相关的信息;
相应的,第一终端接收反馈信息的方式,包括但不限于如下至少之一:
·接收第二终端采用非授权频谱发送的反馈信息;
·向第二终端提供COT共享资源;接收第二终端采用COT共享资源发送的反馈信息;
·接收第二终端发送的PC5-RRC信令,PC5-RRC信令携带有反馈信息;
·接收第二终端发送的MAC CE信令,MAC CE信令携带有反馈信息;
·接收第二终端发送的SCI,SCI携带有反馈信息。
步骤406:第一终端按照反馈信息确定第二盲重传次数;
在接收到第一种类型的反馈信息的情况下,第一终端根据在每种传输次数下成功解码第一数据包的个数,确定在每种传输次数下成功解码第一数据包的比例;根据在每种传输次数下成功解码第一数据包的比例,确定第二盲重传次数。
在接收到第二种类型的反馈信息的情况下,第一终端根据在每种传输次数下成功解码第一数据包的比例,确定第二盲重传次数。
在接收到第三种类型的反馈信息的情况下,第一终端根据参考的盲重传次数,确定第二盲重传次数。可选地,第二盲重传次数大于或等于参考的盲重传次数。
在接收到第四种类型的反馈信息的情况下,第一终端根据指示的盲重传次数,确定第二盲重传次数。可选地,第二盲重传次数等于指示的盲重传次数。
以图5所示的单播场景为例,第一终端1和第二终端2之间发送数据,第一终端根据在每种传输次数下成功解码第一数据包的比例,确定第二盲重传次数,包括:
在不大于传输次数n的情况下成功解码第一数据包的比例和大于第六阈值,且传输次数n是所有传输次数中成功解码第一数据包的比例最高的传输次数时,将传输次数n确定为第二盲重传次数。
在不大于传输次数n的情况下成功解码第一数据包的比例和小于第六阈值,且传输次数n是所有传输次数中成功解码第一数据包的比例最高的传输次数时,将传输次数n+1确定为第二盲重传次数。
在一个示例中,假设第一盲重传次数为3,反馈信息包括在传输次数1的情况下成功解码第一数据包的比例P success_1,在传输次数2的情况下成功解码第一数据包的比例P success_2,在传输次数3的情况下成功解码第一数据包的比例P success_3
例子1:如果P success_1<P success_2<P success_3,且P success_1+P success_2+P success_3≥θ,则确定第二盲重传次数为3。其中,θ为阈值,且取值范围为0<θ≤1,即经过三次传输能保证绝大多数的第一数据包被正确接收。例如,P success_1=0.1,P success_2=0.1,P success_3=0.78,θ=0.95,意味着98%的第一数据包可以在三次传输后被正确接收,但是少于三次传输的第一数据包被成功接收的概率较低,此时第二盲重传次数为3。
例子2:如果P success_1<P success_2<P success_3,且P success_1+P success_2+P success_3<θ,则确定第二盲重传次数为4。例如,P success_1=0.1,P success_2=0.1,P success_3=0.2,θ=0.95,意味着只有40%的第一数据包可以在三次传输后被正确接收,此时确定第二盲重传次数为4。
例子3:P success_1<P success_2<P success_3,且P success_1+P success_2≥θ,则确定第二盲重传次数为2。例如,P success_1=0.1,P success_2=0.85,P success_3=0.05,θ=0.95,意味着95%的数据包可以在两次传输后被正确接收,此时确定第二盲重传次数为2。
例子4:P success_1≥P success_3+P success_2,且P success_1≥θ,则确定第二盲重传次数为1。例如,P success_1=0.96,P success_2=0.01,P success_3=0.02,θ=0.95,意味着96%的数据包可以在一次传输后被正确接收,此时确定第二盲重传次数为1。
以图6所示的组播场景为例,第一终端1和多个第二终端2之间发送数据。第一终端根据每个第二终端的反馈信息,确定每个第二终端对应的候选盲重传次数;计算每种候选盲重传次数对应的第二终端占所有第二终端的比例;选择比例不小于第七阈值的最小候选盲重传次数,确定为第二盲重传次数。
单个第二终端的候选盲重传次数的确定方式,与单播场景下的第二盲重传次数相同,不再赘述。
例子5:第一终端收到来自多个第二终端的反馈信息。首先利用上述单播场景下的第二盲重传次数确定方法确定适合每个第二终端的候选盲重传次数,然后计算选择各种候选盲重传次数的第二终端所占的比例,例如选择传输次数1的第二终端占所有第二终端的比例为N1=a%,选择传输次数2的第二终端占所有第二终端的比例为N2=b%,选择传输次数3的第二终端占所有第二终端的比例为N3=c%,选择传输次数4的第二终端占所有第二终端的比例为N4=d%
假设最终确定的第二盲重传次数为N,选择传输次数为m次的接收端占比为N m,则最终确定的第二盲重传次数N是能够满足以θ为阈值的绝大多数第二终端的接收需求时的最小传输次数,如下所示
Figure PCTCN2020113604-appb-000004
例如,N1=10%,N2=80%,N3=5%,N4=5%,θ=90%,则第二盲重传次数可确定为2次。
示意性的,在组播情况下可以通过在组内各个第二终端设置相同的触发条件,来保证各个第二终端在相近的时间内发送反馈信息。
步骤407:第一终端按照第二盲重传次数向第二终端发送第二数据包。
综上所述,本实施例提供的方法,通过在发送端使用盲重传机制进行数据发送的场景下,由接收端向发送端发送与成功解码第一数据包所需要的传输次数相关的信息,发送端可以动态改变盲重传次数,从而提高通信成功率且避免传输资源的浪费。
本实施例提供的方法,反馈信息可以由第二终端自主发送,此时可以减少第一终端的计算压力,比如第一终端是组播场景下的组头终端时,计算压力会比较大;反馈信息也可以由第一终端通过指示信息或COT共享资源来触发第二终端发送,方便第一终端根据自身发送数据包的需求,以类似主动询问的方式向第二终端获取反馈信息,提高第一终端的自主性。
本实施例提供的方法,按照绝大多数第二终端的接收需求,合理设定第二盲重传次数。一方面,避免发送端选择的盲重传次数太少时,可能会导致接收端的成功解码概率比较低的问题;另一方面,避免发送端选择的盲重传次数太多时,会导致占据太多不必要的信道资源的问题。
需要说明的是,第二终端确定参考的盲重传次数或指示的盲重传次数的方式,与第一终端在单播场景下确定第二盲重传次数的方式相同。也即:
在不大于传输次数n的情况下成功解码第一数据包的比例和大于第六阈值,且传输次数n是所有传输次数中成功解码第一数据包的比例最高的传输次数时,将传输次数n确定为参考的盲重传次数或指示的盲重传次数。
在不大于传输次数n的情况下成功解码第一数据包的比例和小于第六阈值,且传输次数n是所有传输次数中成功解码第一数据包的比例最高的传输次数时,将传输次数n+1确定为参考的盲重传次数或指示的盲重传次数。
在一个示例中,假设第一盲重传次数为2,传输次数为3,反馈信息包括在传输次数1的情况下成功解码第一数据包的比例P success_1,在传输次数2的情况下成功解码第一数据包的比例P success_2,在传输次数3的情况下成功解码第一数据包的比例P success_3
例子1:如果P success_1<P success_2<P success_3,且P success_1+P success_2+P success_3≥θ,则确定参考的盲重传次数或指示的盲重传次数为3。其中,θ为阈值,且取值范围为0<θ≤1,即经过三次传输能保证绝大多数的第一数据包被正确接收。例如,P success_1=0.1,P success_2=0.1,P success_3=0.78,θ=0.95,意味着98%的第一数据包可以在三次传输后被正确接收,但是少于三次传输的第一数据包被成功接收的概率较低,此时确定参考的盲重传次数或指示的盲重传次数为3。
例子2:如果P success_1<P success_2<P success_3,且P success_1+P success_2+P success_3<θ,则确定参考的盲重传次数或指示的盲重传次数为4。例如,P success_1=0.1,P success_2=0.1,P success_3=0.2,θ=0.95,意味着只有40%的第一数据包可以在三次传输后被正确接收,此时确定推荐的盲重传次数为4。
例子3:P success_1<P success_2<P success_3,且P success_1+P success_2≥θ,则确定参考的盲重传次数或 指示的盲重传次数为2。例如,P success_1=0.1,P success_2=0.85,P success_3=0.05,θ=0.95,意味着95%的数据包可以在两次传输后被正确接收,此时确定参考的盲重传次数或指示的盲重传次数为2。
例子4:P success_1≥P success_3+P success_2,且P success_1≥θ,则确定参考的盲重传次数或指示的盲重传次数为1。例如,P success_1=0.96,P success_2=0.01,P success_3=0.02,θ=0.95,意味着96%的数据包可以在一次传输后被正确接收,此时确定参考的盲重传次数或指示的盲重传次数为1。
图7示出了本申请一个示例性实施例提供的盲重传装置的框图。该装置可以实现成为第一终端,或实现成为第一终端的一部分,或应用于第一终端中,所述装置包括:
发送模块720,用于按照第一盲重传次数向第二终端发送第一数据包;
接收模块740,用于反馈信息,所述反馈信息用于表征与所述第二终端成功解码所述第一数据包所需要的传输次数相关的信息;
所述发送模块720,用于按照第二盲重传次数向所述第二终端发送第二数据包,所述第二盲重传次数是根据所述反馈信息确定的。
在本申请实施例的一个可选设计中,所述反馈信息是所述第二终端根据第一时间段内成功解码每个第一数据包所需要的传输次数生成的;其中:
所述第一时间段是所述第二终端在发送上一个反馈信息之后的时间段;或,所述第一时间段是根据定时器确定的时间段。
在本申请实施例的一个可选设计中,所述反馈信息是所述第二终端在满足触发条件时发送的,所述触发条件包括如下条件中的至少一个条件:
第一个数大于或等于第一阈值,所述第一个数是接收到的所述第一数据包的个数;
第二个数大于或等于第二阈值,所述第二个数是成功解码的所述第一数据包的个数;
距离发送上一个反馈信息的时间间隔大于或等于第三阈值;
接收到所述第一终端预留的COT共享资源;
定时器超时;
所述第二个数和所述第一个数的比值大于第四阈值;
所述第二个数和所述第一个数的比值小于第五阈值;
接收到所述第一终端发送的指示信息。
在本申请实施例的一个可选设计中,所述反馈信息包括如下至少之一:
在每种传输次数下成功解码所述第一数据包的个数;
在每种传输次数下成功解码所述第一数据包的比例,所述比例为实际值或量化值;
参考的盲重传次数;
指示的盲重传次数。
在本申请实施例的一个可选设计中,所述接收模块740,用于接收所述第二终端采用非授权频谱发送的所述反馈信息;或,所述接收模块740,用于向所述第二终端提供COT共享资源;接收所述第二终端采用所述COT共享资源发送的所述反馈信息;或,所述接收模块740,用于接收所述第二终端发送的PC5-RRC信令,所述PC5-RRC信令携带有所述反馈信息;或,所述接收模块740,用于接收所述第二终端发送的MAC CE信令,所述MAC CE信令携带有所述反馈信息;或,所述接收模块740,用于接收所述第二终端发送的SCI,所述SCI携带有所述反馈信息。
在本申请实施例的一个可选设计中,所述装置还包括:
确定模块760,用于根据所述反馈信息确定所述第二盲重传次数。
在本申请实施例的一个可选设计中,所述确定模块760,用于根据在每种传输次数下成功解码所述第一数据包的个数,确定在每种传输次数下成功解码所述第一数据包的比例;根据在每种传输次数下成功解码所述第一数据包的比例,确定所述第二盲重传次数;或,所述确定模块760,用于根据在每种传输次数下成功解码所述第一数据包的比例,确定所述第二盲重传次数。
在本申请实施例的一个可选设计中,所述确定模块760,用于在不大于传输次数n的情况下成功解码所述第一数据包的比例和大于第六阈值,且所述传输次数n是所有传输次数中成功解码所述第一数据包的比例最高的传输次数时,将所述传输次数n确定为所述第二盲重传次数。
在本申请实施例的一个可选设计中,所述确定模块760,用于在不大于传输次数n的情况下成功解码所述第一数据包的比例和小于第六阈值,且所述传输次数n是所有传输次数中成功解码所述第一数据包的比例最高的传输次数时,将传输次数n+1确定为所述第二盲重传次数。
在本申请实施例的一个可选设计中,所述第二终端为组播场景下的多个,所述确定模块760,用于根据每个第二终端的反馈信息,确定每个第二终端对应的候选盲重传次数;计算每种候选盲重传次数对应的第二终端占所有第二终端的比例;选择所述比例不小于第七阈值的最小候选盲重传次数,确定为所述第二盲重传次数。
图8示出了本申请一个示例性实施例提供的盲重传装置的框图。该装置可以实现成为第二终端,或实现成为第二终端的一部分,或应用于第二终端中,所述装置包括:
接收模块820,用于接收第一数据包,所述第一数据包是第一终端按照第一盲重传次数发送的;
发送模块840,用于向所述第一终端发送反馈信息,所述反馈信息用于表征与所述装置成功解码所述第一数据包所需要的传输次数相关的信息;
所述接收模块820,用于接收第二数据包,所述第二数据包是所述第一终端按照第二盲重传次数发送的,所述第二盲重传次数是根据所述反馈信息确定的。
在本申请实施例的一个可选设计中,所述装置还包括:
生成模块860,用于根据第一时间段内成功解码每个第一数据包所需要的传输次数,生成所述反馈信息;
其中,所述第一时间段是所述第二终端在发送上一个反馈信息之后的时间段;或,所述第一时间段是根据定时器确定的时间段。
在本申请实施例的一个可选设计中,所述发送模块840,用于在满足触发条件时,向所述第一终端发送反馈信息;其中,所述触发条件包括如下条件中的至少一个条件:
第一个数大于或等于第一阈值,所述第一个数是接收到的所述第一数据包的个数;
第二个数大于或等于第二阈值,所述第二个数是成功解码的所述第一数据包的个数;
距离发送上一个反馈信息的时间间隔大于或等于第三阈值;
接收到所述第一终端预留的COT共享资源;
定时器超时;
所述第二个数和所述第一个数的比值大于第四阈值;
所述第二个数和所述第一个数的比值小于第五阈值;
接收到所述第一终端发送的指示信息。
在本申请实施例的一个可选设计中,所述反馈信息包括如下至少之一:
在每种传输次数下成功解码所述第一数据包的个数;
在每种传输次数下成功解码所述第一数据包的比例,所述比例为实际值或量化值;
参考的盲重传次数;
指示的盲重传次数。
在本申请实施例的一个可选设计中,所述发送模块840,用于采用非授权频谱向所述第一终端发送所述反馈信息;或,所述发送模块840,用于接收所述第一终端提供的COT共享资源;采用所述COT共享资源向所述第一终端发送所述反馈信息;或,所述发送模块840,用于向所述第一终端发送PC5-RRC信令,所述PC5-RRC信令携带有所述反馈信息;或,所述发送模块840,用于向所述第一终端发送MAC CE信令,所述MAC CE信令携带有所述反馈信息;或,所述发送模块840,用于向所述第一终端发送SCI,所述SCI携带有所述反馈信息。
在本申请实施例的一个可选设计中,所述装置还包括:
生成模块860,用于根据在每种传输次数下成功解码所述第一数据包的比例,确定所述推荐的盲重传次数。
在本申请实施例的一个可选设计中,所述生成模块860,用于在不大于传输次数n的情况下成功解码所述第一数据包的比例和大于第六阈值,且所述传输次数n是所有传输次数中成功解码所述第一数据包的比例最高的传输次数时,将所述传输次数n确定为所述参考的盲重传次数或所述指示的盲重传次数。
在本申请实施例的一个可选设计中,所述生成模块860,用于在不大于传输次数n的情况下成功解码所述第一数据包的比例和小于第六阈值,且所述传输次数n是所有传输次数中成功解码所述第一数据包的比例最高的传输次数时,将传输次数n+1确定为所述参考的盲重传次数或所述指示的盲重传次数。
图9示出了本申请一个示例性实施例提供的通信设备(网络设备或终端)的结构示意图,该通信设备包括:处理器101、接收器102、发射器103、存储器104和总线105。
处理器101包括一个或者一个以上处理核心,处理器101通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器102和发射器103可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器104通过总线105与处理器101相连。
存储器104可用于存储至少一个指令,处理器101用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EEPROM),可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM),静态随时存取存储器(Static Random Access Memory,SRAM),只读存储器(Read-Only Memory,ROM),磁存储器,快闪存储器,可编 程只读存储器(Programmable Read-Only Memory,PROM)。
在示例性实施例中,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述各个方法实施例提供的由第一终端或第二终端执行的盲重传方法。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请实施例的可选实施例,并不用以限制本申请,凡在本申请实施例的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请实施例的保护范围之内。

Claims (38)

  1. 一种盲重传方法,其特征在于,应用于第一终端中,所述方法包括:
    按照第一盲重传次数向第二终端发送第一数据包;
    接收反馈信息,所述反馈信息用于表征与所述第二终端成功解码所述第一数据包所需要的传输次数相关的信息;
    按照第二盲重传次数向所述第二终端发送第二数据包,所述第二盲重传次数是根据所述反馈信息确定的。
  2. 根据权利要求1所述的方法,其特征在于,所述反馈信息是所述第二终端根据第一时间段内成功解码所述第一数据包所需要的传输次数生成的;其中:
    所述第一时间段是所述第二终端在发送上一个反馈信息之后的时间段;
    或,
    所述第一时间段是根据定时器确定的时间段。
  3. 根据权利要求1所述的方法,其特征在于,所述反馈信息是所述第二终端在满足触发条件时发送的,所述触发条件包括如下条件中的至少一个条件:
    第一个数大于或等于第一阈值,所述第一个数是接收到的所述第一数据包的个数;
    第二个数大于或等于第二阈值,所述第二个数是成功解码的所述第一数据包的个数;
    距离发送上一个反馈信息的时间间隔大于或等于第三阈值;
    接收到所述第一终端预留的信道占用时长COT共享资源;
    定时器超时;
    所述第二个数和所述第一个数的比值大于第四阈值;
    所述第二个数和所述第一个数的比值小于第五阈值;
    接收到所述第一终端发送的指示信息。
  4. 根据权利要求1所述的方法,其特征在于,所述反馈信息包括如下至少之一:
    在每种传输次数下成功解码所述第一数据包的个数;
    在每种传输次数下成功解码所述第一数据包的比例,所述比例为实际值或量化值;
    参考的盲重传次数;
    指示的盲重传次数。
  5. 根据权利要求1所述的方法,其特征在于,所述接收反馈信息,包括:
    接收所述第二终端采用非授权频谱发送的所述反馈信息;
    或,
    向所述第二终端提供COT共享资源;接收所述第二终端采用所述COT共享资源发送的所述反馈信息;
    或,
    接收所述第二终端发送的PC5接口无线资源控制PC5-RRC信令,所述PC5-RRC信令携 带有所述反馈信息;
    或,
    接收所述第二终端发送的媒体接入控制控制单元MAC CE信令,所述MAC CE信令携带有所述反馈信息;
    或,
    接收所述第二终端发送的侧行链路信息SCI,所述SCI携带有所述反馈信息。
  6. 根据权利要求1至5任一所述的方法,其特征在于,所述方法还包括:
    根据所述反馈信息确定所述第二盲重传次数。
  7. 根据权利要求6所述的方法,其特征在于,所述根据反馈信息确定所述第二盲重传次数,包括:
    根据在每种传输次数下成功解码所述第一数据包的个数,确定在每种传输次数下成功解码所述第一数据包的比例;根据在每种传输次数下成功解码所述第一数据包的比例,确定所述第二盲重传次数;
    或,
    根据在每种传输次数下成功解码所述第一数据包的比例,确定所述第二盲重传次数。
  8. 根据权利要求7所述的方法,其特征在于,所述根据在每种传输次数下成功解码所述第一数据包的比例,确定所述第二盲重传次数,包括:
    在不大于传输次数n的情况下成功解码所述第一数据包的比例和大于第六阈值,且所述传输次数n是所有传输次数中成功解码所述第一数据包的比例最高的传输次数时,将所述传输次数n确定为所述第二盲重传次数。
  9. 根据权利要求7所述的方法,其特征在于,所述根据在每种传输次数下成功解码所述第一数据包的比例,确定所述第二盲重传次数,包括:
    在不大于传输次数n的情况下成功解码所述第一数据包的比例和小于第六阈值,且所述传输次数n是所有传输次数中成功解码所述第一数据包的比例最高的传输次数时,将传输次数n+1确定为所述第二盲重传次数。
  10. 根据权利要求6所述的方法,其特征在于,所述第二终端为组播场景下的多个,所述根据所述反馈信息确定所述第二盲重传次数,包括
    根据每个第二终端的反馈信息,确定所述每个第二终端对应的候选盲重传次数;
    计算每种候选盲重传次数对应的第二终端占所有第二终端的比例;
    选择所述比例不小于第七阈值的最小候选盲重传次数,确定为所述第二盲重传次数。
  11. 一种盲重传方法,其特征在于,应用于第二终端中,所述方法包括:
    接收第一数据包,所述第一数据包是第一终端按照第一盲重传次数发送的;
    向所述第一终端发送反馈信息,所述反馈信息用于表征与所述第二终端成功解码所述第 一数据包所需要的传输次数相关的信息;
    接收第二数据包,所述第二数据包是所述第一终端按照第二盲重传次数发送的,所述第二盲重传次数是根据所述反馈信息确定的。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    根据第一时间段内成功解码所述第一数据包所需要的传输次数,生成所述反馈信息;
    其中,所述第一时间段是所述第二终端在发送上一个反馈信息之后的时间段;或,所述第一时间段是根据定时器确定的时间段。
  13. 根据权利要求11所述的方法,其特征在于,所述向所述第一终端发送反馈信息,包括:
    在满足触发条件时,向所述第一终端发送反馈信息;其中,所述触发条件包括如下条件中的至少一个条件:
    第一个数大于或等于第一阈值,所述第一个数是接收到的所述第一数据包的个数;
    第二个数大于或等于第二阈值,所述第二个数是成功解码的所述第一数据包的个数;
    距离发送上一个反馈信息的时间间隔大于或等于第三阈值;
    接收到所述第一终端预留的信道占用时长COT共享资源;
    定时器超时;
    所述第二个数和所述第一个数的比值大于第四阈值;
    所述第二个数和所述第一个数的比值小于第五阈值;
    接收到所述第一终端发送的指示信息。
  14. 根据权利要求11所述的方法,其特征在于,所述反馈信息包括如下至少之一:
    在每种传输次数下成功解码所述第一数据包的个数;
    在每种传输次数下成功解码所述第一数据包的比例,所述比例为实际值或量化值;
    参考的盲重传次数;
    指示的盲重传次数。
  15. 根据权利要求11所述的方法,其特征在于,所述向所述第一终端发送反馈信息,包括:
    采用非授权频谱向所述第一终端发送所述反馈信息;
    或,
    接收所述第一终端提供的COT共享资源;采用所述COT共享资源向所述第一终端发送所述反馈信息;
    或,
    向所述第一终端发送PC5无线资源控制PC5-RRC信令,所述PC5-RRC信令携带有所述反馈信息;
    或,
    向所述第一终端发送媒体接入控制控制单元MAC CE信令,所述MAC CE信令携带有所 述反馈信息;
    或,
    向所述第一终端发送侧行控制信息SCI,所述SCI携带有所述反馈信息。
  16. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    根据在每种传输次数下成功解码所述第一数据包的比例,确定所述参考的盲重传次数或所述指示的盲重传次数。
  17. 根据权利要求16所述的方法,其特征在于,所述根据在每种传输次数下成功解码所述第一数据包的比例,确定所述参考的盲重传次数或所述指示的盲重传次数,包括:
    在不大于传输次数n的情况下成功解码所述第一数据包的比例和大于第六阈值,且所述传输次数n是所有传输次数中成功解码所述第一数据包的比例最高的传输次数时,将所述传输次数n确定为所述参考的盲重传次数或所述指示的盲重传次数。
  18. 根据权利要求16所述的方法,其特征在于,所述根据在每种传输次数下成功解码所述第一数据包的比例,确定所述参考的盲重传次数或所述指示的盲重传次数,包括:
    在不大于传输次数n的情况下成功解码所述第一数据包的比例和小于第六阈值,且所述传输次数n是所有传输次数中成功解码所述第一数据包的比例最高的传输次数时,将传输次数n+1确定为所述参考的盲重传次数或所述指示的盲重传次数。
  19. 一种盲重传装置,其特征在于,所述装置包括:
    发送模块,用于按照第一盲重传次数向第二终端发送第一数据包;
    接收模块,用于反馈信息,所述反馈信息用于表征与所述第二终端成功解码所述第一数据包所需要的传输次数相关的信息;
    所述发送模块,用于按照第二盲重传次数向所述第二终端发送第二数据包,所述第二盲重传次数是根据所述反馈信息确定的。
  20. 根据权利要求19所述的装置,其特征在于,所述反馈信息是所述第二终端根据第一时间段内成功解码每个第一数据包所需要的传输次数生成的;其中:
    所述第一时间段是所述第二终端在发送上一个反馈信息之后的时间段;
    或,
    所述第一时间段是根据定时器确定的时间段。
  21. 根据权利要求19所述的装置,其特征在于,所述反馈信息是所述第二终端在满足触发条件时发送的,所述触发条件包括如下条件中的至少一个条件:
    第一个数大于或等于第一阈值,所述第一个数是接收到的所述第一数据包的个数;
    第二个数大于或等于第二阈值,所述第二个数是成功解码的所述第一数据包的个数;
    距离发送上一个反馈信息的时间间隔大于或等于第三阈值;
    接收到所述第一终端预留的信道占用时长COT共享资源;
    定时器超时;
    所述第二个数和所述第一个数的比值大于第四阈值;
    所述第二个数和所述第一个数的比值小于第五阈值;
    接收到所述第一终端发送的指示信息。
  22. 根据权利要求19所述的装置,其特征在于,所述反馈信息包括如下至少之一:
    在每种传输次数下成功解码所述第一数据包的个数;
    在每种传输次数下成功解码所述第一数据包的比例,所述比例为实际值或量化值;
    参考的盲重传次数;
    指示的盲重传次数。
  23. 根据权利要求19所述的装置,其特征在于,
    所述接收模块,用于接收所述第二终端采用非授权频谱发送的所述反馈信息;
    或,
    所述接收模块,用于向所述第二终端提供COT共享资源;接收所述第二终端采用所述COT共享资源发送的所述反馈信息;
    或,
    所述接收模块,用于接收所述第二终端发送的PC5接口无线资源控制PC5-RRC信令,所述PC5-RRC信令携带有所述反馈信息;
    或,
    所述接收模块,用于接收所述第二终端发送的媒体接入控制控制单元MAC CE信令,所述MAC CE信令携带有所述反馈信息;
    或,
    所述接收模块,用于接收所述第二终端发送的侧行控制信息SCI,所述SCI携带有所述反馈信息。
  24. 根据权利要求19至23任一所述的装置,其特征在于,所述装置还包括:
    确定模块,用于根据所述反馈信息确定所述第二盲重传次数。
  25. 根据权利要求24所述的装置,其特征在于,
    所述确定模块,用于根据在每种传输次数下成功解码所述第一数据包的个数,确定在每种传输次数下成功解码所述第一数据包的比例;根据在每种传输次数下成功解码所述第一数据包的比例,确定所述第二盲重传次数;
    或,
    所述确定模块,用于根据在每种传输次数下成功解码所述第一数据包的比例,确定所述第二盲重传次数。
  26. 根据权利要求25所述的装置,其特征在于,所述确定模块,用于在不大于传输次数n的情况下成功解码所述第一数据包的比例和大于第六阈值,且所述传输次数n是所有传输 次数中成功解码所述第一数据包的比例最高的传输次数时,将所述传输次数n确定为所述第二盲重传次数。
  27. 根据权利要求25所述的装置,其特征在于,所述确定模块,用于在不大于传输次数n的情况下成功解码所述第一数据包的比例和小于第六阈值,且所述传输次数n是所有传输次数中成功解码所述第一数据包的比例最高的传输次数时,将传输次数n+1确定为所述第二盲重传次数。
  28. 根据权利要求24所述的装置,其特征在于,所述第二终端为组播场景下的多个,所述确定模块,用于根据每个第二终端的反馈信息,确定每个第二终端对应的候选盲重传次数;计算每种候选盲重传次数对应的第二终端占所有第二终端的比例;选择所述比例不小于第七阈值的最小候选盲重传次数,确定为所述第二盲重传次数。
  29. 一种盲重传装置,其特征在于,所述装置包括:
    接收模块,用于接收第一数据包,所述第一数据包是第一终端按照第一盲重传次数发送的;
    发送模块,用于向所述第一终端发送反馈信息,所述反馈信息用于表征与所述装置成功解码所述第一数据包所需要的传输次数相关的信息;
    所述接收模块,用于接收第二数据包,所述第二数据包是所述第一终端按照第二盲重传次数发送的,所述第二盲重传次数是根据所述反馈信息确定的。
  30. 根据权利要求29所述的装置,其特征在于,所述装置还包括:
    生成模块,用于根据第一时间段内成功解码每个第一数据包所需要的传输次数,生成所述反馈信息;
    其中,所述第一时间段是所述第二终端在发送上一个反馈信息之后的时间段;或,所述第一时间段是根据定时器确定的时间段。
  31. 根据权利要求29所述的装置,其特征在于,
    所述发送模块,用于在满足触发条件时,向所述第一终端发送反馈信息;其中,所述触发条件包括如下条件中的至少一个条件:
    第一个数大于或等于第一阈值,所述第一个数是接收到的所述第一数据包的个数;
    第二个数大于或等于第二阈值,所述第二个数是成功解码的所述第一个数据包的个数;
    距离发送上一个反馈信息的时间间隔大于或等于第三阈值;
    接收到所述第一终端预留的信道占用时长COT共享资源;
    定时器超时;
    所述第二个数和所述第一个数的比值大于第四阈值;
    所述第二个数和所述第一个数的比值小于第五阈值;
    接收到所述第一终端发送的指示信息。
  32. 根据权利要求29所述的装置,其特征在于,所述反馈信息包括如下至少之一:
    在每种传输次数下成功解码所述第一数据包的个数;
    在每种传输次数下成功解码所述第一数据包的比例,所述比例为实际值或量化值;
    参考的盲重传次数;
    指示的盲重传次数。
  33. 根据权利要求29所述的装置,其特征在于,
    所述发送模块,用于采用非授权频谱向所述第一终端发送所述反馈信息;
    或,
    所述发送模块,用于接收所述第一终端提供的信COT共享资源;采用所述COT共享资源向所述第一终端发送所述反馈信息;
    或,
    所述发送模块,用于向所述第一终端发送PC5接口无线资源控制PC5-RRC信令,所述PC5-RRC信令携带有所述反馈信息;
    或,
    所述发送模块,用于向所述第一终端发送媒体接入控制控制单元MAC CE信令,所述MAC CE信令携带有所述反馈信息;
    或,
    所述发送模块,用于向所述第一终端发送侧行控制信息SCI,所述SCI携带有所述反馈信息。
  34. 根据权利要求33所述的装置,其特征在于,所述装置还包括:
    生成模块,用于根据在每种传输次数下成功解码所述第一数据包的比例,确定所述参考的盲重传次数或所述指示的盲重传次数。
  35. 根据权利要求34所述的装置,其特征在于,所述生成模块,用于在不大于传输次数n的情况下成功解码所述第一数据包的比例和大于第六阈值,且所述传输次数n是所有传输次数中成功解码所述第一数据包的比例最高的传输次数时,将所述传输次数n确定为所述参考的盲重传次数或所述指示的盲重传次数。
  36. 根据权利要求34所述的装置,其特征在于,所述生成模块,用于在不大于传输次数n的情况下成功解码所述第一数据包的比例和小于第六阈值,且所述传输次数n是所有传输次数中成功解码所述第一数据包的比例最高的传输次数时,将传输次数n+1确定为所述参考的盲重传次数或所述指示的盲重传次数。
  37. 一种终端,其特征在于,所述终端包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现如权利要求1至18中任一所述的盲重传方法。
  38. 一种计算机可读存储介质,其特征在于,所述可读存储介质中存储有可执行指令,所述可执行指令由所述处理器加载并执行以实现如权利要求1至18中任一所述的盲重传方法。
PCT/CN2020/113604 2020-09-04 2020-09-04 盲重传方法、装置、设备及介质 WO2022047748A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/113604 WO2022047748A1 (zh) 2020-09-04 2020-09-04 盲重传方法、装置、设备及介质
CN202080104066.9A CN116134764A (zh) 2020-09-04 2020-09-04 盲重传方法、装置、设备及介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/113604 WO2022047748A1 (zh) 2020-09-04 2020-09-04 盲重传方法、装置、设备及介质

Publications (1)

Publication Number Publication Date
WO2022047748A1 true WO2022047748A1 (zh) 2022-03-10

Family

ID=80492446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113604 WO2022047748A1 (zh) 2020-09-04 2020-09-04 盲重传方法、装置、设备及介质

Country Status (2)

Country Link
CN (1) CN116134764A (zh)
WO (1) WO2022047748A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100323707A1 (en) * 2009-06-23 2010-12-23 Telefonaktiebolaget Lm Ericsson Hierarchical Broadcast Service with Blind Retransmission
CN107359971A (zh) * 2016-05-10 2017-11-17 北京信威通信技术股份有限公司 V2x的消息盲重传次数确定方法、系统及决策节点
CN111342939A (zh) * 2020-03-02 2020-06-26 惠州Tcl移动通信有限公司 数据盲重传方法、装置、存储介质及终端设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114198A2 (en) * 2007-03-21 2008-09-25 Koninklijke Philips Electronics N.V. Reporting of retransmissions for downlink packet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100323707A1 (en) * 2009-06-23 2010-12-23 Telefonaktiebolaget Lm Ericsson Hierarchical Broadcast Service with Blind Retransmission
CN107359971A (zh) * 2016-05-10 2017-11-17 北京信威通信技术股份有限公司 V2x的消息盲重传次数确定方法、系统及决策节点
CN111342939A (zh) * 2020-03-02 2020-06-26 惠州Tcl移动通信有限公司 数据盲重传方法、装置、存储介质及终端设备

Also Published As

Publication number Publication date
CN116134764A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
US11576157B2 (en) NR V2X sidelink resource selection and reselection using scheduling window
US20220330266A1 (en) Information Transmission Method and Apparatus
US11984989B2 (en) Transmission method and apparatus
JP6639673B2 (ja) ピアツーピアデータ伝送方法、装置及びシステム
CN110167035B (zh) 波束管理方法、终端、网络设备以及存储介质
WO2020082276A1 (zh) 非授权频谱上的信道检测方法、装置和存储介质
CN111867102B (zh) 资源传输方法、装置、存储介质及网络设备和终端
WO2020164590A1 (zh) 传输资源检测方法、传输资源确定方法和通信设备
JP2023051958A (ja) 宛先デバイス、ソースデバイス及びネットワークノード
US10652861B2 (en) Uplink grant-free transmission enhancement for latency and reliability
EP4064755A1 (en) Data packet sending method and apparatus, and data packet receiving method and apparatus
CN111432371A (zh) 一种通信方法及装置
US11528714B2 (en) Data transmission method and apparatus
US11115993B2 (en) Data transmission method, terminal device, and access network device
WO2020237510A1 (zh) 控制信令的检测方法、装置、设备及存储介质
WO2022047748A1 (zh) 盲重传方法、装置、设备及介质
WO2018086707A1 (en) Feedback based flexible transmission scheme for contention-based urllc transmission
CN113285789B (zh) 辅链路控制信息的资源指示方法与装置、终端设备
CN115379500B (zh) 信息反馈方法和相关设备
CN110971350B (zh) 数据传输方法、设备和系统
CN115428551A (zh) 边链路反馈信息的发送和接收方法以及装置
CN108924965B (zh) 一种非连续传输检测的方法、装置、基站及终端
WO2021070088A1 (en) Modification of uplink (ul) data transmission with repetition in response to preemption indication
WO2020199053A1 (zh) 竞争窗口大小cws的确定方法及相关产品
CN106900076B (zh) 一种随机接入参数的更新方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951992

Country of ref document: EP

Kind code of ref document: A1