WO2022045088A1 - 弾性波装置 - Google Patents

弾性波装置 Download PDF

Info

Publication number
WO2022045088A1
WO2022045088A1 PCT/JP2021/030877 JP2021030877W WO2022045088A1 WO 2022045088 A1 WO2022045088 A1 WO 2022045088A1 JP 2021030877 W JP2021030877 W JP 2021030877W WO 2022045088 A1 WO2022045088 A1 WO 2022045088A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
electrode
film thickness
elastic wave
wave device
Prior art date
Application number
PCT/JP2021/030877
Other languages
English (en)
French (fr)
Inventor
哲也 木村
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202180051666.8A priority Critical patent/CN115997342A/zh
Publication of WO2022045088A1 publication Critical patent/WO2022045088A1/ja
Priority to US18/110,414 priority patent/US20230198499A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02228Guided bulk acoustic wave devices or Lamb wave devices having interdigital transducers situated in parallel planes on either side of a piezoelectric layer
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/173Air-gaps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02157Dimensional parameters, e.g. ratio between two dimension parameters, length, width or thickness
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • H03H9/132Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials characterized by a particular shape
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/175Acoustic mirrors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • H03H9/02031Characteristics of piezoelectric layers, e.g. cutting angles consisting of ceramic

Definitions

  • the present disclosure relates to an elastic wave device having a piezoelectric layer containing lithium niobate or lithium tantalate.
  • Patent Document 1 describes an elastic wave device.
  • spurious may easily deteriorate the resonance characteristics of the elastic wave device.
  • the present disclosure has been made in view of the above, and an object of the present disclosure is to provide an elastic wave device that suppresses deterioration of resonance characteristics.
  • the elastic wave device has a first main surface and a second main surface opposite to the first main surface and in a first direction with respect to the first main surface.
  • a plurality of electrodes including at least one pair of electrodes facing each other in a second direction intersecting the first direction and adjacently provided on the first main surface. At least three or more of the plurality of electrodes are arranged in the second direction, the plurality of electrodes include at least two electrodes having different film thicknesses, and the plurality of electrodes have a thickness. Includes at least two adjacent electrodes that are the same.
  • the elastic wave device is a second main surface that is opposite to the first main surface and the first main surface and is in the first direction with respect to the first main surface.
  • a piezoelectric layer having a At least three or more of the plurality of electrodes are arranged in the second direction, and the plurality of electrodes include at least three electrodes having different film thicknesses.
  • FIG. 1A is a perspective view showing an elastic wave device of the first embodiment.
  • FIG. 1B is a plan view showing the electrode structure of the first embodiment.
  • FIG. 2 is a cross-sectional view of a portion of FIG. 1A along line II-II.
  • FIG. 3A is a schematic cross-sectional view for explaining a Lamb wave propagating in the piezoelectric layer of the comparative example.
  • FIG. 3B is a schematic cross-sectional view for explaining the bulk wave of the thickness slip primary mode propagating through the piezoelectric layer of the first embodiment.
  • FIG. 4 is a schematic cross-sectional view for explaining the amplitude direction of the bulk wave in the thickness slip primary mode propagating through the piezoelectric layer of the first embodiment.
  • FIG. 1A is a perspective view showing an elastic wave device of the first embodiment.
  • FIG. 1B is a plan view showing the electrode structure of the first embodiment.
  • FIG. 2 is a cross-sectional view of a portion of FIG. 1A along line
  • FIG. 5 is an explanatory diagram showing an example of resonance characteristics of the elastic wave device of the first embodiment.
  • FIG. 6 shows d / 2p as a resonator in the elastic wave apparatus of the first embodiment, where p is the center-to-center distance or the average distance between the centers of adjacent electrodes and d is the average thickness of the piezoelectric layer. It is explanatory drawing which shows the relationship with the specific band of.
  • FIG. 7 is a plan view showing an example in which a pair of electrodes is provided in the elastic wave device of the first embodiment.
  • FIG. 8 is a modification of the first embodiment, and is a cross-sectional view of a portion of FIG. 1A along the line II-II.
  • FIG. 9 is a cross-sectional view of a portion of FIG.
  • FIG. 10A is an explanatory diagram for explaining the relationship between the spurious and the frequency of the first embodiment.
  • FIG. 10B is an explanatory diagram for explaining the relationship between the spurious of the comparative example and the frequency.
  • FIG. 11 is a cross-sectional view of a portion of FIG. 1B along the IX-IX line in the second embodiment.
  • FIG. 12 is a cross-sectional view of a portion of FIG. 1B along the IX-IX line in the third embodiment.
  • FIG. 13 is a cross-sectional view of a portion of FIG. 1B along the IX-IX line in the fourth embodiment.
  • FIG. 14 is a cross-sectional view of a portion of FIG. 1B along the IX-IX line in the fifth embodiment.
  • FIG. 15 is a cross-sectional view of a portion of FIG. 1B along the IX-IX line in the fifth embodiment.
  • FIG. 1A is a perspective view showing an elastic wave device of the first embodiment.
  • FIG. 1B is a plan view showing the electrode structure of the first embodiment.
  • the elastic wave device 1 of the first embodiment has a piezoelectric layer 2 made of LiNbO 3 .
  • the piezoelectric layer 2 may be made of LiTaO 3 .
  • the cut angle of LiNbO 3 and LiTaO 3 is Z-cut in the first embodiment.
  • the cut angle of LiNbO 3 or LiTaO 3 may be a rotary Y cut or an X cut. Propagation directions of Y propagation and X propagation ⁇ 30 ° are preferable.
  • the thickness of the piezoelectric layer 2 is not particularly limited, but is preferably 50 nm or more and 1000 nm or less in order to effectively excite the thickness slip primary mode.
  • the piezoelectric layer 2 has a first main surface 2a facing each other in the Z direction and a second main surface 2b.
  • the electrode 3 and the electrode 4 are provided on the first main surface 2a.
  • the electrode 3 is an example of the "first electrode”
  • the electrode 4 is an example of the "second electrode”.
  • a plurality of electrodes 3 are connected to the first bus bar 5.
  • the plurality of electrodes 4 are connected to the second bus bar 6.
  • the plurality of electrodes 3 and the plurality of electrodes 4 are interleaved with each other.
  • the electrode 3 and the electrode 4 have a rectangular shape and have a length direction.
  • the electrode 3 and the electrode 4 adjacent to the electrode 3 face each other in a direction orthogonal to the length direction.
  • the length direction of the electrode 3 and the electrode 4 and the direction orthogonal to the length direction of the electrode 3 and the electrode 4 are all directions intersecting with each other in the thickness direction of the piezoelectric layer 2. Therefore, it can be said that the electrode 3 and the electrode 4 adjacent to the electrode 3 face each other in a direction intersecting with each other in the thickness direction of the piezoelectric layer 2.
  • the thickness direction of the piezoelectric layer 2 is the Z direction (or the first direction)
  • the direction orthogonal to the length direction of the electrode 3 and the electrode 4 is the X direction (or the second direction)
  • the electrode 3 and the electrode The length direction of 4 may be described as the Y direction (or the third direction).
  • the length directions of the electrodes 3 and 4 may be replaced with the directions orthogonal to the length directions of the electrodes 3 and 4 shown in FIGS. 1A and 1B. That is, in FIGS. 1A and 1B, the electrodes 3 and 4 may be extended in the direction in which the first bus bar 5 and the second bus bar 6 are extended. In that case, the first bus bar 5 and the second bus bar 6 extend in the direction in which the electrodes 3 and 4 extend in FIGS. 1A and 1B. Then, a plurality of pairs of structures in which the electrode 3 connected to one potential and the electrode 4 connected to the other potential are adjacent to each other are provided in a direction orthogonal to the length direction of the electrodes 3 and 4. ing.
  • the case where the electrode 3 and the electrode 4 are adjacent to each other does not mean that the electrode 3 and the electrode 4 are arranged so as to be in direct contact with each other, but that the electrode 3 and the electrode 4 are arranged so as to be spaced apart from each other. Point to. Further, when the electrode 3 and the electrode 4 are adjacent to each other, the electrode connected to the hot electrode or the ground electrode, including the other electrode 3 and the electrode 4, is not arranged between the electrode 3 and the electrode 4. This logarithm does not have to be an integer pair, and may be 1.5 pairs, 2.5 pairs, or the like.
  • the distance between the centers between the electrode 3 and the electrode 4, that is, the pitch is preferably in the range of 1 ⁇ m or more and 10 ⁇ m or less.
  • the center-to-center distance between the electrode 3 and the electrode 4 is the center of the width dimension of the electrode 3 in the direction orthogonal to the length direction of the electrode 3 and the electrode 4 in the direction orthogonal to the length direction of the electrode 4. It is the distance connecting the center of the width dimension of.
  • the electrodes 3 and 4 when there are a plurality of at least one of the electrodes 3 and 4 (when the electrodes 3 and 4 are a pair of electrodes and there are 1.5 or more pairs of electrodes), the electrodes 3 and 4
  • the center-to-center distance refers to the average value of the center-to-center distances of 1.5 pairs or more of the electrodes 3, the adjacent electrodes 3 and the electrodes 4.
  • the width of the electrode 3 and the electrode 4, that is, the dimensions of the electrode 3 and the electrode 4 in the facing direction are preferably in the range of 150 nm or more and 1000 nm or less.
  • the center-to-center distance between the electrode 3 and the electrode 4 is a direction orthogonal to the center of the dimension (width dimension) of the electrode 3 in the direction orthogonal to the length direction of the electrode 3 and the length direction of the electrode 4. It is the distance connected to the center of the dimension (width dimension) of the electrode 4 in.
  • the direction orthogonal to the length direction of the electrodes 3 and 4 is the direction orthogonal to the polarization direction of the piezoelectric layer 2. This does not apply when a piezoelectric material having another cut angle is used as the piezoelectric layer 2.
  • “orthogonal” is not limited to the case of being strictly orthogonal, and is substantially orthogonal (the angle formed by the direction orthogonal to the length direction of the electrodes 3 and 4 and the polarization direction is, for example, 90 ° ⁇ 10 °). ) May be.
  • a support member 8 is laminated on the second main surface 2b side of the piezoelectric layer 2 via an intermediate layer 7.
  • the intermediate layer 7 and the support member 8 have a frame-like shape and have openings 7a and 8a as shown in FIG. As a result, the cavity 9 (air gap) 9 is formed.
  • the cavity 9 is provided so as not to interfere with the vibration of the excitation region C of the piezoelectric layer 2. Therefore, the support member 8 is laminated on the second main surface 2b via the intermediate layer 7 at a position where the support member 8 does not overlap with the portion where the at least one pair of electrodes 3 and the electrodes 4 are provided.
  • the intermediate layer 7 may not be provided. Therefore, the support member 8 may be directly or indirectly laminated on the second main surface 2b of the piezoelectric layer 2.
  • the intermediate layer 7 is an insulating layer and is made of silicon oxide.
  • the intermediate layer 7 can be formed of an appropriate insulating material such as silicon nitride or alumina in addition to silicon oxide.
  • the support member 8 is also called a support substrate and is formed of Si.
  • the plane orientation of Si on the surface of the piezoelectric layer 2 side may be (100), (110), or (111).
  • high resistance Si having a resistivity of 4 k ⁇ or more is desirable.
  • the support member 8 can also be configured by using an appropriate insulating material or semiconductor material.
  • the material of the support member 8 include piezoelectric materials such as aluminum oxide, lithium tantalate, lithium niobate, and crystal, alumina, magnesia, sapphire, silicon nitride, aluminum nitride, silicon carbide, zirconia, cordierite, mulite, and steer.
  • Various ceramics such as tight and forsterite, dielectrics such as diamond and glass, and semiconductors such as gallium nitride can be used.
  • the plurality of electrodes 3, the electrodes 4, the first bus bar 5, and the second bus bar 6 are made of an appropriate metal or alloy such as an Al or AlCu alloy.
  • the electrode 3, the electrode 4, the first bus bar 5, and the second bus bar 6 have a structure in which an Al film is laminated on a Ti film. An adhesive layer other than the Ti film may be used.
  • an AC voltage is applied between the plurality of electrodes 3 and the plurality of electrodes 4. More specifically, an AC voltage is applied between the first bus bar 5 and the second bus bar 6. As a result, it is possible to obtain resonance characteristics using the bulk wave of the thickness slip primary mode excited in the piezoelectric layer 2.
  • the thickness of the piezoelectric layer 2 when the thickness of the piezoelectric layer 2 is d, the distance between the centers of the plurality of pairs of electrodes 3, the adjacent electrodes 3 of the electrodes 4, and the electrodes 4 is p, d / p is It is said to be 0.5 or less. Therefore, the bulk wave in the thickness slip primary mode is effectively excited, and good resonance characteristics can be obtained. More preferably, d / p is 0.24 or less, in which case even better resonance characteristics can be obtained.
  • the electrodes 3 and 4 are 1.5 pairs.
  • the distance p between the centers of the adjacent electrodes 3 and 4 is the average distance between the centers of the adjacent electrodes 3 and 4.
  • the elastic wave device 1 of the first embodiment has the above configuration, the Q value is unlikely to decrease even if the logarithm of the electrodes 3 and 4 is reduced in order to reduce the size. This is because it is a resonator that does not require reflectors on both sides and has little propagation loss. Further, the reason why the above reflector is not required is that the bulk wave of the thickness slip primary mode is used.
  • FIG. 3A is a schematic cross-sectional view for explaining a Lamb wave propagating in the piezoelectric layer of the comparative example.
  • FIG. 3B is a schematic cross-sectional view for explaining the bulk wave of the thickness slip primary mode propagating through the piezoelectric layer of the first embodiment.
  • FIG. 4 is a schematic cross-sectional view for explaining the amplitude direction of the bulk wave in the thickness slip primary mode propagating through the piezoelectric layer of the first embodiment.
  • FIG. 3A is an elastic wave device as described in Patent Document 1, in which a ram wave propagates in a piezoelectric layer.
  • the wave propagates in the piezoelectric layer 201 as indicated by an arrow.
  • the piezoelectric layer 201 has a first main surface 201a and a second main surface 201b, and the thickness direction connecting the first main surface 201a and the second main surface 201b is the Z direction. ..
  • the X direction is the direction in which the electrode fingers of the IDT electrodes are lined up.
  • the wave propagates in the X direction as shown in the figure.
  • the piezoelectric layer 201 vibrates as a whole because it is a plate wave, the wave propagates in the X direction, so reflectors are arranged on both sides to obtain resonance characteristics. Therefore, a wave propagation loss occurs, and the Q value decreases when the size is reduced, that is, when the logarithm of the electrode fingers is reduced.
  • the wave is generated by the first main surface 2a and the second main surface 2a of the piezoelectric layer 2. It propagates substantially in the direction connecting the surface 2b, that is, in the Z direction, and resonates. That is, the X-direction component of the wave is significantly smaller than the Z-direction component. And since the resonance characteristic is obtained by the propagation of the wave in the Z direction, the reflector is not required. Therefore, there is no propagation loss when propagating to the reflector. Therefore, even if the logarithm of the electrode pair consisting of the electrodes 3 and 4 is reduced in order to promote miniaturization, the Q value is unlikely to decrease.
  • the amplitude directions of the bulk waves in the thickness slip primary mode are the first region 451 included in the excitation region C (see FIG. 1B) of the piezoelectric layer 2 and the first region 451 included in the excitation region C.
  • FIG. 4 schematically shows a bulk wave when a voltage at which the electrode 4 has a higher potential than that of the electrode 3 is applied between the electrode 3 and the electrode 4.
  • the first region 451 is a region of the excitation region C between the virtual plane VP1 orthogonal to the thickness direction of the piezoelectric layer 2 and dividing the piezoelectric layer 2 into two, and the first main surface 2a.
  • the second region 452 is a region of the excitation region C between the virtual plane VP1 and the second main surface 2b.
  • the elastic wave device 1 At least one pair of electrodes consisting of the electrode 3 and the electrode 4 is arranged, but since the wave is not propagated in the X direction, the logarithm of the electrode pair consisting of the electrode 3 and the electrode 4 Does not necessarily have to be multiple pairs. That is, it is only necessary to provide at least one pair of electrodes.
  • the electrode 3 is an electrode connected to a hot potential
  • the electrode 4 is an electrode connected to a ground potential.
  • the electrode 3 may be connected to the ground potential and the electrode 4 may be connected to the hot potential.
  • at least one pair of electrodes is an electrode connected to a hot potential or an electrode connected to a ground potential as described above, and is not provided with a floating electrode.
  • FIG. 5 is an explanatory diagram showing an example of the resonance characteristics of the elastic wave device of the first embodiment.
  • the design parameters of the elastic wave device 1 obtained with the resonance characteristics shown in FIG. 5 are as follows.
  • Piezoelectric layer 2 LiNbO 3 with Euler angles (0 °, 0 °, 90 °) Thickness of piezoelectric layer 2: 400 nm.
  • Excitation region C (see FIG. 1B) length: 40 ⁇ m
  • Intermediate layer 7 1 ⁇ m thick silicon oxide film.
  • Support member 8 Si.
  • the excitation region C (see FIG. 1B) is a region where the electrode 3 and the electrode 4 overlap when viewed in the X direction orthogonal to the length direction of the electrode 3 and the electrode 4.
  • the length of the excitation region C is a dimension along the length direction of the electrodes 3 and 4 of the excitation region C.
  • the distance between the electrodes of the electrode pair consisting of the electrodes 3 and 4 is the same for the plurality of pairs. That is, the electrodes 3 and 4 are arranged at equal pitches.
  • d / p is 0.5 or less, more preferably 0.24. It is as follows. This will be described with reference to FIG.
  • FIG. 6 shows d / 2p as a resonator in the elastic wave apparatus of the first embodiment, where p is the center-to-center distance or the average distance between the centers of adjacent electrodes and d is the average thickness of the piezoelectric layer. It is explanatory drawing which shows the relationship with the specific band of.
  • the ratio band is less than 5% even if d / p is adjusted.
  • the specific band can be set to 5% or more by changing d / p within that range. That is, a resonator having a high coupling coefficient can be constructed.
  • the specific band can be increased to 7% or more.
  • d / p is adjusted within this range, a resonator having a wider specific band can be obtained, and a resonator having a higher coupling coefficient can be realized. Therefore, as in the second invention of the present application, by setting d / p to 0.5 or less, it is possible to construct a resonator having a high coupling coefficient using the bulk wave of the thickness slip primary mode. I understand.
  • At least one pair of electrodes may be one pair, and in the case of a pair of electrodes, p is the distance between the centers of the adjacent electrodes 3 and 4. In the case of 1.5 pairs or more of electrodes, the average distance between the centers of the adjacent electrodes 3 and 4 may be p.
  • the thickness d of the piezoelectric layer if the piezoelectric layer 2 has a thickness variation, a value obtained by averaging the thickness may be adopted.
  • FIG. 7 is a plan view showing an example in which a pair of electrodes is provided in the elastic wave device of the first embodiment.
  • a pair of electrodes having an electrode 3 and an electrode 4 is provided on the first main surface 2a of the piezoelectric layer 2.
  • K in FIG. 7 is an intersection width.
  • the logarithm of the electrodes may be one pair. Even in this case, if the d / p is 0.5 or less, the bulk wave in the thickness slip primary mode can be effectively excited.
  • FIG. 8 is a modified example of the first embodiment, and is a cross-sectional view of a portion of FIG. 1A along the line II-II.
  • the acoustic multilayer film 42 is laminated on the second main surface 2b of the piezoelectric layer 2.
  • the acoustic multilayer film 42 has a laminated structure of low acoustic impedance layers 42a, 42c, 42e having a relatively low acoustic impedance and high acoustic impedance layers 42b, 42d having a relatively high acoustic impedance.
  • the bulk wave in the thickness slip primary mode can be confined in the piezoelectric layer 2 without using the cavity 9 in the elastic wave device 1. Even in the elastic wave device 41, by setting the d / p to 0.5 or less, resonance characteristics based on the bulk wave in the thickness slip primary mode can be obtained.
  • the number of layers of the low acoustic impedance layers 42a, 42c, 42e and the high acoustic impedance layers 42b, 42d is not particularly limited. It is sufficient that at least one high acoustic impedance layer 42b, 42d is arranged on the side farther from the piezoelectric layer 2 than the low acoustic impedance layers 42a, 42c, 42e.
  • the low acoustic impedance layers 42a, 42c, 42e and the high acoustic impedance layers 42b, 42d can be made of an appropriate material as long as the relationship of the acoustic impedance is satisfied.
  • the material of the low acoustic impedance layers 42a, 42c, 42e silicon oxide, silicon nitride, or the like can be mentioned.
  • examples of the material of the high acoustic impedance layers 42b and 42d include alumina, silicon nitride, and metal.
  • the elastic wave devices 1, 31, and 41 use bulk waves in the thickness slip primary mode. Further, in the elastic wave devices 1, 31, and 41, the first electrode 3 and the second electrode 4 are adjacent electrodes, the thickness of the piezoelectric layer is d, and the distance between the centers of the first electrode and the second electrode is set. When p, d / p is 0.5 or less. As a result, the Q value can be increased even if the elastic wave device is miniaturized.
  • the piezoelectric layer 2 is formed of lithium niobate or lithium tantalate.
  • the first main surface 2a or the second main surface 2b of the piezoelectric layer 2 has a first electrode 3 and a second electrode 4 facing each other in a direction intersecting with each other in the thickness direction of the piezoelectric layer 2. It is desirable to cover the electrode 3 and the second electrode 4 with a protective film.
  • FIG. 9 is a cross-sectional view of a portion of FIG. 1B along the IX-IX line in the first embodiment.
  • the film thicknesses of the electrodes 3 and 4 shown in FIG. 9 are shown enlarged from the actual film thickness difference for easy understanding.
  • the film thickness of the electrode 3 and the electrode 4 shown in FIG. 2 is one of the film thickness ft1, the film thickness ft2, the film thickness ft3, the film thickness ft4, and the film thickness ft5, as shown in FIG. be.
  • the electrode 50 will be described.
  • the difference between the film thickness ft1 and the film thickness ft2 is, for example, 10 nm.
  • the difference between the film thickness ft2 and the film thickness ft3 is, for example, 10 nm.
  • the difference between the film thickness ft3 and the film thickness ft4 is, for example, 10 nm.
  • the difference between the film thickness ft4 and the film thickness ft5 is, for example, 10 nm.
  • the film thickness ft1 is 580 nm
  • the film thickness ft2 is 590 nm
  • the film thickness ft3 is 600 nm
  • the film thickness ft4 is 610 nm
  • the film thickness ft5 is 620 nm.
  • the number of electrodes 50 sandwiched between electrodes 50 having the same film thickness ft1 in the X direction is seven.
  • the number of electrodes 50 sandwiched between the electrodes 50 having the same film thickness ft2 in the X direction is seven.
  • the number of electrodes 50 sandwiched between the electrodes 50 having the same film thickness ft3 in the X direction is seven.
  • the number of electrodes 50 sandwiched between the electrodes 50 having the same film thickness ft4 in the X direction is seven.
  • the number of electrodes 50 sandwiched between the electrodes 50 having the same film thickness ft5 in the X direction is seven.
  • the number of electrodes 50 having a film thickness different from that of the electrodes 50 sandwiched between the same electrodes 50 arranged in the X direction is constant.
  • the electrodes 50 having the same film thickness include a case where the film thickness of one electrode 50 is within ⁇ 5% of the film thickness of the other electrode 50.
  • the electrode 50 has a film thickness ft1, a film thickness ft2, a film thickness ft3, a film thickness ft4, a film thickness ft5, a film thickness ft4, a film thickness ft3, a film thickness ft2, and a film thickness ft1 in order of the X direction. They are arranged in the X direction as a combination. This combination of film thickness is repeated in the X direction. As described above, the electrodes 50 arranged in the X direction have regularity in the combination of film thicknesses. For example, the electrodes 50 having a film thickness of ft1 are periodically arranged every eight in the X direction.
  • FIG. 10A is an explanatory diagram for explaining the relationship between the spurious and the frequency of the first embodiment.
  • the conditions for the simulation of Example 1BL of the first embodiment are as follows, and the evaluation results are shown in FIG. 10A.
  • Center-to-center distance (pitch) between electrode 3 and electrode 4 4.2 ⁇ m
  • Piezoelectric layer 2 LiNbO 3 with Euler angles (0 °, 127.5 °, 0 °)
  • Piezoelectric layer film thickness 0.5um Material of electrode 3 and electrode 4: Al Center-to-center distance (pitch) between electrode 3 and electrode 4: 3.14 ⁇ m
  • Electrode line width of electrode 3 and electrode 4 1.26 ⁇ m Gap width between the first bus bar and the electrode 4 and gap width between the second bus bar and the electrode 3: 1.90 ⁇ m
  • Logarithm of electrodes 20 pairs (41)
  • the film thickness of the electrode 3 and the electrode 4 When the film thickness ft1 is 580 nm, the film thickness ft2 is 590 n
  • FIG. 10B is an explanatory diagram for explaining the relationship between the spurious of the comparative example and the frequency.
  • the simulation conditions of Comparative Example RL are as follows, and the evaluation results are shown in FIG. 10B.
  • Piezoelectric layer 2 LiNbO 3 with Euler angles (0 °, 127.5 °, 0 °)
  • Piezoelectric layer film thickness 0.5um Material of electrode 3 and electrode 4: Al
  • Electrode line width of electrode 3 and electrode 4 1.26 ⁇ m Gap width between the first bus bar and the electrode 4 and gap width between the second bus bar and the electrode 3: 1.90 ⁇ m
  • Logarithm of electrodes 20 pairs (41) Film thickness of all electrodes 3 and 4: 600 nm
  • FIGS. 10A and 10B show resonance characteristics when the frequency is taken on the horizontal axis and the phase is taken on the vertical axis.
  • the same frequency as the spurious of Comparative Example RL appearing in FIG. 10B is confirmed in FIG. 10A, it can be seen that the intensity of the spurious at the position indicated by the arrow is suppressed.
  • FIG. 11 is a cross-sectional view of a portion of FIG. 1B along the IX-IX line in the second embodiment.
  • the film thicknesses of the electrode 3 and the electrode 4 shown in FIG. 11 are shown enlarged from the actual film thickness difference for easy understanding.
  • the film thickness of the electrode 3 and the electrode 4 shown in FIG. 11 is any one of the film thickness ft1, the film thickness ft2, the film thickness ft3, and the film thickness ft4.
  • the film thicknesses of the electrode 3 and the electrode 4 satisfy the relationship of ft1 ⁇ ft2 ⁇ ft3 ⁇ ft4.
  • the film thickness difference between the film thickness ft1 and the film thickness ft2 is smaller than the film thickness difference between the film thickness ft2 and the film thickness ft3.
  • the film thickness difference between the adjacent electrodes 3 and 4 is different.
  • the three electrodes 3, the electrode 4, and the electrode 3 arranged in the X direction have different film thicknesses.
  • the number of electrodes 50 sandwiched between electrodes 50 having the same film thickness ft1 in the X direction is four.
  • the number of electrodes 50 sandwiched between the electrodes 50 having the same film thickness ft2 in the X direction is four.
  • the number of electrodes 50 sandwiched between the electrodes 50 having the same film thickness ft3 in the X direction is one or four.
  • the number of electrodes 50 sandwiched between the electrodes 50 having the same film thickness ft4 in the X direction is four.
  • the number of electrodes 50 having a film thickness different from that of the electrodes 50 sandwiched between the same electrodes 50 arranged in the X direction has regularity.
  • the electrodes 50 having the same film thickness include a case where the film thickness of one electrode 50 is within ⁇ 5% of the film thickness of the other electrode 50.
  • the electrodes 50 are arranged in the X direction in order of the film thickness ft1, the film thickness ft2, the film thickness ft3, the film thickness ft4, the film thickness ft3, and the film thickness ft1 as one film thickness combination. This combination of film thickness is repeated in the X direction. As described above, the electrodes 50 arranged in the X direction have regularity in the combination of film thicknesses. For example, the electrodes 50 having a film thickness of ft1 are periodically arranged every five in the X direction.
  • FIG. 12 is a cross-sectional view of a portion of FIG. 1B along the IX-IX line in the third embodiment.
  • the film thicknesses of the electrodes 3 and 4 shown in FIG. 12 are shown enlarged from the actual film thickness difference for easy understanding.
  • each of the film thicknesses of the electrode 3 and the electrode 4 shown in FIG. 12 is one of the film thickness ft1, the film thickness ft2, and the film thickness ft3.
  • the film thicknesses of the electrode 3 and the electrode 4 satisfy the relationship of ft1 ⁇ ft2 ⁇ ft3.
  • the film thickness difference between the film thickness ft1 and the film thickness ft2 is the same as the film thickness difference between the film thickness ft2 and the film thickness ft3.
  • the film thickness difference between the adjacent electrodes 3 and 4 is the same.
  • the three electrodes 3, the electrode 4, and the electrode 3 arranged in the X direction have different film thicknesses.
  • the number of electrodes 50 sandwiched between electrodes 50 having the same film thickness ft1 in the X direction is three.
  • the number of electrodes 50 sandwiched between the electrodes 50 having the same film thickness ft2 in the X direction is three.
  • the number of electrodes 50 sandwiched between the electrodes 50 having the same film thickness ft3 in the X direction is three.
  • the number of electrodes 50 having a film thickness different from that of the electrodes 50 sandwiched between the same electrodes 50 arranged in the X direction is constant.
  • the electrodes 50 having the same film thickness include a case where the film thickness of one electrode 50 is within ⁇ 5% of the film thickness of the other electrode 50.
  • the electrodes 50 are arranged in the X direction in order of the film thickness ft1, the film thickness ft2, the film thickness ft3, the film thickness ft2, and the film thickness ft1 as one film thickness combination. This combination of film thickness is repeated in the X direction. As described above, the electrodes 50 arranged in the X direction have regularity in the combination of film thicknesses. For example, the electrodes 50 having a film thickness of ft1 are periodically arranged every four in the X direction.
  • FIG. 13 is a cross-sectional view of a portion of FIG. 1B along the IX-IX line in the fourth embodiment.
  • the film thicknesses of the electrode 3 and the electrode 4 shown in FIG. 13 are shown enlarged from the actual film thickness difference for easy understanding.
  • each of the film thicknesses of the electrode 3 and the electrode 4 shown in FIG. 13 is either a film thickness ft1 or a film thickness ft2.
  • the elastic wave device of the fourth embodiment includes at least two electrodes 50 having different film thicknesses, and has a region in which the electrodes 50 adjacent to each other in the X direction have the same film thickness.
  • the film thickness of one of the adjacent electrodes 3 is within ⁇ 5% of the film thickness of the other electrode 4. Including some cases.
  • the plurality of electrodes 50 are arranged in the X direction as a combination of two electrodes 50 having the same film thickness ft1 in the X direction and three electrodes 50 having the same film thickness ft1 in the X direction. This combination of film thickness is repeated in the X direction. As described above, the electrodes 50 arranged in the X direction have regularity in the combination of film thicknesses.
  • FIG. 14 is a cross-sectional view of a portion of FIG. 1B along the IX-IX line in the fifth embodiment.
  • the film thicknesses of the electrode 3 and the electrode 4 shown in FIG. 14 are shown enlarged from the actual film thickness difference for easy understanding.
  • the film thickness of the electrode 3 and the electrode 4 shown in FIG. 13 is any one of the film thickness ft1, the film thickness ft2, the film thickness ft3, the film thickness ft4, the film thickness ft5, and the film thickness ft6.
  • the film thicknesses of the electrode 3 and the electrode 4 satisfy the relationship of ft1 ⁇ ft2 ⁇ ft3 ⁇ ft4 ⁇ ft5 ⁇ ft6.
  • the film thickness difference between the film thickness ft1 and the film thickness ft2 is smaller than the film thickness difference between the film thickness ft2 and the film thickness ft3.
  • the elastic wave device of the fifth embodiment includes at least six electrodes 50 having different film thicknesses, and has a region where the film thickness ft1 of the electrodes 50 adjacent to each other in the X direction is the same.
  • the film thickness of one of the adjacent electrodes 3 is within ⁇ 5% of the film thickness of the other electrode 4. Including some cases.
  • the elastic wave device of the fifth embodiment includes a region in which at least three electrodes 50 having different film thicknesses are lined up in the X direction.
  • the film thickness of the electrodes 50 arranged in the X direction is random. As described above, there is no regularity in the film thickness of the electrodes 50 arranged in the X direction.
  • FIG. 15 is a cross-sectional view of a portion of FIG. 1B along the IX-IX line in the sixth embodiment.
  • the film thicknesses of the electrode 3 and the electrode 4 shown in FIG. 15 are shown enlarged from the actual film thickness difference for easy understanding.
  • each of the film thicknesses of the electrode 3 and the electrode 4 shown in FIG. 15 is either a film thickness ft1 or a film thickness ft2.
  • the elastic wave device of the fifth embodiment includes at least two electrodes 50 having different film thicknesses, and has a region in which the electrodes 50 adjacent to each other in the X direction have the same film thickness.
  • the film thickness of one of the adjacent electrodes 3 is within ⁇ 5% of the film thickness of the other electrode 4. Including some cases.
  • the plurality of electrodes 50 are arranged in the X direction as a combination of two electrodes 50 having the same film thickness ft1 in the X direction and three electrodes 50 having the same film thickness ft1 in the X direction. This combination of film thickness is repeated in the X direction. As described above, the electrodes 50 arranged in the X direction have regularity in the combination of film thicknesses.
  • the elastic wave device of the sixth embodiment includes a region in which at least two electrodes 50 having different film thicknesses are lined up in the X direction.
  • the film thickness of the electrodes 50 arranged in the X direction is random. As described above, there is no regularity in the film thickness of the electrodes 50 arranged in the X direction.
  • the elastic wave device is a second main surface that is opposite to the first main surface 2a and the first main surface 2a and is in the Z direction with respect to the first main surface 2a.
  • a plurality of electrodes including at least one pair of electrodes 3 and electrodes 4 facing each other in the X direction intersecting the Z direction and adjacent to each other on the first main surface 2a with the piezoelectric layer 2 having the surface 2b. 50 and.
  • the second embodiment, the third embodiment, and the fifth embodiment and in the X direction, at least three or more of the plurality of electrodes 50 are arranged, and the plurality of electrodes are arranged.
  • 50 includes at least three electrodes having different film thicknesses.
  • the resonance frequency and the antiresonance frequency are less likely to be affected.
  • spurious is reduced and deterioration of resonance characteristics can be suppressed.
  • At least three electrodes 3 with different film thicknesses have the same polarity. At least three electrodes 4 having different film thicknesses have the same polarity. This reduces spurious emissions and makes it possible to suppress deterioration of resonance characteristics.
  • the plurality of electrodes 50 have at least two different film thicknesses. Includes electrodes.
  • the plurality of electrodes 50 have the same film thickness and include at least two adjacent electrodes 50.
  • the plurality of electrodes 50 may have the same film thickness and include at least two adjacent electrodes 50.
  • the resonance frequency and the antiresonance frequency are less likely to be affected.
  • spurious is reduced and deterioration of resonance characteristics can be suppressed.
  • At least two electrodes 3 with different film thicknesses have the same polarity. At least two electrodes 4 having different film thicknesses have the same polarity. This reduces spurious emissions and makes it possible to suppress deterioration of resonance characteristics.
  • first electrode 3 and the second electrode 4 are adjacent electrodes 50 and the thickness of the piezoelectric layer is d and the distance between the centers of the first electrode and the second electrode is p, d / p is It is said to be 0.5 or less.
  • the elastic wave device can be miniaturized and the Q value can be increased.
  • the film thickness of the electrodes 50 arranged in the X direction has regularity. This makes it easier to move the frequency of a specific spurious or change the intensity of a specific spurious by making the regularity different.
  • the number of electrodes 50 having a film thickness different from that of the electrodes 50 sandwiched between the electrodes 50 having the same film thickness in the X direction is constant.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

共振特性の劣化を抑制する弾性波装置を提供する。弾性波装置は、圧電層と、第1方向に交差する第2方向において対向し、第1の主面の上に隣り合って設けられた少なくとも1対の電極を含む複数の電極と、を備える。第2方向に、複数の電極のうち、少なくとも3つ以上の電極が並んでいる。そして、複数の電極は、膜厚の異なる少なくとも2つの電極を含む。複数の電極は、膜厚が同じであって、隣り合う2つの電極を少なくとも含む。又は第2方向に、少なくとも3つ以上の電極が並んでおり、複数の電極は、膜厚の異なる少なくとも3つの電極を含む。

Description

弾性波装置
 本開示は、ニオブ酸リチウムまたはタンタル酸リチウムを含む圧電層を有する弾性波装置に関する。
 特許文献1には、弾性波装置が記載されている。
特開2012-257019号公報
 弾性波装置では、スプリアスにより、弾性波装置の共振特性が劣化しやすくなる可能性がある。
 本開示は、上記に鑑みてなされたものであって、共振特性の劣化を抑制する弾性波装置を提供することを目的とする。
 一態様に係る弾性波装置は、第1の主面と、前記第1の主面の反対側であって、かつ前記第1の主面に対して第1方向にある第2の主面とを有する圧電層と、前記第1方向に交差する第2方向において対向し、前記第1の主面の上に隣り合って設けられた少なくとも1対の電極を含む複数の電極と、を備え、前記第2方向に、前記複数の電極のうち、少なくとも3つ以上の電極が並んでおり、前記複数の電極は、膜厚の異なる少なくとも2つの電極を含み、前記複数の電極は、膜厚が同じであって、隣り合う2つの電極を少なくとも含む。
 他の態様に係る弾性波装置は、第1の主面と、前記第1の主面の反対側であって、かつ前記第1の主面に対して第1方向にある第2の主面とを有する圧電層と、前記第1方向に交差する第2方向において対向し、前記第1の主面の上に隣り合って設けられた少なくとも1対の電極を含む複数の電極と、を備え、前記第2方向に、前記複数の電極のうち、少なくとも3つ以上の電極が並んでおり、前記複数の電極は、膜厚の異なる少なくとも3つの電極を含む。
 本開示によれば、共振特性の劣化を抑制することが可能となる。
図1Aは、第1実施形態の弾性波装置を示す斜視図である。 図1Bは、第1実施形態の電極構造を示す平面図である。 図2は、図1AのII-II線に沿う部分の断面図である。 図3Aは、比較例の圧電層を伝播するラム波を説明するための模式的な断面図である。 図3Bは、第1実施形態の圧電層を伝播する厚み滑り1次モードのバルク波を説明するための模式的な断面図である。 図4は、第1実施形態の圧電層を伝播する厚み滑り1次モードのバルク波の振幅方向を説明するための模式的な断面図である。 図5は、第1実施形態の弾性波装置の共振特性の例を示す説明図である。 図6は、第1実施形態の弾性波装置において、隣り合う電極の中心間距離または中心間距離の平均距離をp、圧電層の平均厚みをdとした場合、d/2pと、共振子としての比帯域との関係を示す説明図である。 図7は、第1実施形態の弾性波装置において、1対の電極が設けられている例を示す平面図である。 図8は、第1実施形態の変形例であって、図1AのII-II線に沿う部分の断面図である。 図9は、第1実施形態において、図1BのIX-IX線に沿う部分の断面図である。 図10Aは、第1実施形態のスプリアスと周波数との関係を説明するための説明図である。 図10Bは、比較例のスプリアスと周波数との関係を説明するための説明図である。 図11は、第2実施形態において、図1BのIX-IX線に沿う部分の断面図である。 図12は、第3実施形態において、図1BのIX-IX線に沿う部分の断面図である。 図13は、第4実施形態において、図1BのIX-IX線に沿う部分の断面図である。 図14は、第5実施形態において、図1BのIX-IX線に沿う部分の断面図である。 図15は、第5実施形態において、図1BのIX-IX線に沿う部分の断面図である。
 以下に、本開示の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態により本開示が限定されるものではない。なお、本開示に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能である変形例や第2実施の形態以降では第1の実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
(第1実施形態)
 図1Aは、第1実施形態の弾性波装置を示す斜視図である。図1Bは、第1実施形態の電極構造を示す平面図である。
 第1実施形態の弾性波装置1は、LiNbOからなる圧電層2を有する。圧電層2は、LiTaOからなるものであってもよい。LiNbOやLiTaOのカット角は、第1実施形態では、Zカットである。LiNbOやLiTaOのカット角は、回転YカットやXカットであってもよい。好ましくは、Y伝搬及びX伝搬±30°の伝搬方位が好ましい。
 圧電層2の厚みは、特に限定されないが、厚み滑り1次モードを効果的に励振するには、50nm以上、1000nm以下が好ましい。
 圧電層2は、Z方向に対向し合う第1の主面2aと、第2の主面2bとを有する。第1の主面2a上に、電極3及び電極4が設けられている。
 ここで電極3が「第1電極」の一例であり、電極4が「第2電極」の一例である。図1A及び図1Bでは、複数の電極3が、第1のバスバー5に接続されている。複数の電極4は、第2のバスバー6に接続されている。複数の電極3及び複数の電極4は、互いに間挿し合っている。
 電極3及び電極4は、矩形形状を有し、長さ方向を有する。この長さ方向と直交する方向において、電極3と、電極3と隣接する電極4とが対向している。電極3、電極4の長さ方向、及び、電極3、電極4の長さ方向と直交する方向はいずれも、圧電層2の厚み方向に交差する方向である。このため、電極3と、電極3と隣接する電極4とは、圧電層2の厚み方向に交差する方向において対向しているともいえる。以下の説明では、圧電層2の厚み方向をZ方向(又は第1方向)とし、電極3、電極4の長さ方向と直交する方向をX方向(又は第2方向)とし、電極3、電極4の長さ方向をY方向(又は第3方向)として、説明することがある。
 また、電極3、電極4の長さ方向が図1A及び図1Bに示す電極3、電極4の長さ方向に直交する方向と入れ替わっても良い。すなわち、図1A及び図1Bにおいて、第1のバスバー5及び第2のバスバー6が延びている方向に電極3、電極4を延ばしてもよい。その場合、第1のバスバー5及び第2のバスバー6は、図1A及び図1Bにおいて電極3、電極4が延びている方向に延びることとなる。そして、一方電位に接続される電極3と、他方電位に接続される電極4とが隣り合う1対の構造が、上記電極3、電極4の長さ方向と直交する方向に、複数対設けられている。
 ここで電極3と電極4とが隣り合うとは、電極3と電極4とが直接接触するように配置されている場合ではなく、電極3と電極4とが間隔を介して配置されている場合を指す。また、電極3と電極4とが隣り合う場合、電極3と電極4との間には、他の電極3、電極4を含む、ホット電極やグラウンド電極に接続される電極は配置されない。この対数は、整数対である必要はなく、1.5対や2.5対などであってもよい。
 電極3と電極4との間の中心間距離すなわちピッチは、1μm以上、10μm以下の範囲が好ましい。また、電極3と電極4との間の中心間距離とは、電極3の長さ方向と直交する方向における電極3の幅寸法の中心と、電極4の長さ方向と直交する方向における電極4の幅寸法の中心とを結んだ距離となる。
 さらに、電極3、電極4の少なくとも一方が複数本ある場合(電極3、電極4を一対の電極組とした場合に、1.5対以上の電極組がある場合)、電極3、電極4の中心間距離は、1.5対以上の電極3、電極4のうち隣り合う電極3、電極4それぞれの中心間距離の平均値を指す。
 また、電極3、電極4の幅、すなわち電極3、電極4の対向方向の寸法は、150nm以上、1000nm以下の範囲が好ましい。なお、電極3と電極4との間の中心間距離とは、電極3の長さ方向と直交する方向における電極3の寸法(幅寸法)の中心と、電極4の長さ方向と直交する方向における電極4の寸法(幅寸法)の中心とを結んだ距離となる。
 また、第1実施形態では、Zカットの圧電層を用いているため、電極3、電極4の長さ方向と直交する方向は、圧電層2の分極方向に直交する方向となる。圧電層2として他のカット角の圧電体を用いた場合には、この限りでない。ここにおいて、「直交」とは、厳密に直交する場合のみに限定されず、略直交(電極3、電極4の長さ方向と直交する方向と分極方向とのなす角度が例えば90°±10°)でもよい。
 圧電層2の第2の主面2b側には、中間層7を介して支持部材8が積層されている。中間層7及び支持部材8は、枠状の形状を有し、図2に示すように、開口部7a、8aを有する。それによって、空洞部(エアギャップ)9が形成されている。
 空洞部9は、圧電層2の励振領域Cの振動を妨げないために設けられている。従って、上記支持部材8は、少なくとも1対の電極3、電極4が設けられている部分と重ならない位置において、第2の主面2bに中間層7を介して積層されている。なお、中間層7は設けられずともよい。従って、支持部材8は、圧電層2の第2の主面2bに直接または間接に積層され得る。
 中間層7は、絶縁層であり、酸化ケイ素で形成されている。もっとも、中間層7は、酸化ケイ素の他、酸窒化ケイ素、アルミナなどの適宜の絶縁性材料で形成することができる。
 支持部材8は、支持基板ともいい、Siにより形成されている。Siの圧電層2側の面における面方位は(100)や(110)であってもよく、(111)であってもよい。好ましくは、抵抗率4kΩ以上の高抵抗のSiが望ましい。もっとも、支持部材8についても適宜の絶縁性材料や半導体材料を用いて構成することができる。支持部材8の材料としては、例えば、酸化アルミニウム、タンタル酸リチウム、ニオブ酸リチウム、水晶などの圧電体、アルミナ、マグネシア、サファイア、窒化ケイ素、窒化アルミニウム、炭化ケイ素、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライトなどの各種セラミック、ダイヤモンド、ガラスなどの誘電体、窒化ガリウムなどの半導体などを用いることができる。
 上記複数の電極3、電極4及び第1のバスバー5、第2のバスバー6は、Al、AlCu合金などの適宜の金属もしくは合金からなる。第1実施形態では、電極3、電極4及び第1のバスバー5、第2のバスバー6は、Ti膜上にAl膜を積層した構造を有する。なお、Ti膜以外の密着層を用いてもよい。
 駆動に際しては、複数の電極3と、複数の電極4との間に交流電圧を印加する。より具体的には、第1のバスバー5と第2のバスバー6との間に交流電圧を印加する。それによって、圧電層2において励振される厚み滑り1次モードのバルク波を利用した、共振特性を得ることが可能とされている。
 また、弾性波装置1では、圧電層2の厚みをd、複数対の電極3、電極4のうちいずれかの隣り合う電極3、電極4の中心間距離をpとした場合、d/pは0.5以下とされている。そのため、上記厚み滑り1次モードのバルク波が効果的に励振され、良好な共振特性を得ることができる。より好ましくは、d/pは0.24以下であり、その場合には、より一層良好な共振特性を得ることができる。
 なお、第1実施形態のように電極3、電極4の少なくとも一方が複数本ある場合、すなわち、電極3、電極4を1対の電極組とした場合に電極3、電極4が1.5対以上ある場合、隣り合う電極3、電極4の中心間距離pは、各隣り合う電極3、電極4の中心間距離の平均距離となる。
 第1実施形態の弾性波装置1では、上記構成を備えるため、小型化を図ろうとして、電極3、電極4の対数を小さくしたとしても、Q値の低下が生じ難い。これは、両側に反射器を必要としない共振器であり、伝搬ロスが少ないためである。また、上記反射器を必要としないのは、厚み滑り1次モードのバルク波を利用していることによる。
 図3Aは、比較例の圧電層を伝播するラム波を説明するための模式的な断面図である。図3Bは、第1実施形態の圧電層を伝播する厚み滑り1次モードのバルク波を説明するための模式的な断面図である。図4は、第1実施形態の圧電層を伝播する厚み滑り1次モードのバルク波の振幅方向を説明するための模式的な断面図である。
 図3Aでは、特許文献1に記載のような弾性波装置であり、圧電層をラム波が伝搬する。図3Aに示すように、圧電層201中を矢印で示すように波が伝搬する。ここで、圧電層201には、第1の主面201aと、第2の主面201bとがあり、第1の主面201aと第2の主面201bとを結ぶ厚み方向がZ方向である。X方向は、IDT電極の電極指が並んでいる方向である。図3Aに示すように、ラム波では、波が図示のように、X方向に伝搬していく。板波であるため、圧電層201が全体として振動するものの、波はX方向に伝搬するため、両側に反射器を配置して、共振特性を得ている。そのため、波の伝搬ロスが生じ、小型化を図った場合、すなわち電極指の対数を少なくした場合、Q値が低下する。
 これに対して、図3Bに示すように、第1実施形態の弾性波装置では、振動変位は厚み滑り方向であるから、波は、圧電層2の第1の主面2aと第2の主面2bとを結ぶ方向、すなわちZ方向にほぼ伝搬し、共振する。すなわち、波のX方向成分がZ方向成分に比べて著しく小さい。そして、このZ方向の波の伝搬により共振特性が得られるため、反射器を必要としない。よって、反射器に伝搬する際の伝搬損失は生じない。従って、小型化を進めようとして、電極3、電極4からなる電極対の対数を減らしたとしても、Q値の低下が生じ難い。
 なお、厚み滑り1次モードのバルク波の振幅方向は、図4に示すように、圧電層2の励振領域C(図1B参照)に含まれる第1領域451と、励振領域Cに含まれる第2領域452とで逆になる。図4では、電極3と電極4との間に、電極4が電極3よりも高電位となる電圧が印加された場合のバルク波を模式的に示してある。第1領域451は、励振領域Cのうち、圧電層2の厚み方向に直交し圧電層2を2分する仮想平面VP1と、第1の主面2aとの間の領域である。第2領域452は、励振領域Cのうち、仮想平面VP1と、第2の主面2bとの間の領域である。
 弾性波装置1では、電極3と電極4とからなる少なくとも1対の電極が配置されているが、X方向に波を伝搬させるものではないため、この電極3、電極4からなる電極対の対数は複数対ある必要は必ずしもない。すなわち、少なくとも1対の電極が設けられてさえおればよい。
 例えば、上記電極3がホット電位に接続される電極であり、電極4がグラウンド電位に接続される電極である。もっとも、電極3がグラウンド電位に、電極4がホット電位に接続されてもよい。第1実施形態では、少なくとも1対の電極は、上記のように、ホット電位に接続される電極またはグラウンド電位に接続される電極であり、浮き電極は設けられていない。
 図5は、第1実施形態の弾性波装置の共振特性の例を示す説明図である。なお、図5に示す共振特性を得た弾性波装置1の設計パラメータは以下の通りである。
 圧電層2:オイラー角(0°,0°,90°)のLiNbO
 圧電層2の厚み:400nm。
 励振領域C(図1B参照)の長さ:40μm
 電極3、電極4からなる電極の対数:21対
 電極3と電極4との間の中心間距離(ピッチ):3μm
 電極3、電極4の幅:500nm
 d/p:0.133
 中間層7:1μmの厚みの酸化ケイ素膜。
 支持部材8:Si。
 なお、励振領域C(図1B参照)とは、電極3と電極4の長さ方向と直交するX方向に視たときに、電極3と電極4とが重なっている領域である。励振領域Cの長さとは、励振領域Cの電極3、電極4の長さ方向に沿う寸法である。
 第1実施形態では、電極3、電極4からなる電極対の電極間距離は、複数対において全て等しくした。すなわち、電極3と電極4とを等ピッチで配置した。
 図5から明らかなように、反射器を有しないにもかかわらず、比帯域が12.5%である良好な共振特性が得られている。
 ところで、上記圧電層2の厚みをd、電極3と電極4との電極の中心間距離をpとした場合、第1実施形態では、d/pは0.5以下、より好ましくは0.24以下である。これを、図6を参照して説明する。
 図5に示した共振特性を得た弾性波装置と同様に、但しd/2pを変化させ、複数の弾性波装置を得た。図6は、第1実施形態の弾性波装置において、隣り合う電極の中心間距離または中心間距離の平均距離をp、圧電層の平均厚みをdとした場合、d/2pと、共振子としての比帯域との関係を示す説明図である。
 図6に示すように、d/2pが0.25を超えると、すなわちd/p>0.5では、d/pを調整しても、比帯域は5%未満である。これに対して、d/2p≦0.25、すなわちd/p≦0.5の場合には、その範囲内でd/pを変化させれば、比帯域を5%以上とすることができ、すなわち高い結合係数を有する共振子を構成することができる。また、d/2pが0.12以下の場合、すなわちd/pが0.24以下の場合には、比帯域を7%以上と高めることができる。加えて、d/pをこの範囲内で調整すれば、より一層比帯域の広い共振子を得ることができ、より一層高い結合係数を有する共振子を実現することができる。従って、本願の第2の発明のように、d/pを0.5以下とすることにより、上記厚み滑り1次モードのバルク波を利用した、高い結合係数を有する共振子を構成し得ることがわかる。
 なお、少なくとも1対の電極は、1対でもよく、上記pは、1対の電極の場合、隣り合う電極3、電極4の中心間距離とする。また、1.5対以上の電極の場合には、隣り合う電極3、電極4の中心間距離の平均距離をpとすればよい。
 また、圧電層の厚みdについても、圧電層2が厚みばらつきを有する場合、その厚みを平均化した値を採用すればよい。
 図7は、第1実施形態の弾性波装置において、1対の電極が設けられている例を示す平面図である。弾性波装置31では、圧電層2の第1の主面2a上において、電極3と電極4とを有する1対の電極が設けられている。なお、図7中のKが交差幅となる。前述したように、本開示の弾性波装置では、電極の対数は1対であってもよい。この場合においても、上記d/pが0.5以下であれば、厚み滑り1次モードのバルク波を効果的に励振することができる。
 図8は、第1実施形態の変形例であって、図1AのII-II線に沿う部分の断面図である。弾性波装置41では、圧電層2の第2の主面2bに音響多層膜42が積層されている。音響多層膜42は、音響インピーダンスが相対的に低い低音響インピーダンス層42a、42c、42eと、音響インピーダンスが相対的に高い高音響インピーダンス層42b、42dとの積層構造を有する。音響多層膜42を用いた場合、弾性波装置1における空洞部9を用いずとも、厚み滑り1次モードのバルク波を圧電層2内に閉じ込めることができる。弾性波装置41においても、上記d/pを0.5以下とすることにより、厚み滑り1次モードのバルク波に基づく共振特性を得ることができる。なお、音響多層膜42においては、その低音響インピーダンス層42a、42c、42e及び高音響インピーダンス層42b、42dの積層数は特に限定されない。低音響インピーダンス層42a、42c、42eよりも、少なくとも1層の高音響インピーダンス層42b、42dが圧電層2から遠い側に配置されておりさえすればよい。
 上記低音響インピーダンス層42a、42c、42e及び高音響インピーダンス層42b、42dは、上記音響インピーダンスの関係を満たす限り、適宜の材料で構成することができる。例えば、低音響インピーダンス層42a、42c、42eの材料としては、酸化ケイ素または酸窒化ケイ素などを挙げることができる。また、高音響インピーダンス層42b、42dの材料としては、アルミナ、窒化ケイ素または金属などを挙げることができる。
 以上説明したように、弾性波装置1、31、41では、厚み滑り1次モードのバルク波が利用されている。また、弾性波装置1、31、41では、第1の電極3及び第2の電極4は隣り合う電極同士であり、圧電層の厚みをd、第1電極及び第2電極の中心間距離をpとした場合、d/pが0.5以下とされている。これにより、弾性波装置が小型化しても、Q値を高めることができる。
 弾性波装置1、31、41では、圧電層2がニオブ酸リチウムまたはタンタル酸リチウムで形成されている。圧電層2の第1の主面2a又は第2の主面2bには、圧電層2の厚み方向に交差する方向において対向する第1の電極3及び第2の電極4があり、第1の電極3及び第2の電極4の上を保護膜で覆うことが望ましい。
 図9は、第1実施形態において、図1BのIX-IX線に沿う部分の断面図である。図9に示す電極3及び電極4の膜厚は、理解を容易にするため、実際の膜厚差よりも拡大して記載されている。第1実施形態において、図2に示す電極3及び電極4の膜厚は、図9に示すように、膜厚ft1、膜厚ft2、膜厚ft3、膜厚ft4、膜厚ft5のいずれかである。以下の説明では、電極3及び電極4を区別しない場合、電極50として説明する。膜厚ft1と、膜厚ft2との差は、例えば、10nmである。膜厚ft2と、膜厚ft3との差は、例えば、10nmである。膜厚ft3と、膜厚ft4との差は、例えば、10nmである。膜厚ft4と、膜厚ft5との差は、例えば、10nmである。膜厚ft1が580nmである場合、膜厚ft2が590nmであり、膜厚ft3が600nmであり、膜厚ft4が610nmであり、膜厚ft5が620nmである。
 X方向に同じ膜厚ft1の電極50同士で挟む電極50の数は、7つである。X方向に同じ膜厚ft2の電極50同士で挟む電極50の数は、7つである。X方向に同じ膜厚ft3の電極50同士で挟む電極50の数は、7つである。X方向に同じ膜厚ft4の電極50同士で挟む電極50の数は、7つである。X方向に同じ膜厚ft5の電極50同士で挟む電極50の数は、7つである。このように、X方向に並ぶ同じ電極50同士で挟む、この電極50同士とは異なる膜厚の電極50の数は、一定である。なお、膜厚が同じ電極50には、一方の電極50の膜厚が、他方の電極50の膜厚の±5%以内の膜厚である場合も含む。
 電極50は、X方向に順に、膜厚ft1、膜厚ft2、膜厚ft3、膜厚ft4、膜厚ft5、膜厚ft4、膜厚ft3、膜厚ft2、膜厚ft1を1つの膜厚の組み合わせとしてX方向に並べられている。この膜厚の組み合わせは、X方向に繰り返される。このように、X方向に並ぶ電極50は、膜厚の組み合わせに規則性がある。例えば、膜厚ft1の電極50は、X方向の8つ毎に周期的に配置されている。
 図10Aは、第1実施形態のスプリアスと周波数との関係を説明するための説明図である。第1実施形態の実施例1BLのシミュレーションの条件は以下の通りであり、評価結果が図10Aに示されている。
 電極3と電極4との間の中心間距離(ピッチ):4.2μm
 圧電層2:オイラー角(0°,127.5°,0°)のLiNbO
 圧電層の膜厚:0.5um
 電極3及び電極4の材料:Al
 電極3と電極4との間の中心間距離(ピッチ):3.14μm
 電極3及び電極4の各電極線幅:1.26μm
 第1のバスバーと電極4との間のギャップ幅及び第2のバスバーと電極3との間のギャップ幅:1.90μm
 電極対数:20対(41本)
 電極3及び電極4の膜厚:膜厚ft1が580nmである場合、膜厚ft2が590nmであり、膜厚ft3が600nmであり、膜厚ft4が610nmであり、膜厚ft5が620nmである。図9に示す膜厚の組み合わせで、電極3及び電極4が並べられている。
 図10Bは、比較例のスプリアスと周波数との関係を説明するための説明図である。
 比較例RLのシミュレーションの条件は以下の通りであり、評価結果が図10Bに示されている。
 電極3と電極4との間の中心間距離(ピッチ):4.2μm
 圧電層2:オイラー角(0°,127.5°,0°)のLiNbO
 圧電層の膜厚:0.5um
 電極3及び電極4の材料:Al
 電極3と電極4との間の中心間距離(ピッチ):3.14μm
 電極3及び電極4の各電極線幅:1.26μm
 第1のバスバーと電極4との間のギャップ幅及び第2のバスバーと電極3との間のギャップ幅:1.90μm
 電極対数:20対(41本)
 全ての電極3及び電極4の膜厚:600nm
 図10A及び図10Bには、横軸に周波数をとり、縦軸に位相をとった場合の共振特性が示されている。図10Bに現れていた比較例RLのスプリアスと同じ周波数を図10Aで確認すると、矢印で示す位置のスプリアスの強度が抑制されていることが分かる。
(第2実施形態)
 図11は、第2実施形態において、図1BのIX-IX線に沿う部分の断面図である。図11に示す電極3及び電極4の膜厚は、理解を容易にするため、実際の膜厚差よりも拡大して記載されている。第2実施形態において、図11に示す電極3及び電極4の各膜厚は、膜厚ft1、膜厚ft2、膜厚ft3、膜厚ft4のいずれかである。
 電極3及び電極4の各膜厚は、ft1<ft2<ft3<ft4の関係を満たしている。膜厚ft1と膜厚ft2との膜厚差は、膜厚ft2と膜厚ft3との膜厚差よりも小さい。第2実施形態では、隣り合う電極3と電極4との膜厚差が異なる。そして、X方向に並んだ3つの電極3、電極4、電極3は、膜厚が異なる。
 X方向に同じ膜厚ft1の電極50同士で挟む電極50の数は、4つである。X方向に同じ膜厚ft2の電極50同士で挟む電極50の数は、4つである。X方向に同じ膜厚ft3の電極50同士で挟む電極50の数は、1つ又は4つである。X方向に同じ膜厚ft4の電極50同士で挟む電極50の数は、4つである。このように、X方向に並ぶ同じ電極50同士で挟む、この電極50同士とは異なる膜厚の電極50の数には、規則性がある。なお、膜厚が同じ電極50には、一方の電極50の膜厚が、他方の電極50の膜厚の±5%以内の膜厚である場合も含む。
 電極50は、X方向に順に、膜厚ft1、膜厚ft2、膜厚ft3、膜厚ft4、膜厚ft3、膜厚ft1を1つの膜厚の組み合わせとしてX方向に並べられている。この膜厚の組み合わせは、X方向に繰り返される。このように、X方向に並ぶ電極50は、膜厚の組み合わせに規則性がある。例えば、膜厚ft1の電極50は、X方向の5つ毎に周期的に配置されている。
(第3実施形態)
 図12は、第3実施形態において、図1BのIX-IX線に沿う部分の断面図である。図12に示す電極3及び電極4の膜厚は、理解を容易にするため、実際の膜厚差よりも拡大して記載されている。第3実施形態において、図12に示す電極3及び電極4の各膜厚は、膜厚ft1、膜厚ft2、膜厚ft3のいずれかである。
 電極3及び電極4の各膜厚は、ft1<ft2<ft3の関係を満たしている。膜厚ft1と膜厚ft2との膜厚差は、膜厚ft2と膜厚ft3との膜厚差と同じである。第3実施形態では、隣り合う電極3と電極4との膜厚差が同じである。そして、X方向に並んだ3つの電極3、電極4、電極3は、膜厚が異なる。
 X方向に同じ膜厚ft1の電極50同士で挟む電極50の数は、3つである。X方向に同じ膜厚ft2の電極50同士で挟む電極50の数は、3つである。X方向に同じ膜厚ft3の電極50同士で挟む電極50の数は、3つである。このように、X方向に並ぶ同じ電極50同士で挟む、この電極50同士とは異なる膜厚の電極50の数は、一定である。なお、膜厚が同じ電極50には、一方の電極50の膜厚が、他方の電極50の膜厚の±5%以内の膜厚である場合も含む。
 電極50は、X方向に順に、膜厚ft1、膜厚ft2、膜厚ft3、膜厚ft2、膜厚ft1を1つの膜厚の組み合わせとしてX方向に並べられている。この膜厚の組み合わせは、X方向に繰り返される。このように、X方向に並ぶ電極50は、膜厚の組み合わせに規則性がある。例えば、膜厚ft1の電極50は、X方向の4つ毎に周期的に配置されている。
(第4実施形態)
 図13は、第4実施形態において、図1BのIX-IX線に沿う部分の断面図である。図13に示す電極3及び電極4の膜厚は、理解を容易にするため、実際の膜厚差よりも拡大して記載されている。第4実施形態において、図13に示す電極3及び電極4の各膜厚は、膜厚ft1、膜厚ft2のいずれかである。
 電極3及び電極4の各膜厚は、ft1<ft2の関係を満たしている。第4実施形態の弾性波装置は、少なくとも膜厚の異なる2つの電極50を含み、かつ、X方向に隣り合う電極50同士の膜厚が同じ領域がある。なお、隣り合う電極3、電極4同士の膜厚が同じ場合には、隣り合う電極のうち、一方の電極3の膜厚が、他方の電極4の膜厚の±5%以内の膜厚である場合も含む。
 複数の電極50は、X方向に同じ膜厚ft1の電極50が2つ並び、X方向に同じ膜厚ft1の電極50が3つ並ぶ膜厚の組み合わせとしてX方向に並べられている。この膜厚の組み合わせは、X方向に繰り返される。このように、X方向に並ぶ電極50は、膜厚の組み合わせに規則性がある。
(第5実施形態)
 図14は、第5実施形態において、図1BのIX-IX線に沿う部分の断面図である。図14に示す電極3及び電極4の膜厚は、理解を容易にするため、実際の膜厚差よりも拡大して記載されている。第5実施形態において、図13に示す電極3及び電極4の各膜厚は、膜厚ft1、膜厚ft2、膜厚ft3、膜厚ft4、膜厚ft5、膜厚ft6のいずれかである。
 電極3及び電極4の各膜厚は、ft1<ft2<ft3<ft4<ft5<ft6の関係を満たしている。膜厚ft1と膜厚ft2との膜厚差は、膜厚ft2と膜厚ft3との膜厚差よりも小さい。第5実施形態では、隣り合う電極3と電極4との膜厚差が異なる領域がある。
 第5施形態の弾性波装置は、少なくとも膜厚の異なる6つの電極50を含み、かつ、X方向に隣り合う電極50同士の膜厚ft1が同じ領域がある。なお、隣り合う電極3、電極4同士の膜厚が同じ場合には、隣り合う電極のうち、一方の電極3の膜厚が、他方の電極4の膜厚の±5%以内の膜厚である場合も含む。
 第5実施形態の弾性波装置は、X方向に、膜厚の異なる少なくとも3つの電極50が並ぶ領域を含む。X方向に並ぶ電極50の膜厚は、ランダムである。このように、X方向に並ぶ電極50の膜厚には、規則性がない。
(第6実施形態)
 図15は、第6実施形態において、図1BのIX-IX線に沿う部分の断面図である。図15に示す電極3及び電極4の膜厚は、理解を容易にするため、実際の膜厚差よりも拡大して記載されている。第6実施形態において、図15に示す電極3及び電極4の各膜厚は、膜厚ft1、膜厚ft2のいずれかである。
 電極3及び電極4の各膜厚は、ft1<ft2の関係を満たしている。第5実施形態の弾性波装置は、少なくとも膜厚の異なる2つの電極50を含み、かつ、X方向に隣り合う電極50同士の膜厚が同じ領域がある。なお、隣り合う電極3、電極4同士の膜厚が同じ場合には、隣り合う電極のうち、一方の電極3の膜厚が、他方の電極4の膜厚の±5%以内の膜厚である場合も含む。
 複数の電極50は、X方向に同じ膜厚ft1の電極50が2つ並び、X方向に同じ膜厚ft1の電極50が3つ並ぶ膜厚の組み合わせとしてX方向に並べられている。この膜厚の組み合わせは、X方向に繰り返される。このように、X方向に並ぶ電極50は、膜厚の組み合わせに規則性がある。
 第6実施形態の弾性波装置は、X方向に、膜厚の異なる少なくとも2つの電極50が並ぶ領域を含む。X方向に並ぶ電極50の膜厚は、ランダムである。このように、X方向に並ぶ電極50の膜厚には、規則性がない。
 以上説明したように、弾性波装置は、第1の主面2aと、第1の主面2aの反対側であって、かつ第1の主面2aに対してZ方向にある第2の主面2bとを有する圧電層2と、Z方向に交差するX方向において対向し、第1の主面2aの上に隣り合って設けられた少なくとも1対の電極3、電極4を含む複数の電極50と、を備える。
 第1実施形態、第2実施形態、第3実施形態、第5実施形態のように、そして、X方向に、複数の電極50のうち、少なくとも3つ以上の電極が並んでおり、複数の電極50は、膜厚の異なる少なくとも3つの電極を含む。
 これにより、電極50の膜厚を異ならせても、共振周波数や反共振周波数に影響を与えにくい。一方、電極50の膜厚を異ならせると、スプリアスが低減され、共振特性の劣化を抑制することが可能となる。
 膜厚の異なる少なくとも3つの電極3は、同じ極性である。膜厚の異なる少なくとも3つの電極4は、同じ極性である。これにより、スプリアスが低減され、共振特性の劣化を抑制することが可能となる。
 第4実施形態、第6実施形態のように、そして、X方向に、複数の電極50のうち、少なくとも3つ以上の電極が並んでおり、複数の電極50は、膜厚が異なる少なくとも2つの電極を含む。複数の電極50は、膜厚が同じであって、隣り合う2つの電極50を少なくとも含む。第5実施形態のように、複数の電極50は、膜厚が同じであって、隣り合う2つの電極50を少なくとも含んでもよい。
 これにより、電極50の膜厚を異ならせても、共振周波数や反共振周波数に影響を与えにくい。一方、電極50の膜厚を異ならせると、スプリアスが低減され、共振特性の劣化を抑制することが可能となる。
 膜厚の異なる少なくとも2つの電極3は、同じ極性である。膜厚の異なる少なくとも2つの電極4は、同じ極性である。これにより、スプリアスが低減され、共振特性の劣化を抑制することが可能となる。
 弾性波装置1、31、41では、厚み滑り1次モードのバルク波が利用されている。これにより、結合係数が高まり、良好な共振特性が得られる弾性波装置を提供することができる。
 また、第1の電極3及び第2の電極4は隣り合う電極50同士であり、圧電層の厚みをd、第1電極及び第2電極の中心間距離をpとした場合、d/pが0.5以下とされている。これにより、弾性波装置を小型化でき、かつQ値を高めることができる。
 望ましい態様として、X方向に並ぶ電極50の膜厚には、規則性がある。これにより、規則性を異ならせることで、特定のスプリアスの周波数を移動させ、又は特定のスプリアスの強度を変更させやすくなる。
 望ましい態様として、X方向に同じ膜厚の電極50同士で挟む、この電極50同士とは異なる膜厚の電極50の数は、一定である。これにより、X方向に同じ膜厚の電極50同士で挟む電極50の数を異ならせることで、特定のスプリアスの周波数を移動させ、又は特定のスプリアスの強度を変更させやすくなる。
 望ましい態様として、X方向に並ぶ電極50の膜厚には、規則性がない。これにより、特定の周波数に大きなスプリアスが発生するのを抑制することができる。
 なお、上記した実施の形態は、本開示の理解を容易にするためのものであり、本開示を限定して解釈するためのものではない。本開示は、その趣旨を逸脱することなく、変更/改良され得るとともに、本開示にはその等価物も含まれる。
1、31、41 弾性波装置
2 圧電層
2a 第1の主面
2b 第2の主面
3 電極(第1の電極)
4 電極(第2の電極)
5 第1のバスバー
6 第2のバスバー
7 中間層
7a 開口部
8 支持部材
8a 開口部
9 空洞部
42 音響多層膜
42a 低音響インピーダンス層
42b 高音響インピーダンス層
42c 低音響インピーダンス層
42d 高音響インピーダンス層
42e 低音響インピーダンス層
50 電極
201 圧電層
201a 第1の主面
201b 第2の主面
451 第1領域
452 第2領域
C 励振領域
VP1 仮想平面
Y 回転
d 厚み
ft1、ft2、ft3、ft4、ft5、ft6 膜厚
p 中心間距離

Claims (10)

  1.  第1の主面と、前記第1の主面の反対側であって、かつ前記第1の主面に対して第1方向にある第2の主面とを有する圧電層と、
     前記第1方向に交差する第2方向において対向し、前記第1の主面の上に隣り合って設けられた少なくとも1対の電極を含む複数の電極と、を備え、
     前記第2方向に、前記複数の電極のうち、少なくとも3つ以上の電極が並んでおり、
     前記複数の電極は、膜厚の異なる少なくとも2つの電極を含み、
     前記複数の電極は、膜厚が同じであって、隣り合う2つの電極を少なくとも含む、弾性波装置。
  2.  請求項1に記載の弾性波装置であって、
     前記膜厚の異なる少なくとも2つの電極は、同じ極性である、弾性波装置。
  3.  第1の主面と、前記第1の主面の反対側であって、かつ前記第1の主面に対して第1方向にある第2の主面とを有する圧電層と、
     前記第1方向に交差する第2方向において対向し、前記第1の主面の上に隣り合って設けられた少なくとも1対の電極を含む複数の電極と、を備え、
     前記第2方向に、前記複数の電極のうち、少なくとも3つ以上の電極が並んでおり、
     前記複数の電極は、膜厚の異なる少なくとも3つの電極を含む、弾性波装置。
  4.  請求項2に記載の弾性波装置であって、
     前記膜厚の異なる少なくとも3つの電極は、同じ極性である、弾性波装置。
  5.  請求項3または4に記載の弾性波装置であって、
     前記複数の電極は、膜厚が同じであって、隣り合う2つの電極を少なくとも含む、弾性波装置。
  6.  請求項1から5のいずれか1項に記載の弾性波装置であって、
     前記圧電層は、ニオブ酸リチウム又はタンタル酸リチウムを含み、
     厚み滑り1次モードのバルク波を利用する、弾性波装置。
  7.  請求項1から5のいずれか1項に記載の弾性波装置であって、
     前記圧電層は、ニオブ酸リチウム又はタンタル酸リチウムを含み、
     前記圧電層の平均厚みをd、隣り合う電極の中心間距離をpとして、d/pが0.5以下である、弾性波装置。
  8.  前記第2方向に並ぶ電極の膜厚には、規則性がある、請求項1から7のいずれか1項に記載の弾性波装置。
  9.  前記第2方向に同じ膜厚の電極同士で挟む当該電極同士とは異なる膜厚の電極の数は、一定である、請求項1から7のいずれか1項に記載の弾性波装置。
  10.  前記第2方向に並ぶ電極の膜厚には、規則性がない、請求項1から7のいずれか1項に記載の弾性波装置。
PCT/JP2021/030877 2020-08-24 2021-08-23 弾性波装置 WO2022045088A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180051666.8A CN115997342A (zh) 2020-08-24 2021-08-23 弹性波装置
US18/110,414 US20230198499A1 (en) 2020-08-24 2023-02-16 Acoustic wave device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063069211P 2020-08-24 2020-08-24
US63/069,211 2020-08-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/110,414 Continuation US20230198499A1 (en) 2020-08-24 2023-02-16 Acoustic wave device

Publications (1)

Publication Number Publication Date
WO2022045088A1 true WO2022045088A1 (ja) 2022-03-03

Family

ID=80353304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030877 WO2022045088A1 (ja) 2020-08-24 2021-08-23 弾性波装置

Country Status (3)

Country Link
US (1) US20230198499A1 (ja)
CN (1) CN115997342A (ja)
WO (1) WO2022045088A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190370A1 (ja) * 2022-03-28 2023-10-05 株式会社村田製作所 弾性波装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01292908A (ja) * 1988-05-20 1989-11-27 Hitachi Ltd 弾性表面波フィルタ
JPH07240657A (ja) * 1994-03-01 1995-09-12 Asahi Chem Ind Co Ltd 一方向性弾性表面波変換器
JPH09266431A (ja) * 1996-01-23 1997-10-07 Seiko Epson Corp 体積超音波トランスジューサ及び弾性表面波装置
JP2010233210A (ja) * 2009-03-03 2010-10-14 Nippon Dempa Kogyo Co Ltd 弾性波デバイス及び電子部品
JP2013528996A (ja) * 2010-04-23 2013-07-11 テクノロジアン テュトキムスケスクス ヴェーテーテー 広帯域音響結合薄膜bawフィルタ
JP2015109574A (ja) * 2013-12-05 2015-06-11 株式会社村田製作所 縦結合共振子型弾性表面波フィルタおよび通信機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01292908A (ja) * 1988-05-20 1989-11-27 Hitachi Ltd 弾性表面波フィルタ
JPH07240657A (ja) * 1994-03-01 1995-09-12 Asahi Chem Ind Co Ltd 一方向性弾性表面波変換器
JPH09266431A (ja) * 1996-01-23 1997-10-07 Seiko Epson Corp 体積超音波トランスジューサ及び弾性表面波装置
JP2010233210A (ja) * 2009-03-03 2010-10-14 Nippon Dempa Kogyo Co Ltd 弾性波デバイス及び電子部品
JP2013528996A (ja) * 2010-04-23 2013-07-11 テクノロジアン テュトキムスケスクス ヴェーテーテー 広帯域音響結合薄膜bawフィルタ
JP2015109574A (ja) * 2013-12-05 2015-06-11 株式会社村田製作所 縦結合共振子型弾性表面波フィルタおよび通信機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190370A1 (ja) * 2022-03-28 2023-10-05 株式会社村田製作所 弾性波装置

Also Published As

Publication number Publication date
US20230198499A1 (en) 2023-06-22
CN115997342A (zh) 2023-04-21

Similar Documents

Publication Publication Date Title
WO2021246447A1 (ja) 弾性波装置
CN116803003A (zh) 弹性波装置
WO2022102719A1 (ja) 弾性波装置
WO2022045088A1 (ja) 弾性波装置
WO2023223906A1 (ja) 弾性波素子
WO2023013742A1 (ja) 弾性波装置
WO2023002790A1 (ja) 弾性波装置
WO2023002823A1 (ja) 弾性波装置
WO2022124391A1 (ja) 弾性波装置
WO2022131309A1 (ja) 弾性波装置
WO2021246446A1 (ja) 弾性波装置
WO2022045086A1 (ja) 弾性波装置
WO2022045087A1 (ja) 弾性波装置
WO2022124409A1 (ja) 弾性波装置
WO2022244635A1 (ja) 圧電バルク波装置
WO2023058755A1 (ja) 弾性波装置および弾性波装置の製造方法
WO2023210762A1 (ja) 弾性波素子
WO2023286605A1 (ja) 弾性波装置
WO2023058767A1 (ja) 弾性波装置
WO2022075415A1 (ja) 弾性波装置
WO2022186201A1 (ja) 弾性波装置
WO2023171721A1 (ja) 弾性波装置
WO2023219167A1 (ja) 弾性波装置
WO2023140272A1 (ja) 弾性波装置
US20230336140A1 (en) Acoustic wave device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP