WO2022045050A1 - 潤滑油組成物 - Google Patents

潤滑油組成物 Download PDF

Info

Publication number
WO2022045050A1
WO2022045050A1 PCT/JP2021/030748 JP2021030748W WO2022045050A1 WO 2022045050 A1 WO2022045050 A1 WO 2022045050A1 JP 2021030748 W JP2021030748 W JP 2021030748W WO 2022045050 A1 WO2022045050 A1 WO 2022045050A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating oil
oil composition
mass
group
composition according
Prior art date
Application number
PCT/JP2021/030748
Other languages
English (en)
French (fr)
Inventor
明雄 小島
幸生 吉田
賢一 緒方
将太 加藤
恵一 成田
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to CN202180039948.6A priority Critical patent/CN115698235A/zh
Priority to EP21861476.6A priority patent/EP4206307A4/en
Priority to US18/005,692 priority patent/US20230272297A1/en
Publication of WO2022045050A1 publication Critical patent/WO2022045050A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • C10M107/30Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M107/32Condensation polymers of aldehydes or ketones; Polyesters; Polyethers
    • C10M107/34Polyoxyalkylenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • C10M107/30Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M107/32Condensation polymers of aldehydes or ketones; Polyesters; Polyethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/10Liquid materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/18Ethers, e.g. epoxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • C10M107/22Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M107/24Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol, aldehyde, ketonic, ether, ketal or acetal radical
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • C10M111/04Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a macromolecular organic compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol or ester thereof; bound to an aldehyde, ketonic, ether, ketal or acetal radical
    • C10M2209/043Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol or ester thereof; bound to an aldehyde, ketonic, ether, ketal or acetal radical used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/1033Polyethers, i.e. containing di- or higher polyoxyalkylene groups used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/105Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
    • C10M2209/1055Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/108Polyethers, i.e. containing di- or higher polyoxyalkylene groups etherified
    • C10M2209/1085Polyethers, i.e. containing di- or higher polyoxyalkylene groups etherified used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/017Specific gravity or density
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/04Molecular weight; Molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/28Anti-static
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/14Electric or magnetic purposes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/14Electric or magnetic purposes
    • C10N2040/16Dielectric; Insulating oil or insulators
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants

Definitions

  • the present invention relates to a lubricating oil composition, for example, a lubricating oil composition used for cooling equipment for electric vehicles.
  • a lubricating oil composition such as an existing automatic transmission fluid (hereinafter, also referred to as “ATF”) or a continuously variable transmission fluid (hereinafter, also referred to as “CVTF”) is mainly used.
  • ATF automatic transmission fluid
  • CVTF continuously variable transmission fluid
  • Patent Document 1 as a lubricating oil composition for cooling and / or lubricating an electric vehicle engine and various parts thereof, an alkylene oxide containing 2 to 8 carbon atoms, preferably 2 to 4 carbon atoms. It has been proposed to use a lubricating oil composition containing at least one polyalkylene glycol obtained by polymerization or copolymerization.
  • the lubricating oil composition of Patent Document 1 has sufficient cooling performance.
  • the lubricating oil composition used for cooling equipment for electric vehicles is required to have a high flash point from the viewpoint of ensuring safety, and may have a low pour point from the viewpoint of use in cold regions. Required. Further, as described above, it is also required to have excellent electrical insulation.
  • the present invention has been made in view of the above problems and the above requirements, and has a lubricating oil composition having a high flash point, a low pour point, and excellent electrical insulation while having excellent cooling performance.
  • the challenge is to provide things.
  • the present inventors have conducted a lubrication containing one or more synthetic oils selected from the group consisting of polyalkylene glycols having a specific number of bodies and polyvinyl ethers having a specific number of bodies. It has been found that the oil composition can solve the above-mentioned problems, and the present invention has been completed.
  • the base oil (A) is selected from the group consisting of a polyalkylene glycol having a structural unit represented by the following general formula (1) and a polyvinyl ether having a structural unit represented by the following general formula (2) 1
  • R 1 and R 2 each independently represent a hydrogen atom or a monovalent hydrocarbon group having 1 to 18 carbon atoms.
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • n is an integer of 3 to 5.
  • R 5 , R 6 and R 7 each independently represent a hydrogen atom or a monovalent hydrocarbon group having 1 to 8 carbon atoms.
  • R 8 represents a divalent hydrocarbon group having 2 to 10 carbon atoms.
  • R 9 represents a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • m is 3 or 4.
  • q is an integer from 0 to 10.
  • [2] The lubricating oil composition according to the above [1], which is used for cooling equipment for electric vehicles.
  • a cooling system for cooling equipment for an electric vehicle comprising the lubricating oil composition according to [1] or [2].
  • a lubricating oil composition having a high flash point, a low pour point, and excellent electrical insulation while having excellent cooling performance.
  • the lubricating oil composition of the present invention is a lubricating oil composition containing a base oil (A), and the base oil (A) is a polyalkylene glycol having a structural unit represented by the following general formula (1). And one or more synthetic oils (A1) selected from the group consisting of polyvinyl ethers having a structural unit represented by the following general formula (2).
  • R 1 and R 2 each independently represent a hydrogen atom or a monovalent hydrocarbon group having 1 to 18 carbon atoms.
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • n is an integer of 3 to 5.
  • R 5 , R 6 and R 7 each independently represent a hydrogen atom or a monovalent hydrocarbon group having 1 to 8 carbon atoms.
  • R 8 represents a divalent hydrocarbon group having 2 to 10 carbon atoms.
  • R 9 represents a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • m is 3 or 4.
  • q is an integer from 0 to 10.
  • the trimer to pentamer polyalkylene glycol, and further the trimer or tetramer polyvinyl ether has a high ignition point, a low pour point, and moreover, while having excellent cooling performance. It was also found to be excellent in electrical insulation.
  • the lubricating oil composition of one aspect of the present invention is preferably composed of only the base oil (A), but other components other than the base oil (A) as long as the effects of the present invention are not impaired. May be contained.
  • the content of the base oil (A) is preferably based on the total mass of the lubricating oil composition from the viewpoint of facilitating the effect of the present invention. Is 30% by mass or more, more preferably 50% by mass or more, further preferably 60% by mass or more, still more preferably 70% by mass or more, still more preferably 80% by mass or more, still more preferably 90% by mass or more, still more.
  • the lubricating oil composition of one aspect of the present invention is composed of only the base oil (A), the lubricating oil composition is also referred to as "lubricating oil base oil".
  • the base oil (A) will be described in detail.
  • the lubricating oil composition of the present invention contains a base oil (A).
  • the base oil (A) is one selected from the group consisting of polyalkylene glycol having a structural unit represented by the general formula (1) and polyvinyl ether having a structural unit represented by the general formula (2). Contains the above synthetic oil (A1). That is, as the base oil (A), one or more selected from polyalkylene glycols having a structural unit represented by the above general formula (1) may be used alone, and is represented by the above general formula (2). One or more selected from polyvinyl ethers having a structural unit may be used alone.
  • the content of the synthetic oil (A1) is preferably 30% by mass or more, more preferably 40% by mass or more, based on the total amount of the base oil (A), from the viewpoint of facilitating the effect of the present invention. It is more preferably 45% by mass or more, and even more preferably 50% by mass or more. Further, it is preferably 100% by mass or less.
  • the upper and lower limits of these numerical ranges can be arbitrarily combined.
  • the content of the synthetic oil (A1) is preferably 30% by mass or more, more preferably 40% by mass or more, and further, based on the total amount of the lubricating oil composition, from the viewpoint of facilitating the effect of the present invention. It is preferably 45% by mass or more, and even more preferably 50% by mass or more. Further, it is preferably 100% by mass or less.
  • the upper and lower limits of these numerical ranges can be arbitrarily combined.
  • the polyalkylene glycol (PAG) and polyvinyl ether (PVE) contained in the lubricating oil composition of the present invention will be described in detail.
  • PAG Polyalkylene glycol
  • the PAG may be a homopolymer having one type of the constituent unit alone, or may be a copolymer in which two or more types are combined.
  • the mode of copolymerization of the copolymer is not particularly limited, and may be a block copolymer, a random copolymer, or a graft copolymer.
  • the content of the structural unit represented by the following general formula (1) is preferably 50% by mass or more, more preferably 60% by mass, based on all the structural units of PAG, from the viewpoint of facilitating the effect of the present invention.
  • the above is more preferably 70% by mass or more, further preferably 80% by mass or more, still more preferably 90% by mass or more, still more preferably 95% by mass or more. Further, it is preferably 100% by mass or less.
  • the upper and lower limits of these numerical ranges can be arbitrarily combined. Specifically, it is preferably 50% by mass to 100% by mass, more preferably 60% by mass to 100% by mass, further preferably 70% by mass to 100% by mass, still more preferably 80% by mass to 100% by mass, and further. It is preferably 90% by mass to 100% by mass, and more preferably 95% by mass to 100% by mass.
  • the PAG may be used alone or in combination of two or more.
  • R 1 and R 2 each independently represent a hydrogen atom or a monovalent hydrocarbon group having 1 to 18 carbon atoms.
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • n is an integer of 3 to 5.
  • a plurality of R3s may be the same or different from each other. Further, R 1 and R 2 may be the same or different from each other.
  • R 1 and R 2 each independently represent a hydrogen atom or a monovalent hydrocarbon group having 1 to 18 carbon atoms. When the number of carbon atoms of the hydrocarbon group exceeds 18, it is difficult to obtain PAG having excellent cooling performance.
  • Examples of the monovalent hydrocarbon group having 1 to 18 carbon atoms that can be selected as R 1 and R 2 include a methyl group, an ethyl group, various propyl groups, various butyl groups, various pentyl groups, various hexyl groups, and various heptyl groups.
  • variable X groups includes all isomers considered as X groups.
  • the "various alkyl groups” represent “linear or branched alkyl groups”.
  • “various propyl groups” represent "n-propyl group, isopropyl group”.
  • “various butyl groups” represent "n-butyl group, sec-butyl group, isobutyl group, tert-butyl group”.
  • the carbon number of the monovalent hydrocarbon group that can be selected as R 1 and R 2 is preferably 1 to 10, more preferably 1 to 6, still more preferably 1 to 1 from the viewpoint of facilitating the improvement of the cooling performance of PAG. 4, more preferably 1 to 3, even more preferably 1 to 2, and even more preferably 1.
  • the monovalent hydrocarbon group having 1 to 18 carbon atoms which can be selected as R 1 and R 2 , is preferably an alkyl group from the viewpoint of facilitating the improvement of the cooling performance of PAG.
  • the alkyl group preferably has 1 to 10, more preferably 1 to 6, still more preferably 1 to 4, still more preferably 1 to 3, still more preferably 1 to 2, and even more preferably 1. ..
  • R 1 and R 2 is a monovalent hydrocarbon group having 1 to 18 carbon atoms, and both R 1 and R 2 are used. It is preferably a monovalent hydrocarbon group having 1 to 18 carbon atoms.
  • the preferred hydrocarbon group and carbon number in this case are as described above.
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • Examples of the alkyl group having 1 to 4 carbon atoms that can be selected as R 3 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group and a tert-butyl group. Can be mentioned.
  • the number of carbon atoms of the alkyl group that can be selected as R 3 is preferably 1 to 3, more preferably 1 to 2, and even more preferably 1 from the viewpoint of facilitating the improvement of the cooling performance of PAG.
  • R3 is preferably a hydrogen atom or a methyl group from the viewpoint of the balance between the cooling performance of PAG , the volume resistivity, and the low temperature fluidity. Further, R 3 is preferably a hydrogen atom from the viewpoint of improving cooling performance, and is preferably a methyl group from the viewpoint of improving volume resistivity and low temperature fluidity.
  • (N) n is an integer of 3 to 5.
  • the value of n represents the number of dimers of PAG, and the present invention is characterized in that PAG of trimers to pentamers is used.
  • the flash point of PAG is lowered and the electrical insulation property is also lowered.
  • the cooling performance of PAG deteriorates.
  • the value of n is preferably 3 to 4, more preferably 3.
  • the value of n is preferably 4 to 5, more preferably 5.
  • the value of n is preferably 4 from the viewpoint of making PAG excellent in the balance between cooling performance, flash point, and electrical insulation.
  • the molecular weight of PAG is preferably 150 or more, more preferably 160 or more, still more preferably 180 or more, still more preferably 200 or more, still more preferably 220 or more, from the viewpoint of making PAG more excellent in cooling performance. Further, it is preferably 1100 or less, more preferably 800 or less, still more preferably 500 or less, still more preferably 400 or less, still more preferably 336 or less. The upper and lower limits of these numerical ranges can be arbitrarily combined. Specifically, it is preferably 150 to 1100, more preferably 160 to 800, still more preferably 180 to 500, still more preferably 200 to 400, and even more preferably 220 to 336.
  • PVE Polyvinyl ether
  • the PVE may be a homopolymer having one kind of the constituent unit alone, or may be a copolymer obtained by combining two or more kinds.
  • the mode of copolymerization of the copolymer is not particularly limited, and may be a block copolymer, a random copolymer, or a graft copolymer.
  • the PVE may be used alone or in combination of two or more.
  • R 5 , R 6 and R 7 each independently represent a hydrogen atom or a monovalent hydrocarbon group having 1 to 8 carbon atoms.
  • R 8 represents a divalent hydrocarbon group having 2 to 10 carbon atoms.
  • R 9 represents a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • m is 3 or 4.
  • q is an integer from 0 to 10.
  • a plurality of R5s may be the same or different from each other. The same applies to a plurality of R 6 , R 7 , R 8 and R 9 . Further, R 5 , R 6 and R 7 may be the same or different from each other.
  • the bond between the carbon atom (C) and —OR 9 in the general formula (2) is a single bond, and the carbon atom (C) and —OR 9 are directly bonded. ..
  • R 5 , R 6 , and R 7 each independently represent a hydrogen atom or a monovalent hydrocarbon group having 1 to 8 carbon atoms. When the number of carbon atoms of the hydrocarbon group exceeds 8, it is difficult to obtain PVE having excellent cooling performance.
  • Examples of the hydrocarbon group having 1 to 8 carbon atoms that can be selected as R 5 , R 6 and R 7 include a methyl group, an ethyl group, various propyl groups, various butyl groups, various pentyl groups and various hexyl groups.
  • Alkyl groups with 1 to 8 carbon atoms such as various heptyl groups and various octyl groups; cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, various methylcyclohexyl groups, various ethylcyclohexyl groups, various dimethylcyclohexyl groups, etc.
  • cycloalkyl groups phenyl groups, various methylphenyl groups, various ethylphenyl groups, various dimethylphenyl groups and other aryl groups having 6 to 8 carbon atoms; benzyl groups, various phenylethyl groups, various methylbenzyl groups and other carbons
  • the number 6 to 8 arylalkyl groups; etc. may be mentioned.
  • the carbon number of the monovalent hydrocarbon group that can be selected as R 5 , R 6 and R 7 is preferably 1 to 6, more preferably 1 to 4, and further, from the viewpoint of facilitating the improvement of the cooling performance of PVE. It is preferably 1 to 3, more preferably 1 to 2, and even more preferably 1.
  • the monovalent hydrocarbon group having 1 to 8 carbon atoms which can be selected as R 5 , R 6 and R 7 is preferably an alkyl group from the viewpoint of facilitating the improvement of the cooling performance of PVE.
  • the alkyl group preferably has 1 to 6, more preferably 1 to 4, still more preferably 1 to 3, still more preferably 1 to 2, and even more preferably 1.
  • R 5 , R 6 and R 7 is a hydrogen atom, and it is more preferable that two or more are hydrogen atoms. It is more preferable that all three are hydrogen atoms.
  • R 8 independently represents a divalent hydrocarbon group having 2 to 10 carbon atoms.
  • R 8 independently represents a divalent hydrocarbon group having 2 to 10 carbon atoms.
  • the number of carbon atoms of the hydrocarbon group exceeds 10, it is difficult to obtain PVE having excellent cooling performance. Further, it is difficult to produce PVE having 1 carbon atom in the hydrocarbon group.
  • Examples of the divalent hydrocarbon group having 2 to 10 carbon atoms that can be selected as R 8 include an ethylene group, a 1,2-propylene group, a 1,3-propylene group, various butylene groups, various pentylene groups, and various types.
  • An alkylene group having 2 to 10 carbon atoms such as a hexylene group, various heptylene groups, various octylene groups, various nonylene groups, and various decylene groups; cyclopropylene group, cyclobutylene group, cyclopentylene group, cyclohexylene group, methylcyclohexylene.
  • Cycloalkylene group having 3 to 10 carbon atoms such as group, ethylcyclohexylene group, dimethylcyclohexylene group; various phenylene groups, various methylphenylene groups, various ethylphenylene groups, various dimethylphenylene groups, various naphthylene groups and the like.
  • divalent aromatic groups divalent alkyl aromatic groups having monovalent bonding sites on the alkyl and aromatic moieties of alkyl aromatic hydrocarbons such as toluene, xylene, ethylbenzene, etc .; xylene , Divalent alkyl aromatic group having a bonding site at the alkyl group moiety of an alkyl aromatic hydrocarbon such as diethylbenzene; and the like.
  • the number of carbon atoms of the divalent hydrocarbon group that can be selected as R 8 is preferably 2 to 8, more preferably 2 to 6, still more preferably 2 to 4, from the viewpoint of facilitating the improvement of the cooling performance of PVE. ..
  • the divalent hydrocarbon group having 2 to 10 carbon atoms which can be selected as R 8 is preferably an alkylene group from the viewpoint of facilitating the improvement of the cooling performance of PVE.
  • the carbon number of the alkylene group is preferably 2 to 8, more preferably 2 to 6, still more preferably 2 to 4, from the viewpoint of the balance between the improvement of the cooling performance of PVE and the improvement of the volume resistivity.
  • R 9 represents a monovalent hydrocarbon group having 1 to 10 carbon atoms. When the number of carbon atoms of the hydrocarbon group exceeds 10, it is difficult to obtain PVE having excellent cooling performance.
  • Examples of the hydrocarbon group having 1 to 10 carbon atoms that can be selected as R 9 include a methyl group, an ethyl group, various propyl groups, various butyl groups, various pentyl groups, various hexyl groups, various heptyl groups, and various octyl groups. , Various nonyl groups, various decyl groups and other alkyl groups having 1 to 10 carbon atoms; cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, various methylcyclohexyl groups, various ethylcyclohexyl groups, various dimethylcyclohexyl groups and the like.
  • cycloalkyl groups 3 to 10 cycloalkyl groups; phenyl group, various methylphenyl groups, various ethylphenyl groups, various dimethylphenyl groups and other aryl groups having 6 to 10 carbon atoms; benzyl group, various phenylethyl groups, various methylbenzyl groups, various types Examples thereof include an arylalkyl group having 6 to 10 carbon atoms such as a phenylpropyl group and various phenylbutyl groups; and the like.
  • the carbon number of the monovalent hydrocarbon group that can be selected as R 9 is preferably 1 to 8, more preferably 1 to 6, still more preferably 1 to 4, from the viewpoint of facilitating the improvement of the cooling performance of PVE. It is more preferably 1 to 3, still more preferably 1 to 2, and even more preferably 1.
  • the monovalent hydrocarbon group having 1 to 10 carbon atoms which can be selected as R 9 is preferably an alkyl group from the viewpoint of facilitating the improvement of the cooling performance of PVE.
  • the alkyl group preferably has 1 to 8, more preferably 1 to 6, still more preferably 1 to 4, still more preferably 1 to 3 or less, still more preferably 1 to 2, still more preferably. It is 1.
  • (Q) q is an integer from 0 to 10.
  • q is an integer exceeding 10, it is difficult to obtain a PVE having excellent cooling performance.
  • the value of q is preferably 0 to 5, more preferably 0 to 3, still more preferably 0 to 2, still more preferably 0 to 1, still more preferably 0 to 5, from the viewpoint of facilitating the improvement of the cooling performance of PVE. Is 0.
  • (M) m is 3 or 4.
  • the value of m represents the number of PVE meters, and the present invention is characterized in that a trimer or a tetramer PVE is used.
  • m is 2 or less, the flash point of PVE decreases. Further, when m is 5 or more, the cooling performance of PVE deteriorates.
  • the value of m is preferably 3.
  • the value of m is preferably 4.
  • End structure of PVE The terminal structure of PVE is not particularly limited, and examples thereof include a hydrogen atom or a monovalent group derived from a saturated hydrocarbon, ether, alcohol, ketone, amide, nitrile, or the like.
  • the end of PVE means the * part in the following general formula (2).
  • the molecular weight of PVE is preferably 176 or more from the viewpoint of making PVE more excellent in cooling performance. Further, it is preferably 5,000 or less, more preferably 3,000 or less, still more preferably 1,000 or less, still more preferably 500 or less, still more preferably 234 or less. The upper and lower limits of these numerical ranges can be arbitrarily combined. Specifically, it is preferably 176 to 5,000, more preferably 176 to 3,000, still more preferably 176 to 1,000, still more preferably 176 to 500, and even more preferably 176 to 234.
  • the base oil (A) refers to a base oil (A2) other than the synthetic oil (A1) (hereinafter, also simply referred to as “other base oil (A2)”). It may be included.
  • the content of the other base oil (A2) is preferably based on the total amount of the base oil (A) from the viewpoint of exerting the performance of the synthetic oil (A1) and making it easier to exert the effect of the present invention. It is 70% by mass or less, more preferably 60% by mass or less, still more preferably 55% by mass or less.
  • the other base oil (A2) one or more selected from the group consisting of synthetic oils other than synthetic oil (A1) and mineral oil can be used.
  • Examples of the synthetic oil other than the synthetic oil (A1) include ⁇ -olefin homopolymers and ⁇ -olefin copolymers (for example, ethylene- ⁇ -olefin copolymers and the like having 8 to 14 carbon atoms).
  • Poly ⁇ -olefins such as (polymers); isoparaffins; various esters such as polyol esters and dibasic acid esters; various ethers such as polyphenyl ethers (excluding PVE); alkylbenzenes; alkylnaphthalene; from natural gas to Fischer-Tropsch Examples thereof include a GTL base oil obtained by isomerizing a wax (gast liquid (GTL) wax) produced by a method or the like.
  • GTL gast liquid
  • mineral oil for example, normal pressure residual oil obtained by atmospheric distillation of crude oil such as paraffin crude oil, intermediate base crude oil, or naphthenic crude oil; and distillate obtained by vacuum distillation of these normal pressure residual oils.
  • Oil Mineral oil obtained by subjecting the distillate oil to one or more refining treatments such as solvent desorption, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, and hydrorefining; and the like.
  • mineral oil may be used alone or in combination of two or more, or synthetic oil other than synthetic oil (A1) may be used alone or in combination of two or more. Further, one or more mineral oils and one or more synthetic oils other than the synthetic oil (A1) may be used in combination.
  • the other base oil (A2) mineral oil is preferable.
  • synthetic oil (A1) and mineral oil in combination it is possible to further improve electrical insulation while ensuring sufficient cooling performance without significantly reducing cooling performance, and cooling performance and electrical insulation. It is possible to prepare a lubricating oil composition having an extremely excellent balance with.
  • the content of the mineral oil is preferably 10% by mass or more, more preferably 30% by mass or more, still more preferably 40% by mass or more, based on the total amount of the base oil (A). Further, it is preferably 70% by mass or less, more preferably 60% by mass or less. The upper and lower limits of these numerical ranges can be arbitrarily combined.
  • the content ratio of the synthetic oil (A1) to the mineral oil [(synthetic oil (A1)) / (mineral oil)] is preferably 30/70 or more, more preferably 40/60 or more in terms of mass ratio. Further, it is preferably 90/10 or less, more preferably 70/30 or less, still more preferably 60/40 or less. The upper and lower limits of these numerical ranges can be arbitrarily combined. Specifically, it is preferably 30/70 to 90/10, more preferably 40/60 to 70/30, and even more preferably 40/60 to 60/40.
  • the content of the synthetic oil (A1') is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, still more preferably 3 parts by mass or less, based on 100 parts by mass of the synthetic oil (A1). It is even more preferably 1 part by mass or less, and even more preferably 0 part by mass.
  • the base oil (A) preferably satisfies the properties specified in the following requirements (1) to (8).
  • the base oil (A) preferably has a relative heat transfer coefficient of 1.01 or more (requirement (1)).
  • the relative heat transfer coefficient is the heat transfer coefficient when the heat transfer coefficient of the mineral oil ( ⁇ ) satisfying the following requirements ( ⁇ 1) to ( ⁇ 4) at 20 ° C. is 1.00.
  • -Requirement ( ⁇ 1) The kinematic viscosity at 20 ° C. is 7.06 mm 2 / s.
  • -Requirement ( ⁇ 2) The specific heat at 20 ° C. is 1.67 kJ / (kg ⁇ K).
  • -Requirement ( ⁇ 3) The density at 20 ° C. is 0.857 g / cm 3 .
  • the heat transfer coefficient is an index of the ease of heat transfer between two substances (that is, the base oil (A) and the object to be cooled).
  • Requirement (1) defines the heat transfer coefficient of the base oil (A) as the relative heat transfer coefficient based on the heat transfer coefficient of the mineral oil ( ⁇ ). It can be said that the larger the relative heat transfer coefficient specified in the requirement (1), the better the cooling performance.
  • the heat transfer coefficient (A ⁇ , unit: W / (m 2 ⁇ K)) of the fluid at 20 ° C. can be calculated from the following formula (I).
  • AD20 is the density (unit: g / cm 3 ) of the fluid at 20 ° C.
  • AC20 is the specific heat (unit: kJ / (kg ⁇ K)) of the fluid at 20 ° C.
  • a HC20 is the thermal conductivity (unit: W / (m ⁇ K)) of the fluid at 20 ° C.
  • a KV20 is the kinematic viscosity (unit: mm 2 / s) of the fluid at 20 ° C.
  • the relative heat transfer coefficient specified in the requirement (1) is more preferably 1.03 or more, further preferably 1.06 or more, still more preferably 1.10 or more. Moreover, it is usually 1.50 or less.
  • the upper and lower limits of these numerical ranges can be arbitrarily combined. Specifically, it is preferably 1.01 to 1.50, more preferably 1.03 to 1.50, still more preferably 1.06 to 1.50, and even more preferably 1.10 to 1.50. ..
  • the base oil (A) preferably has a kinematic viscosity at 40 ° C. (hereinafter, also referred to as “40 ° C. kinematic viscosity”) of 6.00 mm 2 / s or less (requirement (2)). ).
  • the synthetic oil (A1) by containing the synthetic oil (A1), a high flash point is ensured even though the base oil (A) has a low viscosity.
  • kinematic viscosity of the base oil (A) specified in the requirement (2) is more preferably 5.80 mm 2 / s or less, still more preferably 5.60 mm 2 / s or less, still more preferably 5. It is 40 mm 2 / s or less. In addition, it is usually 1.20 mm 2 / s or more. The upper and lower limits of these numerical ranges can be arbitrarily combined. Specifically, it is preferably 1.20 mm 2 / s to 6.00 mm 2 / s, more preferably 1.20 mm 2 / s to 5.80 mm 2 / s, and even more preferably 1.20 mm 2 / s to 5. It is 60 mm 2 / s, more preferably 1.20 mm 2 / s to 5.40 mm 2 / s.
  • the kinematic viscosity of the base oil (A) at 20 ° C. is a predetermined value.
  • the following is preferable. Specifically, it is preferably 11.0 mm 2 / s or less, more preferably 10.5 mm 2 / s or less, and further preferably 10.0 mm 2 / s or less. In addition, it is usually 1.50 mm 2 / s or more. The upper and lower limits of these numerical ranges can be arbitrarily combined.
  • it is preferably 1.50 mm 2 / s to 11.0 mm 2 / s, more preferably 1.50 mm 2 / s to 10.5 mm 2 / s, and further preferably 1.50 mm 2 / s to 10. It is 0 mm 2 / s.
  • the 40 ° C. kinematic viscosity and the 20 ° C. kinematic viscosity of the base oil (A) are values measured or calculated in accordance with JIS K2283: 2000.
  • the base oil (A) preferably has a specific heat of 1.60 kJ / (kg ⁇ K) or more at 20 ° C. (requirement (3)).
  • the specific heat of the base oil (A) specified in the requirement (3) at 20 ° C. is more preferably 1.62 kJ / (kg ⁇ K) or more, still more preferably 1.64 kJ / (kg ⁇ K) or more. Is. Further, it is usually 1.75 kJ / (kg ⁇ K) or less.
  • the upper and lower limits of these numerical ranges can be arbitrarily combined. Specifically, it is preferably 1.60 kJ / (kg ⁇ K) to 1.75 kJ / (kg ⁇ K), more preferably 1.62 kJ / (kg ⁇ K) to 1.75 kJ / (kg ⁇ K). More preferably, it is 1.64 kJ / (kg ⁇ K) to 1.75 kJ / (kg ⁇ K).
  • the specific heat of the base oil (A) at 20 ° C. is the heat conductivity measured value and the thermal effusivity measured value measured by the heat conductivity measuring device and the heat permeability measured by the method described later at 20 ° C. It means a value calculated by the following equation (f1) using the density.
  • (Specific heat at 20 ° C) (heat permeability at 20 ° C) 2 / ⁇ (thermal conductivity at 20 ° C) x (density at 20 ° C) ⁇ ... (f1)
  • the base oil (A) preferably has a density of 0.840 g / cm 3 or more at 20 ° C. (requirement (4)).
  • the higher the density at 20 ° C. the easier it is for the cooling performance of the base oil (A) to improve.
  • the density of the base oil (A) specified in the requirement (4) at 20 ° C. is more preferably 0.850 g / cm 3 or more, still more preferably 0.880 g / cm 3 or more, still more preferably 0. .900 g / cm 3 or more. Further, it is usually 0.980 g / cm 3 or less.
  • the upper and lower limits of these numerical ranges can be arbitrarily combined. Specifically, it is preferably 0.840 g / cm 3 to 0.980 g / cm 3 , more preferably 0.850 g / cm 3 to 0.980 g / cm 3 , and even more preferably 0.880 g / cm 3 to 0. It is 980 g / cm 3 , and even more preferably 0.900 g / cm 3 to 0.980 g / cm 3 .
  • the density of the base oil (A) at 20 ° C. is measured in accordance with JIS K 2249-1: 2011 (crude oil and petroleum products-how to determine the density-Part 1: vibration method). Means the value.
  • the base oil (A) preferably has a thermal conductivity of 0.135 W / (m ⁇ K) or more at 20 ° C. (requirement (5)).
  • the thermal conductivity of the base oil (A) specified in the requirement (5) at 20 ° C. is more preferably 0.140 W / (m ⁇ K) or more, still more preferably 0.143 W / (m ⁇ K).
  • the thermal conductivity of the base oil (A) at 20 ° C. means the thermal conductivity measured by the thermal conductivity measuring device.
  • the base oil (A) preferably has a volume resistivity of 1.00 ⁇ 108 ⁇ ⁇ m or more at 25 ° C. (requirement (6)).
  • the volume resistivity at 25 ° C. specified in the requirement ( 6 ) is preferably 1.00 ⁇ 109 ⁇ ⁇ m or more. It is more preferably 5.00 ⁇ 10 9 ⁇ ⁇ m or more, and further preferably 8.00 ⁇ 10 9 ⁇ ⁇ m or more.
  • the synthetic oil (A1) preferably contains polyvinyl ether represented by the above general formula (2).
  • the volume resistivity of the base oil (A) at 25 ° C. means a value measured under the conditions of a measurement temperature of 25 ° C. and an applied voltage of 250 V in accordance with JIS C2101: 1999.
  • the base oil (A) preferably has a flash point of 100 ° C. or higher (requirement (7)).
  • the flash point specified in the requirement (7) is preferably 110 ° C. or higher, more preferably 120 ° C. or higher, still more preferably 130 ° C. or higher, still more preferably 140 ° C. or higher, still more preferably 150 ° C. or higher. be.
  • it is usually 200 ° C. or lower.
  • the upper and lower limits of these numerical ranges can be arbitrarily combined.
  • it is preferably 100 ° C. to 200 ° C., more preferably 110 ° C. to 200 ° C., still more preferably 120 ° C. to 200 ° C., still more preferably 130 ° C. to 200 ° C., still more preferably 140 ° C. to 200 ° C. , More preferably 150 ° C to 200 ° C.
  • the flash point of the base oil (A) means a value measured by the Cleveland opening method (COC method) in accordance with JIS K 2265-4: 2007.
  • the base oil (A) preferably has a pour point of ⁇ 40 ° C. or lower (requirement (8)).
  • the pour point of the base oil (A) is ⁇ 40 ° C. or lower, it can withstand use in cold regions.
  • the pour point specified in the requirement (8) is more preferably ⁇ 45 ° C. or lower, still more preferably ⁇ 50 ° C. or lower, still more preferably ⁇ 55 ° C. or lower, still more preferably ⁇ 60 ° C. or lower.
  • the pour point of the base oil (A) means a value measured in accordance with JIS K 2269: 1987 (pour point of crude oil and petroleum products and cloud point test method of petroleum products).
  • the lubricating oil composition according to one aspect of the present invention comprises, as necessary, an antiwear agent, an antioxidant, a viscosity index improver, a rust inhibitor, a metal inactivating agent, as long as the effect of the present invention is not impaired.
  • Additives such as defoaming agents and cleaning dispersants can be blended. These additives may be used alone or in combination of two or more. The total content of these additives is not particularly limited, but is, for example, about 0 to 20% by weight based on the total amount of the composition.
  • the anti-wear agent is not particularly limited, and any anti-wear agent conventionally used for lubricating oil can be appropriately selected and used.
  • any anti-wear agent conventionally used for lubricating oil can be appropriately selected and used.
  • a neutral phosphorus compound, an acidic phosphite ester or an amine salt thereof so as not to impair the electrical insulation as much as possible.
  • the content of the anti-wear agent is not particularly limited, but is, for example, about 0.01 to 5% by weight based on the total amount of the composition.
  • neutral phosphorus compound examples include aromatic neutral phosphate esters such as tricresyl phosphate, triphenyl phosphate, tricylenyl phosphate, tricresylphenyl phosphate, tricresyl thiosphate, and triphenyl thiophosphate; tributyl phosphate.
  • aromatic neutral phosphate esters such as tricresyl phosphate, triphenyl phosphate, tricylenyl phosphate, tricresylphenyl phosphate, tricresyl thiosphate, and triphenyl thiophosphate; tributyl phosphate.
  • Tri-2-ethylhexyl phosphate Tri-2-ethylhexyl phosphate, tributoxy phosphate, tributylthiophosphate and other aliphatic neutral phosphates; triphenyl phosphite, tricresyl phosphite, trisnonylphenyl phosphite, diphenylmono-2-ethylhexyl phosphite.
  • Aromatic neutral phosphite such as diphenylmonotridecylphosphite, torqueresylthiophosphite, triphenylthiophosphite; tributylphosphite, trioctylphosphite, trisdecylphosphite, tristridecylphosphite, Examples thereof include aliphatic neutral subphosphates such as trioleyl phosphite, tolbutylthiophosphite, and trioctylthiophosphite. These may be used alone or in combination of two or more.
  • Acidic subphosphates include aliphatic acidic phosphate ester amine salts such as di-2-ethylhexyl acid phosphate amine salt, dilauryl acid phosphate amine salt, and diolayl acid phosphate amine salt; di-2-ethylhexyl hydrogen phosphite.
  • Dilauryl hydrogen phosphite aliphatic acidic subphosphates such as diolayl hydrogen phosphite and amine salts thereof; aromatic acidic phosphate ester amine salts such as diphenylacid phosphate amine salt, dicresyl acid phosphate amine salt; Aromatic acidic subphosphates such as diphenylhydrogen phosphite and dicresylhydrogen phosphite and their amine salts; sulfur-containing acidic phosphorus such as S-octylthioethyl acid phosphate amine salt, S-dodecylthioethyl acid phosphate amine salt.
  • Acid ester amine salts Sulfur-containing acidic subphosphate esters such as S-octylthioethylhydrogenphosphite, S-dodecylthioethylhydrogenphosphite, and amine salts thereof can be mentioned. These may be used alone or in combination of two or more.
  • sulfur-based compounds can be used, and specific examples thereof include thiadiazole-based compounds, polysulfide-based compounds, dithiocarbamate-based compounds, sulfurized oil-based compounds, and sulfurized olefin-based compounds. These may be used alone or in combination of two or more.
  • any known antioxidant that has been conventionally used as an antioxidant for lubricating oil can be appropriately selected and used.
  • examples thereof include amine-based antioxidants (diphenylamines, naphthylamines), phenol-based antioxidants, molybdenum-based antioxidants, sulfur-based antioxidants, phosphorus-based antioxidants, and the like.
  • the antioxidant may be used alone or in combination of two or more.
  • the content of the antioxidant is not particularly limited, but is, for example, about 0.05 to 7% by weight based on the total amount of the composition.
  • ⁇ Viscosity index improver> examples include polymethacrylate, dispersed polymethacrylate, olefin-based copolymer (for example, ethylene-propylene copolymer, etc.), dispersed olefin-based copolymer, and styrene-based copolymer (for example, styrene-based copolymer). Styrene-diene copolymer, styrene-isoprene copolymer, etc.) and the like.
  • the viscosity index improver may be used alone or in combination of two or more.
  • the blending amount (resin content equivalent) of the viscosity index improver is not particularly limited, but is, for example, about 0.1% by weight or more and 10% by weight or less based on the total amount of the composition from the viewpoint of the blending effect.
  • rust preventive agent examples include fatty acids, alkenyl succinic acid half esters, fatty acid sucrose, alkyl sulfonates, polyhydric alcohol fatty acid esters, fatty acid amides, oxidized paraffins, and alkyl polyoxyethylene ethers.
  • the rust inhibitor may be used alone or in combination of two or more.
  • the preferable blending amount of the rust preventive is not particularly limited, but is about 0.01% by weight or more and 3% by weight or less based on the total amount of the composition.
  • Metal inactivating agent examples include benzotriazole, triazole derivative, benzotriazole derivative, and thiadiazole derivative.
  • the metal inactivating agent may be used alone or in combination of two or more.
  • the content of the metal inactivating agent is not particularly limited, but is preferably 0.01 to 5% by weight based on the total amount of the composition.
  • the defoaming agent examples include silicone compounds such as dimethylpolysiloxane and polyacrylates.
  • the defoaming agent may be used alone or in combination of two or more.
  • the content of the defoaming agent is not particularly limited, but is about 0.001% by weight or more and 0.5% by weight or less based on the total amount of the composition.
  • cleaning dispersant examples include succinimide compounds, boron-based imide compounds, and acid amide-based compounds.
  • the cleaning dispersant may be used alone or in combination of two or more.
  • the content of the cleaning dispersant is not particularly limited, but is preferably 0.1 to 20% by weight based on the total amount of the composition.
  • the lubricating oil composition of one aspect of the present invention satisfies the above requirements (1) to (8) defined as the properties of the base oil (A).
  • the suitable range is also as specified in the above requirements (1) to (8).
  • the lubricating oil composition of the present invention has excellent cooling performance, yet has high electrical insulation and a high flash point. In addition, lubricity is also ensured. Therefore, the lubricating oil composition of the present invention can be suitably used as a cooling oil for cooling various devices. In particular, it can be suitably used as a cooling oil for cooling the electric vehicle equipment of the electric vehicle. Specifically, for example, it can be suitably used as a cooling oil for cooling one or more types of electric vehicle equipment selected from the group consisting of a motor, a generator, a power storage device, a converter, an inverter, an engine, and a transmission. The motor may be a dedicated drive motor or a motor that also serves as a generator.
  • the generator mentioned as a device for an electric vehicle means a generator mounted separately from a motor that also serves as a generator.
  • the power storage device include a battery and a capacitor.
  • a method of using the lubricating oil composition of the present invention for cooling an electric vehicle device of an electric vehicle includes one or more selected from the group consisting of a motor, a generator, a power storage device, a converter, an inverter, an engine, and a transmission.
  • the lubricating oil composition of the present invention has excellent cooling performance, yet has high electrical insulation and a high flash point. In addition, lubricity is also ensured.
  • the lubricating oil composition of the present invention has excellent cooling performance, yet has high electrical insulation and a high flash point. In addition, lubricity is also ensured. Therefore, the lubricating oil composition of the present invention cools the equipment while lubricating the equipment by circulating various equipment such as equipment for electric vehicles, for example.
  • a cooling system for cooling equipment for an electric vehicle which comprises the above-described lubricating oil composition of the present invention.
  • the electric vehicle equipment includes one or more selected from the group consisting of a motor, a generator, a power storage device, a converter, an inverter, an engine, and a transmission.
  • the cooling system includes a circulation path through which the lubricating oil composition circulates, and a cooling target portion.
  • the cooling target portion is the device (preferably the device for an electric vehicle).
  • the cooling method in the cooling target portion may be either a direct cooling method or an indirect cooling method, and is appropriately set according to the cooling method required for the equipment (preferably the electric vehicle equipment).
  • the cooling system may be further provided with a supply device for supplying the lubricating oil composition to the cooling target portion via the circulation path.
  • a sensor unit that detects the temperature of the cooling target unit and a control device that controls the operation of the supply device according to the temperature detected by the sensor unit may be further provided.
  • the term “cooling system” means a plurality of “things” in which a plurality of configurations including at least the circulation path and the cooling target portion are aggregated to exert a function of cooling the cooling target portion. It can also be rephrased as an "device” that exerts a function of cooling the cooling target portion by gathering the configurations of the above.
  • the method for producing the lubricating oil composition of the present invention is not particularly limited.
  • the method for producing a lubricating oil composition of one embodiment is a group consisting of a polyalkylene glycol having a structural unit represented by the general formula (1) and a polyvinyl ether having a structural unit represented by the general formula (2).
  • the base oil (A) may include a step of mixing an additive, if necessary.
  • the additives may be blended in any way, and the order of blending and the method thereof are not limited.
  • the base oil (A) is selected from the group consisting of a polyalkylene glycol having a structural unit represented by the following general formula (1) and a polyvinyl ether having a structural unit represented by the following general formula (2) 1
  • R 1 and R 2 each independently represent a hydrogen atom or a monovalent hydrocarbon group having 1 to 18 carbon atoms.
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • n is an integer of 3 to 5.
  • R 5 , R 6 and R 7 each independently represent a hydrogen atom or a monovalent hydrocarbon group having 1 to 8 carbon atoms.
  • R 8 represents a divalent hydrocarbon group having 2 to 10 carbon atoms.
  • R 9 represents a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • m is 3 or 4.
  • q is an integer from 0 to 10.
  • R3 is a methyl group in the general formula (1).
  • R 5 , R 6 and R 7 are hydrogen atoms.
  • R 9 is a methyl group
  • the lubricating oil composition according to [1] or [2], wherein q 0.
  • the relative heat transfer coefficient is 1.01 or more, and the relative heat transfer coefficient is 1.01 or more.
  • the relative heat transfer coefficient is the heat transfer coefficient when the heat transfer coefficient of the mineral oil ( ⁇ ) satisfying the following requirements ( ⁇ 1) to ( ⁇ 4) at 20 ° C. is 1.00, [1] to [4].
  • -Requirement ( ⁇ 1) The kinematic viscosity at 20 ° C. is 7.06 mm 2 / s.
  • -Requirement ( ⁇ 2) The specific heat at 20 ° C. is 1.67 kJ / (kg ⁇ K).
  • -Requirement ( ⁇ 3) The density at 20 ° C. is 0.857 g / cm 3 .
  • -Requirement ( ⁇ 4) The thermal conductivity at 20 ° C. is 0.141 W / (m ⁇ K).
  • [6] The lubricating oil composition according to any one of [1] to [5], wherein the volume resistivity at 25 ° C. is 1.00 ⁇ 108 ⁇ ⁇ m or more.
  • Examples 1 to 9 and Comparative Examples 1 to 9 As shown in Tables 1 to 3, various base oils shown below were used alone or in combination of two to prepare the lubricating oil compositions of Examples 1 to 9 and Comparative Examples 1 to 9.
  • the acceptance criteria are as follows. ⁇ Relative heat transfer coefficient: 1.01 or more ⁇ Volume resistivity: 1.00 ⁇ 108 ⁇ ⁇ m or more ⁇ Flash point: 100 ° C or more ⁇ Pour point: -40 ° C or less
  • PAG having a value of n of 3 to 5 in the above general formula (1) has a high flash point and a low pour point while having excellent cooling performance. Moreover, it can be seen that it is also excellent in electrical insulation. On the other hand, in the above general formula (1), it can be seen that PAG having a value of n of 2 is inferior in electrical insulation because it has a low flash point and a low volume resistivity. Further, in the above general formula (1), it can be seen that PAG having a value of n of 6 has a low relative heat transfer coefficient and is inferior in cooling performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Emergency Medicine (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Lubricants (AREA)

Abstract

優れた冷却性能を有しながらも、引火点が高く、流動点が低く、しかも電気絶縁性にも優れる潤滑油組成物を提供することを課題とした。そして、当該課題を、基油(A)を含有する潤滑油組成物であって、前記基油(A)が、特定の量体数を有する特定のポリアルキレングリコール及び特定の量体数を有する特定のポリビニルエーテルからなる群から選択される1種以上の合成油(A1)を含む、潤滑油組成物とすることで解決した。

Description

潤滑油組成物
 本発明は、潤滑油組成物に関し、例えば、電動車両用機器の冷却に用いられる潤滑油組成物に関する。
 近年、地球環境保護の観点から二酸化炭素削減が強く求められている。自動車の分野でも省燃費技術の開発に力が注がれており、燃費および環境性能に優れた自動車であるハイブリッド車及び電気自動車(以下、これらを「電動車両」ともいう)の普及が進められている。電動車両が有する電動車両用機器には、冷却性能及び電気絶縁性に優れる冷却油が必要とされる。また、電動車両においては、歯車減速機を有する形式のものもあることから、これらの冷却油は、上記性能に加えて潤滑性を備えることも必要とされる。
 電動車両用機器の冷却油としては、主に既存のオートマチックトランスミッションフルード(以下、「ATF」ともいう)や連続可変トランスミッションフルード(以下、「CVTF」ともいう)等の潤滑油組成物が使用されているが、これらに替わる種々の冷却油の開発も進められつつある。
 例えば、特許文献1では、電気自動車エンジン及びその種々の部分を冷却及び/又は潤滑する潤滑油組成物として、2~8個の炭素原子、好ましくは2~4個の炭素原子を含むアルキレンオキシドの重合又は共重合によって得られる少なくとも1種のポリアルキレングリコールを含む潤滑油組成物を使用することが提案されている。
特表2020-512410号公報
 しかしながら、特許文献1の潤滑油組成物は、冷却性能が十分なものとはいえなかった。
 また、電動車両用機器の冷却に用いられる潤滑油組成物には、安全性の確保の観点から高引火点であることが要求され、寒冷地での使用の観点から低流動点であることも要求される。また、上記のように、電気絶縁性に優れることも要求される。
 本発明は、上記問題点及び上記要求に鑑みてなされたものであって、優れた冷却性能を有しながらも、引火点が高く、流動点が低く、しかも電気絶縁性にも優れる潤滑油組成物を提供することを課題とする。
 本発明者らは、鋭意検討を重ねた結果、特定の量体数を有するポリアルキレングリコール及び特定の量体数を有するポリビニルエーテルからなる群から選択される1種以上の合成油を含有する潤滑油組成物が、上記課題を解決し得ることを見出し、本発明を完成するに至った。
 すなわち、本発明は、下記[1]~[4]に関する。
[1] 基油(A)を含有する潤滑油組成物であって、
 前記基油(A)は、下記一般式(1)で表される構成単位を有するポリアルキレングリコール及び下記一般式(2)で表される構成単位を有するポリビニルエーテルからなる群から選択される1種以上の合成油(A1)を含む、潤滑油組成物。
Figure JPOXMLDOC01-appb-C000003

[前記一般式(1)中、R及びRは、各々独立に、水素原子又は炭素数1~18の1価の炭化水素基を表す。Rは、水素原子又は炭素数1~4のアルキル基を表す。nは、3~5の整数である。]
Figure JPOXMLDOC01-appb-C000004

[前記一般式(2)中、R、R、及びRは、各々独立に、水素原子又は炭素数1~8の1価の炭化水素基を表す。Rは、炭素数2~10の2価の炭化水素基を表す。Rは、炭素数1~10の1価の炭化水素基を表す。mは、3又は4である。qは、0~10の整数である。]
[2] 電動車両用機器の冷却に用いられる、上記[1]に記載の潤滑油組成物。 
[3] [1]又は[2]記載の潤滑油組成物を、電動車両用機器の冷却のために使用する、使用方法。
[4] 電動車両用機器を冷却するための冷却システムであって、[1]又は[2]記載の潤滑油組成物を備える、冷却システム。
 本発明によれば優れた冷却性能を有しながらも、引火点が高く、流動点が低く、しかも電気絶縁性にも優れる潤滑油組成物を提供することが可能となる。
 以下、本発明の実施形態について詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において任意に変更して実施することができる。
 本明細書に記載された数値範囲の上限値および下限値は任意に組み合わせることができる。例えば、「A~B」および「C~D」が記載されている場合、「A~D」および「C~B」の範囲も数値範囲として、本発明に範囲に含まれる。また、本明細書に記載された数値範囲「下限値~上限値」は特記されない限り、下限値以上、上限値以下であることを意味する。
 また、本明細書において、実施例の数値は、上限値又は下限値として用いられ得る数値である。
[潤滑油組成物の態様]
 本発明の潤滑油組成物は、基油(A)を含有する潤滑油組成物であって、前記基油(A)は、下記一般式(1)で表される構成単位を有するポリアルキレングリコール及び下記一般式(2)で表される構成単位を有するポリビニルエーテルからなる群から選択される1種以上の合成油(A1)を含む。
Figure JPOXMLDOC01-appb-C000005

[前記一般式(1)中、R及びRは、各々独立に、水素原子又は炭素数1~18の1価の炭化水素基を表す。Rは、水素原子又は炭素数1~4のアルキル基を表す。nは、3~5の整数である。]
Figure JPOXMLDOC01-appb-C000006

[前記一般式(2)中、R、R、及びRは、各々独立に、水素原子又は炭素数1~8の1価の炭化水素基を表す。Rは、炭素数2~10の2価の炭化水素基を表す。Rは、炭素数1~10の1価の炭化水素基を表す。mは、3又は4である。qは、0~10の整数である。]
 本発明者らは、上記課題を解決すべく、鋭意検討を行った。その結果、3量体~5量体のポリアルキレングリコール、更には3量体又は4量体のポリビニルエーテルが、優れた冷却性能を有しながらも、引火点が高く、流動点が低く、しかも電気絶縁性にも優れることを見出した。
 本発明の一態様の潤滑油組成物は、基油(A)のみから構成されていることが好ましいが、本発明の効果を損なうことのない範囲で、基油(A)以外の他の成分を含有していてもよい。
 具体的には、本発明の一態様の潤滑油組成物において、基油(A)の含有量は、本発明の効果をより発揮させやすくする観点から、潤滑油組成物の全量基準で、好ましくは30質量%以上、より好ましくは50質量%以上、更に好ましくは60質量%以上、より更に好ましくは70質量%以上、更になお好ましくは80質量%以上、一層好ましくは90質量%以上、より一層好ましくは95質量%以上、更に一層好ましくは99質量%以上である。また、好ましくは100質量%以下である。
 これらの数値範囲の上限値及び下限値は任意に組み合わせることができる。具体的には、好ましくは30質量%~100質量%、より好ましくは50質量%~100質量%、更に好ましくは60質量%~100質量%、より更に好ましくは70質量%~100質量%、更になお好ましくは80質量%~100質量%、一層好ましくは90質量%~100質量%、より一層好ましくは95質量%~100質量%、更に一層好ましくは99質量%~100質量%である。
 なお、本発明の一態様の潤滑油組成物が、基油(A)のみから構成される場合、当該潤滑油組成物は、「潤滑油基油」ともいう。
 以下、基油(A)について、詳細に説明する。
[基油(A)]
 本発明の潤滑油組成物は、基油(A)を含有する。
 基油(A)は、上記一般式(1)で表される構成単位を有するポリアルキレングリコール及び上記一般式(2)で表される構成単位を有するポリビニルエーテルからなる群から選択される1種以上の合成油(A1)を含む。
 つまり、基油(A)は、上記一般式(1)で表される構成単位を有するポリアルキレングリコールから選択される1種以上を単独で用いてもよく、上記一般式(2)で表される構成単位を有するポリビニルエーテルから選択される1種以上を単独で用いてもよい。また、上記一般式(1)で表される構成単位を有するポリアルキレングリコールから選択される1種以上と、上記一般式(2)で表される構成単位を有するポリビニルエーテルから選択される1種以上とを、組み合わせて用いてもよい。
 ここで、合成油(A1)の含有量は、本発明の効果をより発揮させやすくする観点から、基油(A)の全量基準で、好ましくは30質量%以上、より好ましくは40質量%以上、更に好ましくは45質量%以上、より更に好ましくは50質量%以上である。また、好ましくは100質量%以下である。
 これらの数値範囲の上限値及び下限値は任意に組み合わせることができる。具体的には、好ましくは30質量%~100質量%、より好ましくは40質量%~100質量%、更に好ましくは45質量%~100質量%、より更に好ましくは50質量%~100質量%である。
 また、合成油(A1)の含有量は、本発明の効果をより発揮させやすくする観点から、潤滑油組成物の全量基準で、好ましくは30質量%以上、より好ましくは40質量%以上、更に好ましくは45質量%以上、より更に好ましくは50質量%以上である。また、好ましくは100質量%以下である。
 これらの数値範囲の上限値及び下限値は任意に組み合わせることができる。具体的には、好ましくは30質量%~100質量%、より好ましくは40質量%~100質量%、更に好ましくは45質量%~100質量%、より更に好ましくは50質量%~100質量%である。
 以下、本発明の潤滑油組成物が含有するポリアルキレングリコール(PAG)及びポリビニルエーテル(PVE)について、詳細に説明する。
<ポリアルキレングリコール(PAG)>
 ポリアルキレングリコール(以下、「PAG」と略記することもある)としては、下記一般式(1)で表される構成単位を有するポリアルキレングリコールが用いられる。当該PAGは、当該構成単位を1種単独で有する単独重合体であってもよく、2種以上組み合わせた共重合体であってもよい。当該共重合体の共重合の態様としては、特に制限はなく、ブロック共重合体であってもよく、ランダム共重合体であってもよく、又はグラフト共重合体であってもよい。
 下記一般式(1)で表される構成単位の含有量は、本発明の効果を発揮させやすくする観点から、PAGの全構成単位基準で、好ましくは50質量%以上、より好ましくは60質量%以上、更に好ましくは70質量%以上、より更に好ましくは80質量%以上、更になお好ましくは90質量%以上、一層好ましくは95質量%以上である。また、好ましくは100質量%以下である。
 これらの数値範囲の上限値及び下限値は任意に組み合わせることができる。具体的には、好ましくは50質量%~100質量%、より好ましくは60質量%~100質量%、更に好ましくは70質量%~100質量%、より更に好ましくは80質量%~100質量%、更になお好ましくは90質量%~100質量%、一層好ましくは95質量%~100質量%である。
 また、当該PAGは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000007
 前記一般式(1)中、R及びRは、各々独立に、水素原子又は炭素数1~18の1価の炭化水素基を表す。Rは、水素原子又は炭素数1~4のアルキル基を表す。nは、3~5の整数である。
 複数存在するRは、同一であってもよいし、互いに異なっていてもよい。
 また、R及びRは、同一であってもよいし、互いに異なっていてもよい。
(R及びR
 R及びRは、各々独立に、水素原子又は炭素数1~18の1価の炭化水素基を表す。
 当該炭化水素基の炭素数が18を超える場合、冷却性能に優れるPAGとし難い。
 R及びRとして選択し得る炭素数1~18の1価の炭化水素基としては、例えば、メチル基、エチル基、各種プロピル基、各種ブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基、各種オクチル基、各種ノニル基、各種デシル基、各種ウンデシル基、各種ドデシル基、各種トリデシル基、各種テトラデシル基、各種ペンタデシル基、各種ヘキサデシル基、各種ヘプタデシル基、各種オクタデシル基等の炭素数1~18のアルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、各種メチルシクロヘキシル基、各種エチルシクロヘキシル基、各種ジメチルシクロヘキシル基、各種トリメチルシクロヘキシル基等の炭素数3~18のシクロアルキル基;フェニル基、ナフチル基、各種メチルフェニル基、各種エチルフェニル基、各種ジメチルフェニル基、各種トリメチルフェニル基等の炭素数6~18のアリール基;ベンジル基、各種フェニルエチル基、各種メチルベンジル基等の炭素数6~18のアリールアルキル基;等が挙げられる。
 なお、本明細書においては、「各種X基」との表現により、X基として考えられるすべての異性体を包含している。例えば、「各種アルキル基」とは、「直鎖状又は分岐鎖状のアルキル基」を表す。例えば、「各種プロピル基」は、「n-プロピル基、イソプロピル基」を表す。また、「各種ブチル基」は、「n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基」を表す。
 R及びRとして選択し得る1価の炭化水素基の炭素数は、PAGの冷却性能を向上させやすくする観点から、好ましくは1~10、より好ましくは1~6、更に好ましくは1~4、より更に好ましくは1~3、更になお好ましくは1~2、一層好ましくは1である。
 また、R及びRとして選択し得る炭素数1~18の1価の炭化水素基は、PAGの冷却性能を向上させやすくする観点から、好ましくはアルキル基である。当該アルキル基の炭素数は、好ましくは1~10、より好ましくは1~6、更に好ましくは1~4、より更に好ましくは1~3、更になお好ましくは1~2、一層好ましくは1である。
 ここで、体積抵抗率をより向上させやすくする観点から、R及びRの少なくとも一方が炭素数1~18の1価の炭化水素基であることが好ましく、R及びRの双方が炭素数1~18の1価の炭化水素基であることが好ましい。この場合の好ましい炭化水素基及び炭素数は、上記のとおりである。
(R
 Rは、水素原子又は炭素数1~4のアルキル基を表す。
 当該アルキル基の炭素数が4を超える場合、冷却性能に優れるPAGとし難い。
 Rとして選択し得る炭素数1~4のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基が挙げられる。
 Rとして選択し得るアルキル基の炭素数は、PAGの冷却性能を向上させやすくする観点から、好ましくは1~3、より好ましくは1~2、更に好ましくは1である。
 なお、Rは、PAGの冷却性能、体積抵抗率、及び低温流動性のバランスの観点から、水素原子又はメチル基であることが好ましい。また、Rは、冷却性能の向上の観点からは水素原子であることが好ましく、体積抵抗率及び低温流動性の向上の観点からはメチル基であることが好ましい。
(n)
 nは、3~5の整数である。
 上記一般式(1)において、nの値は、PAGの量体数を表しており、本発明においては、3量体~5量体のPAGを用いる点に特徴がある。
 nが2以下であると、PAGの引火点が低下し、電気絶縁性も低下する。また、nが6以上であると、PAGの冷却性能が低下する。
 ここで、PAGの冷却性能を向上させる観点から、nの値は、好ましくは3~4、より好ましくは3である。一方、PAGの引火点及び電気絶縁性を向上させる観点から、nの値は、好ましくは4~5、より好ましくは5である。
 また、冷却性能、引火点、及び電気絶縁性のバランスに優れるPAGとする観点から、nの値は、好ましくは4である。
(分子量)
 PAGの分子量は、冷却性能により優れるPAGとする観点から、好ましくは150以上、より好ましくは160以上、更に好ましくは180以上、より更に好ましくは200以上、更になお好ましくは220以上である。また、好ましくは1100以下、より好ましくは800以下、更に好ましくは500以下、より更に好ましくは400以下、更になお好ましくは336以下である。
 これらの数値範囲の上限値及び下限値は任意に組み合わせることができる。具体的には、好ましくは150~1100、より好ましくは160~800、更に好ましくは180~500、より更に好ましくは200~400、更になお好ましくは220~336である。
<ポリビニルエーテル(PVE)>
 ポリビニルエーテル(以下、「PVE」と略記することもある)としては、下記一般式(2)で表される構成単位を有するポリビニルエーテルが用いられる。当該PVEは、当該構成単位を1種単独で有する単独重合体であってもよく、2種以上組み合わせた共重合体であってもよい。当該共重合体の共重合の態様としては、特に制限はなく、ブロック共重合体であってもよく、ランダム共重合体であってもよく、又はグラフト共重合体であってもよい。
 下記一般式(2)構成単位基準で、好ましくは50質量%以上、より好ましくは60質量%以上、更に好ましくは70質量%以上、より更に好ましくは80質量%以上、更になお好ましくは90質量%以上、一層好ましくは95質量%以上である。また、好ましくは100質量%以下である。
 これらの数値範囲の上限値及び下限値は任意に組み合わせることができる。具体的には、好ましくは50質量%~100質量%、より好ましくは60質量%~100質量%、更に好ましくは70質量%~100質量%、より更に好ましくは80質量%~100質量%、更になお好ましくは90質量%~100質量%、一層好ましくは95質量%~100質量%である。
 また、当該PVEは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000008
 前記一般式(2)中、R、R、及びRは、各々独立に、水素原子又は炭素数1~8の1価の炭化水素基を表す。Rは、炭素数2~10の2価の炭化水素基を表す。Rは、炭素数1~10の1価の炭化水素基を表す。mは、3又は4である。qは、0~10の整数である。
 複数存在するRは、同一であってもよいし、互いに異なっていてもよい。複数存在するR、R、R、及びRについても同様である。
 また、R、R、及びRは、同一であってもよいし、互いに異なっていてもよい。
 また、qが0である場合、前記一般式(2)中の炭素原子(C)と-ORとの結合は単結合であり、当該炭素原子(C)と-ORとは直接結合する。
(R、R、及びR
 R、R、及びRは、各々独立に、水素原子又は炭素数1~8の1価の炭化水素基を表す。
 当該炭化水素基の炭素数が8を超える場合、冷却性能に優れるPVEとし難い。
 R、R、及びRとして選択し得る、炭素数1~8の炭化水素基としては、例えば、メチル基、エチル基、各種プロピル基、各種ブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基、各種オクチル基等の炭素数1~8のアルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、各種メチルシクロヘキシル基、各種エチルシクロヘキシル基、各種ジメチルシクロヘキシル基等の炭素数3~8のシクロアルキル基;フェニル基、各種メチルフェニル基、各種エチルフェニル基、各種ジメチルフェニル基等の炭素数6~8のアリール基;ベンジル基、各種フェニルエチル基、各種メチルベンジル基等の炭素数6~8のアリールアルキル基;等が挙げられる。
 R、R、及びRとして選択し得る1価の炭化水素基の炭素数は、PVEの冷却性能を向上させやすくする観点から、好ましくは1~6、より好ましくは1~4、更に好ましくは1~3、より更に好ましくは1~2、更になお好ましくは1である。
 また、R、R、及びRとして選択し得る炭素数1~8の1価の炭化水素基は、PVEの冷却性能を向上させやすくする観点から、好ましくはアルキル基である。当該アルキル基の炭素数は、好ましくは1~6、より好ましくは1~4、更に好ましくは1~3、より更に好ましくは1~2、更になお好ましくは1である。
 ここで、PVEの冷却性能をより向上させやすくする観点から、R、R、及びRの少なくとも1つが水素原子であることが好ましく、2つ以上が水素原子であることがより好ましく、3つとも水素原子であることが更に好ましい。
(R
 Rは、各々独立に、炭素数2~10の2価の炭化水素基を表す。
 当該炭化水素基の炭素数が10を超える場合、冷却性能に優れるPVEとし難い。
 また、当該炭化水素基の炭素数が1であるPVEは製造することが困難である。
 Rとして選択し得る、炭素数2~10の2価の炭化水素基としては、例えば、エチレン基、1,2-プロピレン基、1,3-プロピレン基、各種ブチレン基、各種ペンチレン基、各種ヘキシレン基、各種ヘプチレン基、各種オクチレン基、各種ノニレン基、各種デシレン基等の炭素数2~10のアルキレン基;シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、メチルシクロへキシレン基、エチルシクロへキシレン基、ジメチルシクロへキシレン基等の炭素数3~10のシクロアルキレン基;各種フェニレン基、各種メチルフェニレン基、各種エチルフェニレン基、各種ジメチルフェニレン基、各種ナフチレン基等の炭素数6~10の2価の芳香族基;トルエン、キシレン、エチルベンゼン等のアルキル芳香族炭化水素のアルキル基部分と芳香族部分とにそれぞれ1価の結合部位を有する2価のアルキル芳香族基;キシレン、ジエチルベンゼン等のアルキル芳香族炭化水素のアルキル基部分に結合部位を有する2価のアルキル芳香族基;等が挙げられる。
 Rとして選択し得る2価の炭化水素基の炭素数は、PVEの冷却性能を向上させやすくする観点から、好ましくは2~8、より好ましくは2~6、更に好ましくは2~4である。
 また、Rとして選択し得る炭素数2~10の2価の炭化水素基は、PVEの冷却性能を向上させやすくする観点から、好ましくはアルキレン基である。当該アルキレン基の炭素数は、PVEの冷却性能の向上及び体積抵抗率の向上のバランスの観点から、好ましくは2~8、より好ましくは2~6、更に好ましくは2~4である。
(R
 Rは、炭素数1~10の1価の炭化水素基を表す。
 当該炭化水素基の炭素数が10を超える場合、冷却性能に優れるPVEとし難い。
 Rとして選択し得る、炭素数1~10の炭化水素基としては、例えば、メチル基、エチル基、各種プロピル基、各種ブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基、各種オクチル基、各種ノニル基、各種デシル基等の炭素数1~10のアルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、各種メチルシクロヘキシル基、各種エチルシクロヘキシル基、各種ジメチルシクロヘキシル基等の炭素数3~10のシクロアルキル基;フェニル基、各種メチルフェニル基、各種エチルフェニル基、各種ジメチルフェニル基等の炭素数6~10のアリール基;ベンジル基、各種フェニルエチル基、各種メチルベンジル基、各種フェニルプロピル基、各種フェニルブチル基等の炭素数6~10のアリールアルキル基;等が挙げられる。
 Rとして選択し得る1価の炭化水素基の炭素数は、PVEの冷却性能を向上させやすくする観点から、好ましくは1~8、より好ましくは1~6、更に好ましくは1~4、より更に好ましくは1~3、更になお好ましくは1~2、一層好ましくは1である。
 また、Rとして選択し得る炭素数1~10の1価の炭化水素基は、PVEの冷却性能を向上させやすくする観点から、好ましくはアルキル基である。当該アルキル基の炭素数は、好ましくは1~8、より好ましくは1~6、更に好ましくは1~4である、より更に好ましくは1~3以下、更になお好ましくは1~2、一層好ましくは1である。
(q)
 qは、0~10の整数である。
 qが10を超える整数である場合、冷却性能に優れるPVEとし難い。
 なお、qの値は、PVEの冷却性能を向上させやすくする観点から、好ましくは0~5、より好ましくは0~3、更に好ましくは0~2、より更に好ましくは0~1、更になお好ましくは0である。
(m)
 mは、3又は4である。
 上記一般式(2)において、mの値は、PVEの量体数を表しており、本発明においては、3量体又は4量体のPVEを用いる点に特徴がある。
 mが2以下であると、PVEの引火点が低下する。また、mが5以上であると、PVEの冷却性能が低下する。
 ここで、PVEの冷却性能を向上させる観点から、mの値は、好ましくは3である。一方、PVEの引火点を向上させる観点から、mの値は、好ましくは4である。
(PVEの末端構造)
 PVEの末端構造は、特に制限されず、例えば、水素原子、又は飽和の炭化水素、エーテル、アルコール、ケトン、アミド、もしくはニトリル等に由来の1価の基が挙げられる。
 なお、PVEの末端とは、下記一般式(2)中の*部分を意味する
Figure JPOXMLDOC01-appb-C000009

 
(分子量)
 PVEの分子量は、冷却性能により優れるPVEとする観点から、好ましくは176以上である。また、好ましくは5,000以下、より好ましくは3,000以下、更に好ましくは1,000以下、より更に好ましくは500以下、更になお好ましくは234以下である。
 これらの数値範囲の上限値及び下限値は任意に組み合わせることができる。具体的には、好ましくは176~5,000、より好ましくは176~3,000、更に好ましくは176~1,000、より更に好ましくは176~500、更になお好ましくは176~234である。
<合成油(A1)以外の他の基油(A2)>
 本発明の一態様の潤滑油組成物において、基油(A)は、合成油(A1)以外の他の基油(A2)(以下、単に「他の基油(A2)」ともいう)を含んでいてもよい。
 当該他の基油(A2)の含有量は、合成油(A1)の性能を発揮させて、本発明の効果をより発揮させやすくする観点から、基油(A)の全量基準で、好ましくは70質量%以下、より好ましくは60質量%以下、更に好ましくは55質量%以下である。
 他の基油(A2)としては、合成油(A1)以外の合成油及び鉱油からなる群から選択される1種以上を用いることができる。
 合成油(A1)以外の合成油としては、例えば、α-オレフィン単独重合体及びα-オレフィン共重合体(例えば、エチレン-α-オレフィン共重合体等の炭素数8~14のα-オレフィン共重合体)等のポリα-オレフィン;イソパラフィン;ポリオールエステル及び二塩基酸エステル等の各種エステル;ポリフェニルエーテル等の各種エーテル(但し、PVEを除く);アルキルベンゼン;アルキルナフタレン;天然ガスからフィッシャー・トロプシュ法等により製造されるワックス(ガストゥリキッド(GTL)ワックス)を異性化することで得られるGTL基油等が挙げられる。
 鉱油としては、例えば、パラフィン系原油、中間基系原油、又はナフテン系原油等の原油を常圧蒸留して得られる常圧残油;これらの常圧残油を減圧蒸留して得られる留出油;当該留出油を、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、及び水素化精製等の精製処理を1つ以上施して得られる鉱油;等が挙げられる。
 他の基油(A2)は、鉱油を単独で又は複数種組み合わせて用いてもよいし、合成油(A1)以外の合成油を単独で又は複数種組み合わせて用いてもよい。また、1種以上の鉱油と1種以上の合成油(A1)以外の合成油とを組み合わせて用いてもよい。
 ここで、他の基油(A2)としては、鉱油が好ましい。合成油(A1)と鉱油とを組み合わせて用いることで、冷却性能を大きく低下させることなく冷却性能を十分に確保しながらも、電気絶縁性をより向上させることができ、冷却性能と電気絶縁性とのバランスに極めて優れる潤滑油組成物を調製することができる。
 かかる観点から、鉱油の含有量としては、基油(A)の全量基準で、好ましくは10質量%以上、より好ましくは30質量%以上、更に好ましくは40質量%以上である。また、好ましくは70質量%以下、より好ましくは60質量%以下である。これらの数値範囲の上限値及び下限値は任意に組み合わせることができる。具体的には、好ましくは10質量%~70質量%、より好ましくは30質量%~60質量%、更に好ましくは40質量%~60質量%である。
 また、合成油(A1)と鉱油との含有比率[(合成油(A1))/(鉱油)]は、質量比で、好ましくは30/70以上、より好ましくは40/60以上である。また、好ましくは90/10以下、より好ましくは70/30以下、更に好ましくは60/40以下である。これらの数値範囲の上限値及び下限値は任意に組み合わせることができる。具体的には、好ましくは30/70~90/10、より好ましくは40/60~70/30、更に好ましくは40/60~60/40である。
 また、上記一般式(1)中、nが2以下の整数であるPAG及びnが6以上の整数であるPAG(但し、R、R、及びRは、上記のとおりである。)、並びに、上記一般式(2)中、mが2以下の整数であるPVE及びmが5以上の整数であるPVE(但し、R、R、R、R、及びRは、上記のとおりである。)からなる群から選択される1種以上の合成油(A1’)の含有量は、本発明の効果をより発揮させやすくする観点から、少ないことが好ましい。
 具体的には、合成油(A1’)の含有量は、合成油(A1)100質量部に対し、好ましくは10質量部以下、より好ましくは5質量部以下、更に好ましくは3質量部以下、より更に好ましくは1質量部以下、更に好ましくは0質量部である。
[基油(A)の性状]
 本発明の一態様において、基油(A)は、以下の要件(1)~(8)に規定する性状を満たすことが好ましい。
<要件(1):相対熱伝達率>
 本発明の一態様において、基油(A)は、相対熱伝達率が1.01以上であることが好ましい(要件(1))。
 前記相対熱伝達率は、下記要件(α1)~(α4)を満たす鉱油(α)の20℃における熱伝達率を1.00とした場合の熱伝達率である。
・要件(α1):20℃における動粘度が、7.06mm/sである。
・要件(α2):20℃における比熱が、1.67kJ/(kg・K)である。
・要件(α3):20℃における密度が、0.857g/cmである。
・要件(α4):20℃における熱伝導率が、0.141W/(m・K)である。
 熱伝達率は、2つの物質間(すなわち、基油(A)と被冷却物)での熱の伝わりやすさの指標である。要件(1)では、基油(A)の熱伝達率を、鉱油(α)の熱伝達率を基準とする相対熱伝達率として規定している。要件(1)で規定する相対熱伝達率が大きいほど、冷却性能に優れるといえる。
 流体の20℃における熱伝達率(Aα、単位:W/(m・K))は、以下の式(I)から計算することができる。
Figure JPOXMLDOC01-appb-M000010

 上記式(I)中、AD20は、流体の20℃における密度(単位:g/cm)である。AC20は、流体の20℃における比熱(単位:kJ/(kg・K))である。AHC20は、流体の20℃における熱伝導率(単位:W/(m・K))である。AKV20は、流体の20℃における動粘度(単位:mm/s)である。
 ここで、要件(1)に規定する相対熱伝達率は、より好ましくは1.03以上、更に好ましくは1.06以上、より更に好ましくは1.10以上である。また、通常1.50以下である。
 これらの数値範囲の上限値及び下限値は任意に組み合わせることができる。具体的には、好ましくは1.01~1.50、より好ましくは1.03~1.50、更に好ましくは1.06~1.50、より更に好ましくは1.10~1.50である。
<要件(2):動粘度>
 本発明の一態様において、基油(A)は、40℃における動粘度(以下、「40℃動粘度」ともいう)が、6.00mm/s以下であることが好ましい(要件(2))。基油(A)を低粘度化する程、冷却性能は向上する反面、基油(A)の引火点は低下しやすい。しかし、本発明では、合成油(A1)を含むことによって、基油(A)が低粘度でありながらも、高い引火点が確保されている。
 ここで、要件(2)で規定する基油(A)の40℃動粘度は、より好ましくは5.80mm/s以下、更に好ましくは5.60mm/s以下、より更に好ましくは5.40mm/s以下である。また、通常1.20mm/s以上である。
 これらの数値範囲の上限値及び下限値は任意に組み合わせることができる。具体的には、好ましくは1.20mm/s~6.00mm/s、より好ましくは1.20mm/s~5.80mm/s、更に好ましくは1.20mm/s~5.60mm/s、より更に好ましくは1.20mm/s~5.40mm/sである。
 また、要件(2)では、基油(A)の40℃動粘度に加えて、さらに基油(A)の20℃における動粘度(以下、「20℃動粘度」ともいう)が、所定値以下であることが好ましい。具体的には、好ましくは11.0mm/s以下、より好ましくは10.5mm/s以下、更に好ましくは10.0mm/s以下である。また、通常1.50mm/s以上である。
 これらの数値範囲の上限値及び下限値は任意に組み合わせることができる。具体的には、好ましくは1.50mm/s~11.0mm/s、より好ましくは1.50mm/s~10.5mm/s、更に好ましくは1.50mm/s~10.0mm/sである。
 なお、本明細書において、基油(A)の40℃動粘度及び20℃動粘度は、JIS K2283:2000に準拠して測定又は算出される値である。
<要件(3):比熱>
 本発明の一態様において、基油(A)は、20℃における比熱が、1.60kJ/(kg・K)以上であることが好ましい(要件(3))。20℃における比熱が大きいほど、基油(A)の冷却性能が向上しやすい。
 かかる観点から、要件(3)で規定する基油(A)の20℃における比熱は、より好ましくは1.62kJ/(kg・K)以上、更に好ましくは1.64kJ/(kg・K)以上である。また、通常1.75kJ/(kg・K)以下である。
 これらの数値範囲の上限値及び下限値は任意に組み合わせることができる。具体的には、好ましくは1.60kJ/(kg・K)~1.75kJ/(kg・K)、より好ましくは1.62kJ/(kg・K)~1.75kJ/(kg・K)、更に好ましくは1.64kJ/(kg・K)~1.75kJ/(kg・K)である。
 なお、本明細書において、基油(A)の20℃における比熱は、熱伝導率測定装置により測定される熱伝導率測定値及び熱浸透率測定値並びに後述する方法により測定される20℃における密度を利用し、以下の式(f1)により算出される値を意味する。
(20℃における比熱)=(20℃における熱浸透率)/{(20℃における熱伝導率)×(20℃における密度)}・・・・(f1)
<要件(4):密度>
 本発明の一態様において、基油(A)は、20℃における密度が、0.840g/cm以上であることが好ましい(要件(4))。20℃における密度が大きいほど、基油(A)の冷却性能が向上しやすい。
 かかる観点から、要件(4)で規定する基油(A)の20℃における密度は、より好ましくは0.850g/cm以上、更に好ましくは0.880g/cm以上、より更に好ましくは0.900g/cm以上である。また、通常0.980g/cm以下である。
 これらの数値範囲の上限値及び下限値は任意に組み合わせることができる。具体的には、好ましくは0.840g/cm~0.980g/cm、より好ましくは0.850g/cm~0.980g/cm、更に好ましくは0.880g/cm~0.980g/cm、より更に好ましくは0.900g/cm~0.980g/cmである。
 なお、本明細書において、基油(A)の20℃における密度は、JIS K 2249-1:2011(原油及び石油製品-密度の求め方- 第1部:振動法)に準拠して測定される値を意味する。
<要件(5):熱伝導率>
 本発明の一態様において、基油(A)は、20℃における熱伝導率は、0.135W/(m・K)以上であることが好ましい(要件(5))。20℃における熱伝導率が大きいほど、基油(A)の冷却性能が向上しやすい。
 かかる観点から、要件(5)に規定する基油(A)の20℃における熱伝導率は、より好ましくは0.140W/(m・K)以上、更に好ましくは0.143W/(m・K)以上、より更に好ましくは0.145W/(m・K)以上、更になお好ましくは0.147W/(m・K)以上である。また、通常0.165W/(m・K)以下である。
 これらの数値範囲の上限値及び下限値は任意に組み合わせることができる。具体的には、好ましくは0.135W/(m・K)~0.165W/(m・K)、より好ましくは0.140W/(m・K)~0.165W/(m・K)、更に好ましくは0.143W/(m・K)~0.165W/(m・K)、より更に好ましくは0.145W/(m・K)~0.165W/(m・K)、更になお好ましくは0.147W/(m・K)~0.165W/(m・K)である。
 なお、本明細書において、基油(A)の20℃における熱伝導率は、熱伝導率測定装置により測定される熱伝導率を意味する。
<要件(6):体積抵抗率>
 本発明の一態様において、基油(A)は、25℃における体積抵抗率が、1.00×10Ω・m以上であることが好ましい(要件(6))。体積抵抗率が高い程、基油(A)が電気絶縁性に優れることを意味する。
 ここで、基油(A)の電気絶縁性をより良好なものとする観点から、要件(6)に規定する25℃における体積抵抗率は、好ましくは1.00×10Ω・m以上、より好ましくは5.00×10Ω・m以上、更に好ましくは8.00×10Ω・m以上である。また、通常1.00×1013Ω・m以下である。
 これらの数値範囲の上限値及び下限値は任意に組み合わせることができる。具体的には、好ましくは1.00×10Ω・m~1.00×1013Ω・m、より好ましくは1.00×10Ω・m~1.00×1013Ω・m、更に好ましくは5.00×10Ω・m~1.00×1013Ω・m、より更に好ましくは8.00×10Ω・m~1.00×1013Ω・mである。
 なお、基油(A)の体積抵抗率をより向上させる観点から、合成油(A1)は、上記一般式(2)で表されるポリビニルエーテルを含むことが好ましい。
 なお、本明細書において、基油(A)の25℃における体積抵抗率は、JIS C2101:1999に準拠し、測定温度25℃、印加電圧250Vの条件下で測定される値を意味する。
<要件(7):引火点>
 本発明の一態様において、基油(A)は、引火点が、100℃以上であることが好ましい(要件(7))。基油(A)の引火点が100℃以上であることによって、基油(A)を引火し難いものとして、安全性を向上させやすい。
 ここで、要件(7)に規定する引火点は、好ましくは110℃以上、より好ましくは120℃以上、更に好ましくは130℃以上、より更に好ましくは140℃以上、更になお好ましくは150℃以上である。また、通常200℃以下である。
 これらの数値範囲の上限値及び下限値は任意に組み合わせることができる。具体的には、好ましくは100℃~200℃、より好ましくは110℃~200℃、更に好ましくは120℃~200℃、より更に好ましくは130℃~200℃、更になお好ましくは140℃~200℃、一層好ましくは150℃~200℃である。
 なお、本明細書において、基油(A)の引火点は、JIS K 2265-4:2007に準拠し、クリーブランド開放法(COC法)により測定される値を意味する。
<要件(8):流動点>
 本発明の一態様において、基油(A)は、流動点が、-40℃以下であることが好ましい(要件(8))。基油(A)の流動点が-40℃以下であることによって、寒冷地での使用にも耐え得るものとできる。
 ここで、要件(8)に規定する流動点は、より好ましくは-45℃以下、更に好ましくは-50℃以下、より更に好ましくは-55℃以下、更になお好ましくは-60℃以下である。
 なお、本明細書において、基油(A)の流動点は、JIS K 2269:1987(原油及び石油製品の流動点並びに石油製品曇り点試験方法)に準拠して測定される値を意味する。
[添加剤]
 本発明の一態様の潤滑油組成物は、本発明の効果を阻害しない範囲で、必要に応じて、摩耗防止剤、酸化防止剤、粘度指数向上剤、防錆剤、金属不活性化剤、消泡剤、清浄分散剤などの添加剤を配合することができる。
 これらの添加剤は、1種を単独で用いてもよく、又は2種以上を組み合わせて用いてもよい。
 これらの添加剤の含有量の合計は、特に制限されないが、組成物全量基準で、例えば、0~20重量%程度である。
<摩耗防止剤>
 摩耗防止剤としては、特に制限されず、従来、潤滑油に使用される摩耗防止剤の中から任意のものを適宜選択して用いることができる。例えば、ハイブリッド自動車や電気自動車において電動モーターと歯車減速機を組み合わせて使用される場合には、極力電気絶縁性を損なわないように、中性リン系化合物、酸性亜リン酸エステルまたはそのアミン塩、および硫黄系化合物等から選択される1種以上を用いることが好ましい。
 摩耗防止剤の含有量は、特に制限されないが、組成物全量基準で、例えば0.01~5重量%程度である。
 中性リン系化合物としては、トリクレジルホスフェート、トリフェニルホスフェート、トリキシレニルホスフェート、トリクレジルフェニルホスフェート、トリクレジルチオスフェート、トリフェニルチオホスフェートなどの芳香族中性リン酸エステル;トリブチルホスフェート、トリ-2-エチルヘキシルホスフェート、トリブトキシホスフェート、トリブチルチオホスフェートなどの脂肪族中性リン酸エステル;トリフェニルホスファイト、トリクレジルホスファイト、トリスノニルフェニルホスファイト、ジフェニルモノ-2-エチルヘキシルホスファイト、ジフェニルモノトリデシルホスファイト、トルクレジルチオホスファイト、トリフェニルチオホスファイトなどの芳香族中性亜リン酸エステル;トリブチルホスファイト、トリオクチルホスファイト、トリスデシルホスファイト、トリストリデシルホスファイト、トリオレイルホスファイト、トルブチルチオホスファイト、トリオクチルチオホスファイトなどの脂肪族中性亜リン酸エステルを挙げることができる。これらは単独で使用してもよく、2種類以上を組み合わせて使用してもよい。
 酸性亜リン酸エステルとしては、ジ-2-エチルヘキシルアシッドホスフェートアミン塩、ジラウリルアシッドホスフェートアミン塩、ジオレイルアシッドホスフェートアミン塩などの脂肪族酸性リン酸エステルアミン塩;ジ-2-エチルヘキシルハイドロゲンホスファイト、ジラウリルハイドロゲンホスファイト、ジオレイルハイドロゲンホスファイトなどの脂肪族酸性亜リン酸エステル及びこれらのアミン塩;ジフェニルアシッドホスフェートアミン塩、ジクレジルアシッドホスフェートアミン塩などの芳香族酸性リン酸エステルアミン塩;ジフェニルハイドロゲンホスファイト、ジクレジルハイドロゲンホスファイトなどの芳香族酸性亜リン酸エステル及びこれらのアミン塩;S-オクチルチオエチルアシッドホスフェートアミン塩、S-ドデシルチオエチルアシッドホスフェートアミン塩などの硫黄含有酸性リン酸エステルアミン塩;S-オクチルチオエチルハイドロゲンホスファイト、S-ドデシルチオエチルハイドロゲンホスファイトなどの硫黄含有酸性亜リン酸エステルおよびこれらのアミン塩などを挙げることができる。これらは単独で使用してもよく、2種類以上を組み合わせて使用してもよい。
 硫黄系化合物としては、各種のものが使用可能であるが、具体的には、チアジアゾール系化合物、ポリサルファイド系化合物、ジチオカーバメイト系化合物、硫化油脂系化合物、および硫化オレフィン系化合物などが挙げられる。これらは単独で使用してもよく、2種類以上を組み合わせて使用してもよい。
<酸化防止剤>
 酸化防止剤としては、従来潤滑油の酸化防止剤として使用されている公知の酸化防止剤の中から、任意のものを適宜選択して用いることができる。例えば、アミン系酸化防止剤(ジフェニルアミン類、ナフチルアミン類)、フェノール系酸化防止剤、モリブデン系酸化防止剤、硫黄系酸化防止剤、リン系酸化防止剤等が挙げられる。酸化防止剤は、単独で使用してもよく、2種類以上を組み合わせて使用してもよい。酸化防止剤の含有量は、特に制限されないが、組成物全量基準で、例えば0.05~7重量%程度である。
<粘度指数向上剤>
 粘度指数向上剤としては、例えば、ポリメタクリレート、分散型ポリメタクリレート、オレフィン系共重合体(例えば、エチレン-プロピレン共重合体など)、分散型オレフィン系共重合体、スチレン系共重合体(例えば、スチレン-ジエン共重合体、スチレン-イソプレン共重合体など)などが挙げられる。粘度指数向上剤は、単独で使用してもよく、2種類以上を組み合わせて使用してもよい。粘度指数向上剤の配合量(樹脂分換算)は、特に制限されないが、例えば、配合効果の点から、組成物全量基準で、0.1重量%以上、10重量%以下程度である。
<防錆剤>
 防錆剤としては、例えば、脂肪酸、アルケニルコハク酸ハーフエステル、脂肪酸セッケン、アルキルスルホン酸塩、多価アルコール脂肪酸エステル、脂肪酸アミド、酸化パラフィン、アルキルポリオキシエチレンエーテルなどが挙げられる。防錆剤は、単独で使用してもよく、2種類以上を組み合わせて使用してもよい。防錆剤の好ましい配合量は、特に制限されないが、組成物全量基準で0.01重量%以上、3重量%以下程度である。
<金属不活性化剤>
 金属不活性化剤としては、例えば、ベンゾトリアゾール、トリアゾール誘導体、ベンゾトリアゾール誘導体、チアジアゾール誘導体が挙げられる。金属不活性化剤は、単独で使用してもよく、2種類以上を組み合わせて使用してもよい。金属不活性化剤の含有量は、特に制限されないが、組成物全量基準で、好ましくは0.01~5重量%である。
<消泡剤>
 消泡剤としては、例えば、ジメチルポリシロキサンなどのシリコーン系化合物、ポリアクリレート等が挙げられる。消泡剤は、単独で使用してもよく、2種類以上を組み合わせて使用してもよい。消泡剤の含有量は、特に制限されないが、組成物全量基準で、0.001重量%以上、0.5重量%以下程度である。
<清浄分散剤>
 清浄分散剤としては、例えばコハク酸イミド化合物、ホウ素系イミド化合物、酸アミド系化合物などが挙げられる。清浄分散剤は、単独で使用してもよく、2種類以上を組み合わせて使用してもよい。清浄分散剤の含有量は、特に制限されないが、組成物全量基準で、好ましくは0.1~20重量%である。
[潤滑油組成物の性状]
 本発明の一態様の潤滑油組成物は、基油(A)の性状として規定した上記要件(1)~(8)を満たすことが好ましい。好適な範囲についても、上記要件(1)~(8)に規定したとおりである。
[潤滑油組成物の用途]
 本発明の潤滑油組成物は、優れた冷却性能を有しながらも、電気絶縁性が確保されており、しかも引火点も高い。また、潤滑性も確保されている。
 そのため、本発明の潤滑油組成物は、各種の機器を冷却するための冷却油として好適に使用できる。特に、電動車両が有する電動車両用機器を冷却するための冷却油として好適に使用することができる。
 具体的には、例えば、モーター、発電機、蓄電器、コンバーター、インバーター、エンジン、及びトランスミッションからなる群から選択される1種以上の電動車両用機器を冷却するための冷却油として好適に使用できる。
 なお、前記モーターは、駆動専用のモーターであってもよく、発電機を兼ねるモーターであってもよい。
 電動車両用機器として挙げた前記発電機は、発電機を兼ねるモーターとは別に搭載されている発電機を意味する。
 前記蓄電器としては、バッテリー及びキャパシタ等が挙げられる。
 なお、本発明の一態様では、本発明の潤滑油組成物を、電動車両が有する電動車両用機器の冷却のために使用する、使用方法が提供される。当該電動車両用機器としては、既述のように、モーター、発電機、蓄電器、コンバーター、インバーター、エンジン、及びトランスミッションからなる群から選択される1種以上が挙げられる。
[冷却システム]
 本発明の潤滑油組成物は、優れた冷却性能を有しながらも、電気絶縁性が確保されており、しかも引火点も高い。また、潤滑性も確保されている。
 本発明の潤滑油組成物は、優れた冷却性能を有しながらも、電気絶縁性が確保されており、しかも引火点も高い。また、潤滑性も確保されている。
 そのため、本発明の潤滑油組成物は、例えば、電動車両用機器などの各種機器を循環させることにより、機器に潤滑を施しつつ、機器を冷却する。
 ここで、本発明の一態様では、電動車両用機器を冷却するための冷却システムであって、上述した本発明の潤滑油組成物を備える冷却システムが提供される。当該電動車両用機器としては、既述のように、モーター、発電機、蓄電器、コンバーター、インバーター、エンジン、及びトランスミッションからなる群から選択される1種以上が挙げられる。
 冷却システムは、前記潤滑油組成物が循環する循環路と、冷却対象部とを備える。前記冷却対象部は、前記機器(好ましくは前記電動車両用機器)である。前記冷却対象部における冷却方式は、直接冷却方式及び間接冷却方式のいずれであってもよく、前記機器(好ましくは前記電動車両用機器)に要求される冷却方式に応じて、適宜設定される。なお、冷却システムには、前記循環路を介して前記冷却対象部に前記潤滑油組成物を供給する供給装置がさらに備えられていてもよい。また、前記冷却対象部の温度を検知するセンサー部と、当該センサー部にて検知した温度に応じて前記供給装置の作動を制御する制御装置とがさらに設けられていてもよい。
 本明細書において、「冷却システム」とは、前記循環路及び前記冷却対象部を少なくとも含む複数の構成が集合して、前記冷却対象部を冷却する機能を発揮する「物」を意味し、複数の構成が集合して前記冷却対象部を冷却する機能を発揮する「装置」と言い換えることもできる。
[潤滑油組成物の製造方法]
 本発明の潤滑油組成物の製造方法は、特に制限されない。一実施形態の潤滑油組成物の製造方法は、上記一般式(1)で表される構成単位を有するポリアルキレングリコール及び上記一般式(2)で表される構成単位を有するポリビニルエーテルからなる群から選択される1種以上の合成油(A1)を含む基油(A)を調製する工程を含む。
 また、基油(A)に、必要に応じて添加剤を混合する工程を含んでいてもよい。添加剤は、いかなる方法で配合されてもよく、配合の順序およびその手法は限定されない。
[提供される本発明の一態様]
 本発明の一態様によれば、下記[1]~[12]が提供される。
[1] 基油(A)を含有する潤滑油組成物であって、
 前記基油(A)は、下記一般式(1)で表される構成単位を有するポリアルキレングリコール及び下記一般式(2)で表される構成単位を有するポリビニルエーテルからなる群から選択される1種以上の合成油(A1)を含む、潤滑油組成物。
Figure JPOXMLDOC01-appb-C000011

[前記一般式(1)中、R及びRは、各々独立に、水素原子又は炭素数1~18の1価の炭化水素基を表す。Rは、水素原子又は炭素数1~4のアルキル基を表す。nは、3~5の整数である。]
Figure JPOXMLDOC01-appb-C000012

[前記一般式(2)中、R、R、及びRは、各々独立に、水素原子又は炭素数1~8の1価の炭化水素基を表す。Rは、炭素数2~10の2価の炭化水素基を表す。Rは、炭素数1~10の1価の炭化水素基を表す。mは、3又は4である。qは、0~10の整数である。]
[2] 前記一般式(1)中、Rが、メチル基である、[1]に記載の潤滑油組成物。
[3] 前記一般式(2)中、R、R、及びRが、水素原子であり、
 Rがメチル基であり、
 q=0である、[1]又は[2]に記載の潤滑油組成物。
[4] 前記合成油(A1)の含有量が、前記基油(A)の全量基準で、30質量%~100質量%である、[1]~[3]のいずれかに記載の潤滑油組成物。
[5] 相対熱伝達率が1.01以上であり、
 前記相対熱伝達率は、下記要件(α1)~(α4)を満たす鉱油(α)の20℃における熱伝達率を1.00とした場合の熱伝達率である、[1]~[4]のいずれかに記載の潤滑油組成物。
・要件(α1):20℃における動粘度が、7.06mm/sである。
・要件(α2):20℃における比熱が、1.67kJ/(kg・K)である。
・要件(α3):20℃における密度が、0.857g/cmである。
・要件(α4):20℃における熱伝導率が、0.141W/(m・K)である。
[6] 25℃における体積抵抗率が、1.00×10Ω・m以上である、[1]~[5]のいずれかに記載の潤滑油組成物。
[7] 引火点が、100℃以上である、[1]~[6]のいずれかに記載の潤滑油組成物。
[8] 流動点が、-40℃以下である、[1]~[7]のいずれかに記載の潤滑油組成物。
[9] 電動車両用機器の冷却に用いられる、[1]~[8]のいずれかに記載の潤滑油組成物。
[10] 前記電動車両用機器は、モーター、発電機、蓄電器、コンバーター、インバーター、エンジン、及びトランスミッションからなる群から選択される1種以上である、[9]に記載の潤滑油組成物。
[11] [1]~[10]のいずれかに記載の潤滑油組成物を、電動車両用機器の冷却のために使用する、使用方法。
[12] 電動車両用機器を冷却するための冷却システムであって、[1]~[10]のいずれかに記載の潤滑油組成物を備える、冷却システム。
 本発明について、以下の実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1~9及び比較例1~9]
 以下に示す各種基油を、表1~表3に示すように、単独で又は2種混合して用い、実施例1~9及び比較例1~9の潤滑油組成物とした。
<ポリアルキレングリコール>
 上記一般式(1)中、R、R、及びRがメチル基であり、nの値のみが異なる、5種のポリプロピレングリコール「PPG-2」~「PPG-6」を用いた。
 ・「PPG-2」:n=2、分子量=162
 ・「PPG-3」:n=3、分子量=220
 ・「PPG-4」:n=4、分子量=278
 ・「PPG-5」:n=5、分子量=336
 ・「PPG-6」:n=6、分子量=394
<ポリビニルエーテル>
 上記一般式(2)中、R、R、及びRが水素原子であり、qが0であり、Rがメチル基であり、mの値のみが異なる、4種のポリビニルエーテル「PVE(Me)-2」~「PVE(Me)-5」を用いた。
 ・「PVE(Me)-2」:m=2、両末端は水素原子、分子量=118
 ・「PVE(Me)-3」:m=3、両末端は水素原子、分子量=176
 ・「PVE(Me)-4」:m=4、両末端は水素原子、分子量=234
 ・「PVE(Me)-5」:m=5、両末端は水素原子、分子量=292
<エステル>
・「エステル1」:オレイン酸2-エチルヘキシル
・「エステル2」:アゼライン酸ジ(2-エチルヘキシル)
<鉱油>
・「鉱油1」:VG2相当の鉱油
・「鉱油2」:VG5相当の鉱油であり、上述した鉱油(α)に該当する。
<その他>
・エチレングリコール
・水
[各種物性値の測定方法]
 実施例1~9及び比較例1~9の潤滑油組成物の各性状の測定及び算出は、以下に示す要領に従って行った。なお、本実施例では、基油以外の添加物を配合せずに検討したことから、潤滑油組成物の各性状は、基油の性状でもある。
(1)40℃動粘度
 JIS K2283:2000に準拠して測定した。
(2)20℃動粘度
 JIS K2283:2000に準拠して測定した40℃動粘度及び100℃動粘度の測定結果を用いて算出した。
(3)20℃における密度
 JIS K 2249-1:2011(原油及び石油製品-密度の求め方-第1部:振動法)に準拠して測定した。
(4)20℃における比熱
 熱伝導率測定装置(C-THERM Technology社製、TCi)により熱伝導率測定値及び熱浸透率測定値を得て、上記式(f1)を用いて算出した。20℃における密度は、上記(3)で測定した値を用いた。
(5)20℃における熱伝導率
 熱伝導率測定装置(C-THERM Technology社製、TCi)により熱伝導率を測定した。
(6)引火点
 JIS K 2265-4:2007に準拠し、クリーブランド開放法(COC法)により測定した。
(7)25℃における体積抵抗率
 JIS C2101:1999に準拠し、測定温度25℃、印加電圧250Vの条件下で測定した。
<相対熱伝達率の計算>
 上記測定により得られた20℃における密度、20℃における比熱、20℃における熱伝導率、及び20℃における動粘度から、上記式(I)を用いて、実施例1~9及び比較例1~9の潤滑油組成物の20℃における熱伝達率を算出した。
 そして、比較例8(鉱油(α)に該当する鉱油2を使用)の熱伝達率を1.00とした場合の、実施例1~9、比較例1~7、及び比較例9の熱伝達率を算出し、これを相対熱伝達率とした。
<評価>
 本実施例では、合格基準を以下のとおりとした。
 ・相対熱伝達率:1.01以上
 ・体積抵抗率:1.00×10Ω・m以上
 ・引火点:100℃以上
 ・流動点:-40℃以下
 結果を表1~表3に示す。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 表1に示す結果から、以下のことがわかる。
 実施例1~3に示すように、上記一般式(1)中、nの値が3~5であるPAGは、優れた冷却性能を有しながらも、引火点が高く、流動点が低く、しかも電気絶縁性にも優れることがわかる。
 これに対し、上記一般式(1)中、nの値が2であるPAGは、引火点が低く、体積抵抗率も低いため電気絶縁性に劣ることがわかる。また、上記一般式(1)中、nの値が6であるPAGは、相対熱伝達率が低く、冷却性能に劣ることがわかる。
 また、表2に示す結果から、以下のことがわかる。
 実施例4及び5に示すように、上記一般式(2)中、mの値が3~4であるPVEは、優れた冷却性能を有しながらも、引火点が高く、流動点が低く、しかも電気絶縁性にも優れることがわかる。
 これに対し、上記一般式(2)中、mの値が2であるPVEは、引火点が低いことがわかる。また、上記一般式(2)中、nの値が5であるPVEは、相対熱伝達率が低く、冷却性能に劣ることがわかる。
 さらに、表3に示す結果から、以下のことがわかる。
 実施例6~9に示す結果から、上記一般式(1)中、nの値が3~4であるPAG、上記一般式(2)中、mの値が3~4であるPVEを含有する潤滑油組成物は、優れた冷却性能を有しながらも、引火点が高く、流動点が低く、しかも電気絶縁性にも優れることがわかる。
 これに対し、特定のエステル油のみを用いた場合(比較例5、6)、鉱油のみを用いた場合(比較例7、8)、エチレングリコールと水の混合物を用いた場合(比較例9)には、相対熱伝達率、流動点、及び体積抵抗率の少なくともいずれか1つが上記合格基準を満たさないことがわかる。

 
 

Claims (12)

  1.  基油(A)を含有する潤滑油組成物であって、
     前記基油(A)は、下記一般式(1)で表される構成単位を有するポリアルキレングリコール及び下記一般式(2)で表される構成単位を有するポリビニルエーテルからなる群から選択される1種以上の合成油(A1)を含む、潤滑油組成物。
    Figure JPOXMLDOC01-appb-C000001

    [前記一般式(1)中、R及びRは、各々独立に、水素原子又は炭素数1~18の1価の炭化水素基を表す。Rは、水素原子又は炭素数1~4のアルキル基を表す。nは、3~5の整数である。]
    Figure JPOXMLDOC01-appb-C000002

    [前記一般式(2)中、R、R、及びRは、各々独立に、水素原子又は炭素数1~8の1価の炭化水素基を表す。Rは、炭素数2~10の2価の炭化水素基を表す。Rは、炭素数1~10の1価の炭化水素基を表す。mは、3又は4である。qは、0~10の整数である。]
  2.  前記一般式(1)中、Rが、メチル基である、請求項1に記載の潤滑油組成物。
  3.  前記一般式(2)中、R、R、及びRが、水素原子であり、
     Rがメチル基であり、
     q=0である、請求項1又は2に記載の潤滑油組成物。
  4.  前記合成油(A1)の含有量が、前記基油(A)の全量基準で、30質量%~100質量%である、請求項1~3のいずれか1項に記載の潤滑油組成物。
  5.  相対熱伝達率が1.01以上であり、
     前記相対熱伝達率は、下記要件(α1)~(α4)を満たす鉱油(α)の20℃における熱伝達率を1.00とした場合の熱伝達率である、請求項1~4のいずれか1項に記載の潤滑油組成物。
    ・要件(α1):20℃における動粘度が、7.06mm/sである。
    ・要件(α2):20℃における比熱が、1.67kJ/(kg・K)である。
    ・要件(α3):20℃における密度が、0.857g/cmである。
    ・要件(α4):20℃における熱伝導率が、0.141W/(m・K)である。
  6.  25℃における体積抵抗率が、1.00×10Ω・m以上である、請求項1~5のいずれか1項に記載の潤滑油組成物。
  7.  引火点が、100℃以上である、請求項1~6のいずれか1項に記載の潤滑油組成物。
  8.  流動点が、-40℃以下である、請求項1~7のいずれか1項に記載の潤滑油組成物。
  9.  電動車両用機器の冷却に用いられる、請求項1~8のいずれか1項に記載の潤滑油組成物。
  10.  前記電動車両用機器は、モーター、発電機、蓄電器、コンバーター、インバーター、エンジン、及びトランスミッションからなる群から選択される1種以上である、請求項9に記載の潤滑油組成物。
  11.  請求項1~10のいずれか1項に記載の潤滑油組成物を、電動車両用機器の冷却のために使用する、使用方法。
  12.  電動車両用機器を冷却するための冷却システムであって、請求項1~10のいずれか1項に記載の潤滑油組成物を備える、冷却システム。

     
PCT/JP2021/030748 2020-08-25 2021-08-23 潤滑油組成物 WO2022045050A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180039948.6A CN115698235A (zh) 2020-08-25 2021-08-23 润滑油组合物
EP21861476.6A EP4206307A4 (en) 2020-08-25 2021-08-23 LUBRICATING OIL COMPOSITION
US18/005,692 US20230272297A1 (en) 2020-08-25 2021-08-23 Lubricating oil composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020141945A JP7373474B2 (ja) 2020-08-25 2020-08-25 潤滑油組成物
JP2020-141945 2020-08-25

Publications (1)

Publication Number Publication Date
WO2022045050A1 true WO2022045050A1 (ja) 2022-03-03

Family

ID=80353270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030748 WO2022045050A1 (ja) 2020-08-25 2021-08-23 潤滑油組成物

Country Status (5)

Country Link
US (1) US20230272297A1 (ja)
EP (1) EP4206307A4 (ja)
JP (1) JP7373474B2 (ja)
CN (1) CN115698235A (ja)
WO (1) WO2022045050A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024122199A1 (ja) * 2022-12-07 2024-06-13 出光興産株式会社 潤滑油組成物及び潤滑油組成物を用いる循環システム

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4855185A (ja) * 1971-11-05 1973-08-02
JPS6088094A (ja) * 1983-10-20 1985-05-17 Nippon Oil & Fats Co Ltd 潤滑油組成物
JPS60255894A (ja) * 1984-05-31 1985-12-17 Matsushita Electric Ind Co Ltd 潤滑方法
JPH0222390A (ja) * 1988-06-14 1990-01-25 Mitsui Petrochem Ind Ltd 作動油およびブレーキ油
JPH04202293A (ja) * 1990-11-29 1992-07-23 Tonen Corp 作動油
JPH04227690A (ja) * 1990-04-26 1992-08-17 Hoechst Ag 主成分としてグリコール化合物からなり、金属の腐食が防止されたブレーキ液
JP2012214638A (ja) * 2011-03-31 2012-11-08 Sanyo Chem Ind Ltd 含水切削液組成物およびその製造方法
JP2013530292A (ja) * 2010-07-01 2013-07-25 ダウ グローバル テクノロジーズ エルエルシー 低粘度機能性流体
JP2013199549A (ja) * 2012-03-23 2013-10-03 Idemitsu Kosan Co Ltd 潤滑油組成物およびこれを用いた機器
JP2020512410A (ja) * 2016-10-27 2020-04-23 トータル・マーケティング・サービシーズ 電気自動車用組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3557053B2 (ja) * 1996-09-30 2004-08-25 三洋電機株式会社 冷媒圧縮機
JP5139665B2 (ja) * 2006-11-02 2013-02-06 出光興産株式会社 冷凍機用潤滑油組成物
JP5848903B2 (ja) * 2011-07-01 2016-01-27 出光興産株式会社 圧縮型冷凍機用潤滑油組成物
BR112015016722A2 (pt) * 2013-01-17 2017-07-11 Jx Nippon Oil & Energy Corp óleo de máquina de refrigeração e composição de fluido de trabalho para máquina de refrigeração
JP6519909B2 (ja) * 2014-07-18 2019-05-29 出光興産株式会社 冷凍機油組成物、及び冷凍装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4855185A (ja) * 1971-11-05 1973-08-02
JPS6088094A (ja) * 1983-10-20 1985-05-17 Nippon Oil & Fats Co Ltd 潤滑油組成物
JPS60255894A (ja) * 1984-05-31 1985-12-17 Matsushita Electric Ind Co Ltd 潤滑方法
JPH0222390A (ja) * 1988-06-14 1990-01-25 Mitsui Petrochem Ind Ltd 作動油およびブレーキ油
JPH04227690A (ja) * 1990-04-26 1992-08-17 Hoechst Ag 主成分としてグリコール化合物からなり、金属の腐食が防止されたブレーキ液
JPH04202293A (ja) * 1990-11-29 1992-07-23 Tonen Corp 作動油
JP2013530292A (ja) * 2010-07-01 2013-07-25 ダウ グローバル テクノロジーズ エルエルシー 低粘度機能性流体
JP2012214638A (ja) * 2011-03-31 2012-11-08 Sanyo Chem Ind Ltd 含水切削液組成物およびその製造方法
JP2013199549A (ja) * 2012-03-23 2013-10-03 Idemitsu Kosan Co Ltd 潤滑油組成物およびこれを用いた機器
JP2020512410A (ja) * 2016-10-27 2020-04-23 トータル・マーケティング・サービシーズ 電気自動車用組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4206307A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024122199A1 (ja) * 2022-12-07 2024-06-13 出光興産株式会社 潤滑油組成物及び潤滑油組成物を用いる循環システム

Also Published As

Publication number Publication date
CN115698235A (zh) 2023-02-03
EP4206307A4 (en) 2024-06-12
JP7373474B2 (ja) 2023-11-02
EP4206307A1 (en) 2023-07-05
US20230272297A1 (en) 2023-08-31
JP2022037689A (ja) 2022-03-09

Similar Documents

Publication Publication Date Title
JP4805536B2 (ja) 自動車用変速機油組成物
JP5771532B2 (ja) 潤滑油組成物
KR101777892B1 (ko) 무단 변속기용 윤활유 조성물
JP5779376B2 (ja) 潤滑油組成物
JP2008255239A (ja) ギヤ油組成物
WO2013008836A1 (ja) 潤滑油組成物および機械装置
JP5931250B2 (ja) 潤滑油組成物
WO2022045050A1 (ja) 潤滑油組成物
WO2022019333A1 (ja) 潤滑油組成物
CN112888768B (zh) 润滑油组合物
JP7296711B2 (ja) 潤滑油組成物、潤滑油組成物を備える機械装置および潤滑油組成物の製造方法
EP3760697B1 (en) Lubricant composition, its method of producing and use in a mechanical device
JP7266382B2 (ja) 潤滑油組成物
US11946013B2 (en) Lubricant composition
WO2023058440A1 (ja) 潤滑油組成物、潤滑方法及び変速機
JP6236359B2 (ja) 滑り案内面用潤滑油組成物
WO2014157200A1 (ja) 油圧作動油組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021861476

Country of ref document: EP

Effective date: 20230327