WO2022044767A1 - Substrate processing device - Google Patents

Substrate processing device Download PDF

Info

Publication number
WO2022044767A1
WO2022044767A1 PCT/JP2021/029250 JP2021029250W WO2022044767A1 WO 2022044767 A1 WO2022044767 A1 WO 2022044767A1 JP 2021029250 W JP2021029250 W JP 2021029250W WO 2022044767 A1 WO2022044767 A1 WO 2022044767A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
substrate
flow path
processing apparatus
substrate processing
Prior art date
Application number
PCT/JP2021/029250
Other languages
French (fr)
Japanese (ja)
Inventor
秀一 柴田
章 堀越
美佳 上野
弥生 竹市
隆明 柳田
健二 中西
茂 高辻
貴弘 木村
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2022044767A1 publication Critical patent/WO2022044767A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/14Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/02Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface
    • B05C11/08Spreading liquid or other fluent material by manipulating the work, e.g. tilting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches

Definitions

  • This application relates to a substrate processing device.
  • Patent Document 1 a substrate processing device for removing a resist formed on the main surface of a substrate has been proposed (for example, Patent Document 1).
  • Patent Document 1 a mixed solution of sulfuric acid and hydrogen peroxide solution is supplied to the main surface of the substrate. When sulfuric acid and hydrogen peroxide solution are mixed, they react to produce caroic acid. This caroic acid can efficiently remove the resist on the substrate.
  • the substrate processing apparatus it is conceivable to provide a nozzle for supplying the processing liquid to the main surface of the substrate and a unit for supplying the active species to the main surface of the substrate.
  • the active species can be supplied to the treatment liquid that has landed on the main surface of the substrate. Therefore, the active species can act on the treatment liquid on the main surface of the substrate to improve the treatment capacity of the treatment liquid.
  • the main surface of the substrate can be efficiently processed with high processing capacity.
  • the first aspect of the substrate processing apparatus is a substrate holding portion that rotates the substrate around a rotation axis passing through a central portion of the substrate while holding the substrate, and a main substrate held by the substrate holding portion.
  • the first plasma generation unit includes a treatment liquid nozzle that discharges the treatment liquid toward a surface and a first plasma generation unit provided at a position adjacent to the treatment liquid nozzle in a plan view along the rotation axis. Refers to a first electrode group having a plurality of first electrodes provided side by side at intervals in a plan view, and a first gas flow path for flowing a gas from vertically above toward the first electrode group. The gas that has passed through the first electrode group, including the first unit main body to be formed, is supplied to the main surface of the substrate held by the substrate holding portion.
  • a second aspect of the substrate processing apparatus is the substrate processing apparatus according to the first aspect, wherein the first plasma generation unit further includes a dielectric partition member provided between the plurality of first electrodes. ..
  • a third aspect of the substrate processing apparatus is the substrate processing apparatus according to the first or second aspect, wherein the first plasma generation unit is equal to or larger than the radius of the substrate including the central portion to the peripheral portion of the substrate.
  • the gas is supplied to the region of.
  • a fourth aspect of the substrate processing apparatus is the substrate processing apparatus according to any one of the first to third aspects, wherein the first unit main body has a plurality of gases in a plan view of the first gas flow path. Includes a flow path partition that partitions the split flow path.
  • a fifth aspect of the substrate processing apparatus is the substrate processing apparatus according to the third aspect, wherein the first gas flow path is provided with a gas supply unit, and the processing liquid nozzle is the subject of the substrate.
  • the treatment liquid is discharged toward the central portion of the main surface, and the plurality of gas dividing flow paths include a first gas dividing flow path and a second gas dividing flow path, and the first gas dividing flow path and the like.
  • the distance between the rotating axis is shorter than the distance between the second gas dividing flow path and the rotating axis, and the gas supply unit is the first flow velocity of the gas in the first gas dividing flow path. Is supplied to the first gas dividing flow path and the second gas divided flow path so as to be higher than the second flow rate of the gas in the second gas dividing flow path.
  • a sixth aspect of the substrate processing apparatus is the substrate processing apparatus according to the fourth or fifth aspect, wherein gas is supplied to one of the plurality of gas dividing flow paths in the first unit main body.
  • the gas supply flow paths are formed, and the downstream ports of the plurality of gas supply flow paths are connected to the one of the plurality of gas split flow paths at different positions in a plan view.
  • a seventh aspect of the substrate processing apparatus is the substrate processing apparatus according to any one of the first to sixth aspects, wherein the first unit main body is from the first electrode group in the first gas flow path. Also includes a first plate-like body provided on the upstream side and having a plurality of openings facing the first electrode group.
  • An eighth aspect of the substrate processing apparatus is the substrate processing apparatus according to the seventh aspect, wherein the processing liquid nozzle discharges the processing liquid toward the central portion of the main surface of the substrate, and the plurality of the processing liquids.
  • the opening includes a first opening and a second opening, and the distance between the first opening and the rotation axis is shorter than the distance between the second opening and the rotation axis, and the first.
  • the area of the opening is smaller than the area of the second opening.
  • the ninth aspect of the substrate processing apparatus is the substrate processing apparatus according to any one of the first to eighth aspects, and the first unit main body is provided on the downstream side of the first electrode group. It further includes a shutter that opens and closes the outlet of the first gas flow path.
  • a tenth aspect of the substrate processing apparatus is the substrate processing apparatus according to the ninth aspect, wherein the first unit main body has a second plate shape having a plurality of outlets as outlets of the first gas flow path. Including the body further.
  • the eleventh aspect of the substrate processing apparatus is the substrate processing apparatus according to the tenth aspect, wherein the processing liquid nozzle discharges the processing liquid toward the central portion of the main surface of the substrate, and the plurality of the processing liquids.
  • the outlet includes a first outlet and a second outlet, and the distance between the first outlet and the rotation axis is larger than the distance between the second outlet and the rotation axis. It is short and the area of the first outlet is smaller than the area of the second outlet.
  • a twelfth aspect of the substrate processing apparatus is the substrate processing apparatus according to any one of the first to eleventh aspects, wherein the processing liquid nozzle is directed toward the central portion of the main surface of the substrate.
  • the distance between the first electric field space and the rotation axis in the electric field space between the plurality of electrodes is the distance between the second electric field space and the rotation axis in the electric field space.
  • an electric field is applied to the first electric field space with an electric field strength higher than the electric field strength of the electric field applied to the second electric field space.
  • the thirteenth aspect of the substrate processing apparatus is the substrate processing apparatus according to the twelfth aspect, and the magnitude of the voltage applied between the two electrodes forming the first electric field space among the plurality of electrodes is , The magnitude of the voltage applied between the two electrodes forming the second electric field space among the plurality of electrodes.
  • the fourteenth aspect of the substrate processing apparatus is the substrate processing apparatus according to the twelfth or thirteenth aspect, and the distance between the two electrodes forming the first electric field space among the plurality of electrodes is the plurality of electrodes. It is narrower than the distance between the two electrodes forming the second electric field space.
  • a fifteenth aspect of the substrate processing apparatus is the substrate processing apparatus according to any one of the first to the fourteenth aspects, further comprising a second plasma generation unit, wherein the second plasma generation unit is a plurality of second.
  • the gas that has passed through the second electrode group includes a second electrode group having two electrodes and a second unit main body that forms a second gas flow path for flowing gas toward the second electrode group. , It is supplied to the treatment liquid until it is discharged from the treatment liquid nozzle and reaches the main surface of the substrate.
  • a sixteenth aspect of the substrate processing apparatus is the substrate processing apparatus according to any one of the first to fifteenth aspects, wherein the first plasma generating unit surrounds the processing liquid nozzle in a plan view.
  • a blocking plate is formed together with the processing liquid nozzle, and the blocking plate is provided vertically above the upper surface of the substrate held by the substrate holding portion, and faces the upper surface of the substrate in the vertical direction.
  • the 17th aspect of the substrate processing apparatus is the substrate processing apparatus according to any one of the first to the sixteenth aspects, wherein a plurality of the first electrode groups are provided, and the plurality of first electrode groups are provided. They are provided side by side in the circumferential direction of the rotation axis.
  • the electric field can be applied in a wider range in the plan view, and the plasma can be applied in a wider range. Can be generated.
  • the active species produced by plasma can be supplied to the main surface of the substrate in a wider range, and the treatment can be performed more uniformly.
  • the substrate processing apparatus it is possible to suppress the arc discharge generated between the electrodes.
  • the first plasma generation unit supplies gas to the main surface of the rotating substrate, so that the active species can be supplied to the entire surface of the main surface of the substrate.
  • the flow rate can be adjusted for each gas split flow path.
  • the uniformity of processing with respect to the main surface of the substrate can be improved.
  • the gas can be more uniformly supplied to the gas split flow path.
  • the gas can be supplied more uniformly to the electrode group.
  • the uniformity of processing with respect to the main surface of the substrate can be improved.
  • the gas stays in the first gas flow path and more active species can be generated.
  • more active species can be supplied to the main surface of the substrate.
  • gas can be uniformly supplied to the main surface of the substrate.
  • the uniformity of processing with respect to the main surface of the substrate can be improved.
  • the uniformity of processing with respect to the main surface of the substrate can be improved.
  • an electric field having a high electric field strength can be applied at a position close to the rotation axis.
  • an electric field with a high electric field strength can be applied at a position close to the rotation axis.
  • the active species can act on the processing liquid before landing on the central portion of the substrate, and the processing capacity of the processing liquid before landing can be improved. Therefore, it is possible to more appropriately process the central portion of the main surface of the substrate.
  • the sixteenth aspect of the substrate processing apparatus it is possible to suppress the atmosphere between the upper surface of the substrate and the blocking plate from diffusing into the space above the blocking plate. In addition, it is possible to prevent the atmosphere between the barrier plate and the substrate from being mixed with the atmosphere from the outside and the gas concentration in the atmosphere from decreasing.
  • the strength of the electric field space of each first electrode group can be adjusted by individually adjusting the voltage of each first electrode group in the circumferential direction.
  • ordinal numbers such as “first” or “second” may be used in the description described below, these terms are used to facilitate understanding of the contents of the embodiments. It is used for convenience, and is not limited to the order that can occur due to these ordinal numbers.
  • the expression indicating the shape not only expresses the shape strictly geometrically, but also, for example, to the extent that the same effect can be obtained. It shall also represent a shape having irregularities and chamfers.
  • the expressions “equipped”, “equipped”, “equipped”, “included”, or “have” one component are not exclusive expressions that exclude the existence of other components.
  • the expression “at least one of A, B and C” includes A only, B only, C only, any two of A, B and C, and all of A, B and C.
  • FIG. 1 is a plan view schematically showing an example of the configuration of the substrate processing system 100.
  • the substrate processing system 100 is a single-wafer processing apparatus that processes the substrate W to be processed one by one.
  • the substrate processing system 100 processes the substrate W, which is a disk-shaped semiconductor substrate, and then performs a drying process.
  • a resist is formed on the main surface of the substrate W, and the substrate processing system 100 removes the resist as a process for the substrate W.
  • the substrate W is not necessarily limited to the semiconductor substrate.
  • the substrate W includes a glass substrate for a photomask, a glass substrate for a liquid crystal display, a glass substrate for a plasma display, a substrate for a FED (Field Emission Display), an optical disk substrate, a magnetic disk substrate, a magneto-optical disk substrate, and the like.
  • Various substrates can be applied.
  • the shape of the substrate is not limited to the disk shape, and various shapes such as a rectangular plate shape can be adopted.
  • the board processing system 100 includes a load port 101, an indexer robot 110, a main transfer robot 120, a plurality of processing units 130, and a control unit 90.
  • a plurality of load ports 101 are arranged side by side.
  • Carrier C is carried into each load port 101.
  • a FOUP Front Opening Unified Pod
  • SMIF Standard Mechanical Inter Face
  • OC Open Cassette
  • the indexer robot 110 transfers the substrate W between the carrier C and the main transfer robot 120.
  • the main transfer robot 120 transfers the substrate W to the processing unit 130.
  • the processing unit 130 processes the substrate W. Twelve processing units 130 are arranged in the substrate processing system 100 according to the present embodiment.
  • each of which is stacked in the vertical direction is arranged so as to surround the circumference of the main transfer robot 120.
  • FIG. 1 schematically shows one of the processing units 130 stacked in three stages.
  • the number of processing units 130 in the substrate processing system 100 is not limited to 12, and may be changed as appropriate.
  • the main transfer robot 120 is installed in the center of four towers in which the processing units 130 are stacked.
  • the main transfer robot 120 carries the substrate W to be processed received from the indexer robot 110 into each processing unit 130. Further, the main transfer robot 120 carries out the processed substrate W from each processing unit 130 and passes it to the indexer robot 110.
  • the control unit 90 controls the operation of each component of the substrate processing system 100.
  • FIG. 2 is a functional block diagram schematically showing an example of the internal configuration of the control unit 90.
  • the control unit 90 is an electronic circuit, and includes, for example, a data processing unit 91 and a storage medium 92.
  • the data processing unit 91 and the storage medium 92 are connected to each other via the bus 93.
  • the data processing unit 91 may be, for example, an arithmetic processing unit such as a CPU (Central Processor Unit).
  • the storage medium 92 may have a non-temporary storage medium (for example, ROM (Read Only Memory) or hard disk) 921 and a temporary storage medium (for example, RAM (Random Access Memory)) 922.
  • the non-temporary storage medium 921 may store, for example, a program that defines the processing executed by the control unit 90. By executing this program by the data processing unit 91, the control unit 90 can execute the processing specified in the program. Of course, a part or all of the processing executed by the control unit 90 may be executed by the hardware.
  • FIG. 2 an embodiment in which the indexer robot 110, the main transfer robot 120, and the processing unit 130 are connected to the bus 93 is schematically shown as an example.
  • FIG. 3 is a side view schematically showing an example of the configuration of the substrate processing apparatus 1.
  • the substrate processing apparatus 1 corresponds to one of a plurality of processing units 130.
  • the plurality of processing units 130 may have the same configuration as each other, or may have different configurations from each other.
  • the substrate processing apparatus 1 includes a substrate holding unit 2, a processing liquid nozzle 4, and a first plasma generation unit 5.
  • a substrate holding unit 2 As illustrated in FIG. 3, the substrate processing apparatus 1 includes a substrate holding unit 2, a processing liquid nozzle 4, and a first plasma generation unit 5.
  • a processing liquid nozzle 4 As illustrated in FIG. 3, the substrate processing apparatus 1 includes a substrate holding unit 2, a processing liquid nozzle 4, and a first plasma generation unit 5.
  • a substrate holding unit 2 As illustrated in FIG. 3, the substrate processing apparatus 1 includes a substrate holding unit 2, a processing liquid nozzle 4, and a first plasma generation unit 5.
  • the substrate holding portion 2 rotates the substrate W around the rotation axis Q1 while holding the substrate W in a horizontal posture.
  • the horizontal posture referred to here is a posture in which the thickness direction of the substrate W is along the vertical direction.
  • the rotation axis Q1 is an axis that passes through the center of the substrate W and is along the vertical direction.
  • Such a substrate holding portion 2 is also called a spin chuck.
  • the radial direction and the circumferential direction of the rotation axis Q1 may be simply referred to as the radial direction and the circumferential direction.
  • the processing liquid nozzle 4 supplies the processing liquid to the main surface of the substrate W held by the substrate holding portion 2.
  • the processing liquid discharged from the processing liquid nozzle 4 toward the substrate W is schematically indicated by a broken line arrow.
  • sulfuric acid is assumed as the treatment liquid, but for example, a liquid containing at least one of sulfate, peroxosulfate and peroxosulfate, or a chemical liquid such as a liquid containing hydrogen peroxide may be used.
  • the treatment liquid is typically an aqueous solution.
  • the first plasma generation unit 5 is provided at a position adjacent to the processing liquid nozzle 4 when viewed along the rotation axis Q1 (that is, in a plan view).
  • Gas is supplied to the first plasma generation unit 5 from the gas supply unit 50, and the gas flows through the first gas flow path 60 in the first plasma generation unit 5 toward the main surface of the substrate W.
  • an oxygen-containing gas containing oxygen can be applied to the gas.
  • the oxygen-containing gas includes, for example, oxygen gas, ozone gas, carbon dioxide gas, air, or a mixed gas of at least two of these.
  • the gas may further contain an inert gas.
  • the inert gas includes, for example, nitrogen gas, argon gas, neon gas, helium gas, or a mixed gas of at least two of these.
  • the first plasma generation unit 5 has a first electrode group 7 on the downstream side of the first gas flow path 60 as described later.
  • the first electrode group 7 is configured to allow gas to pass through, and an electric field is applied to the electric field space for plasma around the first electrode group 7.
  • the electric field space is a space to which an electric field for generating plasma is applied.
  • the gas passes through the first electrode group 7 (that is, the electric field space)
  • the electric field acts on the gas.
  • a part of the gas is ionized to generate plasma (plasma generation processing).
  • an inert gas such as argon gas is ionized to generate plasma.
  • plasma is generated under atmospheric pressure.
  • the atmospheric pressure referred to here is, for example, 80% or more of the standard pressure and 120% or less of the standard pressure.
  • the treatment liquid nozzle 4 and the first plasma generation unit 5 are provided vertically above the substrate W held by the substrate holding portion 2, and the treatment liquid and the gas are respectively placed on the upper surface of the substrate W. Supply.
  • the processing liquid nozzle 4 and the first plasma generation unit 5 are integrally connected to form the nozzle head 3.
  • the nozzle head 3 is movably provided by the head moving mechanism 30.
  • the head moving mechanism 30 can move the nozzle head 3 between the standby position and the processing position on the moving path.
  • the standby position is a position where the nozzle head 3 does not interfere with the transport path of the substrate W when the substrate W is carried in and out, and is, for example, a position radially outside the substrate holding portion 2 in a plan view.
  • the processing position is a position where the nozzle head 3 supplies the processing liquid and the gas to the substrate W, and the nozzle head 3 is a position where the nozzle head 3 faces the main surface of the substrate W in the vertical direction.
  • the processing position is a position where the processing liquid nozzle 4 can land the processing liquid on the central portion of the substrate W.
  • the head moving mechanism 30 may include a linear motion mechanism such as a linear motor or a ball screw mechanism.
  • the head moving mechanism 30 may include an arm type moving mechanism instead of the linear moving mechanism.
  • the nozzle head 3 is connected to the tip of an arm extending in the horizontal direction.
  • the base end of the arm is connected to a support column extending along the vertical direction.
  • This support column is connected to a motor and rotates around the central axis of the support column along the vertical direction.
  • the arm swirls in the horizontal plane around the central axis, and the nozzle head 3 provided at the tip of the arm moves in an arc around the central axis in the horizontal plane. do.
  • the head moving mechanism 30 is configured so that the arc-shaped moving path follows the diameter of the substrate W in a plan view.
  • the cup 8 has a cylindrical shape that surrounds the substrate holding portion 2.
  • the central axis of the tubular shape of the cup 8 coincides with the rotation axis Q1.
  • the treatment liquid scattered outward from the peripheral edge of the substrate W collides with the inner peripheral surface of the cup 8 and flows downward to be collected by a collection mechanism (not shown) or drained to the outside by a drainage mechanism (not shown). Or something.
  • the substrate processing apparatus 1 is provided with an exhaust port (not shown) outside the substrate holding portion 2 in the radial direction.
  • the cup 8 may be provided with an exhaust port. The active species and gas supplied to the main surface of the substrate W flow radially outward along the main surface of the substrate W and are exhausted from the exhaust port.
  • the substrate holding portion 2 includes a base 21, a plurality of chucks 22, and a rotation mechanism 23.
  • the base 21 has a disk shape centered on the rotation axis Q1, and a plurality of chucks 22 are erected on the upper surface thereof.
  • the plurality of chucks 22 are provided at equal intervals along the peripheral edge of the substrate W.
  • the chuck 22 can be driven between a chuck position abutting on the peripheral edge of the substrate W and a release position away from the peripheral edge of the substrate W.
  • the plurality of chucks 22 hold the peripheral edge of the substrate W in a state where the plurality of chucks 22 are stopped at the respective chuck positions.
  • the chuck drive unit (not shown) that drives the plurality of chucks 22 is composed of, for example, a link mechanism, a magnet, or the like, and is controlled by the control unit 90.
  • the rotation mechanism 23 includes a motor 231.
  • the motor 231 is connected to the lower surface of the base 21 via the shaft 232 and is controlled by the control unit 90. As the motor 231 rotates the shaft 232 and the base 21 around the rotation axis Q1, the substrate W held by the plurality of chucks 22 also rotates around the rotation axis Q1.
  • the substrate holding portion 2 does not necessarily have to include the chuck 22.
  • the substrate holding portion 2 may hold the substrate W by, for example, an attractive force or an electrostatic force.
  • the treatment liquid nozzle 4 of the nozzle head 3 has, for example, a cylindrical shape.
  • the treatment liquid nozzle 4 has a discharge port 4a on its lower end surface.
  • the processing liquid nozzle 4 discharges the processing liquid in an oblique direction.
  • the treatment liquid nozzle 4 discharges the treatment liquid diagonally from the discharge port 4a so that the treatment liquid lands on the central portion of the substrate W. That is, the processing liquid nozzle 4 is provided radially outside the rotation axis Q1 in a plan view, and discharges the processing liquid from the radial outside toward the central portion of the substrate W.
  • the processing liquid supply pipe 41 is connected to the processing liquid nozzle 4.
  • the treatment liquid supply pipe 41 is arranged through the first plasma generation unit 5.
  • the treatment liquid nozzle 4 is connected to the first plasma generation unit 5 via the treatment liquid supply pipe 41.
  • the other end of the processing liquid supply pipe 41 is connected to the processing liquid supply source 43.
  • the treatment liquid supply source 43 includes, for example, a tank for storing the treatment liquid.
  • a valve 42 is interposed in the processing liquid supply pipe 41.
  • the valve 42 is controlled by the control unit 90, and when the valve 42 is opened, the processing liquid flows from the processing liquid supply source 43 inside the processing liquid supply pipe 41 and is supplied to the processing liquid nozzle 4.
  • This treatment liquid is discharged from the discharge port 4a of the treatment liquid nozzle 4 toward the main surface of the substrate W.
  • the valve 42 is closed, the discharge of the processing liquid from the discharge port 4a of the processing liquid nozzle 4 is stopped.
  • the substrate processing apparatus 1 may have a configuration in which a plurality of types of processing liquids are supplied to the main surface of the substrate W.
  • the treatment liquid nozzle 4 may have a plurality of treatment liquid flow paths. In this case, each treatment liquid flow path is individually connected to each type of treatment liquid supply source.
  • the substrate processing device 1 may include a nozzle separately from the nozzle head 3.
  • the plurality of types of treatment liquids for example, in addition to chemical liquids such as sulfuric acid, rinse liquids such as pure water, ozone water, carbonated water, and isopropyl alcohol can be adopted.
  • the treatment liquid nozzle 4 has a plurality of treatment liquid flow paths.
  • the first plasma generation unit 5 is provided adjacent to the processing liquid nozzle 4 in a plan view.
  • the first plasma generation unit 5 can be provided.
  • the first plasma generation unit 5 is provided at a position facing the region extending from the central portion (rotational axis Q1) of the substrate W to the peripheral portion in the vertical direction. That is, in the example of FIG. 3, the radial width of the first plasma generation unit 5 is equal to or larger than the radius of the substrate W.
  • FIGS. 5 to 7 are diagrams schematically showing an example of the configuration of the first plasma generation unit 5.
  • FIG. 4 shows a side sectional view of the first plasma generating unit 5
  • FIGS. 5 to 7 show an AA cross section, a BB cross section, and a CC cross section of FIG. 4, respectively.
  • the first plasma generation unit 5 includes a first unit main body 6 and a first electrode group 7.
  • the first unit main body 6 forms a first gas flow path 60 for flowing the gas from the gas supply unit 50 toward the main surface of the substrate W.
  • the first electrode group 7 is provided on the downstream side of the first gas flow path 60, and is configured to allow gas to pass through as described later.
  • the first electrode group 7 faces the main surface of the substrate W in the vertical direction.
  • the gas passes through the first electrode group 7 from vertically above to vertically below and flows toward the main surface of the substrate W.
  • an electric field is applied to the gas, and the application of the electric field causes a part of the gas to be ionized to generate plasma.
  • Various active species are generated during the generation of this plasma, and these active species are supplied to the main surface of the substrate W along the flow of gas.
  • the first unit main body 6 is formed of, for example, an insulator (dielectric) such as quartz or ceramics, and a first gas flow path 60 is formed inside the insulator.
  • a plurality of gas split flow paths 61 are formed inside the first unit main body 6 as a part of the downstream side of the first gas flow path 60.
  • the plurality of gas split flow paths 61 are formed adjacent to each other in a plan view.
  • the first unit main body 6 is provided with one or more flow path partition portions 63 that partition the plurality of gas split flow paths 61.
  • three gas dividing flow paths 61a to 61c are formed as a plurality of gas dividing flow paths 61.
  • the three gas dividing flow paths 61a to 61c are formed in this order as the distance from the position closer to the treatment liquid nozzle 4 increases. That is, the gas dividing flow path 61a is closest to the processing liquid nozzle 4, the gas dividing flow path 61b is next closest to the processing liquid nozzle 4, and the gas dividing flow path 61c is the farthest from the processing liquid nozzle 4. Further, it can be said that the gas dividing flow paths 61a to 61b are arranged in this order as they move away from the position closer to the rotation axis Q1 in a plan view.
  • the distance between the gas dividing flow path 61a and the rotating axis Q1 is shorter than the distance between the gas dividing flow path 61b and the rotating axis Q1, and the distance between the gas dividing flow path 61b and the rotating axis Q1. Is shorter than the distance between the gas split flow path 61c and the treatment liquid nozzle 4. Since the rotation axis Q1 can be grasped as a virtual line extending infinitely along the vertical direction, when the rotation axis Q1 passes through the gas division flow path 61a, the distance between the gas division flow path 61a and the rotation axis Q1 is zero. Is.
  • the flow path partition portions 63a and 63b are provided as the flow path partition portions 63.
  • the flow path partition portion 63a is located between the gas split flow paths 61a and 61b and partitions the gas split flow paths 61a and 61b.
  • the flow path partition portion 63b is located between the gas split flow paths 61b and 61c and partitions the gas split flow paths 61b and 61c.
  • the flow path partition portion 63a is provided at a position closer to the rotation axis Q1 than the flow path partition portion 63b.
  • the gas split flow paths 61a to 61c are formed at positions overlapping with the first electrode group 7 in a plan view.
  • Each of the gas dividing flow paths 61a to 61c opens vertically downward, and the gas flows vertically downward toward the first electrode group 7 from the opening below the gas dividing flow paths 61a to 61c, and flows through the first electrode group 7. Pass in the vertical direction. Since the gas dividing flow paths 61a to 61c are formed at different positions in the plan view, the gas from the gas dividing flow paths 61a to 61c passes through different regions of the first electrode group 7.
  • the gas dividing flow path 61a has a semicircular shape in a plan view, and its arc surface follows a virtual arc centered on the rotation axis Q1.
  • the gas dividing flow path 61a faces the central portion of the substrate W in the vertical direction.
  • the gas split flow path 61b is formed radially outside the gas split flow path 61a.
  • the gas dividing flow path 61b has a semicircular arc shape having the same width in a plan view, and the arc surface on the inner side in the radial direction is along the arc surface on the outer side in the radial direction of the gas dividing flow path 61a. That is, the flow path partition portion 63a has a semicircular plate-like shape, and its thickness direction is along the radial direction.
  • the inner peripheral surface of the flow path partition portion 63a is the radial outer arc surface of the gas dividing flow path 61a, and the outer peripheral surface of the flow path partition 63a is the radial inner arc surface of the gas dividing flow path 61b. ..
  • the gas dividing flow path 61b faces the intermediate portion radially outside the central portion of the substrate W in the vertical direction.
  • the gas split flow path 61c is formed radially outside the gas split flow path 61b.
  • the gas dividing flow path 61c has an arc surface on the inner side in the radial direction, and the arc surface is along the arc surface on the outer side in the radial direction of the gas dividing flow path 61b. That is, the flow path partition portion 63b has a semicircular plate-like shape, and is provided in a posture in which the thickness direction thereof is along the radial direction.
  • the inner peripheral surface of the flow path partition portion 63b is the radial outer arc surface of the gas dividing flow path 61b, and the outer peripheral surface of the flow path partition 63b is the radial inner arc surface of the gas dividing flow path 61c. ..
  • the gas dividing flow path 61c is formed from an arc surface on the inner side in the radial direction, a first surface extending from both ends of the arc surface on opposite sides to each other, and ends on opposite sides of the first surface. It is formed by a second surface extending in a direction away from the treatment liquid nozzle 4 and an arcuate surface connecting the ends of the second surface.
  • the arcuate surface of the gas dividing flow path 61c has a shape along the peripheral edge of the substrate W, and the outermost point of the arcuate surface in the radial direction is located radially outside the peripheral edge of the substrate W. is doing.
  • At least a part of the radial outer surface of the gas dividing flow path 61c farthest from the rotation axis Q1 is located radially outer than the peripheral edge of the substrate W.
  • the gas dividing flow path 61c faces the peripheral edge portion radially outside the intermediate portion of the substrate W in the vertical direction.
  • a gas supply flow path 62 for supplying gas to the gas split flow path 61 is a part of the upstream side of the first gas flow path 60. Is formed as.
  • the upstream port 621 of the gas supply flow path 62 is formed, for example, on the radial outer side surface 601 of the first unit main body 6.
  • the side surface 601 is a side surface opposite to the treatment liquid nozzle 4 (see FIG. 4).
  • the downstream port 622 of the gas supply flow path 62 is connected to the corresponding gas split flow path 61.
  • the gas supply flow paths 62a to 62c are formed corresponding to the gas dividing flow paths 61a to 61c, respectively.
  • the gas supply flow path 62c is a flow path for supplying gas to the gas split flow path 61c.
  • a plurality of (five in the figure) gas supply channels 62c are formed.
  • the downstream ports 622c of the plurality of gas supply flow paths 62c are connected to the gas split flow path 61c at different positions in a plan view. More specifically, the downstream ports 622c of the three gas supply flow paths 62c are formed on the radial outer arcuate surface of the gas split flow path 61c, and the downstream ports 622c of the two gas supply flow paths 62c are each gas split flow. It is formed on the second surface of the road 61c facing each other. According to this, since the gas can be supplied to the gas dividing flow path 61c from a plurality of locations, the gas can be supplied to the gas divided flow path 61c more uniformly.
  • the upstream ports 621c of the plurality of gas supply flow paths 62c are formed side by side along the horizontal direction on the side surface 601 of the first unit main body 6.
  • Each gas supply flow path 62c extends from the upstream port 621c in a horizontal plane to reach the downstream port 622c.
  • each gas supply flow path 62c is formed in the same layer (height position) as the gas split flow paths 61a to 61c.
  • the gas supply flow path 62a is a flow path for supplying gas to the gas split flow path 61a.
  • the gas supply flow path 62a is formed in a layer (height position) vertically above the gas supply flow path 62c and the gas split flow paths 61a to 61c.
  • the downstream port 622a of the gas supply flow path 62a is formed on the upper surface of the gas split flow path 61a vertically above (see also FIG. 6).
  • the upstream port 621a of the gas supply flow path 62a is formed on the side surface 601 of the first unit main body 6 vertically above the upstream port 621c of the gas supply flow path 62c.
  • the gas supply flow path 62a extends linearly in the horizontal plane from the upstream port 621a and reaches the downstream port 622a formed on the upper surface of the gas split flow path 61a.
  • the gas supply flow path 62b is a flow path for supplying gas to the gas split flow path 61b.
  • the gas supply flow path 62b is formed in the same layer (height position) as the gas supply flow path 62a.
  • a plurality of (two in the figure) gas supply flow paths 62b are formed, and the downstream ports 622b of the plurality of gas supply flow paths 62b are located at different positions in a plan view, and the gas split flow paths 61b. It is connected to.
  • the downstream port 622b is formed on the upper surface of the gas dividing flow path 61b.
  • the plurality of downstream ports 622b may be formed on a virtual arc centered on the rotation axis Q1. According to this, since the gas can be supplied to the gas dividing flow path 61b from a plurality of locations, the gas can be supplied to the gas divided flow path 61b more uniformly.
  • the upstream port 621b of the gas supply flow path 62b is formed on the side surface 601 of the first unit main body 6 vertically above the upstream port 621c of the gas supply flow path 62c.
  • the upstream port 621b of the gas supply flow path 62b is formed on both sides of the upstream port 621a of the gas supply flow path 62a in the horizontal direction.
  • Each gas supply flow path 62b extends from the upstream port 621b in a horizontal plane to reach the downstream port 622b.
  • a plurality of gas supply flow paths 62a may be provided in the gas division flow path 61a closest to the rotation axis Q1. According to this, the gas can be supplied to the gas dividing flow path 61a from a plurality of locations in a plan view, and the gas can be more uniformly supplied to the gas divided flow path 61a.
  • the gas supply unit 50 supplies gas to the first gas flow path 60 through the upstream port 621 of the first unit main body 6.
  • the gas supply unit 50 includes a gas supply pipe 51 and a valve 52.
  • gas supply pipes 51a to 51c are provided as gas supply pipes 51.
  • the upstream port 621c of each gas supply flow path 62c is connected to the downstream end of the gas supply pipe 51c (see FIG. 5).
  • a valve 52c as a valve 52 is interposed in each gas supply pipe 51c.
  • the valve 52c is controlled by the control unit 90, and by switching the opening and closing of the valve 52c, the supply and stop of gas to each gas supply flow path 62c are switched.
  • the valve 52c may be a valve capable of adjusting the gas flow rate, or a flow rate adjusting valve may be separately provided in the gas supply pipe 51c.
  • each gas supply flow path 62b is connected to the downstream end of the gas supply pipe 51b (see FIG. 6).
  • a valve 52b as a valve 52 is interposed in each gas supply pipe 51b.
  • the valve 52b is controlled by the control unit 90, and by switching the opening and closing of the valve 52b, the supply and stop of gas to each gas supply flow path 62b are switched.
  • the valve 52b may be a valve capable of adjusting the gas flow rate, or a flow rate adjusting valve may be separately provided in the gas supply pipe 51b.
  • the upstream port 621a of the gas supply flow path 62a is connected to the downstream end of the gas supply pipe 51a (see FIG. 6).
  • a valve 52a as a valve 52 is interposed in the gas supply pipe 51a.
  • the valve 52a is controlled by the control unit 90, and by switching the opening and closing of the valve 52a, the supply and stop of the gas to the gas supply flow path 62a are switched.
  • the valve 52a may be a valve capable of adjusting the gas flow rate, or a flow rate adjusting valve may be separately provided in the gas supply pipe 51a.
  • the flow rate of the gas flowing through the gas split flow paths 61a to 61c can be individually adjusted.
  • the gas supply unit 50 can adjust the gas flow rate in each of the gas split flow paths 61a to 61c so that the gas flow rate satisfies the following relationship.
  • the flow velocity of the gas in the gas dividing flow path 61a is higher than the flow rate of the gas in the gas dividing flow path 61b
  • the flow rate of the gas in the gas dividing flow path 61b is the gas in the gas dividing flow path 61c.
  • Each flow rate can be adjusted so that it is higher than the flow rate of. That is, the closer to the rotation axis Q1, the higher the flow velocity of the gas. This effect will be described in detail later.
  • the gas supply unit 50 can individually adjust the gas flow rate in the plurality of gas supply flow paths 62c. can. Therefore, the flow rate of the gas flowing into the gas split flow path 61c can be adjusted for each of the plurality of downstream ports 622c. As a result, the gas can be more uniformly supplied to the gas split flow path 61c.
  • the gas supply unit 50 may individually adjust the gas flow rate in the plurality of gas supply flow paths 62b. can. Therefore, the flow rate of the gas flowing into the gas split flow path 61b can be adjusted for each of the plurality of downstream ports 622b. As a result, the gas can be more uniformly supplied to the gas split flow path 61b.
  • a plurality of gas supply flow paths 62a and a plurality of gas supply pipes 51a may be provided corresponding to the gas split flow path 61a, and a valve 52a (flow rate adjusting valve) may be interposed in each gas supply pipe 51a.
  • a valve 52a flow rate adjusting valve
  • the first unit main body 6 further includes the first plate-shaped body 64.
  • the first plate-shaped body 64 is provided in the first gas flow path 60. Specifically, the first plate-shaped body 64 is provided on the upstream side of the gas flow with respect to the first electrode group 7, and is provided at a position facing the first electrode group 7 in the vertical direction. There is.
  • the first plate-like body 64 has a plate-like shape, and is arranged in a posture in which the thickness direction thereof is along the vertical direction.
  • a plurality of openings 641 are formed in the first plate-shaped body 64. The plurality of openings 641 penetrate the first plate-shaped body 64 in the vertical direction, and have, for example, a circular shape in a plan view.
  • the plurality of openings 641 are arranged, for example, two-dimensionally in a plan view, and as a more specific example, they are arranged in a matrix.
  • the gas flowing through the first gas flow path 60 passes through the plurality of openings 641 and flows toward the first electrode group 7.
  • first plate-shaped bodies 64a and 64b are provided as the first plate-shaped body 64.
  • the first plate-shaped body 64a is provided corresponding to the gas dividing flow paths 61a and 61b.
  • the first plate-shaped body 64a has a semicircular shape in a plan view and faces the gas dividing flow paths 61a and 61b in the vertical direction.
  • the lower end of the flow path partition portion 63a is connected to the upper surface of the first plate-shaped body 64a, and the region of the first plate-shaped body 64a inside the flow path partition portion 63a in the radial direction is a gas split flow.
  • the gas flowing through the gas dividing flow paths 61a and 61b passes through the plurality of openings 641 of the first plate-shaped body 64a and flows toward the first electrode group 7.
  • the first plate-shaped body 64b is provided corresponding to the gas dividing flow path 61c.
  • the first plate-shaped body 64b has the same shape as the gas dividing flow path 61c in a plan view, and faces the gas dividing flow path 61c in the vertical direction.
  • the gas flowing through the gas dividing flow path 61c passes through the plurality of openings 641 of the first plate-shaped body 64b and flows toward the first electrode group 7.
  • the gas flowing through each of the gas dividing flow paths 61 passes through the plurality of openings 641 of the first plate-shaped body 64 and flows toward the first electrode group 7. Therefore, the gas can be flowed more uniformly toward the first electrode group 7. If the distance between the first plate-shaped body 64 and the first electrode group 7 becomes longer, the uniformity of the gas may decrease. Therefore, the distance may be set in consideration of the uniformity of the gas.
  • the size of the opening 641 is different between the first plate-shaped bodies 64a and 64b. This point will be described in detail later.
  • the processing liquid supply pipe 41 connected to the processing liquid nozzle 4 penetrates the first unit main body 6 in the layer (height position) vertically above the gas supply flow path 62a. That is, the first unit main body 6 has a flow path structure having a plurality of layers in the vertical direction. Specifically, a treatment liquid flow path (treatment liquid supply pipe 41) through which the treatment liquid flows toward the treatment liquid nozzle 4 is formed on the uppermost layer of the first unit main body 6. Gas supply flow paths 62a and 62b through which gas flows toward the gas division flow paths 61a and 61b are formed in the intermediate layer of the first unit main body 6. A gas dividing flow path 61a to 61c and a gas supply flow path 62c through which gas flows toward the gas dividing flow path 61c are formed in the lowermost layer of the first unit main body 6.
  • the first electrode group 7 is provided on the downstream side of the first gas flow path 60 as described above, and is provided in a region overlapping the first gas flow path 60 in a plan view. Specifically, the first electrode group 7 is provided in a region overlapping the gas dividing flow paths 61a to 61c in a plan view.
  • the first electrode group 7 includes a plurality of first electrodes 71.
  • the plurality of first electrodes 71 are formed of a conductor such as metal, and are provided side by side at intervals in a plan view (see FIG. 7).
  • each first electrode 71 has a horizontally long elongated shape.
  • the long shape referred to here means a shape in which the size of the first electrode 71 in the longitudinal direction is longer than the size in the horizontal direction orthogonal to the longitudinal direction thereof.
  • the plurality of first electrodes 71 are provided in a posture in which their longitudinal directions are orthogonal to the radial direction.
  • the plurality of first electrodes 71 are arranged side by side at intervals in the horizontal arrangement direction (here, the radial direction) orthogonal to the longitudinal direction thereof.
  • six first electrodes 71a to 71f are shown as the plurality of first electrodes 71.
  • the first electrodes 71a to 71f are arranged in this order from one side to the other side in the arrangement direction.
  • the first electrodes 71a to 71d are arranged, for example, in the same plane.
  • first electrodes 71a, 71c, 71e arranged odd-numbered from one side in the arrangement direction are connected to each other via the connecting portion 711a at one end (base end) in the longitudinal direction.
  • the connecting portion 711a has, for example, a plate shape, and is integrally formed of, for example, the same material as the first electrodes 71a, 71c, 71e.
  • the connecting portion 711a is connected to the first output end 81 of the power supply 80 via a lead-out wiring.
  • the first electrodes 71b, 71d, 71f arranged even-numbered from one side in the arrangement direction are connected to each other via the connecting portion 711b at the other end (base end) in the longitudinal direction thereof.
  • the connecting portion 711b has, for example, a plate shape, and is integrally formed of, for example, the same material as the first electrodes 71b, 71d, 71f. In such a first electrode group 7, a plurality of first electrodes 71 are arranged in a comb-teeth shape.
  • the connecting portion 711b is connected to the second output end 82 of the power supply 80 via the lead-out wiring.
  • the power supply 80 includes, for example, a switching power supply circuit (for example, an inverter circuit) and is controlled by the control unit 90.
  • the power supply 80 applies a voltage (for example, a high frequency voltage) between the first output terminal 81 and the second output end 82. As a result, an electric field is generated in the space (electric field space) between the plurality of first electrodes 71.
  • the gas flowing along the first gas flow path 60 passes through the electric field space between the plurality of first electrodes 71.
  • the electric field acts on the gas, and a part of the gas is ionized to generate plasma (plasma generation processing).
  • plasma generation processing Various active species are generated during the generation of this plasma, and these active species move toward the main surface of the substrate W along the gas flow.
  • the distance between the first electrode group 7 and the substrate W is set to such a distance that arc discharge does not occur between the first electrode group 7 and the substrate W.
  • the distance between the first electrode group 7 and the substrate W is set to, for example, about 2 mm or more and about 5 mm or less.
  • each first electrode 71 is covered with a dielectric protective member 72.
  • the dielectric protection member 72 is formed of an insulator (dielectric) such as quartz or ceramics, and covers the surface of the first electrode 71.
  • the dielectric protection member 72 is in close contact with the surface of the first electrode 71.
  • the dielectric protection member 72 may be a dielectric film formed on the surface of the first electrode 71.
  • the dielectric protection member 72 can protect the first electrode 71 from plasma.
  • each first electrode 71 has a circular cross-sectional shape, and each dielectric protection member 72 has an annular cross-sectional shape.
  • a dielectric partition member 73 is provided between two adjacent first electrodes 71. Specifically, the dielectric partition member 73 is provided between all two of the plurality of first electrodes 71.
  • the dielectric partition member 73 is formed of, for example, an insulator (dielectric) such as quartz or ceramics, and is provided at a distance from each first electrode 71.
  • the dielectric partition member 73 has, for example, a plate shape, and is provided in such a posture that the thickness direction thereof is along the arrangement direction (here, the radial direction) of the first electrodes 71.
  • the main surface of the dielectric partition member 73 has, for example, a rectangular shape long in the longitudinal direction of the first electrode 71.
  • the upper end of the dielectric partition member 73 is located above the upper end of the first electrode 71, and the lower end of the dielectric partition member 73 is located below the lower end of the first electrode 71.
  • the lowest upper end position of the plurality of dielectric partition members 73 is higher than the highest upper end position of the plurality of first electrodes 71, and the highest lower end of the plurality of dielectric partition members 73. The position is lower than the lowest lower end position among the plurality of first electrodes 71.
  • the insulation distance between the plurality of first electrodes 71 can be lengthened. According to this, it is possible to suppress the generation of arc discharge between the plurality of first electrodes 71 while increasing the voltage of the plurality of first electrodes 71 to generate plasma more efficiently.
  • each dielectric partition member 73 is connected to the frame body 74.
  • the frame body 74 is also formed of an insulator (dielectric material) such as quartz or ceramics.
  • the frame body 74 surrounds a plurality of dielectric partition members 73 in a plan view, and both ends of each dielectric partition member 73 in the longitudinal direction are connected to the inner surface of the frame body 74.
  • the frame body 74 also substantially surrounds the plurality of first electrodes 71.
  • the connecting portions 711a and 711b are located outside the frame body 74, and the first electrodes 71a, 71c and 71e penetrate the frame body 74 on one side in the longitudinal direction thereof and connect the connecting portions 711a.
  • the first electrodes 71b, 71c, 71f are connected to the connecting portion 711b through the frame body 74 on the other side in the longitudinal direction thereof. In other words, most of the first electrode 71 is located inside the frame body 74.
  • the frame body 74 is connected to, for example, the lower end of the first unit main body 6.
  • the gas from the gas split flow paths 61a to 61c passes through the first electrode group 7 in the frame body 74. Specifically, the gas passes downward through the space between the plurality of first electrodes 71 and the plurality of dielectric partition members 73. When an electric field generated in the electric field space between the plurality of first electrodes 71 acts on the gas, a part of the gas is ionized to generate plasma. Various active species are generated when this plasma is generated. These active species move downward along the gas flow and flow out towards the main surface of the substrate W.
  • the nozzle head 3 can supply the treatment liquid and the gas to the main surface of the substrate W by the treatment liquid nozzle 4 and the first plasma generation unit 5.
  • FIG. 8 is a flowchart showing an example of the operation of the substrate processing device 1.
  • the unprocessed substrate W is carried into the substrate processing apparatus 1 by the main transfer robot 120 (step S1).
  • a resist is formed on the upper surface of the substrate W.
  • the board holding portion 2 of the board processing device 1 holds the carried-in board W.
  • the substrate holding portion 2 starts rotating the substrate W around the rotation axis Q1 (step S2).
  • step S3 chemical treatment is performed (step S3). Specifically, first, the head moving mechanism 30 moves the nozzle head 3 from the standby position to the processing position. Next, the valves 42, 52a to 52c are opened, and the power supply 80 applies a voltage to the first electrode 71.
  • the treatment liquid here, a chemical liquid such as sulfuric acid
  • the chemical solution is supplied toward the central portion of the substrate W.
  • the chemical solution deposited on the upper surface of the rotating substrate W flows radially outward along the upper surface of the substrate W and scatters outward from the peripheral edge of the substrate W. As a result, the chemical solution acts on the entire upper surface of the substrate W.
  • gas here, a mixed gas of oxygen-containing gas and rare gas
  • gas supply unit 50 gas (here, a mixed gas of oxygen-containing gas and rare gas) is supplied from the gas supply unit 50 to the first gas flow path 60 via the upstream ports 621a to 621c.
  • the gas flows into the gas split flow paths 61a to 61c via the gas supply flow paths 62a to 62c.
  • gas is supplied to the gas dividing flow path 61c farthest from the rotating axis Q1 at the first flow rate, and then to the gas dividing flow path 61b farthest from the rotating axis Q1 at a second flow rate larger than the first flow rate.
  • Gas is supplied, and gas is supplied to the gas dividing flow path 61a closest to the rotation axis Q1 at a third flow rate larger than the second flow rate.
  • the gas flowing downward through the gas split flow paths 61a and 61b passes through the plurality of openings 641 of the first plate-shaped body 64a. As a result, the gas is rectified and flows more uniformly toward the first electrode group 7. Similarly, the gas flowing downward in the gas dividing flow path 60c passes through the plurality of openings 641 of the first plate-shaped body 64b. As a result, the gas is rectified and flows more uniformly toward the first electrode group 7.
  • the power supply 80 applies a voltage to the first electrode 71, an electric field is generated in the electric field space between the first electrodes 71 in the first electrode group 7.
  • an electric field acts on the gas, and a part of the gas is ionized to generate plasma.
  • various reactions such as dissociation and excitation of molecules and atoms due to electron collision reaction occur, and various active species (for example, oxygen radicals) such as highly reactive neutral radicals are generated.
  • active species for example, oxygen radicals
  • argon gas is turned into plasma by an electric field, and the plasma acts on an oxygen-containing gas to generate oxygen radicals.
  • These active species eg, oxygen radicals
  • the active species acts on the chemical solution on the upper surface of the substrate W.
  • an oxygen radical acts on the sulfuric acid on the upper surface of the substrate W
  • peroxomonosulfuric acid is produced by the oxidizing power of the oxygen radical.
  • carboic acid can effectively remove the resist on the upper surface of the substrate W. In other words, the action of the active species on the drug solution improves the processing capacity of the drug solution.
  • the active species can act directly not only on the chemical solution on the main surface of the substrate W but also on the substrate W.
  • the resist can be removed by the oxidizing power of the oxygen radical.
  • the treatment liquid nozzle 4 discharges the chemical liquid toward the central portion of the substrate W along an oblique direction inclined from the vertical direction. Therefore, the chemical solution deposited on the central portion of the substrate W flows outward in the radial direction as it is. According to this, the liquid film of the chemical liquid formed on the upper surface of the substrate W can be made thinner than in the case where the chemical liquid is discharged along the vertical direction. As a result, the active species can act on the chemical solution at a position close to the upper surface of the substrate W. Therefore, the chemical solution having improved processing capacity tends to act on the substrate W. In addition, the active species can easily act directly on the main surface of the substrate W.
  • the valves 42, 52a to 52c are closed, and the power supply 80 stops the voltage output.
  • the discharge of the chemical liquid from the treatment liquid nozzle 4 is stopped, and the outflow of gas from the first plasma generation unit 5 is also stopped.
  • the substantial chemical solution treatment here, the resist removal treatment
  • step S4 the rinsing process is performed (step S4). Specifically, the substrate processing apparatus 1 discharges the rinse liquid from, for example, the processing liquid nozzle 4 toward the upper surface of the substrate W. As a result, the chemical solution on the upper surface of the substrate W is replaced with the rinse solution.
  • the discharge of the rinse solution from the treatment solution nozzle 4 is stopped, and the head moving mechanism 30 moves the nozzle head 3 to the standby position.
  • step S5 a drying process is performed (step S5).
  • the substrate holding portion 2 increases the rotation speed of the substrate W.
  • the rinsing liquid on the upper surface of the substrate W is shaken off from the peripheral edge of the substrate W, and the substrate W dries (so-called spin drying).
  • step S6 the substrate holding portion 2 ends the rotation of the substrate W.
  • step S7 the processed substrate W is carried out from the substrate processing apparatus 1 by the main transfer robot 120 (step S7).
  • the processing liquid nozzle 4 and the first plasma generation unit 5 are arranged adjacent to each other in a plan view. Then, since the processing liquid discharged from the processing liquid nozzle 4 and landing on the main surface of the substrate W flows on the main surface of the substrate W, the first plasma generation unit 5 supplies gas toward the main surface of the substrate W. By doing so, the active species can act on the treatment liquid on the main surface of the substrate W. Therefore, the processing capacity of the processing liquid can be improved on the main surface of the substrate W. Therefore, the processing liquid acts on the main surface of the substrate W in a state where the processing capacity is improved, and the substrate W can be processed in a shorter time.
  • the plurality of first electrodes 71 of the first electrode group 7 are arranged side by side in a plan view.
  • a plurality of first electrodes 71 having a long horizontal shape are arranged side by side at intervals in the lateral direction (arrangement direction).
  • the area of the first electrode group 7 in a plan view can be easily increased. Therefore, plasma can be generated in a wide range in a plan view, and the active species can be supplied in a wide range to the main surface of the substrate W. Therefore, the substrate W can be processed more uniformly.
  • the treatment liquid nozzle 4 and the first plasma generation unit 5 are integrally connected to each other. Therefore, the head moving mechanism 30 can move the processing liquid nozzle 4 and the first plasma generation unit 5 integrally. According to this, the processing liquid nozzle 4 and the first plasma generation unit 5 can be moved with a simple configuration. That is, unlike the present embodiment, when the treatment liquid nozzle 4 and the first plasma generation unit 5 are not connected to each other, a moving mechanism for individually moving them is required. On the other hand, in the present embodiment, a single head moving mechanism 30 is sufficient. Therefore, the processing liquid nozzle 4 and the first plasma generation unit 5 can be moved with a simple configuration, and the device size and the manufacturing cost can be reduced.
  • the first plate-shaped body 64 having a plurality of openings 641 is provided on the upstream side with respect to the first electrode group 7. According to this, the gas that has passed through the plurality of openings 641 passes through the first electrode group 7 more uniformly. Therefore, the gas passes through the electric field space more uniformly, and plasma is generated more uniformly. As a result, the active species can be generated more uniformly and the active species can be more uniformly supplied to the main surface of the substrate W.
  • a flow path partition portion 63 for partitioning the first gas flow path 60 into a plurality of gas split flow paths 61 in the radial direction is provided. According to this, it is possible to adjust the flow rate of the gas for each gas split flow path 61. For example, the flow rate in each gas dividing flow path 61 is adjusted so that the gas flow velocity in the gas dividing flow path 61 near the rotating axis Q1 is higher than the gas flow rate in the gas dividing flow path 61 far from the rotating axis Q1. be able to.
  • the gas flow velocity in the gas dividing flow path 61a closest to the rotation axis Q1 is the highest, and the gas flow velocity in the gas division flow path 61b next to the rotation axis Q1 is the next highest, from the rotation axis Q1.
  • the flow rate of each gas dividing flow path 61a to 61c can be adjusted so that the flow rate of the gas in the farthest gas dividing flow path 61c is the lowest.
  • the processing liquid landed on the central portion of the substrate W flows outward in the radial direction, that is, in the direction away from the rotation axis Q1 as the substrate W rotates. Therefore, gas from the gas split flow path 61a is first supplied to the treatment liquid, and more active species are supplied. Then, when the treatment liquid flows radially outward on the main surface of the substrate W, gas from the gas dividing flow path 61b is supplied at the intermediate portion radially outer from the central portion of the substrate W. When the treatment liquid further flows outward in the radial direction, gas from the gas dividing flow path 61c is supplied at the peripheral edge portion radially outer than the intermediate portion of the substrate W. According to this, as the treatment liquid flows outward in the radial direction, the amount of active species supplied to the treatment liquid decreases.
  • the active ingredient here, caroic acid
  • the active ingredient due to the active species supplied in the central portion of the substrate W may remain. Therefore, if the active species is supplied to the treatment liquid in the same amount as the central portion even in the intermediate portion of the substrate W, the active ingredient in the treatment liquid in the intermediate portion becomes larger than the active ingredient in the treatment liquid in the central portion.
  • the number may increase, and the uniformity of processing with respect to the substrate W may decrease.
  • the active ingredient in the treatment liquid in the peripheral portion becomes larger than the active ingredient in the treatment liquid in the intermediate portion.
  • the number may increase, and the uniformity of processing with respect to the substrate W may decrease.
  • the number of active species supplied to the treatment liquid decreases. Therefore, the processing uniformity of the substrate W can be further improved. Moreover, the gas consumption can be reduced as compared with the case where the gas is supplied to all the gas split flow paths 61 at a large flow rate.
  • the dielectric partition member 73 is provided between the first electrodes 71. According to this, it is possible to suppress the arc discharge between the first electrodes 71 while increasing the voltage applied to the first electrode 71 to promote the generation of plasma.
  • the radial width of the portion immediately before the first electrode group 7 in the first gas flow path 60 of the first plasma generation unit 5 is equal to or larger than the radius of the substrate W, and is around the first electrode group 7.
  • the width of the electric field space in the radial direction is also equal to or greater than the radius of the substrate W
  • the radial width of the frame body 74 is also equal to or greater than the radius of the substrate W.
  • FIG. 9 is a cross-sectional view schematically showing another example of the configuration of the first electrode group 7.
  • the first electrode 71 has a rectangular cross-sectional shape.
  • the vertical width (that is, the height) of the first electrode 71 is wider than the width in the arrangement direction (here, the radial direction) of the first electrode 71. Since the gas flows along the vertical direction in the electric field space between the first electrodes 71, if the width of the first electrode 71 in the vertical direction is wide, the electric field can be applied to the gas for a longer period of time. As a result, plasma can be generated in a wider range in the vertical direction, and more active species can be generated.
  • the dielectric protection member 72 also has a rectangular cross section.
  • the width (that is, the height) of the dielectric protection member 72 in the vertical direction is also wider than the width in the arrangement direction. According to this, it is possible to arrange the flow of gas flowing along the vertical direction between the dielectric protection members 72.
  • the dielectric partition member 73 is not provided. In this case, by setting the width of the dielectric protection members 72 in the arrangement direction to be relatively wide, it is possible to suppress the arc discharge between the first electrodes 71.
  • the areas of the plurality of openings 641 of the first plate-shaped body 64 differ depending on the distance from the rotation axis Q1.
  • the area of the opening 641 near the rotation axis Q1 is smaller than the area of the opening 641 far from the rotation axis Q1.
  • the first plate-shaped body 64a is provided at a position closer to the rotation axis Q1 than the first plate-shaped body 64b, and the area of the opening 641 formed in the first plate-shaped body 64a is the first. It is smaller than the area of the opening 641 formed in one plate-shaped body 64b.
  • first opening 641 one opening 641 of the first plate-shaped body 64a
  • second opening 641 one opening 641 of the first plate-shaped body 64b
  • the distance between the first opening 641 and the rotation axis Q1 is shorter than the distance between the second opening 641 and the rotation axis Q1, and the area of the first opening 641 is smaller than the area of the second opening 641.
  • the flow velocity of the gas can be increased at a position close to the rotation axis Q1. Therefore, more active species can be supplied to the treatment liquid at the central portion of the substrate W, and the treatment uniformity of the substrate W can be improved.
  • the substrate processing apparatus 1 according to the second embodiment has the same configuration as the substrate processing apparatus 1 according to the first embodiment, except for the configuration of the first unit main body 6 of the nozzle head 3. ..
  • FIG. 10 is a diagram schematically showing an example of the configuration of the nozzle head 3 according to the second embodiment.
  • the first unit main body 6 accommodates the first electrode group 7.
  • the first electrode group 7 is provided inside the first unit main body 6 on the downstream side in the first gas flow path 60.
  • the first unit main body 6 further includes a shutter 65.
  • the shutter 65 is provided at the lower end of the first unit main body 6 on the downstream side of the first electrode group 7.
  • the shutter 65 is controlled by the control unit 90 to open and close the outlet of the first gas flow path 60 formed at the lower end of the first unit main body 6.
  • the specific configuration of the shutter 65 is not particularly limited, an example thereof will be briefly described below.
  • FIG. 11 is a side sectional view schematically showing an example of the configuration in the vicinity of the outlet of the first gas flow path 60.
  • the first unit main body 6 is provided with the second plate-shaped body 66.
  • the second plate-shaped body 66 is provided on the downstream side of the first gas flow path 60 with respect to the first electrode group 7, and is provided in a posture in which the thickness direction thereof is along the vertical direction.
  • FIG. 12 is a plan view schematically showing an example of the configuration of the second plate-shaped body 66.
  • the second plate-shaped body 66 has, for example, a rectangular shape in which one side on the outer side in the radial direction is curved in an arc shape in a plan view.
  • the peripheral edge of the second plate-shaped body 66 is connected to the lower end portion of the first unit main body 6.
  • the second plate-shaped body 66 is formed with a plurality of openings 661 that serve as outlets for the first gas flow path 60.
  • the opening 661 is also referred to as an outlet 661.
  • the plurality of outlets 661 penetrate the second plate-shaped body 66 in the thickness direction thereof.
  • the plurality of outlets 661 are arranged, for example, two-dimensionally in a plan view, and as a more specific example, they are arranged in a matrix.
  • the outlet 661 has, for example, a circular shape in a plan view.
  • the shutter 65 switches the opening and closing of the outlet 661.
  • the shutter 65 has, for example, a plate shape, and is arranged in a posture in which the thickness direction thereof is along the vertical direction.
  • the shutter 65 is provided so as to overlap the second plate-shaped body 66, for example.
  • the shutter 65 is also provided with a plurality of openings 651.
  • the plurality of openings 651 penetrate the shutter 65 in the vertical direction.
  • the plurality of openings 651 are formed in the same arrangement as the outlet 661 in a plan view.
  • the plurality of openings 651 have, for example, a circular shape, and the diameter of the openings 651 is, for example, the diameter of the outlet 661 or more.
  • the shutter 65 is provided so as to be movable horizontally with respect to the second plate-shaped body 66.
  • the shutter 65 may reciprocate between a first position in which the plurality of openings 651 are displaced horizontally from the plurality of outlets 661 and a second position in which the plurality of openings 651 face the plurality of outlets 661, respectively. can.
  • a portion of the shutter 65 other than the opening 651 faces the plurality of outlets 661 and closes the outlet 661.
  • FIG. 11 shows a state in which the shutter 65 is stopped at the first position.
  • the opening 651 of the shutter 65 faces the corresponding outlet 661, and the outlet 661 connects to the exterior space through the corresponding opening 651. That is, the outlet 661 opens.
  • the drive unit 67 is controlled by the control unit 90 and can drive the shutter 65.
  • the drive unit 67 reciprocates the shutter 65 between the first position and the second position.
  • the drive unit 67 has a drive mechanism such as a ball screw mechanism or an air cylinder.
  • the shutter 65 may have a plate-like shape without an opening 651.
  • the drive unit 67 may reciprocate the shutter 65 between a position where the shutter 65 does not face the second plate-shaped body 66 in the vertical direction and a position where the shutter 65 faces the second plate-shaped body 66. good.
  • the shutter 65 closes the outlet 661, the gas supplied from the gas supply unit 50 stays in the first gas flow path 60 of the first unit main body 6. This makes it possible to increase the amount of active species (concentration of active species) in the first gas flow path 60. Then, by opening the outlet 661 by the shutter 65 in this state, more active species can be discharged from the outlet 661 of the first plasma generation unit 5.
  • step S3 An example of the operation of the substrate processing apparatus 1 according to the second embodiment is the same as in FIG.
  • step S3 the valves 52a to 52c are first opened with the shutter 65 closing the outlet 661 and the valve 42 closed.
  • gas is supplied from the gas supply unit 50 to the first plasma generation unit 5 prior to the supply of the treatment liquid.
  • This gas stays in the first gas flow path 60.
  • the power supply 80 applies a voltage to the first electrode 71.
  • a part of the gas is ionized in the electric field space around the first electrode group 7, and plasma is generated. Active species are also generated when this plasma is generated.
  • the shutter 65 is closed, the gas staying in the electric field space is affected by the electric field for a relatively long period of time, so that more plasma is generated and more active species are generated when the plasma is generated. Is generated.
  • the valve 42 is opened to supply the processing liquid from the processing liquid nozzle 4 to the main surface of the substrate W
  • the shutter 65 is opened to supply the gas to the main surface of the substrate W.
  • the active species can be more uniformly supplied to the main surface of the substrate W.
  • the shutter 65 may be opened intermittently. That is, the opening and closing of the shutter 65 may be alternately switched at predetermined time intervals.
  • the gas stays in the first gas flow path 60, so that more active species are generated, and when the shutter 65 opens the outlet 661, many active species are generated. Can be supplied to the main surface of the substrate W from the outlet 661 along the flow of gas.
  • the shutter 65 is provided between the first electrode group 7 and the substrate W, the first electrode group 7 is provided at a position farther from the substrate W. Therefore, the plasma generated in the electric field space around the first electrode group 7 does not easily reach the substrate W. Therefore, damage to the substrate W due to plasma can be suppressed.
  • the area of the outlet 661 in the region near the rotation axis Q1 is smaller than the area of the outlet 661 in the region far from the rotation axis Q1.
  • one outlet 661 in the region near the rotation axis Q1 hereinafter referred to as the first outlet 661
  • one outlet 661 in the region far from the rotation axis Q1 hereinafter referred to as the second outlet 661. Focusing on (called), it can be explained as follows.
  • the distance between the first outlet 661 and the rotary axis Q1 is shorter than the distance between the second outlet 661 and the rotary axis Q1, and the area of the first outlet 661 is smaller than the area of the second outlet 661. Is also small.
  • the flow velocity of the gas can be further increased at a position closer to the rotation axis Q1. Therefore, more active species can be supplied to the treatment liquid at the central portion of the substrate W, and the treatment uniformity of the substrate W can be improved.
  • An example of the configuration of the substrate processing apparatus 1 according to the third embodiment has the same configuration as the substrate processing apparatus 1 according to the first or second embodiment except for the first electrode group 7. ..
  • the electric field strength distribution in the electric field space is adjusted. Specifically, the first electrode group 7 applies an electric field with a higher electric field strength in a space close to the rotation axis Q1 and an electric field with a lower electric field strength in a space far from the rotation axis Q1.
  • FIG. 13 is a plan view schematically showing another example of the configuration of the first electrode group 7. Also in the example of FIG. 13, six first electrodes 71a to 71f are provided as the plurality of first electrodes 71.
  • the first electrodes 71a to 71f are arranged side by side in this order from the side closest to the rotation axis Q1. That is, the first electrode 71a is the closest to the rotation axis Q1, and the first electrode 71f is the farthest from the rotation axis Q1. Therefore, the distance between the electric field space formed by the first electrodes 71a and 71b and the rotation axis Q1 is shorter than the distance between the electric field space formed by the first electrodes 71b and 71c and the rotation axis Q1.
  • the distance between the electric field space formed by the electrodes 71b and 71c and the rotation axis Q1 is shorter than the distance between the electric field space formed by the first electrodes 71c and 71d and the rotation axis Q1.
  • the distance between the electric field space formed by the above and the rotation axis Q1 is shorter than the distance between the electric field space formed by the first electrodes 71d and 71e and the rotation axis Q1 and is formed by the first electrodes 71d and 71e.
  • the distance between the electric field space and the rotation axis Q1 is shorter than the distance between the electric field space formed by the first electrodes 71e and 71f and the rotation axis Q1. Further, here, the intervals between the first electrodes 71a to 71f are substantially the same as each other.
  • a resistor 83 is provided between the first electrode 71c and the first output terminal 81 of the power supply 80, and the resistor 84 is provided between the first electrode 71e and the first output terminal 81 of the power supply 80. Is provided. When a current flows through each of the resistors 83 and 84, a voltage drop occurs in each of them.
  • the resistance value of the resistor 84 is higher than that of the resistor 83, and the voltage drop in the resistor 84 is larger than the voltage drop in the resistor 83.
  • the resistance value of the resistor 84 is larger than the resistance value of the resistor 83, which is indicated by the number of resistors. In the example of FIG.
  • neither the resistors 83 and 84 are provided between the first electrode 71a and the first output terminal 81 of the power supply 80. That is, the resistance value between the first electrode 71a closest to the rotation axis Q1 and the first output end 81 is higher than the resistance value between the first electrode 71c and the first output end 81 next closest to the rotation axis Q1. The resistance value between the first electrode 71c and the first output terminal 81 is smaller than the resistance value between the first electrode 71e and the first output terminal 81 farthest from the rotation axis Q1.
  • none of the resistors 83, 84 are provided between the first electrodes 71b, 71d, 71f and the second output terminal 82 of the power supply 80, and the first electrodes 71b, 71d are provided. , 71f and the second output terminal 82 have substantially the same resistance value.
  • the voltage between the first electrodes 71a and 71b is larger than the voltage between the first electrodes 71b and 71c
  • the voltage between the first electrodes 71b and 71c is the voltage between the first electrodes 71c and 71c. It is almost the same as the voltage between 71d
  • the voltage between the first electrodes 71c and 71d is larger than the voltage between the first electrodes 71d and 71e
  • the voltage between the first electrodes 71d and 71e is the first electrode. It is almost the same as 71e and 71f. That is, the voltage between the first electrodes 71 tends to increase as it is closer to the rotation axis Q1.
  • the electric field strength of the electric field between the first electrodes 71 tends to be higher as it is closer to the rotation axis Q1. Specifically, the electric field strength of the electric field space between the first electrodes 71a and 71b is the highest, and the electric field strength of the electric field space between the first electrodes 71b and 71c and the electric field space between the first electrodes 71c and 71d is high. It is the next highest, and the electric field strength of the electric field space between the first electrodes 71d and 71e and the electric field space between the first electrodes 71e and 71f is the lowest.
  • an electric field having a high electric field strength acts on the gas passing through the electric field space between the first electrodes 71a and 71b near the rotation axis Q1. Therefore, more plasma is generated near the rotation axis Q1 and more active species are generated.
  • An electric field with a lower electric field strength acts on the gas passing through the electric field space between the first electrodes 71b to 71d far from the rotating axis Q1, and between the first electrodes 71d to 71f further far from the rotating axis Q1.
  • An electric field with an even lower electric field strength acts on the gas passing through the electric field space. Therefore, as the distance from the rotation axis Q1 increases, fewer active species are produced.
  • many active species can be generated at a position close to the rotation axis Q1. According to this, the uniformity of processing with respect to the substrate W can be improved.
  • the first electrode 71d may also be connected to the second output end 82 of the power supply 80 via the resistor 83. According to this, the electric field strength of the electric field space between the first electrodes 71b and 71c can be made higher than the electric field strength of the electric field space between the first electrodes 71c and 71d.
  • the first electrode 71f may also be connected to the second output terminal 82 of the power supply 80 via the resistor 84. According to this, the electric field strength of the electric field space between the first electrodes 71d and 71e can be made higher than the electric field strength of the electric field space between the first electrodes 71e and 71f.
  • FIG. 14 is a plan view schematically showing another example of the configuration of the first electrode group 7.
  • power supplies 80a to 80c are provided as the power supply 80.
  • the first electrode 71a is connected to the first output terminal 81 of the power supply 80a
  • the first electrode 71b is connected to the second output terminal 82 of the power supply 80a
  • the first electrode 71c is connected to the first output terminal 81 of the power supply 80b.
  • the first electrode 71d is connected, the first electrode 71d is connected to the second output terminal 82 of the power supply 80b
  • the first electrode 71e is connected to the first output terminal 81 of the power supply 80c, and the first electrode 71f is the second output terminal 82 of the power supply 80. It is connected to the.
  • the pair of first electrodes 71a and 71b close to the rotation axis Q1 are connected to the power supply 80a, and then the pair of first electrodes 71c and 71d close to the rotation axis Q1 are connected to the power supply 80b different from the power supply 80a and rotate.
  • the pair of first electrodes 71e and 71f farthest from the axis Q1 are connected to the power supply 80c.
  • the voltage between the first electrodes 71a and 71b, the voltage between the first electrodes 71c and 71d, and the voltage between the first electrodes 71d and 71f can be controlled independently of each other.
  • the power supply 80a outputs a voltage larger than that of the power supply 80b
  • the power supply 80b outputs a voltage larger than that of the power supply 80c.
  • the electric field strength in the electric field space between the first electrodes 71a and 71b near the rotation axis Q1 can be made higher than the electric field strength in the electric field space between the first electrodes 71c and 71d far from the rotation axis Q1. ..
  • the electric field strength of the voltage in the electric field space between the first electrodes 71c and 71d can be made higher than the electric field strength in the electric field space between the first electrodes 71e and 71f.
  • FIG. 15 is a plan view schematically showing another example of the configuration of the first electrode group 7.
  • the first electrodes 71a, 71c, 71e are connected to the first output terminal 81 of the power supply 80, and the first electrodes 71b, 71d, 71f are connected to the second output terminal 82 of the power supply 80.
  • the magnitudes of the voltages applied between the first electrodes 71 are substantially the same as each other.
  • the distance between the first electrodes 71 becomes narrower as it approaches the rotation axis Q1.
  • the spatial density of the first electrode 71 increases as it approaches the rotation axis Q1.
  • the distance between the first electrodes 71a and 71b is narrower than the distance between the first electrodes 71b and 71c
  • the distance between the first electrodes 71b and 71c is between the first electrodes 71c and 71d.
  • the spacing between the first electrodes 71c and 71d is narrower than the spacing between the first electrodes 71d and 71e
  • the spacing between the first electrodes 71d and 71e is between the first electrodes 71e and 71f. Narrower than the interval.
  • an electric field can be applied to the voltage space between the first electrodes 71a and 71b near the rotation axis Q1 with a higher electric field strength.
  • an electric field is applied to the voltage space between the first electrodes 71b and 71c with an electric field strength lower than the electric field strength in the voltage space between the first electrodes 71a and 71b.
  • an electric field can be applied to the electric field space between the first electrodes 71c and 71d with an electric field strength lower than the electric field strength of the electric field space between the first electrodes 71b and 71c. The same applies hereinafter.
  • the substrate processing apparatus 1 according to the fourth embodiment has the same configuration as the substrate processing apparatus 1 according to any one of the first to third embodiments, except for the presence or absence of the second plasma generation unit 500. ..
  • the second plasma generation unit 500 is connected to the first plasma generation unit 5 and constitutes the nozzle head 3 together with the processing liquid nozzle 4 and the first plasma generation unit 5.
  • FIG. 16 is a diagram schematically showing an example of the configuration of the nozzle head 3 according to the fourth embodiment.
  • the second plasma generation unit 500 is provided between the processing liquid nozzle 4 and the first plasma generation unit 5. Like the first plasma generation unit 5, the second plasma generation unit 500 can supply gas via the electric field space for plasma. The second plasma generation unit 500 supplies the gas toward the processing liquid until it is discharged from the processing liquid nozzle 4 and landed on the main surface of the substrate W.
  • FIG. 17 is a side sectional view schematically showing an example of the configuration of the second plasma generation unit 500.
  • the second plasma generation unit 500 is a so-called pen-shaped plasma source, and includes the second unit main body 600 and the second electrode group 700.
  • the second unit main body 600 is formed of an insulator (dielectric) such as quartz or ceramic, and forms a second gas flow path 610 through which gas flows.
  • the second unit main body 600 includes a cylindrical body 620 and an inflow portion 630.
  • the tubular body 620 has a cylindrical shape (for example, a cylindrical shape).
  • the internal space of the tubular body 620 corresponds to a part of the second gas flow path 610, and the lower end port of the tubular body 620 corresponds to the outlet 610a of the second gas flow path 610.
  • the second unit main body 600 includes a sealing portion 650.
  • the sealing portion 650 is formed of an insulator (dielectric) such as, for example, a resin (for example, silicon resin), and seals the upper end opening of the tubular body 620.
  • insulator dielectric
  • resin for example, silicon resin
  • the inflow portion 630 is a member for flowing gas toward the internal space of the tubular body 620, and is connected to the side surface of the tubular body 620.
  • the inflow portion 630 has, for example, a cylindrical shape, and its downstream port is formed on the side surface of the tubular body 620.
  • the internal space of the inflow portion 630 corresponds to a part of the upstream side of the first gas flow path 60, and the entire internal space of the cylindrical body 620 and the inflow portion 630 corresponds to the first gas flow path 60.
  • Gas is supplied from the gas supply unit 50 to the upstream port of the inflow unit 630.
  • the gas supplied to the inflow section 630 of the second plasma generation unit 500 is, for example, the same type of gas as the gas supplied to the first plasma generation unit 5.
  • the gas supply unit 50 includes a gas supply pipe 510 and a valve 520.
  • the upstream port of the inflow section 630 is connected to the downstream end of the gas supply pipe 510.
  • the upstream end of the gas supply pipe 510 is connected to the gas supply source 53.
  • a valve 520 is interposed in the gas supply pipe 510.
  • the valve 520 is controlled by the control unit 90, and by switching the opening and closing of the valve 520, the supply and stop of gas to the inflow unit 630 are switched.
  • the valve 520 may be a valve capable of adjusting the flow rate of the gas, or a flow rate adjusting valve may be separately provided in the gas supply pipe 510.
  • the gas flowing in from the upstream port of the inflow section 630 flows through the second gas flow path 610 and flows out from the outflow port 610a.
  • the second electrode group 700 includes a plurality of second electrodes 710.
  • two second electrodes 710a and 710b are provided as the plurality of second electrodes 710.
  • the second electrode 710a is formed of a conductor such as metal, and has an elongated shape that is long in the longitudinal direction along the central axis Q2 of the tubular body 620.
  • the second electrode 710a has a cylindrical shape. A part of the second electrode 710a in the longitudinal direction is located in the internal space of the tubular body 620, and faces the inner peripheral surface of the tubular body 620 at a distance in the radial direction of the central axis Q2.
  • a part of the second electrode 710a in the longitudinal direction is loosely inserted into the tubular body 620. Further, the second electrode 710a extends vertically above the upper end opening of the tubular body 620. That is, the second electrode 710a penetrates the sealing portion 650 provided at the upper end opening of the tubular body 620 and extends vertically upward.
  • the second electrode 710a is covered with the dielectric protection member 720.
  • the dielectric protection member 720 is formed of an insulator (dielectric) such as quartz or ceramics, and covers the surface of the second electrode 710a. Specifically, the dielectric protection member 720 covers the surface of the second electrode 710a at least in the cylindrical body 620. For example, the dielectric protection member 720 is in close contact with the surface of the second electrode 710a.
  • the dielectric protection member 720 may be a dielectric film formed on the surface of the second electrode 710a. The dielectric protection member 720 can protect the second electrode 710a from plasma.
  • the second electrode 710b is also formed of a conductor such as metal, and is provided so as to face the second electrode 710a in the radial direction of the central axis Q2.
  • the second electrode 710b faces a part of the second electrode 710a on the distal end side.
  • the second electrode 710b has, for example, a tubular shape and surrounds the part of the second electrode 710a. In the example of FIG. 17, the second electrode 710b is located outside the tubular body 620.
  • the central axis of the second electrode 710b substantially coincides with the central axis Q2 of the tubular body 620.
  • the second electrode 710a is connected to the first output terminal 81 of the power supply 80, and the second electrode 710b is connected to the second output terminal 82 of the power supply 80.
  • the power supply 80 outputs a voltage (for example, a high frequency voltage) between the second electrodes 710a and 710b. As a result, an electric field is applied to the voltage space between the second electrodes 710a and 710b.
  • the second electrodes 710a and 710b may be connected to a power source different from the power source 80. That is, the second electrode group 700 of the second plasma generation unit 500 may be connected to a power source different from the power source 80 connected to the first electrode group 7 of the first plasma generation unit 5.
  • an electric field can be applied to the electric field space between the second electrodes 710a and 710b. Since this electric field space will be formed in a part of the first gas flow path 60, the gas flowing through the first gas flow path 60 passes through the electric field space. When the gas passes through the electric field space, an electric field acts on the gas, and a part of the gas is ionized to generate plasma. When the plasma is generated, active species are generated, and the active species move along the gas flow and flow out from the outlet 610a of the second gas flow path 610.
  • the active species flowing out from the outlet 610a of the second plasma generation unit 500 are discharged from the treatment liquid nozzle 4 and supplied to the treatment liquid that has not yet landed on the main surface of the substrate W (see FIG. 16).
  • the second plasma generation unit 500 is provided at a position where gas (including active species) can be supplied to the treatment liquid before reaching the main surface of the substrate W.
  • the second plasma generation unit 500 is provided between the treatment liquid nozzle 4 and the first plasma generation unit 5, and causes gas to flow out vertically downward. Since the treatment liquid nozzle 4 discharges the treatment liquid in an oblique direction inclined toward the first plasma generation unit 5, the treatment liquid crosses directly under the second plasma generation unit 500 and then lands on the main surface of the substrate W. ..
  • the active species from the second plasma generation unit 500 act on the treatment liquid.
  • the processing capacity of the processing liquid can be improved even before the liquid is landed.
  • active species such as oxygen radicals can act on sulfuric acid before landing to generate caroic acid. Thereby, the resist in the central portion of the substrate W can be removed more appropriately.
  • the second plasma generation unit 500 may be integrally connected to the first plasma generation unit 5.
  • the connecting member 550 connects the second plasma generation unit 500 and the first plasma generation unit 5. According to this, the first plasma generation unit 5 and the second plasma generation unit 500 can be integrally moved by the head movement mechanism 30.
  • the second electrode 710b is provided outside the tubular body 620, it may be provided inside the tubular body 620. In this case, it is preferable to provide a dielectric protection member that covers the second electrode 710b.
  • FIG. 18 is a diagram schematically showing an example of a partial configuration of the substrate processing apparatus 1 according to the fourth embodiment.
  • the second plasma generation unit 500 is not connected to the first plasma generation unit 5.
  • the second plasma generation unit 500 is movably provided by a head moving mechanism 300 different from the head moving mechanism 30.
  • the specific configuration of the head moving mechanism 300 is, for example, the same as that of the head moving mechanism 30.
  • the head moving mechanism 300 can reciprocate the second plasma generation unit 500 between the processing position and the standby position.
  • the standby position is a position where the second plasma generation unit 500 does not interfere with the transport path of the substrate W when the substrate W is carried in and out, and is, for example, a position radially outside the substrate holding portion 2.
  • the processing position is a position when the second plasma generation unit 500 supplies gas to the processing liquid from the discharge port 4a of the processing liquid nozzle 4 to the main surface of the substrate W.
  • FIG. 18 shows a state in which the nozzle head 3 and the second plasma generation unit 500 are located at their respective processing positions.
  • the second plasma generation unit 500 is provided so as to avoid the region between the processing liquid nozzle 4 and the first plasma generation unit 5.
  • the treatment liquid nozzle 4 is provided on the opposite side of the first plasma generation unit 5.
  • FIG. 19 is a diagram schematically showing an example of the configuration of the substrate processing apparatus 1 according to the fifth embodiment.
  • the substrate processing apparatus 1 according to the fifth embodiment has the same configuration as the substrate processing apparatus 1 according to any one of the first to fourth embodiments, except for the presence or absence of the blocking plate 800. ..
  • the cutoff plate 800 is located vertically above the substrate W held by the substrate holding portion 2.
  • the blocking plate 800 is a member for suppressing the atmosphere above the substrate W held by the substrate holding portion 2 from diffusing to the surroundings.
  • the blocking plate 800 has a plate-like shape, and is provided in a posture in which the thickness direction thereof is along the vertical direction.
  • the cutoff plate 800 has a circular shape centered on the rotation axis Q1 in a plan view, and its diameter is larger than the diameter of the substrate W.
  • the blocking plate 800 includes a plate portion 810 and a hanging portion 820.
  • the plate portion 810 has a disk shape centered on the rotation axis Q1, and is arranged in a posture in which the thickness direction thereof is along the vertical direction.
  • the hanging portion 820 has a cylindrical shape that protrudes vertically downward from the peripheral edge of the plate portion 810. The tip of the hanging portion 820 is located between the substrate W held by the substrate holding portion 2 and the cup 8 in a plan view, and is located below the lower surface of the substrate W in the vertical direction.
  • the nozzle head 3 stopped at the processing position is accommodated in the shielding space between the blocking plate 800 and the substrate W.
  • Various pipes treatment liquid supply pipe 41 and gas supply pipe 51
  • a slit (not shown) provided in the hanging portion 820 of the cutoff plate 800. ..
  • the slit extends along the vertical direction while penetrating the hanging portion 820 in the radial direction, and opens vertically downward.
  • the blocking plate 800 is provided so as to be able to move up and down by an elevating mechanism 850.
  • the elevating mechanism 850 has a mechanism such as a ball screw mechanism or an air cylinder.
  • the elevating mechanism 850 is controlled by the control unit 90 to reciprocate the cutoff plate 800 between the cutoff position and the standby position.
  • the cutoff position is a position close to the substrate W held by the substrate holding portion 2, and as a specific example, it is a position where the tip of the hanging portion 820 is below the substrate W.
  • FIG. 19 shows a cutoff plate 800 in a state of being stopped at a cutoff position.
  • the standby position is a position vertically above the cutoff position, and is a position where the cutoff plate 800 does not interfere with either the transport path of the substrate W or the movement path of the nozzle head 3.
  • the main transfer robot 120 may carry the substrate W into and out of the substrate processing device 1 in a state where the elevating mechanism 850 raises the blocking plate 800 to the standby position and the head moving mechanism 30 moves the nozzle head 3 to the standby position. can.
  • the head moving mechanism 30 moves the nozzle head 3 to the processing position, and the elevating mechanism 850 lowers the blocking plate 800 to the blocking position, so that the processing by the nozzle head 3 is performed. Ready.
  • the substrate holding portion 2 rotates the substrate W, and the nozzle head 3 supplies the processing liquid and the gas to the main surface of the substrate W, so that the substrate W can be processed.
  • the cutoff plate 800 since the cutoff plate 800 is located at the cutoff position, it is possible to suppress the atmosphere between the cutoff plate 800 and the substrate W from diffusing to the surroundings. Further, it is possible to prevent the atmosphere between the cutoff plate 800 and the substrate W from being mixed with the atmosphere from the outside and the gas concentration in the atmosphere from decreasing.
  • FIG. 20 is a diagram schematically showing another example of the configuration of the substrate processing apparatus 1 according to the fifth embodiment.
  • the nozzle head 3 including the treatment liquid nozzle 4 and the first plasma generation unit 5 also functions as a blocking plate.
  • the nozzle head 3, the treatment liquid nozzle 4, and the first plasma generation unit 5 of FIG. 20 are also referred to as a nozzle head 3A, a treatment liquid nozzle 4A, and a first plasma generation unit 5A, respectively.
  • the treatment liquid nozzle 4A extends along the vertical direction and faces the central portion of the substrate W in the vertical direction.
  • the treatment liquid nozzle 4A has a discharge port 4a on the lower end surface thereof, and discharges the treatment liquid from the discharge port 4a along the vertical direction.
  • the treatment liquid discharged from the discharge port 4a flows vertically downward and lands on the central portion of the main surface of the substrate W.
  • the first plasma generation unit 5A is provided at a position adjacent to the processing liquid nozzle 4A in a plan view. However, the first plasma generation unit 5A is provided so as to surround the periphery of the processing liquid nozzle 4A, and the outer edge in the plan view thereof has, for example, a circular shape centered on the rotation axis Q1.
  • the outer diameter of the lower end portion of the first plasma generation unit 5 is, for example, equal to or larger than the diameter of the substrate W.
  • the first unit main body 6 of the first plasma generation unit 5A includes an upper surface portion 605 and a side wall portion 606.
  • the upper surface portion 605 has a circular shape centered on the rotation axis Q1 in a plan view, and a through hole 605a through which the treatment liquid nozzle 4 is arranged is formed in the central portion thereof.
  • the side wall portion 606 has a cylindrical shape extending vertically downward from the peripheral edge of the upper surface portion 605. The space surrounded by the upper surface portion 605 and the side wall portion 606 corresponds to the first gas flow path 60.
  • the first unit main body 6 is provided with a flow path partition portion 63 for partitioning the first gas flow path 60 into a plurality of gas split flow paths 61.
  • gas dividing flow paths 61a and 61b are formed as a plurality of gas dividing flow paths 61. Therefore, in the example of FIG. 20, one flow path partition portion 63 for partitioning the gas split flow paths 61a and 61b is provided.
  • the flow path partition portion 63 has a cylindrical shape centered on the rotation axis Q1.
  • the inner diameter of the flow path partition portion 63 is larger than the outer diameter of the processing liquid nozzle 4, and the space between the flow path partition portion 63 and the processing liquid nozzle 4 is the gas dividing flow path 61a.
  • the outer diameter of the flow path partition portion 63 is smaller than the inner diameter of the side wall portion 606, and the space between the flow path partition portion 63 and the side wall portion 606 is the gas split flow path 61b. Therefore, the gas dividing flow path 61a is formed near the rotation axis Q1, and the gas dividing flow path 61b is formed farther from the rotation axis Q1 than the gas dividing flow path 61a. In other words, the distance between the gas dividing flow path 61a and the rotating axis Q1 is shorter than the distance between the gas dividing flow path 61b and the rotating axis Q1.
  • the outer diameter of the gas dividing flow path 61b located on the outermost side in the radial direction may be equal to or larger than the diameter of the substrate W.
  • the outer diameter of the first gas flow path 60 may be equal to or larger than the diameter of the substrate W.
  • a gas supply flow path 62 for supplying gas to the gas division flow path 61 is formed on the upper surface portion 605.
  • the upstream port 621 of the gas supply flow path 62 is formed on the upper surface of the upper surface portion 605
  • the downstream port 622 of the gas supply flow path 62 is the lower surface of the upper surface portion 605 (that is, the gas split flow path 61). Is formed on the upper surface of the).
  • the gas supply flow paths 62a and 62b are formed corresponding to the gas split flow paths 61a and 61b.
  • the gas supply flow path 62a is a flow path for supplying gas to the gas split flow path 61a
  • the gas supply flow path 62b is a flow path for supplying gas to the gas split flow path 61b.
  • a plurality of (two in the figure) gas supply flow paths 62a are arranged at equal intervals, for example, in the circumferential direction of the rotation axis Q1. According to this, since the gas can be supplied to the gas dividing flow path 61a from a plurality of circumferential positions, the gas can be supplied to the gas divided flow path 61a more uniformly. Further, here, a plurality of (two in the figure) gas supply flow paths 62b are arranged at equal intervals, for example, in the circumferential direction of the rotation axis Q1. According to this, since the gas can be supplied to the gas dividing flow path 61b from a plurality of circumferential positions, the gas can be supplied to the gas divided flow path 61b more uniformly.
  • the gas supply unit 50 supplies gas to the upstream port 621 of the gas supply flow path 62.
  • gas supply pipes 51a and 51b are provided corresponding to the gas supply flow paths 62a and 62b.
  • the gas supply pipe 51a includes a branch pipe and a common pipe, one end of each branch pipe is connected to the upstream port 621a of the gas supply flow path 62a, and the other end of the branch pipe is one end of the common pipe. And the other end of the common pipe is connected to the gas supply source 53.
  • the valve 52a is interposed in the common pipe of the gas supply pipe 51a.
  • the valve 52a is controlled by the control unit 90.
  • the valve 52a may be a flow rate adjusting valve capable of adjusting the flow rate of the gas flowing inside the gas supply pipe 51a.
  • a flow rate adjusting valve may be provided in the common pipe separately from the valve 52a.
  • the gas supply pipe 51b also includes a branch pipe and a common pipe, one end of each branch pipe is connected to the upstream port 621b of the gas supply flow path 62b, and the other end of the branch pipe is connected to one end of the common pipe. The other end of the is connected to the gas supply source 53.
  • the valve 52b is interposed in the common pipe of the gas supply pipe 51b.
  • the valve 52b is controlled by the control unit 90.
  • the valve 52b may be a flow rate adjusting valve capable of adjusting the flow rate of the gas flowing inside the gas supply pipe 51b. Alternatively, a flow rate adjusting valve may be provided in the common pipe separately from the valve 52b.
  • Such a gas supply unit 50 can individually adjust the flow rate of gas in the gas split flow paths 61a and 61b. That is, the gas flow rate in the gas splitting flow path 61a near the rotating axis Q1 can be adjusted independently of the gas flow rate in the gas splitting flow path 61b far from the rotating axis Q1. For example, each flow rate can be adjusted so that the flow rate of the gas in the gas dividing flow path 61a is higher than the flow rate of the gas in the gas dividing flow path 61b.
  • valve 52a flow rate adjusting valve
  • the valve 52a is provided in the common pipe of the gas supply pipe 51a to collectively adjust the gas flow rate to the plurality of gas supply flow paths 62a, but the gas supply pipe 51a. It may be individually interposed in the branch pipe of. In this case, the flow rate of the gas in the plurality of gas supply flow paths 62a can be individually adjusted, and the gas can be supplied more uniformly to the gas split flow path 61a.
  • valve 52b flow rate adjusting valve
  • the first plate-shaped body 64 is also provided on the first unit main body 6.
  • the first plate-shaped body 64 is provided on the downstream side of the gas dividing flow paths 61a and 61b and on the upstream side of the first electrode group 7.
  • the first plate-shaped body 64 has a circular shape centered on the rotation axis Q1 in a plan view, and a through hole 642 through which the treatment liquid nozzle 4 is arranged is formed in the central portion thereof.
  • the outer peripheral surface of the first plate-shaped body 64 is connected to the inner peripheral surface of the side wall portion 606, and the lower end of the flow path partition portion 63 is connected to the upper surface of the first plate-shaped body 64.
  • the region radially inside the flow path partition 63 faces the gas dividing flow path 61a in the vertical direction, and the region radially outside the flow path partition 63 is the gas dividing flow path. It faces 61b in the vertical direction.
  • a plurality of openings 641 are formed in the first plate-shaped body 64, and the gas flowing through the gas dividing flow paths 61a and 61b passes through the openings 641 of the first plate-shaped body 64 and heads toward the first electrode group 7. Flows. As a result, the gas can be supplied to the first electrode group 7 more uniformly.
  • FIG. 21 is a plan view schematically showing an example of the configuration of the first electrode group 7 (referred to as the first electrode group 7A) according to the fifth embodiment.
  • the first electrode group 7A includes a plurality of first electrodes 71, and the plurality of first electrodes 71 are arranged side by side at intervals in a plan view. Further, each of the first electrodes 71 has a long elongated shape in the horizontal longitudinal direction, and is arranged side by side in the lateral direction thereof.
  • the frame body 74 is also shown.
  • the frame body 74 has an annular shape centered on the rotation axis Q1 and is connected to the lower end portion of the side wall portion 606 of the first unit main body 6.
  • the inner diameter of the frame body 74 may be equal to or larger than the diameter of the substrate W.
  • the plurality of first electrodes 71 are alternately applied with potentials of different polarities.
  • connecting portions 711a and 711b are provided on opposite sides of the treatment liquid nozzle 4 in the longitudinal direction of the first electrode 71.
  • the connecting portions 711a and 711b have an arcuate plate shape centered on the rotation axis Q1.
  • the connecting portions 711a and 711b are provided radially outside the frame body 74.
  • the connecting portions 711c and 711d are provided on the opposite sides of the connecting portions 711a and 711b in the radial direction across the treatment liquid nozzle 4.
  • the connecting portions 711c and 711d also have an arcuate plate shape centered on the rotation axis Q1.
  • the connecting portions 711a, 711c, 711d, and 711b are arranged in this order from one side to the other side (from the left side to the right side in FIG. 21) of the first electrode 71 in the longitudinal direction.
  • first electrode 71 The ends of the first electrode 71 provided at odd-numbered positions are connected to each other by the connecting portion 711a. That is, these first electrodes 71 extend from the connecting portion 711a toward the connecting portion 711b along the longitudinal direction. Further, a plurality of (two in FIG. 21) first electrodes 71 extend from the connecting portion 711d toward the connecting portion 711b along the longitudinal direction. Each first electrode 71 connected to the connecting portion 711d is aligned with the corresponding first electrode 71 connected to the connecting portion 711a.
  • first electrodes 71 The ends of the first electrodes 71 provided at even-numbered positions are connected to each other by the connecting portion 711b. That is, these first electrodes 71 extend from the connecting portion 711b toward the connecting portion 711a along the longitudinal direction. Further, a plurality of (two in FIG. 21) first electrodes 71 extend from the connecting portion 711c toward the connecting portion 711a along the longitudinal direction. Each first electrode 71 connected to the connecting portion 711c is aligned with the corresponding first electrode 71 connected to the connecting portion 711b.
  • the connecting portions 711a and 711d are connected to the first output terminal 81 of the power supply 80, and the connecting portions 711b and 711c are connected to the second output terminal 82 of the power supply 80. As a result, potentials of different polarities are applied to the first electrodes 71 adjacent to each other in the arrangement direction.
  • a dielectric protective member 72 that protects the first electrode 71 may be provided, or a dielectric partition member 73 may be provided between the first electrodes 71. good.
  • the connecting portions 711c and 711d are exposed to gas, they may also be covered with a dielectric protective member.
  • the gas from the gas split flow paths 61a and 61b passes between the plurality of first electrodes 71 in the frame body 74 and is supplied to the main surface of the substrate W.
  • the gas passes through the electric field space between the plurality of first electrodes 71 formed by the first electrode group 7, a part of the gas is ionized to generate plasma.
  • Various active species are generated when the plasma is generated, and the active species are supplied to the main surface of the substrate W along the flow of gas.
  • the first gas flow path 60 (gas split flow paths 61a, 61b) of the first plasma generation unit 5A is formed so as to surround the periphery of the treatment liquid nozzle 4, and the first electrode group 7 surrounds the treatment liquid nozzle 4. Since it is provided so as to surround the substrate W, the active species can be supplied to the main surface of the substrate W over the entire circumference in the circumferential direction. Further, in the above example, the outer diameter of the portion immediately before the first electrode group 7 in the first gas flow path 60 of the first plasma generation unit 5A is equal to or larger than the diameter of the substrate W, and the electric field around the first electrode group 7 is formed.
  • the overall diameter of the space is also equal to or greater than the diameter of the substrate W, and the inner diameter of the frame 74 is also equal to or greater than the diameter of the substrate W.
  • Such a first plasma generation unit 5A can supply the active species to almost the entire surface except the central portion of the substrate W. According to this, the processing capacity of the processing liquid can be improved in a wider range, and the processing time of the substrate W can be shortened.
  • the nozzle head 3A faces the entire surface of the main surface of the substrate W in the vertical direction, the nozzle head 3A can function as a blocking plate. Therefore, it is possible to prevent the atmosphere between the substrate W and the nozzle head 3 from diffusing into the space vertically above the nozzle head 3A, for example.
  • FIG. 22 is a plan view schematically showing another example of the configuration of the first electrode group 7 according to the fifth embodiment.
  • a plurality of first electrode groups 7 are provided at intervals in the circumferential direction.
  • eight first electrode groups 7a to 7h are provided at equal intervals in the circumferential direction.
  • each first electrode group 7 the plurality of first electrodes 71 are arranged in such a posture that the longitudinal direction thereof is along the radial direction, and the first electrodes 71 are arranged so as to be spaced apart from each other in the lateral direction thereof.
  • the lengths of the plurality of first electrodes 71 are substantially equal to each other.
  • the ends of the first electrodes 71 arranged odd-numbered from one side in the arrangement direction on one side in the longitudinal direction are connected to each other by the connecting portion 711a, and the first electrodes are arranged even-numbered.
  • the other end of the electrode 71 in the longitudinal direction is connected to each other by a connecting portion 711b.
  • the connecting portion 711b is provided adjacent to the treatment liquid nozzle 4, and the connecting portion 711a is located radially outside the connecting portion 711b. In the example of FIG. 22, the connecting portion 711b is provided radially outside the frame body 74. Has been done.
  • the connecting portion 711a is connected to the first output terminal 81 of the power supply 80, and the connecting portion 711b is connected to the second output terminal 82 of the power supply 80.
  • Each first electrode group 7 may be connected to different power sources 80. According to this, the electric field strength of the electric field space around the first electrode group 7 can be individually adjusted.
  • the substrate processing apparatus 1 has been described in detail, but the above description is an example in all aspects, and the substrate processing apparatus 1 is not limited thereto. It is understood that a myriad of variants not illustrated can be envisioned without departing from the scope of this disclosure. The configurations described in the above embodiments and the modifications can be appropriately combined or omitted as long as they do not conflict with each other.
  • the flow path partition portion 63 may not be provided.
  • the number thereof may be one or more.
  • the first electrodes 71 do not necessarily have to be provided on the same plane, and the positions of the first electrodes 71 in the vertical direction may be different from each other.
  • the processing for the substrate W is not necessarily limited to the resist removing processing.
  • it can be applied to all treatments in which the treatment capacity of the treatment liquid can be improved by the active species.
  • the type of gas supplied to the first plasma generation unit 5 and the second plasma generation unit 500 is selected according to the treatment liquid so that the active species can improve the treatment capacity of the treatment liquid.
  • Substrate processing device 2 Substrate holding unit 4 Processing liquid nozzle 5 1st plasma generation unit 50 Gas supply unit 500 2nd plasma generation unit 6 1st unit main body 60 1st gas flow path 600 2nd unit main body 61, 61a to 61c Gas Divided flow path 610 Second gas flow path 62, 62a to 62c Gas supply flow path 622, 622a to 622c Downstream port 64 First plate-shaped body 641 First opening, second opening (opening) 65 Shutter 66 2nd plate-like body 661 1st outlet, 2nd outlet (outlet) 7,7a-7h, 7A 1st electrode group 700 2nd electrode group 71,71a-71f 1st electrode 710,710a, 710b 2nd electrode 73 Dielectric partition member Q1 Rotation axis W substrate

Abstract

This substrate processing device comprises: a substrate holding part; a processing liquid nozzle (4); and a first plasma generation unit (5). While holding a substrate (W), the substrate holding part rotates the substrate (W) around a rotational axis (Q1) passing through the center section of the substrate (W). The processing liquid nozzle (4) discharges a processing liquid toward a principal surface of the substrate W held by the substrate holding unit. The first plasma generation unit (5) is disposed at a position adjacent to the processing liquid nozzle (4) in plan view. The first plasma generation unit (5) includes: a first electrode group (7) that has a plurality of first electrodes (71) disposed side by side and mutually spaced apart in plan view; and a first unit body (6) that forms a first gas flow channel (60) for causing a gas to flow, from a vertically upward direction, toward the first electrode group (7). The first plasma generation unit (5) supplies the gas that has passed through the first electrode group (7) to the principal surface of the substrate (W) held by the substrate holding part.

Description

基板処理装置Board processing equipment
 本願は、基板処理装置に関する。 This application relates to a substrate processing device.
 従来から、基板の主面に形成されたレジストを除去する基板処理装置が提案されている(例えば特許文献1)。特許文献1では、基板の主面に硫酸および過酸化水素水の混合液を供給する。硫酸および過酸化水素水が混合されることで、これらが反応してカロ酸が生成される。このカロ酸は効率的に基板のレジストを除去することができる。 Conventionally, a substrate processing device for removing a resist formed on the main surface of a substrate has been proposed (for example, Patent Document 1). In Patent Document 1, a mixed solution of sulfuric acid and hydrogen peroxide solution is supplied to the main surface of the substrate. When sulfuric acid and hydrogen peroxide solution are mixed, they react to produce caroic acid. This caroic acid can efficiently remove the resist on the substrate.
 しかしながら、この処理では硫酸および過酸化水素水を供給し続ける必要があり、硫酸および過酸化水素水の消費量が大きい。環境負荷の低減のためには、硫酸の使用量の削減が求められており、薬液消費量の削減が要求されている。この薬液消費量を低減するために、従来から硫酸を回収して再利用している。しかしながら、硫酸および過酸化水素水を混合することにより、硫酸の濃度が低下するので、高い濃度で硫酸を回収することは難しい。 However, in this treatment, it is necessary to continue to supply sulfuric acid and hydrogen peroxide solution, and the consumption of sulfuric acid and hydrogen peroxide solution is large. In order to reduce the environmental load, it is required to reduce the amount of sulfuric acid used, and it is required to reduce the consumption of chemicals. In order to reduce the consumption of this chemical solution, sulfuric acid has been conventionally recovered and reused. However, it is difficult to recover sulfuric acid at a high concentration because the concentration of sulfuric acid is lowered by mixing sulfuric acid and hydrogen peroxide solution.
特開2020-88208号公報Japanese Unexamined Patent Publication No. 2020-88208
 そこで、大気圧プラズマにより酸素ラジカル等の活性種を発生させ、当該活性種を硫酸に作用させることにより、カロ酸を生成することが考えられる。これにより、過酸化水素水を用いずにレジストを除去することができる。 Therefore, it is conceivable to generate active species such as oxygen radicals by atmospheric pressure plasma and cause the active species to act on sulfuric acid to generate caroic acid. This makes it possible to remove the resist without using hydrogen peroxide solution.
 より具体的な基板処理装置の構成として、基板の主面に処理液を供給するノズルと、基板の主面に活性種を供給するユニットとを設けることが考えられる。これにより、基板の主面に着液した処理液に対して、活性種を供給することができる。よって、活性種が基板の主面上で処理液に作用して、処理液の処理能力を向上させることができる。これによって、高い処理能力で効率的に基板の主面を処理することができる。 As a more specific configuration of the substrate processing apparatus, it is conceivable to provide a nozzle for supplying the processing liquid to the main surface of the substrate and a unit for supplying the active species to the main surface of the substrate. As a result, the active species can be supplied to the treatment liquid that has landed on the main surface of the substrate. Therefore, the active species can act on the treatment liquid on the main surface of the substrate to improve the treatment capacity of the treatment liquid. As a result, the main surface of the substrate can be efficiently processed with high processing capacity.
 このような処理液および活性種を用いた処理においても、より均一に基板に対して処理を行うことが望まれている。 Even in the treatment using such a treatment liquid and an active species, it is desired to treat the substrate more uniformly.
 そこで、本願は、より均一に基板に対して処理を行うことができる技術を提供することを目的とする。 Therefore, it is an object of the present application to provide a technique capable of processing the substrate more uniformly.
 基板処理装置の第1の態様は、基板を保持しつつ、前記基板の中心部を通る回転軸線のまわりで前記基板を回転させる基板保持部と、前記基板保持部によって保持された前記基板の主面に向かって処理液を吐出する処理液ノズルと、前記回転軸線に沿う平面視において前記処理液ノズルと隣り合う位置に設けられた第1プラズマ発生ユニットと、を備え、前記第1プラズマ発生ユニットは、平面視において互いに間隔を空けて並んで設けられた複数の第1電極を有する第1電極群と、鉛直上方から前記第1電極群に向かってガスを流すための第1ガス流路を形成する第1ユニット本体とを含み、前記第1電極群を通過した前記ガスを、前記基板保持部によって保持された前記基板の前記主面に供給する。 The first aspect of the substrate processing apparatus is a substrate holding portion that rotates the substrate around a rotation axis passing through a central portion of the substrate while holding the substrate, and a main substrate held by the substrate holding portion. The first plasma generation unit includes a treatment liquid nozzle that discharges the treatment liquid toward a surface and a first plasma generation unit provided at a position adjacent to the treatment liquid nozzle in a plan view along the rotation axis. Refers to a first electrode group having a plurality of first electrodes provided side by side at intervals in a plan view, and a first gas flow path for flowing a gas from vertically above toward the first electrode group. The gas that has passed through the first electrode group, including the first unit main body to be formed, is supplied to the main surface of the substrate held by the substrate holding portion.
 基板処理装置の第2の態様は、第1の態様にかかる基板処理装置であって、前記第1プラズマ発生ユニットは、前記複数の第1電極の相互間に設けられた誘電仕切部材をさらに備える。 A second aspect of the substrate processing apparatus is the substrate processing apparatus according to the first aspect, wherein the first plasma generation unit further includes a dielectric partition member provided between the plurality of first electrodes. ..
 基板処理装置の第3の態様は、第1または第2の態様にかかる基板処理装置であって、前記第1プラズマ発生ユニットは、前記基板の前記中心部から周縁部を含む前記基板の半径以上の領域に前記ガスを供給する。 A third aspect of the substrate processing apparatus is the substrate processing apparatus according to the first or second aspect, wherein the first plasma generation unit is equal to or larger than the radius of the substrate including the central portion to the peripheral portion of the substrate. The gas is supplied to the region of.
 基板処理装置の第4の態様は、第1から第3のいずれか一つの態様にかかる基板処理装置であって、前記第1ユニット本体は、前記第1ガス流路を平面視において複数のガス分割流路に仕切る流路仕切部を含む。 A fourth aspect of the substrate processing apparatus is the substrate processing apparatus according to any one of the first to third aspects, wherein the first unit main body has a plurality of gases in a plan view of the first gas flow path. Includes a flow path partition that partitions the split flow path.
 基板処理装置の第5の態様は、第3の態様にかかる基板処理装置であって、前記第1ガス流路に前記ガスを供給するガス供給部を備え、前記処理液ノズルは前記基板の前記主面の中央部に向けて前記処理液を吐出し、前記複数のガス分割流路は、第1ガス分割流路と、第2ガス分割流路とを含み、前記第1ガス分割流路と前記回転軸線との間の距離は、前記第2ガス分割流路と前記回転軸線との間の距離よりも短く、前記ガス供給部は、前記第1ガス分割流路における前記ガスの第1流速が前記第2ガス分割流路における前記ガスの第2流速よりも高くなるように、前記第1ガス分割流路および前記第2ガス分割流路に前記ガスを供給する。 A fifth aspect of the substrate processing apparatus is the substrate processing apparatus according to the third aspect, wherein the first gas flow path is provided with a gas supply unit, and the processing liquid nozzle is the subject of the substrate. The treatment liquid is discharged toward the central portion of the main surface, and the plurality of gas dividing flow paths include a first gas dividing flow path and a second gas dividing flow path, and the first gas dividing flow path and the like. The distance between the rotating axis is shorter than the distance between the second gas dividing flow path and the rotating axis, and the gas supply unit is the first flow velocity of the gas in the first gas dividing flow path. Is supplied to the first gas dividing flow path and the second gas divided flow path so as to be higher than the second flow rate of the gas in the second gas dividing flow path.
 基板処理装置の第6の態様は、第4または第5の態様にかかる基板処理装置であって、前記第1ユニット本体には、前記複数のガス分割流路の一つにガスを供給する複数のガス供給流路が形成され、前記複数のガス供給流路の下流口は平面視において互いに異なる位置で前記複数のガス分割流路の前記一つに繋がる。 A sixth aspect of the substrate processing apparatus is the substrate processing apparatus according to the fourth or fifth aspect, wherein gas is supplied to one of the plurality of gas dividing flow paths in the first unit main body. The gas supply flow paths are formed, and the downstream ports of the plurality of gas supply flow paths are connected to the one of the plurality of gas split flow paths at different positions in a plan view.
 基板処理装置の第7の態様は、第1から第6のいずれか一つの態様にかかる基板処理装置であって、前記第1ユニット本体は、前記第1ガス流路において前記第1電極群よりも上流側に設けられ、前記第1電極群と向かい合う複数の開口を有する第1板状体をさらに含む。 A seventh aspect of the substrate processing apparatus is the substrate processing apparatus according to any one of the first to sixth aspects, wherein the first unit main body is from the first electrode group in the first gas flow path. Also includes a first plate-like body provided on the upstream side and having a plurality of openings facing the first electrode group.
 基板処理装置の第8の態様は、第7の態様にかかる基板処理装置であって、前記処理液ノズルは前記基板の前記主面の中央部に向けて前記処理液を吐出し、前記複数の開口は、第1開口と、第2開口とを含み、前記第1開口と前記回転軸線との間の距離は、前記第2開口と前記回転軸線との間の距離よりも短く、前記第1開口の面積は前記第2開口の面積よりも小さい。 An eighth aspect of the substrate processing apparatus is the substrate processing apparatus according to the seventh aspect, wherein the processing liquid nozzle discharges the processing liquid toward the central portion of the main surface of the substrate, and the plurality of the processing liquids. The opening includes a first opening and a second opening, and the distance between the first opening and the rotation axis is shorter than the distance between the second opening and the rotation axis, and the first. The area of the opening is smaller than the area of the second opening.
 基板処理装置の第9の態様は、第1から第8のいずれか一つの態様にかかる基板処理装置であって、前記第1ユニット本体は、前記第1電極群よりも下流側に設けられた前記第1ガス流路の流出口を開閉するシャッタをさらに含む。 The ninth aspect of the substrate processing apparatus is the substrate processing apparatus according to any one of the first to eighth aspects, and the first unit main body is provided on the downstream side of the first electrode group. It further includes a shutter that opens and closes the outlet of the first gas flow path.
 基板処理装置の第10の態様は、第9の態様にかかる基板処理装置であって、前記第1ユニット本体は、前記第1ガス流路の流出口として複数の流出口を有する第2板状体をさらに含む。 A tenth aspect of the substrate processing apparatus is the substrate processing apparatus according to the ninth aspect, wherein the first unit main body has a second plate shape having a plurality of outlets as outlets of the first gas flow path. Including the body further.
 基板処理装置の第11の態様は、第10の態様にかかる基板処理装置であって、前記処理液ノズルは前記基板の前記主面の中央部に向けて前記処理液を吐出し、前記複数の流出口は、第1流出口と、第2流出口とを含み、前記第1流出口と前記回転軸線との間の距離は、前記第2流出口と前記回転軸線との間の距離よりも短く、前記第1流出口の面積は前記第2流出口の面積よりも小さい。 The eleventh aspect of the substrate processing apparatus is the substrate processing apparatus according to the tenth aspect, wherein the processing liquid nozzle discharges the processing liquid toward the central portion of the main surface of the substrate, and the plurality of the processing liquids. The outlet includes a first outlet and a second outlet, and the distance between the first outlet and the rotation axis is larger than the distance between the second outlet and the rotation axis. It is short and the area of the first outlet is smaller than the area of the second outlet.
 基板処理装置の第12の態様は、第1から第11のいずれか一つの態様にかかる基板処理装置であって、前記処理液ノズルは前記基板の前記主面の中央部に向けて前記処理液を吐出し、前記複数の電極の相互間の電界空間のうち第1電界空間と前記回転軸線との間の距離は、前記電界空間のうち第2電界空間と前記回転軸線との間の距離よりも短く、前記第1電界空間には、前記第2電界空間に印加される電界の電界強度よりも高い電界強度で電界が印加される。 A twelfth aspect of the substrate processing apparatus is the substrate processing apparatus according to any one of the first to eleventh aspects, wherein the processing liquid nozzle is directed toward the central portion of the main surface of the substrate. The distance between the first electric field space and the rotation axis in the electric field space between the plurality of electrodes is the distance between the second electric field space and the rotation axis in the electric field space. Also short, an electric field is applied to the first electric field space with an electric field strength higher than the electric field strength of the electric field applied to the second electric field space.
 基板処理装置の第13の態様は、第12の態様にかかる基板処理装置であって、前記複数の電極のうち前記第1電界空間を形成する2つの電極間に印加される電圧の大きさは、前記複数の電極のうち前記第2電界空間を形成する2つの電極間に印加される電圧の大きさよりも大きい。 The thirteenth aspect of the substrate processing apparatus is the substrate processing apparatus according to the twelfth aspect, and the magnitude of the voltage applied between the two electrodes forming the first electric field space among the plurality of electrodes is , The magnitude of the voltage applied between the two electrodes forming the second electric field space among the plurality of electrodes.
 基板処理装置の第14の態様は、第12または第13の態様にかかる基板処理装置であって、前記複数の電極のうち前記第1電界空間を形成する2つの電極の間隔は、前記複数の電極のうち前記第2電界空間を形成する2つの電極の間隔よりも狭い。 The fourteenth aspect of the substrate processing apparatus is the substrate processing apparatus according to the twelfth or thirteenth aspect, and the distance between the two electrodes forming the first electric field space among the plurality of electrodes is the plurality of electrodes. It is narrower than the distance between the two electrodes forming the second electric field space.
 基板処理装置の第15の態様は、第1から第14のいずれか一つの態様にかかる基板処理装置であって、第2プラズマ発生ユニットをさらに備え、前記第2プラズマ発生ユニットは、複数の第2電極を有する第2電極群と、前記第2電極群に向かってガスを流すための第2ガス流路を形成する第2ユニット本体とを含み、前記第2電極群を通過した前記ガスを、前記処理液ノズルから吐出されて前記基板の前記主面に着液するまでの前記処理液に対して供給する。 A fifteenth aspect of the substrate processing apparatus is the substrate processing apparatus according to any one of the first to the fourteenth aspects, further comprising a second plasma generation unit, wherein the second plasma generation unit is a plurality of second. The gas that has passed through the second electrode group includes a second electrode group having two electrodes and a second unit main body that forms a second gas flow path for flowing gas toward the second electrode group. , It is supplied to the treatment liquid until it is discharged from the treatment liquid nozzle and reaches the main surface of the substrate.
 基板処理装置の第16の態様は、第1から第15のいずれか一つの態様にかかる基板処理装置であって、前記第1プラズマ発生ユニットは平面視において前記処理液ノズルの周囲を囲って、前記処理液ノズルとともに遮断板を形成し、前記遮断板は、前記基板保持部によって保持された前記基板の上面よりも鉛直上方に設けられ、前記基板の上面と鉛直方向において向かい合う。 A sixteenth aspect of the substrate processing apparatus is the substrate processing apparatus according to any one of the first to fifteenth aspects, wherein the first plasma generating unit surrounds the processing liquid nozzle in a plan view. A blocking plate is formed together with the processing liquid nozzle, and the blocking plate is provided vertically above the upper surface of the substrate held by the substrate holding portion, and faces the upper surface of the substrate in the vertical direction.
 基板処理装置の第17の態様は、第1から第16のいずれか一つの態様にかかる基板処理装置であって、前記第1電極群は複数設けられており、前記複数の第1電極群は前記回転軸線の周方向において並んで設けられる。 The 17th aspect of the substrate processing apparatus is the substrate processing apparatus according to any one of the first to the sixteenth aspects, wherein a plurality of the first electrode groups are provided, and the plurality of first electrode groups are provided. They are provided side by side in the circumferential direction of the rotation axis.
 基板処理装置の第1の態様によれば、第1電極が平面視において互いに間隔を空けて設けられるので、平面視において、より広い範囲で電界を印加することができ、より広い範囲でプラズマを発生させることができる。ひいては、プラズマによる活性種をより広い範囲で基板の主面に供給することができ、より均一に処理を行うことができる。 According to the first aspect of the substrate processing apparatus, since the first electrodes are provided at intervals from each other in the plan view, the electric field can be applied in a wider range in the plan view, and the plasma can be applied in a wider range. Can be generated. As a result, the active species produced by plasma can be supplied to the main surface of the substrate in a wider range, and the treatment can be performed more uniformly.
 基板処理装置の第2の態様によれば、電極の間で生じるアーク放電を抑制することができる。 According to the second aspect of the substrate processing apparatus, it is possible to suppress the arc discharge generated between the electrodes.
 基板処理装置の第3の態様によれば、第1プラズマ発生ユニットが回転中の基板の主面にガスを供給することで、基板の主面の全面に活性種を供給することができる。 According to the third aspect of the substrate processing apparatus, the first plasma generation unit supplies gas to the main surface of the rotating substrate, so that the active species can be supplied to the entire surface of the main surface of the substrate.
 基板処理装置の第4の態様によれば、ガス分割流路ごとに流量を調整することができる。 According to the fourth aspect of the substrate processing apparatus, the flow rate can be adjusted for each gas split flow path.
 基板処理装置の第5の態様によれば、基板の主面に対する処理の均一性を向上させることができる。 According to the fifth aspect of the substrate processing apparatus, the uniformity of processing with respect to the main surface of the substrate can be improved.
 基板処理装置の第6の態様によれば、より均一にガス分割流路にガスを供給することができる。 According to the sixth aspect of the substrate processing apparatus, the gas can be more uniformly supplied to the gas split flow path.
 基板処理装置の第7の態様によれば、電極群に対してより均一にガスを供給ことができる。 According to the seventh aspect of the substrate processing apparatus, the gas can be supplied more uniformly to the electrode group.
 基板処理装置の第8の態様によれば、基板の主面に対する処理の均一性を向上させることができる。 According to the eighth aspect of the substrate processing apparatus, the uniformity of processing with respect to the main surface of the substrate can be improved.
 基板処理装置の第9の態様によれば、シャッタが流出口を閉じた状態では、ガスが第1ガス流路内に滞留し、より多くの活性種を発生させることができる。この状態でシャッタが流出口を開くことにより、より多くの活性種を基板の主面に供給することができる。 According to the ninth aspect of the substrate processing apparatus, when the shutter closes the outlet, the gas stays in the first gas flow path and more active species can be generated. By opening the outlet in this state, more active species can be supplied to the main surface of the substrate.
 基板処理装置の第10の態様によれば、基板の主面により均一にガスを供給することができる。 According to the tenth aspect of the substrate processing apparatus, gas can be uniformly supplied to the main surface of the substrate.
 基板処理装置の第11の態様によれば、基板の主面に対する処理の均一性を向上させることができる。 According to the eleventh aspect of the substrate processing apparatus, the uniformity of processing with respect to the main surface of the substrate can be improved.
 基板処理装置の第12の態様によれば、基板の主面に対する処理の均一性を向上させることができる。 According to the twelfth aspect of the substrate processing apparatus, the uniformity of processing with respect to the main surface of the substrate can be improved.
 基板処理装置の第13の態様によれば、回転軸線に近い位置で高い電界強度の電界を印加することができる。 According to the thirteenth aspect of the substrate processing apparatus, an electric field having a high electric field strength can be applied at a position close to the rotation axis.
 基板処理装置の第14の態様によれば、回転軸線に近い位置で高い電界強度の電界を印加することができる。 According to the fourteenth aspect of the substrate processing apparatus, an electric field with a high electric field strength can be applied at a position close to the rotation axis.
 基板処理装置の第15の態様によれば、基板の中央部に着液する前の処理液に活性種を作用させることができ、着液前の処理液の処理能力を向上させることができる。よって、基板の主面の中央部に対してより適切に処理を行うことができる。 According to the fifteenth aspect of the substrate processing apparatus, the active species can act on the processing liquid before landing on the central portion of the substrate, and the processing capacity of the processing liquid before landing can be improved. Therefore, it is possible to more appropriately process the central portion of the main surface of the substrate.
 基板処理装置の第16の態様によれば、基板の上面と遮断板との間の雰囲気が、遮断板よりも上方空間に拡散することを抑制できる。また、遮断板と基板との間の雰囲気中に外部から大気が混入し、雰囲気中のガス濃度が低下することを防ぐことができる。 According to the sixteenth aspect of the substrate processing apparatus, it is possible to suppress the atmosphere between the upper surface of the substrate and the blocking plate from diffusing into the space above the blocking plate. In addition, it is possible to prevent the atmosphere between the barrier plate and the substrate from being mixed with the atmosphere from the outside and the gas concentration in the atmosphere from decreasing.
 基板処理装置の第17の態様によれば、周方向における各第1電極群の電圧を個別に調整することで、各第1電極群の電界空間の強度を調整できる。 According to the seventeenth aspect of the substrate processing apparatus, the strength of the electric field space of each first electrode group can be adjusted by individually adjusting the voltage of each first electrode group in the circumferential direction.
基板処理システムの構成の一例を概略的に示す平面図である。It is a top view which shows an example of the structure of a substrate processing system schematically. 制御部の内部構成の一例を概略的に示す機能ブロック図である。It is a functional block diagram which shows an example of the internal structure of a control part schematicly. 基板処理装置の構成の一例を概略的に示す側面図である。It is a side view which shows an example of the structure of the substrate processing apparatus schematically. ノズルヘッドの構成の一例を概略的に示す断面図である。It is sectional drawing which shows typically an example of the structure of a nozzle head. ノズルヘッドの構成の一例を概略的に示す断面図である。It is sectional drawing which shows typically an example of the structure of a nozzle head. ノズルヘッドの構成の一例を概略的に示す断面図である。It is sectional drawing which shows typically an example of the structure of a nozzle head. ノズルヘッドの構成の一例を概略的に示す縦断面図である。It is a vertical sectional view schematically showing an example of the structure of a nozzle head. 基板処理装置の動作の一例を示すフローチャートである。It is a flowchart which shows an example of the operation of a board processing apparatus. 第1電極群の構成の他の一例を概略的に示す断面図である。It is sectional drawing which shows the other example of the structure of the 1st electrode group schematically. ノズルヘッドの構成の他の一例を概略的に示す断面図である。It is sectional drawing which shows the other example of the structure of a nozzle head schematically. 第1ガス流路の流出口近傍の構成の一例を概略的に示す側断面図である。It is a side sectional view schematically showing an example of the structure in the vicinity of the outlet of the first gas flow path. ノズルヘッドの構成の他の一例を概略的に示す断面図である。It is sectional drawing which shows the other example of the structure of a nozzle head schematically. 第1電極群の構成の他の一例を概略的に示す平面図である。It is a top view which shows the other example of the structure of the 1st electrode group schematically. 第1電極群の構成の他の一例を概略的に示す平面図である。It is a top view which shows the other example of the structure of the 1st electrode group schematically. 第1電極群の構成の他の一例を概略的に示す平面図である。It is a top view which shows the other example of the structure of the 1st electrode group schematically. ノズルヘッドの構成の他の一例を概略的に示す断面図である。It is sectional drawing which shows the other example of the structure of a nozzle head schematically. 第2プラズマ発生ユニットの構成の一例を概略的に示す断面図である。It is sectional drawing which shows typically the example of the structure of the 2nd plasma generation unit. ノズルヘッドの構成の他の一例を概略的に示す断面図である。It is sectional drawing which shows the other example of the structure of a nozzle head schematically. 基板処理装置の構成の他の一例を概略的に示す断面図である。It is sectional drawing which shows the other example of the structure of the substrate processing apparatus schematically. 基板処理装置の構成の他の一例を概略的に示す断面図である。It is sectional drawing which shows the other example of the structure of the substrate processing apparatus schematically. 第1電極群の構成の他の一例を概略的に示す断面図である。It is sectional drawing which shows the other example of the structure of the 1st electrode group schematically. 第1電極群の他の一例を概略的に示す断面図である。It is sectional drawing which shows the other example of the 1st electrode group schematically.
 以下、添付される図面を参照しながら実施の形態について説明する。なお、図面は概略的に示されるものであり、説明の便宜のため、適宜、構成の省略および構成の簡略化がなされるものである。また、図面に示される構成の大きさおよび位置の相互関係は、必ずしも正確に記載されるものではなく、適宜変更され得るものである。 Hereinafter, embodiments will be described with reference to the attached drawings. It should be noted that the drawings are shown schematically, and for convenience of explanation, the configuration is omitted and the configuration is simplified as appropriate. Further, the interrelationship between the sizes and positions of the configurations shown in the drawings is not always accurately described and can be changed as appropriate.
 また、以下に示される説明では、同様の構成要素には同じ符号を付して図示し、それらの名称と機能とについても同様のものとする。したがって、それらについての詳細な説明を、重複を避けるために省略する場合がある。 Further, in the explanation shown below, similar components are illustrated with the same reference numerals, and their names and functions are the same. Therefore, detailed description of them may be omitted to avoid duplication.
 また、以下に記載される説明において、「第1」または「第2」などの序数が用いられる場合があっても、これらの用語は、実施の形態の内容を理解することを容易にするために便宜上用いられるものであり、これらの序数によって生じ得る順序などに限定されるものではない。 Further, even if ordinal numbers such as "first" or "second" may be used in the description described below, these terms are used to facilitate understanding of the contents of the embodiments. It is used for convenience, and is not limited to the order that can occur due to these ordinal numbers.
 相対的または絶対的な位置関係を示す表現(例えば「一方向に」「一方向に沿って」「平行」「直交」「中心」「同心」「同軸」など)は、特に断らない限り、その位置関係を厳密に表すのみならず、公差もしくは同程度の機能が得られる範囲で相対的に角度または距離に関して変位された状態も表すものとする。等しい状態であることを示す表現(例えば「同一」「等しい」「均質」など)は、特に断らない限り、定量的に厳密に等しい状態を表すのみならず、公差もしくは同程度の機能が得られる差が存在する状態も表すものとする。形状を示す表現(例えば、「四角形状」または「円筒形状」など)は、特に断らない限り、幾何学的に厳密にその形状を表すのみならず、同程度の効果が得られる範囲で、例えば凹凸や面取りなどを有する形状も表すものとする。一の構成要素を「備える」「具える」「具備する」「含む」または「有する」という表現は、他の構成要素の存在を除外する排他的表現ではない。「A,BおよびCの少なくともいずれか一つ」という表現は、Aのみ、Bのみ、Cのみ、A,BおよびCのうち任意の2つ、ならびに、A,BおよびCの全てを含む。 Expressions indicating relative or absolute positional relationships (for example, "in one direction", "along one direction", "parallel", "orthogonal", "center", "concentric", "coaxial", etc.) are not specified. Not only the positional relationship is expressed exactly, but also the state of being displaced with respect to a relative angle or distance within the range where a tolerance or a similar function can be obtained. Expressions indicating equality (eg, "same", "equal", "homogeneous", etc.) not only represent quantitatively exactly equal states, but also provide tolerance or similar functionality, unless otherwise noted. It shall also represent the state in which there is a difference. Unless otherwise specified, the expression indicating the shape (for example, "square shape" or "cylindrical shape") not only expresses the shape strictly geometrically, but also, for example, to the extent that the same effect can be obtained. It shall also represent a shape having irregularities and chamfers. The expressions "equipped", "equipped", "equipped", "included", or "have" one component are not exclusive expressions that exclude the existence of other components. The expression "at least one of A, B and C" includes A only, B only, C only, any two of A, B and C, and all of A, B and C.
 <第1の実施の形態>
 <基板処理システムの全体構成>
 図1は、基板処理システム100の構成の一例を概略的に示す平面図である。基板処理システム100は、処理対象である基板Wを1枚ずつ処理する枚葉式の処理装置である。
<First Embodiment>
<Overall configuration of board processing system>
FIG. 1 is a plan view schematically showing an example of the configuration of the substrate processing system 100. The substrate processing system 100 is a single-wafer processing apparatus that processes the substrate W to be processed one by one.
 基板処理システム100は、円板状の半導体基板である基板Wに対して処理を行った後、乾燥処理を行う。ここでは、基板Wの主面にはレジストが形成されており、基板処理システム100は基板Wに対する処理としてレジストを除去する。 The substrate processing system 100 processes the substrate W, which is a disk-shaped semiconductor substrate, and then performs a drying process. Here, a resist is formed on the main surface of the substrate W, and the substrate processing system 100 removes the resist as a process for the substrate W.
 なお、基板Wは必ずしも半導体基板に限らない。例えば、基板Wには、フォトマスク用ガラス基板、液晶表示用ガラス基板、プラズマ表示用ガラス基板、FED(Field Emission Display)用基板、光ディスク用基板、磁気ディスク用基板および光磁気ディスク用基板などの各種基板を適用可能である。また基板の形状も円板形状に限らず、例えば矩形の板状形状など種々の形状を採用できる。 The substrate W is not necessarily limited to the semiconductor substrate. For example, the substrate W includes a glass substrate for a photomask, a glass substrate for a liquid crystal display, a glass substrate for a plasma display, a substrate for a FED (Field Emission Display), an optical disk substrate, a magnetic disk substrate, a magneto-optical disk substrate, and the like. Various substrates can be applied. Further, the shape of the substrate is not limited to the disk shape, and various shapes such as a rectangular plate shape can be adopted.
 基板処理システム100は、ロードポート101と、インデクサロボット110と、主搬送ロボット120と、複数の処理ユニット130と、制御部90とを含む。 The board processing system 100 includes a load port 101, an indexer robot 110, a main transfer robot 120, a plurality of processing units 130, and a control unit 90.
 図1に例示されるように、複数のロードポート101が並んで配置される。各ロードポート101には、キャリアCが搬入される。キャリアCとしては、基板Wを密閉空間に収納するFOUP(Front Opening Unified Pod)、SMIF(Standard Mechanical Inter Face)ポッド、または、基板Wを外気にさらすOC(Open Cassette)が採用されてもよい。インデクサロボット110は、キャリアCと主搬送ロボット120との間で基板Wを搬送する。主搬送ロボット120は処理ユニット130に基板Wを搬送する。 As illustrated in FIG. 1, a plurality of load ports 101 are arranged side by side. Carrier C is carried into each load port 101. As the carrier C, a FOUP (Front Opening Unified Pod) for storing the substrate W in a closed space, an SMIF (Standard Mechanical Inter Face) pod, or an OC (Open Cassette) for exposing the substrate W to the outside air may be adopted. The indexer robot 110 transfers the substrate W between the carrier C and the main transfer robot 120. The main transfer robot 120 transfers the substrate W to the processing unit 130.
 処理ユニット130は基板Wに対して処理を行う。本実施の形態に関する基板処理システム100には、12個の処理ユニット130が配置されている。 The processing unit 130 processes the substrate W. Twelve processing units 130 are arranged in the substrate processing system 100 according to the present embodiment.
 具体的には、それぞれが鉛直方向に積層された3個の処理ユニット130を含む4つのタワーが、主搬送ロボット120の周囲を取り囲むようにして配置されている。 Specifically, four towers including three processing units 130, each of which is stacked in the vertical direction, are arranged so as to surround the circumference of the main transfer robot 120.
 図1では、3段に重ねられた処理ユニット130の1つが概略的に示されている。なお、基板処理システム100における処理ユニット130の数は、12個に限定されるものではなく、適宜変更されてもよい。 FIG. 1 schematically shows one of the processing units 130 stacked in three stages. The number of processing units 130 in the substrate processing system 100 is not limited to 12, and may be changed as appropriate.
 主搬送ロボット120は、処理ユニット130が積層された4個のタワーの中央に設置されている。主搬送ロボット120は、インデクサロボット110から受け取る処理対象の基板Wをそれぞれの処理ユニット130内に搬入する。また、主搬送ロボット120は、それぞれの処理ユニット130から処理済みの基板Wを搬出してインデクサロボット110に渡す。制御部90は、基板処理システム100のそれぞれの構成要素の動作を制御する。 The main transfer robot 120 is installed in the center of four towers in which the processing units 130 are stacked. The main transfer robot 120 carries the substrate W to be processed received from the indexer robot 110 into each processing unit 130. Further, the main transfer robot 120 carries out the processed substrate W from each processing unit 130 and passes it to the indexer robot 110. The control unit 90 controls the operation of each component of the substrate processing system 100.
 図2は、制御部90の内部構成の一例を概略的に示す機能ブロック図である。制御部90は電子回路であって、例えばデータ処理部91および記憶媒体92を有している。図2の具体例では、データ処理部91と記憶媒体92とはバス93を介して相互に接続されている。データ処理部91は例えばCPU(Central Processor Unit)などの演算処理装置であってもよい。記憶媒体92は非一時的な記憶媒体(例えばROM(Read Only Memory)またはハードディスク)921および一時的な記憶媒体(例えばRAM(Random Access Memory))922を有していてもよい。非一時的な記憶媒体921には、例えば制御部90が実行する処理を規定するプログラムが記憶されていてもよい。データ処理部91がこのプログラムを実行することにより、制御部90が、プログラムに規定された処理を実行することができる。もちろん、制御部90が実行する処理の一部または全部がハードウェアによって実行されてもよい。図2の具体例では、インデクサロボット110、主搬送ロボット120および処理ユニット130がバス93に接続された態様が一例として概略的に示されている。 FIG. 2 is a functional block diagram schematically showing an example of the internal configuration of the control unit 90. The control unit 90 is an electronic circuit, and includes, for example, a data processing unit 91 and a storage medium 92. In the specific example of FIG. 2, the data processing unit 91 and the storage medium 92 are connected to each other via the bus 93. The data processing unit 91 may be, for example, an arithmetic processing unit such as a CPU (Central Processor Unit). The storage medium 92 may have a non-temporary storage medium (for example, ROM (Read Only Memory) or hard disk) 921 and a temporary storage medium (for example, RAM (Random Access Memory)) 922. The non-temporary storage medium 921 may store, for example, a program that defines the processing executed by the control unit 90. By executing this program by the data processing unit 91, the control unit 90 can execute the processing specified in the program. Of course, a part or all of the processing executed by the control unit 90 may be executed by the hardware. In the specific example of FIG. 2, an embodiment in which the indexer robot 110, the main transfer robot 120, and the processing unit 130 are connected to the bus 93 is schematically shown as an example.
 <基板処理装置>
 図3は、基板処理装置1の構成の一例を概略的に示す側面図である。基板処理装置1は複数の処理ユニット130の1つに相当する。複数の処理ユニット130は互いに同一の構成を有していてもよく、互いに異なる構成を有していてもよい。
<Board processing equipment>
FIG. 3 is a side view schematically showing an example of the configuration of the substrate processing apparatus 1. The substrate processing apparatus 1 corresponds to one of a plurality of processing units 130. The plurality of processing units 130 may have the same configuration as each other, or may have different configurations from each other.
 図3に例示するように、基板処理装置1は、基板保持部2と、処理液ノズル4と、第1プラズマ発生ユニット5とを含んでいる。以下では、まず各構成について概説した後に詳述する。 As illustrated in FIG. 3, the substrate processing apparatus 1 includes a substrate holding unit 2, a processing liquid nozzle 4, and a first plasma generation unit 5. In the following, each configuration will be outlined first and then detailed.
 基板保持部2は基板Wを水平姿勢で保持しつつ、基板Wを回転軸線Q1のまわりで回転させる。ここでいう水平姿勢とは、基板Wの厚み方向が鉛直方向に沿う姿勢である。回転軸線Q1は、基板Wの中心部を通り、かつ、鉛直方向に沿う軸である。このような基板保持部2はスピンチャックとも呼ばれる。 The substrate holding portion 2 rotates the substrate W around the rotation axis Q1 while holding the substrate W in a horizontal posture. The horizontal posture referred to here is a posture in which the thickness direction of the substrate W is along the vertical direction. The rotation axis Q1 is an axis that passes through the center of the substrate W and is along the vertical direction. Such a substrate holding portion 2 is also called a spin chuck.
 以下では、回転軸線Q1についての径方向および周方向を、単に径方向および周方向と呼ぶ場合がある。 In the following, the radial direction and the circumferential direction of the rotation axis Q1 may be simply referred to as the radial direction and the circumferential direction.
 処理液ノズル4は、基板保持部2によって保持された基板Wの主面に処理液を供給する。図3では、処理液ノズル4から基板Wに向かって吐出される処理液を模式的に破線の矢印で示している。ここで、処理液としては硫酸が想定されるが、例えば、硫酸塩、ペルオキソ硫酸およびペルオキソ硫酸塩の少なくともいずれかを含む液、または、過酸化水素を含む液などの薬液であってもよい。処理液は、典型的には水溶液である。 The processing liquid nozzle 4 supplies the processing liquid to the main surface of the substrate W held by the substrate holding portion 2. In FIG. 3, the processing liquid discharged from the processing liquid nozzle 4 toward the substrate W is schematically indicated by a broken line arrow. Here, sulfuric acid is assumed as the treatment liquid, but for example, a liquid containing at least one of sulfate, peroxosulfate and peroxosulfate, or a chemical liquid such as a liquid containing hydrogen peroxide may be used. The treatment liquid is typically an aqueous solution.
 第1プラズマ発生ユニット5は、回転軸線Q1に沿って見て(つまり平面視において)、処理液ノズル4と隣り合う位置に設けられている。第1プラズマ発生ユニット5にはガス供給部50からガスが供給され、当該ガスが第1プラズマ発生ユニット5内の第1ガス流路60を基板Wの主面に向かって流れる。当該ガスには、例えば、酸素を含む酸素含有ガスを適用することができる。酸素含有ガスは、例えば、酸素ガス、オゾンガス、二酸化炭素ガス、空気、または、これらの少なくとも二つの混合ガスを含む。当該ガスには、不活性ガスがさらに含まれてもよい。不活性ガスは、例えば、窒素ガス、アルゴンガス、ネオンガス、ヘリウムガス、または、これらの少なくとも二つの混合ガスを含む。 The first plasma generation unit 5 is provided at a position adjacent to the processing liquid nozzle 4 when viewed along the rotation axis Q1 (that is, in a plan view). Gas is supplied to the first plasma generation unit 5 from the gas supply unit 50, and the gas flows through the first gas flow path 60 in the first plasma generation unit 5 toward the main surface of the substrate W. For example, an oxygen-containing gas containing oxygen can be applied to the gas. The oxygen-containing gas includes, for example, oxygen gas, ozone gas, carbon dioxide gas, air, or a mixed gas of at least two of these. The gas may further contain an inert gas. The inert gas includes, for example, nitrogen gas, argon gas, neon gas, helium gas, or a mixed gas of at least two of these.
 第1プラズマ発生ユニット5は後述のように第1ガス流路60の下流側において第1電極群7を有している。第1電極群7はガスが通過可能に構成され、その周囲のプラズマ用の電界空間に電界を印加する。電界空間とは、プラズマを発生させるための電界が印加された空間をいう。ガスが第1電極群7(つまり電界空間)を通過する際に、電界がガスに作用する。これにより、ガスの一部が電離してプラズマが発生する(プラズマ発生処理)。例えばアルゴンガスなどの不活性ガスが電離してプラズマが発生する。なおここでは一例として、大気圧下でプラズマを生じさせる。ここでいう大気圧とは、例えば、標準気圧の80%以上、かつ、標準気圧の120%以下である。 The first plasma generation unit 5 has a first electrode group 7 on the downstream side of the first gas flow path 60 as described later. The first electrode group 7 is configured to allow gas to pass through, and an electric field is applied to the electric field space for plasma around the first electrode group 7. The electric field space is a space to which an electric field for generating plasma is applied. When the gas passes through the first electrode group 7 (that is, the electric field space), the electric field acts on the gas. As a result, a part of the gas is ionized to generate plasma (plasma generation processing). For example, an inert gas such as argon gas is ionized to generate plasma. Here, as an example, plasma is generated under atmospheric pressure. The atmospheric pressure referred to here is, for example, 80% or more of the standard pressure and 120% or less of the standard pressure.
 このプラズマの発生に際して、電子衝突反応による分子および原子の解離および励起などの諸反応が生じ、反応性の高い中性ラジカル等の種々の活性種も発生する。例えばプラズマのイオンまたは電子が酸素含有ガスに作用して酸素ラジカルを発生させる。このような活性種はガスの流れに沿って移動して、第1プラズマ発生ユニット5の下端部から、基板保持部2によって保持された基板Wの主面に向かって流出する。図3では、第1プラズマ発生ユニット5から基板Wへ向かって流れるガスを模式的に実線の矢印で示している。 When this plasma is generated, various reactions such as dissociation and excitation of molecules and atoms due to electron collision reaction occur, and various active species such as highly reactive neutral radicals are also generated. For example, plasma ions or electrons act on an oxygen-containing gas to generate oxygen radicals. Such active species move along the flow of gas and flow out from the lower end of the first plasma generation unit 5 toward the main surface of the substrate W held by the substrate holding portion 2. In FIG. 3, the gas flowing from the first plasma generation unit 5 toward the substrate W is schematically indicated by a solid arrow.
 図3の例では、処理液ノズル4および第1プラズマ発生ユニット5は、基板保持部2によって保持された基板Wよりも鉛直上方に設けられており、基板Wの上面にそれぞれ処理液およびガスを供給する。 In the example of FIG. 3, the treatment liquid nozzle 4 and the first plasma generation unit 5 are provided vertically above the substrate W held by the substrate holding portion 2, and the treatment liquid and the gas are respectively placed on the upper surface of the substrate W. Supply.
 図3の例では、処理液ノズル4と第1プラズマ発生ユニット5は一体に連結されてノズルヘッド3を構成している。図3の例では、ノズルヘッド3はヘッド移動機構30によって移動可能に設けられている。 In the example of FIG. 3, the processing liquid nozzle 4 and the first plasma generation unit 5 are integrally connected to form the nozzle head 3. In the example of FIG. 3, the nozzle head 3 is movably provided by the head moving mechanism 30.
 ヘッド移動機構30はノズルヘッド3を、その移動経路上の待機位置と処理位置との間で移動させることができる。待機位置とは、基板Wの搬出入の際にノズルヘッド3が基板Wの搬送経路に干渉しない位置であり、例えば平面視において基板保持部2よりも径方向外側の位置である。処理位置とは、ノズルヘッド3が処理液およびガスを基板Wに供給する位置であり、ノズルヘッド3が基板Wの主面と鉛直方向において対向する位置である。より具体的な一例として、処理位置は、処理液ノズル4が処理液を基板Wの中央部に着液させることができる位置である。ヘッド移動機構30は例えばリニアモータまたはボールねじ機構などの直動機構を含んでいてもよい。 The head moving mechanism 30 can move the nozzle head 3 between the standby position and the processing position on the moving path. The standby position is a position where the nozzle head 3 does not interfere with the transport path of the substrate W when the substrate W is carried in and out, and is, for example, a position radially outside the substrate holding portion 2 in a plan view. The processing position is a position where the nozzle head 3 supplies the processing liquid and the gas to the substrate W, and the nozzle head 3 is a position where the nozzle head 3 faces the main surface of the substrate W in the vertical direction. As a more specific example, the processing position is a position where the processing liquid nozzle 4 can land the processing liquid on the central portion of the substrate W. The head moving mechanism 30 may include a linear motion mechanism such as a linear motor or a ball screw mechanism.
 あるいは、ヘッド移動機構30は直動機構に替えて、アーム式の移動機構を含んでもよい。この場合、ノズルヘッド3は、水平方向に延在するアームの先端に連結される。アームの基端は、鉛直方向に沿って延在する支持柱に連結される。この支持柱はモータに連結されており、鉛直方向に沿う支持柱の中心軸のまわりで回転する。支持柱がその中心軸のまわりで回転することにより、アームが中心軸のまわりで水平面内を旋回し、アームの先端に設けられたノズルヘッド3が中心軸のまわりで水平面内を円弧状に移動する。この円弧状の移動経路が平面視において基板Wの直径に沿うように、ヘッド移動機構30が構成される。 Alternatively, the head moving mechanism 30 may include an arm type moving mechanism instead of the linear moving mechanism. In this case, the nozzle head 3 is connected to the tip of an arm extending in the horizontal direction. The base end of the arm is connected to a support column extending along the vertical direction. This support column is connected to a motor and rotates around the central axis of the support column along the vertical direction. As the support column rotates around its central axis, the arm swirls in the horizontal plane around the central axis, and the nozzle head 3 provided at the tip of the arm moves in an arc around the central axis in the horizontal plane. do. The head moving mechanism 30 is configured so that the arc-shaped moving path follows the diameter of the substrate W in a plan view.
 処理液ノズル4から吐出されて基板Wの主面に着液した処理液は、基板Wの主面を径方向外側に流れて、基板Wの周縁から外側に飛散する。そこで、図3の例では、基板処理装置1にカップ8が設けられている。カップ8は、基板保持部2を取り囲む筒状形状を有している。カップ8の筒状形状の中心軸は回転軸線Q1と一致する。基板Wの周縁から外側に飛散した処理液はカップ8の内周面に衝突し、下方に流れて不図示の回収機構によって回収されたり、あるいは、不図示の排液機構によって外部に排液されたりする。 The processing liquid discharged from the processing liquid nozzle 4 and landing on the main surface of the substrate W flows outward in the radial direction on the main surface of the substrate W and scatters outward from the peripheral edge of the substrate W. Therefore, in the example of FIG. 3, the cup 8 is provided in the substrate processing apparatus 1. The cup 8 has a cylindrical shape that surrounds the substrate holding portion 2. The central axis of the tubular shape of the cup 8 coincides with the rotation axis Q1. The treatment liquid scattered outward from the peripheral edge of the substrate W collides with the inner peripheral surface of the cup 8 and flows downward to be collected by a collection mechanism (not shown) or drained to the outside by a drainage mechanism (not shown). Or something.
 また、基板処理装置1には、基板保持部2よりも径方向外側において、不図示の排気口が設けられる。例えばカップ8に排気口が設けられてもよい。基板Wの主面に供給された活性種およびガスは基板Wの主面に沿って径方向外側に流れ、排気口から排気される。 Further, the substrate processing apparatus 1 is provided with an exhaust port (not shown) outside the substrate holding portion 2 in the radial direction. For example, the cup 8 may be provided with an exhaust port. The active species and gas supplied to the main surface of the substrate W flow radially outward along the main surface of the substrate W and are exhausted from the exhaust port.
 <基板保持部>
 図3の例では、基板保持部2は、ベース21と、複数のチャック22と、回転機構23とを含んでいる。ベース21は、回転軸線Q1を中心とした円板形状を有し、その上面には複数のチャック22が立設されている。複数のチャック22は基板Wの周縁に沿って等間隔で設けられる。チャック22は、基板Wの周縁に当接するチャック位置と、基板Wの周縁から離れた解除位置の間で駆動可能である。複数のチャック22がそれぞれのチャック位置で停止した状態で、複数のチャック22が基板Wの周縁を保持する。複数のチャック22がそれぞれの解除位置で停止した状態では、基板Wの保持が解除される。複数のチャック22を駆動する不図示のチャック駆動部は例えばリンク機構および磁石等により構成され、制御部90によって制御される。
<Board holding part>
In the example of FIG. 3, the substrate holding portion 2 includes a base 21, a plurality of chucks 22, and a rotation mechanism 23. The base 21 has a disk shape centered on the rotation axis Q1, and a plurality of chucks 22 are erected on the upper surface thereof. The plurality of chucks 22 are provided at equal intervals along the peripheral edge of the substrate W. The chuck 22 can be driven between a chuck position abutting on the peripheral edge of the substrate W and a release position away from the peripheral edge of the substrate W. The plurality of chucks 22 hold the peripheral edge of the substrate W in a state where the plurality of chucks 22 are stopped at the respective chuck positions. When the plurality of chucks 22 are stopped at the respective release positions, the holding of the substrate W is released. The chuck drive unit (not shown) that drives the plurality of chucks 22 is composed of, for example, a link mechanism, a magnet, or the like, and is controlled by the control unit 90.
 回転機構23はモータ231を含んでいる。モータ231はシャフト232を介してベース21の下面に連結されており、制御部90によって制御される。モータ231がシャフト232およびベース21を回転軸線Q1のまわりで回転させることにより、複数のチャック22によって保持された基板Wも回転軸線Q1のまわりで回転する。 The rotation mechanism 23 includes a motor 231. The motor 231 is connected to the lower surface of the base 21 via the shaft 232 and is controlled by the control unit 90. As the motor 231 rotates the shaft 232 and the base 21 around the rotation axis Q1, the substrate W held by the plurality of chucks 22 also rotates around the rotation axis Q1.
 なお、基板保持部2は必ずしもチャック22を含む必要はない。基板保持部2は例えば吸引力または静電力により基板Wを保持してもよい。 The substrate holding portion 2 does not necessarily have to include the chuck 22. The substrate holding portion 2 may hold the substrate W by, for example, an attractive force or an electrostatic force.
 <処理液ノズル>
 ノズルヘッド3の処理液ノズル4は例えば円筒形状を有する。処理液ノズル4はその下端面に吐出口4aを有している。図3の例では、処理液ノズル4は斜め方向に処理液を吐出する。具体的な一例として、処理液ノズル4は、処理液が基板Wの中央部に着液するように、吐出口4aから斜め方向に処理液を吐出する。つまり、処理液ノズル4は平面視において回転軸線Q1よりも径方向外側に設けられ、径方向外側から基板Wの中央部に向けて処理液を吐出する。
<Treatment liquid nozzle>
The treatment liquid nozzle 4 of the nozzle head 3 has, for example, a cylindrical shape. The treatment liquid nozzle 4 has a discharge port 4a on its lower end surface. In the example of FIG. 3, the processing liquid nozzle 4 discharges the processing liquid in an oblique direction. As a specific example, the treatment liquid nozzle 4 discharges the treatment liquid diagonally from the discharge port 4a so that the treatment liquid lands on the central portion of the substrate W. That is, the processing liquid nozzle 4 is provided radially outside the rotation axis Q1 in a plan view, and discharges the processing liquid from the radial outside toward the central portion of the substrate W.
 処理液ノズル4には処理液供給管41の一端が接続される。図3の例では、処理液供給管41は第1プラズマ発生ユニット5に貫通配置されている。これにより、処理液ノズル4は処理液供給管41を介して第1プラズマ発生ユニット5に連結される。処理液供給管41の他端は処理液供給源43に接続される。処理液供給源43は、例えば処理液を貯留するタンクを含む。 One end of the processing liquid supply pipe 41 is connected to the processing liquid nozzle 4. In the example of FIG. 3, the treatment liquid supply pipe 41 is arranged through the first plasma generation unit 5. As a result, the treatment liquid nozzle 4 is connected to the first plasma generation unit 5 via the treatment liquid supply pipe 41. The other end of the processing liquid supply pipe 41 is connected to the processing liquid supply source 43. The treatment liquid supply source 43 includes, for example, a tank for storing the treatment liquid.
 処理液供給管41にはバルブ42が介装されている。バルブ42は制御部90によって制御され、バルブ42が開くことで、処理液が処理液供給源43から処理液供給管41の内部を流れて処理液ノズル4に供給される。この処理液は処理液ノズル4の吐出口4aから基板Wの主面に向かって吐出される。バルブ42が閉じることにより、処理液ノズル4の吐出口4aからの処理液の吐出が停止する。 A valve 42 is interposed in the processing liquid supply pipe 41. The valve 42 is controlled by the control unit 90, and when the valve 42 is opened, the processing liquid flows from the processing liquid supply source 43 inside the processing liquid supply pipe 41 and is supplied to the processing liquid nozzle 4. This treatment liquid is discharged from the discharge port 4a of the treatment liquid nozzle 4 toward the main surface of the substrate W. When the valve 42 is closed, the discharge of the processing liquid from the discharge port 4a of the processing liquid nozzle 4 is stopped.
 なお、基板処理装置1は、複数種類の処理液を基板Wの主面に供給する構成を有していてもよい。例えば、処理液ノズル4は複数の処理液流路を有していてもよい。この場合、各処理液流路が各種類の処理液供給源に個別に接続される。あるいは、基板処理装置1はノズルヘッド3とは別にノズルを含んでいてもよい。複数種類の処理液としては、例えば硫酸等の薬液の他、純水、オゾン水、炭酸水、および、イソプロピルアルコール等のリンス液を採用できる。ここでは、処理液ノズル4は複数の処理液流路を有しているものとする。 The substrate processing apparatus 1 may have a configuration in which a plurality of types of processing liquids are supplied to the main surface of the substrate W. For example, the treatment liquid nozzle 4 may have a plurality of treatment liquid flow paths. In this case, each treatment liquid flow path is individually connected to each type of treatment liquid supply source. Alternatively, the substrate processing device 1 may include a nozzle separately from the nozzle head 3. As the plurality of types of treatment liquids, for example, in addition to chemical liquids such as sulfuric acid, rinse liquids such as pure water, ozone water, carbonated water, and isopropyl alcohol can be adopted. Here, it is assumed that the treatment liquid nozzle 4 has a plurality of treatment liquid flow paths.
 <第1プラズマ発生ユニット>
 第1プラズマ発生ユニット5は平面視において処理液ノズル4と隣り合って設けられている。図3の例では、処理液ノズル4は平面視において回転軸線Q1よりも径方向外側に位置しているので、第1プラズマ発生ユニット5の一部が回転軸線Q1と鉛直方向において対向するように、第1プラズマ発生ユニット5を設けることができる。図3の例では、第1プラズマ発生ユニット5は基板Wの中心部(回転軸線Q1)から周縁部に亘る領域と鉛直方向において対向する位置に設けられている。つまり、図3の例では、第1プラズマ発生ユニット5の径方向の幅は基板Wの半径以上である。
<1st plasma generation unit>
The first plasma generation unit 5 is provided adjacent to the processing liquid nozzle 4 in a plan view. In the example of FIG. 3, since the processing liquid nozzle 4 is located radially outside the rotation axis Q1 in a plan view, a part of the first plasma generation unit 5 faces the rotation axis Q1 in the vertical direction. , The first plasma generation unit 5 can be provided. In the example of FIG. 3, the first plasma generation unit 5 is provided at a position facing the region extending from the central portion (rotational axis Q1) of the substrate W to the peripheral portion in the vertical direction. That is, in the example of FIG. 3, the radial width of the first plasma generation unit 5 is equal to or larger than the radius of the substrate W.
 図4から図7は、第1プラズマ発生ユニット5の構成の一例を概略的に示す図である。図4は、第1プラズマ発生ユニット5の側断面図を示し、図5から図7は、それぞれ、図4のA-A断面、B-B断面およびC-C断面を示している。図4に示すように、第1プラズマ発生ユニット5は、第1ユニット本体6と、第1電極群7とを含む。 4 to 7 are diagrams schematically showing an example of the configuration of the first plasma generation unit 5. FIG. 4 shows a side sectional view of the first plasma generating unit 5, and FIGS. 5 to 7 show an AA cross section, a BB cross section, and a CC cross section of FIG. 4, respectively. As shown in FIG. 4, the first plasma generation unit 5 includes a first unit main body 6 and a first electrode group 7.
 第1ユニット本体6は、ガス供給部50からのガスを基板Wの主面に向けて流すための第1ガス流路60を形成する。第1電極群7は第1ガス流路60の下流側に設けられており、後述のようにガスが通過可能に構成される。第1電極群7は鉛直方向において基板Wの主面と対向する。ガスは鉛直上方から鉛直下方へと第1電極群7を通過し、基板Wの主面に向かって流れる。ガスが第1電極群7(つまり電界空間)を通過する際に当該ガスに電界が印加され、当該電界の印加により、ガスの一部が電離してプラズマが発生する。このプラズマの発生に際して種々の活性種が生成され、これらの活性種がガスの流れに沿って基板Wの主面に供給される。 The first unit main body 6 forms a first gas flow path 60 for flowing the gas from the gas supply unit 50 toward the main surface of the substrate W. The first electrode group 7 is provided on the downstream side of the first gas flow path 60, and is configured to allow gas to pass through as described later. The first electrode group 7 faces the main surface of the substrate W in the vertical direction. The gas passes through the first electrode group 7 from vertically above to vertically below and flows toward the main surface of the substrate W. When the gas passes through the first electrode group 7 (that is, the electric field space), an electric field is applied to the gas, and the application of the electric field causes a part of the gas to be ionized to generate plasma. Various active species are generated during the generation of this plasma, and these active species are supplied to the main surface of the substrate W along the flow of gas.
 <第1ユニット本体>
 第1ユニット本体6は、例えば、石英またはセラミックス等の絶縁体(誘電体)によって形成され、その内部に第1ガス流路60を形成する。図4の例では、第1ユニット本体6の内部には、第1ガス流路60の下流側の一部としての複数のガス分割流路61が形成されている。複数のガス分割流路61は平面視において互いに隣り合って形成される。言い換えれば、第1ユニット本体6には、複数のガス分割流路61を仕切る1以上の流路仕切部63が設けられる。
<Main unit 1>
The first unit main body 6 is formed of, for example, an insulator (dielectric) such as quartz or ceramics, and a first gas flow path 60 is formed inside the insulator. In the example of FIG. 4, a plurality of gas split flow paths 61 are formed inside the first unit main body 6 as a part of the downstream side of the first gas flow path 60. The plurality of gas split flow paths 61 are formed adjacent to each other in a plan view. In other words, the first unit main body 6 is provided with one or more flow path partition portions 63 that partition the plurality of gas split flow paths 61.
 図4の例では、複数のガス分割流路61として、3つのガス分割流路61a~61cが形成されている。図4の例では、3つのガス分割流路61a~61cは処理液ノズル4に近い位置から離れるにしたがってこの順で形成されている。つまり、ガス分割流路61aが最も処理液ノズル4に近く、ガス分割流路61bがその次に処理液ノズル4に近く、ガス分割流路61cが処理液ノズル4から最も遠い。また、ガス分割流路61a~61bは平面視において、回転軸線Q1に近い位置から離れるにしたがってこの順で配列されている、ともいえる。言い換えれば、ガス分割流路61aと回転軸線Q1との間の距離はガス分割流路61bと回転軸線Q1との間の距離よりも短く、ガス分割流路61bと回転軸線Q1との間の距離はガス分割流路61cと処理液ノズル4との間の距離よりも短い。回転軸線Q1は鉛直方向に沿って無限に延びる仮想的な線と把握できるので、回転軸線Q1がガス分割流路61aを通る場合、ガス分割流路61aと回転軸線Q1との間の距離はゼロである。 In the example of FIG. 4, three gas dividing flow paths 61a to 61c are formed as a plurality of gas dividing flow paths 61. In the example of FIG. 4, the three gas dividing flow paths 61a to 61c are formed in this order as the distance from the position closer to the treatment liquid nozzle 4 increases. That is, the gas dividing flow path 61a is closest to the processing liquid nozzle 4, the gas dividing flow path 61b is next closest to the processing liquid nozzle 4, and the gas dividing flow path 61c is the farthest from the processing liquid nozzle 4. Further, it can be said that the gas dividing flow paths 61a to 61b are arranged in this order as they move away from the position closer to the rotation axis Q1 in a plan view. In other words, the distance between the gas dividing flow path 61a and the rotating axis Q1 is shorter than the distance between the gas dividing flow path 61b and the rotating axis Q1, and the distance between the gas dividing flow path 61b and the rotating axis Q1. Is shorter than the distance between the gas split flow path 61c and the treatment liquid nozzle 4. Since the rotation axis Q1 can be grasped as a virtual line extending infinitely along the vertical direction, when the rotation axis Q1 passes through the gas division flow path 61a, the distance between the gas division flow path 61a and the rotation axis Q1 is zero. Is.
 図示の例では、流路仕切部63として流路仕切部63a,63bが設けられている。流路仕切部63aはガス分割流路61a,61bの間に位置してガス分割流路61a,61bを仕切る。流路仕切部63bはガス分割流路61b,61cの間に位置してガス分割流路61b,61cを仕切る。流路仕切部63aは流路仕切部63bよりも回転軸線Q1に近い位置に設けられる。 In the illustrated example, the flow path partition portions 63a and 63b are provided as the flow path partition portions 63. The flow path partition portion 63a is located between the gas split flow paths 61a and 61b and partitions the gas split flow paths 61a and 61b. The flow path partition portion 63b is located between the gas split flow paths 61b and 61c and partitions the gas split flow paths 61b and 61c. The flow path partition portion 63a is provided at a position closer to the rotation axis Q1 than the flow path partition portion 63b.
 ガス分割流路61a~61cは平面視において第1電極群7と重なる位置に形成される。各ガス分割流路61a~61cは鉛直下方に開口しており、ガスはガス分割流路61a~61cの下方の開口から第1電極群7に向かって鉛直下方に流れ、第1電極群7を鉛直方向に通過する。ガス分割流路61a~61cは平面視において互いに異なる位置に形成されているので、ガス分割流路61a~61cからのガスは第1電極群7の互いに異なる領域を通過する。 The gas split flow paths 61a to 61c are formed at positions overlapping with the first electrode group 7 in a plan view. Each of the gas dividing flow paths 61a to 61c opens vertically downward, and the gas flows vertically downward toward the first electrode group 7 from the opening below the gas dividing flow paths 61a to 61c, and flows through the first electrode group 7. Pass in the vertical direction. Since the gas dividing flow paths 61a to 61c are formed at different positions in the plan view, the gas from the gas dividing flow paths 61a to 61c passes through different regions of the first electrode group 7.
 図5の例では、ガス分割流路61aは平面視において半円形状を有しており、その円弧面が回転軸線Q1を中心とした仮想円弧に沿う。ガス分割流路61aは基板Wの中央部と鉛直方向において対向する。 In the example of FIG. 5, the gas dividing flow path 61a has a semicircular shape in a plan view, and its arc surface follows a virtual arc centered on the rotation axis Q1. The gas dividing flow path 61a faces the central portion of the substrate W in the vertical direction.
 ガス分割流路61bはガス分割流路61aよりも径方向外側に形成される。図5の例では、ガス分割流路61bは平面視において等幅の半円弧形状を有しており、その径方向内側の円弧面はガス分割流路61aの径方向外側の円弧面に沿う。つまり、流路仕切部63aは半円弧状の板状形状を有しており、その厚み方向が径方向に沿う。このような流路仕切部63aの内周面がガス分割流路61aの径方向外側の円弧面となり、流路仕切部63aの外周面がガス分割流路61bの径方向内側の円弧面となる。ガス分割流路61bは基板Wの中央部よりも径方向外側の中間部と鉛直方向において対向する。 The gas split flow path 61b is formed radially outside the gas split flow path 61a. In the example of FIG. 5, the gas dividing flow path 61b has a semicircular arc shape having the same width in a plan view, and the arc surface on the inner side in the radial direction is along the arc surface on the outer side in the radial direction of the gas dividing flow path 61a. That is, the flow path partition portion 63a has a semicircular plate-like shape, and its thickness direction is along the radial direction. The inner peripheral surface of the flow path partition portion 63a is the radial outer arc surface of the gas dividing flow path 61a, and the outer peripheral surface of the flow path partition 63a is the radial inner arc surface of the gas dividing flow path 61b. .. The gas dividing flow path 61b faces the intermediate portion radially outside the central portion of the substrate W in the vertical direction.
 ガス分割流路61cはガス分割流路61bよりも径方向外側に形成される。図5の例では、ガス分割流路61cは径方向内側に円弧面を有し、当該円弧面がガス分割流路61bの径方向外側の円弧面に沿う。つまり、流路仕切部63bは半円弧状の板状形状を有しており、その厚み方向が径方向に沿う姿勢で設けられる。このような流路仕切部63bの内周面がガス分割流路61bの径方向外側の円弧面となり、流路仕切部63bの外周面がガス分割流路61cの径方向内側の円弧面となる。 The gas split flow path 61c is formed radially outside the gas split flow path 61b. In the example of FIG. 5, the gas dividing flow path 61c has an arc surface on the inner side in the radial direction, and the arc surface is along the arc surface on the outer side in the radial direction of the gas dividing flow path 61b. That is, the flow path partition portion 63b has a semicircular plate-like shape, and is provided in a posture in which the thickness direction thereof is along the radial direction. The inner peripheral surface of the flow path partition portion 63b is the radial outer arc surface of the gas dividing flow path 61b, and the outer peripheral surface of the flow path partition 63b is the radial inner arc surface of the gas dividing flow path 61c. ..
 図5の例では、ガス分割流路61cは、径方向内側の円弧面と、当該円弧面の両端から互いに反対側に広がる第1面と、当該第1面の互いに反対側の端部から、処理液ノズル4から遠ざかる方向に延びる第2面と、当該第2面の端部どうしを連結する弧状面とによって形成されている。図5の例では、ガス分割流路61cの弧状面は基板Wの周縁に沿う形状を有しており、当該円弧面の最も径方向外側の点は基板Wの周縁よりも径方向外側に位置している。つまり、回転軸線Q1から最も遠いガス分割流路61cの径方向外側の面の少なくとも一部は、基板Wの周縁よりも径方向外側に位置している。このガス分割流路61cは基板Wの中間部よりも径方向外側の周縁部と鉛直方向において対向する。 In the example of FIG. 5, the gas dividing flow path 61c is formed from an arc surface on the inner side in the radial direction, a first surface extending from both ends of the arc surface on opposite sides to each other, and ends on opposite sides of the first surface. It is formed by a second surface extending in a direction away from the treatment liquid nozzle 4 and an arcuate surface connecting the ends of the second surface. In the example of FIG. 5, the arcuate surface of the gas dividing flow path 61c has a shape along the peripheral edge of the substrate W, and the outermost point of the arcuate surface in the radial direction is located radially outside the peripheral edge of the substrate W. is doing. That is, at least a part of the radial outer surface of the gas dividing flow path 61c farthest from the rotation axis Q1 is located radially outer than the peripheral edge of the substrate W. The gas dividing flow path 61c faces the peripheral edge portion radially outside the intermediate portion of the substrate W in the vertical direction.
 図4から図6の例では、第1ユニット本体6の内部には、ガス分割流路61にガスを供給するためのガス供給流路62が、第1ガス流路60の上流側の一部として形成されている。ガス供給流路62の上流口621は例えば第1ユニット本体6の径方向外側の側面601に形成される。側面601は処理液ノズル4とは反対側の側面である(図4参照)。ガス供給流路62の下流口622は、対応するガス分割流路61に繋がる。ここでは、ガス分割流路61a~61cが形成されているので、ガス分割流路61a~61cにそれぞれ対応してガス供給流路62a~62cが形成される。 In the example of FIGS. 4 to 6, inside the main body 6 of the first unit, a gas supply flow path 62 for supplying gas to the gas split flow path 61 is a part of the upstream side of the first gas flow path 60. Is formed as. The upstream port 621 of the gas supply flow path 62 is formed, for example, on the radial outer side surface 601 of the first unit main body 6. The side surface 601 is a side surface opposite to the treatment liquid nozzle 4 (see FIG. 4). The downstream port 622 of the gas supply flow path 62 is connected to the corresponding gas split flow path 61. Here, since the gas dividing flow paths 61a to 61c are formed, the gas supply flow paths 62a to 62c are formed corresponding to the gas dividing flow paths 61a to 61c, respectively.
 ガス供給流路62cはガス分割流路61cにガスを供給するための流路である。図5の例では、複数(図では5つ)のガス供給流路62cが形成されている。複数のガス供給流路62cの下流口622cは平面視において互いに異なる位置で、ガス分割流路61cに繋がっている。より具体的には、3つのガス供給流路62cの下流口622cはガス分割流路61cの径方向外側の弧状面に形成され、2つのガス供給流路62cの下流口622cはそれぞれガス分割流路61cの互いに向かい合う第2面に形成されている。これによれば、複数の箇所からガス分割流路61cにガスを供給することができるので、より均一にガスをガス分割流路61cに供給することができる。 The gas supply flow path 62c is a flow path for supplying gas to the gas split flow path 61c. In the example of FIG. 5, a plurality of (five in the figure) gas supply channels 62c are formed. The downstream ports 622c of the plurality of gas supply flow paths 62c are connected to the gas split flow path 61c at different positions in a plan view. More specifically, the downstream ports 622c of the three gas supply flow paths 62c are formed on the radial outer arcuate surface of the gas split flow path 61c, and the downstream ports 622c of the two gas supply flow paths 62c are each gas split flow. It is formed on the second surface of the road 61c facing each other. According to this, since the gas can be supplied to the gas dividing flow path 61c from a plurality of locations, the gas can be supplied to the gas divided flow path 61c more uniformly.
 図5の例では、複数のガス供給流路62cの上流口621cは第1ユニット本体6の側面601において水平方向に沿って並んで形成される。各ガス供給流路62cは上流口621cから水平面内で延在して下流口622cに至る。図4および図5の例では、各ガス供給流路62cは、ガス分割流路61a~61cと同じ層(高さ位置)に形成されている。 In the example of FIG. 5, the upstream ports 621c of the plurality of gas supply flow paths 62c are formed side by side along the horizontal direction on the side surface 601 of the first unit main body 6. Each gas supply flow path 62c extends from the upstream port 621c in a horizontal plane to reach the downstream port 622c. In the examples of FIGS. 4 and 5, each gas supply flow path 62c is formed in the same layer (height position) as the gas split flow paths 61a to 61c.
 ガス供給流路62aはガス分割流路61aにガスを供給するための流路である。図4の例では、ガス供給流路62aは、ガス供給流路62cおよびガス分割流路61a~61cよりも鉛直上方の層(高さ位置)に形成される。ここでは、ガス供給流路62aの下流口622aはガス分割流路61aの鉛直上方の上面に形成されている(図6も参照)。また、ガス供給流路62aの上流口621aはガス供給流路62cの上流口621cよりも鉛直上方において第1ユニット本体6の側面601に形成される。図6の例では、ガス供給流路62aは上流口621aから水平面内で一直線状に延在し、ガス分割流路61aの上面に形成される下流口622aに至る。 The gas supply flow path 62a is a flow path for supplying gas to the gas split flow path 61a. In the example of FIG. 4, the gas supply flow path 62a is formed in a layer (height position) vertically above the gas supply flow path 62c and the gas split flow paths 61a to 61c. Here, the downstream port 622a of the gas supply flow path 62a is formed on the upper surface of the gas split flow path 61a vertically above (see also FIG. 6). Further, the upstream port 621a of the gas supply flow path 62a is formed on the side surface 601 of the first unit main body 6 vertically above the upstream port 621c of the gas supply flow path 62c. In the example of FIG. 6, the gas supply flow path 62a extends linearly in the horizontal plane from the upstream port 621a and reaches the downstream port 622a formed on the upper surface of the gas split flow path 61a.
 ガス供給流路62bはガス分割流路61bにガスを供給するための流路である。図6の例では、ガス供給流路62bはガス供給流路62aと同じ層(高さ位置)に形成される。図6の例では、複数(図では2つ)のガス供給流路62bが形成されており、複数のガス供給流路62bの下流口622bは平面視において互いに異なる位置で、ガス分割流路61bに繋がっている。ここでは、下流口622bはガス分割流路61bの上面に形成されている。例えば複数の下流口622bは、回転軸線Q1を中心とした仮想円弧上に形成されてもよい。これによれば、複数の箇所からガス分割流路61bにガスを供給することができるので、より均一にガスをガス分割流路61bに供給することができる。 The gas supply flow path 62b is a flow path for supplying gas to the gas split flow path 61b. In the example of FIG. 6, the gas supply flow path 62b is formed in the same layer (height position) as the gas supply flow path 62a. In the example of FIG. 6, a plurality of (two in the figure) gas supply flow paths 62b are formed, and the downstream ports 622b of the plurality of gas supply flow paths 62b are located at different positions in a plan view, and the gas split flow paths 61b. It is connected to. Here, the downstream port 622b is formed on the upper surface of the gas dividing flow path 61b. For example, the plurality of downstream ports 622b may be formed on a virtual arc centered on the rotation axis Q1. According to this, since the gas can be supplied to the gas dividing flow path 61b from a plurality of locations, the gas can be supplied to the gas divided flow path 61b more uniformly.
 ガス供給流路62bの上流口621bはガス供給流路62cの上流口621cよりも鉛直上方において第1ユニット本体6の側面601に形成される。図6の例では、ガス供給流路62bの上流口621bはガス供給流路62aの上流口621aの水平方向の両隣に形成されている。各ガス供給流路62bは上流口621bから水平面内で延在して下流口622bに至る。 The upstream port 621b of the gas supply flow path 62b is formed on the side surface 601 of the first unit main body 6 vertically above the upstream port 621c of the gas supply flow path 62c. In the example of FIG. 6, the upstream port 621b of the gas supply flow path 62b is formed on both sides of the upstream port 621a of the gas supply flow path 62a in the horizontal direction. Each gas supply flow path 62b extends from the upstream port 621b in a horizontal plane to reach the downstream port 622b.
 なお、回転軸線Q1に最も近いガス分割流路61aにも、必要に応じて、複数のガス供給流路62aが設けられてもよい。これによれば、平面視において複数の箇所からガス分割流路61aにガスを供給でき、より均一にガスをガス分割流路61aに供給することができる。 If necessary, a plurality of gas supply flow paths 62a may be provided in the gas division flow path 61a closest to the rotation axis Q1. According to this, the gas can be supplied to the gas dividing flow path 61a from a plurality of locations in a plan view, and the gas can be more uniformly supplied to the gas divided flow path 61a.
 <ガス供給部>
 ガス供給部50は、第1ユニット本体6の上流口621を通じて第1ガス流路60にガスを供給する。ガス供給部50は、ガス供給管51と、バルブ52とを含んでいる。ここでは、複数のガス供給流路62a~62cが形成されているので、ガス供給管51としてガス供給管51a~51cが設けられている。
<Gas supply unit>
The gas supply unit 50 supplies gas to the first gas flow path 60 through the upstream port 621 of the first unit main body 6. The gas supply unit 50 includes a gas supply pipe 51 and a valve 52. Here, since a plurality of gas supply channels 62a to 62c are formed, gas supply pipes 51a to 51c are provided as gas supply pipes 51.
 各ガス供給流路62cの上流口621cはガス供給管51cの下流端に接続される(図5参照)。各ガス供給管51cには、バルブ52としてのバルブ52cが介装される。バルブ52cは制御部90によって制御され、バルブ52cの開閉が切り替えられることにより、各ガス供給流路62cへのガスの供給および停止が切り替えられる。バルブ52cは、ガスの流量を調整可能なバルブであってもよく、あるいは、別途に流量調整バルブがガス供給管51cに設けられてもよい。 The upstream port 621c of each gas supply flow path 62c is connected to the downstream end of the gas supply pipe 51c (see FIG. 5). A valve 52c as a valve 52 is interposed in each gas supply pipe 51c. The valve 52c is controlled by the control unit 90, and by switching the opening and closing of the valve 52c, the supply and stop of gas to each gas supply flow path 62c are switched. The valve 52c may be a valve capable of adjusting the gas flow rate, or a flow rate adjusting valve may be separately provided in the gas supply pipe 51c.
 各ガス供給流路62bの上流口621bはガス供給管51bの下流端に接続される(図6参照)。各ガス供給管51bには、バルブ52としてのバルブ52bが介装される。バルブ52bは制御部90によって制御され、バルブ52bの開閉が切り替えられることにより、各ガス供給流路62bへのガスの供給および停止が切り替えられる。バルブ52bは、ガスの流量を調整可能なバルブであってもよく、あるいは、別途に流量調整バルブがガス供給管51bに設けられてもよい。 The upstream port 621b of each gas supply flow path 62b is connected to the downstream end of the gas supply pipe 51b (see FIG. 6). A valve 52b as a valve 52 is interposed in each gas supply pipe 51b. The valve 52b is controlled by the control unit 90, and by switching the opening and closing of the valve 52b, the supply and stop of gas to each gas supply flow path 62b are switched. The valve 52b may be a valve capable of adjusting the gas flow rate, or a flow rate adjusting valve may be separately provided in the gas supply pipe 51b.
 ガス供給流路62aの上流口621aはガス供給管51aの下流端に接続される(図6参照)。ガス供給管51aには、バルブ52としてのバルブ52aが介装される。バルブ52aは制御部90によって制御され、バルブ52aの開閉が切り替えられることにより、ガス供給流路62aへのガスの供給および停止が切り替えられる。バルブ52aは、ガスの流量を調整可能なバルブであってもよく、あるいは、別途に流量調整バルブがガス供給管51aに設けられてもよい。 The upstream port 621a of the gas supply flow path 62a is connected to the downstream end of the gas supply pipe 51a (see FIG. 6). A valve 52a as a valve 52 is interposed in the gas supply pipe 51a. The valve 52a is controlled by the control unit 90, and by switching the opening and closing of the valve 52a, the supply and stop of the gas to the gas supply flow path 62a are switched. The valve 52a may be a valve capable of adjusting the gas flow rate, or a flow rate adjusting valve may be separately provided in the gas supply pipe 51a.
 このようなガス供給部50によれば、ガス分割流路61a~61cを流れるガスの流量を個別に調整することができる。例えば、ガス供給部50はガスの流速が次の関係を満たすように、各ガス分割流路61a~61cにおけるガスの流量を調整することができる。例えばガス供給部50は、ガス分割流路61aにおけるガスの流速がガス分割流路61bにおけるガスの流速よりも高くなり、かつ、ガス分割流路61bにおけるガスの流速がガス分割流路61cにおけるガスの流速よりも高くなるように、各流量を調整することができる。つまり、回転軸線Q1に近いほどガスの流速を高くする。この作用効果については後に詳述する。 According to such a gas supply unit 50, the flow rate of the gas flowing through the gas split flow paths 61a to 61c can be individually adjusted. For example, the gas supply unit 50 can adjust the gas flow rate in each of the gas split flow paths 61a to 61c so that the gas flow rate satisfies the following relationship. For example, in the gas supply unit 50, the flow velocity of the gas in the gas dividing flow path 61a is higher than the flow rate of the gas in the gas dividing flow path 61b, and the flow rate of the gas in the gas dividing flow path 61b is the gas in the gas dividing flow path 61c. Each flow rate can be adjusted so that it is higher than the flow rate of. That is, the closer to the rotation axis Q1, the higher the flow velocity of the gas. This effect will be described in detail later.
 また上述の例では、各ガス供給管51cにはバルブ52c(流量調整バルブ)が設けられているので、ガス供給部50は複数のガス供給流路62cにおけるガスの流量を個別に調整することができる。よって、ガス分割流路61cに流入するガスの流量を複数の下流口622cごとに調整することができる。これにより、より均一にガスをガス分割流路61cに供給することができる。 Further, in the above example, since the valve 52c (flow rate adjusting valve) is provided in each gas supply pipe 51c, the gas supply unit 50 can individually adjust the gas flow rate in the plurality of gas supply flow paths 62c. can. Therefore, the flow rate of the gas flowing into the gas split flow path 61c can be adjusted for each of the plurality of downstream ports 622c. As a result, the gas can be more uniformly supplied to the gas split flow path 61c.
 また上述の例では、各ガス供給管51bにはバルブ52b(流量調整バルブ)が設けられているので、ガス供給部50は複数のガス供給流路62bにおけるガスの流量を個別に調整することもできる。よって、ガス分割流路61bに流入するガスの流量を複数の下流口622bごとに調整することができる。これにより、より均一にガスをガス分割流路61bに供給することができる。 Further, in the above example, since the valve 52b (flow rate adjusting valve) is provided in each gas supply pipe 51b, the gas supply unit 50 may individually adjust the gas flow rate in the plurality of gas supply flow paths 62b. can. Therefore, the flow rate of the gas flowing into the gas split flow path 61b can be adjusted for each of the plurality of downstream ports 622b. As a result, the gas can be more uniformly supplied to the gas split flow path 61b.
 なお、ガス分割流路61aに対応して複数のガス供給流路62aおよび複数のガス供給管51aが設けられ、各ガス供給管51aにバルブ52a(流量調整バルブ)が介装されてもよい。これにより、ガス分割流路61aに流入するガスの流量を複数の下流口622aごとに調整することができ、より均一にガスをガス分割流路61aに供給することができる。 A plurality of gas supply flow paths 62a and a plurality of gas supply pipes 51a may be provided corresponding to the gas split flow path 61a, and a valve 52a (flow rate adjusting valve) may be interposed in each gas supply pipe 51a. As a result, the flow rate of the gas flowing into the gas dividing flow path 61a can be adjusted for each of the plurality of downstream ports 622a, and the gas can be more uniformly supplied to the gas dividing flow path 61a.
 <第1板状体>
 図4の例では、第1ユニット本体6は第1板状体64をさらに含んでいる。第1板状体64は第1ガス流路60に設けられる。具体的には、第1板状体64は第1電極群7に対してガスの流れの上流側に設けられており、第1電極群7に対して鉛直方向において対向する位置に設けられている。第1板状体64は板状形状を有し、その厚み方向が鉛直方向に沿う姿勢で配置される。第1板状体64には複数の開口641が形成されている。複数の開口641は第1板状体64を鉛直方向に貫通しており、例えば平面視において円形状を有する。複数の開口641は平面視において例えば2次元的に配列され、より具体的な一例としてマトリクス状に配列される。第1ガス流路60を流れるガスは複数の開口641を通過して第1電極群7に向かって流れる。
<First plate-like body>
In the example of FIG. 4, the first unit main body 6 further includes the first plate-shaped body 64. The first plate-shaped body 64 is provided in the first gas flow path 60. Specifically, the first plate-shaped body 64 is provided on the upstream side of the gas flow with respect to the first electrode group 7, and is provided at a position facing the first electrode group 7 in the vertical direction. There is. The first plate-like body 64 has a plate-like shape, and is arranged in a posture in which the thickness direction thereof is along the vertical direction. A plurality of openings 641 are formed in the first plate-shaped body 64. The plurality of openings 641 penetrate the first plate-shaped body 64 in the vertical direction, and have, for example, a circular shape in a plan view. The plurality of openings 641 are arranged, for example, two-dimensionally in a plan view, and as a more specific example, they are arranged in a matrix. The gas flowing through the first gas flow path 60 passes through the plurality of openings 641 and flows toward the first electrode group 7.
 ここでは、第1板状体64として2つの第1板状体64a,64b(図4も参照)が設けられている。第1板状体64aはガス分割流路61a,61bに対応して設けられる。第1板状体64aは平面視において半円形状を有し、ガス分割流路61a,61bと鉛直方向において対向する。具体的は、流路仕切部63aの下端が第1板状体64aの上面に連結されており、第1板状体64aのうち流路仕切部63aよりも径方向内側の領域はガス分割流路61aと鉛直方向において対向し、流路仕切部63aよりも径方向外側の領域はガス分割流路61bと鉛直方向において対向する。ガス分割流路61a,61bを流れるガスは第1板状体64aの複数の開口641を通過して、第1電極群7に向かって流れる。 Here, two first plate-shaped bodies 64a and 64b (see also FIG. 4) are provided as the first plate-shaped body 64. The first plate-shaped body 64a is provided corresponding to the gas dividing flow paths 61a and 61b. The first plate-shaped body 64a has a semicircular shape in a plan view and faces the gas dividing flow paths 61a and 61b in the vertical direction. Specifically, the lower end of the flow path partition portion 63a is connected to the upper surface of the first plate-shaped body 64a, and the region of the first plate-shaped body 64a inside the flow path partition portion 63a in the radial direction is a gas split flow. It faces the path 61a in the vertical direction, and the region radially outside the flow path partition 63a faces the gas dividing flow path 61b in the vertical direction. The gas flowing through the gas dividing flow paths 61a and 61b passes through the plurality of openings 641 of the first plate-shaped body 64a and flows toward the first electrode group 7.
 第1板状体64bはガス分割流路61cに対応して設けられる。第1板状体64bは平面視においてガス分割流路61cと同様の形状を有し、ガス分割流路61cと鉛直方向において対向する。ガス分割流路61cを流れるガスは第1板状体64bの複数の開口641を通過して、第1電極群7に向かって流れる。 The first plate-shaped body 64b is provided corresponding to the gas dividing flow path 61c. The first plate-shaped body 64b has the same shape as the gas dividing flow path 61c in a plan view, and faces the gas dividing flow path 61c in the vertical direction. The gas flowing through the gas dividing flow path 61c passes through the plurality of openings 641 of the first plate-shaped body 64b and flows toward the first electrode group 7.
 このように、ガス分割流路61をそれぞれ流れるガスは、第1板状体64の複数の開口641を通過して第1電極群7に向かって流れる。よって、より均一にガスを第1電極群7に向かって流すことができる。第1板状体64と第1電極群7との間の距離が長くなると、ガスの均一性が低下し得るので、当該距離はガスの均一性を考慮して設定されるとよい。 In this way, the gas flowing through each of the gas dividing flow paths 61 passes through the plurality of openings 641 of the first plate-shaped body 64 and flows toward the first electrode group 7. Therefore, the gas can be flowed more uniformly toward the first electrode group 7. If the distance between the first plate-shaped body 64 and the first electrode group 7 becomes longer, the uniformity of the gas may decrease. Therefore, the distance may be set in consideration of the uniformity of the gas.
 なお、図5の例では、開口641の大きさが第1板状体64a,64bの間で相違している。この点については後に詳述する。 In the example of FIG. 5, the size of the opening 641 is different between the first plate-shaped bodies 64a and 64b. This point will be described in detail later.
 <処理液供給管>
 図4の例では、処理液ノズル4に接続された処理液供給管41は、ガス供給流路62aよりも鉛直上方の層(高さ位置)において第1ユニット本体6を貫通している。つまり、第1ユニット本体6は鉛直方向において複数層の流路構造を有している。具体的には、第1ユニット本体6の最上層には、処理液ノズル4に向かって処理液が流れる処理液流路(処理液供給管41)が形成される。第1ユニット本体6の中間層には、ガス分割流路61a,61bに向かってガスが流れるガス供給流路62a,62bが形成される。第1ユニット本体6の最下層には、ガス分割流路61a~61c、および、ガス分割流路61cに向かってガスが流れるガス供給流路62cが形成される。
<Treatment liquid supply pipe>
In the example of FIG. 4, the processing liquid supply pipe 41 connected to the processing liquid nozzle 4 penetrates the first unit main body 6 in the layer (height position) vertically above the gas supply flow path 62a. That is, the first unit main body 6 has a flow path structure having a plurality of layers in the vertical direction. Specifically, a treatment liquid flow path (treatment liquid supply pipe 41) through which the treatment liquid flows toward the treatment liquid nozzle 4 is formed on the uppermost layer of the first unit main body 6. Gas supply flow paths 62a and 62b through which gas flows toward the gas division flow paths 61a and 61b are formed in the intermediate layer of the first unit main body 6. A gas dividing flow path 61a to 61c and a gas supply flow path 62c through which gas flows toward the gas dividing flow path 61c are formed in the lowermost layer of the first unit main body 6.
 <第1電極群>
 第1電極群7は上述のように第1ガス流路60の下流側に設けられており、平面視において第1ガス流路60と重なる領域に設けられる。具体的には、第1電極群7は平面視においてガス分割流路61a~61cと重なる領域に設けられる。
<First electrode group>
The first electrode group 7 is provided on the downstream side of the first gas flow path 60 as described above, and is provided in a region overlapping the first gas flow path 60 in a plan view. Specifically, the first electrode group 7 is provided in a region overlapping the gas dividing flow paths 61a to 61c in a plan view.
 第1電極群7は複数の第1電極71を含む。複数の第1電極71は金属などの導電体によって形成され、平面視において間隔を空けて並んで設けられている(図7参照)。図7の例では、各第1電極71は、水平方向に長い長尺形状を有する。ここでいう長尺形状とは、第1電極71の長手方向のサイズがその長手方向に直交する水平方向のサイズよりも長い形状をいう。図7の例では、複数の第1電極71は、その長手方向が径方向に直交する姿勢で設けられる。 The first electrode group 7 includes a plurality of first electrodes 71. The plurality of first electrodes 71 are formed of a conductor such as metal, and are provided side by side at intervals in a plan view (see FIG. 7). In the example of FIG. 7, each first electrode 71 has a horizontally long elongated shape. The long shape referred to here means a shape in which the size of the first electrode 71 in the longitudinal direction is longer than the size in the horizontal direction orthogonal to the longitudinal direction thereof. In the example of FIG. 7, the plurality of first electrodes 71 are provided in a posture in which their longitudinal directions are orthogonal to the radial direction.
 複数の第1電極71はその長手方向に直交する水平な配列方向(ここでは径方向)において間隔を空けて並んで配置されている。図7の例では、複数の第1電極71として6つの第1電極71a~71fが示されている。第1電極71a~71fはその配列方向の一方側から他方側にこの順で配置されている。第1電極71a~71dは例えば同一平面内に配置される。 The plurality of first electrodes 71 are arranged side by side at intervals in the horizontal arrangement direction (here, the radial direction) orthogonal to the longitudinal direction thereof. In the example of FIG. 7, six first electrodes 71a to 71f are shown as the plurality of first electrodes 71. The first electrodes 71a to 71f are arranged in this order from one side to the other side in the arrangement direction. The first electrodes 71a to 71d are arranged, for example, in the same plane.
 複数の第1電極71のうち隣り合う二者には、互いに異なる極性の電位が印加される。図7の例では、配列方向の一方側から奇数番目に配置された第1電極71a,71c,71eは、長手方向の一方側の端部(基端)において連結部711aを介して互いに連結される。連結部711aは例えば板状形状を有し、例えば第1電極71a,71c,71eと同一材料で一体に構成される。連結部711aは引き出し配線を介して電源80の第1出力端81に接続される。 Potentials of different polarities are applied to two adjacent first electrodes 71. In the example of FIG. 7, the first electrodes 71a, 71c, 71e arranged odd-numbered from one side in the arrangement direction are connected to each other via the connecting portion 711a at one end (base end) in the longitudinal direction. To. The connecting portion 711a has, for example, a plate shape, and is integrally formed of, for example, the same material as the first electrodes 71a, 71c, 71e. The connecting portion 711a is connected to the first output end 81 of the power supply 80 via a lead-out wiring.
 図7の例では、配列方向の一方側から偶数番目に配置された第1電極71b,71d,71fはその長手方向の他方側の端部(基端)において連結部711bを介して互いに連結される。連結部711bは例えば板状形状を有し、例えば第1電極71b,71d,71fと同一材料で一体に構成される。このような第1電極群7において、複数の第1電極71は櫛歯状に配列されることとなる。連結部711bは引き出し配線を介して電源80の第2出力端82に接続される。 In the example of FIG. 7, the first electrodes 71b, 71d, 71f arranged even-numbered from one side in the arrangement direction are connected to each other via the connecting portion 711b at the other end (base end) in the longitudinal direction thereof. To. The connecting portion 711b has, for example, a plate shape, and is integrally formed of, for example, the same material as the first electrodes 71b, 71d, 71f. In such a first electrode group 7, a plurality of first electrodes 71 are arranged in a comb-teeth shape. The connecting portion 711b is connected to the second output end 82 of the power supply 80 via the lead-out wiring.
 電源80は例えばスイッチング電源回路(例えばインバータ回路)を含み、制御部90によって制御される。電源80は第1出力端81と第2出力端82との間に電圧(例えば高周波電圧)を印加する。これにより、複数の第1電極71の相互間の空間(電界空間)に電界が生じる。 The power supply 80 includes, for example, a switching power supply circuit (for example, an inverter circuit) and is controlled by the control unit 90. The power supply 80 applies a voltage (for example, a high frequency voltage) between the first output terminal 81 and the second output end 82. As a result, an electric field is generated in the space (electric field space) between the plurality of first electrodes 71.
 第1電極群7は第1ガス流路60の下流側に位置しているので、第1ガス流路60に沿って流れるガスは複数の第1電極71の相互間の電界空間を通過する。ガスが電界空間を通過する際に当該電界がガスに作用して、ガスの一部が電離してプラズマが発生する(プラズマ発生処理)。このプラズマの発生に際して種々の活性種が生じ、これらの活性種がガスの流れに沿って基板Wの主面に向かって移動する。 Since the first electrode group 7 is located on the downstream side of the first gas flow path 60, the gas flowing along the first gas flow path 60 passes through the electric field space between the plurality of first electrodes 71. When the gas passes through the electric field space, the electric field acts on the gas, and a part of the gas is ionized to generate plasma (plasma generation processing). Various active species are generated during the generation of this plasma, and these active species move toward the main surface of the substrate W along the gas flow.
 第1電極群7と基板Wとの間の距離は、第1電極群7と基板Wとの間でアーク放電が生じない程度の距離に設定される。第1電極群7と基板Wとの間の距離は例えば2mm程度以上かつ5mm程度以下に設定される。 The distance between the first electrode group 7 and the substrate W is set to such a distance that arc discharge does not occur between the first electrode group 7 and the substrate W. The distance between the first electrode group 7 and the substrate W is set to, for example, about 2 mm or more and about 5 mm or less.
 <誘電保護部材>
 図4および図7の例では、各第1電極71は誘電保護部材72によって覆われている。誘電保護部材72は例えば石英またはセラミックス等の絶縁体(誘電体)によって形成されており、第1電極71の表面を覆っている。例えば誘電保護部材72は第1電極71の表面に密着している。誘電保護部材72は、第1電極71の表面に形成された誘電膜であってもよい。この誘電保護部材72は第1電極71をプラズマから保護することができる。図4の例では、各第1電極71は断面円形状を有しており、各誘電保護部材72は断面円環形状を有している。
<Dielectric protection member>
In the examples of FIGS. 4 and 7, each first electrode 71 is covered with a dielectric protective member 72. The dielectric protection member 72 is formed of an insulator (dielectric) such as quartz or ceramics, and covers the surface of the first electrode 71. For example, the dielectric protection member 72 is in close contact with the surface of the first electrode 71. The dielectric protection member 72 may be a dielectric film formed on the surface of the first electrode 71. The dielectric protection member 72 can protect the first electrode 71 from plasma. In the example of FIG. 4, each first electrode 71 has a circular cross-sectional shape, and each dielectric protection member 72 has an annular cross-sectional shape.
 <誘電仕切部材>
 図4および図7の例では、隣り合う第1電極71の二者の間において、誘電仕切部材73が設けられている。具体的には、誘電仕切部材73は複数の第1電極71の全ての二者間に設けられている。誘電仕切部材73は、例えば、石英またはセラミックス等の絶縁体(誘電体)によって形成され、各第1電極71と間隔を空けて設けられている。誘電仕切部材73は例えば板状形状を有し、その厚み方向が第1電極71の配列方向(ここでは径方向)に沿う姿勢で設けられている。誘電仕切部材73の主面は、例えば第1電極71の長手方向に長い矩形形状を有する。
<Dielectric partition member>
In the examples of FIGS. 4 and 7, a dielectric partition member 73 is provided between two adjacent first electrodes 71. Specifically, the dielectric partition member 73 is provided between all two of the plurality of first electrodes 71. The dielectric partition member 73 is formed of, for example, an insulator (dielectric) such as quartz or ceramics, and is provided at a distance from each first electrode 71. The dielectric partition member 73 has, for example, a plate shape, and is provided in such a posture that the thickness direction thereof is along the arrangement direction (here, the radial direction) of the first electrodes 71. The main surface of the dielectric partition member 73 has, for example, a rectangular shape long in the longitudinal direction of the first electrode 71.
 図4の例では、誘電仕切部材73の上端は第1電極71の上端よりも上方に位置しており、誘電仕切部材73の下端は第1電極71の下端よりも下方に位置している。製造ばらつき等も考慮すると、例えば、複数の誘電仕切部材73のうち最も低い上端位置が、複数の第1電極71のうち最も高い上端位置よりも高く、複数の誘電仕切部材73のうち最も高い下端位置が、複数の第1電極71のうち最も低い下端位置よりも低い。 In the example of FIG. 4, the upper end of the dielectric partition member 73 is located above the upper end of the first electrode 71, and the lower end of the dielectric partition member 73 is located below the lower end of the first electrode 71. Considering manufacturing variations and the like, for example, the lowest upper end position of the plurality of dielectric partition members 73 is higher than the highest upper end position of the plurality of first electrodes 71, and the highest lower end of the plurality of dielectric partition members 73. The position is lower than the lowest lower end position among the plurality of first electrodes 71.
 このような誘電仕切部材73が設けられていれば、複数の第1電極71の相互間における絶縁距離を長くすることができる。これによれば、複数の第1電極71の電圧を大きくしてプラズマをより効率的に発生させつつも、複数の第1電極71の相互間におけるアーク放電の発生を抑制することができる。 If such a dielectric partition member 73 is provided, the insulation distance between the plurality of first electrodes 71 can be lengthened. According to this, it is possible to suppress the generation of arc discharge between the plurality of first electrodes 71 while increasing the voltage of the plurality of first electrodes 71 to generate plasma more efficiently.
 <枠体>
 図4および図7の例では、各誘電仕切部材73は枠体74に連結されている。枠体74も、例えば、石英またはセラミックス等の絶縁体(誘電体)によって形成される。枠体74は平面視において複数の誘電仕切部材73の周りを囲っており、各誘電仕切部材73の長手方向の両端が枠体74の内面に連結される。
<Frame body>
In the examples of FIGS. 4 and 7, each dielectric partition member 73 is connected to the frame body 74. The frame body 74 is also formed of an insulator (dielectric material) such as quartz or ceramics. The frame body 74 surrounds a plurality of dielectric partition members 73 in a plan view, and both ends of each dielectric partition member 73 in the longitudinal direction are connected to the inner surface of the frame body 74.
 枠体74は複数の第1電極71もほぼ囲っている。図示の例では、連結部711a,711bは枠体74よりも外側に位置しており、各第1電極71a,71c,71eはその長手方向の一方側で枠体74を貫通して連結部711aに連結され、各第1電極71b,71c,71fはその長手方向の他方側で枠体74を貫通して連結部711bに連結されている。言い換えれば、第1電極71の大部分が枠体74の内部に位置する。この枠体74は例えば第1ユニット本体6の下端に連結される。 The frame body 74 also substantially surrounds the plurality of first electrodes 71. In the illustrated example, the connecting portions 711a and 711b are located outside the frame body 74, and the first electrodes 71a, 71c and 71e penetrate the frame body 74 on one side in the longitudinal direction thereof and connect the connecting portions 711a. The first electrodes 71b, 71c, 71f are connected to the connecting portion 711b through the frame body 74 on the other side in the longitudinal direction thereof. In other words, most of the first electrode 71 is located inside the frame body 74. The frame body 74 is connected to, for example, the lower end of the first unit main body 6.
 ガス分割流路61a~61cからのガスは枠体74内において第1電極群7を通過する。具体的には、ガスは複数の第1電極71および複数の誘電仕切部材73の相互間の空間を下方に通過する。複数の第1電極71の相互間の電界空間に生じる電界がガスに作用すると、ガスの一部が電離してプラズマが発生する。このプラズマの発生に際して種々の活性種が発生する。これらの活性種はガスの流れに沿って下方に移動し、基板Wの主面に向かって流出する。 The gas from the gas split flow paths 61a to 61c passes through the first electrode group 7 in the frame body 74. Specifically, the gas passes downward through the space between the plurality of first electrodes 71 and the plurality of dielectric partition members 73. When an electric field generated in the electric field space between the plurality of first electrodes 71 acts on the gas, a part of the gas is ionized to generate plasma. Various active species are generated when this plasma is generated. These active species move downward along the gas flow and flow out towards the main surface of the substrate W.
 以上のように、ノズルヘッド3は処理液ノズル4および第1プラズマ発生ユニット5によって、処理液およびガスを基板Wの主面に供給することができる。 As described above, the nozzle head 3 can supply the treatment liquid and the gas to the main surface of the substrate W by the treatment liquid nozzle 4 and the first plasma generation unit 5.
 <基板処理装置の動作>
 次に基板処理装置1の動作の一例について説明する。図8は、基板処理装置1の動作の一例を示すフローチャートである。まず、未処理の基板Wが主搬送ロボット120によって基板処理装置1に搬入される(ステップS1)。ここでは、基板Wの上面にはレジストが形成されている。基板処理装置1の基板保持部2は、搬入された基板Wを保持する。次に基板保持部2は基板Wを回転軸線Q1のまわりで回転させ始める(ステップS2)。
<Operation of board processing device>
Next, an example of the operation of the substrate processing apparatus 1 will be described. FIG. 8 is a flowchart showing an example of the operation of the substrate processing device 1. First, the unprocessed substrate W is carried into the substrate processing apparatus 1 by the main transfer robot 120 (step S1). Here, a resist is formed on the upper surface of the substrate W. The board holding portion 2 of the board processing device 1 holds the carried-in board W. Next, the substrate holding portion 2 starts rotating the substrate W around the rotation axis Q1 (step S2).
 次に薬液処理が行われる(ステップS3)。具体的には、まずヘッド移動機構30がノズルヘッド3を待機位置から処理位置へと移動させる。次にバルブ42,52a~52cが開き、電源80が第1電極71に電圧を印加する。 Next, chemical treatment is performed (step S3). Specifically, first, the head moving mechanism 30 moves the nozzle head 3 from the standby position to the processing position. Next, the valves 42, 52a to 52c are opened, and the power supply 80 applies a voltage to the first electrode 71.
 バルブ42が開くことにより、処理液ノズル4の吐出口4aから処理液(ここでは硫酸等の薬液)が基板Wの上面に向かって吐出される。ここでは、薬液は基板Wの中央部に向かって供給される。回転中の基板Wの上面に着液した薬液は、基板Wの上面に沿って径方向外側に流れ、基板Wの周縁から外側に飛散する。これにより、薬液が基板Wの上面の全面に作用する。 When the valve 42 opens, the treatment liquid (here, a chemical liquid such as sulfuric acid) is discharged from the discharge port 4a of the treatment liquid nozzle 4 toward the upper surface of the substrate W. Here, the chemical solution is supplied toward the central portion of the substrate W. The chemical solution deposited on the upper surface of the rotating substrate W flows radially outward along the upper surface of the substrate W and scatters outward from the peripheral edge of the substrate W. As a result, the chemical solution acts on the entire upper surface of the substrate W.
 バルブ52a~52cが開くことにより、ガス供給部50から上流口621a~621cを経由して第1ガス流路60にガス(ここでは酸素含有ガスおよび希ガスの混合ガス)が供給される。ガスはガス供給流路62a~62cを経由してガス分割流路61a~61cに流入する。 When the valves 52a to 52c are opened, gas (here, a mixed gas of oxygen-containing gas and rare gas) is supplied from the gas supply unit 50 to the first gas flow path 60 via the upstream ports 621a to 621c. The gas flows into the gas split flow paths 61a to 61c via the gas supply flow paths 62a to 62c.
 ここでは、回転軸線Q1から最も遠いガス分割流路61cには第1流量でガスが供給され、次に回転軸線Q1から遠いガス分割流路61bには、第1流量よりも大きい第2流量でガスが供給され、回転軸線Q1に最も近いガス分割流路61aには、第2流量よりも大きい第3流量でガスが供給される。 Here, gas is supplied to the gas dividing flow path 61c farthest from the rotating axis Q1 at the first flow rate, and then to the gas dividing flow path 61b farthest from the rotating axis Q1 at a second flow rate larger than the first flow rate. Gas is supplied, and gas is supplied to the gas dividing flow path 61a closest to the rotation axis Q1 at a third flow rate larger than the second flow rate.
 ガス分割流路61a,61bを下方に向かって流れるガスは第1板状体64aの複数の開口641を通過する。これにより、ガスが整流され、より均一に第1電極群7に向かって流れる。同様に、ガス分割流路60cを下方に向かって流れるガスは第1板状体64bの複数の開口641を通過する。これにより、ガスが整流され、より均一に第1電極群7に向かって流れる。 The gas flowing downward through the gas split flow paths 61a and 61b passes through the plurality of openings 641 of the first plate-shaped body 64a. As a result, the gas is rectified and flows more uniformly toward the first electrode group 7. Similarly, the gas flowing downward in the gas dividing flow path 60c passes through the plurality of openings 641 of the first plate-shaped body 64b. As a result, the gas is rectified and flows more uniformly toward the first electrode group 7.
 電源80は第1電極71に電圧を印加するので、第1電極群7において第1電極71の相互間の電界空間には電界が生じている。ガスが電界空間を通過する際に、ガスに電界が作用し、ガスの一部が電離してプラズマが発生する。このプラズマの発生に際して、電子衝突反応による分子および原子の解離および励起などの諸反応が生じ、反応性の高い中性ラジカル等の種々の活性種(例えば酸素ラジカル)が発生する。例えば、アルゴンガスが電界によってプラズマ化し、当該プラズマが酸素含有ガスに作用して酸素ラジカルを生成する。これらの活性種(例えば酸素ラジカル)はガスの流れに沿って移動し、基板Wの上面に向かって流出する。 Since the power supply 80 applies a voltage to the first electrode 71, an electric field is generated in the electric field space between the first electrodes 71 in the first electrode group 7. When the gas passes through the electric field space, an electric field acts on the gas, and a part of the gas is ionized to generate plasma. Upon generation of this plasma, various reactions such as dissociation and excitation of molecules and atoms due to electron collision reaction occur, and various active species (for example, oxygen radicals) such as highly reactive neutral radicals are generated. For example, argon gas is turned into plasma by an electric field, and the plasma acts on an oxygen-containing gas to generate oxygen radicals. These active species (eg, oxygen radicals) move along the flow of gas and flow out towards the top surface of the substrate W.
 活性種は、基板Wの上面の薬液に作用する。例えば、酸素ラジカルが基板Wの上面の硫酸に作用すると、酸素ラジカルの酸化力により、ペルオキソ一硫酸(カロ酸)が生成される。ここで、硫酸を含有する処理液を用いる場合、硫酸の濃度は、硫酸の濃度が高いほど高い剥離力が期待され、94~98%の範囲が好ましく、98%に近いほどより好ましい。カロ酸は基板Wの上面のレジストを効果的に除去することができる。換言すると、活性種が薬液に作用することにより、薬液の処理能力が向上する。 The active species acts on the chemical solution on the upper surface of the substrate W. For example, when an oxygen radical acts on the sulfuric acid on the upper surface of the substrate W, peroxomonosulfuric acid (caroic acid) is produced by the oxidizing power of the oxygen radical. Here, when a treatment liquid containing sulfuric acid is used, the concentration of sulfuric acid is expected to be higher as the concentration of sulfuric acid is higher, preferably in the range of 94 to 98%, and more preferably closer to 98%. Caroic acid can effectively remove the resist on the upper surface of the substrate W. In other words, the action of the active species on the drug solution improves the processing capacity of the drug solution.
 この基板処理装置1では、カロ酸の生成に過酸化水素水を用いていない。よって、硫酸を回収して当該硫酸を再利用する場合に、より高い濃度で硫酸を回収することができる。 In this substrate processing apparatus 1, hydrogen peroxide solution is not used for the production of caroic acid. Therefore, when the sulfuric acid is recovered and the sulfuric acid is reused, the sulfuric acid can be recovered at a higher concentration.
 また、活性種は基板Wの主面上の薬液のみならず、基板Wにも直接に作用し得る。例えば酸素ラジカルが基板Wのレジストに直接に作用することによっても、酸素ラジカルの酸化力により、レジストを除去することができる。 Further, the active species can act directly not only on the chemical solution on the main surface of the substrate W but also on the substrate W. For example, even if the oxygen radical acts directly on the resist of the substrate W, the resist can be removed by the oxidizing power of the oxygen radical.
 また上述の例では、処理液ノズル4は鉛直方向から傾斜した斜め方向に沿って、基板Wの中央部に向かって薬液を吐出する。よって、基板Wの中央部に着液した薬液はそのまま径方向外側に流れる。これによれば、薬液が鉛直方向に沿って吐出される場合に比べて、基板Wの上面に形成される薬液の液膜を薄くすることができる。これにより、基板Wの上面に近い位置で活性種を薬液に作用させることができる。よって、処理能力が向上した薬液が基板Wに作用しやすい。また、活性種が基板Wの主面に直接作用しやすくもなる。 Further, in the above example, the treatment liquid nozzle 4 discharges the chemical liquid toward the central portion of the substrate W along an oblique direction inclined from the vertical direction. Therefore, the chemical solution deposited on the central portion of the substrate W flows outward in the radial direction as it is. According to this, the liquid film of the chemical liquid formed on the upper surface of the substrate W can be made thinner than in the case where the chemical liquid is discharged along the vertical direction. As a result, the active species can act on the chemical solution at a position close to the upper surface of the substrate W. Therefore, the chemical solution having improved processing capacity tends to act on the substrate W. In addition, the active species can easily act directly on the main surface of the substrate W.
 薬液および活性種により基板Wのレジストが十分に除去されると、バルブ42,52a~52cが閉じ、電源80が電圧の出力を停止する。これにより、処理液ノズル4からの薬液の吐出が停止し、第1プラズマ発生ユニット5からのガスの流出も停止する。これによって、実質的な薬液処理(ここではレジスト除去処理)が終了する。 When the resist on the substrate W is sufficiently removed by the chemical solution and the active species, the valves 42, 52a to 52c are closed, and the power supply 80 stops the voltage output. As a result, the discharge of the chemical liquid from the treatment liquid nozzle 4 is stopped, and the outflow of gas from the first plasma generation unit 5 is also stopped. As a result, the substantial chemical solution treatment (here, the resist removal treatment) is completed.
 次にリンス処理が行われる(ステップS4)。具体的には、基板処理装置1は例えば処理液ノズル4から基板Wの上面に向かってリンス液を吐出させる。これにより、基板Wの上面の薬液がリンス液に置換される。 Next, the rinsing process is performed (step S4). Specifically, the substrate processing apparatus 1 discharges the rinse liquid from, for example, the processing liquid nozzle 4 toward the upper surface of the substrate W. As a result, the chemical solution on the upper surface of the substrate W is replaced with the rinse solution.
 基板Wの上面の薬液が十分にリンス液に置換されると、処理液ノズル4からのリンス液の吐出を停止し、ヘッド移動機構30はノズルヘッド3を待機位置へ移動させる。 When the chemical solution on the upper surface of the substrate W is sufficiently replaced with the rinse solution, the discharge of the rinse solution from the treatment solution nozzle 4 is stopped, and the head moving mechanism 30 moves the nozzle head 3 to the standby position.
 次に乾燥処理が行われる(ステップS5)。例えば基板保持部2は基板Wの回転速度を増加させる。これにより、基板Wの上面のリンス液が基板Wの周縁から振り切られて、基板Wが乾燥する(いわゆるスピン乾燥)。 Next, a drying process is performed (step S5). For example, the substrate holding portion 2 increases the rotation speed of the substrate W. As a result, the rinsing liquid on the upper surface of the substrate W is shaken off from the peripheral edge of the substrate W, and the substrate W dries (so-called spin drying).
 基板Wが乾燥すると、基板保持部2は基板Wの回転を終了させる(ステップS6)。次に処理済みの基板Wが主搬送ロボット120によって基板処理装置1から搬出される(ステップS7)。 When the substrate W dries, the substrate holding portion 2 ends the rotation of the substrate W (step S6). Next, the processed substrate W is carried out from the substrate processing apparatus 1 by the main transfer robot 120 (step S7).
 <実施の形態の効果>
 この基板処理装置1においては、処理液ノズル4および第1プラズマ発生ユニット5が平面視において互いに隣り合って配置されている。そして、処理液ノズル4から吐出されて基板Wの主面で着液した処理液は基板Wの主面上を流れるので、第1プラズマ発生ユニット5がガスを基板Wの主面に向かって供給することにより、当該活性種を基板Wの主面上の処理液に作用させることができる。よって、基板Wの主面において処理液の処理能力を向上させることができる。したがって、処理能力が向上した状態で処理液が基板Wの主面に作用し、より短時間で基板Wを処理することができる。
<Effect of embodiment>
In the substrate processing apparatus 1, the processing liquid nozzle 4 and the first plasma generation unit 5 are arranged adjacent to each other in a plan view. Then, since the processing liquid discharged from the processing liquid nozzle 4 and landing on the main surface of the substrate W flows on the main surface of the substrate W, the first plasma generation unit 5 supplies gas toward the main surface of the substrate W. By doing so, the active species can act on the treatment liquid on the main surface of the substrate W. Therefore, the processing capacity of the processing liquid can be improved on the main surface of the substrate W. Therefore, the processing liquid acts on the main surface of the substrate W in a state where the processing capacity is improved, and the substrate W can be processed in a shorter time.
 しかも、基板処理装置1では、第1電極群7の複数の第1電極71は平面視において並んで配列されている。例えば、水平方向に長い長尺形状を有する複数の第1電極71がその短手方向(配列方向)において互いに間隔を空けて並んで配列されている。これによれば、第1電極群7の平面視における面積を容易に大きくすることができる。したがって、平面視において広い範囲でプラズマを発生させることができ、ひいては、活性種を基板Wの主面に対して広い範囲で供給することができる。よって、より均一に基板Wを処理することができる。 Moreover, in the substrate processing apparatus 1, the plurality of first electrodes 71 of the first electrode group 7 are arranged side by side in a plan view. For example, a plurality of first electrodes 71 having a long horizontal shape are arranged side by side at intervals in the lateral direction (arrangement direction). According to this, the area of the first electrode group 7 in a plan view can be easily increased. Therefore, plasma can be generated in a wide range in a plan view, and the active species can be supplied in a wide range to the main surface of the substrate W. Therefore, the substrate W can be processed more uniformly.
 また上述の例では、処理液ノズル4および第1プラズマ発生ユニット5が互いに一体に連結されている。よって、ヘッド移動機構30は処理液ノズル4および第1プラズマ発生ユニット5を一体に移動させることができる。これによれば、簡易な構成で処理液ノズル4および第1プラズマ発生ユニット5を移動させることができる。すなわち、本実施の形態とは異なって、処理液ノズル4および第1プラズマ発生ユニット5が互いに連結されていない場合、これらを個別に移動させる移動機構が必要となる。これに対して本実施の形態では、単一のヘッド移動機構30で足りる。よって、簡易な構成で処理液ノズル4および第1プラズマ発生ユニット5を移動させることができ、装置サイズおよび製造コストを低減できる。 Further, in the above example, the treatment liquid nozzle 4 and the first plasma generation unit 5 are integrally connected to each other. Therefore, the head moving mechanism 30 can move the processing liquid nozzle 4 and the first plasma generation unit 5 integrally. According to this, the processing liquid nozzle 4 and the first plasma generation unit 5 can be moved with a simple configuration. That is, unlike the present embodiment, when the treatment liquid nozzle 4 and the first plasma generation unit 5 are not connected to each other, a moving mechanism for individually moving them is required. On the other hand, in the present embodiment, a single head moving mechanism 30 is sufficient. Therefore, the processing liquid nozzle 4 and the first plasma generation unit 5 can be moved with a simple configuration, and the device size and the manufacturing cost can be reduced.
 また上述の例では、複数の開口641を有する第1板状体64が第1電極群7に対して上流側に設けられている。これによれば、複数の開口641を通過したガスがより均一に第1電極群7を通過する。よって、より均一にガスが電界空間を通過し、より均一にプラズマが発生する。ひいては、より均一に活性種を生じさせて当該活性種をより均一に基板Wの主面に供給できる。 Further, in the above example, the first plate-shaped body 64 having a plurality of openings 641 is provided on the upstream side with respect to the first electrode group 7. According to this, the gas that has passed through the plurality of openings 641 passes through the first electrode group 7 more uniformly. Therefore, the gas passes through the electric field space more uniformly, and plasma is generated more uniformly. As a result, the active species can be generated more uniformly and the active species can be more uniformly supplied to the main surface of the substrate W.
 また上述の例では、第1ガス流路60を径方向において複数のガス分割流路61に仕切る流路仕切部63が設けられている。これによれば、ガスの流量をガス分割流路61ごとに調整することが可能である。例えば、回転軸線Q1に近いガス分割流路61におけるガスの流速が、回転軸線Q1から遠いガス分割流路61におけるガスの流速よりも高くなるように、各ガス分割流路61における流量を調整することができる。より具体的には、回転軸線Q1に最も近いガス分割流路61aにおけるガスの流速が最も高く、回転軸線Q1に次に近いガス分割流路61bにおけるガスの流速が次に高く、回転軸線Q1から最も遠いガス分割流路61cにおけるガスの流速が最も低くなるように、各ガス分割流路61a~61cの流量を調整できる。 Further, in the above example, a flow path partition portion 63 for partitioning the first gas flow path 60 into a plurality of gas split flow paths 61 in the radial direction is provided. According to this, it is possible to adjust the flow rate of the gas for each gas split flow path 61. For example, the flow rate in each gas dividing flow path 61 is adjusted so that the gas flow velocity in the gas dividing flow path 61 near the rotating axis Q1 is higher than the gas flow rate in the gas dividing flow path 61 far from the rotating axis Q1. be able to. More specifically, the gas flow velocity in the gas dividing flow path 61a closest to the rotation axis Q1 is the highest, and the gas flow velocity in the gas division flow path 61b next to the rotation axis Q1 is the next highest, from the rotation axis Q1. The flow rate of each gas dividing flow path 61a to 61c can be adjusted so that the flow rate of the gas in the farthest gas dividing flow path 61c is the lowest.
 ところで、酸素ラジカル等の活性種は短時間で失活することが知られている。よって、ガスの流速が低いほど、活性種は基板Wの主面に到達する前に失活する可能性が高い。上述のようにガス分割流路61aのガスの流速が高ければ、回転軸線Q1に近い位置でより多くの活性種を基板Wの上面に到達させることができる。一方、ガス分割流路61b,61cのガスの流速は比較的に低いので、回転軸線Q1から遠い位置では、より少ない活性種が基板Wの上面に到達する。 By the way, it is known that active species such as oxygen radicals are inactivated in a short time. Therefore, the lower the flow rate of the gas, the more likely it is that the active species will be inactivated before reaching the main surface of the substrate W. If the flow velocity of the gas in the gas dividing flow path 61a is high as described above, more active species can reach the upper surface of the substrate W at a position close to the rotation axis Q1. On the other hand, since the flow velocity of the gas in the gas split flow paths 61b and 61c is relatively low, less active species reach the upper surface of the substrate W at a position far from the rotation axis Q1.
 そして、基板Wの中央部に着液した処理液は基板Wの回転に伴って径方向外側、つまり回転軸線Q1から離れる方向に流れる。よって、処理液には、まずガス分割流路61aからのガスが供給されてより多くの活性種が供給される。そして、処理液が基板Wの主面を径方向外側に流れると、基板Wの中央部よりも径方向外側の中間部において、ガス分割流路61bからのガスが供給される。処理液がさらに径方向外側に流れると、基板Wの中間部よりも径方向外側の周縁部において、ガス分割流路61cからのガスが供給される。これによれば、処理液が径方向外側に流れるほど、処理液に供給される活性種の量は低下する。 Then, the processing liquid landed on the central portion of the substrate W flows outward in the radial direction, that is, in the direction away from the rotation axis Q1 as the substrate W rotates. Therefore, gas from the gas split flow path 61a is first supplied to the treatment liquid, and more active species are supplied. Then, when the treatment liquid flows radially outward on the main surface of the substrate W, gas from the gas dividing flow path 61b is supplied at the intermediate portion radially outer from the central portion of the substrate W. When the treatment liquid further flows outward in the radial direction, gas from the gas dividing flow path 61c is supplied at the peripheral edge portion radially outer than the intermediate portion of the substrate W. According to this, as the treatment liquid flows outward in the radial direction, the amount of active species supplied to the treatment liquid decreases.
 さて、基板Wの中央部において処理液に活性種が作用して生成される有効成分(ここではカロ酸)の一部は、基板Wの中央部において主面に作用して消費されるものの、残りの一部は処理液とともに基板Wを径方向外側に流れる。よって、基板Wの中央部よりも径方向外側の中間部では、基板Wの中央部で供給された活性種による有効成分が残り得る。よって、もしこの基板Wの中間部においても中央部と同程度の量で活性種を処理液に供給すると、中間部での処理液中の有効成分が中央部での処理液中の有効成分よりも多くなり、基板Wに対する処理の均一性が低下し得る。同様に、基板Wの周縁部においても、中間部と同程度の量で活性種を処理液に供給すると、周縁部での処理液中の有効成分が中間部での処理液中の有効成分よりも多くなり、基板Wに対する処理の均一性が低下し得る。 By the way, a part of the active ingredient (here, caroic acid) produced by the action of the active species on the treatment liquid in the central portion of the substrate W acts on the main surface in the central portion of the substrate W and is consumed. The remaining part flows radially outward on the substrate W together with the treatment liquid. Therefore, in the intermediate portion radially outside the central portion of the substrate W, the active ingredient due to the active species supplied in the central portion of the substrate W may remain. Therefore, if the active species is supplied to the treatment liquid in the same amount as the central portion even in the intermediate portion of the substrate W, the active ingredient in the treatment liquid in the intermediate portion becomes larger than the active ingredient in the treatment liquid in the central portion. The number may increase, and the uniformity of processing with respect to the substrate W may decrease. Similarly, in the peripheral portion of the substrate W, when the active species is supplied to the treatment liquid in the same amount as the intermediate portion, the active ingredient in the treatment liquid in the peripheral portion becomes larger than the active ingredient in the treatment liquid in the intermediate portion. The number may increase, and the uniformity of processing with respect to the substrate W may decrease.
 これに対して、上述の例では、処理液が基板Wの径方向外側に流れるにつれて、処理液に供給される活性種が少なくなる。よって、基板Wの処理の均一性をさらに高めることができる。しかも、全てのガス分割流路61に大きな流量でガスを供給する場合に比して、ガスの消費量を低減させることができる。 On the other hand, in the above example, as the treatment liquid flows outward in the radial direction of the substrate W, the number of active species supplied to the treatment liquid decreases. Therefore, the processing uniformity of the substrate W can be further improved. Moreover, the gas consumption can be reduced as compared with the case where the gas is supplied to all the gas split flow paths 61 at a large flow rate.
 また上述の例では、第1電極71の相互間に誘電仕切部材73が設けられている。これによれば、第1電極71に印加する電圧を大きくしてプラズマの発生を促進させつつも、第1電極71の相互間におけるアーク放電を抑制することができる。 Further, in the above example, the dielectric partition member 73 is provided between the first electrodes 71. According to this, it is possible to suppress the arc discharge between the first electrodes 71 while increasing the voltage applied to the first electrode 71 to promote the generation of plasma.
 また上述の例では、第1プラズマ発生ユニット5の第1ガス流路60のうち第1電極群7の直前部分の径方向の幅は基板Wの半径以上であり、第1電極群7の周囲の電界空間の全体的な径方向における幅も基板Wの半径以上であり、枠体74の径方向の幅も基板Wの半径以上である。このような第1プラズマ発生ユニット5は基板Wの中央部から周縁部を含む基板Wの半径以上の領域にガスを供給する。よって、第1プラズマ発生ユニット5が回転中の基板Wの主面にガスを供給することで、基板Wの主面の全面に活性種を供給することができる。 Further, in the above example, the radial width of the portion immediately before the first electrode group 7 in the first gas flow path 60 of the first plasma generation unit 5 is equal to or larger than the radius of the substrate W, and is around the first electrode group 7. The width of the electric field space in the radial direction is also equal to or greater than the radius of the substrate W, and the radial width of the frame body 74 is also equal to or greater than the radius of the substrate W. Such a first plasma generation unit 5 supplies gas from the central portion of the substrate W to a region equal to or larger than the radius of the substrate W including the peripheral portion. Therefore, by supplying the gas to the main surface of the rotating substrate W by the first plasma generation unit 5, the active species can be supplied to the entire surface of the main surface of the substrate W.
 <第1電極群>
 図9は、第1電極群7の構成の他の一例を概略的に示す断面図である。図9の例では、第1電極71は断面矩形形状を有している。図9の例では、第1電極71の鉛直方向の幅(つまり高さ)は、第1電極71の配列方向(ここでは径方向)の幅よりも広い。ガスは第1電極71の相互間の電界空間を鉛直方向に沿って流れるので、第1電極71の鉛直方向の幅が広ければ、より長い期間に亘ってガスに電界を作用させることができる。これにより、鉛直方向においてより広い範囲でプラズマを発生させることができ、より多くの活性種を発生させることができる。
<First electrode group>
FIG. 9 is a cross-sectional view schematically showing another example of the configuration of the first electrode group 7. In the example of FIG. 9, the first electrode 71 has a rectangular cross-sectional shape. In the example of FIG. 9, the vertical width (that is, the height) of the first electrode 71 is wider than the width in the arrangement direction (here, the radial direction) of the first electrode 71. Since the gas flows along the vertical direction in the electric field space between the first electrodes 71, if the width of the first electrode 71 in the vertical direction is wide, the electric field can be applied to the gas for a longer period of time. As a result, plasma can be generated in a wider range in the vertical direction, and more active species can be generated.
 図9の例では、誘電保護部材72も断面矩形形状を有している。図9の例では、誘電保護部材72の鉛直方向における幅(つまり高さ)も配列方向における幅よりも広い。これによれば、誘電保護部材72の相互間を鉛直方向に沿って流れるガスの流れを整えることができる。 In the example of FIG. 9, the dielectric protection member 72 also has a rectangular cross section. In the example of FIG. 9, the width (that is, the height) of the dielectric protection member 72 in the vertical direction is also wider than the width in the arrangement direction. According to this, it is possible to arrange the flow of gas flowing along the vertical direction between the dielectric protection members 72.
 図9の例では、誘電仕切部材73が設けられていない。この場合には、誘電保護部材72の配列方向における幅を比較的に広く設定することにより、第1電極71の相互間のアーク放電を抑制することができる。 In the example of FIG. 9, the dielectric partition member 73 is not provided. In this case, by setting the width of the dielectric protection members 72 in the arrangement direction to be relatively wide, it is possible to suppress the arc discharge between the first electrodes 71.
 <開口の面積>
 図5の例では、第1板状体64の複数の開口641の面積は回転軸線Q1からの距離に応じて相違している。例えば、回転軸線Q1に近い開口641の面積が、回転軸線Q1から遠い開口641の面積よりも小さくなっている。より具体的には、第1板状体64aは第1板状体64bよりも回転軸線Q1に近い位置に設けられており、第1板状体64aに形成された開口641の面積は、第1板状体64bに形成された開口641の面積よりも小さい。
<Area of opening>
In the example of FIG. 5, the areas of the plurality of openings 641 of the first plate-shaped body 64 differ depending on the distance from the rotation axis Q1. For example, the area of the opening 641 near the rotation axis Q1 is smaller than the area of the opening 641 far from the rotation axis Q1. More specifically, the first plate-shaped body 64a is provided at a position closer to the rotation axis Q1 than the first plate-shaped body 64b, and the area of the opening 641 formed in the first plate-shaped body 64a is the first. It is smaller than the area of the opening 641 formed in one plate-shaped body 64b.
 ここで、第1板状体64aの一つの開口641(以下、第1開口641と呼ぶ)と、第1板状体64bの一つの開口641(以下、第2開口641と呼ぶ)とに着目すると、次のように説明することができる。第1開口641と回転軸線Q1との間の距離は、第2開口641と回転軸線Q1との間の距離よりも短く、第1開口641の面積は第2開口641の面積よりも小さい。 Here, attention is paid to one opening 641 of the first plate-shaped body 64a (hereinafter referred to as the first opening 641) and one opening 641 of the first plate-shaped body 64b (hereinafter referred to as the second opening 641). Then, it can be explained as follows. The distance between the first opening 641 and the rotation axis Q1 is shorter than the distance between the second opening 641 and the rotation axis Q1, and the area of the first opening 641 is smaller than the area of the second opening 641.
 これによれば、回転軸線Q1に近い位置で、ガスの流速を高めることができる。よって、基板Wの中央部でより多くの活性種を処理液に供給することができ、基板Wの処理の均一性を向上させることができる。 According to this, the flow velocity of the gas can be increased at a position close to the rotation axis Q1. Therefore, more active species can be supplied to the treatment liquid at the central portion of the substrate W, and the treatment uniformity of the substrate W can be improved.
 <第2の実施の形態>
 第2の実施の形態にかかる基板処理装置1は、ノズルヘッド3の第1ユニット本体6の構成を除いて、第1の実施の形態にかかる基板処理装置1と同様の構成を有している。図10は、第2の実施の形態にかかるノズルヘッド3の構成の一例を概略的に示す図である。
<Second embodiment>
The substrate processing apparatus 1 according to the second embodiment has the same configuration as the substrate processing apparatus 1 according to the first embodiment, except for the configuration of the first unit main body 6 of the nozzle head 3. .. FIG. 10 is a diagram schematically showing an example of the configuration of the nozzle head 3 according to the second embodiment.
 第2の実施の形態では、第1ユニット本体6は第1電極群7を収容している。第1電極群7は第1ガス流路60内の下流側において、第1ユニット本体6の内部に設けられる。 In the second embodiment, the first unit main body 6 accommodates the first electrode group 7. The first electrode group 7 is provided inside the first unit main body 6 on the downstream side in the first gas flow path 60.
 第1ユニット本体6はシャッタ65をさらに含んでいる。シャッタ65は第1電極群7よりも下流側において第1ユニット本体6の下端部に設けられている。シャッタ65は制御部90によって制御され、第1ユニット本体6の下端部に形成される第1ガス流路60の流出口を開閉する。シャッタ65の具体的な構成は特に制限されないものの、以下にその一例について簡単に説明する。 The first unit main body 6 further includes a shutter 65. The shutter 65 is provided at the lower end of the first unit main body 6 on the downstream side of the first electrode group 7. The shutter 65 is controlled by the control unit 90 to open and close the outlet of the first gas flow path 60 formed at the lower end of the first unit main body 6. Although the specific configuration of the shutter 65 is not particularly limited, an example thereof will be briefly described below.
 図11は、第1ガス流路60の流出口近傍の構成の一例を概略的に示す側断面図である。図11の例では、第1ユニット本体6には、第2板状体66が設けられている。第2板状体66は第1電極群7よりも第1ガス流路60の下流側に設けられており、その厚み方向が鉛直方向に沿う姿勢で設けられる。図12は、第2板状体66の構成の一例を概略的に示す平面図である。図12の例では、第2板状体66は平面視において、例えば、径方向外側の一辺が弧状に湾曲した矩形形状を有する。第2板状体66の周縁は第1ユニット本体6の下端部に連結される。第2板状体66には、第1ガス流路60の流出口となる複数の開口661が形成されている。以下では、開口661を流出口661とも呼ぶ。複数の流出口661は第2板状体66をその厚み方向に貫通する。複数の流出口661は平面視において、例えば2次元的に配列され、より具体的な一例としてマトリクス状に配列される。流出口661は平面視において例えば円形状を有する。 FIG. 11 is a side sectional view schematically showing an example of the configuration in the vicinity of the outlet of the first gas flow path 60. In the example of FIG. 11, the first unit main body 6 is provided with the second plate-shaped body 66. The second plate-shaped body 66 is provided on the downstream side of the first gas flow path 60 with respect to the first electrode group 7, and is provided in a posture in which the thickness direction thereof is along the vertical direction. FIG. 12 is a plan view schematically showing an example of the configuration of the second plate-shaped body 66. In the example of FIG. 12, the second plate-shaped body 66 has, for example, a rectangular shape in which one side on the outer side in the radial direction is curved in an arc shape in a plan view. The peripheral edge of the second plate-shaped body 66 is connected to the lower end portion of the first unit main body 6. The second plate-shaped body 66 is formed with a plurality of openings 661 that serve as outlets for the first gas flow path 60. Hereinafter, the opening 661 is also referred to as an outlet 661. The plurality of outlets 661 penetrate the second plate-shaped body 66 in the thickness direction thereof. The plurality of outlets 661 are arranged, for example, two-dimensionally in a plan view, and as a more specific example, they are arranged in a matrix. The outlet 661 has, for example, a circular shape in a plan view.
 シャッタ65は流出口661の開閉を切り替える。シャッタ65は例えば板状形状を有しており、その厚み方向が鉛直方向に沿う姿勢で配置される。シャッタ65は例えば第2板状体66と重なり合うように設けられる。シャッタ65にも複数の開口651が設けられている。複数の開口651はシャッタ65を鉛直方向に貫通する。複数の開口651は平面視において流出口661と同様の配列で形成される。複数の開口651は例えば円形状を有し、開口651の径は例えば流出口661の径以上である。 The shutter 65 switches the opening and closing of the outlet 661. The shutter 65 has, for example, a plate shape, and is arranged in a posture in which the thickness direction thereof is along the vertical direction. The shutter 65 is provided so as to overlap the second plate-shaped body 66, for example. The shutter 65 is also provided with a plurality of openings 651. The plurality of openings 651 penetrate the shutter 65 in the vertical direction. The plurality of openings 651 are formed in the same arrangement as the outlet 661 in a plan view. The plurality of openings 651 have, for example, a circular shape, and the diameter of the openings 651 is, for example, the diameter of the outlet 661 or more.
 シャッタ65は第2板状体66に対して水平に移動可能に設けられている。シャッタ65は、複数の開口651が複数の流出口661と水平方向においてずれた第1位置と、複数の開口651が複数の流出口661とそれぞれ向かい合う第2位置との間で往復移動することができる。第1位置では、シャッタ65の開口651以外の部分が複数の流出口661と対向し、流出口661を閉じる。図11では、シャッタ65が第1位置で停止した状態を示している。第2位置では、シャッタ65の開口651が対応する流出口661と向かい合い、流出口661が対応する開口651を通じて外部空間に繋がる。つまり、流出口661が開く。 The shutter 65 is provided so as to be movable horizontally with respect to the second plate-shaped body 66. The shutter 65 may reciprocate between a first position in which the plurality of openings 651 are displaced horizontally from the plurality of outlets 661 and a second position in which the plurality of openings 651 face the plurality of outlets 661, respectively. can. At the first position, a portion of the shutter 65 other than the opening 651 faces the plurality of outlets 661 and closes the outlet 661. FIG. 11 shows a state in which the shutter 65 is stopped at the first position. At the second position, the opening 651 of the shutter 65 faces the corresponding outlet 661, and the outlet 661 connects to the exterior space through the corresponding opening 651. That is, the outlet 661 opens.
 駆動部67は制御部90によって制御され、シャッタ65を駆動することができる。例えば駆動部67はシャッタ65を第1位置と第2位置との間で往復移動させる。駆動部67は例えばボールねじ機構またはエアシリンダなどの駆動機構を有する。 The drive unit 67 is controlled by the control unit 90 and can drive the shutter 65. For example, the drive unit 67 reciprocates the shutter 65 between the first position and the second position. The drive unit 67 has a drive mechanism such as a ball screw mechanism or an air cylinder.
 なお、シャッタ65は開口651を有さない板状形状を有していてもよい。この場合、例えば駆動部67は、シャッタ65が第2板状体66と鉛直方向で対向しない位置と、第2板状体66と対向する位置との間で、シャッタ65を往復移動させてもよい。 The shutter 65 may have a plate-like shape without an opening 651. In this case, for example, the drive unit 67 may reciprocate the shutter 65 between a position where the shutter 65 does not face the second plate-shaped body 66 in the vertical direction and a position where the shutter 65 faces the second plate-shaped body 66. good.
 シャッタ65が流出口661を閉じているときには、ガス供給部50から供給されたガスが第1ユニット本体6の第1ガス流路60内に滞留する。これにより、第1ガス流路60内で活性種の量(活性種の濃度)を増やすことができる。そして、この状態でシャッタ65が流出口661を開くことにより、より多くの活性種を第1プラズマ発生ユニット5の流出口661から流出させることができる。 When the shutter 65 closes the outlet 661, the gas supplied from the gas supply unit 50 stays in the first gas flow path 60 of the first unit main body 6. This makes it possible to increase the amount of active species (concentration of active species) in the first gas flow path 60. Then, by opening the outlet 661 by the shutter 65 in this state, more active species can be discharged from the outlet 661 of the first plasma generation unit 5.
 第2の実施の形態にかかる基板処理装置1の動作の一例は図8と同様である。ただし、薬液処理(ステップS3)の開始時において、シャッタ65が流出口661を閉じ、かつ、バルブ42が閉じた状態で、まずバルブ52a~52cが開く。これにより、処理液の供給に先立って、ガス供給部50から第1プラズマ発生ユニット5にガスが供給される。このガスは第1ガス流路60内で滞留する。また、電源80が第1電極71に電圧を印加する。これにより、第1電極群7の周囲の電界空間においてガスの一部が電離してプラズマが発生する。このプラズマの発生に際して活性種も生じる。シャッタ65が閉じているので、電界空間に滞留するガスは比較的に長期間に亘って電界の作用を受けるので、より多くのプラズマが発生するとともに、当該プラズマの発生に際して、より多くの活性種が生成される。 An example of the operation of the substrate processing apparatus 1 according to the second embodiment is the same as in FIG. However, at the start of the chemical liquid treatment (step S3), the valves 52a to 52c are first opened with the shutter 65 closing the outlet 661 and the valve 42 closed. As a result, gas is supplied from the gas supply unit 50 to the first plasma generation unit 5 prior to the supply of the treatment liquid. This gas stays in the first gas flow path 60. Further, the power supply 80 applies a voltage to the first electrode 71. As a result, a part of the gas is ionized in the electric field space around the first electrode group 7, and plasma is generated. Active species are also generated when this plasma is generated. Since the shutter 65 is closed, the gas staying in the electric field space is affected by the electric field for a relatively long period of time, so that more plasma is generated and more active species are generated when the plasma is generated. Is generated.
 続いて、バルブ42を開いて処理液ノズル4から処理液を基板Wの主面に供給させるとともに、シャッタ65を開いてガスを基板Wの主面に供給させる。シャッタ65が開くことにより、第1ガス流路60内に滞留したより多くの活性種が基板Wの主面に向かって流出する。よって、より多くの活性種が基板Wの主面上の処理液および基板Wの主面に作用する。これによって、処理液の処理能力をさらに向上させることができるとともに、基板Wの主面に直接に作用する活性種も多くなる。これらにより、基板Wの処理時間を短縮することができる。 Subsequently, the valve 42 is opened to supply the processing liquid from the processing liquid nozzle 4 to the main surface of the substrate W, and the shutter 65 is opened to supply the gas to the main surface of the substrate W. When the shutter 65 is opened, more active species staying in the first gas flow path 60 flow out toward the main surface of the substrate W. Therefore, more active species act on the treatment liquid on the main surface of the substrate W and the main surface of the substrate W. As a result, the processing capacity of the processing liquid can be further improved, and the number of active species that act directly on the main surface of the substrate W increases. As a result, the processing time of the substrate W can be shortened.
 また上述の例では、複数の流出口661が設けられているので、活性種をより均一に基板Wの主面に供給することもできる。 Further, in the above example, since a plurality of outlets 661 are provided, the active species can be more uniformly supplied to the main surface of the substrate W.
 薬液処理(ステップS3)において、シャッタ65を間欠的に開いてもよい。つまり、シャッタ65の開閉を所定時間ごとに交互に切り替えてもよい。シャッタ65が流出口661を閉じることにより、ガスは第1ガス流路60内で滞留するので、より多くの活性種が発生し、シャッタ65が流出口661を開くことにより、その多くの活性種をガスの流れに沿って流出口661から基板Wの主面に供給することができる。 In the chemical treatment (step S3), the shutter 65 may be opened intermittently. That is, the opening and closing of the shutter 65 may be alternately switched at predetermined time intervals. When the shutter 65 closes the outlet 661, the gas stays in the first gas flow path 60, so that more active species are generated, and when the shutter 65 opens the outlet 661, many active species are generated. Can be supplied to the main surface of the substrate W from the outlet 661 along the flow of gas.
 また上述の例では、第1電極群7と基板Wとの間にシャッタ65が設けられるので、第1電極群7が基板Wからより遠い位置に設けられる。よって、第1電極群7の周囲の電界空間で発生したプラズマは基板Wに到達しにくい。よって、プラズマによる基板Wのダメージを抑制することができる。 Further, in the above example, since the shutter 65 is provided between the first electrode group 7 and the substrate W, the first electrode group 7 is provided at a position farther from the substrate W. Therefore, the plasma generated in the electric field space around the first electrode group 7 does not easily reach the substrate W. Therefore, damage to the substrate W due to plasma can be suppressed.
 <流出口の面積>
 図12の例では、回転軸線Q1に近い領域内の流出口661の面積は、回転軸線Q1から遠い領域内の流出口661の面積よりも小さい。ここで、回転軸線Q1に近い領域内の一つの流出口661(以下、第1流出口661と呼ぶ)と、回転軸線Q1から遠い領域内の一つの流出口661(以下、第2流出口661と呼ぶ)とに着目すると、次のように説明することができる。第1流出口661と回転軸線Q1との間の距離は、第2流出口661と回転軸線Q1との間の距離よりも短く、第1流出口661の面積は第2流出口661の面積よりも小さい。
<Area of outlet>
In the example of FIG. 12, the area of the outlet 661 in the region near the rotation axis Q1 is smaller than the area of the outlet 661 in the region far from the rotation axis Q1. Here, one outlet 661 in the region near the rotation axis Q1 (hereinafter referred to as the first outlet 661) and one outlet 661 in the region far from the rotation axis Q1 (hereinafter referred to as the second outlet 661). Focusing on (called), it can be explained as follows. The distance between the first outlet 661 and the rotary axis Q1 is shorter than the distance between the second outlet 661 and the rotary axis Q1, and the area of the first outlet 661 is smaller than the area of the second outlet 661. Is also small.
 これによれば、回転軸線Q1により近い位置で、ガスの流速をより高めることができる。よって、基板Wの中央部でより多くの活性種を処理液に供給することができ、基板Wの処理の均一性を向上させることができる。 According to this, the flow velocity of the gas can be further increased at a position closer to the rotation axis Q1. Therefore, more active species can be supplied to the treatment liquid at the central portion of the substrate W, and the treatment uniformity of the substrate W can be improved.
 <第3の実施の形態>
 第3の実施の形態にかかる基板処理装置1の構成の一例は、第1電極群7を除いて、第1または第2の実施の形態かかる基板処理装置1と同様の構成を有している。第3の実施の形態では、電界空間の電界強度分布を調整する。具体的には、第1電極群7は、回転軸線Q1に近い空間においてより高い電界強度で電界を印加し、回転軸線Q1から遠い空間においてより低い電界強度で電界を印加する。
<Third embodiment>
An example of the configuration of the substrate processing apparatus 1 according to the third embodiment has the same configuration as the substrate processing apparatus 1 according to the first or second embodiment except for the first electrode group 7. .. In the third embodiment, the electric field strength distribution in the electric field space is adjusted. Specifically, the first electrode group 7 applies an electric field with a higher electric field strength in a space close to the rotation axis Q1 and an electric field with a lower electric field strength in a space far from the rotation axis Q1.
 図13は、第1電極群7の構成の他の一例を概略的に示す平面図である。図13の例でも、複数の第1電極71として6つの第1電極71a~71fが設けられている。第1電極71a~71fは回転軸線Q1に近い側からこの順で並んで配置される。つまり、第1電極71aが最も回転軸線Q1に近く、第1電極71fが回転軸線Q1から最も遠い。したがって、第1電極71a,71bによって形成される電界空間と回転軸線Q1との距離は、第1電極71b,71cによって形成される電界空間と回転軸線Q1との間の距離よりも短く、第1電極71b,71cによって形成される電界空間と回転軸線Q1との距離は、第1電極71c,71dによって形成される電界空間と回転軸線Q1との間の距離よりも短く、第1電極71c,71dによって形成される電界空間と回転軸線Q1との距離は、第1電極71d,71eによって形成される電界空間と回転軸線Q1との間の距離よりも短く、第1電極71d,71eによって形成される電界空間と回転軸線Q1との距離は、第1電極71e,71fによって形成される電界空間と回転軸線Q1との間の距離よりも短い。また、ここでは、第1電極71a~71fの相互間の間隔は互いにほぼ同じである。 FIG. 13 is a plan view schematically showing another example of the configuration of the first electrode group 7. Also in the example of FIG. 13, six first electrodes 71a to 71f are provided as the plurality of first electrodes 71. The first electrodes 71a to 71f are arranged side by side in this order from the side closest to the rotation axis Q1. That is, the first electrode 71a is the closest to the rotation axis Q1, and the first electrode 71f is the farthest from the rotation axis Q1. Therefore, the distance between the electric field space formed by the first electrodes 71a and 71b and the rotation axis Q1 is shorter than the distance between the electric field space formed by the first electrodes 71b and 71c and the rotation axis Q1. The distance between the electric field space formed by the electrodes 71b and 71c and the rotation axis Q1 is shorter than the distance between the electric field space formed by the first electrodes 71c and 71d and the rotation axis Q1. The distance between the electric field space formed by the above and the rotation axis Q1 is shorter than the distance between the electric field space formed by the first electrodes 71d and 71e and the rotation axis Q1 and is formed by the first electrodes 71d and 71e. The distance between the electric field space and the rotation axis Q1 is shorter than the distance between the electric field space formed by the first electrodes 71e and 71f and the rotation axis Q1. Further, here, the intervals between the first electrodes 71a to 71f are substantially the same as each other.
 図13の例では、第1電極71cと電源80の第1出力端81との間に抵抗83が設けられており、第1電極71eと電源80の第1出力端81との間に抵抗84が設けられている。各抵抗83,84に電流が流れると、それぞれにおいて電圧降下が生じる。抵抗84の抵抗値は抵抗83よりも高く、抵抗84における電圧降下は抵抗83における電圧降下よりも大きい。図13の例では、抵抗84の抵抗値が抵抗83の抵抗値よりも大きいことを、抵抗の数で示している。図13の例では、第1電極71aと電源80の第1出力端81との間には抵抗83,84のいずれも設けられていない。つまり、回転軸線Q1に最も近い第1電極71aと第1出力端81との間の抵抗値は、次に回転軸線Q1に近い第1電極71cと第1出力端81との間の抵抗値よりも小さく、第1電極71cと第1出力端81との間の抵抗値は、回転軸線Q1から最も遠い第1電極71eと第1出力端81との間の抵抗値よりも小さい。 In the example of FIG. 13, a resistor 83 is provided between the first electrode 71c and the first output terminal 81 of the power supply 80, and the resistor 84 is provided between the first electrode 71e and the first output terminal 81 of the power supply 80. Is provided. When a current flows through each of the resistors 83 and 84, a voltage drop occurs in each of them. The resistance value of the resistor 84 is higher than that of the resistor 83, and the voltage drop in the resistor 84 is larger than the voltage drop in the resistor 83. In the example of FIG. 13, the resistance value of the resistor 84 is larger than the resistance value of the resistor 83, which is indicated by the number of resistors. In the example of FIG. 13, neither the resistors 83 and 84 are provided between the first electrode 71a and the first output terminal 81 of the power supply 80. That is, the resistance value between the first electrode 71a closest to the rotation axis Q1 and the first output end 81 is higher than the resistance value between the first electrode 71c and the first output end 81 next closest to the rotation axis Q1. The resistance value between the first electrode 71c and the first output terminal 81 is smaller than the resistance value between the first electrode 71e and the first output terminal 81 farthest from the rotation axis Q1.
 また図13の例では、各第1電極71b,71d,71fと電源80の第2出力端82との間には抵抗83,84のいずれも設けられておらず、各第1電極71b,71d,71fと第2出力端82との間の抵抗値は互いにほぼ同じである。 Further, in the example of FIG. 13, none of the resistors 83, 84 are provided between the first electrodes 71b, 71d, 71f and the second output terminal 82 of the power supply 80, and the first electrodes 71b, 71d are provided. , 71f and the second output terminal 82 have substantially the same resistance value.
 このような接続関係によれば、第1電極71a,71bの間の電圧は第1電極71b,71cの間の電圧よりも大きく、第1電極71b,71cの間の電圧は第1電極71c,71dの間の電圧とほぼ同じであり、第1電極71c,71dの間の電圧は第1電極71d,71eの間の電圧よりも大きく、第1電極71d,71eの間の電圧は第1電極71e,71fとほぼ同じである。つまり、第1電極71の相互間の電圧は、回転軸線Q1に近いほど大きくなる傾向を有する。したがって、第1電極71の相互間における電界の電界強度は、回転軸線Q1に近いほど高くなる傾向を有する。具体的には、第1電極71a,71bの間の電界空間の電界強度が最も高く、第1電極71b,71cの間の電界空間および第1電極71c,71dの間の電界空間の電界強度が次に高く、第1電極71d,71eの間の電界空間および第1電極71e,71fの間の電界空間の電界強度が最も低い。 According to such a connection relationship, the voltage between the first electrodes 71a and 71b is larger than the voltage between the first electrodes 71b and 71c, and the voltage between the first electrodes 71b and 71c is the voltage between the first electrodes 71c and 71c. It is almost the same as the voltage between 71d, the voltage between the first electrodes 71c and 71d is larger than the voltage between the first electrodes 71d and 71e, and the voltage between the first electrodes 71d and 71e is the first electrode. It is almost the same as 71e and 71f. That is, the voltage between the first electrodes 71 tends to increase as it is closer to the rotation axis Q1. Therefore, the electric field strength of the electric field between the first electrodes 71 tends to be higher as it is closer to the rotation axis Q1. Specifically, the electric field strength of the electric field space between the first electrodes 71a and 71b is the highest, and the electric field strength of the electric field space between the first electrodes 71b and 71c and the electric field space between the first electrodes 71c and 71d is high. It is the next highest, and the electric field strength of the electric field space between the first electrodes 71d and 71e and the electric field space between the first electrodes 71e and 71f is the lowest.
 この第1電極群7によれば、回転軸線Q1に近い第1電極71a,71bの間の電界空間を通過するガスには、高い電界強度の電界が作用する。よって、回転軸線Q1に近い位置でより多くのプラズマが発生し、より多くの活性種が生じる。回転軸線Q1から遠い第1電極71b~71dの相互間の電界空間を通過するガスには、より低い電界強度の電界が作用し、回転軸線Q1からさらに遠い第1電極71d~71fの相互間の電界空間を通過するガスには、さらに低い電界強度の電界が作用する。よって、回転軸線Q1から離れるにしたがって、より少ない活性種が生じる。 According to the first electrode group 7, an electric field having a high electric field strength acts on the gas passing through the electric field space between the first electrodes 71a and 71b near the rotation axis Q1. Therefore, more plasma is generated near the rotation axis Q1 and more active species are generated. An electric field with a lower electric field strength acts on the gas passing through the electric field space between the first electrodes 71b to 71d far from the rotating axis Q1, and between the first electrodes 71d to 71f further far from the rotating axis Q1. An electric field with an even lower electric field strength acts on the gas passing through the electric field space. Therefore, as the distance from the rotation axis Q1 increases, fewer active species are produced.
 以上のように第3の実施の形態によれば、回転軸線Q1に近い位置で多くの活性種を発生させることができる。これによれば、基板Wに対する処理の均一性を向上させることができる。 As described above, according to the third embodiment, many active species can be generated at a position close to the rotation axis Q1. According to this, the uniformity of processing with respect to the substrate W can be improved.
 なお図13において、第1電極71dも抵抗83を介して電源80の第2出力端82に接続されてもよい。これによれば、第1電極71b,71cの間の電界空間の電界強度を、第1電極71c,71dの間の電界空間の電界強度よりも高くすることができる。同様に、第1電極71fも抵抗84を介して電源80の第2出力端82に接続されてもよい。これによれば、第1電極71d,71eの間の電界空間の電界強度を、第1電極71e,71fの間の電界空間の電界強度よりも高くすることができる。 Note that in FIG. 13, the first electrode 71d may also be connected to the second output end 82 of the power supply 80 via the resistor 83. According to this, the electric field strength of the electric field space between the first electrodes 71b and 71c can be made higher than the electric field strength of the electric field space between the first electrodes 71c and 71d. Similarly, the first electrode 71f may also be connected to the second output terminal 82 of the power supply 80 via the resistor 84. According to this, the electric field strength of the electric field space between the first electrodes 71d and 71e can be made higher than the electric field strength of the electric field space between the first electrodes 71e and 71f.
 図14は、第1電極群7の構成の他の一例を概略的に示す平面図である。図14の例では、電源80として電源80a~80cが設けられている。第1電極71aは電源80aの第1出力端81に接続され、第1電極71bは電源80aの第2出力端82に接続されており、第1電極71cは電源80bの第1出力端81に接続され、第1電極71dは電源80bの第2出力端82に接続され、第1電極71eは電源80cの第1出力端81に接続され、第1電極71fは電源80の第2出力端82に接続されている。つまり、回転軸線Q1に近い一対の第1電極71a,71bは電源80aに接続され、次に回転軸線Q1に近い一対の第1電極71c,71dは電源80aとは異なる電源80bに接続され、回転軸線Q1から最も遠い一対の第1電極71e,71fは電源80cに接続される。 FIG. 14 is a plan view schematically showing another example of the configuration of the first electrode group 7. In the example of FIG. 14, power supplies 80a to 80c are provided as the power supply 80. The first electrode 71a is connected to the first output terminal 81 of the power supply 80a, the first electrode 71b is connected to the second output terminal 82 of the power supply 80a, and the first electrode 71c is connected to the first output terminal 81 of the power supply 80b. The first electrode 71d is connected, the first electrode 71d is connected to the second output terminal 82 of the power supply 80b, the first electrode 71e is connected to the first output terminal 81 of the power supply 80c, and the first electrode 71f is the second output terminal 82 of the power supply 80. It is connected to the. That is, the pair of first electrodes 71a and 71b close to the rotation axis Q1 are connected to the power supply 80a, and then the pair of first electrodes 71c and 71d close to the rotation axis Q1 are connected to the power supply 80b different from the power supply 80a and rotate. The pair of first electrodes 71e and 71f farthest from the axis Q1 are connected to the power supply 80c.
 これによれば、第1電極71a,71bの間の電圧と、第1電極71c,71dの間の電圧と、第1電極71d,71fの間の電圧を互いに独立に制御することができる。具体的には、電源80aは電源80bよりも大きな電圧を出力し、電源80bは電源80cよりも大きな電圧を出力する。これにより、回転軸線Q1に近い第1電極71a,71bの間の電界空間における電界強度を、回転軸線Q1から遠い第1電極71c,71dの間の電界空間における電界強度よりも高くすることができる。また、第1電極71c,71dの間の電界空間における電圧の電界強度を、第1電極71e,71fの間の電界空間における電界強度よりも高くすることができる。 According to this, the voltage between the first electrodes 71a and 71b, the voltage between the first electrodes 71c and 71d, and the voltage between the first electrodes 71d and 71f can be controlled independently of each other. Specifically, the power supply 80a outputs a voltage larger than that of the power supply 80b, and the power supply 80b outputs a voltage larger than that of the power supply 80c. Thereby, the electric field strength in the electric field space between the first electrodes 71a and 71b near the rotation axis Q1 can be made higher than the electric field strength in the electric field space between the first electrodes 71c and 71d far from the rotation axis Q1. .. Further, the electric field strength of the voltage in the electric field space between the first electrodes 71c and 71d can be made higher than the electric field strength in the electric field space between the first electrodes 71e and 71f.
 図15は、第1電極群7の構成の他の一例を概略的に示す平面図である。図15の例では、第1電極71a,71c,71eは電源80の第1出力端81に接続されており、第1電極71b,71d,71fは電源80の第2出力端82に接続されている。ここでは、第1電極71の相互間に印加される電圧の大きさは互いにほぼ同じである。 FIG. 15 is a plan view schematically showing another example of the configuration of the first electrode group 7. In the example of FIG. 15, the first electrodes 71a, 71c, 71e are connected to the first output terminal 81 of the power supply 80, and the first electrodes 71b, 71d, 71f are connected to the second output terminal 82 of the power supply 80. There is. Here, the magnitudes of the voltages applied between the first electrodes 71 are substantially the same as each other.
 図15の例では、第1電極71の相互間の間隔は、回転軸線Q1に近づくにつれて狭くなっている。言い換えれば、第1電極71の空間密度は、回転軸線Q1に近づくにつれて高くなっている。具体的には、第1電極71a,71bの間の間隔は第1電極71b,71cの間の間隔よりも狭く、第1電極71b,71cの間の間隔は第1電極71c,71dの間の間隔よりも狭く、第1電極71c,71dの間の間隔は第1電極71d,71eの間の間隔よりも狭く、第1電極71d,71eの間の間隔は第1電極71e,71fの間の間隔よりも狭い。 In the example of FIG. 15, the distance between the first electrodes 71 becomes narrower as it approaches the rotation axis Q1. In other words, the spatial density of the first electrode 71 increases as it approaches the rotation axis Q1. Specifically, the distance between the first electrodes 71a and 71b is narrower than the distance between the first electrodes 71b and 71c, and the distance between the first electrodes 71b and 71c is between the first electrodes 71c and 71d. It is narrower than the spacing, the spacing between the first electrodes 71c and 71d is narrower than the spacing between the first electrodes 71d and 71e, and the spacing between the first electrodes 71d and 71e is between the first electrodes 71e and 71f. Narrower than the interval.
 これによれば、回転軸線Q1に近い第1電極71a,71bの間の電圧空間には、より高い電界強度で電界を印加することができる。一方で、第1電極71b,71cの間の電圧空間には、第1電極71a,71bの間の電圧空間における電界強度よりも低い電界強度で電界が印加される。同様に、第1電極71c,71dの間の電界空間には、第1電極71b,71cの間の電界空間の電界強度よりも低い電界強度で電界を印加することができる。以下、同様である。 According to this, an electric field can be applied to the voltage space between the first electrodes 71a and 71b near the rotation axis Q1 with a higher electric field strength. On the other hand, an electric field is applied to the voltage space between the first electrodes 71b and 71c with an electric field strength lower than the electric field strength in the voltage space between the first electrodes 71a and 71b. Similarly, an electric field can be applied to the electric field space between the first electrodes 71c and 71d with an electric field strength lower than the electric field strength of the electric field space between the first electrodes 71b and 71c. The same applies hereinafter.
 <第4の実施の形態>
 第4の実施の形態にかかる基板処理装置1は、第2プラズマ発生ユニット500の有無を除いて、第1から第3のいずれかの実施の形態にかかる基板処理装置1と同様の構成を有する。例えば、第2プラズマ発生ユニット500は第1プラズマ発生ユニット5に連結されて、処理液ノズル4および第1プラズマ発生ユニット5とともにノズルヘッド3を構成する。図16は、第4の実施の形態にかかるノズルヘッド3の構成の一例を概略的に示す図である。
<Fourth Embodiment>
The substrate processing apparatus 1 according to the fourth embodiment has the same configuration as the substrate processing apparatus 1 according to any one of the first to third embodiments, except for the presence or absence of the second plasma generation unit 500. .. For example, the second plasma generation unit 500 is connected to the first plasma generation unit 5 and constitutes the nozzle head 3 together with the processing liquid nozzle 4 and the first plasma generation unit 5. FIG. 16 is a diagram schematically showing an example of the configuration of the nozzle head 3 according to the fourth embodiment.
 図16の例では、第2プラズマ発生ユニット500は処理液ノズル4と第1プラズマ発生ユニット5との間に設けられている。第2プラズマ発生ユニット500は、第1プラズマ発生ユニット5と同様に、プラズマ用の電界空間を経由したガスを供給することができる。第2プラズマ発生ユニット500は当該ガスを、処理液ノズル4から吐出されて基板Wの主面に着液するまでの処理液に向かって供給する。 In the example of FIG. 16, the second plasma generation unit 500 is provided between the processing liquid nozzle 4 and the first plasma generation unit 5. Like the first plasma generation unit 5, the second plasma generation unit 500 can supply gas via the electric field space for plasma. The second plasma generation unit 500 supplies the gas toward the processing liquid until it is discharged from the processing liquid nozzle 4 and landed on the main surface of the substrate W.
 図17は、第2プラズマ発生ユニット500の構成の一例を概略的に示す側断面図である。図17の例では、第2プラズマ発生ユニット500はいわゆるペン型のプラズマ源であって、第2ユニット本体600と第2電極群700とを含む。 FIG. 17 is a side sectional view schematically showing an example of the configuration of the second plasma generation unit 500. In the example of FIG. 17, the second plasma generation unit 500 is a so-called pen-shaped plasma source, and includes the second unit main body 600 and the second electrode group 700.
 第2ユニット本体600は例えば石英またはセラミック等の絶縁体(誘電体)によって形成され、ガスが流れる第2ガス流路610を形成する。図17の例では、第2ユニット本体600は、筒状体620と、流入部630とを含んでいる。筒状体620は筒形状(例えば円筒形状)を有する。筒状体620の内部空間は第2ガス流路610の一部に相当し、筒状体620の下端口は第2ガス流路610の流出口610aに相当する。 The second unit main body 600 is formed of an insulator (dielectric) such as quartz or ceramic, and forms a second gas flow path 610 through which gas flows. In the example of FIG. 17, the second unit main body 600 includes a cylindrical body 620 and an inflow portion 630. The tubular body 620 has a cylindrical shape (for example, a cylindrical shape). The internal space of the tubular body 620 corresponds to a part of the second gas flow path 610, and the lower end port of the tubular body 620 corresponds to the outlet 610a of the second gas flow path 610.
 第2ユニット本体600は封止部650を含んでいる。封止部650は例えば樹脂(例えばシリコン樹脂)等の絶縁体(誘電体)によって形成されており、筒状体620の上端口を封止する。 The second unit main body 600 includes a sealing portion 650. The sealing portion 650 is formed of an insulator (dielectric) such as, for example, a resin (for example, silicon resin), and seals the upper end opening of the tubular body 620.
 流入部630は、筒状体620の内部空間に向かってガスを流すための部材であり、筒状体620の側面に連結されている。流入部630は例えば円筒形状を有し、その下流口が筒状体620の側面に形成される。流入部630の内部空間は第1ガス流路60の上流側の一部に相当し、筒状体620および流入部630の内部空間の全体が第1ガス流路60に相当する。 The inflow portion 630 is a member for flowing gas toward the internal space of the tubular body 620, and is connected to the side surface of the tubular body 620. The inflow portion 630 has, for example, a cylindrical shape, and its downstream port is formed on the side surface of the tubular body 620. The internal space of the inflow portion 630 corresponds to a part of the upstream side of the first gas flow path 60, and the entire internal space of the cylindrical body 620 and the inflow portion 630 corresponds to the first gas flow path 60.
 流入部630の上流口には、ガス供給部50からガスが供給される。第2プラズマ発生ユニット500の流入部630に供給されるガスは、例えば第1プラズマ発生ユニット5に供給されるガスと同じ種類のガスである。図17の例では、ガス供給部50は、ガス供給管510と、バルブ520とを含む。流入部630の上流口はガス供給管510の下流端に接続される。ガス供給管510の上流端はガス供給源53に接続される。ガス供給管510には、バルブ520が介装されている。バルブ520は制御部90によって制御され、バルブ520の開閉が切り替えられることにより、流入部630へのガスの供給および停止が切り替えられる。バルブ520は、ガスの流量を調整可能なバルブであってもよく、あるいは、別途に流量調整バルブがガス供給管510に設けられてもよい。 Gas is supplied from the gas supply unit 50 to the upstream port of the inflow unit 630. The gas supplied to the inflow section 630 of the second plasma generation unit 500 is, for example, the same type of gas as the gas supplied to the first plasma generation unit 5. In the example of FIG. 17, the gas supply unit 50 includes a gas supply pipe 510 and a valve 520. The upstream port of the inflow section 630 is connected to the downstream end of the gas supply pipe 510. The upstream end of the gas supply pipe 510 is connected to the gas supply source 53. A valve 520 is interposed in the gas supply pipe 510. The valve 520 is controlled by the control unit 90, and by switching the opening and closing of the valve 520, the supply and stop of gas to the inflow unit 630 are switched. The valve 520 may be a valve capable of adjusting the flow rate of the gas, or a flow rate adjusting valve may be separately provided in the gas supply pipe 510.
 このような第2ユニット本体600において、流入部630の上流口から流入したガスは第2ガス流路610を流れて流出口610aから流出する。 In such a second unit main body 600, the gas flowing in from the upstream port of the inflow section 630 flows through the second gas flow path 610 and flows out from the outflow port 610a.
 第2電極群700は複数の第2電極710を含んでいる。図17の例では、複数の第2電極710として2つの第2電極710a,710bが設けられている。第2電極710aは金属等の導電体によって形成され、筒状体620の中心軸Q2に沿った長手方向に長い長尺形状を有している。例えば第2電極710aは円柱形状を有する。第2電極710aの長手方向の一部は筒状体620の内部空間に位置しており、中心軸Q2の径方向において筒状体620の内周面と間隔を空けて対向する。言い換えれば、第2電極710aの長手方向における一部は筒状体620内に遊挿される。また第2電極710aは筒状体620の上端口よりも鉛直上方にも延在している。つまり、第2電極710aは、筒状体620の上端口に設けられた封止部650を貫通して鉛直上方に延在している。 The second electrode group 700 includes a plurality of second electrodes 710. In the example of FIG. 17, two second electrodes 710a and 710b are provided as the plurality of second electrodes 710. The second electrode 710a is formed of a conductor such as metal, and has an elongated shape that is long in the longitudinal direction along the central axis Q2 of the tubular body 620. For example, the second electrode 710a has a cylindrical shape. A part of the second electrode 710a in the longitudinal direction is located in the internal space of the tubular body 620, and faces the inner peripheral surface of the tubular body 620 at a distance in the radial direction of the central axis Q2. In other words, a part of the second electrode 710a in the longitudinal direction is loosely inserted into the tubular body 620. Further, the second electrode 710a extends vertically above the upper end opening of the tubular body 620. That is, the second electrode 710a penetrates the sealing portion 650 provided at the upper end opening of the tubular body 620 and extends vertically upward.
 図17の例では、第2電極710aは誘電保護部材720によって覆われている。誘電保護部材720は例えば石英またはセラミックス等の絶縁体(誘電体)によって形成されており、第2電極710aの表面を覆っている。具体的には、誘電保護部材720は少なくとも筒状体620内において第2電極710aの表面を覆う。例えば誘電保護部材720は第2電極710aの表面に密着している。誘電保護部材720は、第2電極710aの表面に形成された誘電膜であってもよい。この誘電保護部材720は第2電極710aをプラズマから保護することができる。 In the example of FIG. 17, the second electrode 710a is covered with the dielectric protection member 720. The dielectric protection member 720 is formed of an insulator (dielectric) such as quartz or ceramics, and covers the surface of the second electrode 710a. Specifically, the dielectric protection member 720 covers the surface of the second electrode 710a at least in the cylindrical body 620. For example, the dielectric protection member 720 is in close contact with the surface of the second electrode 710a. The dielectric protection member 720 may be a dielectric film formed on the surface of the second electrode 710a. The dielectric protection member 720 can protect the second electrode 710a from plasma.
 第2電極710bも金属等の導電体によって形成され、中心軸Q2の径方向において第2電極710aと向かい合うように設けられる。第2電極710bは第2電極710aのうち先端側の一部と向かい合う。第2電極710bは例えば筒形状を有し、第2電極710aの当該一部を囲む。図17の例では、第2電極710bは筒状体620の外側に位置している。第2電極710bの中心軸は筒状体620の中心軸Q2とほぼ一致する。 The second electrode 710b is also formed of a conductor such as metal, and is provided so as to face the second electrode 710a in the radial direction of the central axis Q2. The second electrode 710b faces a part of the second electrode 710a on the distal end side. The second electrode 710b has, for example, a tubular shape and surrounds the part of the second electrode 710a. In the example of FIG. 17, the second electrode 710b is located outside the tubular body 620. The central axis of the second electrode 710b substantially coincides with the central axis Q2 of the tubular body 620.
 第2電極710aは電源80の第1出力端81に接続され、第2電極710bは電源80の第2出力端82に接続される。電源80は第2電極710a,710bの間に電圧(例えば高周波電圧)を出力する。これにより、第2電極710a,710bの間の電圧空間に電界が印加される。なお、第2電極710a,710bは電源80とは別の電源に接続されてもよい。つまり、第2プラズマ発生ユニット500の第2電極群700は、第1プラズマ発生ユニット5の第1電極群7に接続される電源80とは別の電源に接続されてもよい。 The second electrode 710a is connected to the first output terminal 81 of the power supply 80, and the second electrode 710b is connected to the second output terminal 82 of the power supply 80. The power supply 80 outputs a voltage (for example, a high frequency voltage) between the second electrodes 710a and 710b. As a result, an electric field is applied to the voltage space between the second electrodes 710a and 710b. The second electrodes 710a and 710b may be connected to a power source different from the power source 80. That is, the second electrode group 700 of the second plasma generation unit 500 may be connected to a power source different from the power source 80 connected to the first electrode group 7 of the first plasma generation unit 5.
 第2電極710a,710bの間に電圧が印加されることにより、第2電極710a,710bの間の電界空間に電界を印加することができる。この電界空間は、第1ガス流路60の一部に形成されることになるので、第1ガス流路60を流れるガスは当該電界空間を通過する。ガスが当該電界空間を通過する際に、当該ガスに電界が作用し、ガスの一部が電離してプラズマが発生する。当該プラズマの発生に際して活性種が生成され、活性種はガスの流れに沿って移動し、第2ガス流路610の流出口610aから流出する。 By applying a voltage between the second electrodes 710a and 710b, an electric field can be applied to the electric field space between the second electrodes 710a and 710b. Since this electric field space will be formed in a part of the first gas flow path 60, the gas flowing through the first gas flow path 60 passes through the electric field space. When the gas passes through the electric field space, an electric field acts on the gas, and a part of the gas is ionized to generate plasma. When the plasma is generated, active species are generated, and the active species move along the gas flow and flow out from the outlet 610a of the second gas flow path 610.
 第2プラズマ発生ユニット500の流出口610aから流出した活性種は、処理液ノズル4から吐出されて未だ基板Wの主面に着液していない処理液に供給される(図16参照)。逆に言えば、第2プラズマ発生ユニット500は、基板Wの主面に到達する前の処理液にガス(活性種を含む)を供給できる位置に設けられる。図16の例では、第2プラズマ発生ユニット500は処理液ノズル4と第1プラズマ発生ユニット5との間に設けられており、鉛直下方に向かってガスを流出させる。処理液ノズル4は、第1プラズマ発生ユニット5側に傾いた斜め方向に処理液を吐出するので、処理液は第2プラズマ発生ユニット500の直下を横切った後に基板Wの主面に着液する。このように処理液が第2プラズマ発生ユニット500の直下を横切る際に、第2プラズマ発生ユニット500からの活性種が処理液に作用する。これにより、着液前から処理液の処理能力を向上させることができる。より具体的な一例として、酸素ラジカル等の活性種が着液前の硫酸に作用してカロ酸を生じさせることができる。これにより、基板Wの中央部のレジストもより適切に除去することができる。 The active species flowing out from the outlet 610a of the second plasma generation unit 500 are discharged from the treatment liquid nozzle 4 and supplied to the treatment liquid that has not yet landed on the main surface of the substrate W (see FIG. 16). Conversely, the second plasma generation unit 500 is provided at a position where gas (including active species) can be supplied to the treatment liquid before reaching the main surface of the substrate W. In the example of FIG. 16, the second plasma generation unit 500 is provided between the treatment liquid nozzle 4 and the first plasma generation unit 5, and causes gas to flow out vertically downward. Since the treatment liquid nozzle 4 discharges the treatment liquid in an oblique direction inclined toward the first plasma generation unit 5, the treatment liquid crosses directly under the second plasma generation unit 500 and then lands on the main surface of the substrate W. .. As described above, when the treatment liquid crosses directly under the second plasma generation unit 500, the active species from the second plasma generation unit 500 act on the treatment liquid. As a result, the processing capacity of the processing liquid can be improved even before the liquid is landed. As a more specific example, active species such as oxygen radicals can act on sulfuric acid before landing to generate caroic acid. Thereby, the resist in the central portion of the substrate W can be removed more appropriately.
 図16に例示するように、第2プラズマ発生ユニット500は第1プラズマ発生ユニット5と一体に連結されていてもよい。図16の例では、連結部材550が第2プラズマ発生ユニット500と第1プラズマ発生ユニット5とを連結する。これによれば、ヘッド移動機構30により、第1プラズマ発生ユニット5および第2プラズマ発生ユニット500を一体に移動させることができる。 As illustrated in FIG. 16, the second plasma generation unit 500 may be integrally connected to the first plasma generation unit 5. In the example of FIG. 16, the connecting member 550 connects the second plasma generation unit 500 and the first plasma generation unit 5. According to this, the first plasma generation unit 5 and the second plasma generation unit 500 can be integrally moved by the head movement mechanism 30.
 なお図17の例では、第2電極710bは筒状体620よりも外側に設けられているものの、筒状体620よりも内側に設けられてもよい。この場合、第2電極710bを覆う誘電保護部材が設けられるとよい。 In the example of FIG. 17, although the second electrode 710b is provided outside the tubular body 620, it may be provided inside the tubular body 620. In this case, it is preferable to provide a dielectric protection member that covers the second electrode 710b.
 図18は、第4の実施の形態にかかる基板処理装置1の一部の構成の一例を概略的に示す図である。図18の例では、第2プラズマ発生ユニット500は第1プラズマ発生ユニット5と連結されていない。図18の例では、第2プラズマ発生ユニット500は、ヘッド移動機構30とは別のヘッド移動機構300によって移動可能に設けられている。ヘッド移動機構300の具体的な構成は例えばヘッド移動機構30と同様である。 FIG. 18 is a diagram schematically showing an example of a partial configuration of the substrate processing apparatus 1 according to the fourth embodiment. In the example of FIG. 18, the second plasma generation unit 500 is not connected to the first plasma generation unit 5. In the example of FIG. 18, the second plasma generation unit 500 is movably provided by a head moving mechanism 300 different from the head moving mechanism 30. The specific configuration of the head moving mechanism 300 is, for example, the same as that of the head moving mechanism 30.
 ヘッド移動機構300は第2プラズマ発生ユニット500を処理位置と待機位置との間で往復移動させることができる。待機位置は、基板Wの搬出入の際に第2プラズマ発生ユニット500が基板Wの搬送経路に干渉しない位置であり、例えば、基板保持部2よりも径方向外側の位置である。処理位置とは、第2プラズマ発生ユニット500が、処理液ノズル4の吐出口4aから基板Wの主面までの処理液にガスを供給するときの位置である。 The head moving mechanism 300 can reciprocate the second plasma generation unit 500 between the processing position and the standby position. The standby position is a position where the second plasma generation unit 500 does not interfere with the transport path of the substrate W when the substrate W is carried in and out, and is, for example, a position radially outside the substrate holding portion 2. The processing position is a position when the second plasma generation unit 500 supplies gas to the processing liquid from the discharge port 4a of the processing liquid nozzle 4 to the main surface of the substrate W.
 図18は、ノズルヘッド3および第2プラズマ発生ユニット500がそれぞれの処理位置に位置する状態を示している。図18の例では、第2プラズマ発生ユニット500は、処理液ノズル4と第1プラズマ発生ユニット5との間の領域を避けて設けられている。より具体的な一例として、処理液ノズル4に対して第1プラズマ発生ユニット5とは反対側に設けられている。 FIG. 18 shows a state in which the nozzle head 3 and the second plasma generation unit 500 are located at their respective processing positions. In the example of FIG. 18, the second plasma generation unit 500 is provided so as to avoid the region between the processing liquid nozzle 4 and the first plasma generation unit 5. As a more specific example, the treatment liquid nozzle 4 is provided on the opposite side of the first plasma generation unit 5.
 <第5の実施の形態>
 図19は、第5の実施の形態にかかる基板処理装置1の構成の一例を概略的に示す図である。第5の実施の形態にかかる基板処理装置1は、遮断板800の有無を除いて、第1から第4のいずれかの実施の形態にかかる基板処理装置1と同様の構成を有している。
<Fifth Embodiment>
FIG. 19 is a diagram schematically showing an example of the configuration of the substrate processing apparatus 1 according to the fifth embodiment. The substrate processing apparatus 1 according to the fifth embodiment has the same configuration as the substrate processing apparatus 1 according to any one of the first to fourth embodiments, except for the presence or absence of the blocking plate 800. ..
 遮断板800は、基板保持部2によって保持された基板Wよりも鉛直上方に位置している。遮断板800は、基板保持部2によって保持された基板Wの上方の雰囲気が周囲に拡散することを抑制するための部材である。遮断板800は板状形状を有しており、その厚み方向が鉛直方向に沿う姿勢で設けられる。遮断板800は平面視において回転軸線Q1を中心とした円形状を有し、その直径は基板Wの直径よりも大きい。 The cutoff plate 800 is located vertically above the substrate W held by the substrate holding portion 2. The blocking plate 800 is a member for suppressing the atmosphere above the substrate W held by the substrate holding portion 2 from diffusing to the surroundings. The blocking plate 800 has a plate-like shape, and is provided in a posture in which the thickness direction thereof is along the vertical direction. The cutoff plate 800 has a circular shape centered on the rotation axis Q1 in a plan view, and its diameter is larger than the diameter of the substrate W.
 図19の例では、遮断板800は板部810と垂下部820とを含んでいる。板部810は、回転軸線Q1を中心とした円板形状を有しており、その厚み方向が鉛直方向に沿う姿勢で配置される。垂下部820は板部810の周縁から鉛直下方に突出する円筒形状を有している。垂下部820の先端は平面視において、基板保持部2によって保持された基板Wと、カップ8との間に位置しており、鉛直方向において、基板Wの下面よりも下方に位置している。 In the example of FIG. 19, the blocking plate 800 includes a plate portion 810 and a hanging portion 820. The plate portion 810 has a disk shape centered on the rotation axis Q1, and is arranged in a posture in which the thickness direction thereof is along the vertical direction. The hanging portion 820 has a cylindrical shape that protrudes vertically downward from the peripheral edge of the plate portion 810. The tip of the hanging portion 820 is located between the substrate W held by the substrate holding portion 2 and the cup 8 in a plan view, and is located below the lower surface of the substrate W in the vertical direction.
 遮断板800と基板Wとの間の遮蔽空間には、処理位置で停止したノズルヘッド3が収容される。ノズルヘッド3から延びる各種配管(処理液供給管41およびガス供給管51)は、遮断板800の垂下部820に設けられた不図示のスリットを通って遮蔽空間からその外部の空間に延在する。当該スリットは垂下部820を径方向に貫通しつつ、鉛直方向に沿って延在し、鉛直下方に開口する。 The nozzle head 3 stopped at the processing position is accommodated in the shielding space between the blocking plate 800 and the substrate W. Various pipes (treatment liquid supply pipe 41 and gas supply pipe 51) extending from the nozzle head 3 extend from the shield space to the space outside the shield space through a slit (not shown) provided in the hanging portion 820 of the cutoff plate 800. .. The slit extends along the vertical direction while penetrating the hanging portion 820 in the radial direction, and opens vertically downward.
 遮断板800は昇降機構850によって昇降可能に設けられている。昇降機構850は例えばボールねじ機構またはエアシリンダ等の機構を有する。昇降機構850は制御部90によって制御され、遮断位置と待機位置との間で遮断板800を往復移動させる。遮断位置とは、基板保持部2によって保持された基板Wに近い位置であり、具体的な一例として、垂下部820の先端が基板Wよりも下方となる位置である。図19は、遮断位置で停止した状態での遮断板800が示されている。待機位置とは、遮断位置よりも鉛直上方の位置であり、遮断板800が基板Wの搬送経路およびノズルヘッド3の移動経路のいずれにも干渉しない位置である。 The blocking plate 800 is provided so as to be able to move up and down by an elevating mechanism 850. The elevating mechanism 850 has a mechanism such as a ball screw mechanism or an air cylinder. The elevating mechanism 850 is controlled by the control unit 90 to reciprocate the cutoff plate 800 between the cutoff position and the standby position. The cutoff position is a position close to the substrate W held by the substrate holding portion 2, and as a specific example, it is a position where the tip of the hanging portion 820 is below the substrate W. FIG. 19 shows a cutoff plate 800 in a state of being stopped at a cutoff position. The standby position is a position vertically above the cutoff position, and is a position where the cutoff plate 800 does not interfere with either the transport path of the substrate W or the movement path of the nozzle head 3.
 昇降機構850が遮断板800を待機位置に上昇させ、ヘッド移動機構30がノズルヘッド3を待機位置に移動させた状態で、主搬送ロボット120は基板Wを基板処理装置1に搬出入することができる。基板保持部2が基板Wを保持した状態で、ヘッド移動機構30がノズルヘッド3を処理位置に移動させ、昇降機構850が遮断板800を遮断位置に下降させることにより、ノズルヘッド3による処理の準備が整う。 The main transfer robot 120 may carry the substrate W into and out of the substrate processing device 1 in a state where the elevating mechanism 850 raises the blocking plate 800 to the standby position and the head moving mechanism 30 moves the nozzle head 3 to the standby position. can. With the substrate holding portion 2 holding the substrate W, the head moving mechanism 30 moves the nozzle head 3 to the processing position, and the elevating mechanism 850 lowers the blocking plate 800 to the blocking position, so that the processing by the nozzle head 3 is performed. Ready.
 この状態で、基板保持部2が基板Wを回転させて、ノズルヘッド3が処理液およびガスを基板Wの主面に供給することで、基板Wに対する処理を行うことができる。 In this state, the substrate holding portion 2 rotates the substrate W, and the nozzle head 3 supplies the processing liquid and the gas to the main surface of the substrate W, so that the substrate W can be processed.
 この処理では、遮断板800が遮断位置に位置しているので、遮断板800と基板Wとの間の雰囲気が周囲に拡散することを抑制することができる。また、遮断板800と基板Wとの間の雰囲気中に外部から大気が混入し、雰囲気中のガス濃度が低下することを防ぐことができる。 In this process, since the cutoff plate 800 is located at the cutoff position, it is possible to suppress the atmosphere between the cutoff plate 800 and the substrate W from diffusing to the surroundings. Further, it is possible to prevent the atmosphere between the cutoff plate 800 and the substrate W from being mixed with the atmosphere from the outside and the gas concentration in the atmosphere from decreasing.
 図20は、第5の実施の形態にかかる基板処理装置1の構成の他の一例を概略的に示す図である。図20の例では、処理液ノズル4および第1プラズマ発生ユニット5からなるノズルヘッド3が遮断板としても機能する。以下では、図20のノズルヘッド3、処理液ノズル4および第1プラズマ発生ユニット5を、それぞれ、ノズルヘッド3A、処理液ノズル4Aおよび第1プラズマ発生ユニット5Aとも呼ぶ。 FIG. 20 is a diagram schematically showing another example of the configuration of the substrate processing apparatus 1 according to the fifth embodiment. In the example of FIG. 20, the nozzle head 3 including the treatment liquid nozzle 4 and the first plasma generation unit 5 also functions as a blocking plate. Hereinafter, the nozzle head 3, the treatment liquid nozzle 4, and the first plasma generation unit 5 of FIG. 20 are also referred to as a nozzle head 3A, a treatment liquid nozzle 4A, and a first plasma generation unit 5A, respectively.
 図20の例では、処理液ノズル4Aは鉛直方向に沿って延在しており、基板Wの中心部と鉛直方向において対向する。処理液ノズル4Aはその下端面に吐出口4aを有し、吐出口4aから鉛直方向に沿って処理液を吐出する。吐出口4aから吐出された処理液は鉛直下方に流下して基板Wの主面の中央部に着液する。 In the example of FIG. 20, the treatment liquid nozzle 4A extends along the vertical direction and faces the central portion of the substrate W in the vertical direction. The treatment liquid nozzle 4A has a discharge port 4a on the lower end surface thereof, and discharges the treatment liquid from the discharge port 4a along the vertical direction. The treatment liquid discharged from the discharge port 4a flows vertically downward and lands on the central portion of the main surface of the substrate W.
 第1プラズマ発生ユニット5Aは平面視において処理液ノズル4Aと隣り合う位置に設けられる。ただし、第1プラズマ発生ユニット5Aは処理液ノズル4Aの周囲を囲むように設けられ、その平面視における外縁は例えば回転軸線Q1を中心とした円形状をする。第1プラズマ発生ユニット5の下端部の外径は例えば基板Wの直径以上である。 The first plasma generation unit 5A is provided at a position adjacent to the processing liquid nozzle 4A in a plan view. However, the first plasma generation unit 5A is provided so as to surround the periphery of the processing liquid nozzle 4A, and the outer edge in the plan view thereof has, for example, a circular shape centered on the rotation axis Q1. The outer diameter of the lower end portion of the first plasma generation unit 5 is, for example, equal to or larger than the diameter of the substrate W.
 図20の例では、第1プラズマ発生ユニット5Aの第1ユニット本体6は、上面部605と、側壁部606とを含んでいる。上面部605は平面視において、回転軸線Q1を中心とした円形状を有しており、その中央部には、処理液ノズル4が貫通配置される貫通孔605aが形成されている。処理液ノズル4が貫通孔605aに貫通配置されることで、処理液ノズル4が第1ユニット本体6に固定される。側壁部606は上面部605の周縁から鉛直下方に沿って延在する円筒形状を有する。これらの上面部605および側壁部606で囲まれる空間が第1ガス流路60に相当する。 In the example of FIG. 20, the first unit main body 6 of the first plasma generation unit 5A includes an upper surface portion 605 and a side wall portion 606. The upper surface portion 605 has a circular shape centered on the rotation axis Q1 in a plan view, and a through hole 605a through which the treatment liquid nozzle 4 is arranged is formed in the central portion thereof. By arranging the treatment liquid nozzle 4 through the through hole 605a, the treatment liquid nozzle 4 is fixed to the first unit main body 6. The side wall portion 606 has a cylindrical shape extending vertically downward from the peripheral edge of the upper surface portion 605. The space surrounded by the upper surface portion 605 and the side wall portion 606 corresponds to the first gas flow path 60.
 図20の例でも、第1ユニット本体6には、第1ガス流路60を複数のガス分割流路61を仕切る流路仕切部63が設けられる。図20の例では、複数のガス分割流路61としてガス分割流路61a,61bが形成されている。よって、図20の例では、ガス分割流路61a,61bを仕切る一つの流路仕切部63が設けられている。ここでは、流路仕切部63は、回転軸線Q1を中心とした円筒形状を有する。流路仕切部63の内径は処理液ノズル4の外径よりも大きく、流路仕切部63と処理液ノズル4との間の空間がガス分割流路61aとなる。流路仕切部63の外径は側壁部606の内径よりも小さく、流路仕切部63と側壁部606との間の空間がガス分割流路61bとなる。よって、ガス分割流路61aは回転軸線Q1の近くに形成され、ガス分割流路61bはガス分割流路61aよりも回転軸線Q1から離れて形成される。言い換えれば、ガス分割流路61aと回転軸線Q1との間の距離は、ガス分割流路61bと回転軸線Q1との間の距離よりも短い。 Also in the example of FIG. 20, the first unit main body 6 is provided with a flow path partition portion 63 for partitioning the first gas flow path 60 into a plurality of gas split flow paths 61. In the example of FIG. 20, gas dividing flow paths 61a and 61b are formed as a plurality of gas dividing flow paths 61. Therefore, in the example of FIG. 20, one flow path partition portion 63 for partitioning the gas split flow paths 61a and 61b is provided. Here, the flow path partition portion 63 has a cylindrical shape centered on the rotation axis Q1. The inner diameter of the flow path partition portion 63 is larger than the outer diameter of the processing liquid nozzle 4, and the space between the flow path partition portion 63 and the processing liquid nozzle 4 is the gas dividing flow path 61a. The outer diameter of the flow path partition portion 63 is smaller than the inner diameter of the side wall portion 606, and the space between the flow path partition portion 63 and the side wall portion 606 is the gas split flow path 61b. Therefore, the gas dividing flow path 61a is formed near the rotation axis Q1, and the gas dividing flow path 61b is formed farther from the rotation axis Q1 than the gas dividing flow path 61a. In other words, the distance between the gas dividing flow path 61a and the rotating axis Q1 is shorter than the distance between the gas dividing flow path 61b and the rotating axis Q1.
 最も径方向外側に位置するガス分割流路61bの外径は基板Wの直径以上であってもよい。言い換えれば、第1ガス流路60の外径は基板Wの直径以上であってもよい。 The outer diameter of the gas dividing flow path 61b located on the outermost side in the radial direction may be equal to or larger than the diameter of the substrate W. In other words, the outer diameter of the first gas flow path 60 may be equal to or larger than the diameter of the substrate W.
 上面部605には、ガス分割流路61にガスを供給するためのガス供給流路62が形成されている。図20の例では、ガス供給流路62の上流口621は上面部605の上面に形成されており、ガス供給流路62の下流口622は上面部605の下面(つまり、ガス分割流路61の上面)に形成される。ここでは、ガス分割流路61a,61bに対応してガス供給流路62a,62bが形成されている。ガス供給流路62aは、ガス分割流路61aにガスを供給するための流路であり、ガス供給流路62bは、ガス分割流路61bにガスを供給するための流路である。 A gas supply flow path 62 for supplying gas to the gas division flow path 61 is formed on the upper surface portion 605. In the example of FIG. 20, the upstream port 621 of the gas supply flow path 62 is formed on the upper surface of the upper surface portion 605, and the downstream port 622 of the gas supply flow path 62 is the lower surface of the upper surface portion 605 (that is, the gas split flow path 61). Is formed on the upper surface of the). Here, the gas supply flow paths 62a and 62b are formed corresponding to the gas split flow paths 61a and 61b. The gas supply flow path 62a is a flow path for supplying gas to the gas split flow path 61a, and the gas supply flow path 62b is a flow path for supplying gas to the gas split flow path 61b.
 ここでは、複数(図では2つ)のガス供給流路62aが回転軸線Q1の周方向において例えば等間隔に配列される。これによれば、複数の周方向位置からガスをガス分割流路61aに供給することができるので、より均一にガスをガス分割流路61aに供給することができる。またここでは、複数(図では2つ)のガス供給流路62bが回転軸線Q1の周方向において例えば等間隔に配列される。これによれば、複数の周方向位置からガスをガス分割流路61bに供給することができるので、より均一にガスをガス分割流路61bに供給することができる。 Here, a plurality of (two in the figure) gas supply flow paths 62a are arranged at equal intervals, for example, in the circumferential direction of the rotation axis Q1. According to this, since the gas can be supplied to the gas dividing flow path 61a from a plurality of circumferential positions, the gas can be supplied to the gas divided flow path 61a more uniformly. Further, here, a plurality of (two in the figure) gas supply flow paths 62b are arranged at equal intervals, for example, in the circumferential direction of the rotation axis Q1. According to this, since the gas can be supplied to the gas dividing flow path 61b from a plurality of circumferential positions, the gas can be supplied to the gas divided flow path 61b more uniformly.
 ガス供給部50はガス供給流路62の上流口621にガスを供給する。ここでは、ガス供給流路62a,62bに対応してガス供給管51a,51bが設けられている。図20の例では、ガス供給管51aは分岐管および共通管を含んでおり、各分岐管の一端がガス供給流路62aの上流口621aに接続され、分岐管の他端が共通管の一端に接続され、共通管の他端がガス供給源53に接続される。バルブ52aはガス供給管51aの共通管に介装されている。バルブ52aは制御部90によって制御される。バルブ52aは、ガス供給管51aの内部を流れるガスの流量を調整可能な流量調整バルブであってもよい。あるいは、バルブ52aとは別に流量調整バルブが当該共通管に設けられてもよい。 The gas supply unit 50 supplies gas to the upstream port 621 of the gas supply flow path 62. Here, gas supply pipes 51a and 51b are provided corresponding to the gas supply flow paths 62a and 62b. In the example of FIG. 20, the gas supply pipe 51a includes a branch pipe and a common pipe, one end of each branch pipe is connected to the upstream port 621a of the gas supply flow path 62a, and the other end of the branch pipe is one end of the common pipe. And the other end of the common pipe is connected to the gas supply source 53. The valve 52a is interposed in the common pipe of the gas supply pipe 51a. The valve 52a is controlled by the control unit 90. The valve 52a may be a flow rate adjusting valve capable of adjusting the flow rate of the gas flowing inside the gas supply pipe 51a. Alternatively, a flow rate adjusting valve may be provided in the common pipe separately from the valve 52a.
 ガス供給管51bも分岐管および共通管を含んでおり、各分岐管の一端がガス供給流路62bの上流口621bに接続され、分岐管の他端が共通管の一端に接続され、共通管の他端がガス供給源53に接続される。バルブ52bはガス供給管51bの共通管に介装されている。バルブ52bは制御部90によって制御される。バルブ52bは、ガス供給管51bの内部を流れるガスの流量を調整可能な流量調整バルブであってもよい。あるいは、バルブ52bとは別に流量調整バルブが当該共通管に設けられてもよい。 The gas supply pipe 51b also includes a branch pipe and a common pipe, one end of each branch pipe is connected to the upstream port 621b of the gas supply flow path 62b, and the other end of the branch pipe is connected to one end of the common pipe. The other end of the is connected to the gas supply source 53. The valve 52b is interposed in the common pipe of the gas supply pipe 51b. The valve 52b is controlled by the control unit 90. The valve 52b may be a flow rate adjusting valve capable of adjusting the flow rate of the gas flowing inside the gas supply pipe 51b. Alternatively, a flow rate adjusting valve may be provided in the common pipe separately from the valve 52b.
 このようなガス供給部50は、ガス分割流路61a,61bにおけるガスの流量を個別に調整することができる。つまり、回転軸線Q1に近いガス分割流路61aにおけるガスの流量を、回転軸線Q1から遠いガス分割流路61bにおけるガスの流量とは独立して調整することができる。例えば、ガス分割流路61aにおけるガスの流速がガス分割流路61bにおけるガスの流速よりも高くなるように、各流量を調整することができる。 Such a gas supply unit 50 can individually adjust the flow rate of gas in the gas split flow paths 61a and 61b. That is, the gas flow rate in the gas splitting flow path 61a near the rotating axis Q1 can be adjusted independently of the gas flow rate in the gas splitting flow path 61b far from the rotating axis Q1. For example, each flow rate can be adjusted so that the flow rate of the gas in the gas dividing flow path 61a is higher than the flow rate of the gas in the gas dividing flow path 61b.
 上述の例では、バルブ52a(流量調整バルブ)はガス供給管51aの共通管に設けられて、複数のガス供給流路62aに対して一括的にガスの流量を調整するものの、ガス供給管51aの分岐管に個別に介装されてもよい。この場合、複数のガス供給流路62aにおけるガスの流量を個別に調整することができ、ガス分割流路61aに対してより均一にガスを供給することができる。バルブ52b(流量調整バルブ)も同様である。 In the above example, the valve 52a (flow rate adjusting valve) is provided in the common pipe of the gas supply pipe 51a to collectively adjust the gas flow rate to the plurality of gas supply flow paths 62a, but the gas supply pipe 51a. It may be individually interposed in the branch pipe of. In this case, the flow rate of the gas in the plurality of gas supply flow paths 62a can be individually adjusted, and the gas can be supplied more uniformly to the gas split flow path 61a. The same applies to the valve 52b (flow rate adjusting valve).
 図20の例では、第1ユニット本体6には、第1板状体64も設けられている。第1板状体64はガス分割流路61a,61bよりも下流側、かつ、第1電極群7よりも上流側に設けられている。第1板状体64は平面視において回転軸線Q1を中心とした円形状を有しており、その中央部に処理液ノズル4が貫通配置される貫通孔642が形成されている。第1板状体64の外周面は側壁部606の内周面に連結されており、また、流路仕切部63の下端が第1板状体64の上面に連結されている。第1板状体64のうち流路仕切部63よりも径方向内側の領域はガス分割流路61aと鉛直方向において対向し、流路仕切部63よりも径方向外側の領域はガス分割流路61bと鉛直方向において対向する。 In the example of FIG. 20, the first plate-shaped body 64 is also provided on the first unit main body 6. The first plate-shaped body 64 is provided on the downstream side of the gas dividing flow paths 61a and 61b and on the upstream side of the first electrode group 7. The first plate-shaped body 64 has a circular shape centered on the rotation axis Q1 in a plan view, and a through hole 642 through which the treatment liquid nozzle 4 is arranged is formed in the central portion thereof. The outer peripheral surface of the first plate-shaped body 64 is connected to the inner peripheral surface of the side wall portion 606, and the lower end of the flow path partition portion 63 is connected to the upper surface of the first plate-shaped body 64. Of the first plate-shaped body 64, the region radially inside the flow path partition 63 faces the gas dividing flow path 61a in the vertical direction, and the region radially outside the flow path partition 63 is the gas dividing flow path. It faces 61b in the vertical direction.
 第1板状体64には複数の開口641が形成されており、ガス分割流路61a,61bを流れるガスは第1板状体64の開口641を通過して、第1電極群7に向かって流れる。これにより、より均一にガスを第1電極群7に供給することができる。 A plurality of openings 641 are formed in the first plate-shaped body 64, and the gas flowing through the gas dividing flow paths 61a and 61b passes through the openings 641 of the first plate-shaped body 64 and heads toward the first electrode group 7. Flows. As a result, the gas can be supplied to the first electrode group 7 more uniformly.
 図21は、第5の実施の形態にかかる第1電極群7(第1電極群7Aと呼ぶ)の構成の一例を概略的に示す平面図である。図21の例でも、第1電極群7Aは複数の第1電極71を含んでおり、複数の第1電極71は平面視において間隔を空けて並んで配置される。また、各第1電極71は水平な長手方向に長い長尺形状を有し、その短手方向において並んで配置されている。 FIG. 21 is a plan view schematically showing an example of the configuration of the first electrode group 7 (referred to as the first electrode group 7A) according to the fifth embodiment. Also in the example of FIG. 21, the first electrode group 7A includes a plurality of first electrodes 71, and the plurality of first electrodes 71 are arranged side by side at intervals in a plan view. Further, each of the first electrodes 71 has a long elongated shape in the horizontal longitudinal direction, and is arranged side by side in the lateral direction thereof.
 図21では、枠体74も示されている。枠体74は、回転軸線Q1を中心とした円環形状を有しており、第1ユニット本体6の側壁部606の下端部に連結される。枠体74の内径は基板Wの直径以上であってもよい。 In FIG. 21, the frame body 74 is also shown. The frame body 74 has an annular shape centered on the rotation axis Q1 and is connected to the lower end portion of the side wall portion 606 of the first unit main body 6. The inner diameter of the frame body 74 may be equal to or larger than the diameter of the substrate W.
 複数の第1電極71は交互に異なる極性の電位が印加される。図21の例では、第1電極71の長手方向において、処理液ノズル4を隔てて互いに反対側に連結部711a,711bが設けられている。連結部711a,711bは、回転軸線Q1を中心とした円弧状の板状形状を有している。図21の例では、連結部711a,711bは枠体74よりも径方向外側に設けられている。 The plurality of first electrodes 71 are alternately applied with potentials of different polarities. In the example of FIG. 21, connecting portions 711a and 711b are provided on opposite sides of the treatment liquid nozzle 4 in the longitudinal direction of the first electrode 71. The connecting portions 711a and 711b have an arcuate plate shape centered on the rotation axis Q1. In the example of FIG. 21, the connecting portions 711a and 711b are provided radially outside the frame body 74.
 また図21の例では、連結部711a,711bよりも径方向内側において、連結部711c,711dが処理液ノズル4を隔てて互いに反対側に設けられている。連結部711c,711dも回転軸線Q1を中心とした円弧状の板状形状を有している。連結部711a,711c,711d,711bは第1電極71の長手方向の一方側から他方側(図21では左側から右側)においてこの順で配置されている。 Further, in the example of FIG. 21, the connecting portions 711c and 711d are provided on the opposite sides of the connecting portions 711a and 711b in the radial direction across the treatment liquid nozzle 4. The connecting portions 711c and 711d also have an arcuate plate shape centered on the rotation axis Q1. The connecting portions 711a, 711c, 711d, and 711b are arranged in this order from one side to the other side (from the left side to the right side in FIG. 21) of the first electrode 71 in the longitudinal direction.
 奇数番目に設けられた第1電極71の端部は、連結部711aによって互いに連結されている。つまり、これらの第1電極71は連結部711aから長手方向に沿って連結部711bに向かって延在する。また、連結部711dからも複数(図21では2つ)の第1電極71が長手方向に沿って連結部711bに向かって延在している。連結部711dに連結された各第1電極71は、連結部711aに連結された、対応する第1電極71と一直線上に並んでいる。 The ends of the first electrode 71 provided at odd-numbered positions are connected to each other by the connecting portion 711a. That is, these first electrodes 71 extend from the connecting portion 711a toward the connecting portion 711b along the longitudinal direction. Further, a plurality of (two in FIG. 21) first electrodes 71 extend from the connecting portion 711d toward the connecting portion 711b along the longitudinal direction. Each first electrode 71 connected to the connecting portion 711d is aligned with the corresponding first electrode 71 connected to the connecting portion 711a.
 偶数番目に設けられた第1電極71の端部は、連結部711bによって互いに連結されている。つまり、これらの第1電極71は連結部711bから長手方向に沿って連結部711aに向かって延在する。また、連結部711cからも複数(図21では2つ)の第1電極71が長手方向に沿って連結部711aに向かって延在している。連結部711cに連結された各第1電極71は、連結部711bに連結された、対応する第1電極71と一直線上に並んでいる。 The ends of the first electrodes 71 provided at even-numbered positions are connected to each other by the connecting portion 711b. That is, these first electrodes 71 extend from the connecting portion 711b toward the connecting portion 711a along the longitudinal direction. Further, a plurality of (two in FIG. 21) first electrodes 71 extend from the connecting portion 711c toward the connecting portion 711a along the longitudinal direction. Each first electrode 71 connected to the connecting portion 711c is aligned with the corresponding first electrode 71 connected to the connecting portion 711b.
 連結部711a,711dは電源80の第1出力端81に接続され、連結部711b,711cは電源80の第2出力端82に接続される。これにより、配列方向において隣り合う第1電極71には異なる極性の電位が印加される。 The connecting portions 711a and 711d are connected to the first output terminal 81 of the power supply 80, and the connecting portions 711b and 711c are connected to the second output terminal 82 of the power supply 80. As a result, potentials of different polarities are applied to the first electrodes 71 adjacent to each other in the arrangement direction.
 なお図21の例では、図示を省略しているものの、第1電極71を保護する誘電保護部材72が設けられてもよく、第1電極71の相互間に誘電仕切部材73が設けられてもよい。連結部711c,711dにガスが当たる場合には、これらも誘電保護部材で覆ってもよい。 In the example of FIG. 21, although not shown, a dielectric protective member 72 that protects the first electrode 71 may be provided, or a dielectric partition member 73 may be provided between the first electrodes 71. good. When the connecting portions 711c and 711d are exposed to gas, they may also be covered with a dielectric protective member.
 ガス分割流路61a,61bからのガスは枠体74内において複数の第1電極71の相互間を通過して、基板Wの主面に供給される。第1電極群7によって形成された複数の第1電極71の相互間の電界空間をガスが通過する際に、ガスの一部が電離してプラズマを発生させる。当該プラズマの発生に際して種々の活性種が生じ、当該活性種がガスの流れに沿って基板Wの主面に供給される。 The gas from the gas split flow paths 61a and 61b passes between the plurality of first electrodes 71 in the frame body 74 and is supplied to the main surface of the substrate W. When the gas passes through the electric field space between the plurality of first electrodes 71 formed by the first electrode group 7, a part of the gas is ionized to generate plasma. Various active species are generated when the plasma is generated, and the active species are supplied to the main surface of the substrate W along the flow of gas.
 第1プラズマ発生ユニット5Aの第1ガス流路60(ガス分割流路61a,61b)は処理液ノズル4の周囲を囲むように形成され、かつ、第1電極群7が処理液ノズル4の周囲を囲むように設けられているので、周方向の全周に亘って活性種を基板Wの主面に供給することができる。また上述の例では、第1プラズマ発生ユニット5Aの第1ガス流路60のうち第1電極群7の直前部分の外径は基板Wの直径以上であり、第1電極群7の周囲の電界空間の全体的な直径も基板Wの直径以上であり、枠体74の内径も基板Wの直径以上である。このような第1プラズマ発生ユニット5Aは基板Wの中央部を除くほぼ全面に活性種を供給することができる。これによれば、より広い範囲で処理液の処理能力を向上させることができ、基板Wの処理時間を短縮することができる。 The first gas flow path 60 (gas split flow paths 61a, 61b) of the first plasma generation unit 5A is formed so as to surround the periphery of the treatment liquid nozzle 4, and the first electrode group 7 surrounds the treatment liquid nozzle 4. Since it is provided so as to surround the substrate W, the active species can be supplied to the main surface of the substrate W over the entire circumference in the circumferential direction. Further, in the above example, the outer diameter of the portion immediately before the first electrode group 7 in the first gas flow path 60 of the first plasma generation unit 5A is equal to or larger than the diameter of the substrate W, and the electric field around the first electrode group 7 is formed. The overall diameter of the space is also equal to or greater than the diameter of the substrate W, and the inner diameter of the frame 74 is also equal to or greater than the diameter of the substrate W. Such a first plasma generation unit 5A can supply the active species to almost the entire surface except the central portion of the substrate W. According to this, the processing capacity of the processing liquid can be improved in a wider range, and the processing time of the substrate W can be shortened.
 また、ノズルヘッド3Aは基板Wの主面の全面と鉛直方向において対向するので、ノズルヘッド3Aは遮断板として機能することができる。したがって、基板Wとノズルヘッド3との間の雰囲気が、例えばノズルヘッド3Aよりも鉛直上方の空間に拡散することを抑制することができる。 Further, since the nozzle head 3A faces the entire surface of the main surface of the substrate W in the vertical direction, the nozzle head 3A can function as a blocking plate. Therefore, it is possible to prevent the atmosphere between the substrate W and the nozzle head 3 from diffusing into the space vertically above the nozzle head 3A, for example.
 図22は、第5の実施の形態にかかる第1電極群7の構成の他の一例を概略的に示す平面図である。図22の例では、複数の第1電極群7が周方向において互いに間隔を空けて設けられている。ここでは、8つの第1電極群7a~7hが周方向において互いに等間隔に設けられている。 FIG. 22 is a plan view schematically showing another example of the configuration of the first electrode group 7 according to the fifth embodiment. In the example of FIG. 22, a plurality of first electrode groups 7 are provided at intervals in the circumferential direction. Here, eight first electrode groups 7a to 7h are provided at equal intervals in the circumferential direction.
 各第1電極群7において、複数の第1電極71はその長手方向が径方向に沿う姿勢で配置されており、その短手方向において互いに間隔を空けて配置されている。図22の例では複数の第1電極71の長さは互いにほぼ等しい。各第1電極群7において、配列方向の一方側から奇数番目に配置された第1電極71の長手方向の一方側の端部は連結部711aによって互いに連結され、偶数番目に配列された第1電極71の長手方向の他方側の端部は連結部711bによって互いに連結されている。連結部711bは処理液ノズル4に隣り合って設けられており、連結部711aは連結部711bよりも径方向外側に位置しており、図22の例では枠体74よりも径方向外側に設けられている。連結部711aは電源80の第1出力端81に接続され、連結部711bは電源80の第2出力端82に接続される。 In each first electrode group 7, the plurality of first electrodes 71 are arranged in such a posture that the longitudinal direction thereof is along the radial direction, and the first electrodes 71 are arranged so as to be spaced apart from each other in the lateral direction thereof. In the example of FIG. 22, the lengths of the plurality of first electrodes 71 are substantially equal to each other. In each first electrode group 7, the ends of the first electrodes 71 arranged odd-numbered from one side in the arrangement direction on one side in the longitudinal direction are connected to each other by the connecting portion 711a, and the first electrodes are arranged even-numbered. The other end of the electrode 71 in the longitudinal direction is connected to each other by a connecting portion 711b. The connecting portion 711b is provided adjacent to the treatment liquid nozzle 4, and the connecting portion 711a is located radially outside the connecting portion 711b. In the example of FIG. 22, the connecting portion 711b is provided radially outside the frame body 74. Has been done. The connecting portion 711a is connected to the first output terminal 81 of the power supply 80, and the connecting portion 711b is connected to the second output terminal 82 of the power supply 80.
 各第1電極群7は互いに異なる電源80に接続されてもよい。これによれば、第1電極群7の周囲の電界空間の電界強度を個別に調整することができる。 Each first electrode group 7 may be connected to different power sources 80. According to this, the electric field strength of the electric field space around the first electrode group 7 can be individually adjusted.
 以上のように、基板処理装置1は詳細に説明されたが、上記の説明は、全ての局面において、例示であって、この基板処理装置1がそれに限定されるものではない。例示されていない無数の変形例が、この開示の範囲から外れることなく想定され得るものと解される。上記各実施の形態および各変形例で説明した各構成は、相互に矛盾しない限り適宜組み合わせたり、省略したりすることができる。 As described above, the substrate processing apparatus 1 has been described in detail, but the above description is an example in all aspects, and the substrate processing apparatus 1 is not limited thereto. It is understood that a myriad of variants not illustrated can be envisioned without departing from the scope of this disclosure. The configurations described in the above embodiments and the modifications can be appropriately combined or omitted as long as they do not conflict with each other.
 例えば流路仕切部63、第1板状体64、第2板状体66および誘電仕切部材73の少なくともいずれか一つは設けられていなくてもよい。流路仕切部63が設けられた場合、その個数は1以上であればよい。第1電極71は必ずしも同一平面に設けられる必要はなく、第1電極71の鉛直方向の位置が互いに相違していてもよい。 For example, at least one of the flow path partition portion 63, the first plate-shaped body 64, the second plate-shaped body 66, and the dielectric partition member 73 may not be provided. When the flow path partition portions 63 are provided, the number thereof may be one or more. The first electrodes 71 do not necessarily have to be provided on the same plane, and the positions of the first electrodes 71 in the vertical direction may be different from each other.
 また基板Wに対する処理は必ずしもレジスト除去処理に限らない。例えば、活性種により処理液の処理能力を向上させることができる全ての処理に適用可能である。言い換えれば、活性種が処理液の処理能力を向上させることができるように、第1プラズマ発生ユニット5および第2プラズマ発生ユニット500に供給するガスの種類が処理液に応じて選定される。 Further, the processing for the substrate W is not necessarily limited to the resist removing processing. For example, it can be applied to all treatments in which the treatment capacity of the treatment liquid can be improved by the active species. In other words, the type of gas supplied to the first plasma generation unit 5 and the second plasma generation unit 500 is selected according to the treatment liquid so that the active species can improve the treatment capacity of the treatment liquid.
 1 基板処理装置
 2 基板保持部
 4 処理液ノズル
 5 第1プラズマ発生ユニット
 50 ガス供給部
 500 第2プラズマ発生ユニット
 6 第1ユニット本体
 60 第1ガス流路
 600 第2ユニット本体
 61,61a~61c ガス分割流路
 610 第2ガス流路
 62,62a~62c ガス供給流路
 622,622a~622c 下流口
 64 第1板状体
 641 第1開口、第2開口(開口)
 65 シャッタ
 66 第2板状体
 661 第1流出口、第2流出口(流出口)
 7,7a~7h,7A 第1電極群
 700 第2電極群
 71,71a~71f 第1電極
 710,710a,710b 第2電極
 73 誘電仕切部材
 Q1 回転軸線
 W 基板
1 Substrate processing device 2 Substrate holding unit 4 Processing liquid nozzle 5 1st plasma generation unit 50 Gas supply unit 500 2nd plasma generation unit 6 1st unit main body 60 1st gas flow path 600 2nd unit main body 61, 61a to 61c Gas Divided flow path 610 Second gas flow path 62, 62a to 62c Gas supply flow path 622, 622a to 622c Downstream port 64 First plate-shaped body 641 First opening, second opening (opening)
65 Shutter 66 2nd plate-like body 661 1st outlet, 2nd outlet (outlet)
7,7a-7h, 7A 1st electrode group 700 2nd electrode group 71,71a-71f 1st electrode 710,710a, 710b 2nd electrode 73 Dielectric partition member Q1 Rotation axis W substrate

Claims (17)

  1.  基板を保持しつつ、前記基板の中心部を通る回転軸線のまわりで前記基板を回転させる基板保持部と、
     前記基板保持部によって保持された前記基板の主面に向かって処理液を吐出する処理液ノズルと、
     前記回転軸線に沿う平面視において前記処理液ノズルと隣り合う位置に設けられた第1プラズマ発生ユニットと、
    を備え、
     前記第1プラズマ発生ユニットは、
     平面視において互いに間隔を空けて並んで設けられた複数の第1電極を有する第1電極群と、
     鉛直上方から前記第1電極群に向かってガスを流すための第1ガス流路を形成する第1ユニット本体と
    を含み、前記第1電極群を通過した前記ガスを、前記基板保持部によって保持された前記基板の前記主面に供給する、基板処理装置。
    A substrate holding portion that rotates the substrate around a rotation axis passing through the center of the substrate while holding the substrate.
    A processing liquid nozzle that discharges the processing liquid toward the main surface of the substrate held by the substrate holding portion, and
    A first plasma generation unit provided at a position adjacent to the treatment liquid nozzle in a plan view along the rotation axis, and a first plasma generation unit.
    Equipped with
    The first plasma generation unit is
    A group of first electrodes having a plurality of first electrodes provided side by side at intervals from each other in a plan view,
    The main body of the first unit that forms a first gas flow path for flowing gas from vertically above toward the first electrode group is included, and the gas that has passed through the first electrode group is held by the substrate holding portion. A substrate processing apparatus for supplying to the main surface of the substrate.
  2.  請求項1に記載の基板処理装置であって、
     前記第1プラズマ発生ユニットは、前記複数の第1電極の相互間に設けられた誘電仕切部材をさらに備える、基板処理装置。
    The substrate processing apparatus according to claim 1.
    The first plasma generation unit is a substrate processing device further including a dielectric partition member provided between the plurality of first electrodes.
  3.  請求項1または請求項2に記載の基板処理装置であって、
     前記第1プラズマ発生ユニットは、前記基板の前記中心部から周縁部を含む前記基板の半径以上の領域に前記ガスを供給する、基板処理装置。
    The substrate processing apparatus according to claim 1 or 2.
    The first plasma generation unit is a substrate processing device that supplies the gas to a region having a radius or more of the substrate including a peripheral portion from the central portion of the substrate.
  4.  請求項1から請求項3のいずれか一つに記載の基板処理装置であって、
     前記第1ユニット本体は、前記第1ガス流路を平面視において複数のガス分割流路に仕切る流路仕切部を含む、基板処理装置。
    The substrate processing apparatus according to any one of claims 1 to 3.
    The first unit main body is a substrate processing apparatus including a flow path partition portion for partitioning the first gas flow path into a plurality of gas split flow paths in a plan view.
  5.  請求項3に記載の基板処理装置であって、
     前記第1ガス流路に前記ガスを供給するガス供給部を備え、
     前記処理液ノズルは前記基板の前記主面の中央部に向けて前記処理液を吐出し、
     前記複数のガス分割流路は、第1ガス分割流路と、第2ガス分割流路とを含み、
     前記第1ガス分割流路と前記回転軸線との間の距離は、前記第2ガス分割流路と前記回転軸線との間の距離よりも短く、
     前記ガス供給部は、前記第1ガス分割流路における前記ガスの第1流速が前記第2ガス分割流路における前記ガスの第2流速よりも高くなるように、前記第1ガス分割流路および前記第2ガス分割流路に前記ガスを供給する、基板処理装置。
    The substrate processing apparatus according to claim 3.
    The first gas flow path is provided with a gas supply unit for supplying the gas.
    The treatment liquid nozzle discharges the treatment liquid toward the central portion of the main surface of the substrate.
    The plurality of gas dividing channels include a first gas dividing channel and a second gas dividing channel.
    The distance between the first gas dividing flow path and the rotating axis is shorter than the distance between the second gas dividing flow path and the rotating axis.
    The gas supply unit has the first gas splitting flow path and the gas supply section so that the first flow velocity of the gas in the first gas splitting flow path is higher than the second flow velocity of the gas in the second gas splitting flow path. A substrate processing device that supplies the gas to the second gas dividing flow path.
  6.  請求項4または請求項5に記載の基板処理装置であって、
     前記第1ユニット本体には、前記複数のガス分割流路の一つにガスを供給する複数のガス供給流路が形成され、前記複数のガス供給流路の下流口は平面視において互いに異なる位置で前記複数のガス分割流路の前記一つに繋がる、基板処理装置。
    The substrate processing apparatus according to claim 4 or 5.
    A plurality of gas supply channels for supplying gas to one of the plurality of gas split channels are formed in the first unit main body, and downstream ports of the plurality of gas supply channels are located at different positions in a plan view. A substrate processing device connected to the one of the plurality of gas dividing flow paths.
  7.  請求項1から請求項6のいずれか一つに記載の基板処理装置であって、
     前記第1ユニット本体は、前記第1ガス流路において前記第1電極群よりも上流側に設けられ、前記第1電極群と向かい合う複数の開口を有する第1板状体をさらに含む、基板処理装置。
    The substrate processing apparatus according to any one of claims 1 to 6.
    The first unit main body is provided on the upstream side of the first electrode group in the first gas flow path, and further includes a first plate-like body having a plurality of openings facing the first electrode group. Device.
  8.  請求項7に記載の基板処理装置であって、
     前記処理液ノズルは前記基板の前記主面の中央部に向けて前記処理液を吐出し、
     前記複数の開口は、第1開口と、第2開口とを含み、
     前記第1開口と前記回転軸線との間の距離は、前記第2開口と前記回転軸線との間の距離よりも短く、
     前記第1開口の面積は前記第2開口の面積よりも小さい、基板処理装置。
    The substrate processing apparatus according to claim 7.
    The treatment liquid nozzle discharges the treatment liquid toward the central portion of the main surface of the substrate.
    The plurality of openings include a first opening and a second opening.
    The distance between the first opening and the rotation axis is shorter than the distance between the second opening and the rotation axis.
    A substrate processing apparatus in which the area of the first opening is smaller than the area of the second opening.
  9.  請求項1から請求項8のいずれか一つに記載の基板処理装置であって、
     前記第1ユニット本体は、前記第1電極群よりも下流側に設けられた前記第1ガス流路の流出口を開閉するシャッタをさらに含む、基板処理装置。
    The substrate processing apparatus according to any one of claims 1 to 8.
    The first unit main body is a substrate processing apparatus further including a shutter for opening and closing the outlet of the first gas flow path provided on the downstream side of the first electrode group.
  10.  請求項9に記載の基板処理装置であって、
     前記第1ユニット本体は、前記第1ガス流路の流出口として複数の流出口を有する第2板状体をさらに含む、基板処理装置。
    The substrate processing apparatus according to claim 9.
    The first unit main body is a substrate processing apparatus further including a second plate-like body having a plurality of outlets as outlets of the first gas flow path.
  11.  請求項10に記載の基板処理装置であって、
     前記処理液ノズルは前記基板の前記主面の中央部に向けて前記処理液を吐出し、
     前記複数の流出口は、第1流出口と、第2流出口とを含み、
     前記第1流出口と前記回転軸線との間の距離は、前記第2流出口と前記回転軸線との間の距離よりも短く、
     前記第1流出口の面積は前記第2流出口の面積よりも小さい、基板処理装置。
    The substrate processing apparatus according to claim 10.
    The treatment liquid nozzle discharges the treatment liquid toward the central portion of the main surface of the substrate.
    The plurality of outlets include a first outlet and a second outlet.
    The distance between the first outlet and the rotation axis is shorter than the distance between the second outlet and the rotation axis.
    A substrate processing apparatus in which the area of the first outlet is smaller than the area of the second outlet.
  12.  請求項1から請求項11のいずれか一つに記載の基板処理装置であって、
     前記処理液ノズルは前記基板の前記主面の中央部に向けて前記処理液を吐出し、
     前記複数の電極の相互間の電界空間のうち第1電界空間と前記回転軸線との間の距離は、前記電界空間のうち第2電界空間と前記回転軸線との間の距離よりも短く、
     前記第1電界空間には、前記第2電界空間に印加される電界の電界強度よりも高い電界強度で電界が印加される、基板処理装置。
    The substrate processing apparatus according to any one of claims 1 to 11.
    The treatment liquid nozzle discharges the treatment liquid toward the central portion of the main surface of the substrate.
    The distance between the first electric field space and the rotation axis in the electric field space between the plurality of electrodes is shorter than the distance between the second electric field space and the rotation axis in the electric field space.
    A substrate processing apparatus in which an electric field is applied to the first electric field space with an electric field strength higher than the electric field strength of the electric field applied to the second electric field space.
  13.  請求項12に記載の基板処理装置であって、
     前記複数の電極のうち前記第1電界空間を形成する2つの電極間に印加される電圧の大きさは、前記複数の電極のうち前記第2電界空間を形成する2つの電極間に印加される電圧の大きさよりも大きい、基板処理装置。
    The substrate processing apparatus according to claim 12.
    The magnitude of the voltage applied between the two electrodes forming the first electric field space among the plurality of electrodes is applied between the two electrodes forming the second electric field space among the plurality of electrodes. A substrate processing device that is larger than the magnitude of the voltage.
  14.  請求項12または請求項13に記載の基板処理装置であって、
     前記複数の電極のうち前記第1電界空間を形成する2つの電極の間隔は、前記複数の電極のうち前記第2電界空間を形成する2つの電極の間隔よりも狭い、基板処理装置。
    The substrate processing apparatus according to claim 12 or 13.
    A substrate processing apparatus in which the distance between two electrodes forming the first electric field space among the plurality of electrodes is narrower than the distance between the two electrodes forming the second electric field space among the plurality of electrodes.
  15.  請求項1から請求項14のいずれか一つに記載の基板処理装置であって、
     第2プラズマ発生ユニットをさらに備え、
     前記第2プラズマ発生ユニットは、
     複数の第2電極を有する第2電極群と、
     前記第2電極群に向かってガスを流すための第2ガス流路を形成する第2ユニット本体と
    を含み、前記第2電極群を通過した前記ガスを、前記処理液ノズルから吐出されて前記基板の前記主面に着液するまでの前記処理液に対して供給する、基板処理装置。
    The substrate processing apparatus according to any one of claims 1 to 14.
    Further equipped with a second plasma generation unit,
    The second plasma generation unit is
    A second electrode group having a plurality of second electrodes and
    The gas that has passed through the second electrode group is discharged from the treatment liquid nozzle to include the second unit main body that forms the second gas flow path for flowing the gas toward the second electrode group. A substrate processing apparatus that supplies the processing liquid until it reaches the main surface of the substrate.
  16.  請求項1から請求項15のいずれか一つに記載の基板処理装置であって、
     前記第1プラズマ発生ユニットは平面視において前記処理液ノズルの周囲を囲って、前記処理液ノズルとともに遮断板を形成し、
     前記遮断板は、前記基板保持部によって保持された前記基板の上面よりも鉛直上方に設けられ、前記基板の上面と鉛直方向において向かい合う、基板処理装置。
    The substrate processing apparatus according to any one of claims 1 to 15.
    The first plasma generation unit surrounds the treatment liquid nozzle in a plan view and forms a blocking plate together with the treatment liquid nozzle.
    The blocking plate is a substrate processing apparatus that is provided vertically above the upper surface of the substrate held by the substrate holding portion and faces the upper surface of the substrate in the vertical direction.
  17.  請求項1から請求項16のいずれか一つに記載の基板処理装置であって、
     前記第1電極群は複数設けられており、
     前記複数の第1電極群は前記回転軸線の周方向において並んで設けられる、基板処理装置。
    The substrate processing apparatus according to any one of claims 1 to 16.
    A plurality of the first electrode groups are provided, and the first electrode group is provided.
    A substrate processing apparatus in which the plurality of first electrode groups are provided side by side in the circumferential direction of the rotation axis.
PCT/JP2021/029250 2020-08-31 2021-08-06 Substrate processing device WO2022044767A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020145584A JP2022040737A (en) 2020-08-31 2020-08-31 Substrate processing device
JP2020-145584 2020-08-31

Publications (1)

Publication Number Publication Date
WO2022044767A1 true WO2022044767A1 (en) 2022-03-03

Family

ID=80353137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029250 WO2022044767A1 (en) 2020-08-31 2021-08-06 Substrate processing device

Country Status (3)

Country Link
JP (1) JP2022040737A (en)
TW (1) TWI789888B (en)
WO (1) WO2022044767A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053312A (en) * 2000-08-09 2002-02-19 Sony Corp Device for generating caro's acid, device and method for removing resist
JP2006302623A (en) * 2005-04-19 2006-11-02 Matsushita Electric Works Ltd Plasma treatment device and plasma treatment method
JP2007103732A (en) * 2005-10-05 2007-04-19 Dainippon Screen Mfg Co Ltd Method and apparatus for processing substrate
JP2008028365A (en) * 2006-06-22 2008-02-07 Riverbell Kk Processing apparatus and method
JP2009117477A (en) * 2007-11-02 2009-05-28 Tokyo Electron Ltd Gas supply device, and substrate processing apparatus, and substrate processing method
JP2013026622A (en) * 2011-07-25 2013-02-04 Psk Inc Baffle and substrate processing apparatus including the same
JP2014179386A (en) * 2013-03-13 2014-09-25 Hitachi High-Technologies Corp Plasma processing apparatus
JP2015105405A (en) * 2013-11-29 2015-06-08 株式会社日立国際電気 Substrate treatment apparatus, substrate treatment method and manufacturing method of semiconductor device
WO2020166282A1 (en) * 2019-02-13 2020-08-20 株式会社Screenホールディングス Generation device, substrate treatment device, and substrate treatment method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150079301A1 (en) * 2013-09-13 2015-03-19 Srinivas Nemani Method of depositing thin metal-organic films

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053312A (en) * 2000-08-09 2002-02-19 Sony Corp Device for generating caro's acid, device and method for removing resist
JP2006302623A (en) * 2005-04-19 2006-11-02 Matsushita Electric Works Ltd Plasma treatment device and plasma treatment method
JP2007103732A (en) * 2005-10-05 2007-04-19 Dainippon Screen Mfg Co Ltd Method and apparatus for processing substrate
JP2008028365A (en) * 2006-06-22 2008-02-07 Riverbell Kk Processing apparatus and method
JP2009117477A (en) * 2007-11-02 2009-05-28 Tokyo Electron Ltd Gas supply device, and substrate processing apparatus, and substrate processing method
JP2013026622A (en) * 2011-07-25 2013-02-04 Psk Inc Baffle and substrate processing apparatus including the same
JP2014179386A (en) * 2013-03-13 2014-09-25 Hitachi High-Technologies Corp Plasma processing apparatus
JP2015105405A (en) * 2013-11-29 2015-06-08 株式会社日立国際電気 Substrate treatment apparatus, substrate treatment method and manufacturing method of semiconductor device
WO2020166282A1 (en) * 2019-02-13 2020-08-20 株式会社Screenホールディングス Generation device, substrate treatment device, and substrate treatment method

Also Published As

Publication number Publication date
JP2022040737A (en) 2022-03-11
TW202218013A (en) 2022-05-01
TWI789888B (en) 2023-01-11

Similar Documents

Publication Publication Date Title
TWI736946B (en) Processing systems and methods for halide scavenging
KR102009613B1 (en) Substrate Processing Method
TWI759725B (en) Substrate processing method, semiconductor manufacturing method, and substrate processing apparatus
WO2022044767A1 (en) Substrate processing device
WO2022044756A1 (en) Substrate processing device
TWI807413B (en) Substrate processing method
KR102568084B1 (en) Apparatus and method for treating substrate
WO2022181598A1 (en) Substrate processing device and substrate processing method
WO2023042487A1 (en) Substrate processing device and substrate processing method
WO2022181596A1 (en) Substrate holding mechanism and substrate processing device
JP5824225B2 (en) Substrate processing equipment
WO2019058701A1 (en) Substrate processing method and substrate processing device
WO2023037663A1 (en) Substrate processing method and substrate processing device
TWI826946B (en) Substrate processing method and substrate processing apparatus
TWI774198B (en) Substrate treatment method
WO2020261868A1 (en) Substrate processing device and substrate processing method
WO2022181604A1 (en) Substrate processing method and substrate processing device
WO2022201830A1 (en) Substrate processing method and substrate processing device
JP2023141833A (en) Substrate processing apparatus
TW202331824A (en) Substrate processing method and substrate processing device
JP2023095119A (en) Substrate processing apparatus and plasma generation device
JP2022041069A (en) Atmospheric pressure plasma source and substrate processing device
JP2023122439A (en) Substrate processing device and substrate processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861195

Country of ref document: EP

Kind code of ref document: A1