WO2022042595A1 - 一种双蓄热室型粉料飞行熔窑 - Google Patents

一种双蓄热室型粉料飞行熔窑 Download PDF

Info

Publication number
WO2022042595A1
WO2022042595A1 PCT/CN2021/114517 CN2021114517W WO2022042595A1 WO 2022042595 A1 WO2022042595 A1 WO 2022042595A1 CN 2021114517 W CN2021114517 W CN 2021114517W WO 2022042595 A1 WO2022042595 A1 WO 2022042595A1
Authority
WO
WIPO (PCT)
Prior art keywords
feeding
gas
melting furnace
raw material
inlet
Prior art date
Application number
PCT/CN2021/114517
Other languages
English (en)
French (fr)
Inventor
陈志伟
Original Assignee
陈志伟
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陈志伟 filed Critical 陈志伟
Priority to JP2023513887A priority Critical patent/JP2023539510A/ja
Publication of WO2022042595A1 publication Critical patent/WO2022042595A1/zh
Priority to US18/114,978 priority patent/US20230280097A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • C03B3/02Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet
    • C03B3/023Preheating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/167Means for preventing damage to equipment, e.g. by molten glass, hot gases, batches
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • C03B5/237Regenerators or recuperators specially adapted for glass-melting furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/0806Charging or discharging devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/008Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases cleaning gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/02Supplying steam, vapour, gases, or liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping

Definitions

  • the invention belongs to the field of chemical industry, and in particular relates to a double regenerator type powder flying melting furnace for melting powdery raw materials (or ash contained in powdery solid fuel) at high temperature in a flying state, which can be widely used in glass Production, iron smelting, non-ferrous metal smelting, solid fuel gasification, etc.
  • U.S. Patent No. US 8,747,524B2 discloses a melting furnace, which can carry out high-temperature reaction of powdered raw materials such as powdered glass raw materials, iron-making raw materials, non-ferrous metal production raw materials, solid fuels, etc. in a flight state and recover the waste heat generated by the high-temperature reaction.
  • this type of furnace requires two regenerators to be used alternately to preheat oxygen-containing gas and cool high temperature gas products.
  • the inner walls of the feed openings of the two furnaces are often condensed and bonded, which blocks the feed openings, thereby affecting the smooth feeding of raw materials.
  • the regenerator can be used for preheating oxygen-containing gas and cooling high-temperature gas products in turn, and the two furnaces need to be fed alternately; the furnace connected to the regenerator for preheating oxygen-containing gas is in the feeding state, and the furnace of the furnace Inside, the fuel (when used for solid fuel gasification, the fuel is the powdered solid fuel fed into the furnace from the feed port, and all the contents in parentheses in the following paragraph are expressed as the case when used for solid fuel gasification) It is rapidly mixed and burned with preheated oxygen-containing gas to reach above the melting temperature of powdered raw materials (or ash contained in powdered solid fuels).
  • the powdery raw material (or powdery solid fuel) is dispersed in the high temperature gas and is in flight state, and the heat and mass transfer efficiency is very high.
  • the molten dust in the furnace scours the furnace wall with the flow of high-temperature gas, and most of it will adhere to the furnace wall. Under the action of gravity, the liquid molten dust flows down to the liquid discharge port near the bottom of the furnace for output. Although the high-temperature gas output from the gas port will still carry a small amount of molten dust, it will then enter the second furnace.
  • Purification and separation are carried out on the furnace wall of the furnace, and the purified high-temperature gas is input into the regenerator for cooling the high-temperature gas product to recover heat; since the powdered raw material (or powdered solid fuel) enters the regenerator which is connected to the preheated oxygen-containing gas
  • the furnace is installed, a small amount will stick to the inner wall of the feeding port of the furnace.
  • the feeding port of the furnace stops feeding, and the high temperature gas entering the furnace from another furnace will cause the feeding of the furnace.
  • the inner wall of the inlet is heated and heated up, and the powdery raw material (or the ash contained in the powdered solid fuel) adhering to the inner wall of the inlet is heated and melted and adhered to the inner wall of the inlet.
  • the inlet When the direction is reversed again, the inlet When the feeding is resumed, the newly incoming powdered raw material (or powdered solid fuel) will stick to the melt bonded on the inner wall of the feed port and reduce the temperature of the inner wall of the feed port, so that the bonded melt is cooled and solidified , In this way, in the case of repeated commutation, repeated bonding and solidification will occur, and the bond will continue to accumulate, causing blockage.
  • the present invention provides the first double regenerator type powder flying melting furnace, including two melting furnaces, raw material feeding equipment and oxygen-containing gas preheating system;
  • the oxygen-containing gas preheating system includes two regenerators, two intake reversing rams, two exhaust reversing rams, oxygen-containing gas input equipment and exhaust equipment;
  • One for preheating oxygen-containing gas and the other for cooling high temperature gas products the regenerator for preheating oxygen-containing gas has a gas inlet and a preheat gas outlet, and the regenerator for cooling high temperature gas products has high temperature Air inlet and cooling air outlet.
  • connection mode of the components included in the oxygen-containing gas preheating system is as follows: the oxygen-containing gas input device communicates with the gas inlet through an air intake reversing shutter in an open state, and is closed through another The intake reversing gate in the state is connected with the cooling air outlet; the exhaust equipment is communicated with the cooling air outlet through an exhaust reversing gate in an open state, and is connected with the cooling air outlet through another exhaust reversing gate in a closed state.
  • the plate is connected to the gas inlet.
  • the above-mentioned melting furnace includes a feed reversing gate, a raw material feeding pipe, an air inlet, an air outlet and a feeding port; the raw material feeding pipe of the melting furnace includes an outlet end and an inlet end, and the outlet end is connected to the melting furnace.
  • the feeding port of the two furnaces is connected, and its inlet end is connected with the feeding reversing gate of the furnace; the feeding reversing gates of the two furnaces are respectively connected with the raw material feeding equipment through a common feeding pipeline; the preheating gas
  • the outlet is communicated with the air inlet of one melting furnace, the feeding reversing gate of the melting furnace is in an open state, the air outlet of the melting furnace is communicated with the air inlet of another melting furnace through the air flow channel, and the feeding of the other melting furnace is reversed.
  • the gate is in a closed state, and the gas outlet of the other furnace is communicated with the high temperature gas inlet; the common feed pipe is provided with a purge gas inlet.
  • the purging gas in the above scheme has a purging effect on the inner wall of the feeding port, so as to prevent the powdery raw material from adhering to the inner wall of the feeding port, and no melt bonding will be formed, which can be avoided. blocked.
  • the inventor's research found that under ideal conditions, after the molten dust carried by the high-temperature gas is purified and separated by the furnaces of the two furnaces, the high-temperature gas will reach a very clean level and then be input into the regenerator for cooling the high-temperature gas product to recover the heat.
  • the above technical solution can better solve the problem of clogging of the feed inlet.
  • this ideal level is sometimes not achieved, and 100% of the molten dust is not completely separated, and a very small amount of molten dust that is difficult to be completely separated will fly into the feed of the second furnace that is in the state of stopping feeding.
  • the feed port is adhered to the inner wall of the feed port, and after a long period of accumulation, the feed port will still be blocked.
  • the present invention provides a second dual-regenerator type powder flying melting furnace, including two melting furnaces and an oxygen-containing gas preheating system.
  • the components and connection methods of the system are basically the same as those of the first dual-regenerator type powder flying melting furnace, with the following differences:
  • the furnace includes a raw material feeding device, an air inlet, an air outlet, a feeding port and a raw material feeding pipeline;
  • the raw material feeding pipeline of the melting furnace includes an outlet end and an inlet end, and the outlet end is connected with the feeding of the furnace.
  • the inlet end is communicated with the raw material feeding equipment of the melting furnace;
  • the preheating gas outlet is communicated with the air inlet of a melting furnace, and the raw material feeding equipment of the melting furnace is in the starting feeding state.
  • the air outlet is communicated with the air inlet of the other melting furnace through the air flow channel, the raw material feeding equipment of the other melting furnace is in a state of stopping feeding, and the air outlet of the other melting furnace is communicated with the high temperature gas inlet; the raw material feeding pipeline is provided with Purge gas inlet.
  • both the raw material feeding pipelines of the two furnaces are provided with a purge gas input port, when the raw material feeding device of the other furnace is in the state of stopping feeding, there is also a purge gas input from the feeding port of the furnace.
  • the furnace can prevent the high-temperature molten dust that has not been completely purified by the furnace from flying into the feeding port, avoid high-temperature molten dust from sticking to the inner wall of the feeding port and cause blockage, and can also cool the inner wall of the feeding port to avoid feeding
  • the inner wall of the feed port is heated to the melting temperature of the powdery raw material (or the ash contained in the powdery solid fuel).
  • the present invention provides a third dual-regenerator type powder flying melting furnace, including two melting furnaces and an oxygen-containing gas preheating system.
  • the components and connection methods of the system are basically the same as those of the first dual-regenerator type powder flying melting furnace, with the following differences:
  • the furnace includes a raw material feeding device, an air inlet, an air outlet, a feeding port and a raw material feeding pipeline;
  • the raw material feeding pipeline of the melting furnace includes an outlet end and an inlet end, and the outlet end is connected to the feeding of the furnace
  • the inlet end is communicated with the raw material feeding equipment of the melting furnace;
  • the preheating gas outlet is communicated with the air inlet of a melting furnace, the raw material feeding equipment of the melting furnace is in the starting feeding state, and the outlet of the melting furnace is in the feeding state.
  • the gas port is communicated with the air inlet of another melting furnace through the air flow channel, the raw material feeding equipment of the other melting furnace is in the state of stopping feeding, and the gas outlet of the other melting furnace is communicated with the high temperature gas inlet; there is a forced feeding on the feeding port.
  • the forced feeding device pushes the powdery raw material from the raw material feeding pipeline into the feeding port by mechanical thrust.
  • the present invention provides a fourth dual-regenerator type powder flying melting furnace, which includes two furnaces and an oxygen-containing gas preheating system.
  • the components and connection methods of the system are basically the same as those of the first dual-regenerator type powder flying melting furnace, with the following differences:
  • the furnace includes a raw material feeding device, a raw material feeding pipe, an air inlet, an air outlet and a feeding port; the raw material feeding pipe is a mobile feeding pipe, and the outlet end of the mobile feeding pipe is connected to the feeding pipe.
  • the preheating gas outlet is communicated with the air inlet of a melting furnace
  • the feeding port of the melting furnace is communicated with the raw material feeding equipment through a mobile feeding pipe
  • the gas outlet of the melting furnace is connected by
  • the airflow channel is communicated with the air inlet of the other melting furnace, and the air outlet of the other melting furnace is communicated with the high temperature gas inlet; the feeding port of the other melting furnace and the outlet end of the mobile feeding pipe are in a disconnected state.
  • FIG. 1 is a schematic structural diagram of the first embodiment of the double regenerator type powder flying melting furnace of the present invention.
  • FIG. 2 is an enlarged schematic view of the dotted circle portion 24 in FIG. 1 .
  • FIG. 3 is an enlarged schematic view of the dotted circle portion 25 in FIG. 1 .
  • Fig. 4 is a partial structural schematic diagram of the second embodiment of the double regenerator type powder flying melting furnace of the present invention.
  • FIG. 5 is a schematic structural diagram of the third embodiment of the double regenerator type powder flying melting furnace of the present invention.
  • FIG. 6 is an enlarged schematic view of the dotted circle portion 30 in FIG. 5 .
  • FIG. 7 is a partial structural schematic diagram of the fourth embodiment of the double regenerator type powder flying melting furnace of the present invention.
  • FIG. 8 is a schematic structural diagram of the fifth embodiment of the double regenerator type powder flying melting furnace of the present invention.
  • FIG. 9 is an enlarged schematic view of the dotted circle portion 41 in FIG. 8 .
  • FIG. 10 is an enlarged schematic view of the dotted circle portion 42 in FIG. 8 .
  • Fig. 11 is a partial structural schematic diagram of the sixth embodiment of the double regenerator type powder flying melting furnace of the present invention.
  • FIG 12 and 13 are partial structural schematic views of the seventh embodiment of the double regenerator type powder flying melting furnace of the present invention.
  • FIG. 14 and 15 are partial structural schematic diagrams of the eighth embodiment of the double regenerator type powder flying melting furnace of the present invention.
  • 16 is a schematic structural diagram of the ninth embodiment of the double regenerator type powder flying melting furnace of the present invention.
  • the double regenerator type powder flying melting furnace of the present invention includes: two furnaces, a raw material feeding device 1 and an oxygen-containing gas preheating system.
  • the oxygen-containing gas preheating system includes two storage tanks. Hot chamber 3, two intake reversing rams 4, two exhaust reversing rams 5, oxygen-containing gas input device 6 and exhaust device 7; one of the two regenerators 3 is used to preheat the Oxygen gas, another for cooling high temperature gas product, regenerator 3 for preheating oxygen-containing gas with gas inlet 18 and preheat gas outlet 19, regenerator 3 for cooling high temperature gas product with high temperature gas inlet 20 and cooling air outlet 21.
  • the connection mode of each component of the above-mentioned oxygen-containing gas preheating system has the following characteristics: the oxygen-containing gas input device 6 communicates with the gas through an intake reversing gate 4 (the intake reversing gate 4 on the right side of FIG. 1 ) that is in an open state.
  • the inlet 18 is communicated and is connected to the cooling air outlet 21 through another intake reversing shutter 4 (the intake reversing shutter 4 on the left side of FIG. 1 ) which is in a closed state;
  • the exhaust reversing damper 5 (the exhaust reversing damper 5 on the left side of FIG.
  • the furnace includes a feeding reversing gate 8, a raw material feeding pipeline 9, an air inlet 10, an air outlet 12 and a feeding opening 13;
  • the raw material feeding pipeline 9 of the furnace includes an outlet end 15 and the inlet end 16, the outlet end 15 is communicated with the feeding port 13 of the melting furnace, and the inlet end 16 is connected with the feeding reversing gate 8 of the melting furnace;
  • the raw material feeding equipment 1 is connected;
  • the preheating gas outlet 19 is communicated with the air inlet 10 of a furnace, and the feeding reversing gate 8 (the feeding reversing gate 8 on the right side of FIG.
  • the air port 12 is communicated with the air inlet 10 of another melting furnace through the air flow passage 22, the feeding reversing gate 8 of the other melting furnace (the feeding reversing gate 8 on the left side of FIG. 2 ) is in a closed state, and the air outlet of the other melting furnace is in a closed state. 12 is communicated with the high temperature gas inlet 20; the common feed pipe 17 is provided with a purge gas inlet 23.
  • the intake reversing gate 4 and the exhaust reversing gate 5 are used for reversing operation.
  • the forward shutter 4 and the other exhaust reversing shutter 5 are in a closed state. Every once in a while, the intake reversing gate 4 and the exhaust reversing gate 5 are reversed once.
  • the intake reversing gate 4 and the exhaust reversing gate 5 which are in the closed state before reversing are in the open state after reversing;
  • the feeding reversing gate 8 which is in the open state before reversing is in the reversing state.
  • the feeding reversing gate 8, which is in the closed state before the reversing becomes the open state after the reversing.
  • the reversing operation is generally performed every 10-60 minutes.
  • the purge gas input port 23 is provided on the common feeding pipeline 17, the purge gas will be mixed with the powdery raw material input from the raw material feeding device 1 in turn.
  • the feed reversing gate 8 in the open state and its connected raw material feeding pipeline 9 and feeding port 13 are input into the furnace 11, and the purging gas plays a role in purging the inner wall 29 of the feeding port 13 to prevent the powdery raw materials from sticking. Attached to the inner wall 29 of the feeding port 13, after reversing and closing the feeding reversing gate 8 connected with the raw material feeding pipeline 9, the raw material feeding pipeline 9 has no raw material and purge gas input into the furnace 11 (as shown in FIG. 3 ).
  • the high temperature gas in the furnace 11 will heat the temperature at the inner wall 29 of the feed port 13 to above the melting temperature of the powdered raw material (or the ash contained in the powdered solid fuel), but due to the above-mentioned purging effect, there is no The powdery raw material sticks to the inner wall 29 of the feed port 13, and will not form a melt bond, which plays the role of avoiding clogging.
  • the structure of the second embodiment is basically the same as that of the first embodiment, the difference is: in the second embodiment, the purge gas input port 23 provided on the common feed pipe 17 is connected with a purge gas input pipe 27; A valve 28 is installed on the purge gas input pipeline 27.
  • the third embodiment of the double regenerator type powder flying melting furnace of the present invention includes two melting furnaces and the same oxygen-containing gas preheating system as the first embodiment, the difference is:
  • the furnace includes a raw material feeding device 1, an air inlet 10, an air outlet 12, a feeding port 13 and a raw material feeding pipeline 9;
  • the raw material feeding pipeline 9 of the furnace includes an outlet end 15 and an inlet The end 16 and the outlet end 15 are communicated with the feeding port 13 of the furnace, and the inlet end 16 thereof is communicated with the raw material feeding device 1 of the furnace; the preheating gas outlet 19 is communicated with the air inlet 10 of a furnace, and the raw material of the furnace is fed.
  • the feeding equipment 1 is in the starting feeding state, the air outlet 12 of the melting furnace is communicated with the air inlet 10 of the other melting furnace through the air flow channel 22, the raw material feeding device 1 of the other melting furnace is in the feeding state of stopping, and the air outlet of the other melting furnace is in the feeding state. 12 is communicated with the high temperature gas inlet 20; the raw material feeding pipeline 9 is provided with a purge gas inlet 23.
  • the area indicated by the dashed circle 30 in FIG. 5 is replaced by the area indicated by the dashed circle 31 in FIG. 7 to form a double regenerator type powder flight melting furnace.
  • the structure of the fourth embodiment is basically the same as that of the third embodiment, the difference is that: the purge gas input port 23 provided on the raw material feed pipe 9 is connected with a purge gas input pipe 27; the purge gas input pipe 27 is top mounted There is valve 28.
  • the valve 28 installed on the purge gas input pipeline 27 can open or close the purge gas, and can also adjust the amount of purge gas, so that the amount of purge gas can reach a more appropriate amount, so as to avoid the inability to clean the inlet when the amount is too low
  • the inner wall 29 of 13 it can also avoid the waste of excessive purge gas consumption; the purge gas is not preheated, and the temperature is relatively low, and the excessive amount will reduce the furnace temperature.
  • the feeding port 13 that stops feeding does not need a large airflow rate to prevent the molten dust from flying in, and the valve 28 can be used to adjust the amount of purge gas.
  • the feeding port 13 that is being fed does not need to continuously input purging gas. It is only necessary to open the valve 28 before switching to clean the powder adhering to the inner wall 29 of the feeding port. Generally, it can be closed after purging for 3 to 5 seconds. Valve 28 out. For the solution of the second embodiment, it is also necessary to open the valve 28 after reversing, to purge the feed port 13 that is about to start feeding, and to cool its inner wall 29 to the point where the powdered raw material (or the ash contained in the powdered solid fuel) is cooled.
  • ironmaking the amount of ironmaking raw materials consumed per ton of iron can be reduced by 3.2%;
  • the amount of copper smelting raw materials consumed per ton of copper can be reduced by 2.7%;
  • the amount of solid fuel consumed per cubic meter of gas produced can be reduced by 2.6%.
  • the powdered raw materials fed into the furnace from the feeding port 13 will have some powder agglomeration, and the agglomerated powder will enter the furnace. After the furnace, some of them are not blown away by the high-temperature airflow in the furnace, and the surface layer of the powder mass is rapidly melted to form a powder mass wrapped by a layer of molten liquid. It is more difficult to be blown away in the airflow.
  • the powder inside the powder group reacts very slowly with the external high temperature air mass transfer and heat transfer, resulting in the following adverse effects:
  • the powdered raw material is usually powdered glass raw material.
  • the powder inside the glass raw material powder group wrapped by the molten liquid is too late to be fully melted, and becomes a kind of particles that are not fully melted and is discharged from the furnace, forming a glass product in the final formed flat glass or bottle glass and other products. Inclusion defects in the product become a substandard product;
  • the powdery raw materials include iron ore powder and powdery flux minerals, and the powdery flux minerals are usually limestone.
  • the high-temperature gas in the furnace chamber 11 is a high-temperature reducing gas containing CO and H2 .
  • the powdery raw materials are fully dispersed in the high-temperature reducing gas, and the heat and mass transfer efficiency is very high. It will quickly melt into a liquid state and reduce and precipitate liquid iron and iron. The molten slag is discharged from the liquid discharge port 2 .
  • the powdery raw materials include copper sulfide concentrate powder and powdery flux.
  • the powdery raw materials are fully dispersed in the high temperature gas in the furnace, and it only takes 2 to 3 seconds to complete the reactions such as oxidative desulfurization, melting, and slagging to form copper matte and slag, which are discharged from the liquid discharge port 2.
  • the reaction speed of the copper sulfide concentrate inside the powder mass wrapped by the molten liquid and the external high temperature gas transfer and heat transfer is very slow, and it is too late to fully react to form copper matte, and it becomes slag and is discharged from the liquid discharge port 2;
  • the pulverized raw material usually includes pulverized coal and pulverized biomass fuel.
  • the ash contained in the surface layer of the solid fuel powder mass that has not been blown is rapidly melted in the high temperature furnace to form a powder mass surrounded by a layer of molten liquid, and the solid fuel inside the powder mass is too late to fully gasify into high temperature.
  • the gas is discharged from the furnace along with the molten ash.
  • the fine glass raw material powder particles are fully contacted with the high-temperature air flow, and the melting reaction can be fully carried out to form a qualified glass liquid, which avoids the defect of inclusions caused by powder agglomeration, and improves the product qualification rate;
  • the fine ironmaking powder particles are fully contacted with the high-temperature reducing airflow, and the reaction speed is very fast, which can fully reduce and extract the iron in the raw materials, and avoid the waste of raw materials caused by powder agglomeration;
  • the fine copper smelting powder particles are fully contacted with the high-temperature air flow, and the reaction speed is very fast. It can be converted into copper matte, so as not to turn it into slag and cause waste of raw materials;
  • the fine powdered solid fuel particles are fully contacted with high-temperature oxygen-containing gas, and the reaction speed is very fast, which can be fully gasified to generate high-temperature gas containing CO and H2 , avoiding the agglomeration of powdered solid fuel. waste of fuel.
  • the present invention preferably continuously feeds the purge gas to the feed port 13 being fed.
  • the purging gas input device can be connected to the purging gas input port 23 to input the purging gas, and the purging gas can use oxygen-containing gas or nitrogen gas.
  • the oxygen-containing gas includes air or oxygen-enriched air.
  • Using air as the purge gas is relatively easy to obtain. It is only necessary to connect a blower to the purge gas input port 23, and it is also possible to use compressed air for input. If the furnace pressure in the furnace 11 is controlled to an appropriate negative pressure value (equivalent to that the pressure in the furnace 11 is lower than the external pressure and has a suitable pressure difference), it is only necessary to open a hole in the raw material feeding pipeline 9 or the common feeding pipeline 17 It can be used as a purge gas input device to inhale the outside air and play the role of purge gas, which is very convenient.
  • the oxygen-containing gas is used as the purge gas, and the high-temperature reducing waste gas can also be mixed with the purge gas before being fed into the regenerator 3 for cooling the high-temperature gas product Mixed combustion.
  • the valve 28 on the purge gas input pipe 27 it is only necessary to adjust the valve 28 on the purge gas input pipe 27 to adjust the input amount of oxygen-containing gas to make the high-temperature reducing waste gas fully burn, so as to make full use of the chemical properties of the high-temperature reducing waste gas. can.
  • the fifth embodiment of the double regenerator type powder flying melting furnace of the present invention includes two furnaces and the same oxygen-containing gas preheating system as the first embodiment, the difference is:
  • the melting furnace includes a raw material feeding device 1, an air inlet 10, an air outlet 12, a feeding port 13 and a raw material feeding pipeline 9;
  • the raw material feeding pipeline 9 of the melting furnace includes an outlet end 15 and an inlet end 16, and its outlet
  • the end 15 is connected to the feeding port 13 of the melting furnace, and the inlet end 16 thereof is communicated with the raw material feeding device 1 of the melting furnace;
  • the preheating gas outlet 19 is communicated with the air inlet 10 of a melting furnace, and the raw material feeding device 1 of the melting furnace is connected.
  • the air outlet 12 of the melting furnace is communicated with the air inlet 10 of another melting furnace through the air flow channel 22.
  • the gas inlet 20 is communicated;
  • the feeding port 13 is provided with a forced feeding device.
  • the forced feeding device includes a push rod 35, a rod chamber 36, a piston 37, and a drive mechanism 38 that pushes the piston 37 to reciprocate;
  • the rod chamber 36 is connected to the inlet end 16 of the raw material feeding pipeline 9, and the push rod
  • the outer diameter of 35 is adapted to the inner diameter of the raw material feeding pipe 9;
  • the push rod 35 includes a tail end 39 and a top end 40;
  • the tail end 39 of the push rod 35 is connected to the piston 37, and the top end 40 of the push rod 35 is pushed by the piston 37 to reach
  • the retraction end position of the reciprocating motion is at the end position of retraction, it retreats into the rod chamber 36 (as shown in Figure 10), and when it reaches the end position of the reciprocating motion, it reaches the feeding port 13 (as shown in Figure 9);
  • the tail end 39 of the push rod 35 When pushed by the piston 37 to reach the advancing end position of the reciprocating motion, it is located in the rod-accommodating cavity 36
  • the above-mentioned forced feeding equipment is a device that pushes powdery raw materials from the raw material feeding pipeline into the feeding port 13 by mechanical thrust.
  • the powdery raw material inside enters the feed port 13 .
  • the above-mentioned push rod 35 can continuously and forcefully push the powdery raw material and the melt into the furnace 11 from the feeding port 13, and can remove a small amount of the melt sticking to the inner wall 29 in time, so as to prevent the melt from being difficult to remove after condensing and bonding. cause clogging problems.
  • the forced feeding device in the sixth embodiment includes a spring-shaped helical blade 67 and a The shaft 68 is mechanically driven to rotate; the helical blade 67 is located in the raw material feeding pipeline 9, the shaft 68 is located on the center line of the helical blade 67, and the shaft 68 is fixedly connected with the helical blade 67.
  • the machine that drives the shaft 68 to rotate is a motor 69 , and the shaft 68 is connected to the motor 69 .
  • the above-mentioned forced feeding device is also a device that pushes the powdery raw material from the raw material feeding pipeline into the feeding port 13 by mechanical thrust.
  • the powdery raw material and the molten material will be forcibly pushed into the furnace 11 by the spiral blades 67, so as to avoid clogging.
  • the furnace includes a raw material feeding device 1, a raw material feeding pipe, an air inlet 10, an air outlet 12 and a feeding port 13;
  • the raw material feeding pipe is a mobile feeding pipe 43, and the mobile feeding pipe
  • the outlet end 44 of 43 and the feeding port 13 are movably connected;
  • the preheating gas outlet 19 is communicated with the air inlet 10 of a furnace, and the feeding port 13 of the furnace is fed with the raw material through the movable feeding pipe 43.
  • the feeding equipment 1 is communicated, the air outlet 12 of the furnace is communicated with the air inlet 10 of another furnace through the air flow channel 22, and the air outlet 12 of the other furnace is communicated with the high temperature gas inlet 20; the feeding port 13 of the other furnace
  • the outlet end 44 of the movable feed pipe 43 is disconnected.
  • the mobile feeding pipe 43 includes a fixed pipe 47, a moving pipe 46, a gate 48, a piston 49 and a driving mechanism 50 that pushes the piston 49 to reciprocate;
  • the fixed pipe 47 includes an inlet end 45 and an outlet 52;
  • the The inlet end 45 is communicated with the raw material feeding device 1;
  • the moving pipe 46 includes an inlet 51 and an outlet end 44;
  • the shutter 48 is fixedly connected to the outside of the inlet 51 of the moving pipe 46;
  • the piston 49 is connected to the moving pipe 46;
  • the outlet end 44 is connected to the feed port 13 (as shown in FIG.
  • the operator can disconnect the feeding port 13 that has stopped feeding from the mobile feeding pipe 43 at any time, and check whether the inner wall 29 of the feeding port 13 has the molten material condensed and bonded, which is convenient for operation. Workers use conventional tools such as electric drills, iron brushes or grinding wheels to clean up the materials stuck on the inner wall 29, so as to avoid clogging when more and more materials stick to it.
  • the disadvantage is that after disconnection, the feeding port 13 is connected to the outside world, which will cause external heat dissipation loss from the furnace; Therefore, when disconnecting, the furnace pressure should be adjusted to be slightly lower than the external pressure.
  • Figures 14, 15 schematically represent a mobile feed tube and a gate.
  • the areas indicated by the dashed circles 41 and 42 in Fig. 8 are replaced by the areas indicated by the dashed circles 65 and 66 in Figs.
  • the structure is basically the same, the difference is that the gate 32 is provided on the feed port 13 in the eighth embodiment, and has a movable feed pipe 43 of a different structure from that of the seventh embodiment.
  • the mobile feed pipe 43 includes an inner pipe 55, an outer pipe 56, an outlet end 44, an inlet end 45, a transverse arm 57, a piston 58 and a drive mechanism 59 that pushes the piston 58 to reciprocate; the inlet The end 45 is communicated with the raw material feeding equipment 1; one end of the transverse arm 57 is connected to the outer pipe 56, and the other end is connected to the piston 58; the outer pipe 56 is sleeved on the inner pipe 55, and there is an oil seal 60 in the gap between the two;
  • the outlet end 44 is disconnected from the feed port 13 and away from the feed port 13 (as shown in FIG.
  • the gate 32 includes a gate 61, a cross arm 62, a piston 63 and a drive mechanism 64 that pushes the piston 63 to reciprocate; one end of the cross arm 62 is connected to the gate 61, and the other end is connected to the piston 63;
  • the gate 61 covers the feed port 13 , and is pushed to the retracting end position of the reciprocating motion by the piston 63 and the cross arm 62 .
  • the gate 32 on the feed port 13 communicating with the mobile feed pipe 43 is in an open state (as shown in Figure 15 ), so that the raw materials can enter the furnace smoothly; it is disconnected from the outlet end 44 of the mobile feed pipe 43
  • the gate 32 on the connected feeding port 13 is in a closed state (as shown in Figure 14) to avoid leakage of high-temperature gas in the furnace.
  • the operator can easily open the gate 32 to inspect or clean the inner wall 29 of the feeding port. Close it after sticking material.
  • the airflow channel 22 can be replaced by the adhesive separator disclosed in the invention of US Pat. No. US8747524B2.
  • the adhesive separator in the invention has an air inlet and an air outlet, and can carry molten dust from the air inlet.
  • the purified high-temperature gas is outputted from the air outlet. Therefore, the above-mentioned adhesive separator essentially has the function of allowing the high-temperature gas flow through the gas flow channel 22, and belongs to a kind of gas flow channel.
  • the use of the above-described adhesive separator is very simple, and is illustrated by the ninth embodiment as follows:
  • the ninth embodiment of the double regenerator type powder flying melting furnace of the present invention is the same as the first embodiment.
  • the structures of the three embodiments are basically the same, except that in this embodiment, an adhesive separator represented by a dotted frame 71 is used to replace the airflow channel 22 in the third embodiment, and the adhesive separator in FIG. 16 is used.
  • the device 71 includes an air inlet 72 and an air outlet 73, the air inlet 72 communicates with the air outlet 12 of one furnace, and the air outlet 73 communicates with the air inlet 10 of the other furnace.
  • the adhesive separator 71 and the two furnaces form a series structure, which can purify the molten dust in the high-temperature gas more thoroughly, and can better prevent the molten dust from entering the feeding port in the state of stopping feeding. , play a role in avoiding or reducing blockage.
  • described exhaust equipment 7 can adopt induced draft fan or chimney (can not use chimney during solid fuel gasification), oxygen-containing gas input equipment 6 can adopt blower, adjust the drawing force of exhaust equipment 7 and oxygen-containing gas.
  • the difference between the pressures of the input device 6 can be controlled to any value from negative pressure to positive pressure; when the exhaust device 7 is an induced draft fan or a chimney, an air inlet is set as the oxygen-containing gas input device 6 , the outside air can be input; if the oxygen-containing gas input device 6 adopts a blower, as long as an exhaust port (if it is solid fuel gasification, the exhaust port is changed to an exhaust pipe) as an exhaust device 7 can be discharged Flue gas (gas is discharged when the fuel is gasified, which can be transported from the exhaust pipe to the gas point of use of the gas);
  • the furnace also includes a furnace chamber 11 and a furnace wall 14.
  • the feed inlet 13, the air inlet 10 and the air outlet 12 are respectively provided on the furnace wall 14; the raw material feeding device 1 is used to pass the powdery raw materials through the feeding port. 13 Input the furnace 11; the raw material feeding equipment 1 can use the impeller feeder, screw feeder and other equipment for feeding powdery materials, or other conventional equipment, as long as the powdery raw materials can be fed into the public feeder
  • the inlet end 16 of the pipeline 17 or the raw material feeding pipeline 9 is sufficient; the above-mentioned double regenerator type powder flying melting furnace also includes a liquid discharge port 2, and the liquid discharge port 2 is located at the bottom of the furnace 11 or near the bottom, and is adhered to the furnace.
  • the molten dust on the wall 14 flows to the liquid discharge port 2 for output under the action of gravity;
  • the furnace chamber 11 is basically cylindrical, and the air inlet 10 and the air outlet 12 are respectively located near the two ends of the cylindrical furnace chamber 11 and are connected tangentially with it.
  • the feed port 13 is basically located at the top center of the cylindrical furnace 11 .
  • the oxygen-containing gas can be air or oxygen-enriched air
  • the fuel can be powdered solid fuel, gaseous fuel or liquid fuel.
  • powdered solid fuel can be mixed with powdered raw materials and fed into the furnace from the raw material feeding pipeline, and a gas fuel input port can be opened on the raw material feeding pipeline to input gas fuel, which is very convenient.
  • the pulverized solid fuel is usually pulverized coal.
  • the oxygen-containing gas usually also contains a part of water vapor. If the heating value of the gas needs to be increased, a mixed gas of oxygen and water vapor can also be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Furnace Details (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明公开了一种双蓄热室型粉料飞行熔窑,可以广泛用于玻璃生产、炼铁、有色金属冶炼、固体燃料气化等领域。现有熔窑有两个蓄热室轮流用于预热含氧气体和冷却高温气体产物,需要两个熔炉轮流进料,两个熔炉的进料口内壁上经常有熔融物冷凝粘结,堵塞进料口,影响原料进料的顺畅,对生产影响很大。本发明双蓄热室型粉料飞行熔窑通过在公共给料管道或原料进料管道上设置吹扫气输入口、在进料口上设置强制进料设备、将原料进料管道设置为移动式进料管,能有效防止熔融物在进料口内壁冷凝粘结。

Description

一种双蓄热室型粉料飞行熔窑 技术领域
本发明属于化工领域,具体为涉及一种将粉状原料(或粉状固体燃料所含灰份)在飞行状态下进行高温熔化的双蓄热室型粉料飞行熔窑,可以广泛用于玻璃生产、炼铁、有色金属冶炼、固体燃料气化等。
背景技术
在生产玻璃、炼铁、有色金属冶炼、固体燃料气化等领域中,需要在高温窑炉中进行反应,将粉状原料(或粉状固体燃料)分散在高温气体中进行高温反应,传热传质速度很快,能够降低能耗和生产成本。
美国专利号US 8,747,524B2公开了一种熔窑,可以将粉状的玻璃原料、炼铁原料、有色金属生产原料、固体燃料等粉状原料在飞行状态下进行高温反应并回收高温反应产生的废热,这种熔窑需要将两个蓄热室轮流用于预热含氧气体和冷却高温气体产物。但是,使用两个熔炉轮流进料,两个熔炉的进料口内壁上经常有熔融物冷凝粘结,堵塞进料口,从而影响原料进料的顺畅。当进料不顺畅时,会减少原料进料量,降低产量,影响熔窑工况的稳定;堵塞严重时无法进料,只能停炉检修,造成很大的经济损失。
发明内容
为解决上述问题,发明人仔细研究发现:使用蓄热室需要每隔一段时间换向一次,每次换向使熔炉和蓄热室内的气流方向变为与换向前相反的方向,使两个蓄热室可以分别轮流用于预热含氧气体和冷却高温气体产物,两个熔炉需要轮流进料;与预热含氧气体的蓄热室连接的熔炉处于进料状态,在该熔炉的炉膛内,燃料(在用于固体燃料气化时,该燃料就是从进料口输入炉膛的粉状固体燃料,以下本段落的所有括号中的内容均表示为用于固体燃料气化时的情况)与预热的含氧气体迅速混合燃烧,达到粉状原料(或粉状固体燃料所含灰份)的熔融温度以上,通常用于生产玻璃、炼铁、固体燃料气化时需要1450℃以上,用于铜精矿的闪速炼铜时需要1350℃以上。粉状原料(或粉状固体燃料)分散在高温气体中,处于飞行状态,传热传质效率非常高,粉状原料(或粉状固体燃料所含灰份)迅速熔化成液态熔融粉尘,液态熔融粉尘在炉膛内随着高温气体的流动冲刷炉壁,绝大部分会粘附于炉壁上,在重力作用下,液态熔融 粉尘向下流到炉膛底部附近的排液口输出,该熔炉的排气口输出的高温气体中虽然还会携带小部分熔融粉尘,但是会接着进入第二个熔炉,第二个熔炉处于停止进料状态,高温气体携带的小部分熔融粉尘会粘附在第二个熔炉的炉壁上净化分离,净化后的高温气体输入用于冷却高温气体产物的蓄热室回收热量;由于粉状原料(或粉状固体燃料)进入与预热含氧气体的蓄热室连接的熔炉时,会有少量粘在该熔炉进料口的内壁上,当换向后,该熔炉的进料口停止进料,从另一熔炉进入该熔炉的高温气体会使该熔炉的进料口内壁加热升温,该进料口内壁粘附的粉状原料(或粉状固体燃料所含灰份)被加热熔化并粘结在进料口内壁上,当再一次换向后该进料口恢复进料时,新进来的粉状原料(或粉状固体燃料)会粘在该进料口内壁粘结的熔融物上并降低该进料口内壁的温度,使粘结的熔融物冷却凝固,这样,在不断重复换向的情况下,就会发生反复粘结凝固,粘结物不断积累,造成堵塞。
为解决上述问题,发明人经过反复研究和实验,本发明提供了第一种双蓄热室型粉料飞行熔窑,包括两个熔炉、原料给料设备及含氧气体预热系统;所述含氧气体预热系统包括两个蓄热室、两个进气换向闸板、两个排气换向闸板、含氧气体输入设备和排气设备;所述两个蓄热室中的一个用于预热含氧气体,另一个用于冷却高温气体产物,用于预热含氧气体的蓄热室具有气体入口和预热气出口,用于冷却高温气体产物的蓄热室具有高温气入口和冷却气出口。
优选地,上述含氧气体预热系统所包括的各部件的连接方式为:所述含氧气体输入设备通过一个处于打开状态的进气换向闸板与气体入口连通,并通过另一个处于关闭状态的进气换向闸板与冷却气出口连接;所述排气设备通过一个处于打开状态的排气换向闸板与冷却气出口连通,并通过另一个处于关闭状态的排气换向闸板与气体入口连接。
优选地,上述熔炉包括给料换向闸门、原料进料管道、进气口、出气口和进料口;所述熔炉的原料进料管道包括出口端和进口端,其出口端与所述熔炉的进料口连通,其进口端与所述熔炉的给料换向闸门连接;所述两个熔炉的给料换向闸门分别通过公共给料管道与原料给料设备连接;所述预热气出口和一个熔炉的进气口连通,所述熔炉的给料换向闸门为打开状态,所述熔炉的出气口通过气流通道和另一熔炉的进气口连通,另一熔炉的给料换向闸门为关闭状态,另一熔炉的出气口和高温气入口连通;所述公共给料管道上设置有吹扫气输入口。
与现有技术相比,上述方案中的吹扫气对进料口的内壁起到吹扫作用,避免粉状原料粘附在进料口的内壁上,不会形成熔融物粘结,可以避免堵塞。
发明人研究发现:理想状态下,高温气体携带的熔融粉尘经过两个熔炉的炉膛净化分离后,高温气体会达到非常干净的程度后再输入用于冷却高温气体产物的蓄热室回收热量,在这种情况下,采用上述技术方案能够比较好地解决 进料口堵塞的问题。但这种理想的程度有时达不到,没有做到100%的熔融粉尘全部分离干净,还有极少量的难以完全分离的熔融粉尘,会飞入处于停止进料状态的第二个熔炉的进料口,粘结在该进料口内壁上面,经过比较长时间的积累,还是会造成进料口堵塞。
为解决上述问题,发明人经过反复研究和实验,本发明提供了第二种双蓄热室型粉料飞行熔窑,包括两个熔炉及含氧气体预热系统,所述含氧气体预热系统各部件及连接方式与第一种双蓄热室型粉料飞行熔窑基本相同,不同之处还在于:
所述熔炉包括原料给料设备、进气口、出气口、进料口和原料进料管道;所述熔炉的原料进料管道包括出口端和进口端,其出口端与所述熔炉的进料口连通,其进口端与所述熔炉的原料给料设备连通;所述预热气出口和一个熔炉的进气口连通,所述熔炉的原料给料设备为启动给料状态,所述熔炉的出气口通过气流通道和另一熔炉的进气口连通,另一熔炉的原料给料设备为停止给料状态,另一熔炉的出气口和高温气入口连通;所述原料进料管道上设置有吹扫气输入口。
由于在两个熔炉的原料进料管道上都设置了吹扫气输入口,当上述另一熔炉的原料给料设备为停止给料状态时,还有吹扫气从该熔炉的进料口输入炉膛,阻止未能被炉膛完全净化的高温熔融粉尘飞入该进料口内,避免高温熔融粉尘粘结在该进料口的内壁上造成堵塞,而且还可以冷却该进料口的内壁,避免进料口内壁升温到粉状原料(或粉状固体燃料所含灰份)的熔融温度。
为解决上述问题,发明人经过反复研究和实验,本发明提供了第三种双蓄热室型粉料飞行熔窑,包括两个熔炉及含氧气体预热系统,所述含氧气体预热系统各部件及连接方式与第一种双蓄热室型粉料飞行熔窑基本相同,不同之处还在于:
所述熔炉包括原料给料设备、进气口、出气口、进料口和原料进料管道;所述熔炉的原料进料管道包括出口端和进口端,其出口端连接所述熔炉的进料口,其进口端与所述熔炉的原料给料设备连通;所述预热气出口和一个熔炉的进气口连通,所述熔炉的原料给料设备为启动给料状态,所述熔炉的出气口通过气流通道和另一熔炉的进气口连通,另一熔炉的原料给料设备为停止给料状态,另一熔炉的出气口和高温气入口连通;所述进料口上有一个强制进料设备,所述强制进料设备通过机械推力将粉状原料从原料进料管道内推入进料口。
为解决上述问题,发明人经过反复研究和实验,本发明提供了第四种双蓄热室型粉料飞行熔窑,包括两个熔炉及含氧气体预热系统,所述含氧气体预热系统各部件及连接方式与第一种双蓄热室型粉料飞行熔窑基本相同,不同之处还在于:
所述熔炉包括原料给料设备、原料进料管道、进气口、出气口和进料口; 所述原料进料管道是移动式进料管,所述移动式进料管的出口端与进料口之间为活动连接;所述预热气出口和一个熔炉的进气口连通,所述熔炉的进料口通过移动式进料管与原料给料设备连通,所述熔炉的出气口通过气流通道和另一熔炉的进气口连通,另一熔炉的出气口和高温气入口连通;所述另一熔炉的进料口与移动式进料管的出口端为断开连接状态。
附图说明
下面结合附图和具体实施方式,对本发明双蓄热室型粉料飞行熔窑及其有益技术效果进行详细说明。
图1为本发明双蓄热室型粉料飞行熔窑第一实施方式的结构示意图。
图2为图1中虚线圆圈部24的放大示意图。
图3为图1中虚线圆圈部25的放大示意图。
图4为本发明双蓄热室型粉料飞行熔窑第二实施方式的局部结构示意图。
图5为本发明双蓄热室型粉料飞行熔窑第三实施方式的结构示意图。
图6为图5中虚线圆圈部30的放大示意图。
图7为本发明双蓄热室型粉料飞行熔窑第四实施方式的部份结构示意图。
图8为本发明双蓄热室型粉料飞行熔窑第五实施方式的结构示意图。
图9为图8中虚线圆圈部41的放大示意图。
图10为图8中虚线圆圈部42的放大示意图。
图11为本发明双蓄热室型粉料飞行熔窑第六实施方式的局部结构示意图。
图12、13为本发明双蓄热室型粉料飞行熔窑第七实施方式的局部结构示意图。
图14、15为本发明双蓄热室型粉料飞行熔窑第八实施方式的局部结构示意图。
图16为本发明双蓄热室型粉料飞行熔窑第九实施方式的结构示意图。
具体实施方式
第一实施方式
参看图1至图3所示,本发明双蓄热室型粉料飞行熔窑包括:两个熔炉、原料给料设备1及含氧气体预热系统,含氧气体预热系统包括两个蓄热室3、两个进气换向闸板4、两个排气换向闸板5、含氧气体输入设备6和排气设备7;两个蓄热室3中的一个用于预热含氧气体,另一个用于冷却高温气体产物,用于预热含氧气体的蓄热室3具有气体入口18和预热气出口19,用于冷却高温气体产物的蓄热室3具有高温气入口20和冷却气出口21。
上述含氧气体预热系统各部件连接方式具有如下特点:含氧气体输入设备6通过一个处于打开状态的进气换向闸板4(图1右侧的进气换向闸板4)与气体 入口18连通,并通过另一个处于关闭状态的进气换向闸板4(图1左侧的进气换向闸板4)与冷却气出口21连接;排气设备7通过一个处于打开状态的排气换向闸板5(图1左侧的排气换向闸板5)与冷却气出口21连通,并通过另一个处于关闭状态的排气换向闸板5(图1右侧的排气换向闸板5)与气体入口18连接。
请特别参照图2和图3所示,熔炉包括给料换向闸门8、原料进料管道9、进气口10、出气口12和进料口13;熔炉的原料进料管道9包括出口端15和进口端16,出口端15与熔炉的进料口13连通,进口端16与熔炉的给料换向闸门8连接;两个熔炉的给料换向闸门8分别通过公共给料管道17与原料给料设备1连接;预热气出口19和一个熔炉的进气口10连通,熔炉的给料换向闸门8(图2右侧的给料换向闸门8)为打开状态,熔炉的出气口12通过气流通道22和另一熔炉的进气口10连通,另一熔炉的给料换向闸门8(图2左侧的给料换向闸门8)为关闭状态,另一熔炉的出气口12和高温气入口20连通;公共给料管道17上设置有吹扫气输入口23。
进气换向闸板4和排气换向闸板5用于换向操作,其中的一个进气换向闸板4和一个排气换向闸板5处于打开状态时,另一个进气换向闸板4和另一个排气换向闸板5处于关闭状态。每隔一段时间,进气换向闸板4和排气换向闸板5换向一次,换向前处于打开状态的进气换向闸板4和排气换向闸板5在换向后处于关闭状态,换向前处于关闭状态的进气换向闸板4和排气换向闸板5在换向后处于打开状态;换向前处于打开状态的给料换向闸门8在换向后变为关闭状态,换向前处于关闭状态的给料换向闸门8在换向后变为打开状态。换向操作一般每隔10-60分钟操作一次。
与现有技术相比,本发明第一实施方式中,由于公共给料管道17上设置了吹扫气输入口23,吹扫气会和原料给料设备1输入的粉状原料混合在一起依次从打开状态的给料换向闸门8及其连通的原料进料管道9、进料口13输入炉膛11,吹扫气对进料口13的内壁29起到吹扫作用,避免粉状原料粘附在进料口13的内壁29上,在换向关闭原料进料管道9连通的给料换向闸门8后,原料进料管道9没有原料和吹扫气输入炉膛11(如图3所示),炉膛11内的高温气体会将该进料口13的内壁29处的温度加热到粉状原料(或粉状固体燃料所含灰份)的熔融温度以上,但由于上述吹扫作用,没有粉状原料粘在进料口13的内壁29上,不会形成熔融物粘结,起到避免堵塞的作用。
第二实施方式
请一并参看图1、4,本发明第二实施方式中,将图1中由虚线圆圈24表示的区域由图4中虚线圆圈26表示的区域代替,组成一种双蓄热室型粉料飞行熔窑,第二实施方式与第一实施方式的结构基本相同,区别在于:在第二实施方式中,公共给料管道17上设置的吹扫气输入口23上连接有吹扫气输入管道27; 吹扫气输入管道27上装有阀门28。
第三实施方式
参看图5和图6,本发明双蓄热室型粉料飞行熔窑的第三实施方式包括两个熔炉及与第一实施方式相同的含氧气体预热系统,不同之处在于:
在第三实施方式中,熔炉包括原料给料设备1、进气口10、出气口12、进料口13和原料进料管道9;所述熔炉的原料进料管道9包括出口端15和进口端16,出口端15与熔炉的进料口13连通,其进口端16与熔炉的原料给料设备1连通;所述预热气出口19和一个熔炉的进气口10连通,熔炉的原料给料设备1为启动给料状态,熔炉的出气口12通过气流通道22和另一熔炉的进气口10连通,另一熔炉的原料给料设备1为停止给料状态,另一熔炉的出气口12和高温气入口20连通;所述原料进料管道9上设置有吹扫气输入口23。
第四实施方式
请一并参看图5、7,本发明第四实施方式中,图5中由虚线圆圈30表示的区域由图7中虚线圆圈31表示的区域代替,形成一种双蓄热室型粉料飞行熔窑。第四实施方式与第三实施方式的结构基本相同,区别在于:原料进料管道9上设置的吹扫气输入口23上连接有吹扫气输入管道27;所述吹扫气输入管道27上装有阀门28。
吹扫气输入管道27上装的阀门28,可以打开或关闭吹扫气,也可以调节吹扫气用量,使吹扫气用量达到比较适当的用量,避免用量过低时不能吹扫干净进料口13的内壁29;也可以避免吹扫气用量过高而浪费的情况;吹扫气未经预热,温度比较低,用量过高还会降低炉膛温度。
停止进料的进料口13不需要很大的气流速度就可以阻止熔融粉尘飞入,可以用阀门28调小吹扫气量。正在进料的进料口13不必持续输入吹扫气,只需要在换向前打开阀门28将进料口内壁29上粘附的粉料吹扫干净,一般吹扫3~5秒就可以关闭阀门28了。对于第二实施方式的方案,还需要在换向后打开阀门28,对即将开始进料的进料口13吹扫,使其内壁29冷却到粉状原料(或粉状固体燃料所含灰份)熔融温度以下,再启动原料给料设备1进料,以免新进来的粉状原料粘在处于高温状态的内壁29上熔融粘结,一般吹扫5~10秒就可以关闭阀门28了。在将上述技术方案用于生产玻璃时,为了减少吹扫气用量,操作工人一直采用上述操作方式,没有持续对正在进料的进料口13输入吹扫气,但是,经试验发现,当阀门28出现故障无法关闭,可以选择持续地向正在进料的进料口13输入吹扫气。在此情况下生产了2天时间,在生产统计报表中发现,在这2天里,玻璃产品的合格率比原先提高了2.7%。经过2个月的反复对比实验,发现向正在进料的原料进料管道9中持续输入吹扫气,相比于上述操作方式,玻璃产品的合格率能够比原先提高3.6%。
经过实验比较,将上述实施方式的方案用于炼铁、炼铜或固体燃料气化时, 如果持续地向进料口13输入吹扫气,相比于上述操作方式,都能够减少原料消耗量,具体情况分别如下:
在炼铁时,生产每吨铁消耗的炼铁原料量能够减少3.2%;
在炼铜时,生产每吨铜消耗的炼铜原料量能够减少2.7%;
在固体燃料气化时,生产每立方米燃气消耗的固体燃料量能够减少2.6%。
经过仔细研究发现,由于粉状原料具有粘性,如果不向进料口13输入吹扫气,从进料口13输入炉膛的粉状原料存在一些粉料结团的情况,结团的粉料进入炉膛后,有一些来不及被炉内高温气流吹散,粉料团的表面层就迅速熔融,形成被一层熔融液体包裹的粉料团,这种被熔融液体包裹的粉料团在炉膛内的气流中就更难被吹散了,这种粉料团内部的粉料与外部的高温气流传质传热反应速度很慢,造成如下不利影响:
在生产玻璃时,所述粉状原料通常为粉状的玻璃原料。这种被熔融液体包裹的玻璃原料粉料团内部的粉料来不及充分熔化,成为一种未能充分熔融的颗粒排出熔炉,在最终成型的平板玻璃或瓶罐玻璃等产品中,形成了玻璃产品中的夹杂物缺陷,成为一种不合格产品;
在炼铁时,所述粉状原料包括铁矿石粉料、粉状熔剂矿物,粉状熔剂矿物通常为石灰石。炉膛11内的高温气体为含CO、H 2的高温还原性气体,将粉状原料充分分散在高温还原气体中,传热传质效率非常高,会迅速熔化成液体状态并还原析出液态铁和熔化状态的炉渣,从排液口2排出。但是这种被熔融液体包裹的粉料团内部的铁矿粉与外部的高温还原性气体传质传热反应速度很慢,其中含有的铁来不及充分还原提炼出来,就变成了炉渣排出熔炉;
在炼铜时,所述粉状原料包括硫化铜精矿粉、粉状熔剂。将粉状原料充分分散在炉膛内的高温气体中,只需要2~3秒就可以完成氧化脱硫、熔化、造渣等反应形成铜锍和炉渣,从排液口2排出。但是这种被熔融液体包裹的粉料团内部的硫化铜精矿与外部的高温气体传质传热反应速度很慢,来不及充分反应形成铜锍,就变成了炉渣从排液口2排出;
在固体燃料气化时,所述粉状原料(或粉状固体燃料)通常包括粉煤、粉状生物质燃料。没有被吹散的固体燃料粉料团的表面层中含有的灰份在高温炉膛内迅速熔融,形成被一层熔融液体包裹的粉料团,粉料团内部的固体燃料来不及充分气化为高温燃气,就随着熔融的灰份排出了熔炉。
如果向正在进料的进料口13持续输入吹扫气,吹扫气进入原料进料管道9时对粉料团起到撞击并吹散的作用,使粉状原料充分分散在炉膛内的高温气流中,细微的粉料颗粒与高温气流充分接触,传热传质速度很快,上述生产玻璃、炼铁、炼铜或固体燃料气化等分别能获得如下更充分的反应:
在玻璃生产时,细微的玻璃原料粉料颗粒与高温气流充分接触,能充分进行熔融反应,形成合格的玻璃液,避免了粉料结团造成的夹杂物缺陷,提高了 产品合格率;
在炼铁时,细微的炼铁粉料颗粒与高温还原性气流充分接触,反应速度很快,能充分地将原料中的铁还原提炼出来,避免了粉料结团造成的原料浪费;
在炼铜时,细微的炼铜粉料颗粒与高温气流充分接触,反应速度很快,硫化铜精矿能够充分进行氧化脱硫、熔化、造渣等反应,使硫化铜精矿中含有的铜充分地转化为铜锍,以免其变为炉渣造成原料浪费;
在固体燃料气化时,细微的粉状固体燃料颗粒与高温含氧气体充分接触,反应速度很快,能充分地气化生成含CO、H 2的高温燃气,避免了粉状固体燃料结团造成的燃料浪费。
由此可知,向正在进料的进料口13持续输入吹扫气,能够使粉状原料充分分散在炉膛内的高温气流中,高温反应更加充分,取得了意想不到的技术效果。因此,本发明优选持续地向正在进料的进料口13输入吹扫气。
在上述实施方式中,在吹扫气输入口23上连接吹扫气输入设备即可输入吹扫气,吹扫气可以使用含氧气体或氮气。所述含氧气体包括空气或富氧空气。
使用空气作为吹扫气,比较容易获得,只需要在吹扫气输入口23上连接鼓风机即可,使用压缩空气输入也可以。如果将炉膛11内的炉压控制适当的负压值(相当于炉膛11内的压力小于外界压力并有合适的压差),在原料进料管道9或公共给料管道17上只要开个口子就可以当作吹扫气输入设备吸入外界空气,起到吹扫气的作用,非常方便。
在将第三或第四实施方式用于炼铁时,使用含氧气体作为吹扫气,还可以使高温还原性废气在输入用于冷却高温气体产物的蓄热室3之前就和吹扫气混合燃烧。在第四实施方式中,只需要调节吹扫气输入管道27上的阀门28,便可以调节到合适的含氧气体输入量,使高温还原性废气充分燃烧,从而充分利用高温还原性废气的化学能。
第五实施方式
参看图8至图10所示,本发明双蓄热室型粉料飞行熔窑的第五实施方式包括两个熔炉及与第一实施方式相同的含氧气体预热系统,不同之处在于:
所述熔炉包括原料给料设备1、进气口10、出气口12、进料口13和原料进料管道9;所述熔炉的原料进料管道9包括出口端15和进口端16,其出口端15连接该熔炉的进料口13,其进口端16与该熔炉的原料给料设备1连通;所述预热气出口19和一个熔炉的进气口10连通,熔炉的原料给料设备1为启动给料状态,熔炉的出气口12通过气流通道22和另一熔炉的进气口10连通,另一熔炉的原料给料设备1为停止给料状态,另一熔炉的出气口12和高温气入口20连通;所述进料口13上有一个强制进料设备。
所述强制进料设备包括推杆35、容杆腔36、活塞37和推动活塞37作往复运动的驱动机构38;所述容杆腔36与原料进料管道9的进口端16连接,推杆 35的外径与原料进料管道9的内径相适应;所述推杆35包括尾端39和顶端40;推杆35的尾端39连接活塞37,推杆35的顶端40被活塞37推动到达往复运动的回缩终点位置时退入容杆腔36(如图10所示),到达往复运动的推进终点位置时到达进料口13(如图9所示);推杆35的尾端39被活塞37推动到达往复运动的推进终点位置时位于容杆腔36内。
上述强制进料设备是一个通过机械推力将粉状原料从原料进料管道内推入进料口13的设备,推杆35可以进行连续往复运动,强制推动从进口端16进入原料进料管道9内的粉状原料进入进料口13。
由于进料口13的内壁29处有熔融物时,会冷凝粘结,冷凝粘结后强度极高,难以清除,不断累积就造成堵塞。上述推杆35可以连续地强行将粉状原料和熔融物一起从进料口13推入炉膛11,可以及时将粘在内壁29处的少量熔融物清除,避免熔融物冷凝粘结后难以清除并造成堵塞的问题。
第六实施方式
参看图5、11,将图5中由虚线圆圈30表示的区域由图11中虚线圆圈70表示的区域代替,组成一种双蓄热室型粉料飞行熔窑,第六实施方式与第五实施方式基本相同,区别在于:第六实施方式中的强制进料设备与第五实施方式的强制进料设备不同,第六实施方式的强制进料设备包括一个弹簧状的螺旋叶片67和一根被机械驱动旋转的轴68;螺旋叶片67位于原料进料管道9内,轴68位于螺旋叶片67的中心线上,轴68与螺旋叶片67固定连接。
所述驱动轴68旋转的机械是电机69,轴68连接电机69。
上述强制进料设备也是一个通过机械推力将粉状原料从原料进料管道内推入进料口13的设备,轴68的旋转方向使螺旋叶片67推动粉状原料向进料口13推进,当进料口13的内壁29上有熔融物时,会被螺旋叶片67强行将粉状原料和熔融物一起推入炉膛11,可以避免堵塞。
第七实施方式
参看图8、12、13,将图8中由虚线圆圈41、42表示的区域分别由图12、13中虚线圆圈53、54表示的区域代替,形成一种双蓄热室型粉料飞行熔窑,包括两个熔炉及与第一实施方式相同的含氧气体预热系统,不同之处在于:
所述熔炉包括原料给料设备1、原料进料管道、进气口10、出气口12和进料口13;所述原料进料管道是移动式进料管43,所述移动式进料管43的出口端44与进料口13之间为活动连接;所述预热气出口19和一个熔炉的进气口10连通,该熔炉的进料口13通过移动式进料管43与原料给料设备1连通,该熔炉的出气口12通过气流通道22和另一熔炉的进气口10连通,另一熔炉的出气口12和高温气入口20连通;所述另一熔炉的进料口13与移动式进料管43的出口端44为断开连接状态。
所述移动式进料管43包括固定管47、移动管46、闸板48、活塞49和推动 活塞49作往复运动的驱动机构50;所述固定管47包括进口端45、出口52;所述进口端45与原料给料设备1连通;所述移动管46包括进口51、出口端44;所述闸板48固定连接在移动管46的进口51外侧;所述活塞49连接移动管46;所述移动管46被活塞49推动到往复运动的推进终点位置时,出口端44连通进料口13(如图13所示),进口51与出口52连通;所述移动管46被活塞49推动到往复运动的回缩终点位置时,出口端44与进料口13断开连接(如图12所示),进口51与出口52断开连接,闸板48盖住出口52。
由于不断开进料口13与原料进料管道9的连接时难以得知堵塞的具体程度。在本实施方式中,操作工人可以随时断开已经停止进料的进料口13与移动式进料管43的连接,查看进料口13的内壁29上是否有熔融物冷凝粘结,便于操作工人用电钻、铁刷或砂轮等常规工具清理内壁29上粘结的物料,以免粘结的物料越来越多时造成堵塞。但是其缺点在于断开连接后,进料口13与外界是相通的,会造成炉膛对外散热损失;当炉内压力大于外界气压时,还会造成炉内高温气体外泄。因此,在断开连接时,应将炉内压力调为略低于外界压力。
第八实施方式
图14、15示意性地表示一种移动式进料管和一种闸门。将8中由虚线圆圈41、42表示的区域分别由图14、15中虚线圆圈65、66表示的区域代替,形成一种双蓄热室型粉料飞行熔窑,它与第七实施方式的结构基本相同,区别在于:第八实施方式中的进料口13上设置了闸门32,且具有与第七实施不同结构型式的移动式进料管43。
参看图14、15,移动式进料管43包括内管55、外管56、出口端44、进口端45、横臂57、活塞58和推动活塞58作往复运动的驱动机构59;所述进口端45与原料给料设备1连通;所述横臂57的一端连接外管56,另一端连接活塞58;外管56套在内管55上,两者之间的间隙内有一个油封60;所述外管56被活塞58和横臂57推动到往复运动的推进终点位置时出口端44与进料口13断开连接并远离进料口13(如图14所示),被活塞58和横臂57推动到往复运动的回缩终点位置时出口端44连通进料口13(如图15所示)。所述闸门32包括闸板61、横臂62、活塞63和推动活塞63作往复运动的驱动机构64;横臂62的一端连接闸板61,另一端连接活塞63;闸板61被活塞63和横臂62推动到往复运动的推进终点位置时闸板61盖住进料口13,被活塞63和横臂62推动到往复运动的回缩终点位置时闸板61离开进料口13。
与移动式进料管43连通的进料口13上的闸门32为打开状态(如图15所示),使原料能够顺畅地进入炉内;与移动式进料管43的出口端44断开连接的进料口13上的闸门32为关闭状态(如图14所示),避免炉内高温气体外泄,操作工人可以很方便地打开该闸门32,在检查或清理进料口内壁29上粘结的物料后再关闭它。
上述实施方式中,气流通道22可以采用美国专利号US8747524B2的发明中公开的粘附分离器代替,该发明中的粘附分离器具有进气口、出气口,能够从进气口输入携带熔融粉尘的高温气体,从出气口输出净化后的高温气体,因此,上述粘附分离器本质上具有气流通道22所具有的允许高温气流通过的作用,属于一种气流通道。使用上述粘附分离器非常简单,通过第九实施方式说明如下:
第九实施方式
参看图16和图6(图5和图16中的虚线圆圈部30的放大示意图相同,都如图6所示),本发明双蓄热室型粉料飞行熔窑的第九实施方式与第三实施方式(图5所示)的结构基本相同,区别在于,本实施例用虚线框71所表示的粘附分离器代替了第三实施方式中的气流通道22,图16中的粘附分离器71包括进气口72和出气口73,进气口72与一个熔炉的出气口12连通,出气口73与另一个熔炉的进气口10连通。
图16中,粘附分离器71和两个熔炉形成了一种串联结构,能够使高温气体中的熔融粉尘净化得更彻底,能够更好地避免熔融粉尘进入处于停止进料状态的进料口,起到避免或减轻堵塞的作用。
上述实施方式中,所述排气设备7可以采用引风机或烟囱(固体燃料气化时不能用烟囱),含氧气体输入设备6可以采用鼓风机,调节排气设备7的抽力和含氧气体输入设备6的压力之间的差值,就可以控制炉压从负压到正压的任意值;当排气设备7为引风机或烟囱时,设置一个进风口当作含氧气体输入设备6,就可以输入外界空气;如果含氧气体输入设备6采用鼓风机,只要设置一个排气口(如果是固体燃料气化,该排气口改为排气管道)当作排气设备7就可以排出烟气(燃料气化时排出的是燃气,可以从排气管道输送到燃气的用气点);
所述熔炉还包括炉膛11、炉壁14,所述进料口13、进气口10和出气口12分别开设于炉壁14上;原料给料设备1用于将粉状原料通过进料口13输入炉膛11;原料给料设备1可以采用叶轮喂料机、螺旋喂料机等用于粉状物料给料的设备,也可以使用其它常规设备,只要能将粉状原料送入公共给料管道17或原料进料管道9的进口端16即可;上述双蓄热室型粉料飞行熔窑还包括排液口2,排液口2位于炉膛11的底部或底部附近,粘附在炉壁14上的熔融粉尘在重力作用下流到排液口2输出;所述炉膛11基本为圆柱状,进气口10和出气口12分别位于圆柱状炉膛11的两端附近并与之相切连接;所述进料口13基本位于圆柱状炉膛11的顶部中心。
上述实施方式用于生产玻璃、炼铁、炼铜时,所述含氧气体可以使用空气或富氧空气,燃料可以采用粉状固体燃料、气体燃料或液体燃料,如果采用粉状固体燃料或气体燃料,可以将粉状固体燃料混合在粉状原料中从原料进料管道中输入炉膛,在原料进料管道上开一个气体燃料输入口就可以用来输入气体 燃料,非常方便。上述实施方式用于炼铁时,所述粉状固体燃料通常为煤粉。
上述实施方式用于固体燃料气化时,所述含氧气体通常还含有一部分水蒸汽,如果需要提高燃气热值,也可以采用氧气和水蒸汽的混合气体。
本发明并不局限于上述具体实施方式。根据上述说明书的揭示和教导,本领域技术人员可以对上述实施方式进行适当的变更和修改,也应当落入本发明要求的保护范围。本说明书使用了一些特定术语,这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (10)

  1. 一种双蓄热室型粉料飞行熔窑,包括两个熔炉及含氧气体预热系统,所述含氧气体预热系统包括两个蓄热室、两个进气换向闸板、两个排气换向闸板、含氧气体输入设备和排气设备,其特征在于:所述两个蓄热室中的一个用于预热含氧气体,另一个用于冷却高温气体产物,用于预热含氧气体的蓄热室具有气体入口和预热气出口,用于冷却高温气体产物的蓄热室具有高温气入口和冷却气出口;所述含氧气体输入设备通过一个处于打开状态的进气换向闸板与气体入口连通,通过另一个处于关闭状态的进气换向闸板与冷却气出口连接;所述排气设备通过一个处于打开状态的排气换向闸板与冷却气出口连通,并通过另一个处于关闭状态的排气换向闸板与气体入口连接;所述熔炉包括原料给料设备、进气口、出气口、进料口和原料进料管道;所述熔炉的原料进料管道包括出口端和进口端,其出口端与所述熔炉的进料口连通,其进口端与所述熔炉的原料给料设备连通;所述预热气出口和一个熔炉的进气口连通,所述熔炉的原料给料设备为启动给料状态,所述熔炉的出气口通过气流通道和另一熔炉的进气口连通,另一熔炉的原料给料设备为停止给料状态,另一熔炉的出气口和高温气入口连通;所述原料进料管道上设有吹扫气输入口。
  2. 一种双蓄热室型粉料飞行熔窑,包括两个熔炉、原料给料设备及含氧气体预热系统,所述含氧气体预热系统包括两个蓄热室、两个进气换向闸板、两个排气换向闸板、含氧气体输入设备和排气设备,其特征在于:所述两个蓄热室中的一个用于预热含氧气体,另一个用于冷却高温气体产物,用于预热含氧气体的蓄热室具有气体入口和预热气出口,用于冷却高温气体产物的蓄热室具有高温气入口和冷却气出口;所述含氧气体输入设备通过一个处于打开状态的进气换向闸板与气体入口连通,并通过另一个处于关闭状态的进气换向闸板与冷却气出口连接;所述排气设备通过一个处于打开状态的排气换向闸板与冷却气出口连通,并通过另一个处于关闭状态的排气换向闸板与气体入口连接;所述熔炉包括给料换向闸门、原料进料管道、进气口、出气口和进料口;所述熔炉的原料进料管道包括出口端和进口端,其出口端与所述熔炉的进料口连通,其进口端与所述熔炉的给料换向闸门连接;所述两个熔炉的给料换向闸门分别通过公共给料管道与原料给料设备连接;所述预热气出口和一个熔炉的进气口连通,所述熔炉的给料换向闸门为打开状态,所述熔炉的出气口通过气流通道和另一熔炉的进气口连通,另一熔炉的给料换向闸门为关闭状态,另一熔炉的出气口和高温气入口连通;所述公共给料管道上设置有吹扫气输入口。
  3. 一种双蓄热室型粉料飞行熔窑,包括两个熔炉及含氧气体预热系统,所述含氧气体预热系统包括两个蓄热室、两个进气换向闸板、两个排气换向闸板、 含氧气体输入设备和排气设备,其特征在于:所述两个蓄热室中的一个用于预热含氧气体,另一个用于冷却高温气体产物,用于预热含氧气体的蓄热室具有气体入口和预热气出口,用于冷却高温气体产物的蓄热室具有高温气入口和冷却气出口;所述含氧气体输入设备通过一个处于打开状态的进气换向闸板与气体入口连通,并通过另一个处于关闭状态的进气换向闸板与冷却气出口连接;所述排气设备通过一个处于打开状态的排气换向闸板与冷却气出口连通,并通过另一个处于关闭状态的排气换向闸板与气体入口连接;所述熔炉包括原料给料设备、进气口、出气口、进料口和原料进料管道;所述熔炉的原料进料管道包括出口端和进口端,其出口端连接所述熔炉的进料口,其进口端与所述熔炉的原料给料设备连通;所述预热气出口和一个熔炉的进气口连通,所述熔炉的原料给料设备为启动给料状态,所述熔炉的出气口通过气流通道和另一熔炉的进气口连通,另一熔炉的原料给料设备为停止给料状态,另一熔炉的出气口和高温气入口连通;所述进料口上有一个强制进料设备,所述强制进料设备通过机械推力将粉状原料从原料进料管道内推入进料口。
  4. 根据权利要求3所述的双蓄热室型粉料飞行熔窑,其特征在于:所述强制进料设备包括推杆、容杆腔、活塞和推动活塞作往复运动的驱动机构;所述容杆腔与原料进料管道的进口端连接,推杆的外径与原料进料管道的内径相适应;推杆的尾端连接活塞,推杆的顶端被活塞推动到达往复运动的回缩终点位置时退入容杆腔,到达往复运动的推进终点位置时到达进料口;推杆的尾端被活塞推动到达往复运动的推进终点位置时位于容杆腔内。
  5. 根据权利要求3所述的双蓄热室型粉料飞行熔窑,其特征在于:所述强制进料设备包括一个弹簧状的螺旋叶片和一根被机械驱动旋转的轴;所述螺旋叶片位于原料进料管道内,所述轴位于螺旋叶片的中心线上,轴与螺旋叶片固定连接。
  6. 一种双蓄热室型粉料飞行熔窑,包括两个熔炉及含氧气体预热系统,所述含氧气体预热系统包括两个蓄热室、两个进气换向闸板、两个排气换向闸板、含氧气体输入设备和排气设备,其特征在于:所述两个蓄热室中的一个用于预热含氧气体,另一个用于冷却高温气体产物,用于预热含氧气体的蓄热室具有气体入口和预热气出口,用于冷却高温气体产物的蓄热室具有高温气入口和冷却气出口;所述含氧气体输入设备通过一个处于打开状态的进气换向闸板与气体入口连通,并且通过另一个处于关闭状态的进气换向闸板与冷却气出口连接;所述排气设备通过一个处于打开状态的排气换向闸板与冷却气出口连通,并通过另一个处于关闭状态的排气换向闸板与气体入口连接;所述熔炉包括原料给料设备、原料进料管道、进气口、出气口和进料口;所述原料进料管道是移动式进料管,所述移动式进料管的出口端与进料口之间为活动连接;所述预热气出口和一个熔炉的进气口连通,所述熔炉的进料口通过移动式进料管与原料给 料设备连通,所述熔炉的出气口通过气流通道和另一熔炉的进气口连通,另一熔炉的出气口和高温气入口连通。
  7. 根据权利要求6所述的双蓄热室型粉料飞行熔窑,其特征在于:所述另一熔炉的进料口与移动式进料管的出口端为断开连接状态;所述进料口上设有闸门。
  8. 根据权利要求1或2所述的双蓄热室型粉料飞行熔窑,其特征在于:所述吹扫气输入口上连接有吹扫气输入管道;所述吹扫气输入管道上装有阀门。
  9. 根据权利要求1至7中任一项所述的双蓄热室型粉料飞行熔窑,其特征在于:所述气流通道为粘附分离器。
  10. 根据权利要求1至7中任一项所述的双蓄热室型粉料飞行熔窑,用于玻璃生产、炼铁、炼铜或固体燃料气化。
PCT/CN2021/114517 2020-08-26 2021-08-25 一种双蓄热室型粉料飞行熔窑 WO2022042595A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023513887A JP2023539510A (ja) 2020-08-26 2021-08-25 2つの蓄熱室付き粉末飛散型溶融炉
US18/114,978 US20230280097A1 (en) 2020-08-26 2023-02-27 Powder-material Flying Melting Furnace Having Dual Regenerative Chambers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010918492.8 2020-08-26
CN202010918492.8A CN111928649A (zh) 2020-08-26 2020-08-26 一种双蓄热室型粉料飞行熔窑

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/114,978 Continuation US20230280097A1 (en) 2020-08-26 2023-02-27 Powder-material Flying Melting Furnace Having Dual Regenerative Chambers

Publications (1)

Publication Number Publication Date
WO2022042595A1 true WO2022042595A1 (zh) 2022-03-03

Family

ID=73309141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114517 WO2022042595A1 (zh) 2020-08-26 2021-08-25 一种双蓄热室型粉料飞行熔窑

Country Status (4)

Country Link
US (1) US20230280097A1 (zh)
JP (1) JP2023539510A (zh)
CN (1) CN111928649A (zh)
WO (1) WO2022042595A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114905045A (zh) * 2022-05-16 2022-08-16 哈尔滨工业大学 一种金属粉末制备用双熔炼炉对接装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111928649A (zh) * 2020-08-26 2020-11-13 陈志伟 一种双蓄热室型粉料飞行熔窑
CN116951987B (zh) * 2023-09-18 2024-01-05 张家港广大特材股份有限公司 应用于炉口进料管的风击式散粉器、方法及反应熔炉

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184561A (ja) * 1992-12-17 1994-07-05 Nippon Steel Corp 石炭ガス化炉の石炭吹込みノズル詰まりの防止方法とそのためのノズル構造
JP2003075588A (ja) * 2001-09-04 2003-03-12 Ishikawajima Harima Heavy Ind Co Ltd ガラス溶融炉の原料供給部
CN202538732U (zh) * 2012-03-20 2012-11-21 云南广泰生物科技开发有限公司 一种移动式真空加料装置
US20130047853A1 (en) * 2010-05-04 2013-02-28 Zhi-Wei Chen Method and equipment for separating out molten dust in high temperature gas and use thereof
CN203127790U (zh) * 2012-12-10 2013-08-14 北京航天动力研究所 用于缓解结晶铝盐粘结堵塞的柔性动力推动装置
CN108410481A (zh) * 2018-03-28 2018-08-17 宣化钢铁集团有限责任公司 一种焦炉立火道疏通清扫器和疏通方法
CN109899812A (zh) * 2019-03-19 2019-06-18 南京晨光集团有限责任公司 一种防结焦堵塞蓄热式有机废气氧化炉
CN111876546A (zh) * 2020-08-26 2020-11-03 陈志伟 一种双蓄热室型粉矿飞行熔融还原炼铁窑
CN111893234A (zh) * 2020-08-26 2020-11-06 陈志伟 一种粉矿飞行熔融还原炼铁炉
CN111925101A (zh) * 2020-08-26 2020-11-13 陈志伟 一种双蓄热室型粉料飞行熔化玻璃窑
CN111928650A (zh) * 2020-08-26 2020-11-13 陈志伟 一种双炉型粉料飞行熔化玻璃窑
CN111928649A (zh) * 2020-08-26 2020-11-13 陈志伟 一种双蓄热室型粉料飞行熔窑
CN111964436A (zh) * 2020-08-26 2020-11-20 陈志伟 一种粉料飞行熔窑
CN111961503A (zh) * 2020-08-26 2020-11-20 陈志伟 一种双炉型粉料飞行气化装置
CN111995224A (zh) * 2020-08-26 2020-11-27 陈志伟 一种粉料飞行熔化玻璃窑
CN112280921A (zh) * 2020-08-26 2021-01-29 陈志伟 一种双炉型粉矿飞行熔融还原炼铁窑
CN213803655U (zh) * 2020-08-26 2021-07-27 陈志伟 一种双炉型粉料飞行气化装置

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184561A (ja) * 1992-12-17 1994-07-05 Nippon Steel Corp 石炭ガス化炉の石炭吹込みノズル詰まりの防止方法とそのためのノズル構造
JP2003075588A (ja) * 2001-09-04 2003-03-12 Ishikawajima Harima Heavy Ind Co Ltd ガラス溶融炉の原料供給部
US20130047853A1 (en) * 2010-05-04 2013-02-28 Zhi-Wei Chen Method and equipment for separating out molten dust in high temperature gas and use thereof
CN202538732U (zh) * 2012-03-20 2012-11-21 云南广泰生物科技开发有限公司 一种移动式真空加料装置
CN203127790U (zh) * 2012-12-10 2013-08-14 北京航天动力研究所 用于缓解结晶铝盐粘结堵塞的柔性动力推动装置
CN108410481A (zh) * 2018-03-28 2018-08-17 宣化钢铁集团有限责任公司 一种焦炉立火道疏通清扫器和疏通方法
CN109899812A (zh) * 2019-03-19 2019-06-18 南京晨光集团有限责任公司 一种防结焦堵塞蓄热式有机废气氧化炉
CN111893234A (zh) * 2020-08-26 2020-11-06 陈志伟 一种粉矿飞行熔融还原炼铁炉
CN111876546A (zh) * 2020-08-26 2020-11-03 陈志伟 一种双蓄热室型粉矿飞行熔融还原炼铁窑
CN111925101A (zh) * 2020-08-26 2020-11-13 陈志伟 一种双蓄热室型粉料飞行熔化玻璃窑
CN111928650A (zh) * 2020-08-26 2020-11-13 陈志伟 一种双炉型粉料飞行熔化玻璃窑
CN111928649A (zh) * 2020-08-26 2020-11-13 陈志伟 一种双蓄热室型粉料飞行熔窑
CN111964436A (zh) * 2020-08-26 2020-11-20 陈志伟 一种粉料飞行熔窑
CN111961503A (zh) * 2020-08-26 2020-11-20 陈志伟 一种双炉型粉料飞行气化装置
CN111995224A (zh) * 2020-08-26 2020-11-27 陈志伟 一种粉料飞行熔化玻璃窑
CN112280921A (zh) * 2020-08-26 2021-01-29 陈志伟 一种双炉型粉矿飞行熔融还原炼铁窑
CN213803655U (zh) * 2020-08-26 2021-07-27 陈志伟 一种双炉型粉料飞行气化装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114905045A (zh) * 2022-05-16 2022-08-16 哈尔滨工业大学 一种金属粉末制备用双熔炼炉对接装置
CN114905045B (zh) * 2022-05-16 2024-03-29 哈尔滨工业大学 一种金属粉末制备用双熔炼炉对接装置

Also Published As

Publication number Publication date
CN111928649A (zh) 2020-11-13
US20230280097A1 (en) 2023-09-07
JP2023539510A (ja) 2023-09-14

Similar Documents

Publication Publication Date Title
WO2022042595A1 (zh) 一种双蓄热室型粉料飞行熔窑
CN105567897B (zh) 炼铁方法及窑炉
CN103397127B (zh) 一种熔融还原炼铁设备及炼铁方法
CN104357655B (zh) 矿石连续还原与热送炼钢装置
CN1035831C (zh) 富氧熔融气化炉直接还原新工艺及装置
CN111170346A (zh) 一种顺流式高硫铝土矿脱硫焙烧工艺及装置
CN111964436A (zh) 一种粉料飞行熔窑
CN213803655U (zh) 一种双炉型粉料飞行气化装置
CN111928650A (zh) 一种双炉型粉料飞行熔化玻璃窑
CN111876546A (zh) 一种双蓄热室型粉矿飞行熔融还原炼铁窑
CN111995224A (zh) 一种粉料飞行熔化玻璃窑
CN112280921A (zh) 一种双炉型粉矿飞行熔融还原炼铁窑
CN111925101A (zh) 一种双蓄热室型粉料飞行熔化玻璃窑
CN216745399U (zh) 一种双蓄热室型粉料飞行熔窑
CN111961503A (zh) 一种双炉型粉料飞行气化装置
CN108660310A (zh) 一种铁矿粉高效预热预还原装置及工艺
CN208748180U (zh) 一种铁矿粉高效预热预还原装置
CN214142491U (zh) 一种将含锌粉料飞行熔融生产直接法氧化锌的设备
CN104748573B (zh) 一种从回转窑取风取热的方法及可取风取热的回转窑系统
CN111893234A (zh) 一种粉矿飞行熔融还原炼铁炉
CN101886183B (zh) 一种炼铅装置及使用该装置的炼铅方法
CN216558257U (zh) 一种粉料飞行熔窑
CN210420084U (zh) 一种还原焙烧处理低品位锡原料的系统
CN217948178U (zh) 一种钢厂布袋除尘灰的分离回用装置
CN112501453A (zh) 一种将含锌粉料飞行熔融生产直接法氧化锌的设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860430

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023513887

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21860430

Country of ref document: EP

Kind code of ref document: A1