WO2022042447A1 - 聚丙烯组合物及其制备方法和由其制成的制品 - Google Patents

聚丙烯组合物及其制备方法和由其制成的制品 Download PDF

Info

Publication number
WO2022042447A1
WO2022042447A1 PCT/CN2021/113834 CN2021113834W WO2022042447A1 WO 2022042447 A1 WO2022042447 A1 WO 2022042447A1 CN 2021113834 W CN2021113834 W CN 2021113834W WO 2022042447 A1 WO2022042447 A1 WO 2022042447A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimethoxypropane
polypropylene composition
phosphate
ethylene
mol
Prior art date
Application number
PCT/CN2021/113834
Other languages
English (en)
French (fr)
Inventor
张晓萌
宋文波
邹发生
胡慧杰
李德展
王路生
赵梦垚
张琦
刘振杰
袁浩
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司北京化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010878381.9A external-priority patent/CN114106453B/zh
Priority claimed from CN202010879646.7A external-priority patent/CN114106454B/zh
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司北京化工研究院 filed Critical 中国石油化工股份有限公司
Priority to CN202180056674.1A priority Critical patent/CN116157468A/zh
Priority to US18/042,481 priority patent/US20230323099A1/en
Priority to AU2021332812A priority patent/AU2021332812A1/en
Priority to EP21860284.5A priority patent/EP4206276A1/en
Priority to KR1020237009440A priority patent/KR20230052957A/ko
Priority to JP2023513398A priority patent/JP2023538693A/ja
Publication of WO2022042447A1 publication Critical patent/WO2022042447A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0083Nucleating agents promoting the crystallisation of the polymer matrix
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/15Isotactic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/02Heterophasic composition

Definitions

  • the invention belongs to the field of polyolefins, and in particular, relates to a polypropylene composition, a preparation method of the polypropylene composition, and a product prepared from the polypropylene composition.
  • Polypropylene resin is widely used in home appliances and automobile industries. Its advantages are that it can not only replace metals and engineering plastics, but also has the characteristics of easy recycling, light weight and relatively low price. In these application fields, the material is required not only to have excellent mechanical properties (rigidity and toughness), but also to have ideal gloss to obtain the aesthetic effect of the product. High-gloss polypropylene is currently gradually replacing HIPS, ABS and other materials, and is used in various fields such as rice cookers, electric kettles, microwave ovens, vacuum cleaners, washing machines and other home appliance shells and automotive interior parts, children's toys, home storage and other fields.
  • Impact-resistant polypropylene has a multiphase structure, so its rigidity and toughness are ideal, and it can have high modulus and high impact at the same time.
  • the haze of its products is usually high, and the gloss is low, which cannot reach the gloss. >80% (60° angle gloss) high gloss requirements.
  • the gloss cannot be significantly improved by adding nucleating agents and changing processing conditions. It must be adjusted and optimized based on its own structure.
  • CN104448538A discloses a polypropylene composition with both transparency and impact resistance.
  • Polypropylene with good transparency usually has a higher gloss.
  • a specific ZN catalyst is selected to realize the synthesis of polypropylene compositions with a relatively high ethylene-propylene elastomeric copolymer content (30-60% by weight) by a continuous polymerization method.
  • the particle size of the rubber in the transparent impact-resistant polypropylene product is very small, and the crystallization of the rubber relative to the homopolypropylene matrix will have a certain impact, thereby affecting the rigidity of the polypropylene. Therefore, the modulus of the transparent impact-resistant polypropylene product is usually lower.
  • CN109422958A discloses a high-flow, high-rigidity and high-toughness polyolefin composition and a preparation method thereof.
  • the ethylene-propylene copolymer contains a high ethylene unit content of 40-50% by weight.
  • the impact polypropylene has good rigidity and toughness, but limited by its rubber phase structure, the impact polypropylene has a low gloss (less than 80%) and cannot reach a high gloss level.
  • CN1321178A discloses a high-modulus, high-impact, low-haze impact-resistant polypropylene composition, but the rubber phase of the impact-resistant polymer is ethylene-butene copolymer, which is impossible in existing domestic polypropylene devices produced.
  • Another object of the present invention is to provide a preparation method of the polypropylene composition, which can be implemented on existing industrial plants, especially the polypropylene composition can be directly obtained by a continuous polymerization process.
  • the method does not require complex modifications and is therefore simple, low cost and environmentally friendly.
  • a composition of a high stereoregularity homopolypropylene and an ethylene-propylene elastic copolymer having a specific composition is obtained, wherein the composition has a homopolymer containing
  • the above objects are achieved by the specific microstructure of the polypropylene continuous matrix phase and the ethylene-propylene elastomeric copolymer rubber phase dispersed therein.
  • a first aspect of the present invention provides a polypropylene composition comprising:
  • the ethylene-propylene elastic copolymer contains 20-35% by weight, preferably 25- 35% by weight of ethylene structural units, and 65-80% by weight, preferably 65-75% by weight of propylene structural units; the ethylene-propylene elastomeric copolymer forms a dispersed rubber phase in said continuous matrix phase;
  • the ratio of the melt mass flow rate of the crystalline homopolypropylene and the polypropylene composition measured according to GB/T 3682.1-2018 at 230° C. under a load of 2.16 kg is 0.5-2.0, preferably 0.9-1.5.
  • the second aspect of the present invention provides the preparation method of the polypropylene composition according to the first aspect of the present invention, comprising the following steps:
  • the propylene monomer is contacted and reacted with a Ziegler-Natta catalyst with stereoselectivity, and the unreacted monomer is removed from the mixture obtained after the contact reaction to obtain a product a, the product a comprises component A;
  • a third aspect of the present invention provides an article prepared from the polypropylene composition of the first aspect.
  • FIG. 1 shows a SEM photograph of a position within 10% of the thickness of the injection molded coupon of Example A1 from the surface of the article.
  • FIG. 2 shows a SEM photograph of the position of the core portion of the injection-molded sample of Example A1 outside the range of 10% of the thickness of the product surface.
  • FIG. 3 shows the SEM photograph of the MFR spline of Example A1 (it is considered to be close to the SEM photograph of the pellets).
  • FIG. 4 shows a SEM photograph of the position of the core portion of the injection-molded sample of Example B1 outside the range of 10% of the thickness of the product surface.
  • Figure 5 shows a SEM photograph of the pellets of Example B1.
  • FIG. 6 shows a SEM photograph of the position of the core portion of the injection-molded sample of Comparative Example A2 outside the range of 10% of the thickness of the product surface.
  • Figure 7 shows a SEM photograph of the pellets of Comparative Example A2.
  • the present invention provides a polypropylene composition, comprising:
  • the ethylene-propylene elastic copolymer contains 20-35% by weight, preferably 25- 35% by weight of ethylene structural units and 65-80% by weight, preferably 65-75% by weight of propylene structural units; the ethylene-propylene elastomeric copolymer forms a dispersed rubber phase in said continuous matrix phase;
  • the ratio of the melt mass flow rate of the crystalline homopolypropylene and the polypropylene composition measured according to GB/T 3682.1-2018 at 230° C. under a load of 2.16 kg is 0.5-2.0, preferably 0.9-1.5.
  • Component A in the polypropylene composition of the present invention is crystalline homopolypropylene, and its isotactic pentad fraction is above 96%, preferably above 97%, such as 97.1%, 97.2%, 97.3%, 97.4%, 97.5%, 97.6%, 97.7%, 97.8%, 97.9%, 98.0%, 98.5%, 99.0% and the range of these numerical points.
  • the crystalline homopolypropylene is a high crystalline homopolypropylene.
  • the isotactic pentad fraction was determined by 13 C NMR, and the solvent used was deuterated ortho-dichlorobenzene.
  • the crystalline homopolypropylene forms a continuous phase in the polypropylene composition, which is the matrix phase, also referred to as the "base phase".
  • the matrix phase is substantially formed from component A.
  • Component B in the polypropylene composition of the present invention is an ethylene-propylene elastomeric copolymer.
  • the ethylene-propylene elastomeric copolymer contains 20-35% by weight, preferably 25-35% by weight of ethylene structural units and 65-80% by weight, preferably 65-75% by weight propylene structural unit.
  • the ethylene-propylene elastomeric copolymer is dispersed in the continuous matrix phase and forms a rubber phase, which is the dispersed phase.
  • the rubber phase is substantially formed from component B.
  • the morphology of the rubber phase formed from the ethylene-propylene elastomeric copolymer in the polypropylene composition of the present invention is similar to that obtained by conventional methods.
  • the rubber phase in the polypropylene composition of the present invention is spherical or nearly spherical particles.
  • Said spherical and nearly spherical means that the aspect ratio of the rubber phase particles is substantially in the range of 1-2.
  • “Substantially” means that at least 90% of the rubber phase particles have an aspect ratio in the range of 1-2.
  • the aspect ratio is the longest dimension of the particle (the distance between the two farthest points on the particle contour, i.e.
  • the vertical axis and the line perpendicular to the vertical axis that intersects the particle contour with the longest distance between the line at Ratio of lengths (horizontal axis) between intersections.
  • at least 95% of the rubber phase particles have an aspect ratio of 1-2 in the absence of an orientation force.
  • the size of the rubber phase obtained by the present invention is small compared to the size of the rubber phase obtained by conventional methods.
  • the average size of the rubber phase particles in the polypropylene composition of the present invention may be 0.03-3.0 ⁇ m, preferably 0.05-2.0 ⁇ m, more preferably 0.05-1.5 ⁇ m, more preferably 0.1-1.5 ⁇ m, without the action of orientation force.
  • the average size of the rubber phase particles was determined by scanning electron microscopy (SEM) method. Specifically, for spherical rubber-phase particles, the diameter of the rubber-phase particles in the SEM photo was determined; for nearly spherical or rubber-phase particles subjected to an orientation force, the longest dimension of the particles (the two farthest apart on the particle profile) was measured. distance between points), and the average value of the above-mentioned sizes of 50 rubber phase particles was obtained by SEM photograph observation as the average size of the rubber phase or the average size of the rubber phase particles.
  • the viewing plane of the SEM is parallel to the direction of the orientation force (external field force), eg, the injection molding direction.
  • the rubber phases in the polypropylene compositions of the present invention can be at least partially (or even fully) deformed under the action of orientation forces and form oriented structures. After the orientation force is removed and the sample is formed, the rubber phase can still maintain the oriented state structure.
  • the orientation force refers to an external field force that can cause an object to be oriented, and the orientation means that the objects are aligned in parallel along the direction of the external field force.
  • the external force can be tensile stress and/or shear stress, such as the force applied to the polypropylene composition by the process itself for preparing the article, such as the force exerted on the polypropylene composition during processing such as injection molding strength.
  • oriented state structure here means that the longitudinal axes formed by the deformation and elongation of the rubber phase particles under the action of an orientation force are arranged parallel to each other along a certain direction.
  • a small amount of rubber phase particles arranged in different directions located in local areas of the composition which are inconsistent with the general arrangement direction of the rubber phase particles in the entire composition due to the preparation process, are excluded.
  • parallel arrangement includes substantially parallel conditions wherein the longitudinal axes of the rubber phase particles are at an angle of less than about 10 degrees, preferably less than about 5 degrees, with respect to each other.
  • At least 80% of the rubber phase particles form an oriented state structure after the application of the orientation force, based on the total number of rubber phase particles in the SEM image.
  • the rubber phase particles that cannot be clearly observed due to the preparation process or the SEM method are excluded here.
  • At least 50% of the rubber phase particles in the polypropylene composition of the present invention can achieve an aspect ratio greater than 2, based on the total number of rubber phase particles in the SEM image.
  • the rubber phase in the polypropylene composition of the present invention is not only located in the surface layer of the composition (for example, within 10% of the thickness of the injection-molded swatch from the surface of the product, that is, the distance from the surface of the product is less than or equal to 10% of the thickness). % of the area) can be deformed and oriented, and can also be deformed and oriented within the composition, but only within the composition, especially the core part of the injection-molded sample outside the 10% thickness range from the product surface (distance from the product surface). It is less prone to deformation and orientation than the rubber at the area greater than 10% of the thickness. Deformation and orientation of the rubber phase at the core portion can advantageously be easily achieved when the ratio of the melt mass flow rate of the crystalline homopolypropylene to the polypropylene composition is close to 1.
  • the ratio of the melt mass flow rate of the crystalline homopolypropylene and the polypropylene composition measured according to GB/T3682.1-2018 at 230° C. under a load of 2.16 kg can be is 0.5-2.0, preferably 0.9-1.5.
  • the melt mass flow rate of the crystalline homopolypropylene forming the matrix phase at 230° C. under a load of 2.16kg may be 5-200g/10min, preferably 10-100g/10min.
  • the melt mass flow rate of the polypropylene composition at 230°C under a load of 2.16kg may be 5-100g/10min, preferably 6-30g/10min, more preferably 8.89-30g/10min.
  • the polypropylene composition according to the present invention may have an intrinsic viscosity of 1.0-2.5 dL/g, preferably 1.4-2.4 dL/g, more preferably 1.52-2.08 dL/g.
  • the intrinsic viscosity of xylene solubles in the polypropylene composition may be 1.0-4.0 dL/g, preferably 1.11-3.65 dL/g.
  • the ratio of the intrinsic viscosity of the xylene solubles in the polypropylene composition to the intrinsic viscosity of the crystalline homopolypropylene is preferably 0.7-2.6. Intrinsic viscosity was determined by a capillary detector.
  • the molecular weight distribution Mw/Mn of the polypropylene composition is preferably ⁇ 5, more preferably the molecular weight distribution Mw/Mn ⁇ 4.5. Molecular weight distribution was determined by gel permeation chromatography (GPC) analysis relative to polystyrene standards.
  • the polypropylene composition according to the invention can additionally comprise: (c) a nucleating agent as component C, whereby the mechanical properties can advantageously be further improved.
  • the nucleating agent can be selected from carboxylic acids and their metal salts, sorbitol, aryl phosphates, dehydroabietic acid and its salts, aromatic amides, aromatic amines, rare earth compounds, quasi- At least one of the condensed ring compounds of the plane structure and the polymer nucleating agent.
  • the nucleating agent is preferably a carboxylate nucleating agent and/or an aryl phosphate nucleating agent, such as Millad HPN-20E nucleating agent, Millad HPN-715 nucleating agent, Millad 600EI nucleating agent (available from Milliken & Co., USA).
  • the content of the nucleating agent may be 0.05-0.3 wt% based on the total weight of the polypropylene composition.
  • the content of the nucleating agent as Component C may be 0.05-3 wt % based on the total weight of Component A and Component B.
  • the polypropylene composition according to the present invention may also comprise other adjuvants conventionally used in the polymer field, thereby imparting further advantageous properties to the polypropylene composition of the present invention.
  • the other adjuvants may be selected from at least one of antioxidants, antistatic agents and colorants.
  • the content of the other adjuvants may be 0.05-0.6 wt %, preferably 0.1-0.3 wt %, based on the total weight of the polypropylene composition.
  • the polypropylene composition according to the invention has a significantly higher gloss, and its 60° angle gloss can reach ⁇ 80%, preferably ⁇ 85%, more preferably ⁇ 90%.
  • the polypropylene composition can also have a haze of ⁇ 50%, more preferably a haze of ⁇ 40%, so as to have both high gloss and high transparency.
  • the polypropylene composition according to the invention additionally has good mechanical properties, in particular one or more of the following properties, preferably all of the following properties:
  • flexural modulus ⁇ 1000MPa preferably ⁇ 1300MPa, more preferably ⁇ 1400MPa, still more preferably ⁇ 1450MPa;
  • the 60° angle gloss is measured according to GB/T 8807-1988, and the injection molding sample is obtained, and the thickness of the sample is 2mm.
  • the haze is obtained by measuring injection molding samples according to GB/T 2410-2008, and the thickness of the samples is 1 mm.
  • the shrinkage rate is obtained by measuring injection molding samples according to GB/T17037.4-2003.
  • the flexural modulus is obtained by measuring injection molding samples according to GB/T9341-2008.
  • the notched impact strength of simply supported beams at room temperature is obtained by measuring injection-molded samples at 23°C according to GB/T 1043.1-2008.
  • the heat distortion temperature is obtained by measuring injection molding samples according to GB/T 1634.2-2004.
  • the polypropylene composition may be in powder or pellet form.
  • the pellets can be obtained, for example, by mixing granulation.
  • the mixing and granulating method can be various conventional methods in the art, which are not particularly limited in the present invention, for example, a twin-screw extruder can be used for granulation.
  • the rubber phase remains spherical or nearly spherical.
  • the present invention provides a method for preparing a polypropylene composition according to the present invention, comprising the following steps:
  • the propylene monomer is contacted and reacted with a Ziegler-Natta catalyst with stereoselectivity, and the unreacted monomer is removed from the mixture obtained after the contact reaction to obtain a product a, the product a comprises component A;
  • the Ziegler-Natta catalyst with stereoselectivity can be used to prepare the aforementioned high crystalline homopolypropylene with high stereoregularity, and the homopolymer and the active catalyst are further combined with ethylene and propylene A polypropylene composition that is contacted to form a rubber phase dispersed in a homopolymer continuous matrix phase.
  • the stereoselective Ziegler-Natta catalyst may contain:
  • the Ziegler-Natta catalyst preferably has high stereoselectivity.
  • the solid catalyst component is used as the main catalyst in the process of the present invention.
  • the dosage of each component in the solid catalyst component can be determined as required.
  • the molar ratio of the amount of magnesium source calculated as magnesium element, titanium source calculated as titanium element and internal electron donor may be 1:(20-150):(0.1-0.9), preferably 1:(30- 120): (0.15-0.6).
  • the solid catalyst components used in the method of the present invention can be obtained commercially or prepared by methods known in the art, such as those disclosed in CN106608934B.
  • the titanium source may be a titanium compound, for example, may be one or more selected from the titanium compounds represented by the general formula Ti(OR) 4-m X m , wherein m is an integer of 0-4, preferably 1- an integer of 4, R can be a C 1 -C 20 alkyl group, preferably a C 1 -C 10 alkyl group, and X can be a halogen, preferably chlorine.
  • the magnesium source can be various magnesium-containing compounds that can be used as catalysts for olefin polymerization, such as magnesium halide, magnesium alcoholate or haloalcoholate and magnesium halide adduct carrier, etc., preferably spherical magnesium halide adduct carrier, such as those prepared according to the method disclosed in Example 1 of CN1330086A or the method disclosed in CN106608934B.
  • the internal electron donor may preferably be selected from the group consisting of esters of monocarboxylic acids, esters of dicarboxylic acids, phosphate-based compounds, diether-based compounds, and combinations thereof.
  • the internal electron donor may be an ester of a monocarboxylic acid and/or an ester of a dicarboxylic acid, preferably selected from the group consisting of benzoates, malonates, phthalates and At least one of succinates, among which phthalates are more preferred.
  • Phthalates include alkyl phthalates (eg diisobutyl phthalate and/or dioctyl phthalate) and/or aryl phthalates (eg phthalate) diphenyl formate and/or benzylbutyl phthalate). More suitable are alkyl phthalates, more preferably diisobutyl phthalate and/or dioctyl phthalate.
  • nucleating agents are preferably used.
  • the 60° angle gloss of the prepared polypropylene composition can reach ⁇ 80%, preferably ⁇ 85%; the parallel shrinkage can be ⁇ 1.15, the vertical shrinkage can be ⁇ 1.15; the flexural modulus can be ⁇ 1000MPa, preferably ⁇ 1300MPa, the notched impact strength of simply supported beams at room temperature can be ⁇ 5kJ/m 2 .
  • the internal electron donor may be an internal electron donor compounded by a phosphate compound and a diether compound.
  • the consumption molar ratio of the diether compound and the phosphate compound may be 1:(0.02-0.25), preferably 1:(0.04-0.15).
  • the phosphoric acid ester compound can be selected from at least one of the phosphoric acid ester compounds represented by formula (1),
  • R 1 , R 2 and R 3 are each independently selected from C 1 -C 4 straight or branched chain alkyl, C 3 -C 20 cycloalkyl, C 6 -C 20 aryl, C 7 -C 20 alkaryl or C 7 -C 20 aralkyl.
  • the phosphate compounds may include but are not limited to: trimethyl phosphate, triethyl phosphate, tributyl phosphate, triphenyl phosphate, tricresyl phosphate, triisopropylphenyl phosphate, trimethyl phosphate Oxyphenyl Ester, Phenyl Dimethyl Phosphate, Tolyl Dibutyl Phosphate, Cumyl Dimethyl Phosphate, Cumyl Diethyl Phosphate, Cumyl Dibutyl Phosphate, Phenyl Dibutyl Phosphate cresyl, phenyldiisopropylphenyl phosphate, p-tolyl dibutyl phosphate, m-tolyl dibutyl phosphate, p-cumyl dimethyl phosphate, p-cumyl diethyl phosphate, phosphoric acid At least one of p-tert-butylphen
  • the diether compound can be selected from at least one of the diether compounds represented by formula (2),
  • R 1 and R 2 are each independently selected from hydrogen, C 1 -C 20 straight or branched chain alkyl, C 3 -C 20 cycloalkyl, C 6 -C 20 aryl, C 7 - C 20 aralkyl or C 7 -C 20 alkaryl, R 3 and R 4 are each independently selected from C 1 -C 10 alkyl.
  • the diether compounds may include but are not limited to: 2-(2-ethylhexyl)-1,3-dimethoxypropane, 2-isopropyl-1,3-dimethoxypropane , 2-butyl-1,3-dimethoxypropane, 2-sec-butyl-1,3-dimethoxypropane, 2-cyclohexyl-1,3-dimethoxypropane, 2-benzene yl-1,3-dimethoxypropane, 2-(2-phenylethyl)-1,3-dimethoxypropane, 2-(2-cyclohexylethyl)-1,3-dimethyl Oxypropane, 2-(p-chlorophenyl)-1,3-dimethoxypropane, 2-(diphenylmethyl)-1,3-dimethoxypropane, 2,2-bicyclo Hexyl-1,3-dimethoxypropane, 2,2-bicyclo Hexyl-1,3-dime
  • a nucleating agent is preferably used.
  • the 60° angle gloss of the prepared polypropylene composition can reach ⁇ 85%, preferably ⁇ 90%; meanwhile, it has a haze ⁇ 50%, preferably a haze ⁇ 40%.
  • the parallel shrinkage of the prepared polypropylene composition may be ⁇ 1.15, preferably ⁇ 1.1; the flexural modulus may be ⁇ 1400 MPa, preferably ⁇ 1450 MPa; and the simply supported beam notched impact strength at room temperature may be ⁇ 5kJ /m 2 , preferably ⁇ 6kJ/m 2 ; heat distortion temperature can be ⁇ 90°C, preferably ⁇ 92°C; molecular weight distribution Mw/Mn is narrow and can be ⁇ 5, preferably molecular weight distribution Mw/Mn ⁇ 4.5.
  • the polypropylene composition prepared by using the catalyst system of the internal electron donor compounded by the phosphate compound and the diether compound has higher gloss and lower haze and has comparable It can combine good transparency, high gloss, high rigidity, high toughness and low shrinkage properties, so it has good mechanical properties and aesthetic properties.
  • organoaluminum compounds are used as cocatalysts. It is preferably an alkyl aluminum compound, including but not limited to: triethylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-n-hexylaluminum, diethylaluminum monochloride, di-n-butylaluminum monochloride, One or more of monochlorodiisobutylaluminum, dichlorodi-n-hexylaluminum, dichloromonoethylaluminum, dichloromonobutylaluminum, dichloromonobutylaluminum and dichloro-n-hexylaluminum kind.
  • the alkylaluminum compound is preferably a trialkylaluminum, such as at least one of triethylaluminum, tri-n-butylaluminum, triisobutylaluminum,
  • the external electron donor can be an organosilicon compound, preferably an organosilicon compound with the general formula R n Si(OR') 4-n , where 0 ⁇ n ⁇ 3, R is selected from hydrogen atoms, halogens, alkyl groups, Cycloalkyl, aryl and haloalkyl, R' is selected from alkyl, cycloalkyl, aryl and haloalkyl.
  • the external electron donors may preferably include but are not limited to: tetramethoxysilane, tetraethoxysilane, trimethylmethoxysilane, trimethylethoxysilane, trimethylphenoxysilane, dimethy Methyldimethoxysilane, Dimethyldiethoxysilane, Methyl-tert-butyldimethoxysilane, Methylisopropyldimethoxysilane, Diphenoxydimethoxysilane, Diphenoxydimethoxysilane Phenyldiethoxysilane, Phenyltrimethoxysilane, Phenyltriethoxysilane, Vinyltrimethoxysilane, Cyclohexylmethyldimethoxysilane, Dicyclopentyldimethoxysilane, Diisopropyldimethoxysilane, diisobutyldimethoxysilane, 2-ethylpiperidiny
  • the organosilicon compound as an external electron donor can be added at one time in a system of two or more reactors operating in series, or it can be added in portions at different positions; it can be added directly into the reactor, or it can be added to the feeder with the reactor. material-related equipment or pipelines.
  • the amount of the solid catalyst component, the organoaluminum compound and the external electron donor can also be determined as required.
  • the dosage ratio of the solid catalyst component and the organoaluminum compound in terms of titanium/aluminum molar ratio may be 1:(25-100).
  • the weight ratio of the organoaluminum compound to the external electron donor may be (0-150):1, preferably (2-150):1, more preferably (3-10):1.
  • the organoaluminum compound and the optional external electron donor can be respectively mixed with the solid catalyst component and then reacted, or the organoaluminum compound and the optional external electron donor can be premixed and then reacted. It is then mixed with the solid catalyst component and reacted.
  • the catalyst used in the present invention may be directly added to the reactor, or may be added to the reactor after pre-complexation and/or pre-polymerization known in the art.
  • the pre-complexation and pre-polymerization processes can be carried out in an environment with or without polymerized monomers, such as pre-complexation or pre-polymerization reactors provided separately.
  • the form of the reactor can be a continuous stirred tank reactor, or it can be other forms that can obtain a sufficient mixing effect, such as a loop reactor, a section of pipeline containing a static mixer, or even a It can be a section of pipeline where the material is in turbulent flow.
  • the temperature of pre-complexation can be controlled between -10°C to 60°C, preferably 0-30°C.
  • the time of pre-complexation can be controlled at 0.1-180min, preferably 5-30min.
  • the catalyst with or without pre-complexation can also optionally be subjected to a pre-polymerization treatment.
  • the prepolymerization can be carried out continuously under liquid bulk conditions or batchwise in an inert solvent.
  • the prepolymerization reactor can be a continuous stirred tank, a loop reactor, or the like.
  • the temperature of the prepolymerization can be controlled between -10°C to 60°C, preferably 0-40°C.
  • the multiple of prepolymerization can be controlled at 0.5-1000 times, preferably 1.0-500 times.
  • the first olefin polymerization conditions may be liquid phase polymerization conditions or gas phase polymerization conditions, that is, the polymerization may be liquid phase polymerization or gas phase polymerization.
  • the liquid phase polymerization conditions may include: using hydrogen as a molecular weight regulator, the polymerization temperature is 0-150°C, preferably 40-100°C; the polymerization pressure is higher than the saturated vapor pressure of propylene at the corresponding polymerization temperature.
  • the gas phase polymerization conditions may include: using hydrogen as a molecular weight regulator, the polymerization temperature is 0-150°C, preferably 40-100°C; the polymerization pressure is greater than or equal to normal pressure, preferably 0.5-2.5MPa.
  • the hydrogen/propylene ratio used in step (1) is preferably 0.0010-0.0060 mol/mol, that is, the hydrogen concentration is preferably 0.10-0.60 mol%.
  • the molar ratio of ethylene/(ethylene+propylene) can be 0.1-0.4mol/mol, preferably 0.1-0.3mol/mol, more preferably 0.1-0.25mol /mol, still more preferably 0.15-0.25 mol/mol.
  • the temperature of the gas phase polymerization of olefins may be 40-100°C, preferably 60-80°C.
  • the pressure may be 0.6-1.4 MPa, preferably 1.0-1.3 MPa.
  • the hydrogen/ethylene ratio is 0.02-0.70 mol/mol, preferably 0.04-0.54 mol/mol.
  • pressure refers to gauge pressure
  • the polymerization according to steps (1) and (2) of the present invention can be carried out continuously or batchwise.
  • Continuous polymerization can use more than two reactors in series.
  • the first or first several reactors produce product a, which comprises component A, in particular mainly consists of said component A.
  • the reactor for producing product a can be a liquid phase reactor or a gas phase reactor.
  • the liquid phase reactor can be a loop reactor or a stirred tank reactor.
  • the gas phase reactor can be a horizontal stirred bed reactor or a vertical stirred bed reactor or a fluidized bed reactor or a multi-zone circulating reactor and the like.
  • the reactor following the preparation of product a is used to prepare product b or component B, said product b comprising component A and component B, in particular consisting essentially of components A and B.
  • the reactor for preparing product b or component B is a gas phase reactor, and the gas phase reactor can be a horizontal stirred bed reactor or a vertical stirred bed reactor or a fluidized bed reactor or the like.
  • the above gas-phase reactors can also be arbitrarily combined.
  • the polymerization according to the present invention can also be carried out batchwise.
  • the product a and the product b are sequentially prepared in the reactor.
  • the polymerization can be carried out in the liquid phase as well as in the gas phase.
  • the preparation of product b or component B it is necessary to carry out the polymerization in the gas phase.
  • the nucleating agent and other auxiliary agents can be used before or during step (1), without affecting the polymerization reaction.
  • the method of the present invention may additionally comprise a step (3): mixing the product b obtained in step (2) with a nucleating agent and optionally other auxiliary agents, especially mixing and granulating.
  • the mixing and granulating method can be various conventional methods in the art, for example, a twin-screw extruder can be used for granulation.
  • the product b obtained in the step (2) is mixed with a nucleating agent for granulation.
  • the polypropylene composition thus prepared can have both high gloss (60° angular gloss ⁇ 85%, preferably ⁇ 90%) and low haze (haze ⁇ 50%, preferably ⁇ 40%), which is advantageous It has high gloss and high transparency at the same time.
  • the polypropylene compositions prepared according to the process of the invention can in particular achieve a combination of good mechanical properties (high stiffness, high toughness and low shrinkage properties) and aesthetic properties (high gloss, even at the same time high transparency, low haze).
  • the polypropylene composition prepared by using the catalyst system of the internal electron donor compounded by the phosphate compound and the diether compound has higher gloss and higher gloss.
  • Lower haze and comparable mechanical properties can combine good transparency, high gloss, high rigidity, high toughness and low shrinkage properties.
  • the polypropylene composition prepared according to the method of the present invention can provide raw materials with better comprehensive properties for downstream processing due to the above-mentioned favorable comprehensive properties, and has wider application fields.
  • the preparation method of the polypropylene composition of the present invention can be carried out on existing industrial plants, especially by continuous polymerization processes. The preparation method is economical and convenient.
  • the present invention provides an article prepared from the polypropylene composition according to the present invention.
  • the rubber phase is at least partially deformed and forms an oriented structure.
  • the rubber phase deforms and elongates and forms an oriented structure at the location of the core portion both within 10% of the thickness from the surface of the article and outside the range of 10% of the thickness from the surface of the article, preferably in the article
  • the rubber phase is completely deformed and forms an oriented state structure.
  • the article is preferably an injection molded article.
  • the rubber phase is at least partially, preferably at least 80%, or even completely deformed, elongated, and forms an oriented structure after orientation forces such as in the manufacture of the article (eg, injection molding).
  • more than 50% of the rubber phase particles within 10% thickness from the article surface have an aspect ratio greater than or equal to 4;
  • the aspect ratio of the particles is greater than or equal to 2, based on the total number of rubber phase particles in the SEM image at the corresponding location.
  • the oriented state structure of the ethylene-propylene elastomeric copolymer rubber phase dispersed in the highly crystalline homopolypropylene continuous phase is included in the article of the present invention, thereby unexpectedly improving the gloss of the article and maintaining it well mechanical properties.
  • the product of the present invention can be used in various fields such as home appliances, household appliances, packaging, toys, automobile modification, medicine and the like.
  • the article of the invention may be or a part of a product used in the electrical, household, packaging, toy, automotive or medical fields, in particular appliance housings, household storage products, toys, automotive interior parts or medical disposables Syringes, such as flush syringes.
  • Molar ratio of gas in the reactor measured by gas chromatography, ABB company, Switzerland, Vista II type online chromatography.
  • Xylene soluble content determined according to GB/T 24282-2009.
  • Charpy notched impact strength According to GB/T 1043.1-2008, the injection-molded samples were measured at 23°C and -20°C.
  • Heat distortion temperature Measure injection molding samples according to GB/T 1634.2-2004.
  • Molecular weight distribution Measured by PL-GPC 220 high temperature gel permeation chromatograph produced by Agilent Technologies in the United States. Temperature 150°C, 3 PLgel 13 ⁇ m Olexis columns, 300.0mm ⁇ 7.5mm, mobile phase 1,2,4-trichlorobenzene (add 0.25g/L antioxidant 2,6-dibutyl-p-cresol), The flow rate is 1.0mL/min, the IR5 infrared detector, the sample concentration is about 1mg/mL, and the narrow distribution polystyrene standard sample is used for universal calibration.
  • Isotactic pentad fraction use Bruker's AVANCE III 400MHz nuclear magnetic resonance spectrometer, 10mm probe, and the solvent is deuterated o-dichlorobenzene. About 200mg of sample/2.5ml of solvent, the sample tube is heated in an oil bath at 130-140°C until the sample dissolves to form a homogeneous solution.
  • the test conditions are: the probe temperature is 125°C, the pulse is 90°, the sampling time AQ is 5 seconds, and the delay time D1 is 10 seconds.
  • the content of ethylene structural unit and the content of propylene structural unit measured by infrared method, and measured by Magna-IR 200 infrared spectrometer of Nicolet Company of the United States.
  • SEM photo sample pellets or injection-molded samples, injection-molded according to GB/T17037.1-2019, brittle fracture or ultra-thin section after cooling in liquid nitrogen, the section is soaked in xylene solution, and the rubber phase is etched away , and then clean the surface, carry out SEM test after drying, and carry out surface gold spraying treatment before the test.
  • a Japanese HITACHI S-4800 cold field emission scanning electron microscope was used.
  • Average size of rubber phase particles determined by SEM method. For spherical rubber phase particles, measure the diameter of the rubber phase particles in the SEM photo; for nearly spherical rubber phase particles or after the action of orientation force, measure the longest dimension of the particles (the distance between the two farthest points on the particle outline). distance), and the average value of the above-mentioned sizes of 50 rubber phase particles was obtained by SEM photograph observation as the average size of the rubber phase particles. When measuring the average size of the rubber phase particles subjected to the orientation force, the viewing plane of the SEM was parallel to the injection molding direction.
  • Intrinsic viscosity determined using a capillary detector (capillary detector in a CRYSTEX instrument from PolymerChar, Spain).
  • the polymerization was carried out on a polypropylene pilot plant.
  • the polymerization method and steps are as follows:
  • main catalyst Cat-1 make according to the method of embodiment 1 in CN106608934B, in the reaction kettle of 1000mL, add 150mL white oil (commercially available from Guangzhou Mingen Petrochemical Co., Ltd., by weight, the water content is low at 50ppm), 300mL methyl silicone oil (commercially available from Dow Corning, viscosity of 300 centipoise/20°C, water content less than 50ppm by weight), 30g magnesium chloride containing 0.44wt% water (commercially available from Xinyi, Fushun City) Titanium Factory), 50 mL of absolute ethanol (commercially available from Beijing Chemical Plant, with a water content of less than 100 ppm by weight) and 1 mL of 2-methoxybenzoyl chloride (commercially available from TOKYO KASEI KOGYO CO.LTD), in The temperature was raised to 125°C with stirring.
  • white oil commercially available from Guangzhou Mingen Petrochemical Co., Ltd., by weight, the water content is low at
  • the mixture was pressed to 2L of hexane (with a thickness of 0.1mm) pre-cooled to -30°C through a discharge line pre-installed with 4 layers of 75 ⁇ m metal mesh (each layer thickness 0.1mm) under a pressure of 0.3MPa.
  • the water content is less than 5 ppm on a weight basis), quenching is carried out.
  • the liquid was removed by filtration, and the obtained solid was washed 5 times with 300 mL of hexane, and vacuum-dried at 30° C. for 1.5 hours to obtain a spherical magnesium halide adduct.
  • Prepolymerization main catalyst Cat-1, internal electron donor is diisobutyl phthalate, cocatalyst (triethylaluminum), external electron donor diisopropyldimethoxysilane (DIPMS) after 10
  • the pre-polymerization reactor was continuously added to carry out the pre-polymerization reaction.
  • the catalyst flow rate was 0.36 g/hr.
  • the prepolymerization was carried out in the bulk environment of propylene liquid phase, the temperature was 15°C, and the residence time was about 4min.
  • the catalyst continuously enters the loop reactor, and the propylene homopolymerization reaction is completed in the loop reactor.
  • the loop polymerization temperature is 70 °C, and the reaction pressure is 4.0 MPa.
  • the hydrogen concentration detected by on-line chromatography was 0.15 mol%, correspondingly, the hydrogen/propylene ratio was 0.0015 mol/mol.
  • the obtained material enters the fluidized bed gas phase reactor for the copolymerization of ethylene and propylene.
  • the gas-phase reaction temperature is 70° C.
  • the specific process conditions are shown in Table 1.
  • the ethylene content of component B in the resulting polypropylene composition was 31.0% by weight, and the ratio of the MFR of component A to the MFR of the composition was 1.08.
  • Figures 1-3 show the SEM pictures of the pellets and injection-molded samples prepared in Example A1. It can be seen from these SEM pictures that after injection molding, the rubber phase in the injection molded sample of Example A1 presents an obvious oriented state structure, regardless of the position of the injection molded sample within a thickness range of 10% from the surface of the product and 10% from the surface of the product. At the position of the core part outside the thickness range, the rubber phase is deformed, elongated and oriented in a certain direction, and the rubber phase at the position within 10% thickness of the product surface is deformed to a higher degree (10% thickness range from the product surface).
  • the aspect ratio of the rubber phase particles greater than 70% is greater than 4, and the aspect ratio of some rubber phase particles is even greater than 7; the position of the core part beyond the thickness range of 10% from the surface of the product: the aspect ratio of the rubber phase particles greater than 50% than 2).
  • the rubber phase in the pellets prior to injection molding is substantially spherical. Therefore, the orientation force applied during the injection molding process deforms the rubber phase and forms an orientation state structure, and after the orientation force is removed and the sample is formed, the rubber phase maintains the orientation state structure.
  • the specific process conditions are shown in Table 1.
  • the ethylene content of component B in the resulting polypropylene composition was 31.1% by weight, and the ratio of the MFR of component A to the MFR of the composition was 1.28.
  • the specific process conditions are shown in Table 1.
  • the ethylene content of component B in the resulting polypropylene composition was 34.89% by weight, and the ratio of the MFR of component A to the MFR of the composition was 0.93.
  • the specific process conditions are shown in Table 1.
  • the ethylene content of component B in the resulting polypropylene composition was 31.2% by weight, and the ratio of the MFR of component A to the MFR of the composition was 1.81.
  • the specific process conditions are shown in Table 1.
  • the ethylene content of component B in the resulting polypropylene composition was 30.96% by weight, and the ratio of the MFR of component A to the MFR of the composition was 1.14.
  • the specific process conditions are shown in Table 1.
  • the ethylene content of component B in the resulting polypropylene composition was 31.67% by weight, and the ratio of the MFR of component A to the MFR of the composition was 1.85.
  • the specific process conditions are shown in Table 1.
  • the ethylene content of component B in the resulting polypropylene composition was 48.61% by weight, and the ratio of the MFR of component A to the MFR of the composition was 2.49.
  • the specific process conditions are shown in Table 1.
  • the ethylene content of Component B in the resulting polypropylene composition was 48.58% by weight, and the ratio of the MFR of Component A to the MFR of the composition was 2.34.
  • Figures 6 and 7 show SEM photographs of injection molded plaques and pellets of Comparative Example A2. It can be seen from these photos that even after injection molding, the rubber phase in the injection molded sample of Comparative Example A2 is still basically spherical without deformation and orientation, especially at the core part position beyond 10% of the thickness of the product surface, where No tendency to deform or orientate.
  • the polypropylene composition of the present invention can be used in particular for the preparation of articles having both good mechanical properties (high stiffness, high toughness and low shrinkage properties) and aesthetic properties (high gloss).
  • the polymerization was carried out on a polypropylene pilot plant.
  • the polymerization method and steps are as follows:
  • Prepolymerization After the main catalyst Cat-1, the cocatalyst (triethylaluminum), and the external electron donor methylcyclohexyldimethoxysilane (CHMMS) are precontacted at 10°C for 20min, the prepolymerization reaction is added continuously.
  • the prepolymerization reaction was carried out in the reactor, the flow rate of triethylaluminum (TEAL) was 6g/hr, the flow rate of methylcyclohexyldimethoxysilane was 1.2g/hr, and the flow rate of the main catalyst was 0.36g/hr.
  • the prepolymerization was carried out in the bulk environment of propylene liquid phase, the temperature was 15°C, and the residence time was about 4min.
  • the catalyst continuously enters the loop reactor, and the propylene homopolymerization reaction is completed in the loop reactor.
  • the loop polymerization temperature is 70 °C, and the reaction pressure is 4.0 MPa.
  • the hydrogen concentration detected by on-line chromatography was 0.10 mol%.
  • the obtained material enters the fluidized bed gas phase reactor for the copolymerization of ethylene and propylene.
  • the gas-phase reaction temperature is 70 °C
  • a certain amount of hydrogen is added to the gas-phase reactor feed
  • the on-line chromatography detects the gas in the gas-phase reactor circulating gas.
  • Hydrogen/ethylene 0.11.
  • Table 3 The specific process is shown in Table 3.
  • the ethylene content of component B in the resulting polypropylene composition was 28.04% by weight, and the ratio of the MFR of component A to the MFR of the composition was 0.87.
  • FIG. 4 shows the SEM photograph of the position of the core part of the injection-molded sample of Example B1 outside the thickness range of 10% from the surface of the product.
  • Figure 5 shows a SEM photograph of the pellets of Example B1. It can be seen from these SEM pictures that after injection molding, the rubber phase in the injection molded sample prepared by Example B1 presents an obvious oriented structure, and the rubber phase also occurs at the position of the core part beyond the thickness range of 10% from the surface of the product Deformation and orientation (in the position of the core part beyond the thickness range of 10% from the surface of the product: more than 70% of the rubber phase particles have an aspect ratio greater than 2, and some rubber phase particles have an aspect ratio even greater than 4);
  • the rubber phase in the material is basically spherical.
  • the specific process conditions are shown in Table 3.
  • the ethylene content of component B in the resulting polypropylene composition was 28.05% by weight, and the ratio of the MFR of component A to the MFR of the composition was 1.27.
  • the specific process conditions are shown in Table 3.
  • the ethylene content of component B in the obtained polypropylene composition was 33.67% by weight, and the ratio of the MFR of component A to the MFR of the composition was 0.93.
  • the specific process conditions are shown in Table 3.
  • the ethylene content of component B in the resulting polypropylene composition was 26.72% by weight, and the ratio of the MFR of component A to the MFR of the composition was 1.04.
  • the specific process conditions are shown in Table 3.
  • the ethylene content of component B in the resulting polypropylene composition was 27.89% by weight, and the ratio of the MFR of component A to the MFR of the composition was 1.09.
  • the specific process conditions are shown in Table 3.
  • the ethylene content of component B in the resulting polypropylene composition was 25.05% by weight, and the ratio of the MFR of component A to the MFR of the composition was 1.04.
  • the specific process conditions are shown in Table 3.
  • the ethylene content of component B in the resulting polypropylene composition was 28.05% by weight, and the ratio of the MFR of component A to the MFR of the composition was 1.53.
  • the internal electron donor of the main catalyst used in Example C1 is diisobutyl phthalate, and the external electron donor, co-catalyst, nucleating agent and polymerization process conditions are the same as in Example B5, but different from Example B5
  • the point is that the hydrogen concentration in the loop reactor is 0.24 mol%, and the hydrogen/ethylene in the gas phase reactor is 0.35 (mol/mol).
  • the specific process conditions are shown in Table 3.
  • the ethylene content of component B in the resulting polypropylene composition was 30.98 wt%, and the ratio of the MFR of component A to the MFR of the composition was 1.08.
  • the internal electron donor of the main catalyst used in Example C2 is diisobutyl phthalate and diethyl phthalate, and the external electron donor, cocatalyst and polymerization process conditions are the same as those of Example B1, but the same as in Example B1.
  • Example B1 differs in that no nucleating agent is added.
  • the specific process conditions are shown in Table 3.
  • the ethylene content of component B in the resulting polypropylene composition was 28.04% by weight, and the ratio of the MFR of component A to the MFR of the composition was 0.87.
  • the internal electron donor of the main catalyst used in Comparative Example C1 is diisobutyl phthalate, the external electron donor is diisopropyldimethoxysilane (DIPMS), cocatalyst, nucleating agent and polymerization process
  • DIPMS diisopropyldimethoxysilane
  • the conditions are the same as in Example B1.
  • the specific process conditions are shown in Table 3.
  • the ethylene content of component B in the resulting polypropylene composition was 48.61 wt%, and the ratio of the MFR of component A to the MFR of the composition was 2.03.
  • the internal electron donor of the main catalyst used in Comparative Example C2 is diisobutyl phthalate, the external electron donor is diisopropyldimethoxysilane (DIPMS), cocatalyst, nucleating agent and polymerization process
  • DIPMS diisopropyldimethoxysilane
  • the specific process conditions are shown in Table 3.
  • the ethylene content of component B in the resulting polypropylene composition was 48.58 wt %, and the ratio of the MFR of component A to the MFR of the composition was 1.95.
  • the internal electron donor of the main catalyst used in Comparative Example C3 is diisobutyl phthalate, and the external electron donor, cocatalyst, nucleating agent and polymerization process conditions are identical with those of Example B5, but are different from those of Example B5
  • the points are: the hydrogen concentration in the loop reactor is 0.18 mol%, and the hydrogen/ethylene in the gas phase reactor is 0.35 (mol/mol).
  • the specific process conditions are shown in Table 3.
  • the ethylene content of component B in the obtained polypropylene composition was 31.05 wt%, and the ratio of the MFR of component A to the MFR of the composition was 1.05.
  • polypropylene compositions of the present invention have lower haze and higher gloss, and thus better clarity and aesthetic properties, than in the case where the melt mass flow rate ratio is not within the scope of the present invention; Equivalent or better mechanical properties.
  • the polypropylene composition prepared by using the catalyst system of the internal electron donor compounded by the phosphate compound and the diether compound has higher gloss and higher gloss.
  • Lower haze and comparable mechanical properties can combine good transparency, high gloss, high stiffness, high toughness and low shrinkage properties, thus combining good mechanical properties and aesthetic properties.
  • Example C2 In addition, it can be seen from the comparison between Example C2 and Example B1 that a nucleating agent is added in Example B1, so that the obtained product has a higher modulus and a lower haze.
  • any values are not limited to the precise ranges or values, which are to be understood to include values near those ranges or values.
  • the endpoints of each range, the endpoints of each range and the individual point values, and the individual point values can be combined with each other to yield one or more new ranges of values that Ranges should be considered as specifically disclosed herein.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

一种聚丙烯组合物及其制备方法和由其制成的制品,该聚丙烯组合物包含:(a)70-95重量%的结晶均聚聚丙烯,其全同立构五单元组分数为96%以上并在该聚丙烯组合物中形成连续基体相;(b)5-30重量%的乙烯-丙烯弹性共聚物,其含有20-35重量%的乙烯结构单元和65-80重量%的丙烯结构单元并在所述连续基体相中形成分散的橡胶相,所述橡胶相可至少部分地在取向力作用下变形并形成取向态结构;其中所述结晶均聚聚丙烯和所述聚丙烯组合物在230℃、2.16kg载荷下测量的熔体质量流动速率之比为0.5-2.0。该聚丙烯组合物和制品兼具高光泽和良好的机械性能,并且制备方法简单、成本低并环保;并且所述制品可以用于电器、家居、包装、汽车、玩具或医药领域。

Description

聚丙烯组合物及其制备方法和由其制成的制品 技术领域
本发明属于聚烯烃领域,具体地,涉及一种聚丙烯组合物,该聚丙烯组合物的制备方法,以及由该聚丙烯组合物制备的制品。
背景技术
聚丙烯树脂在家电和汽车行业应用广泛,其优越性在于它不仅能替代金属和工程塑料,还具有易回收、质轻、价格相对较低的特点。这些应用领域,既要求材料有优异的机械性能(刚韧性能),还需有理想的光泽度,以获得制品的美学效果。高光泽聚丙烯目前正在逐步取代HIPS、ABS等材料,应用于如电饭煲、电水壶、微波炉、吸尘器、洗衣机等家电外壳和汽车内饰部件、儿童玩具、家居收纳等各个领域。
另外,由于聚丙烯材料具有良好的力学性能和化学稳定性,用其制作医用一次性使用注射器的技术已日臻成熟。随着社会发展,冲管注射器的需求也随之增大,冲管注射器需要预灌装药液,并需要耐高温蒸汽消毒不变形,要求聚丙烯具高热变形温度、高模量、高抗冲、高光泽、低雾度的性质。
均聚和无规共聚聚丙烯光泽度均较高,但冲击性能较差,无法满足对刚韧要求较高的场合。虽可通过加入POE等弹性体改善均聚及无规共聚聚丙烯的机械性能,但光泽度会受到影响,且改性过程复杂、成本高。
抗冲聚丙烯具有多相结构,因而其刚韧性能理想,可以同时兼具高模量高冲击,但由于橡胶相的存在其制品的雾度通常较高,光泽度较低,无法达到光泽度>80%(60°角光泽度)的高光泽的要求。另外,由于抗冲聚丙烯因自身多相结构的原因,无法通过加入成核剂、改变加工条件等方式显著提高光泽度,必须从其自身结构出发,进行调整优化。
CN104448538A公开了一种兼具透明性和抗冲性能的聚丙烯组合物。透明性好的聚丙烯通常具有较高的光泽度。该文献中选用特定的ZN催化剂实现用连续聚合法合成具有较高乙烯-丙烯弹性体共聚物含量(30-60重量%)的聚丙烯组合物。该透明抗冲聚丙烯产品内的橡胶粒径很小,橡胶相对于均聚聚丙烯基体的结晶会产生一定的影响,进而影响聚丙烯的刚性,因此该透明抗冲聚丙烯产品的模量通常较低。
CN109422958A公开了一种高流动高刚高韧聚烯烃组合物及其制备方法。所述聚烯烃组合物中,乙烯-丙烯共聚物含有40-50重量%的高乙烯单元含量。所述的抗冲聚丙烯兼具较好的刚性和韧性,但受其橡胶相结构的限制,该抗冲聚丙烯的光泽度较低(低于80%),无法达到高光泽的水平。
CN1321178A公开了一种兼具高模量高冲击低雾度抗冲聚丙烯组合物,但该抗冲击聚合物的橡胶相是乙烯-丁烯共聚物,这在国内现有聚丙烯装置上是无法生产的。
因此,需要寻找一种可以在保持抗冲聚丙烯良好的刚韧平衡性的同时,兼具高光泽度或另外具有低雾度的聚丙烯组合物,从而满足特定应用领域的要求和扩大聚丙烯组合物的应用范围,同时,所述聚丙烯组合物应该可以在现有工业装置上生产。
发明内容
发明概述
鉴于如上所述的现有技术,本发明的目的是提供一种聚丙烯组合物,其兼具高光泽和良好抗冲击性能,尤其是兼具高光泽、高刚性、高韧性和低收缩性质。
本发明的另一个目的是提供所述聚丙烯组合物的制备方法,其可以在现有工业装置上实施,尤其是可通过连续聚合工艺直接获得所述聚丙烯组合物。所述方法不需要复杂的改性,因而简单、成本低并环保。
根据本发明,通过采用特定的催化剂体系和调节特定的聚合工艺条件,获得了具有特定组成的高立构规整度均聚聚丙烯与乙烯-丙烯弹性共聚物的组合物,其中该组合物具有包含均聚聚丙烯连续基体相和分散在其中的乙烯-丙烯弹性共聚物橡胶相的特定微结构,从而实现了上述目的。
因此,本发明的第一方面提供一种聚丙烯组合物,包含:
(a)70-95重量%的结晶均聚聚丙烯作为组分A,其全同立构五单元组分数为96%以上,优选97%以上;该结晶均聚聚丙烯在该聚丙烯组合物中形成连续基体相;
(b)5-30重量%的乙烯-丙烯弹性共聚物作为组分B,以乙烯-丙烯弹性共聚物的总重量为基准,该乙烯-丙烯弹性共聚物含有20-35重量%,优选25-35重量%的乙烯结构单元,和65-80重量%,优选65-75重量%的丙烯结构单元;该乙烯-丙烯弹性共聚物在所述连续基体相中形成分散的橡胶相;
其中所述结晶均聚聚丙烯和所述聚丙烯组合物根据GB/T 3682.1-2018在230℃、 2.16kg载荷下测量的熔体质量流动速率之比为0.5-2.0,优选为0.9-1.5。
本发明的第二方面提供本发明第一方面所述的聚丙烯组合物的制备方法,包括以下步骤:
(1)在第一烯烃聚合条件下,将丙烯单体与具有立构选择性的齐格勒-纳塔催化剂接触反应,并从接触反应后得到的混合物中除去未反应的单体,得到产物a,所述产物a包含组分A;
(2)在第二烯烃聚合条件下,在气相下,将乙烯单体和丙烯单体与步骤(1)得到的所述产物a接触反应,并从接触反应后得到的混合物中除去未反应的单体,得到包含组分A和组分B的产物b作为所述聚丙烯组合物。
本发明的第三方面提供一种制品,其由第一方面所述的聚丙烯组合物制备。
本发明的其它方面和有益效果将从随后结合附图对发明的详述和具体实施方式部分中可以清楚看出。
附图说明
图1示出了实施例A1的注塑样片的距离制品表面10%厚度范围内的位置的SEM照片。
图2示出了实施例A1的注塑样片的距离制品表面10%厚度范围以外的芯部分的位置的SEM照片。
图3示出了实施例A1的MFR样条的SEM照片(可认为是与粒料的SEM照片接近的情况)。
图4示出了实施例B1的注塑样片的距离制品表面10%厚度范围以外的芯部分位置的SEM照片。
图5示出了实施例B1的粒料的SEM照片。
图6示出了对比例A2的注塑样片的距离制品表面10%厚度范围以外的芯部分位置的SEM照片。
图7示出了对比例A2的粒料的SEM照片。
发明详述
第一方面中,本发明提供一种聚丙烯组合物,包含:
(a)70-95重量%的结晶均聚聚丙烯作为组分A,其全同立构五单元组分数为96% 以上,优选97%以上;该结晶均聚聚丙烯在该聚丙烯组合物中形成连续基体相;
(b)5-30重量%的乙烯-丙烯弹性共聚物作为组分B,以乙烯-丙烯弹性共聚物的总重量为基准,该乙烯-丙烯弹性共聚物含有20-35重量%,优选25-35重量%的乙烯结构单元和65-80重量%,优选65-75重量%的丙烯结构单元;该乙烯-丙烯弹性共聚物在所述连续基体相中形成分散的橡胶相;
其中所述结晶均聚聚丙烯和所述聚丙烯组合物根据GB/T 3682.1-2018在230℃、2.16kg载荷下测量的熔体质量流动速率之比为0.5-2.0,优选为0.9-1.5。
本发明聚丙烯组合物中的组分A为结晶均聚聚丙烯,其全同立构五单元组分数为96%以上,优选97%以上,例如97.1%、97.2%、97.3%、97.4%、97.5%、97.6%、97.7%、97.8%、97.9%、98.0%、98.5%、99.0%以及这些数值点组成的范围。所述结晶均聚聚丙烯是一种高结晶均聚聚丙烯。
所述全同立构五单元组分数通过 13C NMR测定,所用溶剂为氘代邻二氯苯。
该结晶均聚聚丙烯在该聚丙烯组合物中形成连续相,该相是基体相,也称“基相”。所述基体相基本由组分A形成。
本发明聚丙烯组合物中的组分B为乙烯-丙烯弹性共聚物。
以乙烯-丙烯弹性共聚物的总重量为基准,该乙烯-丙烯弹性共聚物含有20-35重量%,优选25-35重量%的乙烯结构单元和65-80重量%,优选65-75重量%的丙烯结构单元。
该乙烯-丙烯弹性共聚物分散在所述连续基体相中并形成橡胶相,该橡胶相是分散相。所述橡胶相基本上由组分B形成。
由该乙烯-丙烯弹性共聚物在本发明聚丙烯组合物中形成的橡胶相形态类似于通过常规方法得到的橡胶相形态。在未经取向力作用时,本发明聚丙烯组合物中的橡胶相为球状或近球状的粒子。所述球状和近球状是指橡胶相粒子的纵横比基本上在1-2的范围内。“基本上”是指至少90%的橡胶相粒子的纵横比在1-2的范围内。纵横比是粒子的最长尺寸(粒子轮廓上相距最远的两个点之间的距离,即纵轴)和与纵轴垂直的直线中与粒子轮廓相交的交点之间距离最长的直线在交点之间的长度(橫轴)的比值。优选地,在未经取向力作用时,至少95%的所述橡胶相粒子的纵横比为1-2。
本发明得到的橡胶相的尺寸与通过常规方法得到的橡胶相的尺寸相比较小。在未经取向力作用时,本发明聚丙烯组合物中的橡胶相粒子的平均尺寸可以为0.03-3.0μm,优选0.05-2.0μm,更优选0.05-1.5μm,更优选0.1-1.5μm。
所述橡胶相粒子的平均尺寸通过扫描电镜(SEM)方法测定。具体地,对于球状橡胶相粒子,测定SEM照片中橡胶相粒子的直径;对于近球状或经取向力作用后的橡胶相粒子,则测量粒子的最长尺寸(粒子轮廓上相距最远的两个点之间的距离),通过SEM照片观察获取50个橡胶相粒子的上述尺寸的平均值作为橡胶相的平均尺寸或橡胶相粒子的平均尺寸。当测量经取向力作用后的橡胶相粒子的平均尺寸时,SEM的观察面平行于取向力(外场作用力)的方向,例如注塑方向。
另外,与常规橡胶相不同的是,本发明聚丙烯组合物中的橡胶相可至少部分地(甚至完全)在取向力作用下变形并形成取向态结构。在取向力移除、样品成型后,所述橡胶相仍可保持取向态结构。
所述取向力是指能导致物体产生取向的外场作用力,所述取向是指物体沿着外场作用力的方向平行排列。所述外场作用力可以是拉伸应力和/或剪切应力,例如用于制备制品的工艺过程本身施加于聚丙烯组合物上的力,例如是注塑等加工过程中施加于聚丙烯组合物上的力。
术语“取向态结构”在此是指橡胶相粒子在取向力作用下变形并伸长形成的纵轴沿着某一方向彼此平行排列。这里排除由于制备工艺导致的与整个组合物中橡胶相粒子的总体排列方向不一致的少量的位于组合物局部区域的沿不同方向排列的橡胶相粒子。
本文中,“平行排列”包括基本平行的情况,其中橡胶相粒子的纵轴彼此之间的夹角小于约10度,优选小于约5度。
优选地,在取向力作用后,至少80%的橡胶相粒子形成取向态结构,基于SEM照片中橡胶相粒子的总数目。这里排除由于制备工艺或SEM方法导致的不能清晰观察到的橡胶相粒子。
在取向力作用后,本发明聚丙烯组合物中的至少50%的橡胶相粒子的纵横比可达到大于2,基于SEM照片中橡胶相粒子的总数目。
本发明聚丙烯组合物中的橡胶相在取向力的作用后不仅在组合物的表层(例如注塑样片的距离制品表面10%厚度范围内处,即距离制品表面的距离为小于或等于厚度的10%的区域)可发生形变和取向,而且在组合物内部也可发生形变和取向,只是在组合物内部,尤其是注塑样片的距离制品表面10%厚度范围以外的芯部分(距离制品表面的距离为大于厚度的10%的区域)处的橡胶相较不容易发生变形和取向。当结晶均聚聚丙烯与聚丙烯组合物的熔体质量流动速率之比接近1时,可有利地容易实现所述芯部分处的橡胶相的变形和取向。
在本发明的聚丙烯组合物中,所述结晶均聚聚丙烯和所述聚丙烯组合物根据GB/T3682.1-2018在230℃、2.16kg载荷下测量的熔体质量流动速率之比可以为0.5-2.0,优选为0.9-1.5。
形成基体相的所述结晶均聚聚丙烯根据GB/T 3682.1-2018在230℃、2.16kg载荷下的熔体质量流动速率可以为5-200g/10min,优选为10-100g/10min。
聚丙烯组合物根据GB/T 3682.1-2018在230℃、2.16kg载荷下的熔体质量流动速率可以为5-100g/10min,优选为6-30g/10min,更优选8.89-30g/10min。
根据本发明的聚丙烯组合物的特性粘数可以为1.0-2.5dL/g,优选1.4-2.4dL/g,更优选1.52-2.08dL/g。所述聚丙烯组合物中的二甲苯可溶物特性粘数可以为1.0-4.0dL/g,优选为1.11-3.65dL/g。所述聚丙烯组合物中的二甲苯可溶物特性粘数与结晶均聚聚丙烯的特性粘数之比优选为0.7-2.6。特性粘数通过毛细管检测器测定。
所述聚丙烯组合物的分子量分布Mw/Mn优选为≤5,更优选分子量分布Mw/Mn≤4.5。分子量分布通过凝胶渗透色谱(GPC)分析相对于聚苯乙烯标样测得。
根据一种实施方式,根据本发明的聚丙烯组合物可以另外包含:(c)成核剂作为组分C,由此可有利地进一步提高机械性能。所述成核剂可选自羧酸类及其金属盐类、山梨醇类、芳基磷酸盐类、脱氢枞酸及其盐类、芳香酰胺类、芳香胺类、稀土化合物类、具有准平面结构的稠环化合物类,以及高分子类成核剂中的至少一种。所述成核剂优选为羧酸盐类成核剂和/或芳基磷酸盐类成核剂,例如为Millad HPN-20E成核剂、Millad HPN-715成核剂、Millad 600EI成核剂(可购自美国美利肯公司)。
基于所述聚丙烯组合物的总重量计,所述成核剂的含量可以为0.05-0.3重量%。基于组分A和组分B的总重量计算,作为组分C的成核剂的含量可以为0.05-3重量%。
根据本发明的聚丙烯组合物还可以包括聚合物领域中常规使用的其他助剂,从而赋予本发明聚丙烯组合物进一步有利的性能。所述其他助剂可选自抗氧剂、抗静电剂和着色剂中的至少一种。基于聚丙烯组合物的总重量,所述其他助剂的含量可以为0.05-0.6重量%,优选0.1-0.3重量%。
根据本发明的聚丙烯组合物具有明显更高的光泽度,其60°角光泽度可以达到≥80%,优选≥85%,更优选≥90%。在一种优选实施方式中,所述聚丙烯组合物还可同时具有≤50%的雾度,更优选≤40%的雾度,从而兼具高光泽度和高透明性。
根据本发明的聚丙烯组合物另外具有良好的机械性能,尤其是以下性能中的一种或多种,优选具有全部以下性能:
1)平行收缩率≤1.15,优选≤1.1;
2)垂直收缩率≤1.36,优选≤1.15;
3)弯曲模量≥1000MPa,优选≥1300MPa,更优选≥1400MPa,再更优选≥1450MPa;
4)室温简支梁缺口冲击强度≥5kJ/m 2,优选≥6kJ/m 2
5)热变形温度≥90℃,优选≥92℃。
本文中,60°角光泽度根据GB/T 8807-1988测量注塑样片得到,样片厚度2mm。雾度根据GB/T 2410-2008测量注塑样片得到,样片厚度1mm。收缩率根据GB/T17037.4-2003测量注塑样片得到。弯曲模量根据GB/T9341-2008测量注塑样片得到。室温简支梁缺口冲击强度根据GB/T 1043.1-2008,在23℃下测量注塑样片得到。热变形温度根据GB/T 1634.2-2004测量注塑样片得到。
所述聚丙烯组合物可以是粉料或粒料形式。所述粒料例如可通过混合造粒获得。所述混合造粒的方法可以为本领域常规的各种方法,本发明对此没有特别限制,例如可采用双螺杆挤出机造粒。在本发明的聚丙烯组合物的粒料中,橡胶相仍保持为球状或近球状。
第二方面中,本发明提供根据本发明的聚丙烯组合物的制备方法,包括以下步骤:
(1)在第一烯烃聚合条件下,将丙烯单体与具有立构选择性的齐格勒-纳塔催化剂接触反应,并从接触反应后得到的混合物中除去未反应的单体,得到产物a,所述产物a包含组分A;
(2)在第二烯烃聚合条件下,在气相下,将乙烯单体和丙烯单体与步骤(1)得到的所述产物a接触反应,并从接触反应后得到的混合物中除去未反应的单体,得到包含组分A和组分B的产物b作为所述聚丙烯组合物。
本发明方法中,可采用具有立构选择性的齐格勒-纳塔催化剂制得前述具有高立构规整度的高结晶均聚聚丙烯,并将该均聚物与活性催化剂一起进一步与乙烯和丙烯接触而形成分散在均聚物连续基体相中的橡胶相的聚丙烯组合物。
所述具有立构选择性的齐格勒-纳塔催化剂可以含有:
(i)固体催化剂组分,所述固体催化剂组分含有由镁源、钛源和内给电子体反应得到的产物;
(ii)有机铝化合物;以及
(iii)任选的外给电子体。
所述齐格勒-纳塔催化剂优选具有高立构选择性。
本发明方法中使用所述固体催化剂组分作为主催化剂。所述固体催化剂组分中的各成分用量可根据需要确定。优选地,以镁元素计的镁源、以钛元素计的钛源与内给电子体的用量摩尔比可以为1:(20-150):(0.1-0.9),优选为1:(30-120):(0.15-0.6)。
在本发明的方法中所用的固体催化剂组分可以商购获得,或者采用本领域已知的方法,例如CN106608934B中公开的方法制备。
所述钛源可以是钛化合物,例如可以是选自通式Ti(OR) 4-mX m所示的钛化合物中的一种或多种,其中m为0-4的整数,优选1-4的整数,R可以为C 1-C 20的烷基,优选C 1-C 10的烷基,X可以为卤素,优选氯。
所述镁源可以为各种能够用于烯烃聚合的催化剂的含镁化合物,例如可以为卤化镁、镁的醇化物或卤代醇化物和卤化镁加合物载体等,优选球形卤化镁加合物载体,例如按照CN1330086A实施例1公开的方法或CN106608934B中公开的方法制备的那些。
所述内给电子体可优选选自单羧酸的酯、二羧酸的酯、磷酸酯类化合物和二醚类化合物及其组合。
在一种优选实施方式中,所述内给电子体可以为单羧酸的酯和/或二羧酸的酯,优选选自苯甲酸酯、丙二酸酯、邻苯二甲酸酯和琥珀酸酯中的至少一种,其中更优选的是邻苯二甲酸酯。邻苯二甲酸酯包括邻苯二甲酸烷基酯(例如邻苯二甲酸二异丁酯和/或邻苯二甲酸二辛酯)和/或邻苯二甲酸芳基酯(例如邻苯二甲酸二苯酯和/或邻苯二甲酸苄基丁基酯)。更合适的为邻苯二甲酸烷基酯,进一步优选为邻苯二甲酸二异丁酯和/或邻苯二甲酸二辛酯。
在本发明方法的使用单羧酸的酯和/或二羧酸的酯作为内给电子体的这种实施方式中,优选使用成核剂。所制备的聚丙烯组合物的60°角光泽度可以达到≥80%,优选≥85%;平行收缩率可以为≤1.15,垂直收缩率可以为≤1.15;弯曲模量可以为≥1000MPa,优选≥1300MPa,室温简支梁缺口冲击强度可以为≥5kJ/m 2
在本发明方法的另一种优选实施方式中,所述内给电子体可以是磷酸酯类化合物和二醚类化合物复配的内给电子体。
所述二醚类化合物和所述磷酸酯类化合物的用量摩尔比可以为1:(0.02-0.25),优选为1:(0.04-0.15)。
所述磷酸酯类化合物可选自式(1)所示磷酸酯类化合物中的至少一种,
Figure PCTCN2021113834-appb-000001
其中,R 1、R 2和R 3各自独立地选自C 1-C 4的直链或支链烷基、C 3-C 20的环烷基、C 6-C 20的芳基、C 7-C 20的烷芳基或C 7-C 20的芳烷基。
优选地,所述磷酸酯类化合物可以包括但不限于:磷酸三甲酯、磷酸三乙酯、磷酸三丁酯、磷酸三苯酯、磷酸三甲苯酯、磷酸三异丙基苯酯、磷酸三甲氧基苯酯、磷酸苯基二甲酯、磷酸甲苯基二丁酯、磷酸异丙苯基二甲酯、磷酸异丙苯基二乙酯、磷酸异丙苯基二丁酯、磷酸苯基二甲苯酯、磷酸苯基二异丙基苯酯、磷酸对甲苯基二丁酯、磷酸间甲苯基二丁酯、磷酸对异丙苯基二甲酯、磷酸对异丙苯基二乙酯、磷酸对叔丁基苯基二甲酯和磷酸邻甲苯基对二叔丁苯基酯等中的至少一种。
所述二醚类化合物可以选自式(2)所示二醚类化合物中的至少一种,
R 1R 2C(CH 2OR 3)(CH 2OR 4)式(2)
其中,R 1和R 2各自独立地选自氢、C 1-C 20的直链或支链烷基、C 3-C 20的环烷基、C 6-C 20的芳基、C 7-C 20的芳烷基或C 7-C 20烷芳基,R 3和R 4各自独立地选自C 1-C 10的烷基。
优选地,所述二醚类化合物可以包括但不限于:2-(2-乙基己基)-1,3-二甲氧基丙烷、2-异丙基-1,3-二甲氧基丙烷、2-丁基-1,3-二甲氧基丙烷、2-仲丁基-1,3-二甲氧基丙烷、2-环己基-1,3-二甲氧基丙烷、2-苯基-1,3-二甲氧基丙烷、2-(2-苯基乙基)-1,3-二甲氧基丙烷、2-(2-环己基乙基)-1,3-二甲氧基丙烷、2-(对-氯苯基)-1,3-二甲氧基丙烷、2-(二苯基甲基)-1,3-二甲氧基丙烷、2,2-二环己基-1,3-二甲氧基丙烷、2,2-二环戊基-1,3-二甲氧基丙烷、2,2-二乙基-1,3-二甲氧基丙烷、2,2-二丙基-1,3-二甲氧基丙烷、2,2-二异丙基-1,3-二甲氧基丙烷、2,2-二丁基-1,3-二甲氧基丙烷、2-甲基-2-丙基-1,3-二甲氧基丙烷、2-甲基-2-苄基-1,3-二甲氧基丙烷、2-甲基-2-乙基-1,3-二甲氧基丙烷、2-甲基-2-异丙基-1,3-二甲氧基丙烷、2-甲基-2-苯基-1,3-二甲氧基丙烷、2-甲基-2-环己基-1,3-二甲氧基丙烷、2,2-双(2-环己基乙基)-1,3-二甲氧基丙烷、2-甲基-2-异丁基-1,3-二甲氧基丙烷、2-甲基-2-(2-乙基己基)-1,3-二甲氧基丙烷、2,2-二异丁基-1,3-二甲氧基丙烷、2,2-二苯基-1,3-二甲氧基丙烷、2,2-二苄基-1,3-二甲氧基丙烷、2,2-双(环己基甲基)-1,3-二甲氧基丙烷、2-异丁基-2-异丙 基-1,3-二甲氧基丙烷、2-(1-甲基丁基)-2-异丙基-1,3-二甲氧基丙烷、2-异丙基-2-异戊基-1,3-二甲氧基丙烷、2-苯基-2-异丙基-1,3-二甲氧基丙烷、2-苯基-2-仲-丁基-1,3-二甲氧基丙烷、2-苄基-2-异丙基-1,3-二甲氧基丙烷、2-环戊基-2-异丙基-1,3-二甲氧基丙烷、2-环戊基-2-仲-丁基-1,3-二甲氧基丙烷、2-环己基-2-异丙基-1,3-二甲氧基丙烷、2-环己基-2-仲-丁基-1,3-二甲氧基丙烷、2-异丙基-2-仲-丁基-1,3-二甲氧基丙烷、2-环己基-2-环己基甲基-1,3-二甲氧基丙烷和9,9-二甲氧基甲基芴等中的至少一种。
在本发明方法的采用磷酸酯类化合物和二醚类化合物复配的内给电子体的这种实施方式中,优选使用成核剂。所制备的聚丙烯组合物的60°角光泽度可以达到≥85%,优选≥90%;同时具有的雾度≤50%,优选雾度≤40%。在这种实施方式中,所制备的聚丙烯组合物的平行收缩率可以为≤1.15,优选≤1.1;弯曲模量可以为≥1400MPa,优选≥1450MPa;室温简支梁缺口冲击强度可以为≥5kJ/m 2,优选≥6kJ/m 2;热变形温度可以为≥90℃,优选热变形温度≥92℃;分子量分布Mw/Mn较窄,可以为≤5,优选分子量分布Mw/Mn≤4.5。
本发明中预料不到地发现,采用磷酸酯类化合物和二醚类化合物复配的内给电子体的催化剂体系制备的聚丙烯组合物具有更高的光泽度和更低的雾度并具有相当的机械性能,可以兼具良好透明性、高光泽、高刚性、高韧性和低收缩性质,从而兼具良好机械性能和美学特性。
本发明方法中,使用有机铝化合物作为助催化剂。其优选为烷基铝化合物,包括但不限于:三乙基铝、三正丁基铝、三异丁基铝、三正己基铝、一氯二乙基铝、一氯二正丁基铝、一氯二异丁基铝、一氯二正己基铝、二氯一乙基铝、二氯一正丁基铝、二氯一异丁基铝和二氯一正己基铝中的一种或多种。所述烷基铝化合物优选为三烷基铝,例如三乙基铝、三正丁基铝和三异丁基铝等中的至少一种。
本发明方法中使用的催化剂体系中还可以包含外给电子体。所述外给电子体可以是有机硅化合物,优选通式为R nSi(OR') 4-n的有机硅化合物,式中0<n≤3,R选自氢原子、卤素、烷基、环烷基、芳基和卤代烷基,R'选自烷基、环烷基、芳基和卤代烷基。
所述外给电子体优选可包括但不限于:四甲氧基硅烷、四乙氧基硅烷、三甲基甲氧基硅烷、三甲基乙氧基硅烷、三甲基苯氧基硅烷、二甲基二甲氧基硅烷、二甲基二乙氧基硅烷、甲基叔丁基二甲氧基硅烷、甲基异丙基二甲氧基硅烷、二苯氧基二甲氧基硅烷、二苯基二乙氧基硅烷、苯基三甲氧基硅烷、苯基三乙氧基硅烷、乙烯基三甲氧基硅烷、环己基甲基二甲氧基硅烷、二环戊基二甲氧基硅烷、二异丙基二甲氧基硅烷、二异丁基 二甲氧基硅烷、2-乙基哌啶基-2-叔丁基二甲氧基硅烷、(1,1,1-三氟-2-丙基)-2-乙基哌啶基二甲氧基硅烷和(1,1,1-三氟-2-丙基)-甲基二甲氧基硅烷等中的至少一种。
作为外给电子体的有机硅化合物可以在两个以上串联操作反应器的系统内一次性加入,也可以在不同位置分份加入;可以直接加入到反应器内,也可加到与反应器进料相关的设备或管线中。
本发明方法中,所述固体催化剂组分、有机铝化合物以及外给电子体的用量也可根据需要确定。所述固体催化剂组分与有机铝化合物以钛/铝摩尔比计的用量比可以为1:(25-100)。所述有机铝化合物与外给电子体的重量比可以为(0-150):1,优选为(2-150):1,更优选为(3-10):1。
在本发明使用的催化剂的制备过程中,有机铝化合物和任选的外给电子体可以分别与固体催化剂组分混合后反应,也可以将有机铝化合物和任选的外给电子体预先混合后再与固体催化剂组分混合并反应。
本发明使用的催化剂可以直接加入到反应器内,也可以经过本领域已知的预络合和/或预聚合之后,再加入到反应器内。
所述预络合和预聚合过程可以在有或无聚合单体的环境中,如单独设置的预络合或预聚合反应器内进行。当单独进行预络合反应时,反应器的形式可以是连续搅拌釜反应器,也可以是能获得充分混合效果的其它形式,如环管反应器、含静态混合器的一段管路,甚至也可以是一段物料处于湍流状态的管路。预络合的温度可控制在-10℃至60℃之间,优选为0-30℃。预络合的时间可控制在0.1-180min,优选为5-30min。
经过或不经过预络合的催化剂还可以任选地进行预聚合处理。预聚合可在液相本体条件下连续进行,也可以在惰性溶剂中间歇进行。预聚合反应器可以是连续搅拌釜、环管反应器等。预聚合的温度可控制在-10℃至60℃之间,优选为0-40℃。预聚合的倍数可控制在0.5-1000倍,优选为1.0-500倍。
在本发明方法的步骤(1)中,所述第一烯烃聚合条件可以为液相聚合条件或气相聚合条件,即所述聚合可以为液相聚合,也可以为气相聚合。
所述液相聚合条件可包括:以氢气作为分子量调节剂,聚合温度为0-150℃,优选为40-100℃;聚合压力高于丙烯在相应聚合温度下的饱和蒸汽压力。
所述气相聚合条件可包括:以氢气作为分子量调节剂,聚合温度为0-150℃,优选为40-100℃;聚合压力大于或等于常压,优选为0.5-2.5MPa。
步骤(1)中使用的氢气/丙烯比优选为0.0010-0.0060mol/mol,即氢气浓度优选为 0.10-0.60mol%。
在本发明方法的步骤(2)的气相聚合反应体系中,乙烯/(乙烯+丙烯)的摩尔比可以为0.1-0.4mol/mol,优选0.1-0.3mol/mol,更优选为0.1-0.25mol/mol,再更优选为0.15-0.25mol/mol。烯烃气相聚合的温度可以为40-100℃,优选为60-80℃。压力可以为0.6-1.4MPa,优选为1.0-1.3MPa。步骤(2)的优选实施方式中,氢气/乙烯比为0.02-0.70mol/mol,优选0.04-0.54mol/mol。
本文中,压力是指表压。
根据本发明的步骤(1)和(2)所述的聚合可以连续进行,也可以间歇进行。
连续聚合可以使用两个以上的串联反应器。其中第一个或前几个反应器制备产物a,其包含组分A,尤其是主要由所述组分A组成。制备产物a的反应器可以是液相反应器或气相反应器。液相反应器可以是环管反应器或搅拌釜反应器。气相反应器可以是卧式搅拌床反应器或立式搅拌床反应器或流化床反应器或多区循环反应器等。制备产物a后面的反应器用来制备产物b或组分B,所述产物b包含组分A和组分B,尤其是主要由组分A和B组成。制备产物b或组分B的反应器是气相反应器,该气相反应器可以是卧式搅拌床反应器或立式搅拌床反应器或流化床反应器等。以上气相反应器也可以任意地搭配组合。
本发明所述的聚合也可以间歇进行。在反应器内依次制备所述产物a和产物b。为了产物a的制备,可以在液相中进行聚合,也可以在气相进行聚合。为了产物b或组分B的制备,需在气相进行聚合。
当本发明的聚丙烯组合物包含成核剂和任选的其他助剂时,所述成核剂和其他助剂在不影响聚合反应的情况下,可以在步骤(1)之前或过程中、步骤(2)之前、过程中或之后添加。优选,本发明方法可另外包括步骤(3):将步骤(2)得到的产物b与成核剂和任选的其他助剂混合,尤其是混合造粒。所述混合造粒的方法可以为本领域常规的各种方法,例如可采用双螺杆挤出机造粒。
尤其是,在采用磷酸酯类化合物和二醚类化合物复配的内给电子体的催化剂体系的情况下,在步骤(3)中将步骤(2)得到的产物b与成核剂混合造粒。由此制备的聚丙烯组合物可以同时具有高的光泽度(60°角光泽度≥85%,优选≥90%)和低的雾度(雾度≤50%,优选≤40%),从而有利地同时具有高光泽度和高透明性。
根据本发明方法制备的聚丙烯组合物尤其可以实现良好机械性能(高刚性、高韧性和低收缩性质)和美学特性(高光泽,甚至还同时具有高透明性、低雾度)的结合。
与采用羧酸酯作为内给电子体的催化体系相比,采用磷酸酯类化合物和二醚类化合物复配的内给电子体的催化剂体系时制备的聚丙烯组合物具有更高的光泽度和更低的雾度并具有相当的机械性能,可以兼具良好透明性、高光泽、高刚性、高韧性和低收缩性质。
根据本发明方法制备的聚丙烯组合物由于显示上述有利的综合性能而可以为下游加工提供综合性能更好的原料,应用领域更广。本发明的聚丙烯组合物的制备方法可在现有工业装置上实施,尤其是可通过连续聚合工艺进行。该制备方法经济便捷。
在第三方面中,本发明提供一种制品,其由根据本发明的聚丙烯组合物制备。在所述制品中,橡胶相至少部分变形并形成取向态结构。优选的实施方式中,在距离制品表面10%厚度范围内和距离制品表面10%厚度范围以外的芯部分的位置处,所述橡胶相都变形伸长并形成取向态结构,优选所述制品中的橡胶相完全变形并形成取向态结构。
所述制品优选是注塑制品。
根据本发明,在例如经过制备制品的过程(例如注塑)中的取向力作用后,橡胶相会至少部分,优选至少80%,甚至完全发生形变,伸长,并形成取向态结构。
优选的实施方式中,距离制品表面10%厚度范围内处多于50%的橡胶相粒子的纵横比大于或等于4;距离制品表面10%厚度范围以外的芯部分处多于50%的橡胶相粒子的纵横比大于或等于2,基于相应位置处SEM照片中橡胶相粒子的总数目。
因此,在本发明的制品中包含了分散在高度结晶均聚聚丙烯连续相中的乙烯-丙烯弹性共聚物橡胶相的取向态结构,由此预料不到地提高了制品的光泽度并保持良好的机械性能。
本发明的制品可以用于家电、家居、包装、玩具、汽车改性、医药等多种领域。例如,本发明的制品可以是用于电器、家居产品、包装、玩具、汽车或医药领域的产品或该产品的一部分,尤其是家电外壳、家居收纳产品、玩具、汽车内饰部件或医用一次性注射器,例如冲管注射器。
具体实施方式
下面结合实施例对本发明作进一步例示阐述,但本发明的范围并不受到这些实施例的限制。
参数的测量方法
熔体质量流动速率(MFR):根据GB/T 3682.1-2018,在230℃、2.16kg载荷下测定。
反应器内气体摩尔比例:采用气相色谱法测定,瑞士ABB公司,Vista II型在线色谱。
二甲苯可溶物含量:根据GB/T 24282-2009测定。
拉伸强度:根据GB/T 1040.1-2006测量注塑样片。
弯曲模量:根据GB/T 9341-2008测量注塑样片。
简支梁缺口冲击强度:根据GB/T 1043.1-2008,在23℃及-20℃下测量注塑样片。
洛氏硬度:根据GB/T 3398.2-2008测量注塑样片。
热变形温度:根据GB/T 1634.2-2004测量注塑样片。
光泽度:根据GB/T 8807-1988测量注塑样片,样片厚度2mm。
收缩率:根据GB/T 17037.4-2003测量注塑样片。
雾度:根据GB/T 2410-2008测量注塑样片,样片厚度1mm。
分子量分布(GPC分析):采用美国Agilent Technologies公司生产的PL-GPC 220型高温凝胶渗透色谱仪测定。温度150℃,3根PLgel 13μm Olexis柱,300.0mm×7.5mm,流动相1,2,4-三氯苯(加入0.25g/L的抗氧剂2,6-二丁基对甲酚),流速1.0mL/min,IR5型红外检测器,试样浓度约1mg/mL,采用窄分布聚苯乙烯标样进行普适标定。
全同立构五单元组分数:使用Bruker公司AVANCEⅢ400MHz核磁共振谱仪,10mm探头,溶剂为氘代邻二氯苯。约200mg样品/2.5ml溶剂,样品管于130-140℃油浴中加热至样品溶解形成均匀溶液。测试条件为:探头温度125℃,90°脉冲,采样时间AQ为5秒,延迟时间D1为10秒。
乙烯结构单元含量、丙烯结构单元含量:用红外法测定,采用美国Nicolet公司Magna-IR 200型红外光谱仪测定。
SEM照片:样品粒料或者注塑样片,注塑条件按照GB/T17037.1-2019进行注塑,经液氮冷却后脆断或进行超薄切片,断面在二甲苯溶液中浸泡,将橡胶相刻蚀掉,而后清洗表面,烘干后进行SEM测试,测试前进行表面喷金处理。使用日本HITACHI S-4800冷场发射扫描电镜。
橡胶相粒子的平均尺寸:通过SEM方法测定。对于球状橡胶相粒子,测定SEM照片中橡胶相粒子的直径;对于近球状或经取向力作用后的橡胶相粒子,则测量粒子的最长尺寸(粒子轮廓上相距最远的两个点之间的距离),通过SEM照片观察获取50个橡胶相粒子的上述尺寸的平均值作为橡胶相粒子的平均尺寸。当测量经取向力作用后的橡 胶相粒子的平均尺寸时,SEM的观察面平行于注塑方向。
特性粘数:使用毛细管检测器(西班牙PolymerChar公司的CRYSTEX仪中的毛细管检测器)测定。
实施例A1
(1)聚丙烯组合物的制备
聚合反应在一套聚丙烯中试装置上进行。聚合方法及步骤如下:
主催化剂Cat-1的制备:根据CN106608934B中实施例1的方法制得,在1000mL的反应釜中,加入150mL白油(商购自广州市铭恩石油化工有限公司,以重量计,水含量低于50ppm)、300mL甲基硅油(商购自道康宁,粘度为300厘泊/20℃,以重量计,水含量低于50ppm)、30g含有0.44wt%水分的氯化镁(商购自抚顺市鑫宜钛厂)、50mL无水乙醇(商购自北京化工厂,以重量计,水含量为低于100ppm)和1mL 2-甲氧基苯甲酰氯(商购自TOKYO KASEI KOGYO CO.LTD),在搅拌下升温至125℃。恒温反应3小时后,将混合物在0.3MPa的压力下通过预装有4层孔径为75μm金属网(每层厚度0.1mm)的放料管线压至预先冷却至-30℃的2L已烷(以重量计,水含量低于5ppm)中,进行急冷成形。过滤除去液体,将得到的固体用300mL的已烷洗涤5次,并在30℃下真空干燥1.5小时,从而得到球形卤化镁加合物。在300mL的玻璃反应瓶中,氮气保护条件下,依次加入10mL己烷、90mL四氯化钛,冷却至-20℃,加入8.0g球形卤化镁加合物,并在-20℃搅拌30分钟。然后,缓慢升温至110℃,并在升温过程中加入1.5mL邻苯二甲酸二异丁酯。在110℃恒温反应30分钟后,滤除液体。加入80mL四氯化钛,升温至120℃,在120℃维持30分钟后滤除液体;接着,再加入80mL四氯化钛,并升温至120℃,在120℃维持30分钟后滤除液体。最后用60℃的已烷对得到的固体洗涤5次(己烷用量为80mL/次),并真空干燥所得固体物。
预聚合:主催化剂Cat-1、内给电子体为邻苯二甲酸二异丁酯,助催化剂(三乙基铝)、外给电子体二异丙基二甲氧基硅烷(DIPMS)经10℃、20min预接触反应后,连续地加入预聚反应器进行预聚合反应,三乙基铝(TEAL)流量为6g/hr,二异丙基二甲氧基硅烷流量为1.2g/hr,主催化剂流量为0.36g/hr。预聚合在丙烯液相本体环境下进行,温度为15℃,停留时间约为4min。
预聚后催化剂连续地进入环管反应器中,在环管反应器内完成丙烯均聚反应,环管聚合反应温度70℃,反应压力为4.0MPa,环管反应器的进料中加入氢气,在线色谱检 测的氢气浓度为0.15mol%,相应地,氢气/丙烯比为0.0015mol/mol。
环管反应器反应后,所得物料进入流化床气相反应器进行乙烯和丙烯的共聚反应。气相反应温度为70℃,反应压力为1.1MPa,其中乙烯/(丙烯+乙烯)=0.21(mol/mol),气相反应器进料中加一定量的氢气,在线色谱检测气相反应器循环气中的氢气/乙烯=0.13(mol/mol)。具体工艺条件如表1所示。
反应得到的聚合物经脱气、湿氮气去活处理后,得到聚丙烯组合物。
所得聚丙烯组合物中组分B中的乙烯含量为31.0重量%,组分A的MFR与组合物的MFR之比为1.08。
(2)聚丙烯粒料和注塑样片的制备
向聚合得到的聚丙烯组合物中加入0.1重量%的IRGAFOS 168(德国BASF)、0.1重量%的IRGANOX 1010(德国BASF)、0.05重量%的硬脂酸钙以及0.04重量%的Millad HPN-20E成核剂(美国美利肯公司),用双螺杆挤出机造粒。然后采用注塑机制备符合GB标准的注塑样片,并测定其物理性质。
测定结果如表2所示。
图1-图3示出了实施例A1制得的粒料及注塑样片的SEM照片。从这些SEM照片可以看出,经过注塑之后,实施例A1的注塑样片中的橡胶相呈现明显的取向态结构,无论在注塑样片的距离制品表面10%厚度范围内的位置和距离制品表面10%厚度范围以外的芯部分的位置,橡胶相都发生变形,沿着一定方向伸长和取向,而距离制品表面10%厚度范围内位置的橡胶相的变形程度更高(距离制品表面10%厚度范围内位置:大于70%的橡胶相粒子的纵横比大于4,有的橡胶相粒子的纵横比甚至大于7;距离制品表面10%厚度范围以外的芯部分位置:大于50%的橡胶相粒子的纵横比大于2)。另外,也可以看出注塑之前的粒料中橡胶相基本为球状。因此,注塑过程中施加的取向力的作用使得橡胶相变形并形成了取向态结构,并且在取向力去除、样品成型后,橡胶相保持了取向态结构。
实施例A2
实施例A2所使用的催化剂体系、成核剂和聚合工艺条件与实施例A1相同,但是与实施例A1不同之处在于:环管反应器内氢气浓度为0.21mol%,气相反应器中的氢气/乙烯=0.1(mol/mol)。具体工艺条件如表1所示。所得聚丙烯组合物中组分B中的乙烯含量为31.1重量%,组分A的MFR与组合物的MFR之比为1.28。
所得注塑样片的性能测定结果如表2所示。
通过SEM分析表明,经过注塑之后,实施例A2的注塑样片中的橡胶相呈现明显的取向态结构。
实施例A3
实施例A3所使用的催化剂体系、成核剂和聚合工艺条件与实施例A1相同,但是与实施例A1不同之处在于:气相反应器中的氢气/乙烯=0.14(mol/mol),乙烯/(乙烯+丙烯)=0.25(mol/mol)。具体工艺条件如表1所示。所得聚丙烯组合物中组分B中的乙烯含量为34.89重量%,组分A的MFR与组合物的MFR之比为0.93。
所得注塑样片的性能测定结果如表2所示。
通过SEM分析表明,经过注塑之后,实施例A3的注塑样片中的橡胶相呈现明显的取向态结构。
实施例A4
实施例A4所使用的催化剂体系、成核剂和聚合工艺条件与实施例A1相同,但是与实施例A1不同之处在于:环管反应器内氢气浓度为0.23mol%,气相反应器中的氢气/乙烯=0.02(mol/mol)。具体工艺条件如表1所示。所得聚丙烯组合物中组分B中的乙烯含量为31.2重量%,组分A的MFR与组合物的MFR之比为1.81。
所得注塑样片的性能测定结果如表2所示。
通过SEM分析表明,经过注塑之后,实施例A4的注塑样片中的橡胶相呈现明显的取向态结构。
实施例A5
实施例A5所使用的催化剂体系、成核剂和聚合工艺条件与实施例A1相同,但是与实施例A1不同之处在于:环管反应器内氢气浓度为0.26mol%,气相反应器中,乙烯/(丙烯+乙烯)=0.19(mol/mol),氢气/乙烯=0.35(mol/mol)。具体工艺条件如表1所示。
所得聚丙烯组合物中组分B中的乙烯含量为30.96重量%,组分A的MFR与组合物的MFR之比为1.14。
所得注塑样片的性能测定结果如表2所示。
通过SEM分析表明,经过注塑之后,实施例A5的注塑样片中的橡胶相呈现明显的 取向态结构。
实施例A6
实施例A6所使用的催化剂体系、成核剂和聚合工艺条件与实施例A1相同,但是与实施例A1不同之处在于:环管反应器内氢气浓度为0.60mol%,气相反应器中,氢气/乙烯=0.04(mol/mol)。具体工艺条件如表1所示。
所得聚丙烯组合物中组分B中的乙烯含量为31.67重量%,组分A的MFR与组合物的MFR之比为1.85。
所得注塑样片的性能测定结果如表2所示。
通过SEM分析表明,经过注塑之后,实施例A6的注塑样片中的橡胶相呈现明显的取向态结构。
对比例A1
对比例A1所使用的催化剂体系、成核剂和聚合工艺条件与实施例A1相同,但是与实施例A1不同之处在于:环管反应器内氢气浓度为0.28mol%,气相反应器中,乙烯/(丙烯+乙烯)=0.45(mol/mol),氢气/乙烯=0.01(mol/mol)。具体工艺条件如表1所示。
所得聚丙烯组合物中组分B中的乙烯含量为48.61重量%,组分A的MFR与组合物的MFR之比为2.49。
所得注塑样片的性能测定结果如表2所示。
对比例A2
对比例A2所使用的催化剂体系、成核剂和聚合工艺条件与实施例A1相同,但是与实施例A1不同之处在于:环管反应器内氢气浓度为0.70mol%,气相反应器中,乙烯/(丙烯+乙烯)=0.45(mol/mol),氢气/乙烯=0.02(mol/mol)。具体工艺条件如表1所示。
所得聚丙烯组合物中组分B中的乙烯含量为48.58重量%,组分A的MFR与组合物的MFR之比为2.34。
所得注塑样片的性能测定结果如表2所示。
图6和图7示出了对比例A2的注塑样片和粒料的SEM照片。从这些照片可以看出,即使经过注塑后,对比例A2的注塑样片中的橡胶相也仍基本呈球状,没有发生变形和取向,尤其是距离制品表面10%厚度范围以外的芯部分位置,其中看不到任何变形和取向的倾向。
Figure PCTCN2021113834-appb-000002
Figure PCTCN2021113834-appb-000003
由表1和2数据可以看出,与当调节聚合工艺条件使得乙烯-丙烯弹性共聚物中的乙烯含量和/或均聚聚丙烯和所述聚丙烯组合物的熔体质量流动速率之比不在本发明范围内的情况下相比,本发明的聚丙烯组合物具有更高的光泽度和相当或更好的机械性能。
由此,本发明的聚丙烯组合物尤其可以用于制备兼具良好机械性能(高刚性、高韧性和低收缩性质)和美学特性(高光泽)的制品。
实施例B1
主催化剂Cat-1的制备:在300mL的玻璃反应瓶中,加入90mL(820mmol)的四氯化钛并冷却至-20℃,将以镁元素计的37mmol的卤化镁载体(按CN1330086A实施例1公开的方法制备)加入其中,然后升温至110℃,并在升温过程中加入0.3mmol的磷酸三丁酯和7.3mmol的2-异丙基-2-异戊基-1,3-二甲氧基丙烷,在110℃下维持30min后滤去液体,用四氯化钛洗涤2次,用已烷洗涤5次,真空干燥后得到催化剂组分Cat-1。
采用X射线荧光光谱分析法测得(X射线荧光光谱仪:荷兰帕纳科公司,型号为Zetium),催化剂组分Cat-1中以磷元素计的磷含量为0.011重量%。
聚合反应在一套聚丙烯中试装置上进行。聚合方法及步骤如下:
预聚合:主催化剂Cat-1、助催化剂(三乙基铝)、外给电子体甲基环己基二甲氧基硅烷(CHMMS)经10℃、20min预接触反应后,连续地加入预聚反应器进行预聚合反应,三乙基铝(TEAL)流量为6g/hr,甲基环己基二甲氧基硅烷流量为1.2g/hr,主催化剂流量为0.36g/hr。预聚合在丙烯液相本体环境下进行,温度为15℃,停留时间约为4min。
预聚后催化剂连续地进入环管反应器中,在环管反应器内完成丙烯均聚反应,环管聚合反应温度70℃,反应压力为4.0MPa,环管反应器的进料中加入氢气,在线色谱检测的氢气浓度为0.10mol%。
环管反应器反应后,所得物料进入流化床气相反应器进行乙烯和丙烯的共聚反应。气相反应温度为70℃,反应压力为1.1MPa,其中乙烯/(丙烯+乙烯)=0.21(体积比),气相反应器进料中加一定量的氢气,在线色谱检测气相反应器循环气中的氢气/乙烯=0.11。具体工艺如表3所示。
所得聚丙烯组合物中组分B中的乙烯含量为28.04重量%,组分A的MFR与组合物的MFR之比为0.87。
反应得到的聚合物经脱气、湿氮气去活处理后,得到聚合物粉料。
将聚合得到的粉料中加入0.1重量%的IRGAFOS 168、0.1重量%的IRGANOX 1010、0.05重量%的硬脂酸钙以及0.05重量%的Millad HPN-715以及0.05重量%的Millad600EI成核剂,用双螺杆挤出机造粒,得到聚丙烯组合物粒料。然后采用注塑机制备符合GB标准的注塑样片,并测定其物理性质。测定结果如表4所示。
图4示出了实施例B1的注塑样片距离制品表面10%厚度范围以外的芯部分位置的SEM照片。图5示出了实施例B1的粒料的SEM照片。从这些SEM照片可以看出,经过注塑之后,由实施例B1制备的注塑样片中的橡胶相呈现明显的取向态结构,在距离制品表面10%厚度范围以外的芯部分的位置,橡胶相也发生变形和取向(在距离制品表面10%厚度范围以外的芯部分位置:大于70%的橡胶相粒子的纵横比大于2,有的橡胶相粒子的纵横比甚至大于4);而在注塑之前的粒料中橡胶相基本为球状。
实施例B2
实施例B2所使用的催化剂体系、成核剂和聚合工艺条件与实施例B1相同,但是与实施例B1不同之处在于:环管反应器内氢气浓度为0.13mol%,气相反应器中的氢气/乙烯=0.08(mol/mol)。具体工艺条件如表3所示。
所得聚丙烯组合物中组分B中的乙烯含量为28.05重量%,组分A的MFR与组合物的MFR之比为1.27。
所得注塑样片的性能测定结果如表4所示。
通过SEM分析表明,经过注塑之后,实施例B2的注塑样片中的橡胶相呈现明显的取向态结构。
实施例B3
实施例B3所使用的催化剂体系、成核剂和聚合工艺条件与实施例B1相同,但是与实施例B1不同之处在于:气相反应器中的乙烯/(丙烯+乙烯)=0.25(mol/mol),氢气/乙烯=0.12(mol/mol)。具体工艺条件如表3所示。
所得聚丙烯组合物中组分B中的乙烯含量为33.67重量%,组分A的MFR与组合物的MFR之比为0.93。
所得注塑样片的性能测定结果如表4所示。
通过SEM分析表明,经过注塑之后,实施例B3的注塑样片中的橡胶相呈现明显的取向态结构。
实施例B4
实施例B4所使用的催化剂体系、成核剂和聚合工艺条件与实施例B1相同,但是与实施例B1不同之处在于:环管反应器内氢气浓度为0.13mol%,气相反应器中的乙烯/(丙烯+乙烯)=0.15(mol/mol),氢气/乙烯=0.18(mol/mol)。具体工艺条件如表3所示。
所得聚丙烯组合物中组分B中的乙烯含量为26.72重量%,组分A的MFR与组合物的MFR之比为1.04。
所得注塑样片的性能测定结果如表4所示。
通过SEM分析表明,经过注塑之后,实施例B4的注塑样片中的橡胶相呈现明显的取向态结构。
实施例B5
实施例B5所使用的催化剂体系、成核剂和聚合工艺条件与实施例B1相同,但是与实施例B1不同之处在于:环管反应器内氢气浓度为0.18mol%,气相反应器中的乙烯/(丙烯+乙烯)=0.19(mol/mol),氢气/乙烯=0.22(mol/mol)。具体工艺条件如表3所示。
所得聚丙烯组合物中组分B中的乙烯含量为27.89重量%,组分A的MFR与组合物的MFR之比为1.09。
所得注塑样片的性能测定结果如表4所示。
通过SEM分析表明,经过注塑之后,实施例B5的注塑样片中的橡胶相呈现明显的取向态结构。
实施例B6
实施例B6所使用的催化剂体系、成核剂和聚合工艺条件与实施例B1相同,但是与实施例B1不同之处在于:环管反应器内氢气浓度为0.24mol%,气相反应器中的乙烯/(丙烯+乙烯)=0.13(mol/mol),氢气/乙烯=0.54(mol/mol)。具体工艺条件如表3所示。
所得聚丙烯组合物中组分B中的乙烯含量为25.05重量%,组分A的MFR与组合物的MFR之比为1.04。
所得注塑样片的性能测定结果如表4所示。
通过SEM分析表明,经过注塑之后,实施例B6的注塑样片中的橡胶相呈现明显的取向态结构。
实施例B7
实施例B7所使用的催化剂体系、成核剂和聚合工艺条件与实施例B1相同,但是与实施例B1不同之处在于:环管反应器内氢气浓度为0.35mol%,气相反应器中的乙烯/(丙烯+乙烯)=0.21(mol/mol),氢气/乙烯=0.10(mol/mol)。具体工艺条件如表3所示。
所得聚丙烯组合物中组分B中的乙烯含量为28.05重量%,组分A的MFR与组合物的MFR之比为1.53。
所得注塑样片的性能测定结果如表4所示。
通过SEM分析表明,经过注塑之后,实施例B7的注塑样片中的橡胶相呈现明显的取向态结构。
实施例C1
实施例C1所使用的主催化剂的内给电子体为邻苯二甲酸二异丁酯,外给电子体、助催化剂、成核剂和聚合工艺条件与实施例B5相同,但是与实施例B5不同之处在于:环管反应器内氢气浓度为0.24mol%,气相反应器中的氢气/乙烯=0.35(mol/mol)。具体工艺条件如表3所示。
所得聚丙烯组合物中组分B中的乙烯含量为30.98重量%,组分A的MFR与组合物的MFR之比为1.08。
所得注塑样片的性能测定结果如表4所示。
实施例C2
实施例C2所使用的主催化剂的内给电子体为邻苯二甲酸二异丁酯和邻苯二甲酸二乙酯,外给电子体、助催化剂和聚合工艺条件与实施例B1相同,但是与实施例B1不同之处在于,不加入成核剂。具体工艺条件如表3所示。
所得聚丙烯组合物中组分B中的乙烯含量为28.04重量%,组分A的MFR与组合物的MFR之比为0.87。
所得注塑样片的性能测定结果如表4所示。
对比例C1
对比例C1所使用的主催化剂的内给电子体为邻苯二甲酸二异丁酯,外给电子体为 二异丙基二甲氧基硅烷(DIPMS),助催化剂、成核剂和聚合工艺条件与实施例B1相同。与实施例B1工艺条件的不同之处在于:环管反应器内氢气浓度为0.25mol%,气相反应器中,乙烯/(丙烯+乙烯)=0.45(mol/mol),氢气/乙烯=0.02(mol/mol)。具体工艺条件如表3所示。
所得聚丙烯组合物中组分B中的乙烯含量为48.61重量%,组分A的MFR与组合物的MFR之比为2.03。
所得注塑样片的性能测定结果如表4所示。
对比例C2
对比例C2所使用的主催化剂的内给电子体为邻苯二甲酸二异丁酯,外给电子体为二异丙基二甲氧基硅烷(DIPMS),助催化剂、成核剂和聚合工艺条件与实施例B1相同,但是与实施例B1工艺条件的不同之处在于:环管反应器内氢气浓度为0.65mol%,气相反应器中,乙烯/(丙烯+乙烯)=0.45(mol/mol),氢气/乙烯=0.02(mol/mol)。具体工艺条件如表3所示。
所得聚丙烯组合物中组分B中的乙烯含量为48.58重量%,组分A的MFR与组合物的MFR之比为1.95。
所得注塑样片的性能测定结果如表4所示。
对比例C3
对比例C3所使用的主催化剂的内给电子体为邻苯二甲酸二异丁酯,外给电子体、助催化剂、成核剂和聚合工艺条件与实施例B5相同,但是与实施例B5不同之处在于:环管反应器内氢气浓度为0.18mol%,气相反应器中的氢气/乙烯=0.35(mol/mol)。具体工艺条件如表3所示。
所得聚丙烯组合物中组分B中的乙烯含量为31.05重量%,组分A的MFR与组合物的MFR之比为1.05。
所得注塑样片的性能测定结果如表4所示。
Figure PCTCN2021113834-appb-000004
Figure PCTCN2021113834-appb-000005
由表3和4数据可以看出,与当调节聚合工艺条件使得均聚聚丙烯的规整度、乙烯-丙烯弹性共聚物中的乙烯含量和/或均聚聚丙烯和所述聚丙烯组合物的熔体质量流动速率之比不在本发明范围内的情况下相比,本发明的聚丙烯组合物具有更低的雾度和更高的光泽度,因而具有更好的透明性和美学特性;同时具有相当或更好的机械性能。
与采用羧酸酯作为内给电子体的催化体系相比,采用磷酸酯类化合物和二醚类化合物复配的内给电子体的催化剂体系时制备的聚丙烯组合物具有更高的光泽度和更低的雾度并具有相当的机械性能,可以兼具良好透明性、高光泽、高刚性、高韧性和低收缩性质,从而兼具良好机械性能和美学特性。
另外,通过实施例C2与实施例B1的比较可以看出,实施例B1中加入了成核剂,由此所得产品的模量更高,雾度更低。
以上已经结合实施例对本发明进行了示例性说明,但是所示说明并非穷尽性的,不意于限制本发明的范围。在不偏离本发明的范围和主旨的情况下,许多修改和变更对于本领域技术人员来说都是显而易见的。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。

Claims (22)

  1. 一种聚丙烯组合物,包含:
    (a)70-95重量%的结晶均聚聚丙烯作为组分A,其全同立构五单元组分数为96%以上,优选97%以上;该结晶均聚聚丙烯在该聚丙烯组合物中形成连续基体相;
    (b)5-30重量%的乙烯-丙烯弹性共聚物作为组分B,以乙烯-丙烯弹性共聚物的总重量为基准,该乙烯-丙烯弹性共聚物含有20-35重量%,优选25-35重量%的乙烯结构单元,和65-80重量%,优选65-75重量%的丙烯结构单元;该乙烯-丙烯弹性共聚物在所述连续基体相中形成分散的橡胶相,所述橡胶相可至少部分地在取向力作用下变形并形成取向态结构;
    其中所述结晶均聚聚丙烯和所述聚丙烯组合物根据GB/T 3682.1-2018在230℃、2.16kg载荷下测量的熔体质量流动速率之比为0.5-2.0,优选为0.9-1.5。
  2. 根据权利要求1所述的聚丙烯组合物,其中未经取向力作用时,所述橡胶相为球状或近球状的粒子并且橡胶相粒子的平均尺寸为0.03-3.0μm,优选0.05-2.0μm,更优选0.05-1.5μm,通过SEM方法测得。
  3. 根据权利要求1或2所述的聚丙烯组合物,其中在取向力作用后,至少50%的橡胶相粒子的纵横比大于2,基于SEM照片中橡胶相粒子的总数目。
  4. 根据权利要求1-3中任一项所述的聚丙烯组合物,其中所述取向力是指能导致物体取向的外场作用力,所述取向是指物体沿着外场作用力的方向平行排列,所述取向力例如拉伸应力和/或剪切应力,尤其是用于制备制品的工艺过程本身施加于聚丙烯组合物上的力;所述取向态结构是指橡胶相粒子在取向力作用下变形并伸长形成的纵轴沿着某一方向彼此平行排列;优选至少80%的橡胶相粒子形成取向态结构,基于SEM照片中橡胶相粒子的总数目。
  5. 根据权利要求1-4中任一项所述的聚丙烯组合物,其中所述结晶均聚聚丙烯根据GB/T 3682.1-2018在230℃、2.16kg载荷下的熔体质量流动速率为5-200g/10min,优选为10-100g/10min;和/或,所述聚丙烯组合物根据GB/T 3682.1-2018在230℃、2.16kg 载荷下的熔体质量流动速率为5-100g/10min,优选为6-30g/10min,更优选8.89-30g/10min。
  6. 根据权利要求1-5中任一项所述的聚丙烯组合物,其中所述聚丙烯组合物的特性粘数为1.0-2.5dL/g,优选1.4-2.4dL/g,更优选1.52-2.08dL/g;和/或,所述聚丙烯组合物中的二甲苯可溶物特性粘数为1.0-4.0dL/g,优选1.11-3.65dL/g;和/或,所述聚丙烯组合物中的二甲苯可溶物特性粘数与结晶均聚聚丙烯的特性粘数之比为0.7-2.6。
  7. 根据权利要求1-6中任一项所述的聚丙烯组合物,其中所述聚丙烯组合物的分子量分布Mw/Mn≤5,优选分子量分布Mw/Mn≤4.5,通过凝胶渗透色谱(GPC)分析相对于聚苯乙烯标样测得。
  8. 根据权利要求1-7中任一项所述的聚丙烯组合物,其中所述聚丙烯组合物的60°角光泽度≥80%,优选≥85%,更优选≥90%;优选地,所述聚丙烯组合物另外具有≤50%,更优选≤40%的雾度。
  9. 根据权利要求8所述的聚丙烯组合物,其中所述聚丙烯组合物另外具有以下性能中的一种或多种,优选全部以下性能:
    1)平行收缩率≤1.15,优选≤1.1;
    2)垂直收缩率≤1.36,优选≤1.15;
    3)弯曲模量≥1000MPa,优选≥1300MPa,更优选≥1400MPa,再更优选≥1450MPa;
    4)室温简支梁缺口冲击强度≥5kJ/m 2,优选≥6kJ/m 2
    5)热变形温度≥90℃,优选≥92℃。
  10. 根据权利要求1-9中任一项所述的聚丙烯组合物,其中所述聚丙烯组合物另外包含:(c)成核剂作为组分C,优选选自羧酸类及其金属盐类、山梨醇类、芳基磷酸盐类、脱氢枞酸及其盐类、芳香酰胺类、芳香胺类、稀土化合物类、具有准平面结构的稠环化合物类,以及高分子类成核剂中的至少一种;其中,基于所述聚丙烯组合物的总重量计,所述成核剂的含量优选为0.05-0.3重量%。
  11. 根据权利要求1-10中任一项所述的聚丙烯组合物,其中所述聚丙烯组合物还 包括其他助剂,所述其他助剂优选选自抗氧剂、抗静电剂和着色剂中的至少一种,优选地,基于聚丙烯组合物的总重量,所述其他助剂的含量优选为0.05-0.6重量%,更优选0.1-0.3重量%。
  12. 根据权利要求1-11中任一项所述的聚丙烯组合物,其中所述聚丙烯组合物是粉料或粒料的形式。
  13. 制备根据权利要求1-12中任一项所述的聚丙烯组合物的方法,包括以下步骤:
    (1)在第一烯烃聚合条件下,将丙烯单体与具有立构选择性的齐格勒-纳塔催化剂接触反应,并从接触反应后得到的混合物中除去未反应的单体,得到产物a,所述产物a包含组分A;
    (2)在第二烯烃聚合条件下,在气相下,将乙烯单体和丙烯单体与步骤(1)得到的所述产物a接触反应,并从接触反应后得到的混合物中除去未反应的单体,得到包含组分A和组分B的产物b作为所述聚丙烯组合物。
  14. 根据权利要求13所述的方法,其中所述具有立构选择性的齐格勒-纳塔催化剂含有:
    (i)固体催化剂组分,所述固体催化剂组分含有由镁源、钛源和内给电子体反应得到的产物;所述内给电子体优选选自单羧酸的酯、二羧酸的酯、磷酸酯类化合物和二醚类化合物及其组合;所述镁源例如选自卤化镁、镁的醇化物或卤代醇化物和卤化镁加合物载体,优选是球形卤化镁加合物;所述钛源例如选自通式Ti(OR) 4-mX m所示的钛化合物中的一种或多种,其中m为0-4的整数,优选1-4的整数,R为C 1-C 20的烷基,优选C 1-C 10的烷基,X为卤素,优选氯;
    (ii)有机铝化合物,优选为烷基铝化合物,更优选为三乙基铝、三正丁基铝、三异丁基铝、三正己基铝、一氯二乙基铝、一氯二正丁基铝、一氯二异丁基铝、一氯二正己基铝、二氯一乙基铝、二氯一正丁基铝、二氯一异丁基铝和二氯一正己基铝中的至少一种,进一步优选为三乙基铝、三正丁基铝和三异丁基铝中的至少一种;以及
    (iii)任选的外给电子体,优选有机硅化合物,更优选通式为R nSi(OR') 4-n的有机硅化合物,式中0<n≤3,R选自氢原子、卤素、烷基、环烷基、芳基和卤代烷基,R'选自烷基、环烷基、芳基和卤代烷基;更优选,所述外给电子体选自四甲氧基硅烷、四乙氧 基硅烷、三甲基甲氧基硅烷、三甲基乙氧基硅烷、三甲基苯氧基硅烷、二甲基二甲氧基硅烷、二甲基二乙氧基硅烷、甲基叔丁基二甲氧基硅烷、甲基异丙基二甲氧基硅烷、二苯氧基二甲氧基硅烷、二苯基二乙氧基硅烷、苯基三甲氧基硅烷、苯基三乙氧基硅烷、乙烯基三甲氧基硅烷、环己基甲基二甲氧基硅烷、二环戊基二甲氧基硅烷、二异丙基二甲氧基硅烷、二异丁基二甲氧基硅烷、2-乙基哌啶基-2-叔丁基二甲氧基硅烷、(1,1,1-三氟-2-丙基)-2-乙基哌啶基二甲氧基硅烷和(1,1,1-三氟-2-丙基)-甲基二甲氧基硅烷中的至少一种;
    优选地,所述催化剂经过预络合和/或预聚合处理。
  15. 根据权利要求14所述的方法,其中所述内给电子体选自单羧酸的酯和/或二羧酸的酯,优选苯甲酸酯、丙二酸酯、邻苯二甲酸酯和琥珀酸酯中的至少一种,更优选为邻苯二甲酸烷基酯,进一步优选为邻苯二甲酸二异丁酯和/或邻苯二甲酸二辛酯。
  16. 根据权利要求14所述的方法,其中所述内给电子体是磷酸酯类化合物和二醚类化合物复配的内给电子体;优选地,所述二醚类化合物和所述磷酸酯类化合物的用量摩尔比为1:(0.02-0.25),更优选为1:(0.04-0.15);
    其中所述磷酸酯类化合物优选选自式(1)所示磷酸酯类化合物中的至少一种,
    Figure PCTCN2021113834-appb-100001
    其中,R 1、R 2和R 3各自独立地选自C 1-C 4的直链或支链烷基、C 3-C 20的环烷基、C 6-C 20的芳基、C 7-C 20的烷芳基或C 7-C 20的芳烷基;
    更优选地,所述磷酸酯类化合物选自磷酸三甲酯、磷酸三乙酯、磷酸三丁酯、磷酸三苯酯、磷酸三甲苯酯、磷酸三异丙基苯酯、磷酸三甲氧基苯酯、磷酸苯基二甲酯、磷酸甲苯基二丁酯、磷酸异丙苯基二甲酯、磷酸异丙苯基二乙酯、磷酸异丙苯基二丁酯、磷酸苯基二甲苯酯、磷酸苯基二异丙基苯酯、磷酸对甲苯基二丁酯、磷酸间甲苯基二丁酯、磷酸对异丙苯基二甲酯、磷酸对异丙苯基二乙酯、磷酸对叔丁基苯基二甲酯和磷酸邻甲苯基对二叔丁苯基酯中的至少一种;
    其中所述二醚类化合物优选选自式(2)所示二醚类化合物中的至少一种,
    R 1R 2C(CH 2OR 3)(CH 2OR 4)  式(2)
    其中,R 1和R 2各自独立地选自氢、C 1-C 20的直链或支链烷基、C 3-C 20的环烷基、C 6-C 20的芳基、C 7-C 20的芳烷基或C 7-C 20烷芳基,R 3和R 4各自独立地选自C 1-C 10的烷基;
    更优选地,所述二醚类化合物选自2-(2-乙基己基)-1,3-二甲氧基丙烷、2-异丙基-1,3-二甲氧基丙烷、2-丁基-1,3-二甲氧基丙烷、2-仲丁基-1,3-二甲氧基丙烷、2-环己基-1,3-二甲氧基丙烷、2-苯基-1,3-二甲氧基丙烷、2-(2-苯基乙基)-1,3-二甲氧基丙烷、2-(2-环己基乙基)-1,3-二甲氧基丙烷、2-(对-氯苯基)-1,3-二甲氧基丙烷、2-(二苯基甲基)-1,3-二甲氧基丙烷、2,2-二环己基-1,3-二甲氧基丙烷、2,2-二环戊基-1,3-二甲氧基丙烷、2,2-二乙基-1,3-二甲氧基丙烷、2,2-二丙基-1,3-二甲氧基丙烷、2,2-二异丙基-1,3-二甲氧基丙烷、2,2-二丁基-1,3-二甲氧基丙烷、2-甲基-2-丙基-1,3-二甲氧基丙烷、2-甲基-2-苄基-1,3-二甲氧基丙烷、2-甲基-2-乙基-1,3-二甲氧基丙烷、2-甲基-2-异丙基-1,3-二甲氧基丙烷、2-甲基-2-苯基-1,3-二甲氧基丙烷、2-甲基-2-环己基-1,3-二甲氧基丙烷、2,2-双(2-环己基乙基)-1,3-二甲氧基丙烷、2-甲基-2-异丁基-1,3-二甲氧基丙烷、2-甲基-2-(2-乙基己基)-1,3-二甲氧基丙烷、2,2-二异丁基-1,3-二甲氧基丙烷、2,2-二苯基-1,3-二甲氧基丙烷、2,2-二苄基-1,3-二甲氧基丙烷、2,2-双(环己基甲基)-1,3-二甲氧基丙烷、2-异丁基-2-异丙基-1,3-二甲氧基丙烷、2-(1-甲基丁基)-2-异丙基-1,3-二甲氧基丙烷、2-异丙基-2-异戊基-1,3-二甲氧基丙烷、2-苯基-2-异丙基-1,3-二甲氧基丙烷、2-苯基-2-仲-丁基-1,3-二甲氧基丙烷、2-苄基-2-异丙基-1,3-二甲氧基丙烷、2-环戊基-2-异丙基-1,3-二甲氧基丙烷、2-环戊基-2-仲-丁基-1,3-二甲氧基丙烷、2-环己基-2-异丙基-1,3-二甲氧基丙烷、2-环己基-2-仲-丁基-1,3-二甲氧基丙烷、2-异丙基-2-仲-丁基-1,3-二甲氧基丙烷、2-环己基-2-环己基甲基-1,3-二甲氧基丙烷和9,9-二甲氧基甲基芴中的至少一种。
  17. 根据权利要求14-16中任一项所述的方法,其中,以镁元素计的镁源、以钛元素计的钛源与内给电子体的用量摩尔比为1:(20-150):(0.1-0.9),优选为1:(30-120):(0.15-0.6);和/或,所述固体催化剂组分与有机铝化合物以钛/铝摩尔比计的用量比为1:(25-100);和/或,所述有机铝化合物与外给电子体的重量比为(0-150):1,优选为(2-150):1,更优选为(3-10):1。
  18. 根据权利要求13-17中任一项所述的方法,其中步骤(1)的所述第一烯烃聚 合条件为液相聚合条件或气相聚合条件;所述液相聚合条件包括:以氢气作为分子量调节剂,聚合温度为0-150℃,优选为40-100℃;聚合压力高于丙烯在相应聚合温度下的饱和蒸汽压力;所述气相聚合条件包括:以氢气作为分子量调节剂,聚合温度为0-150℃,优选为40-100℃;聚合压力大于或等于常压,优选为0.5-2.5MPa;优选地,步骤(1)中使用的氢气/丙烯比为0.0010-0.0060mol/mol。
  19. 根据权利要求13-18中任一项所述的方法,其中步骤(2)的反应体系中,乙烯/(乙烯+丙烯)的摩尔比为0.1-0.4mol/mol,优选0.1-0.3mol/mol,更优选为0.15-0.25mol/mol;和/或,烯烃气相聚合的温度为40-100℃,优选为60-80℃;并且压力为0.6-1.4MPa,优选为1.0-1.3MPa;和/或,氢气/乙烯比为0.02-0.70mol/mol,优选0.04-0.54mol/mol。
  20. 根据权利要求13-19中任一项所述的方法,其中所述方法另外包括步骤(3):将步骤(2)得到的产物b与成核剂和任选的其他助剂混合,优选进一步造粒。
  21. 一种制品,优选注塑制品,其由根据权利要求1-12中任一项所述的聚丙烯组合物制备,其中橡胶相至少部分,优选至少80%的橡胶相粒子变形并形成取向态结构,尤其是在距离制品表面10%厚度范围内的位置和距离制品表面10%厚度范围以外的芯部分处所述橡胶相都变形伸长并形成取向态结构;其中,优选地,距离制品表面10%厚度范围内处多于50%的橡胶相粒子的纵横比大于或等于4;距离制品表面10%厚度范围以外的芯部分多于50%的橡胶相粒子的纵横比大于或等于2,基于相应位置处SEM照片中橡胶相粒子的总数目。
  22. 根据权利要求21所述的制品,其中所述制品是用于电器、家居、包装、汽车、玩具或医药领域的产品或该产品的一部分,例如家电外壳、汽车内饰部件、儿童玩具、家居收纳产品或医用一次性注射器。
PCT/CN2021/113834 2020-08-27 2021-08-20 聚丙烯组合物及其制备方法和由其制成的制品 WO2022042447A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202180056674.1A CN116157468A (zh) 2020-08-27 2021-08-20 聚丙烯组合物及其制备方法和由其制成的制品
US18/042,481 US20230323099A1 (en) 2020-08-27 2021-08-20 Polypropylene Composition, Preparation Method therefor, and Article Made therefrom
AU2021332812A AU2021332812A1 (en) 2020-08-27 2021-08-20 Polypropylene composition, preparation method therefor, and article made therefrom
EP21860284.5A EP4206276A1 (en) 2020-08-27 2021-08-20 Polypropylene composition, preparation method therefor, and article made therefrom
KR1020237009440A KR20230052957A (ko) 2020-08-27 2021-08-20 폴리프로필렌 조성물, 이의 제조방법 및 이로부터 제조된 물품
JP2023513398A JP2023538693A (ja) 2020-08-27 2021-08-20 ポリプロピレン組成物、その調製方法、及びそれを用いて製造される製品

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010878381.9 2020-08-27
CN202010879646.7 2020-08-27
CN202010878381.9A CN114106453B (zh) 2020-08-27 2020-08-27 一种聚丙烯组合物和聚丙烯粒料及其制备方法
CN202010879646.7A CN114106454B (zh) 2020-08-27 2020-08-27 一种聚丙烯组合物及其制备方法

Publications (1)

Publication Number Publication Date
WO2022042447A1 true WO2022042447A1 (zh) 2022-03-03

Family

ID=80352601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113834 WO2022042447A1 (zh) 2020-08-27 2021-08-20 聚丙烯组合物及其制备方法和由其制成的制品

Country Status (7)

Country Link
US (1) US20230323099A1 (zh)
EP (1) EP4206276A1 (zh)
JP (1) JP2023538693A (zh)
KR (1) KR20230052957A (zh)
CN (1) CN116157468A (zh)
AU (1) AU2021332812A1 (zh)
WO (1) WO2022042447A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0444671A2 (en) * 1990-02-28 1991-09-04 Montell North America Inc. Process for the production of propylene polymer films and laminates and products thus obtained
CN1321178A (zh) 1999-09-14 2001-11-07 巴塞尔特克美国有限公司 抗冲击聚烯烃组合物
CN1330086A (zh) 2000-06-15 2002-01-09 中国石油化工股份有限公司 用于烯烃聚合或共聚合的球形催化剂组分及其催化剂
CN101343393A (zh) * 2007-07-13 2009-01-14 Sk能源株式会社 流动性、刚性和冲击强度良好的乙烯-丙烯嵌段共聚物类聚丙烯树脂组合物
CN101624459A (zh) * 2008-07-11 2010-01-13 现代自动车株式会社 具有低收缩率和尺寸稳定性的聚丙烯树脂组合物
CN102086284A (zh) * 2009-12-02 2011-06-08 现代自动车株式会社 用于产生织物纹理的聚丙烯树脂组合物
CN104448538A (zh) 2013-09-18 2015-03-25 中国石油化工股份有限公司 聚丙烯组合物及其制备方法和由其制得的制品
US20150175790A1 (en) * 2013-12-20 2015-06-25 Hyundai Motor Company Polypropylene resin composition
CN106366431A (zh) * 2015-07-24 2017-02-01 中国石油化工股份有限公司 一种高刚性高韧性的聚丙烯组合物
CN106608934A (zh) 2015-10-27 2017-05-03 中国石油化工股份有限公司 用于烯烃聚合的催化剂组分及其制备方法和应用和用于烯烃聚合的催化剂体系及其应用和烯烃聚合方法
CN109422958A (zh) 2017-09-05 2019-03-05 中国石油化工股份有限公司 一种高流动高刚高韧聚烯烃组合物及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104558811A (zh) * 2013-10-10 2015-04-29 中国石油化工股份有限公司 一种聚丙烯组合物及其制备方法和应用
CN107629156B (zh) * 2016-07-18 2020-05-12 中国石油化工股份有限公司 用于烯烃聚合的催化剂组分及其制备方法和用于烯烃聚合的催化剂及其应用
CN109422959B (zh) * 2017-09-05 2021-11-19 中国石油化工股份有限公司 一种抗冲聚丙烯组合物及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0444671A2 (en) * 1990-02-28 1991-09-04 Montell North America Inc. Process for the production of propylene polymer films and laminates and products thus obtained
CN1321178A (zh) 1999-09-14 2001-11-07 巴塞尔特克美国有限公司 抗冲击聚烯烃组合物
CN1330086A (zh) 2000-06-15 2002-01-09 中国石油化工股份有限公司 用于烯烃聚合或共聚合的球形催化剂组分及其催化剂
CN101343393A (zh) * 2007-07-13 2009-01-14 Sk能源株式会社 流动性、刚性和冲击强度良好的乙烯-丙烯嵌段共聚物类聚丙烯树脂组合物
CN101624459A (zh) * 2008-07-11 2010-01-13 现代自动车株式会社 具有低收缩率和尺寸稳定性的聚丙烯树脂组合物
CN102086284A (zh) * 2009-12-02 2011-06-08 现代自动车株式会社 用于产生织物纹理的聚丙烯树脂组合物
CN104448538A (zh) 2013-09-18 2015-03-25 中国石油化工股份有限公司 聚丙烯组合物及其制备方法和由其制得的制品
US20150175790A1 (en) * 2013-12-20 2015-06-25 Hyundai Motor Company Polypropylene resin composition
CN106366431A (zh) * 2015-07-24 2017-02-01 中国石油化工股份有限公司 一种高刚性高韧性的聚丙烯组合物
CN106608934A (zh) 2015-10-27 2017-05-03 中国石油化工股份有限公司 用于烯烃聚合的催化剂组分及其制备方法和应用和用于烯烃聚合的催化剂体系及其应用和烯烃聚合方法
CN109422958A (zh) 2017-09-05 2019-03-05 中国石油化工股份有限公司 一种高流动高刚高韧聚烯烃组合物及其制备方法

Also Published As

Publication number Publication date
AU2021332812A1 (en) 2023-03-09
EP4206276A1 (en) 2023-07-05
CN116157468A (zh) 2023-05-23
KR20230052957A (ko) 2023-04-20
US20230323099A1 (en) 2023-10-12
JP2023538693A (ja) 2023-09-08

Similar Documents

Publication Publication Date Title
JP5770103B2 (ja) ランダムプロピレンコポリマー組成物、製品及び方法
JP5995927B2 (ja) ポリプロピレン樹脂組成物およびブロー容器
JP6076328B2 (ja) シート成形用ポリプロピレン系樹脂組成物
US6716924B2 (en) Process for preparing ethylene polymer composition, particles of ethylene polymer composition, and film obtained from the particles of ethylene polymer composition
CN110446728B (zh) 具有改善的性能的软质聚丙烯组合物
CN109422958B (zh) 一种高流动高刚高韧聚烯烃组合物及其制备方法
JP6517560B2 (ja) ポリプロピレン組成物から得られるフィルムまたはシート
WO2022042447A1 (zh) 聚丙烯组合物及其制备方法和由其制成的制品
JP3497080B2 (ja) プロピレン系重合体の重合用触媒成分の製法
JP6887349B2 (ja) ポリプロピレン組成物
CN114106453B (zh) 一种聚丙烯组合物和聚丙烯粒料及其制备方法
US11306198B2 (en) Polypropylene composition and molded article
CN114106454B (zh) 一种聚丙烯组合物及其制备方法
JP2022149485A (ja) ポリプロピレン系樹脂組成物及びその製造方法、並びに射出成形体
CN107805349B (zh) 一种聚烯烃组合物及其制备方法和聚烯烃材料
JP2021024641A (ja) 延伸容器
JP6588286B2 (ja) インフレーションフィルム用ポリプロピレン樹脂組成物
EP3765566B1 (en) Polypropylene composition and molded article
JPH07292022A (ja) プロピレン系重合体、その製造方法およびその組成物
KR101624036B1 (ko) 프로필렌 중합용 고체촉매 및 이를 이용한 폴리프로필렌 제조 방법
JP2001011261A (ja) 結晶性ポリプロピレン樹脂組成物及びそれを成形してなる成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860284

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18042481

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2023513398

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021332812

Country of ref document: AU

Date of ref document: 20210820

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237009440

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021860284

Country of ref document: EP

Effective date: 20230327

WWE Wipo information: entry into national phase

Ref document number: 523442720

Country of ref document: SA