WO2022041712A1 - 音频信号驱动马达电路 - Google Patents

音频信号驱动马达电路 Download PDF

Info

Publication number
WO2022041712A1
WO2022041712A1 PCT/CN2021/083646 CN2021083646W WO2022041712A1 WO 2022041712 A1 WO2022041712 A1 WO 2022041712A1 CN 2021083646 W CN2021083646 W CN 2021083646W WO 2022041712 A1 WO2022041712 A1 WO 2022041712A1
Authority
WO
WIPO (PCT)
Prior art keywords
audio
power amplifier
audio signal
signal
processing unit
Prior art date
Application number
PCT/CN2021/083646
Other languages
English (en)
French (fr)
Inventor
管恩平
周进京
Original Assignee
深圳市云顶信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市云顶信息技术有限公司 filed Critical 深圳市云顶信息技术有限公司
Publication of WO2022041712A1 publication Critical patent/WO2022041712A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C17/00Devices for cleaning, polishing, rinsing or drying teeth, teeth cavities or prostheses; Saliva removers; Dental appliances for receiving spittle
    • A61C17/16Power-driven cleaning or polishing devices
    • A61C17/22Power-driven cleaning or polishing devices with brushes, cushions, cups, or the like
    • A61C17/32Power-driven cleaning or polishing devices with brushes, cushions, cups, or the like reciprocating or oscillating
    • A61C17/34Power-driven cleaning or polishing devices with brushes, cushions, cups, or the like reciprocating or oscillating driven by electric motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/032Reciprocating, oscillating or vibrating motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/02Arrangements for regulating or controlling the speed or torque of electric DC motors the DC motors being of the linear type

Definitions

  • the present application relates to the technical field of motor driving, for example, to an audio signal driving motor circuit.
  • Motors are widely used in daily life and production. In daily life, motors are also used in many personal care products, such as electric toothbrushes, shavers and beauty massagers. While providing power for machine operation, motors Due to the change of the amplitude value or frequency value of the signal driving the motor itself, the motor will generate irregular rotation and generate noise. At the same time, the normal rotation of the motor itself will also have a certain sound, and the noise or sound generated by these motors will reduce the user's For comfort when using electric appliances, how to drive the motor so that the motor can move smoothly and at the same time can reduce the noise generated by the motor has become a problem that needs to be solved.
  • the present application provides an audio signal driving motor circuit, which utilizes the audio signal to drive the motor circuit, thereby smoothing the motion of the motor and suppressing noise.
  • an audio signal driving motor circuit comprising: an audio processing module, an audio power amplifier and a motor, wherein:
  • the audio processing module is connected to the audio power amplifier, and the audio processing module is configured to generate an audio signal
  • the audio power amplifier is electrically connected to the motor, and the audio signal drives the rotor of the motor to swing back and forth through a new audio signal obtained after the audio power amplifier.
  • FIG. 1 is a schematic diagram of an audio signal driving motor circuit in one embodiment
  • FIG. 2 is a schematic diagram of an audio signal driving motor circuit in another embodiment
  • FIG. 3 is a schematic diagram of an audio signal driving motor circuit in another embodiment
  • FIG. 4 is a schematic diagram of an audio signal driving motor circuit in another embodiment
  • FIG. 5 is a schematic diagram of an audio signal driving motor circuit in another embodiment.
  • FIG. 1 is a schematic diagram of an audio signal driving motor circuit in one embodiment. 1, this embodiment provides an audio signal driving motor circuit, the circuit includes: an audio processing module 101, an audio power amplifier 102 and a motor 103, wherein: the audio processing module 101 is electrically connected to the audio power amplifier 102, and is configured to generate audio signals , the audio power amplifier 102 is electrically connected to the motor 103 , and the audio signal drives the rotor of the motor 103 to swing back and forth through the new audio signal obtained after the audio power amplifier 102 .
  • the audio processing module 101 is electrically connected to the audio power amplifier 102, and is configured to generate audio signals
  • the audio power amplifier 102 is electrically connected to the motor 103
  • the audio signal drives the rotor of the motor 103 to swing back and forth through the new audio signal obtained after the audio power amplifier 102 .
  • the motor 103 is a bidirectional motion motor or a linear motor.
  • the direction of the motor with bidirectional motion is determined by the rotation direction of the rotating magnetic field.
  • the current phase sequence of the three-phase windings connected to the motor determines the direction of the motor.
  • the rotating magnetic field will rotate in the opposite direction.
  • the motor also reverses.
  • Linear motors are often simply described as rotary motors that are flattened and work on the same principle as rotary motors.
  • the mover is made by compressing the coils together with epoxy material.
  • the magnetic track is to hold the magnets to the steel. Including coil windings, Hall element circuit boards, thermistors and electronic interfaces.
  • linear motors In rotary motors, the mover and stator require rotating bearings to support the mover to ensure the air gap of the relative moving parts.
  • linear motors require linear guides to To maintain the position of the mover in the magnetic field generated by the magnetic track, just as the encoder of the rotary servo motor is installed on the shaft to feedback the position, the linear motor needs a feedback device for feedback of the linear position - a linear encoder, which can directly measure the position of the load and thus Improve the positional accuracy of the load.
  • the audio power amplifier 102 is a class AB power amplifier, a class D power amplifier, a class K power amplifier or a class G power amplifier.
  • the audio power amplifier circuits are classified according to two types: analog and digital.
  • Class AB power amplifiers and class G power amplifiers are analog audio power amplifiers
  • class D power amplifiers and class K power amplifiers are digital circuits.
  • Class AB power amplifier is also known as class A and B power amplifier.
  • Class AB power amplifier is between class A and class B.
  • the conduction time of each transistor of push-pull amplifier is greater than half a cycle of the signal and less than one cycle. Therefore, class AB power amplifier effectively solves the problem.
  • the problem of crossover distortion of class B amplifier is solved, and the efficiency is higher than that of class A amplifier, so it has been widely used.
  • Class G power amplifier is an improved form of multi-power Class AB power amplifier.
  • Class G power amplifier takes full advantage of the fact that audio has a very high crest factor (10-20dB). Most of the time, the audio signal is in a relatively high With low amplitude, it will show a higher peak value in very little time. Compared with the traditional class AB amplifier, the class G amplifier has higher efficiency.
  • the amplification principle of this type of power amplifier is the same as that of the class AB power amplifier. The characteristic is that the power supply part uses two or more sets of voltages, low-power operation uses low-voltage, and high-power automatically switches to high-voltage.
  • Class D power amplifiers are also called Class D power amplifiers, and Class D power amplifiers are also called digital amplifiers.
  • Class D power amplifiers use asynchronous modulation.
  • PWM Pulse Width Modulation
  • VHS video home system
  • Class K power amplifier integrates an internal bootstrap boost circuit and a variety of power amplifier circuits.
  • Class D power amplifier is only one of the many power amplifier circuits with relatively high efficiency digital power amplifiers, while class K power amplifier is an internal integrated bootstrap boost circuit according to needs. And the required power amplifier circuit, if the efficiency is high, add a class D power amplifier, and if the sound quality is good, add a class AB power amplifier.
  • an audio signal driving motor circuit includes: an audio processing module 101, an audio power amplifier 102 and a motor 103, wherein: the audio processing module 101 is electrically connected to the audio power amplifier 102 and is configured to generate an audio signal , the audio power amplifier 102 is electrically connected to the motor 103 , and the audio signal drives the rotor of the motor 103 to swing back and forth through the new audio signal obtained after the audio power amplifier 102 .
  • the audio signal of the target frequency generated by the audio processing module 101 drives the motor 103 through the audio power amplifier 102 to realize simple harmonic motion and noise suppression, and can make the simple harmonic motion of the motor 103 change with the change of the audio signal, and the motor 103 generates a smooth At the same time of simple harmonic motion, it produces a pure sound of the rotor swinging back and forth, achieving a brushing experience that can move with the music without the need for a speaker.
  • the audio processing module 101 includes an audio output interface, and the audio output interface is a digital audio data interface or an analog audio output interface.
  • the audio processing module 101 includes a central processing unit 202, a memory 201, and an audio encoder 203.
  • the central processing unit The device 202 includes the audio output interface, the memory 201 is electrically connected to the central processing unit 202, the central processing unit 202 reads audio data from the memory 201, and the central processing unit 202 converts the read audio data into digital audio signals or analog
  • the audio output interface of the central processing unit 202 is electrically connected to the audio encoder 203, and the central processing unit 202 transmits the digital audio signal or the analog audio signal to the audio encoder 203 through the digital audio data interface or the analog audio output interface.
  • the audio processing module 101 can be disassembled into: the central processing unit 202 and the external audio encoder 203 or the central processing unit 202 itself includes the audio encoder 203 .
  • the digital audio data interface is a digital audio transmission standard integrated circuit built-in audio bus (Integrated Interchip Sound, I2S) interface, analog signal digitization method Pulse Code Modulation (Pulse Code Modulation, PCM) interface or analog signal digital modulation Methods Pulse Density Modulation (PDM) interface.
  • I2S Integrated Interchip Sound
  • PCM Pulse Code Modulation
  • PDM Pulse Density Modulation
  • I2S Integrated Interchip Sound
  • IIS Coder-Decoder
  • DSP Digital Signal Processor
  • ADC Analog-to-Digital Converter
  • DAC Digital-to-Analog Converter
  • I2S is a relatively simple digital interface protocol with no address or device selection mechanism.
  • the master device can be a sending device, a receiving device, or other control device that coordinates the sending device and the receiving device.
  • the device that provides the clock (Serial Clock (SCK, SCK) and Word Select (Word Select, WS)) is the master device.
  • SCK, SCK Serial Clock
  • Word Select Word Select
  • CODECs are often used as I2S master devices to precisely control the I2S data flow.
  • I2S includes data of two channels (Left/Right), and the left and right channel data is switched under the control of channel selection/word selection (WS) issued by the master device.
  • WS channel selection/word selection
  • Multi-Channels applications can be realized by increasing the number of I2S interfaces or other I2S devices.
  • the I2S transmission protocol In the I2S transmission protocol, the data signal, clock signal and control signal are transmitted separately.
  • the I2S protocol only defines three signal lines: the clock signal SCK, the data signal (Serial Data, SD) and the left and right channel selection signal WS.
  • the clock signal (Serial Clock, SCK) is the synchronization signal in the module, which is provided externally in the slave mode, and is generated by the module itself in the master mode.
  • the name of the clock signal may be different, and it may also be called BCLK/Bit Clock or SCL/Serial Clock.
  • the data signal SD is serial data, which is transmitted on the data line in the form of two's complement in I2S.
  • the most significant bit (Most Significant Bit, MSB) is transmitted first.
  • the MSB is transmitted first because the word length of the sending device and the receiving device may be different.
  • the data transmission will be truncated (Truncated), that is, if the data received by the data receiving end If the bit is longer than its specified word length, then all bits after the Least Significant Bit (LSB) of the specified word length will be ignored. If the received word length is shorter than its specified word length, the vacant bits will be padded with 0s. In this way, the most significant bits of the audio signal can be transmitted, thereby ensuring the best hearing effect.
  • the left and right channel selection signal (Word Select, WS) is a channel selection signal, indicating the channel selected by the data sending end.
  • WS is also called frame clock, namely LRCLK/Left Right Clock, and the WS frequency is equal to the sampling rate of the sound.
  • WS can be changed either on the rising edge of SCK or on the falling edge of SCK.
  • the slave device samples the WS signal on the rising edge of SCK, and the MSB of the data signal is valid on the rising edge of the second clock (SCK) after WS changes (ie, delays one SCK), so that the slave device has enough time to store the currently received data and is ready to receive the next set of data.
  • any device can become the master device of I2S by providing the clock.
  • the total delay on the I2S bus includes: the delay of the external clock SCK from the master device to the slave device, the delay of the internal clock and SD and WS, and the delay of the external clock SCK to the internal clock.
  • the delay has no effect on the input of the data and the left and right channel signals WS, because this delay only increases the effective setup time (Setup time). What needs to be paid attention to is whether there is sufficient margin for the transmission delay and the setup time of the receiving device. All timing requirements are relative to the clock cycle or the lowest clock cycle allowed by the device.
  • I2S mode is a special case of left-aligned
  • the alignment format is delayed by one clock bit change.
  • Standard left alignment is less used, standard left alignment format, since sampling starts at the first SCK rising edge after WS changes, it does not need to care about the word length of left and right channel data, as long as the clock cycle of WS is long enough, left alignment way to support 16-32bit word length format.
  • Standard right-aligned is also called Japanese format, Electronic Industries Association of Japan (EIAJ) or SONY format.
  • EIAJ Electronic Industries Association of Japan
  • SONY format Compared with standard left-aligned format, the disadvantage of standard right-aligned format is that the receiving device must know the word of the data to be transmitted in advance. long, which explains why many CODECs provide a variety of right-justified format selection functions.
  • PCM is a method of digitizing an analog signal by sampling at equal time intervals (ie, sample rate and clock period).
  • PCM digital audio interface which means that the audio data transmitted on the interface is obtained by sampling in the PCM way, which is different from the PDM way.
  • the PCM interface is often used for the transmission of board-level audio digital signals, similar to I2S.
  • the difference between PCM and I2S is the position of the data relative to the frame clock (FSYNC/WS), the polarity of the clock and the length of the frame.
  • I2S also transmits PCM type data, so it can be said that I2S is just a special case of the PCM interface.
  • the PCM interface is more flexible in application.
  • TDM Time Division Multiplexing
  • the PCM interface supports the simultaneous transmission of up to N (N>8) channels of data, reducing the number of pins.
  • the PCM interface is similar to I2S, and the circuit signals include: PCM_CLK data clock signal, PCM_SYNC frame synchronization clock signal, PCM_IN receiving data signal and PCM_OUT sending data signal.
  • PDM is a modulation method that represents an analog signal with a digital signal. The same is the method of converting analog quantity to digital quantity.
  • PDM uses a clock sampling much higher than the PCM sampling rate to modulate the analog component. There is only 1 bit output, either 0 or 1. Therefore, the digital audio represented by PDM is also called Oversampled 1-bit Audio. Compared with PDM A series of 0s and 1s, the quantization result of PCM is more intuitive and simple.
  • a decimation filter (Decimation Filter) needs to be used to convert the density components represented by the dense 0 and 1 into amplitude components, and the PCM method is already amplitude correlation. the digital components.
  • the logic of the PCM method is simpler, but three signal lines of data clock, sampling clock and data signal are needed; the logic of the PDM method is relatively complex, but it only needs two signal lines, namely the clock and the data.
  • PDM has broad application prospects in occasions with strict space constraints such as mobile phones and tablets.
  • the PDM interface is the most widely used, followed by the I2S interface.
  • the difference between the PDM-based architecture and I2S and TDM is that the decimation filter (Decimation Filter) is not in the transmitting device, but inside the receiving device.
  • the application based on the PDM interface reduces the complexity of the sending device. Since the CODEC as the receiving device integrates a decimation filter, the overall complexity of the system is greatly reduced. For digital microphones, more efficient decimation filters can be achieved by using a finer silicon process for CODEC or processor fabrication, rather than the processes used in traditional microphones.
  • an audio encoder 203 is arranged between the digital audio data interface and the audio power amplifier 102, and the audio encoder 203 is configured to convert a digital signal generated by the digital audio data interface into an analog signal.
  • the audio encoder 203 refers to a device with encoding and decoding functions in digital communication, and a codec or software that supports video and audio compression (CODEC) and decompression (Decoder, DEC).
  • CODEC technology can effectively reduce the space occupied by digital storage.
  • using hardware to complete CODEC can save the resources of the Central Processing Unit (CPU) and improve the operating efficiency of the system.
  • CPU Central Processing Unit
  • the CODEC encodes and compresses the transmission of the audio and video digital signals converted from Analog-to-Digital (AD), and decodes the signals at the receiving end. You can often find 1 or 2 or even 3 or 4 square chips with pins on the sound card. The area is generally 0.5-1.0 square centimeters, which is the CODEC.
  • CODEC is a multimedia digital signal codec, which is responsible for the conversion of digital signals to analog signals (DAC) and the conversion of analog signals to digital signals (ADC). Whether it is an audio accelerator or an Input/Output (I/O) controller, the input and output are pure digital signals. To use the Line Out jack on the sound card to output the signal, the signal must pass through the CODEC on the sound card. conversion processing.
  • the quality of the analog input and output of the sound card has a significant relationship with the conversion quality of the CODEC.
  • the audio accelerator or I/O controller determines the quality of the digital signal inside the sound card, while the CODEC determines the quality of the analog input and output.
  • an audio signal driving motor circuit includes: an audio processing module 101, an audio power amplifier 102 and a motor 103, wherein: the audio processing module 101 includes an audio output interface, and the audio output interface is digital audio data interface or analog audio output interface, the audio processing module 101 includes a central processing unit 202, a memory 201 and an audio encoder 203, the central processing unit 202 includes the audio output interface, the memory 201 is electrically connected to the central processing unit 202, and the central processing unit 202 The audio data is read from the memory 201, and the central processing unit 202 converts the read audio data into digital audio signals or analog audio signals.
  • the audio output interface of the central processing unit 202 is electrically connected to the audio encoder 203.
  • the central processing unit 202 The digital audio signal or analog audio signal is transmitted to the audio encoder 203 through the digital audio data interface or the analog audio output interface.
  • the audio encoder 203 is electrically connected to the audio power amplifier 102 and is configured to generate audio signals.
  • the audio power amplifier 102 is electrically connected to the motor 103 , the new audio signal obtained after the audio signal passes through the audio power amplifier 102 drives the rotor of the motor 103 to swing back and forth.
  • the audio signal of the target frequency generated by the audio processing module 101 drives the motor 103 through the audio power amplifier 102 to realize simple harmonic motion and noise suppression, and can make the simple harmonic motion of the motor 103 change with the change of the audio signal, and the motor 103 generates a smooth At the same time of simple harmonic motion, it produces a pure sound of the rotor swinging back and forth, achieving a brushing experience that can move with the music without the need for a speaker.
  • a first low-pass filter 301 is provided between the audio encoder 203 and the audio power amplifier 102 , and the audio signal passes through the first low-pass filter 301 to generate an audio waveform of target amplitude and frequency.
  • the first low-pass filter 301 is an LC filter composed of at least one set of magnetic beads and a capacitor, or an LC filter composed of an inductor and a capacitor.
  • the output of the digital audio interface is a high-frequency dynamically changing PWM duty cycle signal, which forms energy according to the dynamic duty cycle change of the audio waveform.
  • An analog signal with audio amplitude and frequency characteristics after the analog signal passes through the first low-pass filter 301, electromagnetic interference (Electromagnetic Interference, EMI) is suppressed to generate an audio waveform, and the audio waveform obtains a strong current drive through the audio power amplifier 102 The ability to drive the motor 103 in simple harmonic motion.
  • EMI Electromagnetic Interference
  • an audio signal driving motor circuit includes: an audio processing module 101, an audio power amplifier 102 and a motor 103, wherein: the audio processing module 101 includes an audio output interface, and the audio output interface is digital audio data interface or analog audio output interface, the audio processing module 101 includes a central processing unit 202, a memory 201 and an audio encoder 203, the central processing unit 202 includes the audio output interface, the memory 201 is electrically connected to the central processing unit 202, and the central processing unit 202 The audio data is read from the memory 201, and the central processing unit 202 converts the read audio data into digital audio signals or analog audio signals.
  • the audio output interface of the central processing unit 202 is electrically connected to the audio encoder 203.
  • the central processing unit 202 The digital audio signal or the analog audio signal is transmitted to the audio encoder 203 through the digital audio data interface or the analog audio output interface.
  • the audio encoder 203 is electrically connected to the audio power amplifier 102 and is configured to generate an audio signal.
  • the audio encoder 203 is connected to the audio power amplifier 102.
  • a first low-pass filter 301 is disposed therebetween, the audio power amplifier 102 is electrically connected to the motor 103 , and the new audio signal obtained after the audio signal passes through the audio power amplifier 102 drives the rotor of the motor 103 to swing back and forth.
  • the audio signal of the target frequency generated by the audio processing module 101 realizes noise suppression through the first low-pass filter 301, and the audio signal after noise suppression drives the motor 103 through the audio power amplifier 102, so that the motor 103 realizes simple harmonic motion and noise suppression, and can Let the simple harmonic motion of the motor 103 change with the change of the audio signal, the motor 103 generates a smooth simple harmonic motion, and at the same time generates a pure sound of the rotor swinging back and forth, so as to achieve a brushing experience that can move with music without a speaker.
  • a second low-pass filter 401 is disposed between the audio power amplifier 102 and the motor 103, and the second low-pass filter 401 is configured to suppress electromagnetic interference.
  • the second low-pass filter 401 is an LC filter composed of at least one set of magnetic beads and a capacitor, or an LC filter composed of an inductor and a capacitor.
  • a second low-pass filter 401 is provided between the audio power amplifier 102 and the motor 103, the second low-pass filter 401 is set to suppress electromagnetic interference, and the second low-pass filter 401 is at least one set of magnetic
  • the LC filter composed of beads and capacitors or inductors and capacitors is set to reduce high frequency noise, so that the motor 103 performs smooth simple harmonic motion with the audio signal.
  • an audio signal driving motor circuit includes: an audio processing module 101, an audio power amplifier 102 and a motor 103, wherein: the audio processing module 101 includes an audio output interface, and the audio output interface is digital audio data interface or analog audio output interface, the audio processing module 101 includes a central processing unit 202, a memory 201 and an audio encoder 203, the central processing unit 202 includes the audio output interface, the memory 201 is electrically connected to the central processing unit 202, and the central processing unit 202 The audio data is read from the memory 201, and the central processing unit 202 converts the read audio data into digital audio signals or analog audio signals.
  • the audio output interface of the central processing unit 202 is electrically connected to the audio encoder 203.
  • the central processing unit 202 The digital audio signal or the analog audio signal is transmitted to the audio encoder 203 through the digital audio data interface or the analog audio output interface.
  • the audio encoder 203 is electrically connected to the audio power amplifier 102 and is configured to generate an audio signal.
  • the audio encoder 203 is connected to the audio power amplifier 102.
  • a first low-pass filter 301 is arranged therebetween, the audio power amplifier 102 is electrically connected to the motor 103, a second low-pass filter 401 is arranged between the audio power amplifier 102 and the motor 103, and the audio signal passes through the audio power amplifier 102 to obtain a new audio frequency
  • the new audio signal passes through the second low-pass filter 401 to reduce noise and drives the rotor of the motor 103 to reciprocate.
  • the audio signal of the target frequency generated by the audio processing module 101 achieves noise suppression through the first low-pass filter 301, the audio signal after noise suppression passes through the audio power amplifier 102 to obtain a new audio signal, and the new audio signal passes through the second low-pass filter.
  • the device 401 realizes secondary noise suppression, and the resulting audio signal drives the motor 103, so that the motor 103 can achieve simple harmonic motion and noise suppression, and can make the simple harmonic motion of the motor 103 change with the change of the audio signal, the motor 103 generates At the same time of smooth simple harmonic motion, it produces a pure sound of the rotor swinging back and forth, achieving a brushing experience that can move with the music without the need for a speaker.
  • the circuit further includes a wireless communication module 501.
  • the wireless communication module 501 is electrically connected to the central processing unit 202.
  • the wireless communication module 501 receives audio data transmitted by an external device, and transmits audio data through the central processing unit 202 and audio coding.
  • the device 203 completes the signal processing and sends it to the audio power amplifier 102.
  • the wireless communication module 501 includes Bluetooth, Wireless Fidelity (Wi-Fi), Long Term Evolution (Long Term Evolution, LTE), mobile communication network or Ultra Wide (Ultra Wide) Band, UWB).
  • an audio signal driving motor circuit includes: an audio processing module 101, an audio power amplifier 102 and a motor 103, wherein: the audio processing module 101 includes an audio output interface, and the audio output interface is digital audio data interface or analog audio output interface, the audio processing module 101 includes a central processing unit 202, a memory 201 and an audio encoder 203, the central processing unit 202 includes the audio output interface, the memory 201 is electrically connected to the central processing unit 202, and the central processing unit 202 The audio data is read from the memory 201, and the central processing unit 202 converts the read audio data into digital audio signals or analog audio signals.
  • the audio output interface of the central processing unit 202 is electrically connected to the audio encoder 203.
  • the central processing unit 202 The digital audio signal or the analog audio signal is transmitted to the audio encoder 203 through the digital audio data interface or the analog audio output interface.
  • the audio encoder 203 is electrically connected to the audio power amplifier 102 and is configured to generate an audio signal.
  • the audio encoder 203 is connected to the audio power amplifier 102.
  • a first low-pass filter 301 is arranged therebetween, the audio power amplifier 102 is electrically connected to the motor 103, a second low-pass filter 401 is arranged between the audio power amplifier 102 and the motor 103, and the audio signal passes through the audio power amplifier 102 to obtain a new audio frequency
  • the new audio signal passes through the second low-pass filter 401 to reduce noise and drives the rotor of the motor 103 to reciprocate.
  • the wireless communication module 501 is connected to the central processing unit 202 in the audio processing module 101, and the audio signal of the target frequency generated by the audio processing module 101 passes through the A low-pass filter 301 realizes noise suppression, the audio signal after noise suppression passes through the audio power amplifier 102 to obtain a new audio signal, and the new audio signal passes through the second low-pass filter 401 to realize secondary noise suppression, and finally the audio
  • the signal drives the motor 103, so that the motor 103 can achieve simple harmonic motion and noise suppression, and can make the simple harmonic motion of the motor 103 change with the change of the audio signal, the motor 103 generates a smooth simple harmonic motion, and at the same time generates a pure reciprocation of the rotor Swinging sound for a brushing experience that moves with the music without the need for a speaker.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Amplifiers (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

本申请实施例公开了一种音频信号驱动马达电路,该电路包括:音频处理模块、音频功放和马达,其中:音频处理模块与音频功放电连接,音频处理模块设置为产生音频信号,音频功放与马达电连接,音频功放设置为将所述音频信号转换为新的音频信号,所述新的音频信号用于驱动马达的转子往复摆动。

Description

音频信号驱动马达电路
本申请要求在2020年08月31日提交中国专利局、申请号为202010901570.3的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及马达驱动技术领域,例如涉及一种音频信号驱动马达电路。
背景技术
马达在生活生产中都有着广泛的应用,在日常生活中,马达也被应用到许多个护用品当中,例如电动牙刷、剃须刀和美容按摩器等,马达在提供机器运转的动力的同时,由于驱动马达的信号自身幅度值或者频率值的变化会导致马达产生不规律的转动进而产生噪音,同时马达自身的正常转动也会带有一定的声音,而这些马达产生的噪音或者声音都会降低用户在使用电动用品时的舒适度,那么如何驱动马达能够使马达运动平顺并且同时能够降低马达产生的噪音就成为了需要解决的问题。
发明内容
本申请提供一种音频信号驱动马达电路,利用音频信号驱动马达电路,从而使马达运动平顺和抑制噪声。
提供一种音频信号驱动马达电路,包括:音频处理模块、音频功放和马达,其中:
所述音频处理模块与所述音频功放电连接,所述音频处理模块设置为产生音频信号;
所述音频功放与所述马达电连接,所述音频信号通过所述音频功放之后得到的新的音频信号驱动所述马达的转子往复摆动。
附图说明
图1为一个实施例中音频信号驱动马达电路的示意图;
图2为另一个实施例中音频信号驱动马达电路的示意图;
图3为另一个实施例中音频信号驱动马达电路的示意图;
图4为另一个实施例中音频信号驱动马达电路的示意图;
图5为另一个实施例中音频信号驱动马达电路的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
图1为一个实施例中音频信号驱动马达电路的示意图。参照图1,本实施例提供一种音频信号驱动马达电路,该电路包括:音频处理模块101、音频功放102和马达103,其中:音频处理模块101与音频功放102电连接,设置为产生音频信号,音频功放102与马达103电连接,音频信号通过音频功放102之后得到的新的音频信号驱动马达103的转子往复摆动。
在本申请实施例中,马达103为双向运动的马达或者线性马达。双向运动的马达的转向由旋转磁场的旋转方向决定,接入马达的三相绕组的电流相序决定了马达的转向,只要调换马达任意两相绕组所接的相序,旋转磁场即反向转动,马达也随之反转。线性马达经常简单描述为旋转马达被展平,而工作原理与旋转马达相同,动子是用环氧材料把线圈压缩在一起制成的,磁轨是把磁铁固定在钢上,马达的动子包括线圈绕组,霍尔元件电路板,电热调节器和电子接口,在旋转马达中,动子和定子需要旋转轴承支撑动子以保证相对运动部分的气隙,同样的,线性马达需要直线导轨来保持动子在磁轨产生的磁场中的位置,和旋转伺服马达的编码器安装在轴上反馈位置一样,线性马达需要反馈直线位置的反馈装置—线性编码器,它可以直接测量负载的位置从而提高负载的位置精度。
在本申请实施例中,音频功放102为AB类功放、D类功放、K类功放或者G类功放。
在本申请实施例中,根据放大电路的导电方式不同,音频功放电路按照模拟和数字两种类型进行分类,AB类功放和G类功放为模拟音频功放,D类功放和K类功放为数字电路功放。AB类功放又称为甲乙类功放,AB类功放界于甲类和乙类之间,推挽放大的每一个晶体管导通时间大于信号的半个周期而小于一个周期,因此AB类功放有效解决了乙类放大器的交越失真问题,效率又比甲类放大器高,因此获得了极为广泛的应用。G类功放为一种多电源的AB类功放的改进形式,G类功放充分利用了音频都具有极高峰值因数(10-20dB)的这一有利条件,大多数时候,音频信号都处在较低的幅值,极少时间会表现出更高 的峰值,相比传统的AB类放大器,G类放大器拥有更高的效率,该类功放的放大原理与AB类功放的放大原理相同,一个重要特点是供电部分采用两组或者多组电压,低功率运行使用低电压,高功率自动切换到高电压。D类功放又称丁类功放,D类功放也称数字式放大器,利用极高频率的转换开关电路来放大音频信号,工作原理为D类功放采用异步调制的方式,在音频信号周期发生变化时,高频载波信号仍然保持不变,因此,在音频频率比较低的时候,脉冲宽度调制(Pulse Width Modulation,PWM)的载波个数仍然较高,因此对抑制高频载波和减少失真非常有利,并且也不存在与基波之间的相互干扰问题,许多功率高达1000W的丁类放大器,体积只不过像家用录像系统(Video Home System,VHS)录像带那么大,这类放大器不适宜于用作宽频带的放大器,但在有源超低音音箱中有较多的应用。K类功放集成了内部自举升压电路和多种功放电路,D类功放只是众多功放电路中其中一种效率比较高的数字功放,而K类功放是根据需要内部集成的自举升压电路和所需求的功放电路,如果需求效率高就加D类功放,要音质好就加AB类功放。
在本申请实施例中,提供一种音频信号驱动马达电路,该电路包括:音频处理模块101、音频功放102和马达103,其中:音频处理模块101与音频功放102电连接,设置为产生音频信号,音频功放102与马达103电连接,音频信号通过音频功放102之后得到的新的音频信号驱动马达103的转子往复摆动。音频处理模块101产生的目标频率的音频信号通过音频功放102驱动马达103,实现简谐运动和噪声抑制,并且可以让马达103的简谐运动随音频信号的变化而变化,该马达103产生平顺的简谐运动的同时,产生纯净的转子往复摆动的声音,达到无需喇叭就可以随音乐而动的刷牙体验。
为了说明本申请的音频信号驱动马达电路的工作方式,请参阅图2中本申请提供的音频信号驱动马达电路的示意图。
在本申请实施例中,音频处理模块101包括音频输出接口,音频输出接口为数字音频数据接口或模拟音频输出接口,音频处理模块101包括中央处理器202、存储器201和音频编码器203,中央处理器202包括所述音频输出接口,存储器201与中央处理器202电连接,中央处理器202从存储器201中读取音频数据,中央处理器202将读取到的音频数据转换为数字音频信号或者模拟音频信号,中央处理器202的音频输出接口与音频编码器203电连接,中央处理器202通过数字音频数据接口或者模拟音频输出接口将数字音频信号或者模拟音频信号传输给音频编码器203。其中,音频处理模块101可以被拆解为:中央处理器202和外部音频编码器203或者中央处理器202自身包括音频编码器203。
在本申请实施例中,数字音频数据接口为数字音频传输标准集成电路内置 音频总线(Integrated Interchip Sound,I2S)接口、模拟信号数字化方法脉冲编码调制(Pulse Code Modulation,PCM)接口或者模拟信号数字化调制方法脉冲密度调制(Pulse Density Modulation,PDM)接口。
(1)数字音频传输标准I2S接口
数字音频传输标准I2S接口全称为Integrated Interchip Sound,或简写为IIS,是在1986年定义(1996年修订)的数字音频传输标准,用于数字音频数据在系统内部器件之间传输,例如在编解码器(Coder-Decoder,CODEC)、数字信号处理器(Digital Signal Processor,DSP)、数字输入/输出接口、模拟数字转换器(Analog-to-Digital converter,ADC)、数字模拟转换器(Digital-to-Analog converter,DAC)和数字滤波器等系统内部器件之间传输。I2S是比较简单的数字接口协议,没有地址或设备选择机制。在I2S总线上,只能同时存在一个主设备和发送设备。主设备可以是发送设备,也可以是接收设备,或是协调发送设备和接收设备的其它控制设备。在I2S系统中,提供时钟(串行时钟(Serial Clock,SCK)和字选择(Word Select,WS))的设备为主设备。在高端应用中,CODEC经常作为I2S的主控设备以精确控制I2S的数据流。
I2S包括两个声道(Left/Right)的数据,在主设备发出声道选择/字选择(WS)控制下进行左右声道数据切换。通过增加I2S接口的数目或其它I2S设备可以实现多声道(Multi-Channels)应用。
在I2S传输协议中,数据信号、时钟信号以及控制信号是分开传输的。I2S协议只定义三根信号线:时钟信号SCK、数据信号(Serial Data,SD)和左右声道选择信号WS。时钟信号(Serial Clock,SCK)是模块内的同步信号,从模式时由外部提供,主模式时由模块内部自己产生。不同厂家的芯片型号,时钟信号叫法可能不同,也可能称为BCLK/Bit Clock或SCL/Serial Clock。数据信号SD是串行数据,在I2S中以二进制补码的形式在数据线上传输。在WS变化后的第一个SCK脉冲,先传输最高位(Most Significant Bit,MSB)。先传送MSB是因为发送设备和接收设备的字长可能不同,当系统字长比数据发送端字长长的时候,数据传输就会出现截断的现象(Truncated),即如果数据接收端接收的数据位比它规定的字长长的话,那么规定字长最低位(Least Significant Bit,LSB)以后的所有位将会被忽略。如果接收的字长比它规定的字长短,那么空余出来的位将会以0填补。通过这种方式可以使音频信号的最高有效位得到传输,从而保证最好的听觉效果。左右声道选择信号(Word Select,WS)是声道选择信号,表明数据发送端所选择的声道。WS也称帧时钟,即LRCLK/Left Right Clock,WS频率等于声音的采样率。WS既可以在SCK的上升沿,也可以在SCK的下降沿变化。从设备在SCK的上升沿采样WS信号,数据信号MSB在WS 改变后的第二个时钟(SCK)上升沿有效(即延迟一个SCK),这样可以让从设备有足够的时间以存储当前接收的数据,并准备好接收下一组数据。
在I2S总线中,任何设备都可以通过提供时钟成为I2S的主控设备。考虑到SCK、SD和WS的时延,I2S总线上总的时延包括:外部时钟SCK由主设备到从设备的时延、内部时钟和SD及WS的时延,外部时钟SCK到内部时钟的延迟对于数据和左右声道信号WS的输入没有影响,因为这段延迟只增加有效的建立时间(Setup time)。需要注意的是发送延迟和接收设备建立时间是否有足够的裕量。所有的时序要求和时钟周期或设备允许的最低时钟周期有关。
根据SD相对于SCK和WS位置的不同,I2S分为三种不同的操作模式,分别为标准I2S模式、左对齐模式和右对齐模式:I2S模式属于左对齐中的一种特例,是由标准左对齐格式再延迟一个时钟位变化来的。标准左对齐较少使用,标准左对齐格式,由于在WS变化后的第一个SCK上升沿就开始采样,它不需要关心左右声道数据的字长,只要WS的时钟周期足够长,左对齐的方式支持16-32bit的字长格式。标准右对齐也叫日本格式,日本电子机械工业协会(Electronic Industries Association of Japan,EIAJ)或SONY格式,相比于标准左对齐格式,标准右对齐的不足在于接收设备必须事先知道待传数据的字长,这也解释了为什么许多CODEC都会提供多种右对齐格式选择功能。
(2)模拟信号数字化方法PCM接口
PCM是通过等时间隔(即采样率和时钟周期)采样将模拟信号数字化的方法。PCM数字音频接口,即说明接口上传输的音频数据是通过PCM方式采样得到的,以区别于PDM方式。在音频领域,PCM接口常用于板级音频数字信号的传输,与I2S相似。PCM和I2S的区别在于数据相对于帧时钟(FSYNC/WS)的位置、时钟的极性和帧的长度。其实,I2S上传输的也是PCM类型的数据,因此可以说I2S不过是PCM接口的特例。
相比于I2S接口,PCM接口应用更加灵活,通过时分复用(Time Division Multiplexing,TDM)方式,PCM接口支持同时传输多达N个(N>8)声道的数据,减少了管脚数目。PCM接口与I2S相似,电路信号包括:PCM_CLK数据时钟信号、PCM_SYNC帧同步时钟信号、PCM_IN接收数据信号和PCM_OUT发送数据信号。
(3)模拟信号数字化调制方法PDM接口
PDM是一种用数字信号表示模拟信号的调制方法。同为将模拟量转换为数字量的方法,PCM使用等间隔采样方法,将每次采样的模拟分量幅度表示为N位的数字分量(N=量化深度),因此PCM方式每次采样的结果都是N bit字长 的数据。PDM则使用远高于PCM采样率的时钟采样调制模拟分量,只有1位输出,要么为0,要么为1,因此通过PDM方式表示的数字音频也被称为Oversampled 1-bit Audio,相比PDM一连串的0和1,PCM的量化结果更为直观简单。
在以PDM方式作为模数转换方法的应用接收端,需要用到抽取滤波器(Decimation Filter)将密密麻麻的0和1代表的密度分量转换为幅值分量,而PCM方式得到的已经是幅值相关的数字分量。
PCM方式的逻辑更加简单,但需要用到数据时钟,采样时钟和数据信号三根信号线;PDM方式的逻辑相对复杂,但它只需要两根信号线,即时钟和数据。PDM在诸如手机和平板等对于空间限制严格的场合有着广泛的应用前景,在数字麦克风领域,应用最广的就是PDM接口,其次为I2S接口。
基于PDM的架构不同于I2S和TDM之处在于,抽取滤波器(Decimation Filter)不在发送设备,而在接收设备内部。基于PDM接口的应用降低了发送设备的复杂性,由于作为接收设备的CODEC内部集成抽取滤波器,因此系统整体复杂度大大降低。对于数字麦克风而言,通过使用面向CODEC或处理器制造的更精细的硅工艺,而非传统麦克风使用的工艺,可以实现更高效率的抽取滤波器。
在本申请实施例中,数字音频数据接口与音频功放102之间设置有音频编码器203,音频编码器203设置为将数字音频数据接口产生的数字信号转换为模拟信号。音频编码器203指的是数字通信中具有编码和译码功能的器件,支持视频和音频压缩(CODEC)与解压缩(Decoder,DEC)的编解码器或软件。CODEC技术能有效减少数字存储占用的空间,在计算机系统中,使用硬件完成CODEC可以节省中央处理器(Central Processing Unit,CPU)的资源,提高系统的运行效率。CODEC对模拟数字(Analog-to-Digital,AD)变换后的音视频数字信号的传输进行编码和压缩,在接收端对信号解码。在声卡上往往可以找到1颗或者2颗甚至3颗或4颗有引脚的正方形芯片,面积一般为0.5-1.0平方厘米,这就是CODEC。CODEC就是多媒体数字信号编解码器,负责数字信号到模拟信号的转换(DAC)和模拟信号到数字信号的转换(ADC)。不管是音频加速器还是输入/输出(Input/Output,I/O)控制器,输入输出的都是纯数字信号,要使用声卡上的Line Out插孔输出信号的话,信号就必须经过声卡上的CODEC的转换处理。可以说,声卡模拟输入输出的品质和CODEC的转换品质有着重大的关系,音频加速器或I/O控制器决定了声卡内部数字信号的质量,而CODEC则决定了模拟输入输出的好坏。
在本申请实施例中,提供一种音频信号驱动马达电路,该电路包括:音频 处理模块101、音频功放102和马达103,其中:音频处理模块101包括音频输出接口,音频输出接口为数字音频数据接口或模拟音频输出接口,音频处理模块101包括中央处理器202、存储器201和音频编码器203,中央处理器202包括所述音频输出接口,存储器201与中央处理器202电连接,中央处理器202从存储器201中读取音频数据,中央处理器202将读取到的音频数据转换为数字音频信号或者模拟音频信号,中央处理器202的音频输出接口与音频编码器203电连接,中央处理器202通过数字音频数据接口或者模拟音频输出接口将数字音频信号或者模拟音频信号传输给音频编码器203,音频编码器203与音频功放102电连接,设置为产生音频信号,音频功放102与马达103电连接,音频信号通过音频功放102之后得到的新的音频信号驱动马达103的转子往复摆动。音频处理模块101产生的目标频率的音频信号通过音频功放102驱动马达103,实现简谐运动和噪声抑制,并且可以让马达103的简谐运动随音频信号的变化而变化,该马达103产生平顺的简谐运动的同时,产生纯净的转子往复摆动的声音,达到无需喇叭就可以随音乐而动的刷牙体验。
为了说明本申请的音频信号驱动马达电路的工作方式,请参阅图3中本申请提供的音频信号驱动马达电路的示意图。
在本申请实施例中,音频编码器203与音频功放102之间设置有第一低通滤波器301,音频信号通过第一低通滤波器301产生目标幅度和频率的音频波形。在本申请实施例中,第一低通滤波器301为至少一组磁珠和电容组成的LC滤波器,或者为电感和电容组成的LC滤波器。
在本申请实施例中,数字音频接口输出的是一种高频的动态变化的PWM占空比信号形成能量按照音频波形变化的动态占空比变化,该数字信号通过音频编码器203产生纯净的音频幅度与频率特征的模拟信号,该模拟信号通过第一低通滤波器301后,进行电磁干扰(Electromagnetic Interference,EMI)的抑制,产生音频波形,该音频波形通过音频功放102获得强大的电流驱动能力驱动马达103简谐运动。
在本申请实施例中,提供一种音频信号驱动马达电路,该电路包括:音频处理模块101、音频功放102和马达103,其中:音频处理模块101包括音频输出接口,音频输出接口为数字音频数据接口或模拟音频输出接口,音频处理模块101包括中央处理器202、存储器201和音频编码器203,中央处理器202包括所述音频输出接口,存储器201与中央处理器202电连接,中央处理器202从存储器201中读取音频数据,中央处理器202将读取到的音频数据转换为数字音频信号或者模拟音频信号,中央处理器202的音频输出接口与音频编码器203电连接,中央处理器202通过数字音频数据接口或者模拟音频输出接口将数 字音频信号或者模拟音频信号传输给音频编码器203,音频编码器203与音频功放102电连接,设置为产生音频信号,音频编码器203与音频功放102之间设置有第一低通滤波器301,音频功放102与马达103电连接,音频信号通过音频功放102之后得到的新的音频信号驱动马达103的转子往复摆动。音频处理模块101产生的目标频率的音频信号通过第一低通滤波器301实现噪声抑制,经过噪声抑制的音频信号通过音频功放102驱动马达103,使得马达103实现简谐运动和噪声抑制,并且可以让马达103的简谐运动随音频信号的变化而变化,该马达103产生平顺的简谐运动的同时,产生纯净的转子往复摆动的声音,达到无需喇叭就可以随音乐而动的刷牙体验。
为了说明本申请的音频信号驱动马达电路的工作方式,请参阅图4中本申请提供的音频信号驱动马达电路的示意图。
在本申请实施例中,音频功放102和马达103之间设置有第二低通滤波器401,第二低通滤波器401设置为抑制电磁干扰。
在本申请实施例中,第二低通滤波器401为至少一组磁珠和电容组成的LC滤波器,或者为电感和电容组成的LC滤波器。
在一实施例中,在音频功放102和马达103之间设置有第二低通滤波器401,第二低通滤波器401设置为抑制电磁干扰,第二低通滤波器401为至少一组磁珠和电容或电感和电容组成的LC滤波器,设置为降低高频噪音,使得马达103随音频信号做平顺的简谐运动。
在本申请实施例中,提供一种音频信号驱动马达电路,该电路包括:音频处理模块101、音频功放102和马达103,其中:音频处理模块101包括音频输出接口,音频输出接口为数字音频数据接口或模拟音频输出接口,音频处理模块101包括中央处理器202、存储器201和音频编码器203,中央处理器202包括所述音频输出接口,存储器201与中央处理器202电连接,中央处理器202从存储器201中读取音频数据,中央处理器202将读取到的音频数据转换为数字音频信号或者模拟音频信号,中央处理器202的音频输出接口与音频编码器203电连接,中央处理器202通过数字音频数据接口或者模拟音频输出接口将数字音频信号或者模拟音频信号传输给音频编码器203,音频编码器203与音频功放102电连接,设置为产生音频信号,音频编码器203与音频功放102之间设置有第一低通滤波器301,音频功放102与马达103电连接,音频功放102和马达103之间设置有第二低通滤波器401,音频信号通过音频功放102之后得到新的音频信号,新的音频信号通过第二低通滤波器401降噪后驱动马达103的转子往复摆动。音频处理模块101产生的目标频率的音频信号通过第一低通滤波器301实现噪声抑制,经过噪声抑制的音频信号通过音频功放102之后得到新 的音频信号,新的音频信号通过第二低通滤波器401实现二次的噪声抑制,最终得到的音频信号驱动马达103,使得马达103实现简谐运动和噪声抑制,并且可以让马达103的简谐运动随音频信号的变化而变化,该马达103产生平顺的简谐运动的同时,产生纯净的转子往复摆动的声音,达到无需喇叭就可以随音乐而动的刷牙体验。
为了说明本申请的音频信号驱动马达电路的工作方式,请参阅图5中本申请提供的音频信号驱动马达电路的示意图。
在本申请实施例中,该电路还包括有无线通讯模块501,无线通讯模块501与中央处理器202电连接,无线通讯模块501接收外部设备传输的音频数据,并通过中央处理器202和音频编码器203完成信号处理,发送到音频功放102,无线通讯模块501包括蓝牙、无线保真(Wireless Fidelity,Wi-Fi)、长期演进(Long Term Evolution,LTE)、移动通讯网络或者超宽带(Ultra Wide Band,UWB)。
在本申请实施例中,提供一种音频信号驱动马达电路,该电路包括:音频处理模块101、音频功放102和马达103,其中:音频处理模块101包括音频输出接口,音频输出接口为数字音频数据接口或模拟音频输出接口,音频处理模块101包括中央处理器202、存储器201和音频编码器203,中央处理器202包括所述音频输出接口,存储器201与中央处理器202电连接,中央处理器202从存储器201中读取音频数据,中央处理器202将读取到的音频数据转换为数字音频信号或者模拟音频信号,中央处理器202的音频输出接口与音频编码器203电连接,中央处理器202通过数字音频数据接口或者模拟音频输出接口将数字音频信号或者模拟音频信号传输给音频编码器203,音频编码器203与音频功放102电连接,设置为产生音频信号,音频编码器203与音频功放102之间设置有第一低通滤波器301,音频功放102与马达103电连接,音频功放102和马达103之间设置有第二低通滤波器401,音频信号通过音频功放102之后得到新的音频信号,新的音频信号通过第二低通滤波器401降噪后驱动马达103的转子往复摆动。通过设置无线通讯模块501可以根据用户需要从外部设备获取更加丰富的音频信号,无线通讯模块501与音频处理模块101中的中央处理器202连接,音频处理模块101产生的目标频率的音频信号通过第一低通滤波器301实现噪声抑制,经过噪声抑制的音频信号通过音频功放102之后得到新的音频信号,新的音频信号通过第二低通滤波器401实现二次的噪声抑制,最终得到的音频信号驱动马达103,使得马达103实现简谐运动和噪声抑制,并且可以让马达103的简谐运动随音频信号的变化而变化,该马达103产生平顺的简谐运动的同时,产生纯净的转子往复摆动的声音,达到无需喇叭就可以随音乐而动的刷牙体验。
以上实施例的多个技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的多个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。

Claims (10)

  1. 一种音频信号驱动马达电路,包括:音频处理模块、音频功放和马达,其中:
    所述音频处理模块与所述音频功放电连接,所述音频处理模块设置为产生音频信号;
    所述音频功放与所述马达电连接,所述音频功放设置为将所述音频信号转换为新的音频信号,所述新的音频信号用于驱动所述马达的转子往复摆动。
  2. 根据权利要求1所述的音频信号驱动马达电路,其中,所述音频处理模块包括音频输出接口,所述音频输出接口为数字音频数据接口或模拟音频输出接口;
    所述音频处理模块包括中央处理器、存储器和音频编码器,所述中央处理器包括所述音频输出接口,所述存储器与所述中央处理器电连接,所述中央处理器设置为从所述存储器中读取音频数据,所述中央处理器设置为将读取到的音频数据转换为数字音频信号或者模拟音频信号,所述中央处理器的音频输出接口与所述音频编码器电连接,所述中央处理器还设置为通过所述数字音频数据接口将所述数字音频信号传输给所述音频编码器或者通过所述模拟音频输出接口将所述模拟音频信号传输给所述音频编码器。
  3. 根据权利要求2所述的音频信号驱动马达电路,其中,所述音频编码器与所述音频功放之间设置有第一低通滤波器,所述第一低通滤波器设置为使通过的音频信号产生目标幅度和频率的音频波形。
  4. 根据权利要求3所述的音频信号驱动马达电路,其中,所述第一低通滤波器为至少一组磁珠和电容组成的LC滤波器,或者为电感和电容组成的LC滤波器。
  5. 根据权利要求2所述的音频信号驱动马达电路,其中,所述数字音频数据接口为数字音频传输标准集成电路内置音频总线I2S接口、模拟信号数字化方法脉冲编码调制PCM接口或者模拟信号数字化调制方法脉冲密度调制PDM接口。
  6. 根据权利要求2所述的音频信号驱动马达电路,还包括无线通讯模块,所述无线通讯模块与所述中央处理器电连接,所述无线通讯模块设置为接收外部设备传输的音频数据,所述中央处理器和所述音频编码器设置为对所述传输的音频数据完成信号处理,并将处理后的音频数据发送到所述音频功放,其中,所述无线通讯模块包括蓝牙、无线保真Wi-Fi、长期演进LTE、移动通讯网络或者超宽带UWB。
  7. 根据权利要1至6中任意一项所述的音频信号驱动马达电路,其中,所述音频功放和所述马达之间设置有第二低通滤波器,所述第二低通滤波器设置为抑制电磁干扰。
  8. 根据权利要7所述的音频信号驱动马达电路,其中,所述第二低通滤波器为至少一组磁珠和电容组成的LC滤波器,或者为电感和电容组成的LC滤波器。
  9. 根据权利要1至6中任意一项所述的音频信号驱动马达电路,其中,所述马达为双向运动的马达或者线性马达。
  10. 根据权利要1至6中任意一项所述的音频信号驱动马达电路,其中,所述音频功放为AB类功放、D类功放、K类功放或者G类功放。
PCT/CN2021/083646 2020-08-31 2021-03-29 音频信号驱动马达电路 WO2022041712A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010901570.3A CN111935598A (zh) 2020-08-31 2020-08-31 音频信号驱动马达电路
CN202010901570.3 2020-08-31

Publications (1)

Publication Number Publication Date
WO2022041712A1 true WO2022041712A1 (zh) 2022-03-03

Family

ID=73309005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/083646 WO2022041712A1 (zh) 2020-08-31 2021-03-29 音频信号驱动马达电路

Country Status (2)

Country Link
CN (1) CN111935598A (zh)
WO (1) WO2022041712A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112054742A (zh) * 2020-08-31 2020-12-08 深圳市云顶信息技术有限公司 高频信号驱动马达电路
CN111935598A (zh) * 2020-08-31 2020-11-13 深圳市云顶信息技术有限公司 音频信号驱动马达电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201467218U (zh) * 2009-07-28 2010-05-12 青岛海信移动通信技术股份有限公司 一种便携式数字设备
CN106849781A (zh) * 2017-03-31 2017-06-13 珠海市魅族科技有限公司 一种马达驱动电路、方法及电子设备
CN106877783A (zh) * 2017-03-31 2017-06-20 珠海市魅族科技有限公司 一种马达驱动电路、方法及电子设备
CN107453653A (zh) * 2014-12-15 2017-12-08 青岛海信移动通信技术股份有限公司 一种移动终端中的马达控制方法及装置
US20180032308A1 (en) * 2015-09-16 2018-02-01 SZ DJI Technology Co., Ltd. System, apparatus and method for generating sound
CN111935598A (zh) * 2020-08-31 2020-11-13 深圳市云顶信息技术有限公司 音频信号驱动马达电路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1897110A (zh) * 2005-07-13 2007-01-17 孙浩 一种以固态存储器为媒体的高品质音频信号转换回放装置
WO2007049091A1 (en) * 2005-10-27 2007-05-03 Nokia Corporation Vibration motor as a transducer of audio
US10455320B2 (en) * 2017-08-02 2019-10-22 Body Beats, Llc System, method and apparatus for translating, converting and/or transforming audio energy into haptic and/or visual representation
CN212992589U (zh) * 2020-08-31 2021-04-16 深圳市云顶信息技术有限公司 音频信号驱动马达电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201467218U (zh) * 2009-07-28 2010-05-12 青岛海信移动通信技术股份有限公司 一种便携式数字设备
CN107453653A (zh) * 2014-12-15 2017-12-08 青岛海信移动通信技术股份有限公司 一种移动终端中的马达控制方法及装置
US20180032308A1 (en) * 2015-09-16 2018-02-01 SZ DJI Technology Co., Ltd. System, apparatus and method for generating sound
CN106849781A (zh) * 2017-03-31 2017-06-13 珠海市魅族科技有限公司 一种马达驱动电路、方法及电子设备
CN106877783A (zh) * 2017-03-31 2017-06-20 珠海市魅族科技有限公司 一种马达驱动电路、方法及电子设备
CN111935598A (zh) * 2020-08-31 2020-11-13 深圳市云顶信息技术有限公司 音频信号驱动马达电路

Also Published As

Publication number Publication date
CN111935598A (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
WO2022041713A1 (zh) 骨传导音频电动牙刷
CN212973135U (zh) 骨传导音频电动牙刷
WO2022041712A1 (zh) 音频信号驱动马达电路
US9942682B2 (en) Implementation method and device of multi-bit modulation-based digital speaker system
CN102684701B (zh) 基于编码转换的数字扬声器驱动方法和装置
US5777512A (en) Method and apparatus for oversampled, noise-shaping, mixed-signal processing
CN103152673B (zh) 基于四元码动态失配整形的数字扬声器驱动方法和装置
EP2002558B1 (en) High efficiency converter providing switching amplifier bias
JPH11502981A (ja) スピーカーの、またはスピーカーに関する改善
CN1217864A (zh) 与数字放大器结合的高保真和高效率的模拟放大器
Putzeys Digital audio's final frontier
CN1697563A (zh) 用于控制扬声器的电路
CN212992589U (zh) 音频信号驱动马达电路
CN101060291B (zh) 无变压器的超声波电机驱动器
JP2005508105A (ja) 電気から音響への変換装置
WO2022042028A1 (zh) 高频信号驱动马达电路
JP2008259201A (ja) デジタル変調のためのシステム及び方法
US6462690B1 (en) Circuit systems and methods for multirate digital-to-analog amplifier systems
JP2005509212A (ja) 高精度低電力モードを有する電子装置
CN110636407B (zh) 一种全数字扬声器系统及其工作方法
CN215499547U (zh) 一种有源以太网的广播功放电路及天花喇叭
CN205029809U (zh) 基于wifi网络的音频流媒体播放平台
JP2016063299A (ja) オーディオアンプ、電子機器、オーディオ信号の再生方法
CN220873123U (zh) 一种声压输出动态电源控制系统
CN208890784U (zh) 一种用于陆空通话接收的电台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21859561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.07.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21859561

Country of ref document: EP

Kind code of ref document: A1