WO2022041378A1 - 一种闭环链式化学反应的全固态燃料电池及其工作方法 - Google Patents

一种闭环链式化学反应的全固态燃料电池及其工作方法 Download PDF

Info

Publication number
WO2022041378A1
WO2022041378A1 PCT/CN2020/118098 CN2020118098W WO2022041378A1 WO 2022041378 A1 WO2022041378 A1 WO 2022041378A1 CN 2020118098 W CN2020118098 W CN 2020118098W WO 2022041378 A1 WO2022041378 A1 WO 2022041378A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
anode
cavity
solid
cathode
Prior art date
Application number
PCT/CN2020/118098
Other languages
English (en)
French (fr)
Inventor
张兄文
闵小滕
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Publication of WO2022041378A1 publication Critical patent/WO2022041378A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/002Shape, form of a fuel cell
    • H01M8/006Flat
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04216Reactant storage and supply, e.g. means for feeding, pipes characterised by the choice for a specific material, e.g. carbon, hydride, absorbent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1231Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention belongs to the technical field of batteries, and relates to an all-solid-state fuel cell with a closed-loop chain chemical reaction and a working method thereof.
  • the energy density of a single lithium-ion battery rarely reaches or exceeds 300Wh/kg. After the battery is grouped, the energy density will further decrease. What’s more unfavorable is that due to the limitation of the positive electrode material, the current commercial production The energy density of the lithium-ion battery is close to its theoretical upper limit. If the change in the cathode material system cannot be achieved, the energy density of the lithium-ion battery will encounter a bottleneck;
  • the current mainstream lithium-ion batteries are more and more difficult to meet the increasing energy consumption of equipment and the demand for battery life in terms of energy density, high and low temperature performance, and can not meet the demand for electricity in high temperature and low temperature environments.
  • the market urgently needs a power supply device with good safety, high energy density, strong environmental adaptability, long battery life, light weight and environmental protection.
  • the purpose of the present invention is to overcome the above-mentioned shortcomings of the prior art, and to provide an all-solid-state fuel cell with a closed-loop chain chemical reaction and a working method thereof.
  • the cell and its working method have good safety, high energy density, and environmental adaptability. Strong, long battery life, lightweight and environmentally friendly.
  • the present invention adopts the following technical solutions to realize:
  • the closed-loop chain chemical reaction all-solid fuel cell of the present invention includes a casing and a power generation unit, and the power generation unit includes an anode cavity, a plate-type solid oxide fuel cell, an anode collector grid, an anode collector wire, a cathode collector network, and a cathode collector. Wires, heat pipes and heaters;
  • the anode cavity is a groove-shaped cavity, the opening of the anode cavity is sealed by a plate-type solid oxide fuel cell, the anode of the plate-type solid oxide fuel cell is facing the anode cavity, and the anode cavity is sequentially provided with a solid fuel layer,
  • the first heat-insulating and ventilating partition and anode collecting grid wherein the anode collecting grid is in contact with the anode of the plate solid oxide fuel cell, the anode current collecting wire is connected with the anode collecting grid, and the cathode of the plate solid oxide fuel cell is close to the cathode
  • the collector network, the cathode collector wire is connected with the cathode collector network;
  • An annular second heat-insulating and ventilating partition is arranged between the side wall of the anode cavity and the inner wall of the shell.
  • the second heat-insulating and ventilating partition and the anode cavity divide the interior of the shell into a heat-dissipating cavity and a cathode cavity.
  • the hot air duct is provided with an air inlet on the side wall of the casing, the inlet of the air preheating air duct is connected with the air inlet, the outlet of the air preheating air duct is located in the heat dissipation cavity, and the middle part of the heat dissipation pipe is located in the air preheating air duct.
  • both ends of the heat dissipation pipe are inserted into the cathode cavity through the second heat insulation and ventilation partition, and the heater is located in the cathode cavity.
  • the plate-type solid oxide fuel cell includes an electrolyte, a cathode and an anode, wherein the electrolyte is located between the cathode and the anode, and the electrolyte is an ion conductive material.
  • the anode cavity is composed of a bottom plate and a side wall plate, and an insulating layer is arranged between the solid fuel layer and the bottom plate and the side wall plate.
  • the material of the solid fuel layer is a mixture of alkaline metal borohydride, alkaline metal borohydride hydrolysis catalyst, salt crystal hydrate and water absorbing material;
  • the basic metal in the basic metal borohydride is the metal element represented by Group 1 or Group 2 in the periodic table;
  • the basic metal borohydride hydrolysis catalysts are cobalt-based catalysts, rhodium-based catalysts, nickel-based catalysts and acids;
  • the salt crystal hydrate does not chemically react with alkaline metal borohydride and alkaline metal borohydride hydrolysis catalyst;
  • the water-absorbing material is a starch-based superabsorbent material and/or a cellulose-based superabsorbent material;
  • Starch series super absorbent materials are water absorbent materials prepared from modified starch and its derivatives.
  • the radiating pipe has an arcuate structure, and the radiating pipe is composed of a middle pipe section and two vertical pipe sections, wherein the middle pipe section is located in the air preheating air duct, the middle pipe section is connected with the two vertical pipe sections, and the vertical pipe section passes through the second heat insulation
  • the ventilation partition is inserted into the cathode cavity, and the outer wall of the part of the vertical pipe section located in the heat dissipation cavity is provided with a thermal insulation layer;
  • the air preheating air duct includes a connected air inlet section and a heat exchange section, wherein the air inlet section is connected with the air inlet on the casing, an air intake fan is arranged at the entrance of the air inlet section, and the middle pipe section is located in the heat exchange section.
  • the side wall of the heat exchange section is provided with a through hole matched with the vertical pipe section, wherein the vertical pipe section passes through the through hole and communicates with the middle pipe section.
  • the shell includes a packaging box and a packaging cover located at the opening of the packaging box, the air inlet is located on the side wall of the packaging box, the side wall of the packaging box is provided with an air outlet, and the side wall of the packaging box is provided with anode terminals and cathode wirings terminal, wherein the anode terminal is connected with the anode current collecting wire, and the cathode terminal is connected with the cathode current collecting wire.
  • the shape of the solid fuel in the solid fuel layer is flake, block, cake, granule and powder
  • the first heat-insulating and ventilating partition and the second heat-insulating and ventilating partition are both porous-medium structural plates made of insulating and ventilating materials.
  • the number of power generation units is two, wherein the first power generation unit is located on one side of the casing, the second power generation unit is located on the other side of the casing, and the second heat insulation and ventilation partition in the two power generation units and the anode cavity are connected.
  • a cathode cavity shared by the two power generating units is formed between the two power generating units, and the heater is located between the cathode collecting grids in the two power generating units;
  • One end of the anode current collecting wire is connected to the anode collecting grid, and the other end of the anode current collecting wire is inserted into the heat dissipation cavity through the first heat insulation and ventilation partition, the solid fuel layer and the side wall of the anode cavity.
  • One end of the cathode current collecting wire is connected to the cathode collecting grid in the first power generation unit, and the other end of the cathode current collecting wire in the first power generation unit passes through the second heat insulation and ventilation partition in the second power generation unit and the first power generation unit.
  • the anode collector wires in the two power generation units are connected, one end of the cathode collector wires in the second power generation unit is connected with the cathode collector grid in the second power generation unit, and the cathode collector wires in the second power generation unit are connected with each other.
  • the other end is connected with the cathode terminal on the casing through the second heat-insulating and ventilating partition in the first power generation unit, and the anode current collecting wire in the second power generation unit is connected with the anode terminal on the casing.
  • a working method of a closed-loop chain chemical reaction all-solid-state fuel cell includes the following steps:
  • the all-solid-state fuel cell When the all-solid-state fuel cell is in a non-working state, the all-solid-state fuel cell has no external power output. At this time, the internal working temperature of the all-solid-state fuel cell is consistent with the external ambient temperature.
  • the outside air is connected, the inside of the heat dissipation cavity is filled with air, the air inside the heat dissipation cavity diffuses into the cathode cavity through the second heat insulation and ventilation partition, and the inside of the cathode cavity is filled with air;
  • the power supply interface of the heater is connected to the external power supply circuit, the heater starts to work, the power supply circuit of the intake fan is connected to the external power supply circuit, and the intake fan starts to run.
  • the heater heats the air in the cathode cavity, the air temperature in the cathode cavity gradually rises, and the high temperature air in the cathode cavity enters the heat dissipation pipe and heats the air in the air preheating air duct through the heat dissipation pipe. The temperature of the air in the duct gradually rises.
  • the preheated air in the air preheating duct enters the heat dissipation cavity, and the air in the heat dissipation cavity heats the solid fuel layer through the wall of the anode cavity.
  • the high-temperature air in the cathode cavity heats the solid fuel layer through the anode cavity.
  • the alkaline metal borohydride undergoes a hydrolysis reaction to generate hydrogen, and the working temperature of the solid fuel layer in the anode cavity is controlled by controlling the intake flow rate of the intake fan, so that the alkaline metal borohydride undergoes a hydrolysis reaction, and the hydrogen is ventilated through the first heat insulation
  • the block diffuses to the anode of the plate-type solid oxide fuel cell.
  • the heater stops working, and the all-solid-state fuel cell enters the working state;
  • the power supply circuit of the intake fan is connected to the plate-type solid oxide fuel cell
  • the hydrogen on the anode side of the plate-type solid oxide fuel cell loses electrons and becomes hydrogen ions, and the lost electrons pass through the external circuit
  • the oxygen in the air on the cathode side of the plate solid oxide fuel cell obtains electrons to become oxygen ions
  • the oxygen ions pass through the electrolyte layer of the plate solid oxide fuel cell to reach the anode of the plate solid oxide fuel cell
  • the plate-type solid oxide fuel cell outputs electrical energy to the outside, wherein the number of moles of water molecules generated by the anode of the plate-type solid oxide fuel cell is equal to the number of moles of hydrogen involved in the electrochemical reaction of hydrogen and oxygen , the product water molecules of the hydrogen-oxygen electrochemical reaction diffuse into the solid fuel layer through the first heat insulation and ventilation partition, and the working
  • the plate solid oxide The oxide fuel cell outputs electrical energy to the outside.
  • the concentration of oxygen components in the air in the cathode cavity gradually decreases, the nitrogen concentration gradually increases, the pressure in the cathode cavity decreases, and the air in the heat dissipation cavity gradually decreases.
  • the oxygen in the cathode cavity diffuses into the cathode cavity through the second heat insulation and ventilation partition, and the nitrogen in the cathode cavity diffuses from the cathode cavity into the heat dissipation cavity under the action of the concentration difference.
  • the reaction and the solid fuel hydrolysis process are exothermic reactions. When the temperature of the solid fuel layer or the plate-type solid oxide fuel cell exceeds the set temperature, the intake flow of the intake fan is increased;
  • the all-solid-state fuel cell When the all-solid-state fuel cell is in the shutdown process state, the external transmission current is cut off, and the intake fan keeps running. In this state, the output power of the plate-type solid oxide fuel cell is equal to the power of the intake fan. The anode water generation rate of the battery is reduced to a minimum. Correspondingly, the hydrogen production reaction of the solid fuel layer is reduced to a minimum, and the heat generated inside the all-solid fuel cell is minimized.
  • the intake fan continues to run, the temperature inside the all-solid fuel cell is reduced to a minimum. Gradually decreased until the operating current of the plate solid oxide fuel cell approached zero, and the anode of the plate solid oxide fuel cell produced no water.
  • the hydrogen production reaction of the solid fuel layer gradually stopped, and the intake fan stopped running. At this time The all-solid-state fuel cell enters a non-working state.
  • the present invention has the following beneficial effects:
  • the plate-type solid oxide fuel cell is arranged at the opening of the anode cavity, and the solid fuel in the anode cavity is prepared by hydrolysis reaction. Hydrogen diffuses to the anode of the plate-type solid oxide fuel cell through the first heat-insulating and ventilating partition.
  • the plate-type solid oxide fuel cell generates electricity
  • the gaseous water generated on the anode side in turn diffuses to the inside of the anode cavity through the first heat-insulating and ventilating partition.
  • the solid fuel in the anode cavity is driven to hydrolyze to generate hydrogen, and in the above cycle, the number of moles of water molecules generated at the anode when the plate solid oxide fuel cell generates electricity is equal to the number of moles of hydrogen supplied to the anode, and the alkali in the solid fuel layer
  • the number of moles of hydrogen generated by the hydrolysis of the metal borohydride is equal to the number of moles of the reaction water, so that the chain closed cycle of the hydrolysis product hydrogen and the power generation product water is realized in the all-solid-state fuel cell, with high energy density, long battery life and light weight.
  • Environmental protection at the same time the whole reaction is carried out in the shell, the environmental adaptability is strong, and the safety is better.
  • Fig. 2 is the assembly drawing of the present invention
  • FIG. 3a is an assembly diagram of the plate-type solid oxide fuel cell 2 and the anode cavity 3;
  • 3b is a schematic diagram of the internal structure of the anode cavity 3;
  • FIG. 4 is a positional relationship diagram of the plate-type solid oxide fuel cell 2, the anode cavity 3, the second heat insulation and ventilation partition 10, the heat dissipation pipe 11, the air preheating air duct 12, and the intake fan 13;
  • FIG. 5 is a schematic structural diagram of the heat dissipation cavity 5;
  • FIG. 6 is a schematic structural diagram of the heat pipe 11
  • FIG. 7 is a schematic view of the structure of the housing 17 .
  • 1-power generation unit 2-plate solid oxide fuel cell, 3-anode cavity, 4-cathode cavity, 5-heat dissipation cavity, 6-solid fuel layer, 7-anode collector network, 8-cathode collector network, 9 -The first heat insulation and ventilation partition, 10- the second heat insulation and ventilation partition, 11- heat pipe, 12- air preheating air duct, 13- air intake fan, 14- anode collector wire, 15- cathode collector wire, 16-heater, 17-shell, 301-bottom plate, 302-side wall plate, 303-insulation layer, 1101-intermediate pipe section, 1102-vertical pipe section, 1201-air inlet section, 1202-heat exchange section, 1701-encapsulation Box, 1702 - Encapsulation Cover, 1703 - Air Inlet, 1704 - Air Outlet, 1705 - Anode Terminal, 1706 - Cathode Terminal.
  • a layer/element when referred to as being "on" another layer/element, it can be directly on the other layer/element or intervening layers/elements may be present therebetween. element.
  • a layer/element when a layer/element is “on” another layer/element in one orientation, then when the orientation is reversed, the layer/element can be "under” the other layer/element.
  • the core of the present invention is to realize the hydrogen-water closed-loop chain chemical reaction inside the all-solid-state fuel cell, that is, on the anode side of the plate-type solid oxide fuel cell 2, the solid fuel layer 6 is generated by a hydrolysis reaction.
  • the hydrogen gas is diffused to the anode of the plate-type solid oxide fuel cell 2 through the first heat-insulating and ventilating partition 9, and the gaseous water generated on the anode side of the plate-type solid oxide fuel cell 2 when generating electricity in turn diffuses to the anode through the first heat-insulating and ventilating partition 9.
  • the solid fuel layer 6 in the driving anode cavity 3 is hydrolyzed to generate hydrogen;
  • the number of moles of water molecules generated at the anode when the plate-type solid oxide fuel cell 2 generates electricity is equal to the number of moles of hydrogen supplied to the anode, and the alkali metal borohydride in the solid fuel layer 6 is hydrolyzed to generate moles of hydrogen.
  • the number is equal to the mole number of reaction water.
  • the closed-loop chain chemical reaction all-solid-state fuel cell includes a casing 17 and a power generation unit 1.
  • the power generation unit 1 includes an anode cavity 3, a plate-type solid oxide fuel cell 2, an anode collector grid 7, and an anode current collector.
  • anode cavity 3 is a groove-shaped cavity, the opening of anode cavity 3 is sealed by plate-type solid oxide fuel cell 2, plate-type solid oxide The anode of the oxide fuel cell 2 is facing the anode cavity 3, and the anode cavity 3 is sequentially provided with a solid fuel layer 6, a first heat-insulating and ventilating partition 9 and an anode collecting grid 7 from the inside to the outside.
  • the anode of the solid oxide fuel cell 2 is in contact, the anode current collecting wire 14 is connected to the anode collecting grid 7, the cathode of the plate solid oxide fuel cell 2 is in close contact with the cathode collecting grid 8, and the cathode current collecting wire 15 is connected to the cathode collecting grid 8.
  • a second annular heat insulation and ventilation partition 10 is arranged, and the second insulation ventilation partition 10 and the anode cavity 3 divide the interior of the outer shell 17 into a heat dissipation cavity 5 and a
  • the cathode cavity 4 the plate-type solid oxide fuel cell 2 is located at the junction of the anode cavity 3 and the cathode cavity 4, and an air preheating air duct 12 is arranged in the heat dissipation cavity 5, wherein an air inlet 1703 is opened on the side wall of the casing 17,
  • the inlet of the air preheating air duct 12 is connected with the air inlet 1703, the outlet of the air preheating air duct 12 is located in the heat dissipation cavity 5, the middle of the heat dissipation pipe 11 is located in the air preheating air duct 12, and both ends of the heat dissipation pipe 11 are located in the air preheating air duct 12.
  • the heater 16 is inserted
  • the plate-type solid oxide fuel cell 2 includes an electrolyte, a cathode and an anode, wherein the electrolyte is located between the cathode and the anode, and the electrolyte is an ion conductive material.
  • the anode cavity 3 is composed of a bottom plate 301 and a side wall plate 302 , and an insulating layer 303 is provided between the solid fuel layer 6 and the bottom plate 301 and the side wall plate 302 .
  • the material of the solid fuel layer 6 is a mixture of alkaline metal borohydride, alkaline metal borohydride hydrolysis catalyst, salt crystal hydrate and water absorbing material;
  • the alkaline metals in the alkaline metal borohydrides are the metal elements represented by Group 1 or Group 2 in the periodic table, such as lithium, sodium, potassium, calcium and magnesium, etc., and the corresponding borohydrides are LiBH 4 , NaBH 4 , KBH 4 , Ca(BH 4 ) 2 and Mg(BH 4 ) 2 ;
  • Alkaline metal borohydride hydrolysis catalysts are cobalt-based catalysts, rhodium-based catalysts, nickel-based catalysts and acids, such as Co-B powder, Ni-Co catalyst, Ru/Ni foam catalyst, CoCl2 catalyst, malic acid , citric acid Wait;
  • Salt crystalline hydrates do not chemically react with alkali metal borohydrides and alkali metal borohydride hydrolysis catalysts; for example, crystalline hydrates of salts such as LiBO 2 , NaBO 2 , KBO 2 , MgCl 2 , CuSO 4 , etc.;
  • the water-absorbing material is a starch-based superabsorbent material and/or a cellulose-based superabsorbent material;
  • Starch series super absorbent materials are water absorbent materials prepared from modified starch and its derivatives, for example, starch ester grafted styrene superabsorbent materials, pullulanase hydrogel, formaldehyde modified starch grafted propylene Nitrile copolymer, epichlorohydrin modified starch grafted acrylonitrile copolymer, glycidyl ether cross-linked starch grafted acrylonitrile copolymer or a mixture of several thereof.
  • modified starch and its derivatives for example, starch ester grafted styrene superabsorbent materials, pullulanase hydrogel, formaldehyde modified starch grafted propylene Nitrile copolymer, epichlorohydrin modified starch grafted acrylonitrile copolymer, glycidyl ether cross-linked starch grafted acrylonitrile copolymer or a mixture of several thereof.
  • the radiating pipe 11 has an arcuate structure, and the radiating pipe 11 is composed of a middle pipe section 1101 and two vertical pipe sections 1102, wherein the middle pipe section 1101 is located in the air preheating air duct 12, and the middle pipe section 1101 is communicated with the two vertical pipe sections 1102.
  • the vertical pipe section 1102 is inserted into the cathode cavity 4 through the second heat insulation and ventilation partition 10, and the outer wall of the part of the vertical pipe section 1102 located in the heat dissipation cavity 5 is provided with a thermal insulation layer 303; the air preheating air duct 12 includes a communication
  • the air inlet section 1201 and the heat exchange section 1202 are connected with each other, wherein the air inlet section 1201 is communicated with the air inlet 1703 on the casing 17, the inlet fan 13 is provided at the inlet of the air inlet section 1201, and the middle pipe section 1101 is located in the heat exchange section 1202
  • the side wall of the heat exchange section 1202 is provided with a through hole matched with the vertical pipe section 1102 , wherein the vertical pipe section 1102 communicates with the intermediate pipe section 1101 through the through hole.
  • the housing 17 includes a packaging box 1701 and a packaging cover 1702 located at the opening of the packaging box 1701 , an air inlet 1703 is located on the side wall of the packaging box 1701 , and an air outlet 1704 is provided on the side wall of the packaging box 1701 .
  • An anode terminal 1705 and a cathode terminal 1706 are provided on the anode terminal 1705 , wherein the anode terminal 1705 is connected with the anode current collecting wire 14 , and the cathode terminal 1706 is connected with the cathode current collecting wire 15 .
  • the shapes of the solid fuel in the solid fuel layer 6 are flakes, blocks, cakes, granules and powders.
  • Porous dielectric structural plate made of insulating and breathable material.
  • the number of power generation units 1 is two, wherein the first power generation unit 1 is located on one side of the casing 17, the second power generation unit 1 is located on the other side of the casing 17, and the second power generation unit 1 in the two power generation units 1 is insulated.
  • a cathode cavity 4 shared by the two power generating units 1 is formed between the ventilating partition 10 and the anode cavity 3, and the heater 16 is located between the cathode collecting grids 8 in the two power generating units 1;
  • One end of the anode current collecting wire 14 is connected to the anode collecting grid 7, and the other end of the anode current collecting wire 14 is inserted into the heat dissipation chamber 5 through the first heat insulation and ventilation partition 9, the solid fuel layer 6 and the side wall of the anode cavity 3 , one end of the cathode collector wire 15 in the first power generation unit 1 is connected to the cathode collector grid 8 in the first power generation unit 1, and the other end of the cathode collector wire 15 in the first power generation unit 1 passes through the second
  • the second heat insulation and ventilation partition 10 in the second power generation unit 1 is connected to the anode current collecting wire 14 in the second power generation unit 1, and one end of the cathode current collecting wire 15 in the second power generation unit 1 is connected to the second power generation unit 1.
  • the cathode collector grid 8 in the unit 1 is connected, and the other end of the cathode collector wire 15 in the second power generation unit 1 passes through the second heat insulation and ventilation partition 10 in the first power generation unit 1 and is connected to the cathode wiring on the casing 17 Terminal 1706 is connected, and the anode collector wire 14 in the second power generating unit 1 is connected to the anode terminal 1705 on the housing 17 .
  • the working method of the closed-loop chain chemical reaction all-solid-state fuel cell of the present invention comprises the following steps:
  • the all-solid-state fuel cell When the all-solid-state fuel cell is in a non-working state, the all-solid-state fuel cell has no external power output. At this time, the internal working temperature of the all-solid-state fuel cell is consistent with the external ambient temperature.
  • the tuyere 1703 is communicated with the outside air, the interior of the heat dissipation cavity 5 is filled with air, and the air inside the heat dissipation cavity 5 diffuses into the cathode cavity 4 through the second heat insulation and ventilation partition 10, and the interior of the cathode cavity 4 is filled with air;
  • the power supply interface of the heater 16 is connected to the external power supply circuit, the heater 16 starts to work, the power supply circuit of the intake fan 13 is connected to the external power supply circuit, and the intake fan 13 Start operation, the heater 16 heats the air in the cathode cavity 4, the air temperature in the cathode cavity 4 gradually rises, and the high temperature air in the cathode cavity 4 enters the heat dissipation pipe 11 and preheats the air through the heat dissipation pipe 11
  • Air duct 12 The air in the air preheating air duct 12 is heated, and as the air temperature in the air preheating air duct 12 gradually rises, under the action of the intake fan 13, the preheated air in the air preheating air duct 12 enters the heat dissipation cavity 5, and the heat dissipation cavity
  • the air in 5 heats the solid fuel layer 6 through the wall of the anode cavity 3.
  • the high-temperature air in the cathode cavity 4 heats the solid fuel layer 6 through the anode cavity 3.
  • the temperature of the solid fuel layer 6 reaches the set point.
  • the crystalline hydrate in the solid fuel layer 6 releases water molecules, and the water molecules undergo a hydrolysis reaction with the alkali metal borohydride in the solid fuel layer 6 to generate hydrogen, which is controlled by controlling the intake flow rate of the intake fan 13.
  • the working temperature of the solid fuel layer 6 in the anode cavity 3 causes the alkaline metal borohydride to undergo a hydrolysis reaction, that is, MBH 4 +4H 2 O ⁇ MBO 2 ⁇ 2H 2 O + 4H 2 , and the hydrogen is blocked by the first heat insulation and ventilation 9 diffuses to the anode of the plate-type solid oxide fuel cell 2, when the temperature of the plate-type solid oxide fuel cell 2 reaches its working temperature, the heater 16 stops working, and the all-solid-state fuel cell enters the working state;
  • the power supply circuit of the intake fan 13 is connected to the plate-type solid oxide fuel cell 2
  • the hydrogen on the anode side of the plate-type solid oxide fuel cell 2 loses electrons and becomes hydrogen ions, and the lost electrons
  • the cathode of the plate-type solid oxide fuel cell 2 through an external circuit
  • the oxygen in the air on the cathode side of the plate-type solid oxide fuel cell 2 obtains electrons and becomes oxygen ions, and the oxygen ions pass through the electrolyte layer of the plate-type solid oxide fuel cell 2 to reach the plate-type solid oxide fuel cell 2.
  • the anode of the oxide fuel cell 2 combines with hydrogen ions to generate water.
  • the plate-type solid oxide fuel cell 2 outputs electrical energy to the outside.
  • the number of moles of hydrogen in the electrochemical reaction of oxygen is equal, and the water molecules of the product of the electrochemical reaction of hydrogen and oxygen diffuse into the solid fuel layer 6 through the first heat insulation and ventilation partition 9, and the anode cavity is controlled by controlling the intake flow of the intake fan 13. 3
  • the working temperature of the solid fuel layer 6 in the solid fuel layer 6 causes the alkali metal borohydride in the solid fuel layer 6 to undergo a hydrolysis reaction, that is, MBH 4 +4H 2 O ⁇ MBO 2 ⁇ 2H 2 O + 4H 2 , in which the solid fuel is involved in the hydrolysis reaction.
  • the number of water molecules in the alkali metal borohydride hydrolysis reaction in the layer 6 is equal to the number of hydrogen produced by the hydrolysis reaction, and the generated hydrogen diffuses to the anode of the plate solid oxide fuel cell 2 through the first heat-insulating and ventilating partition 9 to participate in the
  • the plate-type solid oxide fuel cell 2 generates electricity to generate water, so that water and hydrogen form a chain-type closed material cycle.
  • the oxygen component concentration in the air in the cathode cavity 4 gradually decreases, the nitrogen concentration gradually increases, the pressure in the cathode cavity 4 decreases, and the oxygen in the air in the heat dissipation cavity 5 is in the pressure difference and the gas concentration difference.
  • the output power of the plate-type solid oxide fuel cell 2 is equal to the power of the intake fan 13.
  • the anode water generation rate of the oxide fuel cell 2 is reduced to a minimum, correspondingly, the hydrogen production reaction of the solid fuel layer 6 is reduced to a minimum, and the heat generated inside the all-solid fuel cell is minimum.
  • the temperature inside the solid-state fuel cell gradually decreases until the operating current of the plate-type solid oxide fuel cell 2 approaches zero, and the anode of the plate-type solid oxide fuel cell 2 generates no water.
  • the hydrogen production reaction of the solid-state fuel layer 6 gradually stops. , the intake fan 13 stops running, and the all-solid-state fuel cell enters a non-working state at this time.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种闭环链式化学反应的全固态燃料电池及其工作方法,包括外壳及发电单元,发电单元包括阳极腔、板式固体氧化物燃料电池、阳极集电网、阳极集电导线、阴极集电网、阴极集电导线、散热管及加热器,该电池及其工作方法具有安全性好、能量密度高、环境适应性强、续航时间长及轻便环保的特点。

Description

一种闭环链式化学反应的全固态燃料电池及其工作方法 【技术领域】
本发明属于电池技术领域,涉及一种闭环链式化学反应的全固态燃料电池及其工作方法。
【背景技术】
随着科技的进步,各类电气电子设备的应用逐渐扩展到人类生活的方方面面,当前电气电子设备普遍向智能化、网络化、集成化、模块化方向发展,市场上对高品质电源的需求量迅速增加,然而,当前主流的锂离子电池越来越难以满足电气电子设备的需求,主要表现在:
(1)目前,锂离子电池单体能量密度很少达到或超过300Wh/kg,在电池成组后,能量密度会进一步下降,更为不利的是,受正极材料的限制,当前可商业化生产的锂离子电池的能量密度已接近其理论上限,如无法在正极材料体系实现变革,锂离子电池的能量密度将遭遇瓶颈;
(2)锂离子电池的性能受环境温度影响很大,温度过高或过低都会对锂离子电池产生不可逆损伤,并显著提高锂离子电池的安全隐患。
综上所述,当前主流的锂离子电池在能量密度、高低温性能方面越来越难以满足不断增长的设备能耗和对续航时间的需求,更无法满足在高温和低温环境下的用电需求。市场急需一种安全性好、能量密度高、环境适应性强、续航时间长、轻便环保的电源装置。
【发明内容】
本发明的目的在于克服上述现有技术的缺点,提供了一种闭环链式化学反应 的全固态燃料电池及其工作方法,该电池及其工作方法具有安全性好、能量密度高、环境适应性强、续航时间长及轻便环保的特点。
为达到上述目的,本发明采用以下技术方案予以实现:
本发明所述的闭环链式化学反应的全固态燃料电池包括外壳及发电单元,发电单元包括阳极腔、板式固体氧化物燃料电池、阳极集电网、阳极集电导线、阴极集电网、阴极集电导线、散热管及加热器;
阳极腔为凹槽形腔体,阳极腔的开口处通过板式固体氧化物燃料电池密封,板式固体氧化物燃料电池的阳极正对阳极腔,阳极腔内由内到外依次设置有固态燃料层、第一隔热透气隔断及阳极集电网,其中,阳极集电网与板式固体氧化物燃料电池的阳极相接触,阳极集电导线与阳极集电网相连接,板式固体氧化物燃料电池的阴极紧贴阴极集电网,阴极集电导线与阴极集电网相连接;
阳极腔的侧壁与外壳的内壁之间设置有环形的第二隔热透气隔断,第二隔热透气隔断及阳极腔将外壳的内部分隔为散热腔及阴极腔,散热腔内设置有空气预热风道,其中,外壳的侧壁上开设有进风口,空气预热风道的入口与进风口相连通,空气预热风道的出口位于散热腔内,散热管的中部位于空气预热风道内,散热管的两端均穿过第二隔热透气隔断插入于阴极腔内,加热器位于阴极腔内。
板式固体氧化物燃料电池包括电解质、阴极及阳极,其中,电解质位于阴极与阳极之间,电解质为离子导电材料。
阳极腔由底板及侧壁板构成,固态燃料层与底板与侧壁板之间设置有保温层。
固态燃料层的材质为碱性金属硼氢化物、碱性金属硼氢化物水解催化剂、盐结晶水合物及吸水材料的混合物;
碱性金属硼氢化物中的碱性金属为元素周期表中Group 1或Group 2所代表 的金属元素;
碱性金属硼氢化物水解催化剂为钴基催化剂、铑基催化剂、镍基催化剂及酸;
盐结晶水合物与碱性金属硼氢化物及碱性金属硼氢化物水解催化剂不发生化学反应;
吸水材料为淀粉系高吸水性材料和/或纤维素系高吸水性材料;
淀粉系列高吸水性材料为由改性淀粉及其衍生物制备的吸水性材料。
散热管呈弓形结构,散热管由中间管段及两个竖直管段组成,其中,中间管段位于空气预热风道内,中间管段与两个竖直管段相连通,竖直管段穿过第二隔热透气隔断插入于阴极腔内,竖直管段上位于散热腔内的部分的外壁上设置有保温层;
空气预热风道包括相连通的进风段及换热段,其中,进风段与外壳上的进风口相连通,进风段的入口处设置有进气风扇,中间管段位于换热段内,换热段的侧壁上设置有与竖直管段相配合的通孔,其中,竖直管段穿过所述通孔与中间管段相连通。
外壳包括封装盒以及位于封装盒开口位置处的封装盖,进风口位于封装盒的侧壁上,封装盒的侧壁上设置有出风口,封装盒的侧壁上设置有阳极接线端及阴极接线端,其中,阳极接线端与阳极集电导线相连接,阴极接线端与阴极集电导线相连接。
固态燃料层中固态燃料的形状为片状、块状、饼状、颗粒状和粉末状;
第一隔热透气隔断及第二隔热透气隔断均为由绝缘透气材料制成的多孔介质结构板材。
发电单元的数目为两个,其中,第一个发电单元位于外壳的一侧,第二个发 电单元位于外壳的另一侧,且两个发电单元中的第二隔热透气隔断及阳极腔之间形成两个发电单元共有的阴极腔,加热器位于两个发电单元中的阴极集电网之间;
阳极集电导线的一端与阳极集电网相连接,阳极集电导线的另一端穿过第一隔热透气隔断、固态燃料层及阳极腔的侧壁插入于散热腔内,第一个发电单元中阴极集电导线的一端与第一个发电单元中的阴极集电网相连接,第一个发电单元中阴极集电导线的另一端穿过第二个发电单元中的第二隔热透气隔断与第二个发电单元中的阳极集电导线相连接,第二个发电单元中的阴极集电导线的一端与第二个发电单元中的阴极集电网相连接,第二个发电单元中阴极集电导线的另一端穿过第一个发电单元中的第二隔热透气隔断与外壳上的阴极接线端相连接,第二个发电单元中的阳极集电导线与外壳上的阳极接线端相连接。
一种闭环链式化学反应的全固态燃料电池的工作方法包括以下步骤:
当全固态燃料电池为非工作状态时,全固态燃料电池对外无电能输出,此时全固态燃料电池内部工作温度与外部环境温度一致,其中,由于散热腔通过空气预热风道及进风口与外部空气连通,散热腔内部充满空气,散热腔内部的空气经第二隔热透气隔断扩散进入阴极腔中,阴极腔内部充满空气;
当全固态燃料电池由非工作状态转换为启动过程状态时,加热器的供电接口与外部供电电路连通,加热器开始工作,进气风扇的供电电路与外部供电电路连通,进气风扇启动运行,加热器对阴极腔内的空气加热,阴极腔内的空气温度逐渐上升,阴极腔内的高温空气进入散热管中并通过散热管对空气预热风道中的空气进行加热,随着空气预热风道中的空气温度逐渐上升,在进气风扇的作用下,空气预热风道中预热后的空气进入散热腔内,散热腔内的空气通过阳极腔的壁面对固态燃料层进行加热,与此同时,阴极腔内的高温空气通过阳极腔对固态燃料 层进行加热,当固态燃料层的温度达到设定温度时,固态燃料层中的结晶水合物释放水分子,水分子与固态燃料层中的碱性金属硼氢化物发生水解反应产生氢气,通过控制进气风扇的进气流量来控制阳极腔内固态燃料层的工作温度,使碱性金属硼氢化物发生水解反应,氢气经第一隔热透气隔断扩散至板式固体氧化物燃料电池的阳极,当板式固体氧化物燃料电池的温度达到其工作温度时,加热器停止工作,全固态燃料电池进入工作状态;
当全固态燃料电池处于工作状态条件下,进气风扇的供电线路与板式固体氧化物燃料电池接通,板式固体氧化物燃料电池阳极侧的氢气失去电子变为氢离子,失去的电子通过外部电路到达板式固体氧化物燃料电池的阴极,板式固体氧化物燃料电池阴极侧空气中的氧获得电子变成氧离子,氧离子通过板式固体氧化物燃料电池的电解质层到达板式固体氧化物燃料电池的阳极与氢离子结合生成水,在此过程中,板式固体氧化物燃料电池对外输出电能,其中,板式固体氧化物燃料电池阳极生成的水分子的摩尔数与参与氢氧电化学反应的氢气摩尔数相等,氢氧电化学反应的生成物水分子经第一隔热透气隔断扩散至固态燃料层中,通过控制进气风扇的进气流量来控制阳极腔内固态燃料层的工作温度,使固态燃料层中的碱性金属硼氢化物发生水解反应,其中,参与固态燃料层中碱性金属硼氢化物水解反应的水分子数量与水解反应生成物氢气的数量相等,生成的氢气经第一隔热透气隔断扩散至板式固体氧化物燃料电池的阳极,以参与板式固体氧化物燃料电池发电生成水,使得水和氢气形成链式闭合的物质循环,在氢-水链式闭合物质循环过程中,板式固体氧化物燃料电池对外输出电能,在板式固体氧化物燃料电池2发电过程中,阴极腔内空气中的氧气组分浓度逐渐下降,氮气浓度逐渐上升,阴极腔内的压力下降,散热腔内空气中的氧气在压差及气体浓度差作用下通过第 二隔热透气隔断扩散进入阴极腔,阴极腔中的氮气在浓度差作用下由阴极腔扩散进入散热腔,板式固体氧化物燃料电池的电化学反应及固态燃料水解过程为放热反应,当固态燃料层或板式固体氧化物燃料电池的温度超过设定温度时,增大进气风扇的进气流量;
当全固态燃料电池处于停机过程状态时,切断对外输电电流,进气风扇保持运行状态,在此状态下,板式固体氧化物燃料电池的输出功率等于进气风扇的功率,在板式固体氧化物燃料电池的阳极水生成速率下降到最小,相应的,固态燃料层的产氢反应下降到最小,全固态燃料电池内部生成热量最小,在进气风扇持续运行的情况下,全固态燃料电池内部的温度逐渐下降,直至板式固体氧化物燃料电池的工作电流趋近零,板式固体氧化物燃料电池的阳极无水生成,相应的,固态燃料层的产氢反应逐渐停止,进气风扇停止运行,此时全固态燃料电池进入非工作状态。
与现有技术相比,本发明具有以下有益效果:
本发明所述的闭环链式化学反应的全固态燃料电池及其工作方法在具体操作时,板式固体氧化物燃料电池设置于阳极腔的开口处,阳极腔内的固态燃料通过水解反应制取的氢气经第一隔热透气隔断扩散至板式固体氧化物燃料电池的阳极处,板式固体氧化物燃料电池发电时阳极侧产生的气态水反过来经第一隔热透气隔断扩散至阳极腔内部,以驱动阳极腔内的固态燃料水解产生氢气,且在上述循环中,板式固体氧化物燃料电池发电时在阳极生成的水分子的摩尔数与供应阳极的氢气的摩尔数相等,固态燃料层中的碱性金属硼氢化物水解生成氢气的摩尔数与反应水的摩尔数相等,从而在全固态燃料电池内部实现水解产物氢气和发电产物水的链式闭合循环,能量密度较高,续航时间长及轻便环保,同时整个反 应在外壳内进行,环境适应性较强,且安全性较好。
【附图说明】
图1为本发明总体结构的截面图;
图2为本发明的组装图;
图3a为板式固体氧化物燃料电池2与阳极腔3的组装图;
图3b为阳极腔3的内部结构示意图;
图4为板式固体氧化物燃料电池2、阳极腔3、第二隔热透气隔断10、散热管11、空气预热风道12、进气风扇13的位置关系图;
图5为散热腔5的结构示意图;
图6为散热管11的结构示意图;
图7为外壳17的结构示意图。
其中,1-发电单元,2-板式固体氧化物燃料电池,3-阳极腔,4-阴极腔,5-散热腔,6-固态燃料层,7-阳极集电网,8-阴极集电网,9-第一隔热透气隔断,10-第二隔热透气隔断,11-散热管,12-空气预热风道,13-进气风扇,14-阳极集电导线,15-阴极集电导线,16-加热器,17-外壳,301-底板,302-侧壁板,303-保温层,1101-中间管段,1102-竖直管段,1201-进风段,1202-换热段,1701-封装盒,1702-封装盖,1703-进风口,1704-出风口,1705-阳极接线端,1706-阴极接线端。
【具体实施方式】
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,不是全部的实施例,而并非要限制本发 明公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要的混淆本发明公开的概念。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
在附图中示出了根据本发明公开实施例的各种结构示意图。这些图并非是按比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。
本发明公开的上下文中,当将一层/元件称作位于另一层/元件“上”时,该层/元件可以直接位于该另一层/元件上,或者它们之间可以存在居中层/元件。另外,如果在一种朝向中一层/元件位于另一层/元件“上”,那么当调转朝向时,该层/元件可以位于该另一层/元件“下”。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面结合附图对本发明做进一步详细描述:
参见图1至图7,本发明的核心是实现全固态燃料电池内部的氢-水闭环链式化学反应,即,在板式固体氧化物燃料电池2的阳极侧,固态燃料层6通过水解反应产生的氢气经第一隔热透气隔断9扩散至板式固体氧化物燃料电池2的阳极,板式固体氧化物燃料电池2发电时阳极侧产生的气态水反过来经第一隔热透气隔断9扩散至阳极腔3内部,驱动阳极腔3内的固态燃料层6水解产生氢气;
在上述循环中,板式固体氧化物燃料电池2发电时在阳极生成的水分子的摩尔数与供应阳极的氢气的摩尔数相等,固态燃料层6中的碱性金属硼氢化物水解生成氢气的摩尔数与反应水的摩尔数相等。如此一来,在全固态燃料电池内部实现水解产物氢气和发电产物水的链式闭合循环。
具体的,本发明所述的闭环链式化学反应的全固态燃料电池包括外壳17及发电单元1,发电单元1包括阳极腔3、板式固体氧化物燃料电池2、阳极集电网7、阳极集电导线14、阴极集电网8、阴极集电导线15、散热管11及加热器16;阳极腔3为凹槽形腔体,阳极腔3的开口处通过板式固体氧化物燃料电池2密封,板式固体氧化物燃料电池2的阳极正对阳极腔3,阳极腔3内由内到外依次设置有固态燃料层6、第一隔热透气隔断9及阳极集电网7,其中,阳极集电网7与板式固体氧化物燃料电池2的阳极相接触,阳极集电导线14与阳极集电网7相连接,板式固体氧化物燃料电池2的阴极紧贴阴极集电网8,阴极集电导线15与阴极集电网8相连接;阳极腔3的侧壁与外壳17的内壁之间设置有环形的第二隔热透气隔断10,第二隔热透气隔断10及阳极腔3将外壳17的内部分隔为散热腔5及阴极腔4,板式固体氧化物燃料电池2位于阳极腔3与阴极腔4的交界处,散热腔5内设置有空气预热风道12,其中,外壳17的侧壁上开设有进风口1703,空气预热风道12的入口与进风口1703相连通,空气预热风道12的出口 位于散热腔5内,散热管11的中部位于空气预热风道12内,散热管11的两端均穿过第二隔热透气隔断10插入于阴极腔4内,加热器16位于阴极腔4内。
板式固体氧化物燃料电池2包括电解质、阴极及阳极,其中,电解质位于阴极与阳极之间,电解质为离子导电材料。
阳极腔3由底板301及侧壁板302构成,固态燃料层6与底板301与侧壁板302之间设置有保温层303。
固态燃料层6的材质为碱性金属硼氢化物、碱性金属硼氢化物水解催化剂、盐结晶水合物及吸水材料的混合物;
碱性金属硼氢化物中的碱性金属为元素周期表中Group 1或Group 2所代表的金属元素,如锂、钠、钾、钙和镁等,对应的硼氢化物为LiBH 4、NaBH 4、KBH 4、Ca(BH 4) 2和Mg(BH 4) 2
碱性金属硼氢化物水解催化剂为钴基催化剂、铑基催化剂、镍基催化剂及酸,如Co-B粉体、Ni-Co催化剂、Ru/Ni泡沫催化剂、CoCl 2催化剂、苹果酸、柠檬酸等;
盐结晶水合物与碱性金属硼氢化物及碱性金属硼氢化物水解催化剂不发生化学反应;例如,LiBO 2、NaBO 2、KBO 2、MgCl 2、CuSO 4等盐的结晶水合物;
吸水材料为淀粉系高吸水性材料和/或纤维素系高吸水性材料;
淀粉系列高吸水性材料为由改性淀粉及其衍生物制备的吸水性材料,例如,淀粉酯接枝苯乙烯高吸水材料、支链淀粉酶制水凝胶、甲醛改性淀粉接枝丙稀腈共聚物、环氧氯丙烷改性淀粉接枝丙烯腈共聚物、缩水甘油醚交联淀粉接枝丙烯腈共聚物中的一种或其中几种的混合物。
散热管11呈弓形结构,散热管11由中间管段1101及两个竖直管段1102组 成,其中,中间管段1101位于空气预热风道12内,中间管段1101与两个竖直管段1102相连通,竖直管段1102穿过第二隔热透气隔断10插入于阴极腔4内,竖直管段1102上位于散热腔5内的部分的外壁上设置有保温层303;空气预热风道12包括相连通的进风段1201及换热段1202,其中,进风段1201与外壳17上的进风口1703相连通,进风段1201的入口处设置有进气风扇13,中间管段1101位于换热段1202内,换热段1202的侧壁上设置有与竖直管段1102相配合的通孔,其中,竖直管段1102穿过所述通孔与中间管段1101相连通。
外壳17包括封装盒1701以及位于封装盒1701开口位置处的封装盖1702,进风口1703位于封装盒1701的侧壁上,封装盒1701的侧壁上设置有出风口1704,封装盒1701的侧壁上设置有阳极接线端1705及阴极接线端1706,其中,阳极接线端1705与阳极集电导线14相连接,阴极接线端1706与阴极集电导线15相连接。
固态燃料层6中固态燃料的形状为片状、块状、饼状、颗粒状和粉末状;第一隔热透气隔断9及第二隔热透气隔断10均为由低导热系数、耐高温的绝缘透气材料制成的多孔介质结构板材。
发电单元1的数目为两个,其中,第一个发电单元1位于外壳17的一侧,第二个发电单元1位于外壳17的另一侧,且两个发电单元1中的第二隔热透气隔断10及阳极腔3之间形成两个发电单元1共有的阴极腔4,加热器16位于两个发电单元1中的阴极集电网8之间;
阳极集电导线14的一端与阳极集电网7相连接,阳极集电导线14的另一端穿过第一隔热透气隔断9、固态燃料层6及阳极腔3的侧壁插入于散热腔5内,第一个发电单元1中阴极集电导线15的一端与第一个发电单元1中的阴极集电 网8相连接,第一个发电单元1中阴极集电导线15的另一端穿过第二个发电单元1中的第二隔热透气隔断10与第二个发电单元1中的阳极集电导线14相连接,第二个发电单元1中的阴极集电导线15的一端与第二个发电单元1中的阴极集电网8相连接,第二个发电单元1中阴极集电导线15的另一端穿过第一个发电单元1中的第二隔热透气隔断10与外壳17上的阴极接线端1706相连接,第二个发电单元1中的阳极集电导线14与外壳17上的阳极接线端1705相连接。
本发明所述闭环链式化学反应的全固态燃料电池的工作方法包括以下步骤:
当全固态燃料电池为非工作状态时,全固态燃料电池对外无电能输出,此时全固态燃料电池内部工作温度与外部环境温度一致,其中,由于散热腔5通过空气预热风道12及进风口1703与外部空气连通,散热腔5内部充满空气,散热腔5内部的空气经第二隔热透气隔断10扩散进入阴极腔4中,阴极腔4内部充满空气;
当全固态燃料电池由非工作状态转换为启动过程状态时,加热器16的供电接口与外部供电电路连通,加热器16开始工作,进气风扇13的供电电路与外部供电电路连通,进气风扇13启动运行,加热器16对阴极腔4内的空气加热,阴极腔4内的空气温度逐渐上升,阴极腔4内的高温空气进入散热管11中并通过散热管11对空气预热风道12中的空气进行加热,随着空气预热风道12中的空气温度逐渐上升,在进气风扇13的作用下,空气预热风道12中预热后的空气进入散热腔5内,散热腔5内的空气通过阳极腔3的壁面对固态燃料层6进行加热,与此同时,阴极腔4内的高温空气通过阳极腔3对固态燃料层6进行加热,当固态燃料层6的温度达到设定温度时,固态燃料层6中的结晶水合物释放水分子,水分子与固态燃料层6中的碱性金属硼氢化物发生水解反应产生氢气,通过控制 进气风扇13的进气流量来控制阳极腔3内固态燃料层6的工作温度,使碱性金属硼氢化物发生水解反应,即,MBH 4+4H 2O→MBO 2·2H 2O+4H 2,氢气经第一隔热透气隔断9扩散至板式固体氧化物燃料电池2的阳极,当板式固体氧化物燃料电池2的温度达到其工作温度时,加热器16停止工作,全固态燃料电池进入工作状态;
当全固态燃料电池处于工作状态条件下,进气风扇13的供电线路与板式固体氧化物燃料电池2接通,板式固体氧化物燃料电池2阳极侧的氢气失去电子变为氢离子,失去的电子通过外部电路到达板式固体氧化物燃料电池2的阴极,板式固体氧化物燃料电池2阴极侧空气中的氧获得电子变成氧离子,氧离子通过板式固体氧化物燃料电池2的电解质层到达板式固体氧化物燃料电池2的阳极与氢离子结合生成水,在此过程中,板式固体氧化物燃料电池2对外输出电能,其中,板式固体氧化物燃料电池2阳极生成的水分子的摩尔数与参与氢氧电化学反应的氢气摩尔数相等,氢氧电化学反应的生成物水分子经第一隔热透气隔断9扩散至固态燃料层6中,通过控制进气风扇13的进气流量来控制阳极腔3内固态燃料层6的工作温度,使固态燃料层6中的碱性金属硼氢化物发生水解反应,即MBH 4+4H 2O→MBO 2·2H 2O+4H 2,其中,参与固态燃料层6中碱性金属硼氢化物水解反应的水分子数量与水解反应生成物氢气的数量相等,生成的氢气经第一隔热透气隔断9扩散至板式固体氧化物燃料电池2的阳极,以参与板式固体氧化物燃料电池2发电生成水,使得水和氢气形成链式闭合的物质循环,在氢-水链式闭合物质循环过程中,板式固体氧化物燃料电池2对外输出电能,在板式固体氧化物燃料电池2发电过程中,阴极腔4内空气中的氧气组分浓度逐渐下降,氮气浓度逐渐上升,阴极腔4内的压力下降,散热腔5内空气中的氧气在压差及气体 浓度差作用下通过第二隔热透气隔断10扩散进入阴极腔4,阴极腔4中的氮气在浓度差作用下由阴极腔4扩散进入散热腔5,在板式固体氧化物燃料电池2工作过程中,通过控制电流来控制电池对外输出电能的大小,在调节电流过程中,板式固体氧化物燃料电池阳极侧氢氧化学反应速率相应增大或减小,生成水速率相应增大或减少,则固态燃料层6的水解产氢反应相应增大或减少,板式固体氧化物燃料电池2的电化学反应及固态燃料水解过程为放热反应,当固态燃料层6或板式固体氧化物燃料电池2的温度超过设定温度时,增大进气风扇13的进气流量;
当全固态燃料电池处于停机过程状态时,切断对外输电电流,进气风扇13保持运行状态,在此状态下,板式固体氧化物燃料电池2的输出功率等于进气风扇13的功率,在板式固体氧化物燃料电池2的阳极水生成速率下降到最小,相应的,固态燃料层6的产氢反应下降到最小,全固态燃料电池内部生成热量最小,在进气风扇13持续运行的情况下,全固态燃料电池内部的温度逐渐下降,直至板式固体氧化物燃料电池2的工作电流趋近零,板式固体氧化物燃料电池2的阳极无水生成,相应的,固态燃料层6的产氢反应逐渐停止,进气风扇13停止运行,此时全固态燃料电池进入非工作状态。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (10)

  1. 一种闭环链式化学反应的全固态燃料电池,其特征在于,包括外壳(17)及位于外壳(17)内的发电单元(1),发电单元(1)包括阳极腔(3)、板式固体氧化物燃料电池(2)、阳极集电网(7)、阳极集电导线(14)、阴极集电网(8)、阴极集电导线(15)、散热管(11)及加热器(16);
    阳极腔(3)为凹槽形腔体,阳极腔(3)的开口处通过板式固体氧化物燃料电池(2)密封,板式固体氧化物燃料电池(2)的阳极正对阳极腔(3),阳极腔(3)内由内到外依次设置有固态燃料层(6)、第一隔热透气隔断(9)及阳极集电网(7),其中,阳极集电网(7)与板式固体氧化物燃料电池(2)的阳极相接触,阳极集电导线(14)与阳极集电网(7)相连接,板式固体氧化物燃料电池(2)的阴极紧贴阴极集电网(8),阴极集电导线(15)与阴极集电网(8)相连接;
    阳极腔(3)的侧壁与外壳(17)的内壁之间设置有环形的第二隔热透气隔断(10),第二隔热透气隔断(10)及阳极腔(3)将外壳(17)的内部分隔为散热腔(5)及阴极腔(4),板式固体氧化物燃料电池(2)位于阳极腔(3)与阴极腔(4)的交界处,散热腔(5)内设置有空气预热风道(12),其中,外壳(17)的侧壁上开设有进风口(1703),空气预热风道(12)的入口与进风口(1703)相连通,空气预热风道(12)的出口位于散热腔(5)内,散热管(11)的中部位于空气预热风道(12)内,散热管(11)的两端均穿过第二隔热透气隔断(10)插入于阴极腔(4)内,加热器(16)位于阴极腔(4)内。
  2. 根据权利要求1所述的闭环链式化学反应的全固态燃料电池,其特征在于,板式固体氧化物燃料电池(2)包括电解质、阴极及阳极,其中,电解质位于阴极与阳极之间,电解质为离子导电材料。
  3. 根据权利要求1所述的闭环链式化学反应的全固态燃料电池,其特征在于,阳极腔(3)由底板(301)及侧壁板(302)构成,固态燃料层(6)与底板(301)与侧壁板(302)之间设置有保温层(303)。
  4. 根据权利要求1所述的闭环链式化学反应的全固态燃料电池,其特征在于,固态燃料层(6)的材质为碱性金属硼氢化物、碱性金属硼氢化物水解催化剂、盐结晶水合物及吸水材料的混合物;
    碱性金属硼氢化物中的碱性金属为元素周期表中Group 1或Group 2所代表的金属元素;
    碱性金属硼氢化物水解催化剂为钴基催化剂、铑基催化剂、镍基催化剂及酸;
    盐结晶水合物与碱性金属硼氢化物及碱性金属硼氢化物水解催化剂不发生化学反应;
    吸水材料为淀粉系高吸水性材料和/或纤维素系高吸水性材料;
    淀粉系列高吸水性材料为由改性淀粉及其衍生物制备的吸水性材料。
  5. 根据权利要求1所述的闭环链式化学反应的全固态燃料电池,其特征在于,散热管(11)呈弓形结构,散热管(11)由中间管段(1101)及两个竖直管段(1102)组成,其中,中间管段(1101)位于空气预热风道(12)内,中间管段(1101)与两个竖直管段(1102)相连通,竖直管段(1102)穿过第二隔热透气隔断(10)插入于阴极腔(4)内,竖直管段(1102)上位于散热腔(5)内的部分的外壁上设置有保温层(303);
    空气预热风道(12)包括相连通的进风段(1201)及换热段(1202),其中,进风段(1201)与外壳(17)上的进风口(1703)相连通,进风段(1201)的入口处设置有进气风扇(13),中间管段(1101)位于换热段(1202)内,换热段 (1202)的侧壁上设置有与竖直管段(1102)相配合的通孔,其中,竖直管段(1102)穿过所述通孔与中间管段(1101)相连通。
  6. 根据权利要求1所述的闭环链式化学反应的全固态燃料电池,其特征在于,外壳(17)包括封装盒(1701)以及位于封装盒(1701)开口位置处的封装盖(1702),进风口(1703)位于封装盒(1701)的侧壁上,封装盒(1701)的侧壁上设置有出风口(1704),封装盒(1701)的侧壁上设置有阳极接线端(1705)及阴极接线端(1706),其中,阳极接线端(1705)与阳极集电导线(14)相连接,阴极接线端(1706)与阴极集电导线(15)相连接。
  7. 根据权利要求1所述的闭环链式化学反应的全固态燃料电池,其特征在于,固态燃料层(6)中固态燃料的形状为片状、块状、饼状、颗粒状和粉末状;
    第一隔热透气隔断(9)及第二隔热透气隔断(10)均为由绝缘透气材料制成的多孔介质结构板材。
  8. 根据权利要求1所述的闭环链式化学反应的全固态燃料电池,其特征在于,发电单元(1)的数目为两个,其中,第一个发电单元(1)位于外壳(17)的一侧,第二个发电单元(1)位于外壳(17)的另一侧,且两个发电单元(1)中的第二隔热透气隔断(10)及阳极腔(3)之间形成两个发电单元(1)共有的阴极腔(4),加热器(16)位于两个发电单元(1)中的阴极集电网(8)之间。
  9. 根据权利要求8所述的闭环链式化学反应的全固态燃料电池,其特征在于,阳极集电导线(14)的一端与阳极集电网(7)相连接,阳极集电导线(14)的另一端穿过第一隔热透气隔断(9)、固态燃料层(6)及阳极腔(3)的侧壁插入于散热腔(5)内,第一个发电单元(1)中阴极集电导线(15)的一端与第一个发电单元(1)中的阴极集电网(8)相连接,第一个发电单元(1)中阴极集 电导线(15)的另一端穿过第二个发电单元(1)中的第二隔热透气隔断(10)与第二个发电单元(1)中的阳极集电导线(14)相连接,第二个发电单元(1)中的阴极集电导线(15)的一端与第二个发电单元(1)中的阴极集电网(8)相连接,第二个发电单元(1)中阴极集电导线(15)的另一端穿过第一个发电单元(1)中的第二隔热透气隔断(10)与外壳(17)上的阴极接线端(1706)相连接,第一个发电单元(1)中的阳极集电导线(14)与外壳(17)上的阳极接线端(1705)相连接。
  10. 一种权利要求1所述闭环链式化学反应的全固态燃料电池的工作方法,其特征在于,包括以下步骤:
    当全固态燃料电池为非工作状态时,全固态燃料电池对外无电能输出,此时全固态燃料电池内部工作温度与外部环境温度一致,其中,由于散热腔(5)通过空气预热风道(12)及进风口(1703)与外部空气连通,散热腔(5)内部充满空气,散热腔(5)内部的空气经第二隔热透气隔断(10)扩散进入阴极腔(4)中,阴极腔(4)内部充满空气;
    当全固态燃料电池由非工作状态转换为启动过程状态时,加热器(16)的供电接口与外部供电电路连通,加热器(16)开始工作,进气风扇(13)的供电电路与外部供电电路连通,进气风扇(13)启动运行,加热器(16)对阴极腔(4)内的空气加热,阴极腔(4)内的空气温度逐渐上升,阴极腔(4)内的高温空气进入散热管(11)中并通过散热管(11)对空气预热风道(12)中的空气进行加热,随着空气预热风道(12)中的空气温度逐渐上升,在进气风扇(13)的作用下,空气预热风道(12)中预热后的空气进入散热腔(5)内,散热腔(5)内的空气通过阳极腔(3)的壁面对固态燃料层(6)进行加热,与此同时,阴极腔(4) 内的高温空气通过阳极腔(3)对固态燃料层(6)进行加热,当固态燃料层(6)的温度达到设定温度时,固态燃料层(6)中的结晶水合物释放水分子,水分子与固态燃料层(6)中的碱性金属硼氢化物发生水解反应产生氢气,通过控制进气风扇(13)的进气流量来控制阳极腔(3)内固态燃料层(6)的工作温度,使碱性金属硼氢化物发生水解反应,氢气经第一隔热透气隔断(9)扩散至板式固体氧化物燃料电池(2)的阳极,当板式固体氧化物燃料电池(2)的温度达到其工作温度时,加热器(16)停止工作,全固态燃料电池进入工作状态;
    当全固态燃料电池处于工作状态条件下,进气风扇(13)的供电线路与板式固体氧化物燃料电池(2)接通,板式固体氧化物燃料电池(2)阳极侧的氢气失去电子变为氢离子,失去的电子通过外部电路到达板式固体氧化物燃料电池(2)的阴极,板式固体氧化物燃料电池(2)阴极侧空气中的氧获得电子变成氧离子,氧离子通过板式固体氧化物燃料电池(2)的电解质层到达板式固体氧化物燃料电池(2)的阳极与氢离子结合生成水,在此过程中,板式固体氧化物燃料电池(2)对外输出电能,其中,板式固体氧化物燃料电池(2)阳极生成的水分子的摩尔数与参与氢氧电化学反应的氢气摩尔数相等,氢氧电化学反应的生成物水分子经第一隔热透气隔断(9)扩散至固态燃料层(6)中,通过控制进气风扇(13)的进气流量来控制阳极腔(3)内固态燃料层(6)的工作温度,使固态燃料层(6)中的碱性金属硼氢化物发生水解反应,其中,参与固态燃料层(6)中碱性金属硼氢化物水解反应的水分子数量与水解反应生成物氢气的数量相等,生成的氢气经第一隔热透气隔断(9)扩散至板式固体氧化物燃料电池(2)的阳极,以参与板式固体氧化物燃料电池(2)发电生成水,使得水和氢气形成链式闭合的物质循环,在氢-水链式闭合物质循环过程中,板式固体氧化物燃料电池(2)对外输 出电能,在板式固体氧化物燃料电池(2)发电过程中,阴极腔(4)内空气中的氧气组分浓度逐渐下降,氮气浓度逐渐上升,阴极腔(4)内的压力下降,散热腔(5)内空气中的氧气在压差及气体浓度差作用下通过第二隔热透气隔断(10)扩散进入阴极腔(4),阴极腔(4)中的氮气在浓度差作用下由阴极腔(4)扩散进入散热腔(5),板式固体氧化物燃料电池(2)的电化学反应及固态燃料水解过程为放热反应,当固态燃料层(6)或板式固体氧化物燃料电池(2)的温度超过设定温度时,增大进气风扇(13)的进气流量;
    当全固态燃料电池处于停机过程状态时,切断对外输电电流,进气风扇(13)保持运行状态,在此状态下,板式固体氧化物燃料电池(2)的输出功率等于进气风扇(13)的功率,在板式固体氧化物燃料电池(2)的阳极水生成速率下降到最小,相应的,固态燃料层(6)的产氢反应下降到最小,全固态燃料电池内部生成热量最小,在进气风扇(13)持续运行的情况下,全固态燃料电池内部的温度逐渐下降,直至板式固体氧化物燃料电池(2)的工作电流趋近零,板式固体氧化物燃料电池(2)的阳极无水生成,相应的,固态燃料层(6)的产氢反应逐渐停止,进气风扇(13)停止运行,此时全固态燃料电池进入非工作状态。
PCT/CN2020/118098 2020-08-27 2020-09-27 一种闭环链式化学反应的全固态燃料电池及其工作方法 WO2022041378A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010880912.8A CN112186211B (zh) 2020-08-27 2020-08-27 一种闭环链式化学反应的全固态燃料电池及其工作方法
CN202010880912.8 2020-08-27

Publications (1)

Publication Number Publication Date
WO2022041378A1 true WO2022041378A1 (zh) 2022-03-03

Family

ID=73924157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118098 WO2022041378A1 (zh) 2020-08-27 2020-09-27 一种闭环链式化学反应的全固态燃料电池及其工作方法

Country Status (2)

Country Link
CN (1) CN112186211B (zh)
WO (1) WO2022041378A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103730671A (zh) * 2014-01-10 2014-04-16 湖南科技大学 一种无膜的直接硼氢化钠燃料电池及其制造方法
JP2017114708A (ja) * 2015-12-22 2017-06-29 株式会社 ハイドリック・パワーシステムズ 水素発生装置、水素発生システム及び燃料電池システム
CN107093756A (zh) * 2017-05-05 2017-08-25 浙江高成绿能科技有限公司 一种基于化学制氢的燃料电池系统及其控制方法
US20180339759A1 (en) * 2017-05-26 2018-11-29 Lynntech, Inc. Undersea Vehicle and Method for Operating the Same
CN109286032A (zh) * 2018-07-23 2019-01-29 西安交通大学 氢氧燃料电池与固态碱性金属硼氢化物一体化制氢及发电系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6864010B1 (en) * 2002-02-06 2005-03-08 Angstrom Power Apparatus of high power density fuel cell layer with micro for connecting to an external load
CN101049907B (zh) * 2007-05-15 2010-10-27 北京科技大学 一种化学硼氢化物水解制氢的即时自控供氢的方法及装置
CN101249947A (zh) * 2007-06-19 2008-08-27 汉能科技有限公司 一种用于燃料电池的氢气的制备方法
CN103367782B (zh) * 2013-07-04 2015-07-01 西安交通大学 高电压离子交换膜燃料电池
CN208939084U (zh) * 2018-05-31 2019-06-04 吉林大学 一种基于水自循环的应用在线供氢的燃料电池系统
CN110556555A (zh) * 2018-05-31 2019-12-10 吉林大学 一种基于水自循环的应用在线供氢的燃料电池系统
CN109888321B (zh) * 2019-01-21 2020-12-11 西安交通大学 燃料梯级利用物料分离传输燃料电池及其工作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103730671A (zh) * 2014-01-10 2014-04-16 湖南科技大学 一种无膜的直接硼氢化钠燃料电池及其制造方法
JP2017114708A (ja) * 2015-12-22 2017-06-29 株式会社 ハイドリック・パワーシステムズ 水素発生装置、水素発生システム及び燃料電池システム
CN107093756A (zh) * 2017-05-05 2017-08-25 浙江高成绿能科技有限公司 一种基于化学制氢的燃料电池系统及其控制方法
US20180339759A1 (en) * 2017-05-26 2018-11-29 Lynntech, Inc. Undersea Vehicle and Method for Operating the Same
CN109286032A (zh) * 2018-07-23 2019-01-29 西安交通大学 氢氧燃料电池与固态碱性金属硼氢化物一体化制氢及发电系统

Also Published As

Publication number Publication date
CN112186211B (zh) 2022-02-11
CN112186211A (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
CN107611367A (zh) 一种多孔球形碳包覆磷酸钒钠复合正极材料及其制备方法
CN108039472A (zh) 一种碳包覆偏锡酸锌中空微米立方体复合材料的制备方法和应用
Rao et al. Thermal safety and thermal management of batteries
CN113104824B (zh) Se掺杂Fe2P自支撑钠离子电池负极材料的制备方法
CN113104852B (zh) 一种锂离子电池硅碳负极材料的制备方法
CN109950487A (zh) 一种锂硫电池正极材料及其制备方法
CN107069001A (zh) 一种蜂窝状硫化锌/碳复合负极材料及其制备方法
CN109461904A (zh) 一种锂硫电池正极材料的制备方法
CN101210750A (zh) 一种利用燃料电池废热驱动空调的方法
CN110627031A (zh) 一种钼掺杂磷化钴碳珊瑚片复合材料的制备方法
CN103130182B (zh) 一种提高硼氢化钠水解放氢量的方法
WO2022041378A1 (zh) 一种闭环链式化学反应的全固态燃料电池及其工作方法
CN113629234B (zh) 一种正极材料、其制备方法及其锂离子电池
CN112563625B (zh) 一种具有消氢加热功能的金属空气电池单体及系统
CN103107348B (zh) 一种sofc系统用耦合型重整反应器及发电系统
CN212011147U (zh) 一种混合高温燃料电池发电系统
CN106981653B (zh) 一种纳米级尖晶石型掺镍锰酸锂材料制备方法
CN116544448A (zh) 一种基于化学制氢的sofc电源集成装置及其控制方法
LU500737B1 (en) Preparation method of ordered mesoporous Co/CMK composite nano anode material
CN113659181B (zh) 一种高效水热管理能力的defc膜电极及其制备方法
CN203242705U (zh) 小型制氢发电设备
CN213578359U (zh) 一种降温装置、甲醇水重整制氢设备及发电设备
CN111952595B (zh) 一种基于尖端效应的无枝晶金属负极载体及其制备方法
CN211350834U (zh) 一种金属燃料电池结构
CN209822784U (zh) 一种加湿器、燃料电池和车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951046

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20951046

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/09/2023)