WO2022041355A1 - 一种氮化硅陶瓷球环保型精加工方法 - Google Patents
一种氮化硅陶瓷球环保型精加工方法 Download PDFInfo
- Publication number
- WO2022041355A1 WO2022041355A1 PCT/CN2020/116430 CN2020116430W WO2022041355A1 WO 2022041355 A1 WO2022041355 A1 WO 2022041355A1 CN 2020116430 W CN2020116430 W CN 2020116430W WO 2022041355 A1 WO2022041355 A1 WO 2022041355A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ball
- silicon nitride
- nitride ceramic
- finishing
- water
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B1/00—Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B11/00—Machines or devices designed for grinding spherical surfaces or parts of spherical surfaces on work; Accessories therefor
- B24B11/02—Machines or devices designed for grinding spherical surfaces or parts of spherical surfaces on work; Accessories therefor for grinding balls
Definitions
- the invention relates to the technical field of ceramic material processing, in particular to an environment-friendly finishing method for silicon nitride ceramic balls.
- Silicon nitride ceramics are known as engineering ceramic materials with the best comprehensive performance. Bearing balls made of silicon nitride ceramics have become standard bearing balls for high-precision equipment spindles at home and abroad. Processing silicon nitride ceramic balls can reduce surface defects and improve bearing performance. In order to obtain high-quality silicon nitride ceramic finished balls, the rough silicon nitride ceramic balls need to be roughed, finished and polished. After finishing, the sphere dimensional accuracy is improved, the surface quality is refined, and fine grinding balls are obtained. Finally, after polishing, the accuracy and surface quality of the spheres are continuously optimized, and the finished silicon nitride ceramic balls are obtained.
- the existing technology generally uses purchased grinding paste or self-prepared grease using oil agents such as kerosene, spindle oil, diesel oil, etc., and some manufacturers also use chromium oxide and other heavy metal ions.
- oil agents such as kerosene, spindle oil, diesel oil, etc.
- some manufacturers also use chromium oxide and other heavy metal ions.
- the purpose of the present invention is to provide an environment-friendly finishing method for silicon nitride ceramic balls, which adopts water-based circulating fluid for finishing, which is green and environmentally friendly, the method is simple, and the cast iron plate has a long service life.
- the invention provides an environment-friendly finishing method for silicon nitride ceramic balls, comprising the following steps:
- the trench is subjected to trenching treatment by using a trenching ball to form trench arcs;
- the silicon nitride ceramic rough grinding ball is mounted on the groove arc, and finishing is performed until the diameter of the obtained silicon nitride ceramic fine grinding ball is the diameter of the silicon nitride ceramic silicon nitride ceramic finished ball + (5 ⁇ 50 ) ⁇ m;
- the circulating fluid used in the finishing includes a water-based circulating fluid and a rust inhibitor
- the water-based circulating fluid comprises the following components by volume percentage: 20-40% of oil-free steel ball hard grinding fluid, 60-80% of water and 1-3% of defoaming agent.
- the average hardness of the cast iron plate is 150-250 HB, and the dispersion of hardness at different positions of the cast iron plate is less than or equal to 30 HB.
- the number of the grooved balls is 5 to 30 grooved balls placed in each channel.
- the width of the groove arc is 1/4 to 1/3 of the diameter of the grooved ball.
- the diameter of the silicon nitride ceramic finished ball is 3-20 mm.
- the pressure of the grooving treatment is 10-30 kN, and the time of the grooving treatment is 4-24 h.
- the diameter of the silicon nitride ceramic rough grinding ball is the diameter of the silicon nitride ceramic finished ball + (100-300) ⁇ m, and the diameter variation of the silicon nitride ceramic rough grinding ball is less than 5 ⁇ m.
- the diameter variation is less than 10 ⁇ m, and the depth of surface processing defects is less than 30 ⁇ m.
- the silicon nitride ceramic coarse grinding ball is ultrasonically cleaned, the ultrasonic cleaning time is 10-60 min, and the current is 1-5A.
- the abrasive used in the finishing is synthetic diamond powder; the particle size of the abrasive is 5-20 ⁇ m.
- the processing pressure is 6-20 kN, and the processing speed is 10-25 r/min.
- feeding is performed at intervals of 6-10 h, and the dosage ratio of the added abrasive to the circulating fluid is (10-30) g: (100-200) mL.
- the rust inhibitor includes sodium benzoate, DS-064 concentrated steel water-based rust inhibitor or KS-VCI water-based rust inhibitor, when the rust inhibitor is sodium benzoate, the water-based circulating fluid
- the dosage ratio to the rust inhibitor is 10L:(200 ⁇ 500)g; when the rust inhibitor is DS-064 concentrated steel water-based rust inhibitor or KS-VCI water-based rust inhibitor, the water-based
- the mass ratio of circulating fluid to rust inhibitor is 1:(0.01 ⁇ 0.1).
- the defoamer includes a silicone defoamer.
- the invention provides an environment-friendly finishing method for silicon nitride ceramic balls, comprising the following steps: performing a turning treatment on a cast iron plate to form a channel;
- the silicon nitride ceramic rough grinding ball is mounted on the groove arc, and finishing is performed until the diameter of the obtained silicon nitride ceramic fine grinding ball is the diameter of the silicon nitride ceramic finished ball + (5-50) ⁇ m;
- the circulating fluid used in the finishing includes a water-based circulating fluid and a rust inhibitor; the water-based circulating fluid includes the following components by volume percentage: 20-40% oil-free steel ball hard grinding fluid, 60-80% water and defoaming agent 1 to 3%.
- the invention adopts water-based circulating fluid to replace the existing oily grinding paste in the finishing process of the silicon nitride ceramic ball, avoids the generation of oil sludge, improves the processing environment, conforms to the concept of environmental protection, can simplify the production process, improve the processing efficiency and save energy processing cost.
- the silicon nitride ceramic fine grinding ball processed by the method of the present invention has the processing efficiency, surface quality and sphere dimensional accuracy in line with the finishing ball unloading requirements formulated by the company.
- the accuracy index can reach the national standard G20 level.
- the invention provides an environment-friendly finishing method for silicon nitride ceramic balls, comprising the following steps:
- the trench is subjected to trenching treatment by using a trenching ball to form trench arcs;
- the silicon nitride ceramic rough grinding ball is mounted on the groove arc, and finishing is performed until the diameter of the obtained silicon nitride ceramic fine grinding ball is the diameter of the silicon nitride ceramic finished ball + (5-50) ⁇ m;
- the circulating fluid used in the finishing includes a water-based circulating fluid and a rust inhibitor
- the water-based circulating fluid comprises the following components by volume percentage: 20-40% of oil-free steel ball hard grinding fluid, 60-80% of water and 1-3% of defoaming agent.
- the cast iron plate is turned to form a channel.
- a plurality of concentrically distributed V-shaped channels are formed on the cast iron plate by turning processing.
- the present invention does not have a special limitation on the process of the turning treatment, and the above-mentioned channel can be formed according to a process well known in the art.
- the present invention has no special limitation on the specific number of the V-shaped channels, which can be adjusted according to actual needs; in the embodiment of the present invention, it is specifically 9, 20 or 40.
- the average hardness of the cast iron plate is preferably 150-250HB, more preferably 180-220HB, and the hardness dispersion at different positions of the cast iron plate is less than or equal to 30HB, more preferably less than or equal to 20HB.
- the present invention uses a trenching ball to perform trenching treatment on the trench to form a trench arc.
- the grooved ball preferably comprises a silicon nitride ceramic ball or a steel ball, and the diameter of the grooved ball is the same as that of the finished silicon nitride ceramic ball.
- there is no special limitation on the source of the grooved ball and commercially available products well known in the art can be selected.
- the process of the grooving treatment is preferably to place the grooving ball in the channel of the cast iron plate, keep the grooving ball and the channel dry, and carry out the grooving treatment;
- the number of the grooving ball is preferably
- Each channel is placed with 5-30 grains, more preferably 10-20 grains;
- the pressure of the groove pressing is preferably 10-30 kN, more preferably 15-25 kN, and the groove pressing time is preferably 4- 24h, more preferably 10 to 20h, still more preferably 12 to 16kN.
- the invention presses the right-angle grooves of the cast iron plate into circular arc grooves through the groove pressing treatment, so that the silicon nitride ceramic ball blank and the groove arc are well matched, thereby increasing the contact area between the ceramic ball and the groove arc, and improving the silicon nitride ceramic ball.
- the ability of revolution and rotation of the ceramic ball blank can effectively improve the processing efficiency in the finishing stage.
- the good fit preferably means that the width of the groove arc is 1/4 to 1/3 of the diameter of the groove ball.
- the present invention can improve the processing efficiency by limiting the groove pressing conditions.
- the present invention preferably uses 1000-grit sandpaper to grind the obtained groove arc and the plate mouth position of the cast iron plate, so as to avoid the short processing time and insufficient running-in of the ceramic ball and the groove arc, resulting in the processing of the first plate. Ceramic balls exhibit machining defects.
- the present invention balls the silicon nitride ceramic rough grinding ball at the groove arc, and performs finishing until the diameter of the obtained silicon nitride ceramic fine grinding ball is the diameter of the silicon nitride ceramic finished ball + ( 5 ⁇ 50) ⁇ m.
- the names of the silicon nitride ceramic rough grinding balls, the silicon nitride ceramic fine grinding balls and the silicon nitride ceramic finished balls correspond to the names described in the background art, respectively.
- the silicon nitride ceramic rough grinding ball is preferably a rough processed product of a hot isostatic pressing silicon nitride ceramic rough ball.
- the diameter of the silicon nitride ceramic finished ball is preferably 3 to 20 mm, more preferably 3 to 15 mm.
- the diameter of the silicon nitride ceramic rough grinding ball is preferably the diameter of the silicon nitride ceramic finished ball+(100-300) ⁇ m, more preferably the diameter of the silicon nitride ceramic finished ball+ (200-250) ⁇ m; the diameter variation of the silicon nitride ceramic rough grinding ball is preferably less than 5 ⁇ m, the batch diameter variation is preferably less than 10 ⁇ m, and the depth of surface processing defects is preferably less than 30 ⁇ m.
- the silicon nitride ceramic coarse grinding ball is preferably subjected to ultrasonic cleaning, and the ultrasonic cleaning time is preferably 10-60 minutes, more preferably 20-50 minutes, and even more preferably 30 minutes. ⁇ 40min, the current is preferably 1 ⁇ 5A, more preferably 2 ⁇ 3A.
- the time and current of ultrasonic cleaning are preferably adjusted according to the size and quantity of the silicon nitride ceramic rough grinding balls. The invention ensures that the large-grained hard abrasives remaining in the roughing stage are not introduced into the finishing stage through ultrasonic cleaning, and avoids machining pits caused by the large-grained abrasives.
- the present invention does not have a special limitation on the process of loading the ball, and it can be performed according to a well-known process in the art.
- the finishing is preferably performed in a ball grinder
- the ball grinder is preferably a vertical steel ball grinder
- the model of the ball grinder is preferably 3MK7280
- detachable tackle pads and catch pads which are preferably mounted on the ball grinder before the finishing, and loaded according to specific balls according to procedures well known in the art The amount and processing status can be fine-tuned.
- the abrasive used in the finishing is preferably synthetic diamond powder; the particle size of the abrasive is preferably 5-20 ⁇ m, more preferably 10-15 ⁇ m, and even more preferably 14 ⁇ m.
- the invention has high hardness and service life, and has more significant pinning and scribing effects on the silicon nitride ceramic rough grinding ball, thereby improving the processing efficiency of finishing, and quickly removing the silicon nitride ceramic ball.
- the above-mentioned abrasive can participate in the processing process for many times and has a long service life; the present invention can improve the surface quality of the silicon nitride ceramic by limiting the particle size of the abrasive.
- the circulating fluid used in the finishing includes a water-based circulating fluid and a rust inhibitor;
- the water-based circulating fluid includes the following components by volume percentage: 20-40% oil-free steel ball hard grinding fluid, 60% water ⁇ 80% and defoamer 1 ⁇ 3%.
- the water-based circulating fluid comprises 20-40% of oil-free steel ball hard grinding fluid, preferably 25-35%, more preferably 30%.
- the oil-free steel ball hard grinding fluid is specifically a commercially available conventional oil-free steel ball hard grinding fluid, and the oil-free steel ball hard grinding fluid includes a variety of surfactants and a large amount of organic matter.
- the specific components of the oil-free steel ball hard grinding fluid are not particularly limited, and commercial products can be selected.
- the invention utilizes oil-free steel ball hard grinding fluid to improve the adhesion ability of abrasives on ceramic balls, reduces the loss of abrasives, thereby improving processing efficiency; and the oil-free steel ball hard grinding fluid has antibacterial and bacteriostatic ability, and can avoid water-based The long-term use of the circulating fluid will deteriorate and produce peculiar smell; in addition, the oil-free steel ball hard grinding fluid is convenient for cleaning the ceramic balls, and after finishing finishing, it can avoid the impact of the abrasive residue on the subsequent processing process.
- the water-based circulating liquid includes 60-80% of water, preferably 65-75%, more preferably 70%.
- the water is preferably deionized water.
- the water-based circulating liquid includes 1-3% of the defoaming agent, preferably 1.5-2.5%, more preferably 2%.
- the defoamer preferably includes an organosilicon defoamer, and the organosilicon defoamer is preferably FAG470 organosilicon defoamer.
- the defoaming agent is used to remove the bubbles generated by the surfactant component in the oil-free steel ball hard grinding fluid, so that the ball surface is kept wet, so that more free abrasives can adhere to the ball surface for a long time.
- the present invention can precisely control the components and proportions of the above-mentioned water-based circulating fluid, so that the finishing efficiency can be improved, and the same processing effect can be achieved at a lower cost.
- the rust inhibitor preferably includes sodium benzoate, DS-064 concentrated steel water-based rust inhibitor or KS-VCI water-based rust inhibitor; when the rust inhibitor is preferably sodium benzoate, the The dosage ratio of water-based circulating fluid and rust inhibitor is 10L:(200 ⁇ 500)g, more preferably 10L:300g; when the rust inhibitor is preferably DS-064 concentrated steel water-based rust inhibitor or KS- In the case of VCI water-based anti-rust liquid, the mass ratio of the water-based circulating liquid to the anti-rust agent is preferably 1:(0.01-0.1), more preferably 1:0.05.
- the invention uses the rust inhibitor to prevent the water in the water-based circulating liquid from reacting with the machine tool and the cast iron plate to rust, and solves the problem that the machine tool is easy to rust.
- the finishing process preferably includes first using a water pump to extract the circulating fluid, scouring the silicon nitride ceramic rough grinding balls and groove arcs that have just been loaded into the channel, then turning off the water pump, and performing finishing after feeding, for 1 hour After that, the water pump is turned on by the automatic device, and the circulating fluid is continuously extracted to scour the silicon nitride ceramic rough grinding ball and groove arc.
- the present invention does not have a special limitation on the automatic device, and any automatic device capable of turning on the power supply regularly can be used.
- the water pump is preferably an industrial water pump with a stirring function, and the rotational speed of the stirring fan blade carried by the water pump is preferably 2000-5000 r/min.
- the present invention does not have a special limitation on the extraction and flushing processes, and can be performed according to well-known processes in the art.
- the step of feeding is preferably pouring the mixture of abrasive and circulating liquid onto the silicon nitride ceramic ball blank and the groove arc through the observation port of the grinding disc on the cast iron plate.
- the present invention has no special limitation on the preparation process of the mixed solution of the abrasive and the circulating liquid, and the abrasive and the circulating liquid can be directly mixed.
- the dosage ratio of the abrasive to the circulating liquid is preferably (10-30) g: (100-200) mL, more preferably 15 g: 150 mL.
- the invention disperses the abrasive in the circulating liquid for feeding, which can avoid the uneven adhesion of the abrasive on the surface of some ceramic balls. After entering the cast iron plate, the frictional force is too large and the revolution is hindered, and the problem of scratching defects occurs on the surface.
- the processing pressure is preferably 6-20kN, more preferably 8-16kN, further preferably 10-15kN, and the processing speed is preferably 10-25r/min, more preferably 15-20r/min.
- the present invention preferably performs feeding once every 6-10 h; the feeding specifically refers to adding a mixed solution of abrasive and circulating fluid.
- the water pump is turned off before each feeding, and the circulating fluid is not flushed within 1 hour after each feeding is completed. After feeding for 1 hour, the water pump is automatically turned on to continue flushing.
- the dosage ratio of the abrasive and the circulating liquid added in the feeding is preferably (10-30) g: (100-200) mL.
- the present invention can control this feeding method to avoid processing defects and improve processing efficiency, control the abrasive adding nodes to meet the needs of industrial mass production, and can reduce the operating frequency of operators, so that the method can be used in large batches, and the same can be achieved at a lower cost. processing effect.
- the abrasive adheres to the silicon nitride ceramic rough grinding ball.
- the abrasive is subjected to the bidirectional pressure action of the ceramic ball and the cast iron plate, and is embedded into the cast iron with relatively low hardness.
- part of the abrasive grains are transformed from free abrasive grains to consolidated abrasive grains, and the surface of the ceramic ball is continuously pinned and scratched at the micron level. It is replaced by the newly input abrasive and enters the circulating fluid, and continues to process the ceramic balls in the form of free abrasive particles.
- the abrasive concentration in the circulating fluid increases, which can effectively improve the processing efficiency and reduce material costs. .
- the functions of the scour of the present invention include: 1) re-entering the groove arc, participating in grinding for many times, and improving the utilization rate of the abrasive; 2) maintaining the lubricating state of the groove, and keeping the silicon nitride ceramic ball blank in good condition Rotation and revolution to avoid processing defects; 3) Wash off large particles ground by processing, such as silicon nitride waste slag and iron filings, to reduce processing defects.
- the grinding fluid storage container is preferably a drum-shaped storage container, which can enhance the stirring effect of the water pump and avoid the phenomenon of material storage in dead corners.
- the present invention has no special limitation on the size of the barrel shape, and can be adjusted according to actual needs.
- the present invention preferably repeats the above-mentioned flushing-feeding process until the diameter of the obtained silicon nitride ceramic fine grinding ball is the diameter of the silicon nitride ceramic finished ball+(5-50) ⁇ m.
- the process inspection is preferably carried out every 4 hours until the diameter of the obtained silicon nitride ceramic fine grinding ball reaches the above-mentioned diameter range.
- the present invention does not have a special limitation on the method of the process inspection, and the process can be carried out according to a well-known process in the art.
- the finishing ball unloading requirement is preferably the finishing ball unloading requirement specified by the company (while the sphere dimensional accuracy meets the national standard G20 level standard), specifically: the diameter variation is less than 0.5 ⁇ m, the batch diameter variation The amount is less than 0.5 ⁇ m, the surface roughness is less than 0.02 ⁇ m, the surface processing defect depth is less than 2 ⁇ m, and the processing efficiency is ⁇ 2 ⁇ m/h.
- the abrasives are mainly deposited on the bottom of the circulating water tank containing the circulating liquid and inside the machine tool of the ball grinder.
- the present invention preferably uses an industrial water pump with a stirring function to avoid the deposition of the bottom of the circulating water tank; the present invention is preferably in A number of return branches are added to the water outlet of the industrial water pump, and the circulating fluid is continuously extracted from the return branch to flush the deposits inside the machine tool, so that the abrasive is flushed into the circulating water tank, thereby solving the problem of abrasive sedimentation waste.
- the present invention does not have specific requirements on the specific number of the plurality of backflow branches and the water flow of the branches, as long as the effect of flushing the abrasive in the machine tool into the circulating water tank can be achieved.
- the present invention can reduce the surface processing defects of the silicon nitride ceramic ball blank by controlling the pressure, rotational speed and abrasive particle size parameters of the finishing, and selecting the way of adding the abrasive (using the circulating fluid to stir and disperse the abrasive and then adding the abrasive).
- the present invention improves the finishing efficiency through the limitation of groove pressing conditions, feeding methods and abrasive types.
- the obtained silicon nitride ceramic fine grinding ball can meet the requirements of fine machining and unloading made by the company by optimizing the proportion of each component of the circulating liquid, the type of abrasive, the amount of abrasive added and the time point of adding abrasive, and the dimensional accuracy of the ball is at the same time. Meet the national standard G20 standard.
- the average hardness of the cast iron plate used is 220HB, and the hardness difference at different positions of the cast iron plate is 15HB;
- the model of the ball grinder used for finishing is 3MK7280. Before the finishing, the ball grinder has been installed There are tackle boards and fenders.
- the specific requirements for finishing ball unloading are: diameter variation less than 0.5 ⁇ m, batch diameter variation less than 0.5 ⁇ m, surface roughness less than 0.02 ⁇ m, surface processing defect depth less than 2 ⁇ m, processing efficiency ⁇ 2 ⁇ m/h.
- silicon nitride ceramic balls with a diameter of 3.5 mm that is, silicon nitride ceramic finished balls
- the cast iron plate is turned to form 40 concentric V-shaped channels;
- silicon nitride ceramic balls with a diameter of 3.5mm are used to press grooves on the channels of the cast iron plate. There are 8 grooved balls in each channel, and the groove pressure time is 8h to form groove arcs. The width of the groove arcs It is 1/3 of the diameter of the silicon nitride ceramic ball;
- the silicon nitride ceramic rough grinding ball was ultrasonically cleaned by an ultrasonic cleaning machine, the time was set to 60min, the current was 5A, and the cleaned silicon nitride ceramic rough grinding ball (3.7mm in diameter) was loaded on the groove arc. place;
- composition of the circulating fluid is: 2.5L of oil-free steel ball hard grinding fluid, 7.4L of water, 0.1L of defoamer (FAG470 silicone defoamer), and 300g of sodium benzoate.
- a water pump to extract the above-mentioned circulating fluid, flush the silicon nitride ceramic ball blanks and the channel, then turn off the water pump, and pour the mixture of abrasive and circulating fluid into the silicon nitride ceramic through the observation port of the grinding disc on the cast iron plate.
- Feeding a mixture of 20g synthetic diamond powder (particle size of 14 ⁇ m) and 200mL circulating fluid
- the processing pressure is 15kN, and the processing speed is 18r/min.
- the device turns on the water pump, and continues to extract the circulating fluid to scour the silicon nitride ceramic ball blanks and groove arcs.
- the processing efficiency is 4 to 6 ⁇ m/h
- the diameter variation of the processed product is 0.2 ⁇ m
- the batch diameter variation is 0.3 ⁇ m
- the surface roughness is 0.005 ⁇ m to 0.009 ⁇ m
- the surface processing defect depth is less than 2 ⁇ m, which is in line with the precision Processing and unloading ball requirements, that is, to obtain qualified fine grinding balls.
- silicon nitride ceramic balls with a diameter of 6.35 mm that is, silicon nitride ceramic finished balls
- silicon nitride ceramic balls with a diameter of 6.35mm are used to press grooves on the channels of the cast iron plate.
- Each channel is 8 grooved balls, and the groove pressure time is 8h to form groove arcs and the width of the groove arcs. It is 1/3 of the diameter of the silicon nitride ceramic ball;
- the silicon nitride ceramic rough grinding ball is ultrasonically cleaned by an ultrasonic cleaning machine, the time is set to 50min, the current is 4A, and the cleaned rough grinding ball (6.55mm in diameter) is mounted on the groove arc;
- composition of the circulating fluid is: 2.5L of oil-free steel ball hard grinding fluid, 7.4L of water, 0.1L of defoamer (FAG470 silicone defoamer), and 300g of sodium benzoate.
- a water pump to extract the above-mentioned circulating fluid, flush the silicon nitride ceramic ball blanks and the channel, then turn off the water pump, and pour the mixture of abrasive and circulating fluid into the silicon nitride ceramic through the observation port of the grinding disc on the cast iron plate.
- Feeding a mixture of 20g synthetic diamond powder (particle size of 14 ⁇ m) and 200mL circulating fluid
- the processing pressure is 15kN, and the processing speed is 18r/min.
- the device turns on the water pump, and continues to extract the circulating fluid to scour the silicon nitride ceramic ball blanks and groove arcs.
- silicon nitride ceramic balls with a diameter of 13.494 mm that is, silicon nitride ceramic finished balls
- finishing is performed according to the following steps to prepare corresponding silicon nitride ceramic fine grinding balls:
- silicon nitride ceramic balls with a diameter of 13.494mm were used to press grooves on the channels of the cast iron plate. There were 8 grooved balls in each channel, and the grooved time was 12h to form groove arcs. It is 1/3 of the diameter of the silicon nitride ceramic ball;
- the silicon nitride ceramic rough grinding ball is ultrasonically cleaned by an ultrasonic cleaning machine, the time is set to 40min, the current is 3A, and the cleaned rough grinding ball (13.7mm in diameter) is mounted on the groove arc;
- composition of the circulating fluid is: 3L of oil-free steel ball hard grinding fluid, 6.9L of water, 0.1L of defoamer (FAG470 silicone defoamer), and 300g of sodium benzoate.
- a water pump to extract the above-mentioned circulating fluid, flush the silicon nitride ceramic ball blanks and the channel, then turn off the water pump, and pour the mixture of abrasive and circulating fluid into the silicon nitride ceramic through the observation port of the grinding disc on the cast iron plate.
- Feeding a mixture of 20g synthetic diamond powder (particle size of 14 ⁇ m) and 200mL circulating fluid
- the processing pressure is 12kN, and the processing speed is 15r/min.
- the device turns on the water pump, and continues to extract the circulating fluid to scour the silicon nitride ceramic ball blanks and groove arcs.
- the processing efficiency is 4 to 5 ⁇ m/h
- the diameter variation of the processed product is 0.4 ⁇ m
- the batch diameter variation is 0.5 ⁇ m
- the surface roughness is 0.01 ⁇ m to 0.012 ⁇ m
- the surface processing defect depth is less than 2 ⁇ m, which is in line with the precision Processing ball unloading requirements, that is, to obtain qualified fine grinding balls.
- silicon nitride ceramic balls with a diameter of 6.35 mm that is, silicon nitride ceramic finished balls
- silicon nitride ceramic balls with a diameter of 6.35mm are used to press grooves on the channels of the cast iron plate.
- Each channel is 8 grooved balls, and the groove pressure time is 8h to form groove arcs and the width of the groove arcs. It is 1/3 of the diameter of the silicon nitride ceramic ball;
- the silicon nitride ceramic rough grinding ball is ultrasonically cleaned by an ultrasonic cleaning machine, the time is set to 50min, the current is 4A, and the cleaned rough grinding ball (6.55mm in diameter) is mounted on the groove arc;
- composition of the circulating fluid is: 2.5L of oil-free steel ball hard grinding fluid, 7.4L of water, 0.1L of defoamer (FAG470 silicone defoamer), and 300g of sodium benzoate.
- a water pump to extract the above-mentioned circulating fluid, flush the silicon nitride ceramic ball blanks and the channel, then turn off the water pump, and pour the mixture of abrasive and circulating fluid into the silicon nitride ceramic through the observation port of the grinding disc on the cast iron plate.
- Feeding a mixture of 20g synthetic diamond powder (particle size of 5 ⁇ m) and 200mL circulating fluid
- the processing pressure is 15kN, and the processing speed is 18r/min.
- the device turns on the water pump, and continues to extract the circulating fluid to scour the silicon nitride ceramic ball blanks and groove arcs.
- Example 2 The difference from Example 2 is that 20 g of cubic boron nitride powder is weighed every 8 hours, the particle size is 14 ⁇ m, and the others are the same as in Example 2.
- the processing efficiency of this comparative example is 2 to 3 ⁇ m/h, the diameter variation of the processed product is 0.3 ⁇ m, the batch diameter variation is 0.4 ⁇ m, the surface roughness is 0.015 ⁇ m to 0.851 ⁇ m, there are scratch defects on the surface, and the defect depth is greater than 2 ⁇ m. Does not meet the requirements of finishing ball unloading.
- Example 2 The difference from Example 2 is that 20 g of silicon carbide powder is weighed every 8 hours, and the particle size of the abrasive is 14 ⁇ m, and the others are the same as in Example 2.
- the processing efficiency of this comparative example is 1-1.5 ⁇ m/h, the diameter variation of the processed product is 0.2 ⁇ m, the batch diameter variation is 0.2 ⁇ m, the surface roughness is 0.004 ⁇ m to 0.008 ⁇ m, the surface processing defect depth is less than 2 ⁇ m, and the processing efficiency is slow. , does not meet the requirements of finishing ball unloading.
- Example 4 The difference from Example 4 is that the particle size of the artificial diamond powder is 3.5 ⁇ m, and the others are the same as in Example 4.
- the processing efficiency of the comparative example is 0.5-1.5 ⁇ m/h, the diameter variation of the processed product is 0.2 ⁇ m, the batch diameter variation is 0.3 ⁇ m, the surface roughness is 0.003 ⁇ m-0.006 ⁇ m, the surface processing defect depth is less than 2 ⁇ m, and the processing efficiency is low , does not meet the requirements of finishing ball unloading.
- Example 4 The difference from Example 4 is that the particle size of the artificial diamond powder is 28 ⁇ m, and the others are the same as in Example 4.
- the processing efficiency of this comparative example is 5 ⁇ m/h ⁇ 7 ⁇ m/h, the diameter variation of the processed product is 0.3 ⁇ m, the batch diameter variation is 0.4 ⁇ m, the surface roughness is 0.018 ⁇ m ⁇ 0.926 ⁇ m, there are pit defects on the surface, and the depth of processing defects If it is larger than 2 ⁇ m, it does not meet the requirements of finishing ball unloading.
- Example 2 The difference from Example 2 is that 5g of synthetic diamond powder is weighed every 8h, and the others are the same as in Example 2.
- the processing efficiency of this comparative example is 0.5 to 1 ⁇ m/h, the diameter variation of the processed product is 0.2 ⁇ m, the batch diameter variation is 0.4 ⁇ m, the surface roughness is 0.006 ⁇ m to 0.011 ⁇ m, the surface processing defect depth is less than 2 ⁇ m, and the processing efficiency is low. Does not meet the requirements of finishing ball unloading.
- Example 2 The difference with Example 2 is that 40g of synthetic diamond powder is weighed every 8h, and the others are the same as in Example 2.
- the processing efficiency of this comparative example is 7-9 ⁇ m/h
- the diameter variation of the processed product is 0.6 ⁇ m
- the batch diameter variation is 1.2 ⁇ m
- the surface roughness is 0.008 ⁇ m to 0.015 ⁇ m
- the surface processing defect depth is less than 2 ⁇ m
- the diameter variation and The variation of the batch diameter exceeds the standard and does not meet the requirements for finishing the ball unloading.
- the water-based circulating fluid can be used in the present invention to realize the finishing of silicon nitride ceramic balls with different diameters.
- the amount of the abrasive has an important influence on the finishing quality of the silicon nitride ceramic ball.
- the invention controls the type, particle size and addition amount of the abrasive, which can meet the finishing and unloading requirements of the silicon nitride ceramic ball.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
- Ceramic Products (AREA)
Abstract
一种氮化硅陶瓷球环保型精加工方法,属于陶瓷材料加工技术领域。精加工过程中采用水基循环液代替现有的油性研磨膏,避免了油泥的产生,改善了加工环境,符合环保理念,能够简化生产流程、提高加工效率、节约加工成本、延长铸铁板的使用寿命。采用该方法加工所得到的氮化硅陶瓷精磨球,加工效率、表面质量、球体尺寸精度符合本企业内部所制定的精加工卸球要求,同时,氮化硅陶瓷球球体的各项精度指标可达到国标G20级标准。
Description
本申请要求于2020年8月25日提交中国专利局、申请号为CN202010861944.3、发明名称为“一种氮化硅陶瓷球环保型精加工方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及陶瓷材料加工技术领域,尤其涉及一种氮化硅陶瓷球环保型精加工方法。
氮化硅陶瓷被誉为综合性能最好的工程陶瓷材料,利用氮化硅陶瓷制作的轴承球已成为国内外高精尖装备主轴的标配轴承球。对氮化硅陶瓷球进行加工,能够减少其表面缺陷,提高轴承的使用性能。为了得到高质量氮化硅陶瓷成品球,氮化硅陶瓷毛坯球需要进行粗加工、精加工和抛光等步骤,氮化硅陶瓷毛坯球经过粗加工去除表面大部分余量,得到粗磨球,再经过精加工,提高球体尺寸精度,细化表面质量,得到精磨球,最后经过抛光,继续优化球体精度及表面质量,得到氮化硅陶瓷成品球。由于陶瓷材料所固有的脆性以及缺陷敏感性,在缺陷或裂缝的尖端周围的应力集中行为非常强烈,粗加工阶段产生的大量缺陷,在精加工阶段很容易扩展,通常粗加工结束后会预留大量尺寸,通过精加工去除。故精加工阶段既要快速减少材料尺寸,又要减小球形误差,细化表面粗糙度,改善表面物理机械性能,有着承上启下的重要作用。
目前,对于氮化硅陶瓷球的精加工,现有技术一般采用外购的研磨膏或使用煤油、锭子油、柴油等油剂自行配制的油膏,部分厂家还会采用氧化铬等含有重金属离子的磨料,在加工结束后产生大量的油泥,处理成本高,且会对环境造成一定程度的污染;而且加工结束后陶瓷球的清洗、机床的日常清理均有一定程度的麻烦,不符合环保发展理念的需要,而且铸铁板损耗快,铸铁板使用寿命短。
发明内容
本发明的目的在于提供一种氮化硅陶瓷球环保型精加工方法,采用水基循环液进行精加工,绿色环保且方法简便,铸铁板使用寿命长。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种氮化硅陶瓷球环保型精加工方法,包括以下步骤:
对铸铁板进行车削处理,形成沟道;
使用压沟球对所述沟道进行压沟处理,形成沟弧;
将氮化硅陶瓷粗磨球装球于所述沟弧处,进行精加工,直至所得氮化硅陶瓷精磨球的直径为氮化硅陶瓷氮化硅陶瓷成品球的直径+(5~50)μm;
所述精加工所用循环液包括水基循环液和防锈剂;
所述水基循环液包括以下体积百分数的组分:无油钢球硬磨液20~40%、水60~80%和消泡剂1~3%。
优选的,所述铸铁板的平均硬度为150~250HB,所述铸铁板的不同位置的硬度散差≤30HB。
优选的,所述压沟球的数量为每条沟道摆放5~30粒压沟球。
优选的,所述沟弧的宽度为所述压沟球的直径的1/4~1/3。
优选的,所述氮化硅陶瓷成品球的直径为3~20mm。
优选的,所述压沟处理的压力为10~30kN,所述压沟处理的时间为4~24h。
优选的,所述氮化硅陶瓷粗磨球的直径为所述氮化硅陶瓷成品球的直径+(100~300)μm,所述氮化硅陶瓷粗磨球的直径变动量小于5μm,批直径变动量小于10μm,表面加工缺陷深度小于30μm。
优选的,进行所述装球前,将所述氮化硅陶瓷粗磨球进行超声波清洗,所述超声波清洗的时间为10~60min,电流为1~5A。
优选的,所述精加工所用磨料为人造金刚石粉;所述磨料的粒径为5~20μm。
优选的,所述精加工的过程中,加工压力为6~20kN,加工转速为10~25r/min。
优选的,在所述精加工的过程中,每间隔6~10h进行一次加料,所述加料所添加的磨料和循环液的用量比为(10~30)g:(100~200)mL。
优选的,所述防锈剂包括苯甲酸钠、DS-064浓缩型钢铁水基防锈剂或KS-VCI水基防锈液,当所述防锈剂为苯甲酸钠时,所述水基循环液与防锈剂的用量比为10L:(200~500)g;当所述防锈剂为DS-064浓缩型钢 铁水基防锈剂或KS-VCI水基防锈液时,所述水基循环液与防锈剂的质量比为1:(0.01~0.1)。
优选的,所述消泡剂包括有机硅消泡剂。
本发明提供了一种氮化硅陶瓷球环保型精加工方法,包括以下步骤:对铸铁板进行车削处理,形成沟道;使用压沟球对所述沟道进行压沟处理,形成沟弧;将氮化硅陶瓷粗磨球装球于所述沟弧处,进行精加工,直至所得氮化硅陶瓷精磨球的直径为氮化硅陶瓷成品球的直径+(5~50)μm;所述精加工所用循环液包括水基循环液和防锈剂;所述水基循环液包括以下体积百分数的组分:无油钢球硬磨液20~40%、水60~80%和消泡剂1~3%。
本发明在氮化硅陶瓷球精加工过程中采用水基循环液代替现有的油性研磨膏,避免了油泥的产生,改善了加工环境,符合环保理念,能够简化生产流程、提高加工效率、节约加工成本。采用本发明的方法加工所得到的氮化硅陶瓷精磨球,加工效率、表面质量、球体尺寸精度符合本企业内部所制定的精加工卸球要求,同时,氮化硅陶瓷球球体的各项精度指标可达到国标G20级标准。
本发明提供了一种氮化硅陶瓷球环保型精加工方法,包括以下步骤:
对铸铁板进行车削处理,形成沟道;
使用压沟球对所述沟道进行压沟处理,形成沟弧;
将氮化硅陶瓷粗磨球装球于所述沟弧处,进行精加工,直至所得氮化硅陶瓷精磨球的直径为氮化硅陶瓷成品球的直径+(5~50)μm;
所述精加工所用循环液包括水基循环液和防锈剂;
所述水基循环液包括以下体积百分数的组分:无油钢球硬磨液20~40%、水60~80%和消泡剂1~3%。
在本发明中,若无特殊说明,所需原料或试剂均为本领域技术人员熟知的市售商品。
本发明对铸铁板进行车削处理,形成沟道。本发明优选根据成品氮化硅陶瓷球的大小,通过车削处理在铸铁板上形成多条呈同心分布的V形沟道。本发明对所述车削处理的过程没有特殊的限定,按照本领域熟知的过程能够形成上述沟道即可。本发明对所述V形沟道的具体条数没有特 殊的限定,根据实际需求进行调整即可;在本发明的实施例中,具体为9、20或40条。在本发明中,所述铸铁板的平均硬度优选为150~250HB,更优选为180~220HB,所述铸铁板的不同位置的硬度散差≤30HB,更优选≤20HB。
形成沟道后,本发明使用压沟球对所述沟道进行压沟处理,形成沟弧。在本发明中,所述压沟球优选包括氮化硅陶瓷球或钢球,所述压沟球的直径与所述氮化硅陶瓷成品球的直径相同。本发明对所述压沟球的来源没有特殊的限定,选用本领域熟知的市售商品即可。
在本发明中,所述压沟处理的过程优选为将压沟球摆放在铸铁板的沟道内,保持压沟球和沟道干燥,进行压沟处理;所述压沟球的数量优选为每条沟道摆放5~30粒,更优选为10~20粒;所述压沟处理的压力优选为10~30kN,更优选为15~25kN,所述压沟处理的时间优选为4~24h,更优选为10~20h,进一步优选为12~16kN。本发明优选根据沟道宽度来调整压沟处理的压力和时间。本发明通过压沟处理将铸铁板的直角沟压成圆弧沟,以使氮化硅陶瓷球球坯与沟弧较好吻合,从而增大陶瓷球与沟弧的接触面积,提高氮化硅陶瓷球球坯公转与自转的能力,有效提高精加工阶段的加工效率。在本发明中,所述较好吻合优选是指沟弧的宽度为压沟球直径的1/4~1/3。本发明通过对压沟条件的限定能够提高加工效率。
压沟处理完成后,本发明优选使用1000目砂纸对所得沟弧及铸铁板的板口位置进行打磨处理,从而避免由于加工时间短,陶瓷球与沟弧磨合不足,而导致加工的第一盘陶瓷球出现加工缺陷。
形成沟弧后,本发明将氮化硅陶瓷粗磨球装球于所述沟弧处,进行精加工,直至所得氮化硅陶瓷精磨球的直径为氮化硅陶瓷成品球的直径+(5~50)μm。在本发明中,所述氮化硅陶瓷粗磨球、氮化硅陶瓷精磨球和氮化硅陶瓷成品球的名称分别与背景技术所述命名相对应。
在本发明中,所述氮化硅陶瓷粗磨球优选为热等静压氮化硅陶瓷毛坯球经过粗加工处理后的产品。在本发明中,所述氮化硅陶瓷成品球的直径优选为3~20mm,更优选为3~15mm。在本发明中,所述氮化硅陶瓷粗磨球的直径优选为所述氮化硅陶瓷成品球的直径+(100~300)μm,更优选为所述氮化硅陶瓷成品球的直径+(200~250)μm;所述氮化硅陶瓷粗磨 球的直径变动量优选小于5μm,批直径变动量优选小于10μm,表面加工缺陷深度优选小于30μm。
在本发明中,进行所述装球前,优选将所述氮化硅陶瓷粗磨球进行超声波清洗,所述超声波清洗的时间优选为10~60min,更优选为20~50min,进一步优选为30~40min,电流优选为1~5A,更优选为2~3A。本发明优选根据氮化硅陶瓷粗磨球的大小及数量调整超声波清洗的时间和电流。本发明通过超声波清洗保证粗加工阶段残留的大颗粒硬质磨料不被引入到精加工阶段,避免大颗粒磨料造成加工凹坑。
本发明对所述装球的过程没有特殊的限定,按照本领域熟知的过程进行即可。
在本发明中,所述精加工优选在研球机中进行,所述研球机优选为立式钢球研球机,所述研球机的型号优选为3MK7280;所述研球机优选带有可拆卸的铲球板和挡球板,在进行所述精加工前,优选将所述铲球板和挡球板安装于所述研球机上,并按照本领域熟知的过程根据具体装球量及加工状态进行微调。
在本发明中,所述精加工所用磨料优选为人造金刚石粉;所述磨料的粒径优选为5~20μm,更优选为10~15μm,进一步优选为14μm。本发明通过选用上述种类的磨料,硬度和使用寿命高,对氮化硅陶瓷粗磨球的钉扎和划割作用更显著,从而能够提高精加工的加工效率,快速去除氮化硅陶瓷球的表面材料,同时上述磨料可多次参与加工过程,寿命较长;本发明通过对磨料粒度的限定能够改善氮化硅陶瓷的表面质量。
在本发明中,所述精加工所用循环液包括水基循环液和防锈剂;所述水基循环液包括以下体积百分数的组分:无油钢球硬磨液20~40%、水60~80%和消泡剂1~3%。
在本发明中,以体积百分数计,所述水基循环液包括无油钢球硬磨液20~40%,优选为25~35%,更优选为30%。在本发明中,所述无油钢球硬磨液具体为市售常规无油钢球硬磨液,所述无油钢球硬磨液包括多种表面活性剂和大量有机物,本发明对所述无油钢球硬磨液的具体组分没有特殊的限定,选用市售商品即可。本发明利用无油钢球硬磨液提高磨料在陶瓷球上的附着能力,减少磨料的流失,从而提高加工效率;而且所述无油 钢球硬磨液具有抗菌抑菌能力,能够避免水基循环液的长期使用而变质产生异味;此外,所述无油钢球硬磨液便于陶瓷球的清洗,在精加工结束后,避免磨料的残留对后续加工过程产生影响。
在本发明中,以体积百分数计,所述水基循环液包括水60~80%,优选为65~75%,更优选为70%。在本发明中,所述水优选为去离子水。
在本发明中,以体积百分数计,所述水基循环液包括消泡剂1~3%,优选为1.5~2.5%,更优选为2%。在本发明中,所述消泡剂优选包括有机硅消泡剂,所述有机硅消泡剂优选为FAG470有机硅消泡剂。本发明利用消泡剂去除无油钢球硬磨液中表面活性剂组分所产生的气泡,保持球表面湿润,使较多的游离磨料能够长时间粘附在球表面。
本发明精确控制上述水基循环液的组分及配比能够提高精加工效率,以较低的成本实现相同的加工效果。
在本发明中,所述防锈剂优选包括苯甲酸钠、DS-064浓缩型钢铁水基防锈剂或KS-VCI水基防锈液;当所述防锈剂优选为苯甲酸钠时,所述水基循环液与防锈剂的用量比为10L:(200~500)g,更优选为10L:300g;当所述防锈剂优选为DS-064浓缩型钢铁水基防锈剂或KS-VCI水基防锈液时,所述水基循环液与防锈剂的质量比优选为1:(0.01~0.1),更优选为1:0.05。本发明利用防锈剂防止水基循环液中水与机床和铸铁板反应生锈,解决了机床易锈蚀的问题。
在本发明中,所述精加工的过程优选包括先采用水泵抽取循环液,冲刷刚装入沟道的氮化硅陶瓷粗磨球和沟弧,然后关闭水泵,加料后进行精加工,1小时后通过自动装置打开水泵,继续抽取循环液对氮化硅陶瓷粗磨球和沟弧进行冲刷。本发明对所述自动装置没有特殊的限定,能起到定时开启电源的自动装置均可。在本发明中,所述水泵优选为带有搅拌功能的工业水泵,所述水泵所带有的搅拌扇叶的转速优选为2000~5000r/min。本发明对所述抽取和冲刷的过程没有特殊的限定,按照本领域熟知的过程进行即可。
在本发明中,所述加料的步骤优选为将磨料与循环液的混合液通过铸铁板上磨盘的观察口倒入到氮化硅陶瓷球球坯和沟弧上。本发明对所述磨料与循环液的混合液的制备过程没有特殊的限定,直接将磨料与循环液混 合即可。在本发明中,所述磨料与循环液的用量比优选为(10~30)g:(100~200)mL,更优选为15g:150mL。本发明将磨料分散于循环液中进行加料,能够避免出现磨料在部分陶瓷球表面粘附不均匀,进入铸铁板后,摩擦力过大使公转受阻,在表面会产生擦伤缺陷的问题。
在所述精加工的过程中,加工压力优选为6~20kN,更优选为8~16kN,进一步优选为10~15kN,加工转速优选为10~25r/min,更优选为15~20r/min。
在所述精加工的过程中,本发明优选每间隔6~10h进行一次加料;所述加料具体指的是添加磨料和循环液的混合液。本发明优选在每次加料之前先关闭水泵,每次完成加料后1h内不进行循环液的冲刷,加料1h后,水泵自动开启,继续进行冲刷。在本发明中,所述加料所添加的磨料和循环液的用量比优选为(10~30)g:(100~200)mL。本发明控制这种加料方式可以避免加工缺陷并提高加工效率,控制磨料添加节点符合工业批量化生产的需求,可以减少作业者的操作频次,从而大批量使用此方法,以较低的成本实现相同的加工效果。
在本发明中,每次加料后,磨料粘附在氮化硅陶瓷粗磨球上,在进入沟道后,磨料受到陶瓷球与铸铁板双向的压力作用,镶嵌到硬度相较较小的铸铁板沟弧上,部分磨粒由游离磨粒状态转变成固结磨粒状态,持续对陶瓷球表面进行微米级别的钉扎与划割,这部分固结磨粒的棱角被磨平后,会被新投入的磨料替换而进入循环液中,以游离磨粒的形式继续对陶瓷球进行加工,随着加工盘数的增加,循环液中的磨料浓度上升,可以有效提高加工效率,缩减物料成本。
本发明所述冲刷的作用包括:1)使磨料重新进入沟弧,多次参与磨削,提高磨料的利用率;2)保持沟道的润滑状态,使氮化硅陶瓷球球坯保持良好的自转和公转,避免加工缺陷;3)冲掉加工所磨削下来的大颗粒,如氮化硅废渣及铁屑,减少加工缺陷。
在本发明中,抽取的循环液参与精加工过程后,收集回流至磨液存放容器,实现循环液的循环利用。在本发明中,所述磨液存放容器优选为圆桶形状的存放容器,能够增强水泵的搅拌效果,避免死角存料现象。本发明对所述圆桶形状的尺寸没有特殊的限定,根据实际需求进行调整即可。
本发明优选重复进行上述冲刷-加料的过程,直至所得氮化硅陶瓷精磨球的直径为氮化硅陶瓷成品球的直径+(5~50)μm。本发明优选每隔4小时进行过程检验,直至所得氮化硅陶瓷精磨球的直径达到上述直径范围。本发明对所述过程检验的方法没有特殊的限定,按照本领域熟知的过程进行即可。在本发明中,所述精加工卸球要求优选为本公司企业内部规定的精加工卸球要求(同时球体尺寸精度满足国标G20级标准),具体为:直径变动量小于0.5μm,批直径变动量小于0.5μm,表面粗糙度小于0.02μm,表面加工缺陷深度小于2μm,加工效率≥2μm/h。
在进行精加工过程中,磨料主要沉积在盛装循环液的循环水箱的箱底和研球机的机床内部,本发明优选使用带有搅拌功能的工业水泵能够避免循环水箱箱底的沉积;本发明优选在工业水泵的出水口上增加多条回流分支,利用回流分支持续抽取循环液对机床内部的沉积进行冲刷,使磨料冲入循环水箱,从而解决磨料沉淀浪费的问题。本发明对所述多条回流分支的具体数量以及分支的水流量不作具体要求,能实现将机床内的磨料冲入循环水箱的效果即可。
本发明通过控制精加工的压力、转速和磨料粒度参数,并选择添加磨料的方式(采用循环液将磨料搅拌分散后添加磨料),能够降低氮化硅陶瓷球球坯的表面加工缺陷。
本发明通过压沟条件、加料方式和磨料种类的限定共同提高了精加工效率。本发明通过优化循环液的各组分比例、磨料类型、磨料加入量以及磨料加入时间节点使所得到的氮化硅陶瓷精磨球满足公司内部所制定的精加工卸球要求,同时球体尺寸精度满足国标G20级标准。
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下实施例中,所用铸铁板的平均硬度为220HB,铸铁板的不同位置的硬度散差15HB;精加工所用研球机的型号为3MK7280,进行所述精加工前,所述研球机已安装有铲球板和挡球板。
精加工卸球要求具体是:直径变动量小于0.5μm,批直径变动量小于0.5μm,表面粗糙度小于0.02μm,表面加工缺陷深度小于2μm,加工效率 ≥2μm/h。
实施例1
本实施例以加工直径为3.5mm的氮化硅陶瓷球(即氮化硅陶瓷成品球)为基准,按照下述步骤进行精加工,制备所对应的氮化硅陶瓷精磨球:
对铸铁板进行车削处理,形成40条呈同心分布的V形沟道;
在20kN条件下,采用直径为3.5mm的氮化硅陶瓷球对铸铁板的沟道进行压沟处理,每条沟道8粒压沟球,压沟时间8h,形成沟弧,沟弧的宽度为氮化硅陶瓷球的直径1/3;
采用超声波清洗机对氮化硅陶瓷粗磨球进行超声波清洗,时间设定为60min,电流为5A,将清洗后的氮化硅陶瓷粗磨球(直径为3.7mm)装球于所述沟弧处;
循环液的组成为:无油钢球硬磨液2.5L、水7.4L、消泡剂(FAG470有机硅消泡剂)0.1L,苯甲酸钠300g。
使用水泵抽取上述循环液,对所述氮化硅陶瓷球球坯和沟道进行冲刷,然后关闭水泵,通过铸铁板上磨盘的观察口将磨料和循环液的混合液倒入到氮化硅陶瓷球球坯和沟弧上进行加料(20g人造金刚石粉(粒径为14μm)和200mL循环液的混合液),进行精加工,加工压力为15kN,加工转速为18r/min,1h后,通过自动装置开启水泵,继续抽取循环液对氮化硅陶瓷球球坯和沟弧进行冲刷,精加工过程中,每间隔8h称取20g人造金刚石粉,并加入200mL循环液,混合均匀后从铸铁板上磨盘的观察口倒入,进行精加工,1h后自动开启水泵,进行上述冲刷的过程,重复进行上述冲刷-加料的过程,每隔4小时进行一次过程检验,直至陶瓷球尺寸加工至3.55mm,卸球并进行检验,加工效率为4~6μm/h,所加工的产品直径变动量0.2μm,批直径变动量0.3μm,表面粗糙度0.005μm~0.009μm,表面加工缺陷深度小于2μm,符合精加工卸球要求,即得到合格的精磨球。
实施例2
本实施例以加工直径为6.35mm的氮化硅陶瓷球(即氮化硅陶瓷成品球)为基准,按照下述步骤进行精加工,制备所对应的氮化硅陶瓷精磨球:
对铸铁板进行车削处理,形成20条呈同心分布的V形沟道;
在20kN条件下,采用直径为6.35mm的氮化硅陶瓷球对铸铁板的沟 道进行压沟处理,每条沟道8粒压沟球,压沟时间8h,形成沟弧,沟弧的宽度为氮化硅陶瓷球的直径1/3;
采用超声波清洗机对氮化硅陶瓷粗磨球进行超声波清洗,时间设定为50min,电流为4A,将清洗后的粗磨球(直径为6.55mm)装球于所述沟弧处;
循环液的组成为:无油钢球硬磨液2.5L、水7.4L、消泡剂(FAG470有机硅消泡剂)0.1L,苯甲酸钠300g。
使用水泵抽取上述循环液,对所述氮化硅陶瓷球球坯和沟道进行冲刷,然后关闭水泵,通过铸铁板上磨盘的观察口将磨料和循环液的混合液倒入到氮化硅陶瓷球球坯和沟弧上进行加料(20g人造金刚石粉(粒径为14μm)和200mL循环液的混合液),进行精加工,加工压力为15kN,加工转速为18r/min,1h后,通过自动装置开启水泵,继续抽取循环液对氮化硅陶瓷球球坯和沟弧进行冲刷,精加工过程中,每间隔8h称取20g人造金刚石粉,并加入200mL循环液,混合均匀后从铸铁板上磨盘的观察口倒入,进行精加工,1h后自动开启水泵,进行上述冲刷的过程,重复进行上述冲刷-加料的过程,每隔4小时进行一次过程检验,直至陶瓷球尺寸加工至6.38mm,卸球并进行检验,加工效率为4~5μm/h,所加工的产品直径变动量0.3μm,批直径变动量0.3μm,表面粗糙度0.008μm~0.012μm,表面加工缺陷深度小于2μm,符合精加工卸球要求,即得到合格的精磨球。
实施例3
本实施例以加工直径为13.494mm的氮化硅陶瓷球(即氮化硅陶瓷成品球)为基准,按照下述步骤进行精加工,制备所对应的氮化硅陶瓷精磨球:
对铸铁板进行车削处理,形成9条呈同心分布的V形沟道;
在20kN条件下,采用直径为13.494mm的氮化硅陶瓷球对铸铁板的沟道进行压沟处理,每条沟道8粒压沟球,压沟时间12h,形成沟弧,沟弧的宽度为氮化硅陶瓷球的直径1/3;
采用超声波清洗机对氮化硅陶瓷粗磨球进行超声波清洗,时间设定为40min,电流为3A,将清洗后的粗磨球(直径为13.7mm)装球于所述沟弧处;
循环液的组成为:无油钢球硬磨液3L、水6.9L、消泡剂(FAG470有机硅消泡剂)0.1L,苯甲酸钠300g。
使用水泵抽取上述循环液,对所述氮化硅陶瓷球球坯和沟道进行冲刷,然后关闭水泵,通过铸铁板上磨盘的观察口将磨料和循环液的混合液倒入到氮化硅陶瓷球球坯和沟弧上进行加料(20g人造金刚石粉(粒径为14μm)和200mL循环液的混合液),进行精加工,加工压力为12kN,加工转速为15r/min,1h后,通过自动装置开启水泵,继续抽取循环液对氮化硅陶瓷球球坯和沟弧进行冲刷,精加工过程中,每间隔8h称取20g人造金刚石粉,并加入200mL循环液,混合均匀后从铸铁板上磨盘的观察口倒入,进行精加工,1h后自动开启水泵,进行上述冲刷的过程,重复进行上述冲刷-加料的过程,每隔4小时进行一次过程检验,直至陶瓷球尺寸加工至13.534mm,卸球并进行检验,加工效率为4~5μm/h,所加工的产品直径变动量0.4μm,批直径变动量0.5μm,表面粗糙度0.01μm~0.012μm,表面加工缺陷深度小于2μm,符合精加工卸球要求,即得到合格的精磨球。
实施例4
本实施例以加工直径为6.35mm的氮化硅陶瓷球(即氮化硅陶瓷成品球)为基准,按照下述步骤进行精加工,制备所对应的氮化硅陶瓷精磨球:
对铸铁板进行车削处理,形成20条呈同心分布的V形沟道;
在20kN条件下,采用直径为6.35mm的氮化硅陶瓷球对铸铁板的沟道进行压沟处理,每条沟道8粒压沟球,压沟时间8h,形成沟弧,沟弧的宽度为氮化硅陶瓷球的直径1/3;
采用超声波清洗机对氮化硅陶瓷粗磨球进行超声波清洗,时间设定为50min,电流为4A,将清洗后的粗磨球(直径为6.55mm)装球于所述沟弧处;
循环液的组成为:无油钢球硬磨液2.5L、水7.4L、消泡剂(FAG470有机硅消泡剂)0.1L,苯甲酸钠300g。
使用水泵抽取上述循环液,对所述氮化硅陶瓷球球坯和沟道进行冲刷,然后关闭水泵,通过铸铁板上磨盘的观察口将磨料和循环液的混合液倒入到氮化硅陶瓷球球坯和沟弧上进行加料(20g人造金刚石粉(粒径为5μm)和200mL循环液的混合液),进行精加工,加工压力为15kN,加 工转速为18r/min,1h后,通过自动装置开启水泵,继续抽取循环液对氮化硅陶瓷球球坯和沟弧进行冲刷,精加工过程中,每间隔8h称取20g人造金刚石粉,并加入200mL循环液,混合均匀后从铸铁板上磨盘的观察口倒入,进行精加工,1h后自动开启水泵,进行上述冲刷的过程,重复进行上述冲刷-加料的过程,每隔4小时进行一次过程检验,直至陶瓷球尺寸加工至6.38mm,卸球并进行检验,加工效率为2~4μm/h,所加工的产品直径变动量0.2μm,批直径变动量0.3μm,表面粗糙度0.007μm~0.010μm,表面加工缺陷深度小于2μm,符合精加工卸球要求,即得到合格的精磨球。
对比例1
与实施例2的区别在于:每间隔8h称取20g立方氮化硼粉,粒径为14μm,其他同实施例2。
该对比例的加工效率为2~3μm/h,所加工的产品直径变动量0.3μm,批直径变动量0.4μm,表面粗糙度0.015μm~0.851μm,表面存在划痕缺陷,缺陷深度大于2μm,不符合精加工卸球要求。
对比例2
与实施例2的区别在于:每间隔8h称取20g碳化硅粉,磨料粒径为14μm,其他同实施例2。
该对比例的加工效率为1~1.5μm/h,所加工的产品直径变动量0.2μm,批直径变动量0.2μm,表面粗糙度0.004μm~0.008μm,表面加工缺陷深度小于2μm,加工效率慢,不符合精加工卸球要求。
对比例3
与实施例4的区别在于:人造金刚石粉的粒径为3.5μm,其他同实施例4。
该对比例的加工效率为0.5~1.5μm/h,所加工的产品直径变动量0.2μm,批直径变动量0.3μm,表面粗糙度0.003μm~0.006μm,表面加工缺陷深度小于2μm,加工效率低,不符合精加工卸球要求。
对比例4
与实施例4的区别在于:人造金刚石粉的粒径为28μm,其他同实施例4。
该对比例的加工效率为5μm/h~7μm/h,所加工的产品直径变动量 0.3μm,批直径变动量0.4μm,表面粗糙度0.018μm~0.926μm,表面存在凹坑缺陷,加工缺陷深度大于2μm,不符合精加工卸球要求。
对比例5
与实施例2的区别在于:每间隔8h称取5g人造金刚石粉,其他同实施例2。
该对比例的加工效率为0.5~1μm/h,所加工的产品直径变动量0.2μm,批直径变动量0.4μm,表面粗糙度0.006μm~0.011μm,表面加工缺陷深度小于2μm,加工效率低,不符合精加工卸球要求。
对比例6
与实施例2的区别在于:每间隔8h称取40g人造金刚石粉,其他同实施例2。
该对比例的加工效率为7~9μm/h,所加工的产品直径变动量0.6μm,批直径变动量1.2μm,表面粗糙度0.008μm~0.015μm,表面加工缺陷深度小于2μm,直径变动量及批直径变动量超标,不符合精加工卸球要求。
由以上实施例1~4可知,本发明采用水基循环液能够实现不同直径氮化硅陶瓷球的精加工,由实施例4与对比例1~6比较可知,磨料的种类、粒径和添加量对于氮化硅陶瓷球的精加工质量具有重要的影响,本发明控制磨料的种类、粒径和添加量,能够满足氮化硅陶瓷球的精加工卸球要求。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
Claims (13)
- 一种氮化硅陶瓷球环保型精加工方法,其特征在于,包括以下步骤:对铸铁板进行车削处理,形成沟道;使用压沟球对所述沟道进行压沟处理,形成沟弧;将氮化硅陶瓷粗磨球装球于所述沟弧处,进行精加工,直至所得氮化硅陶瓷精磨球的直径为氮化硅陶瓷成品球的直径+(5~50)μm;所述精加工所用循环液包括水基循环液和防锈剂;所述水基循环液包括以下体积百分数的组分:无油钢球硬磨液20~40%、水60~80%和消泡剂1~3%。
- 根据权利要求1所述的加工方法,其特征在于,所述铸铁板的平均硬度为150~250HB,所述铸铁板的不同位置的硬度散差≤30HB。
- 根据权利要求1所述的加工方法,其特征在于,所述压沟球的数量为每条沟道摆放5~30粒压沟球。
- 根据权利要求1所述的加工方法,其特征在于,所述沟弧的宽度为所述压沟球的直径的1/4~1/3。
- 根据权利要求1所述的加工方法,其特征在于,所述氮化硅陶瓷成品球的直径为3~20mm。
- 根据权利要求1所述的加工方法,其特征在于,所述压沟处理的压力为10~30kN,所述压沟处理的时间为4~24h。
- 根据权利要求1或5所述的加工方法,其特征在于,所述氮化硅陶瓷粗磨球的直径为所述氮化硅陶瓷成品球的直径+(100~300)μm,所述氮化硅陶瓷粗磨球的直径变动量小于5μm,批直径变动量小于10μm,表面缺陷深度小于30μm。
- 根据权利要求1所述的加工方法,其特征在于,进行所述装球前,将所述氮化硅陶瓷粗磨球进行超声波清洗,所述超声波清洗的时间为10~60min,电流为1~5A。
- 根据权利要求1所述的加工方法,其特征在于,所述精加工所用磨料为人造金刚石粉;所述磨料的粒径为5~20μm。
- 根据权利要求1或9所述的加工方法,其特征在于,所述精加工的过程中,加工压力为6~20kN,加工转速为10~25r/min。
- 根据权利要求10所述的加工方法,其特征在于,在所述精加工的过程中,每间隔6~10h进行一次加料,所述加料所添加的磨料和循环液的用量比为(10~30)g:(100~200)mL。
- 根据权利要求1所述的加工方法,其特征在于,所述防锈剂包括苯甲酸钠、DS-064浓缩型钢铁水基防锈剂或KS-VCI水基防锈液,当所述防锈剂为苯甲酸钠时,所述水基循环液与防锈剂的用量比为10L:(200~500)g;当所述防锈剂为DS-064浓缩型钢铁水基防锈剂或KS-VCI水基防锈液时,所述水基循环液与防锈剂的质量比为1:(0.01~0.1)。
- 根据权利要求1所述的加工方法,其特征在于,所述消泡剂包括有机硅消泡剂。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010861944.3A CN111975466B (zh) | 2020-08-25 | 2020-08-25 | 一种氮化硅陶瓷球环保型精加工方法 |
CN202010861944.3 | 2020-08-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022041355A1 true WO2022041355A1 (zh) | 2022-03-03 |
Family
ID=73443136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/116430 WO2022041355A1 (zh) | 2020-08-25 | 2020-09-21 | 一种氮化硅陶瓷球环保型精加工方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111975466B (zh) |
WO (1) | WO2022041355A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112518568A (zh) * | 2020-12-07 | 2021-03-19 | 江苏力星通用钢球股份有限公司 | 一种5g通信领域高精度钢球单机三水箱精研生产工艺 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060046620A1 (en) * | 2004-08-26 | 2006-03-02 | Mikronite Technologies Group, Inc. | Process for forming spherical components |
CN101049676A (zh) * | 2007-05-15 | 2007-10-10 | 山东东阿钢球集团有限公司 | G3级氮化硅球加工工艺 |
CN101704208A (zh) * | 2009-06-01 | 2010-05-12 | 浙江工业大学 | 一种高精度陶瓷球高效研磨/抛光加工工艺 |
CN102212412A (zh) * | 2011-05-10 | 2011-10-12 | 天津理工大学 | 一种磨料经过表面活性剂处理的水基切削液及其制备方法 |
JP2016078197A (ja) * | 2014-10-21 | 2016-05-16 | Ntn株式会社 | 窒化珪素球状体、窒化珪素球状体の製造方法、および窒化珪素球状体の検査方法 |
CN106625191A (zh) * | 2016-10-27 | 2017-05-10 | 中材高新氮化物陶瓷有限公司 | 一种氮化硅陶瓷球的加工方法 |
CN109233744A (zh) * | 2018-09-10 | 2019-01-18 | 中材高新氮化物陶瓷有限公司 | 一种陶瓷球研磨剂及其制备方法和应用 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1058512C (zh) * | 1994-06-11 | 2000-11-15 | 王魁久 | 陶瓷球的加工工艺 |
CN104232281A (zh) * | 2014-08-21 | 2014-12-24 | 宁波市镇海华日轴承有限公司 | 一种轴承基准面磨液的配制方法 |
CN104371819A (zh) * | 2014-11-10 | 2015-02-25 | 马锋 | 一种环境友好型高效长效多金属通用水基防锈切削液 |
CN105176659A (zh) * | 2015-10-09 | 2015-12-23 | 阜新恒锐特种精密钢球制造有限公司 | 一种磨削液、其制备方法及应用 |
-
2020
- 2020-08-25 CN CN202010861944.3A patent/CN111975466B/zh active Active
- 2020-09-21 WO PCT/CN2020/116430 patent/WO2022041355A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060046620A1 (en) * | 2004-08-26 | 2006-03-02 | Mikronite Technologies Group, Inc. | Process for forming spherical components |
CN101049676A (zh) * | 2007-05-15 | 2007-10-10 | 山东东阿钢球集团有限公司 | G3级氮化硅球加工工艺 |
CN101704208A (zh) * | 2009-06-01 | 2010-05-12 | 浙江工业大学 | 一种高精度陶瓷球高效研磨/抛光加工工艺 |
CN102212412A (zh) * | 2011-05-10 | 2011-10-12 | 天津理工大学 | 一种磨料经过表面活性剂处理的水基切削液及其制备方法 |
JP2016078197A (ja) * | 2014-10-21 | 2016-05-16 | Ntn株式会社 | 窒化珪素球状体、窒化珪素球状体の製造方法、および窒化珪素球状体の検査方法 |
CN106625191A (zh) * | 2016-10-27 | 2017-05-10 | 中材高新氮化物陶瓷有限公司 | 一种氮化硅陶瓷球的加工方法 |
CN109233744A (zh) * | 2018-09-10 | 2019-01-18 | 中材高新氮化物陶瓷有限公司 | 一种陶瓷球研磨剂及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN111975466A (zh) | 2020-11-24 |
CN111975466B (zh) | 2022-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110315439B (zh) | 一种具有毛细微孔的镜面磨削砂轮及其制备方法 | |
JP5843036B1 (ja) | 再生研磨材スラリーの調製方法 | |
CN105413291B (zh) | 分流式切削液过滤装置 | |
CN103991140A (zh) | 一种金刚石线切割硅棒的切割工艺 | |
CN109848821A (zh) | 一种镍合金的绿色环保化学机械抛光方法 | |
CN112080251B (zh) | 一种晶片研磨液及其制备方法 | |
CN110129118B (zh) | Elid磨削铝基复合材料专用磨削液及其制备方法 | |
CN101392149A (zh) | 水溶性固体抛光蜡 | |
CN100500375C (zh) | 平面不锈钢的半固着磨粒抛光方法 | |
CN1291630A (zh) | 制造存储器硬盘用的抛光组合物和抛光方法 | |
CN104400567B (zh) | 一种金属板的超镜面抛光方法 | |
CN110890271A (zh) | 一种碳化硅晶片的加工方法 | |
CN1562569A (zh) | 可在线电解的金属结合剂超硬磨料砂轮及其制备方法 | |
CN102513918A (zh) | 一种基于软质磨料固着磨具的氮化硅陶瓷球研磨方法 | |
WO2022041355A1 (zh) | 一种氮化硅陶瓷球环保型精加工方法 | |
CN110064973A (zh) | 一种铜或铜合金的表面抛光处理工艺 | |
CN101139517A (zh) | 轴承降振化学研磨剂及其使用方法 | |
JP6806085B2 (ja) | 研磨材スラリーの再生方法 | |
CN110421494B (zh) | 一种基于溶胶凝胶法的树脂金属复合镜面磨削砂轮及其制备方法 | |
JP6419578B2 (ja) | ハードディスク用ガラス基板の製造方法 | |
CN101747864B (zh) | 用于钢球研磨的乳化型精研液配制使用方法 | |
CN1233808C (zh) | 可在线电解的金属结合剂超硬磨料砂轮使用的磨削液及其制备方法 | |
CN115181498A (zh) | 一种用于kdp晶体的抛光液及高效研磨抛光工艺 | |
CN209754880U (zh) | 一种固结磨料自锐性磨抛的研磨工具 | |
CN1721135A (zh) | 油剂大循环树脂砂轮研、精磨精密轴承钢球的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20951023 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20951023 Country of ref document: EP Kind code of ref document: A1 |