WO2022041209A1 - 顶持力确定方法、装置及存储介质 - Google Patents
顶持力确定方法、装置及存储介质 Download PDFInfo
- Publication number
- WO2022041209A1 WO2022041209A1 PCT/CN2020/112524 CN2020112524W WO2022041209A1 WO 2022041209 A1 WO2022041209 A1 WO 2022041209A1 CN 2020112524 W CN2020112524 W CN 2020112524W WO 2022041209 A1 WO2022041209 A1 WO 2022041209A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- jacking force
- workpiece
- head
- jacking
- force
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/4097—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B25/00—Accessories or auxiliary equipment for turning-machines
- B23B25/06—Measuring, gauging, or adjusting equipment on turning-machines for setting-on, feeding, controlling, or monitoring the cutting tools or work
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/35—Nc in input of data, input till input file format
- G05B2219/35014—From design, calculate additional parameters, for strength
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/35—Nc in input of data, input till input file format
- G05B2219/35017—Finite elements analysis, finite elements method FEM
Definitions
- the present application relates to the field of industrial processing, in particular to a CAE-oriented jacking force determination method, device and computer-readable storage medium.
- the workpiece For applications that need to hold the workpiece at the head and tailstock end areas of the processing equipment for processing, such as grinding, the workpiece needs to be held between the thimbles of the head and tailstock of the grinding machine for grinding.
- a jacking force should be applied to the head and tailstock. If the jacking force is too small, the processing equipment such as a grinder cannot hold the workpiece. If the jacking force is too large, the workpiece may be bent. The workpiece is deformed under the action of the jacking force at both ends. It can be seen that the size of the jacking force is directly related to the machining accuracy.
- the head and tailstock of the processing equipment have the rated maximum jacking force and processing accuracy.
- the machining accuracy can be used as a reference for specific machining. But machining accuracy is a general value and sometimes not suitable for all situations.
- the embodiments of the present invention provide a method for determining a jacking force on the one hand, and a jacking force determining device and a computer-readable storage medium on the other hand, so as to recommend and select an appropriate jacking force.
- a method for determining the jacking force proposed in the embodiment of the present invention includes: calculating the required minimum jacking force according to the processing force of the processing equipment, the friction coefficient and the geometric information of the workpiece; The model is processed by finite element analysis. Based on the given first jacking force, the deformation amount of the workpiece corresponding to the jacking force is calculated.
- the given first jacking force and its corresponding workpiece deformation to obtain the characteristic curve of the workpiece representing the linear relationship between the jacking force and the deformation of the workpiece; determine the head and tailstocks used to hold the workpiece, and use the finite element method for the CAD model of the determined head and tailstock Analyze and process, based on the given second jacking force, calculate the deformation amount of the head and tailstock corresponding to the second jacking force, according to the given second jacking force and its corresponding head and tailstock deformation The head and tailstock characteristic curve representing the linear relationship between the jacking force and the head and tailstock deformation amount is obtained; Add the deformation amount of the head and tailstock as the system deformation amount to obtain the system characteristic curve representing the linear relationship between the jacking force and the system deformation amount; substitute the machining accuracy required for the workpiece as the maximum system deformation amount into the system characteristic curve to obtain the corresponding maximum allowable jacking force; the recommended jacking force is determined between the minimum jacking force and
- the method further includes: substituting the minimum jacking force into the system characteristic curve to obtain a corresponding minimum system deformation, and using the minimum system deformation as the ideal machining accuracy; The jacking force is substituted into the system characteristic curve to obtain the corresponding recommended system deformation amount, and the recommended system deformation amount is used as the recommended machining accuracy.
- the method further includes: generating a recommendation report, the recommendation report includes required machining accuracy, maximum jacking force, ideal machining accuracy, minimum jacking force, recommended machining accuracy and recommended jacking force.
- the recommendation report further includes: a system characteristic curve; the required machining accuracy, maximum jacking force, ideal machining accuracy, minimum jacking force, recommended machining accuracy and recommended jacking force labels on the system characteristic curve.
- the workpiece has a jacking end; the head and tail frames have an ejector pin in contact with the jacking end; the geometric information of the workpiece includes: the jacking end and the ejector pin The top diameter, bottom diameter, height and maximum machined diameter of the machined surface of the conical surface in contact.
- the determining of the head and tailstocks for jacking the workpiece includes: comparing the minimum jacking force and the obtained weight and size of the workpiece with the rated maximum jacking of each head and tailstock The holding force, the maximum jacking weight and the maximum jacking size are matched, and the head and tailstock with the highest machining accuracy that meets the requirements is determined as the head and tailstock for jacking the workpiece.
- the determined CAD model of the head and tailstock is processed by finite element analysis, and based on a given second jacking force, the head and tailstock deformation corresponding to the second jacking force is calculated and obtained
- the quantity includes: calculating the roundness deformation of the bearing holes of the head and tail frames in the CAD model based on the given second jacking force, and using the calculated roundness deformation of the bearing holes as the corresponding second The amount of deformation of the head and tailstock of the jacking force.
- a device for determining a jacking force proposed in an embodiment of the present invention includes: at least one memory and at least one processor, wherein: the at least one memory is used to store a computer program; the at least one processor is used to call the at least one A computer program stored in a memory causes the device to perform corresponding operations, the operations comprising: calculating the required minimum jacking force according to the processing force of the processing equipment, the friction coefficient and the geometric information of the workpiece; The CAD model of the workpiece is processed by finite element analysis. Based on the given first jacking force, the deformation amount of the workpiece corresponding to the jacking force is calculated.
- the deformation amount of the workpiece is obtained, and the characteristic curve of the workpiece is obtained, which represents the linear relationship between the jacking force and the deformation amount of the workpiece;
- the model is processed by finite element analysis. Based on the given second jacking force, the deformation of the head and tailstock corresponding to the second jacking force is calculated.
- the head and tailstock characteristic curve representing the linear relationship between the jacking force and the head and tailstock deformation amount is obtained;
- the deformation of the workpiece and the deformation of the head and tailstock are added as the deformation of the system, and the system characteristic curve representing the linear relationship between the jacking force and the deformation of the system is obtained; the machining accuracy required by the workpiece is substituted as the maximum system deformation.
- the system characteristic curve the corresponding maximum allowable jacking force is obtained; the recommended jacking force is determined between the minimum jacking force and the maximum jacking force.
- the operation further includes: substituting the minimum jacking force into the system characteristic curve to obtain a corresponding minimum system deformation, and using the minimum system deformation as an ideal machining accuracy; The jacking force is substituted into the system characteristic device to obtain the corresponding recommended system deformation, and the recommended system deformation is used as the recommended machining accuracy.
- the operation further includes: generating a recommendation report, the recommendation report includes required machining accuracy, maximum jacking force, ideal machining accuracy, minimum jacking force, recommended machining accuracy and recommended jacking hold.
- the recommendation report further includes: a system characteristic curve; the required machining accuracy, maximum jacking force, ideal machining accuracy, minimum jacking force, recommended machining accuracy and recommended jacking force labels on the coordinates where the system characteristic curve is located.
- the workpiece has a jacking end; the head and tail frames have an ejector pin in contact with the jacking end; the geometric information of the workpiece includes: the jacking end and the ejector pin The top diameter, bottom diameter, height and maximum machined diameter of the machined surface of the conical surface in contact.
- the determining of the head and tailstocks for jacking the workpiece includes: comparing the minimum jacking force and the obtained weight and size of the workpiece with the rated maximum jacking of each head and tailstock The holding force, the maximum jacking weight and the maximum jacking size are matched, and the head and tailstock with the highest machining accuracy that meets the requirements is determined as the head and tailstock for jacking the workpiece.
- the determined CAD model of the head and tailstock is processed by finite element analysis, and based on a given second jacking force, the head and tailstock deformation corresponding to the second jacking force is calculated and obtained
- the quantity includes: calculating the roundness deformation of the bearing holes of the head and tail frames in the CAD model based on the given second jacking force, and using the calculated roundness deformation of the bearing holes as the corresponding second The amount of deformation of the head and tailstock of the jacking force.
- Another jacking force determination device includes: a workpiece information calculation module, used for calculating the required minimum jacking force according to the machining force of the machining equipment, the friction coefficient and the geometric information of the workpiece
- the CAD model of the workpiece is processed by finite element analysis, and the deformation amount of the workpiece corresponding to the jacking force is calculated based on the given first jacking force.
- the holding force and its corresponding deformation of the workpiece are obtained to obtain the characteristic curve of the workpiece representing the linear relationship between the jacking force and the deformation of the workpiece; the head and tailstock information calculation module is used to determine the amount of the workpiece for jacking the workpiece.
- the head and tailstock deformation corresponding to the second jacking force is calculated, according to The given second jacking force and its corresponding head and tailstock deformation amount are obtained to obtain a head and tailstock characteristic curve representing the linear relationship between the jacking force and the head and tailstock deformation;
- the deformation of the workpiece and the deformation of the head and tailstock corresponding to the same jacking force in the characteristic curve of the workpiece and the characteristic curve of the head and tailstock are added as the system deformation, and the linear relationship between the jacking force and the system deformation is obtained.
- the system characteristic curve of the relationship; the machining accuracy required by the workpiece is substituted into the system characteristic curve as the maximum system deformation to obtain the corresponding maximum allowable jacking force; between the minimum jacking force and the maximum jacking force Time to determine the jacking force of the recommended choice.
- the computer-readable storage medium provided in the embodiment of the present invention has a computer program stored thereon; the computer program can be executed by a processor and implement the method for determining the jacking force described in any of the above embodiments.
- the CAE tool is used to obtain the system deformation amount under a given jacking force by performing finite element analysis on the CAD model of the workpiece and the head and tailstock, thereby obtaining the characteristic jacking force.
- the system characteristic curve of the linear relationship between the holding force and the system deformation amount Since the system deformation amount can be used as the machining accuracy of the workpiece, the jacking force corresponding to each machining accuracy and the corresponding jacking force can be calculated based on the system characteristic curve. Therefore, the recommended jacking force between the minimum jacking force and the maximum jacking force is finally obtained, so that the user can choose the appropriate jacking force.
- FIG. 1 is an exemplary flowchart of a method for determining a jacking force in an embodiment of the present invention.
- FIG. 2 is a schematic diagram of importing workpiece-related information from a database in an example of the present invention.
- FIG. 3 is a schematic diagram of the calculation process of the minimum jacking force required for the workpiece in an example of the present invention.
- FIG. 4 is a schematic diagram of automatically matching head and tailstocks in an example of the present invention.
- FIG. 5 is a schematic diagram of a workpiece characteristic curve, a head and tailstock characteristic curve, and a system characteristic curve in an example of the present invention.
- FIG. 6 is an exemplary structural diagram of a device for determining a jacking force in an embodiment of the present invention.
- FIG. 7 is an exemplary structural diagram of yet another device for determining a jacking force in an embodiment of the present invention.
- CAE Computer Aided Engineering
- the relative deformation of the workpiece can be calculated, and the deformation can be regarded as the machining accuracy. That is to say, if the relative deformation of the workpiece during machining is 1%, the machining accuracy is 1%.
- the relevant deformation of the workpiece during processing includes: the deformation of the workpiece itself and the deformation of the head and tailstocks. Therefore, the machining accuracy of the workpiece can be expressed by the deformation of the two, and the difference between the jacking force and the deformation is basically The linear relationship is satisfied, so the corresponding jacking force can be calculated according to the machining accuracy requirements.
- FIG. 1 is a schematic flowchart of a method for determining a jacking force in an embodiment of the present invention. As shown in Figure 1, the method may include the following steps:
- Step 101 Calculate the required minimum jacking force according to the processing force of the processing equipment, the friction coefficient and the geometric information of the workpiece.
- the processing force is also different.
- the processing force of the grinding machine is the grinding force
- the processing force of the lathe is the turning force
- the friction coefficient and geometric information are also different for different end zones and different workpieces.
- the coefficient of friction refers to the coefficient of friction between the workpiece and the end zone of the processing equipment.
- the friction coefficient refers to the friction coefficient between the workpiece and the ejector pin.
- the geometric information of the workpiece may include: the top diameter, bottom diameter, height (also called center distance) of the conical surface where the top end of the workpiece is in contact with the head and tailstock ejector pins, and the maximum machining diameter of the machining surface,
- information such as the weight and size of the workpiece can also be included. This information can be imported together with the CAD model of the workpiece, eg from a database. Alternatively, it can be measured from the CAD model of the workpiece.
- the diameter of the top surface, the diameter of the bottom surface, the height, and the maximum machining diameter of the machining surface can be obtained by measuring the CAD model of the machining part.
- the relevant information of each workpiece can be stored in the database, so that some data can be read from the database.
- FIG. 2 shows a schematic diagram of importing workpiece-related information from a database in an example.
- the information includes: the name, type, headstock type, tailstock type of the workpiece, whether support is required, required machining accuracy, maximum length, diameter, weight, supported rotational speed, etc.
- the displayed information also includes: grinding force, structure information, position information, and the like.
- Fig. 3 shows a schematic diagram of the calculation process of the minimum jacking force required to hold the workpiece when the processing equipment is a grinding machine and the end zone is an ejector pin in an example.
- the average diameter D and cone angle a of the conical surface are calculated. , that is, the following formula (1):
- the machining torque in the factor (3) is the torque T in the formula (2), so according to the formula (2) and the formula (3), the expression of the minimum jacking force F can be deduced as shown in the following formula (4) :
- step 102 the CAD model of the workpiece is processed by finite element analysis, and based on the given first jacking force, the workpiece deformation amount corresponding to the jacking force is calculated and obtained, according to the given first jacking force.
- the jacking force and its corresponding deformation of the workpiece are obtained to obtain the characteristic curve of the workpiece representing the linear relationship between the jacking force and the deformation of the workpiece.
- the deformation value of the finite element nodes on the machining surface can be collected, and the machining The maximum deformation value of the finite element node on the surface is used as the deformation amount of the workpiece.
- the relationship between the deformation and the jacking force can be regarded as a linear relationship, according to the given first jacking force and the corresponding deformation of the workpiece, the slope of the linear relationship can be obtained, and then the slope of the linear relationship can be obtained.
- the characteristic curve of the workpiece is obtained, which characterizes the linear relationship between the jacking force and the deformation of the workpiece.
- Step 103 Determine the head and tailstock for holding the workpiece, and use finite element analysis to process the CAD model of the determined head and tailstock. Based on the given second jacking force, calculate the corresponding The deformation of the head and tailstock of the second jacking force, according to the given second jacking force and its corresponding deformation of the head and tailstock, the head and tailstock representing the linear relationship between the jacking force and the deformation of the head and tailstock are obtained. Tailstock characteristic curve.
- the head and tail frames for supporting the workpiece there may be various methods for determining the head and tail frames for supporting the workpiece. For example, it can be selected by the user through the human-computer interaction interface, and in this step, the head and tailstock selected by the user can be determined as the head and tail for holding the workpiece in response to the user's selection instruction for the desired head and tailstock shelf.
- the system can also automatically determine the head and tail frames for holding the workpiece. For example, the minimum jacking force and the obtained weight and size of the workpiece can be matched with the rated maximum jacking force, maximum jacking weight and maximum jacking size of each head and tailstock according to the set requirements, and The successfully matched head and tailstock with the highest machining accuracy can be determined as the head and tailstock for holding the workpiece.
- the relevant information of each head and tailstock including the rated maximum jacking force, the maximum jacking weight and the maximum jacking size, can be stored in the database, so that it can be read from the database when needed.
- FIG. 4 shows a schematic diagram of automatic matching of head and tailstock in an example.
- the table above Figure 4 shows some parameter information of the current workpiece, including: name, diameter, weight, rotational speed, grinding force, structure, position, maximum jacking force, minimum jacking force, file name etc.
- the table below Figure 4 shows some parameter information of the head frame, including: name, rated maximum size, rated maximum weight, rated maximum jacking force, positioning, and machining accuracy. The machining accuracy of each headstock in Figure 4 is arranged in descending order. After automatic matching, the unusable headstock will be highlighted, and the usable headstock will be the headstock named HM76-20-1.
- the roundness deformation of the bearing holes of the head and tailstocks in the CAD model can be calculated based on the given second holding force, and the calculated roundness deformation of the bearing holes is used as the corresponding The deformation amount of the head and tail frame of the second top holding force.
- first jacking force and the second jacking force may be the same or different.
- Step 104 adding the deformation amount of the workpiece and the deformation amount of the head and tailstock corresponding to the same jacking force in the characteristic curve of the workpiece and the characteristic curve of the head and tailstock as the system deformation amount to obtain the characterizing jacking force and system deformation.
- FIG. 5 shows a schematic diagram of a workpiece characteristic curve 51 , a head and tailstock characteristic curve 52 and a system characteristic curve 53 in an example.
- the abscissa is the holding force F
- the ordinate is the system deformation Df.
- Step 105 Substitute the required machining accuracy of the workpiece into the system characteristic curve as the maximum system deformation to obtain the corresponding maximum allowable jacking force.
- Step 106 Determine a recommended jacking force between the minimum jacking force and the maximum jacking force.
- an intermediate value may be randomly determined between the minimum jacking force Mi and the maximum jacking force Ma as the recommended jacking force RC, or an empirical value may be added on the basis of the minimum jacking force Mi, The recommended jacking force is obtained, and the recommended jacking force must be less than the maximum allowable jacking force Ma.
- the recommended selected jacking force RC can then be provided to the user.
- the recommended jacking force RC can also be substituted into the system characteristic curve to obtain the corresponding recommended system deformation amount, the recommended system deformation amount can be used as the recommended machining accuracy Ep, and the recommended machining accuracy Ep is provided to users.
- the method may further include: substituting the minimum jacking force Mi into the system characteristic curve to obtain the corresponding minimum system deformation, and using the minimum system deformation as the ideal machining accuracy Ip.
- a recommendation report can be generated, and the recommendation report includes information such as required machining accuracy, maximum jacking force, ideal machining accuracy, minimum jacking force, recommended machining accuracy, and recommended jacking force, etc.
- a recommendation report is provided to the user.
- the system characteristic curve shown in FIG. 5 can be directly marked with the required machining accuracy Rp, the maximum jacking force Ma, the ideal machining accuracy Ip, the minimum jacking force Mi, the recommended machining accuracy Ep and the recommended machining accuracy.
- a graph of the Upholding Power RC is provided to the user as a recommendation report or as part of a recommendation report.
- the method for determining the jacking force in the embodiment of the present invention is described in detail above, and the device for determining the jacking force in the embodiment of the present invention is described in detail below.
- the device for determining the jacking force in the embodiment of the present invention can be used to implement the method for determining the jacking force in the embodiment of the present invention.
- details not disclosed in detail in the embodiment of the device of the present invention please refer to the corresponding description in the embodiment of the method of the present invention, It is not repeated here.
- FIG. 6 is an exemplary structural diagram of a device for determining a jacking force in an embodiment of the present invention.
- the system may include: a workpiece information calculation module 61 , a head and tailstock information calculation module 62 and a system evaluation module 63 .
- the workpiece information calculation module 61 is used to calculate the required minimum jacking force according to the processing force of the processing equipment, the friction coefficient and the geometric information of the workpiece; the CAD model of the workpiece is processed by finite element analysis. , based on the given first jacking force, the deformation amount of the workpiece corresponding to the jacking force is calculated, and the representative jacking force is obtained according to the given first jacking force and the corresponding workpiece deformation amount The characteristic curve of the workpiece with the linear relationship between the deformation of the workpiece.
- the geometric information of the workpiece includes: the top diameter of the conical surface where the top end of the workpiece is in contact with the ejector pin of the head and tailstock , Bottom diameter, height and the maximum machining diameter of the machined surface.
- the workpiece information calculation module 61 can follow the aforementioned formula Calculate the minimum jacking force.
- d 1 is the diameter of the top surface of the conical surface where the top holding end of the workpiece is in contact with the head and tailstock thimbles
- d 2 is the diameter of the bottom surface of the conical surface
- d c is the height of the conical surface, also known as the center distance
- F g Apply force for processing, such as grinding force, turning force, broaching force, boring force, etc.
- D w is the maximum processing diameter of the machined surface
- s is the friction coefficient.
- the head and tailstock information calculation module 62 is used to determine the headstock for holding the workpiece, and to process the determined CAD model of the headstock and tailstock by finite element analysis, based on a given second jacking force , the deformation amount of the head and tail frame corresponding to the second jacking force is calculated, and according to the given second jacking force and its corresponding head and tail frame deformation amount, the characteristic jacking force and the head and tail frame deformation amount are obtained.
- the head and tailstock information calculation module 62 may compare the minimum jacking force and the obtained weight and size of the workpiece with the rated maximum jacking force, maximum jacking weight and maximum jacking force of each head and tail stock The jacking size is matched, and the head and tailstock with the highest machining accuracy that meets the requirements is determined as the head and tailstock for jacking the workpiece.
- the roundness deformation of the bearing hole of the head and tailstock in the CAD model can be calculated based on the given second jacking force, and the calculated roundness of the bearing hole is calculated.
- the deformation amount is taken as the deformation amount of the head and tail frame corresponding to the second jacking force.
- the system evaluation module 63 is used to add the deformation amount of the workpiece and the deformation amount of the head and tailstock corresponding to the same jacking force in the characteristic curve of the workpiece and the characteristic curve of the head and tailstock as the system deformation amount to obtain the representative jacking force.
- the system characteristic curve that has a linear relationship with the system deformation; the machining accuracy required for the workpiece is substituted into the system characteristic curve as the maximum system deformation to obtain the corresponding maximum jacking force, that is, the maximum allowable jacking force;
- the recommended jacking force is determined between the minimum jacking force and the maximum jacking force.
- system evaluation module 63 may further substitute the recommended jacking force into the system characteristic curve to obtain a corresponding recommended system deformation amount, and use the recommended system deformation amount as the recommended machining accuracy; Substitute the minimum jacking force into the system characteristic curve to obtain the corresponding minimum system deformation, and use the minimum system deformation as the ideal machining accuracy.
- the system evaluation module 63 further generates a recommendation report, and the recommendation report includes the required machining accuracy, the maximum jacking force, the ideal machining accuracy, the minimum jacking force, the recommended machining accuracy and the recommended machining accuracy. Holding power.
- the recommendation report may further include: system characteristic curve; the required machining accuracy, maximum jacking force, ideal machining accuracy, minimum jacking force, recommended machining accuracy and recommended jacking force are marked in the on the system characteristic curve.
- the above-mentioned jacking force determination device can be integrated as a plug-in into a CAE software, such as NX (siemens).
- the system establishes the parameter database of the workpiece and the head and tailstock, and can automatically complete the whole process of finite element analysis and other calculations.
- the above-mentioned method for determining the jacking force is not only suitable for grinding, but also for other processing processes such as turning, broaching, and boring, and is suitable for most thimble structures.
- FIG. 7 is a schematic structural diagram of another apparatus for determining a jacking force in an embodiment of the present invention, and the apparatus can be used to implement the method shown in FIG. 1 or implement the apparatus shown in FIG. 6 .
- the system may include: at least one memory 71 , at least one processor 72 and at least one display 73 .
- some other components, such as communication ports, etc., may also be included. These components communicate over bus 74 .
- At least one memory 71 is used to store computer programs.
- the computer program can be understood as including each module of the jacking force determination device shown in FIG. 6 .
- the at least one memory 71 may also store an operating system and the like.
- Operating systems include but are not limited to: Android operating system, Symbian operating system, Windows operating system, Linux operating system, and so on.
- At least one display 73 is used to display recommendation reports and the like.
- At least one processor 72 is configured to invoke a computer program stored in at least one memory 71 to execute the jacking force determination method described in the embodiments of the present invention.
- At least one processor 72 is configured to invoke a computer program stored in at least one memory 71 to cause the apparatus to perform corresponding operations.
- the operation may include: calculating the required minimum jacking force according to the processing force of the processing equipment, the friction coefficient and the geometric information of the workpiece; processing the CAD model of the workpiece using finite element analysis, based on a given
- the first jacking force is calculated to obtain the deformation of the workpiece corresponding to the jacking force. According to the given first jacking force and the corresponding deformation of the workpiece, the jacking force and workpiece deformation are obtained.
- the characteristic curve of the workpiece with the linear relationship between the quantities determine the head and tailstock for holding the workpiece, and use the finite element analysis to process the CAD model of the determined head and tailstock, based on the given second headstock Holding force, the deformation amount of the head and tailstock corresponding to the second jacking force is calculated, and according to the given second jacking force and the corresponding deformation of the head and tailstock, the characteristic jacking force and the head and tailstock are obtained.
- the head and tailstock characteristic curve of the linear relationship between the deformations; the deformation of the workpiece and the head and tailstock corresponding to the same jacking force in the characteristic curve of the workpiece and the characteristic curve of the head and tailstock are added as the system deformation to obtain a system characteristic curve representing the linear relationship between the jacking force and the system deformation; substitute the machining accuracy required for the workpiece as the maximum system deformation into the system characteristic curve to obtain the corresponding maximum allowable jacking force;
- the recommended jacking force is determined between the minimum jacking force and the maximum jacking force.
- the operation may further include: substituting the minimum jacking force into the system characteristic curve to obtain a corresponding minimum system deformation, and using the minimum system deformation as an ideal machining accuracy;
- the recommended jacking force is substituted into the system characteristic device to obtain the corresponding recommended system deformation amount, and the recommended system deformation amount is used as the recommended machining accuracy.
- the operation may further include: generating a recommendation report, the recommendation report includes required machining accuracy, maximum jacking force, ideal machining accuracy, minimum jacking force, recommended machining accuracy and recommended machining accuracy Holding power.
- the recommendation report further includes: a system characteristic curve; the required machining accuracy, maximum jacking force, ideal machining accuracy, minimum jacking force, recommended machining accuracy and recommended jacking force labels on the coordinates where the system characteristic curve is located.
- the workpiece has a jacking end; the head and tail frames have an ejector pin in contact with the jacking end; the geometric information of the workpiece includes: the jacking end and the ejector pin The top diameter, bottom diameter, height and maximum machined diameter of the machined surface of the conical surface in contact.
- the determining of the head and tailstocks for jacking the workpiece includes: comparing the minimum jacking force and the obtained weight and size of the workpiece with the rated maximum jacking of each head and tailstock The holding force, the maximum jacking weight and the maximum jacking size are matched, and the head and tailstock with the highest machining accuracy that meets the requirements is determined as the head and tailstock for jacking the workpiece.
- the determined CAD model of the head and tailstock is processed by finite element analysis, and based on a given second jacking force, the head and tailstock deformation corresponding to the second jacking force is calculated and obtained
- the quantity includes: calculating the roundness deformation of the bearing holes of the head and tail frames in the CAD model based on the given second jacking force, and using the calculated roundness deformation of the bearing holes as the corresponding second The amount of deformation of the head and tailstock of the jacking force.
- the processor 72 may be a CPU, a processing unit/module, an ASIC, a logic module or a programmable gate array, or the like. It can receive and transmit data through the communication port.
- a hardware module may include specially designed permanent circuits or logic devices (eg, special purpose processors, such as FPGAs or ASICs) for performing specific operations.
- Hardware modules may also include programmable logic devices or circuits (eg, including general-purpose processors or other programmable processors) temporarily configured by software for performing particular operations.
- programmable logic devices or circuits eg, including general-purpose processors or other programmable processors
- the embodiments of the present invention also provide a computer-readable storage medium on which a computer program is stored, and the computer program can be executed by a processor to implement the jacking force determination method described in the embodiments of the present invention.
- a system or device equipped with a storage medium on which software program codes for realizing the functions of any one of the above-described embodiments are stored, and make the computer (or CPU or MPU of the system or device) ) to read and execute the program code stored in the storage medium.
- a part or all of the actual operation can also be completed by an operating system or the like operating on the computer based on the instructions of the program code.
- the program code read from the storage medium can also be written into the memory provided in the expansion board inserted into the computer or into the memory provided in the expansion unit connected to the computer, and then the instructions based on the program code make the device installed in the computer.
- the CPU on the expansion board or the expansion unit or the like performs part and all of the actual operations, so as to realize the functions of any one of the above-mentioned embodiments.
- Embodiments of storage media for providing program code include floppy disks, hard disks, magneto-optical disks, optical disks (eg, CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM, DVD-RW, DVD+RW), Magnetic tapes, non-volatile memory cards and ROMs.
- the program code may be downloaded from a server computer over a communications network.
- the CAE tool is used to obtain the system deformation amount under a given jacking force by performing finite element analysis on the CAD model of the workpiece and the head and tailstock, thereby obtaining the characteristic jacking force.
- the system characteristic curve of the linear relationship between the holding force and the system deformation amount Since the system deformation amount can be used as the machining accuracy of the workpiece, the jacking force corresponding to each machining accuracy and the corresponding jacking force can be calculated based on the system characteristic curve. Therefore, the recommended jacking force between the minimum jacking force and the maximum jacking force is finally obtained, so that the user can choose the appropriate jacking force.
Landscapes
- Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Numerical Control (AREA)
- Turning (AREA)
Abstract
一种顶持力确定方法、装置和存储介质,该方法包括:根据加工设备的加工施力和加工件的几何信息,计算所需的最小顶持力;对加工件的CAD模型利用有限元分析进行处理,得到加工件特性曲线(51);确定用于顶持加工件的头尾架,并对所确定的头尾架的CAD模型利用有限元分析进行处理,得到头尾架特性曲线(52);根据加工件特性曲线(51)和头尾架特性曲线(52),得到表征顶持力和系统变形量之间线性关系的系统特性曲线(53);将加工件所需的加工精度作为最大系统变形量代入系统特性曲线(53),得到对应的最大允许顶持力;在最小顶持力和最大顶持力之间确定出推荐选择的顶持力。
Description
本申请涉及工业加工领域,特别是一种CAE导向的顶持力确定方法、装置及计算机可读存储介质。
对于需要将加工件顶持在加工设备头、尾架端区进行加工的应用,如磨削加工,需要将加工件顶持在磨床头、尾架的顶针之间进行磨削。为了固定加工件,应在头、尾架上施加顶持力。如果顶持力太小,则加工设备如磨床等无法顶持被加工件。如果顶持力过大,被加工件可能会弯曲。被加工件在两端顶持力的作用下产生变形。可见,顶持力的大小直接关系到加工的精度。
目前,加工设备的头、尾架均具有额定的最大顶持力和加工精度。该加工精度可作为具体加工时的参考。但加工精度是一个通用值,有时并不适合所有情况。
发明内容
有鉴于此,本发明实施例中一方面提出了一种顶持力确定方法,另一方面提出了一种顶持力确定装置和计算机可读存储介质,用以推荐选择合适的顶持力。
本发明实施例中提出的一种顶持力确定方法,包括:根据加工设备的加工施力、摩擦系数和加工件的几何信息,计算所需的最小顶持力;对所述加工件的CAD模型利用有限元分析进行处理,基于给定的第一顶持力,计算得到对应所述顶持力的加工件变形量,根据所述给定的第一顶持力和其对应的加工件变形量,得到表征顶持力和加工件变形量之间线性关系的加工件特性曲线;确定用于顶持所述加工件的头尾架,并对所确定的头尾架的CAD模型利用有限元分析进行处理,基于给定的第二顶持力,计算得到对应所述第二顶持力的头尾架变形量,根据所述给定的第二顶持力和其对应的头尾架变形量,得到表征顶持力和头尾架变形量之间线性关系的头尾架特性曲线;将所述加工件特性曲线和所述头尾架特性曲线中对应同一顶持力的加工件变形量和头尾架变形量相加作为系统变形量,得到表征顶持力和系统变形量之间线性关系的系统特性曲线;将加工件所需的加工精度作为最大系统变形量代入所述系统特性曲线,得到对应的最大允许顶持力;在 所述最小顶持力和所述最大顶持力之间确定出推荐选择的顶持力。
在一个实施方式中,该方法进一步包括:将所述最小顶持力代入所述系统特性曲线,得到对应的最小系统变形量,将所述最小系统变形量作为理想加工精度;将所述推荐的顶持力代入所述系统特性曲线,得到对应的推荐的系统变形量,将所述推荐的系统变形量作为推荐的加工精度。
在一个实施方式中,该方法进一步包括:生成一推荐报告,所述推荐报告中包括所需加工精度、最大顶持力、理想加工精度、最小顶持力、推荐的加工精度和推荐的顶持力。
在一个实施方式中,所述推荐报告中进一步包括:系统特性曲线;所述所需加工精度、最大顶持力、理想加工精度、最小顶持力、推荐的加工精度和推荐的顶持力标注在所述系统特性曲线上。
在一个实施方式中,所述加工件具有顶持端;所述头尾架上具有与所述顶持端接触的顶针;所述加工件的几何信息包括:所述顶持端与所述顶针接触的锥面的顶面直径、底面直径、高和加工面的最大加工直径。
在一个实施方式中,所述确定用于顶持所述加工件的头尾架包括:将所述最小顶持力和获取的所述加工件的重量和尺寸与各头尾架的额定最大顶持力、最大顶持重量和最大顶持尺寸进行匹配,将满足要求的加工精度最高的头尾架确定为用于顶持所述加工件的头尾架。
在一个实施方式中,所述对所确定的头尾架的CAD模型利用有限元分析进行处理,基于给定的第二顶持力,计算得到对应所述第二顶持力的头尾架变形量包括:基于给定的第二顶持力,对所述CAD模型中头尾架的轴承孔的圆度变形量进行计算,将计算得到的轴承孔的圆度变形量作为对应所述第二顶持力的头尾架变形量。
本发明实施例中提出的一种顶持力确定装置,包括:至少一个存储器和至少一个处理器,其中:所述至少一个存储器用于存储计算机程序;所述至少一个处理器用于调用所述至少一个存储器中存储的计算机程序使所述装置执行对应的操作,所述操作包括:根据加工设备的加工施力、摩擦系数和加工件的几何信息,计算所需的最小顶持力;对所述加工件的CAD模型利用有限元分析进行处理,基于给定的第一顶持力,计算得到对应所述顶持力的加工件变形量,根据所述给定的第一顶持力和其对应的加工件变形量,得到表征顶持力和加工件变形量之间线性关系的加工件特性曲线;确定用于顶持所述加工件的头尾架,并对所确定的头尾架的CAD模型利用有限元分析进行处理,基于给定的第 二顶持力,计算得到对应所述第二顶持力的头尾架变形量,根据所述给定的第二顶持力和其对应的头尾架变形量,得到表征顶持力和头尾架变形量之间线性关系的头尾架特性曲线;将所述加工件特性曲线和所述头尾架特性曲线中对应同一顶持力的加工件变形量和头尾架变形量相加作为系统变形量,得到表征顶持力和系统变形量之间线性关系的系统特性曲线;将加工件所需的加工精度作为最大系统变形量代入所述系统特性曲线,得到对应的最大允许顶持力;在所述最小顶持力和所述最大顶持力之间确定出推荐选择的顶持力。
在一个实施方式中,所述操作进一步包括:将所述最小顶持力代入所述系统特性曲线,得到对应的最小系统变形量,将所述最小系统变形量作为理想加工精度;将所述推荐的顶持力代入所述系统特性装置,得到对应的推荐的系统变形量,将所述推荐的系统变形量作为推荐的加工精度。
在一个实施方式中,所述操作进一步包括:生成一推荐报告,所述推荐报告中包括所需加工精度、最大顶持力、理想加工精度、最小顶持力、推荐的加工精度和推荐的顶持力。
在一个实施方式中,所述推荐报告中进一步包括:系统特性曲线;所述所需加工精度、最大顶持力、理想加工精度、最小顶持力、推荐的加工精度和推荐的顶持力标注在所述系统特性曲线所在的坐标上。
在一个实施方式中,所述加工件具有顶持端;所述头尾架上具有与所述顶持端接触的顶针;所述加工件的几何信息包括:所述顶持端与所述顶针接触的锥面的顶面直径、底面直径、高和加工面的最大加工直径。
在一个实施方式中,所述确定用于顶持所述加工件的头尾架包括:将所述最小顶持力和获取的所述加工件的重量和尺寸与各头尾架的额定最大顶持力、最大顶持重量和最大顶持尺寸进行匹配,将满足要求的加工精度最高的头尾架确定为用于顶持所述加工件的头尾架。
在一个实施方式中,所述对所确定的头尾架的CAD模型利用有限元分析进行处理,基于给定的第二顶持力,计算得到对应所述第二顶持力的头尾架变形量包括:基于给定的第二顶持力,对所述CAD模型中头尾架的轴承孔的圆度变形量进行计算,将计算得到的轴承孔的圆度变形量作为对应所述第二顶持力的头尾架变形量。
本发明实施例中提供的又一种顶持力确定装置,包括:加工件信息计算模块,用于根据加工设备的加工施力、摩擦系数和加工件的几何信息,计算所需的最小顶持力;对所 述加工件的CAD模型利用有限元分析进行处理,基于给定的第一顶持力,计算得到对应所述顶持力的加工件变形量,根据所述给定的第一顶持力和其对应的加工件变形量,得到表征顶持力和加工件变形量之间线性关系的加工件特性曲线;头尾架信息计算模块,用于确定用于顶持所述加工件的头尾架,并对所确定的头尾架的CAD模型利用有限元分析进行处理,基于给定的第二顶持力,计算得到对应所述第二顶持力的头尾架变形量,根据所述给定的第二顶持力和其对应的头尾架变形量,得到表征顶持力和头尾架变形量之间线性关系的头尾架特性曲线;和系统评估模块,用于将所述加工件特性曲线和所述头尾架特性曲线中对应同一顶持力的加工件变形量和头尾架变形量相加作为系统变形量,得到表征顶持力和系统变形量之间线性关系的系统特性曲线;将加工件所需的加工精度作为最大系统变形量代入所述系统特性曲线,得到对应的最大允许顶持力;在所述最小顶持力和所述最大顶持力之间确定出推荐选择的顶持力。
本发明实施例中提供的计算机可读存储介质,其上存储有计算机程序;所述计算机程序能够被一处理器执行并实现如上任一实施方式中所述的顶持力确定方法。
从上述方案中可以看出,由于本发明实施例中利用CAE工具通过对加工件和头尾架的CAD模型进行有限元分析处理可得到给定顶持力下的系统变形量,从而得到表征顶持力和系统变形量之间线性关系的系统特性曲线,由于系统变形量可作为加工件的加工精度,因此基于该系统特性曲线便可以计算对应各加工精度的顶持力以及对应各顶持力的加工精度,从而最终得到介于最小顶持力和最大顶持力之间的推荐顶持力,使得用户可以选择合适的顶持力。
下面将通过参照附图详细描述本发明的优选实施例,使本领域的普通技术人员更清楚本发明的上述及其它特征和优点,附图中:
图1为本发明实施例中一种顶持力确定方法的示例性流程图。
图2为本发明一个例子中从数据库导入加工件相关信息的示意图。
图3为本发明一个例子中加工件所需最小顶持力的计算过程的示意图。
图4为本发明一个例子中自动匹配头尾架的示意图。
图5为本发明一个例子中加工件特性曲线、头尾架特性曲线和系统特性曲线的示意图。
图6为本发明实施例中一种顶持力确定装置的示例性结构图。
图7为本发明实施例中又一种顶持力确定装置的示例性结构图。
其中,附图标记如下:
标号 | 含义 |
101~106 | 步骤 |
61 | 加工件信息计算模块 |
62 | 头尾架信息计算模块 |
63 | 系统评估模块 |
71 | 存储器 |
72 | 处理器 |
73 | 显示器 |
74 | 总线 |
本发明实施例中,考虑到计算机辅助工程(CAE,Computer Aided Engineering)是目前机械分析的常用工具。利用CAE技术可以计算加工件加工时的相关变形量,且变形量可以看作是加工精度。也就是说,如果加工件加工时的相关变形量为1%,则加工精度为1%。而加工件加工时的相关变形量包括:加工件本身的变形量和头尾架的变形量,因此加工件的加工精度可以通过二者的变形量表示,而顶持力和变形量之间基本满足线性关系,因此,可以根据加工精度要求计算出对应的顶持力。
为使本发明的目的、技术方案和优点更加清楚,以下举实施例对本发明进一步详细说明。
图1为本发明实施例中顶持力确定方法的流程示意图。如图1所示,该方法可包括如下步骤:
步骤101,根据加工设备的加工施力、摩擦系数和加工件的几何信息,计算所需的最小顶持力。
本步骤中,针对不同的加工设备,其加工施力也不同,如磨床的加工施力为磨削力,车床的加工施力为车削力,此外还有拉削力、镗削力等。此外,针对不同的端区以及不同的加工件,其摩擦系数和几何信息也不同。摩擦系数指的是加工件和加工设备端区之间的摩擦系数。
下面以加工设备为磨床,端区为顶针的情况为例,此时,摩擦系数指的是加工件和顶针之间的摩擦系数。在一个例子中,加工件的几何信息可包括:加工件顶持端与头尾架顶针接触的锥面的顶面直径、底面直径、高(也称中心距离)和加工面的最大加工直径,此外还可以包括加工件的重量、尺寸等信息。这些信息可以与加工件的CAD模型一起导入,如从数据库中导入。或者也可从加工件的CAD模型中测量得到。例如,顶面直径、底面直径、高和加工面的最大加工直径等可通过对所述加工件的CAD模型进行测量得到。此外,各加工件的相关信息可以存储到数据库中,这样有些数据便可以从数据库中读取。
图2示出了一个例子中从数据库导入加工件相关信息的示意图。如图2所示,这些信息包括:加工件的名称、类型、头架类型、尾架类型、是否需要支撑、需要的加工精度、最大长度、直径、重量、支持的转速等,图2中未示出的信息中还包括:磨削力、结构信息、位置信息等。
图3示出了一个例子中加工设备为磨床,端区为顶针时顶持加工件所需最小顶持力的计算过程的示意图。如图3所示,首先根据加工件顶持端与头尾架顶针接触的锥面的顶面直径d
1、底面直径d
2和高d
c,计算得到锥面的平均直径D和锥角a,即有下式(1):
然后,根据上式(1)中计算得到的锥面的平均直径D、锥角a,以及所获取的摩擦系数s,可得到最小顶持力F和扭矩T之间的关系式,即下式(2):
根据获取的加工施力如磨削力F
g和加工面的最大加工直径D
w,可得到加工扭矩如磨削扭矩T
g的表达示,即下式(3):
因式(3)中的加工扭矩即为式(2)中的扭矩T,因此根据式(2)和式(3),可推导出最小顶持力F的表达式如下式(4)所示:
从而可求出夹持加工件所需的最小顶持力。
步骤102,对所述加工件的CAD模型利用有限元分析进行处理,基于给定的第一顶持力,计算得到对应所述顶持力的加工件变形量,根据所述给定的第一顶持力和其对应的加工件变形量,得到表征顶持力和加工件变形量之间线性关系的加工件特性曲线。
本步骤中,因顶持力是加在加工件两端的,因此在给定的第一顶持力下计算加工件的变形量时,可采集加工面上有限元节点的变形值,并将加工面上有限元节点的最大变形值作为加工件的变形量。又因为变形量与顶持力的关系可以看作是线性关系,因此根据所述给定的第一顶持力和其对应的加工件变形量,变可求出该线性关系的斜率,进而可得到表征顶持力和加工件变形量之间线性关系的加工件特性曲线。
步骤103,确定用于顶持所述加工件的头尾架,并对所确定的头尾架的CAD模型利用有限元分析进行处理,基于给定的第二顶持力,计算得到对应所述第二顶持力的头尾架变形量,根据所述给定的第二顶持力和其对应的头尾架变形量,得到表征顶持力和头尾架变形量之间线性关系的头尾架特性曲线。
本步骤中,确定用于顶持所述加工件的头尾架的方法可有多种。例如,可由用户通过人机交互界面进行选择,则本步骤中可响应于用户对所需头尾架的选择指令,将用户选择的头尾架确定为用于顶持所述加工件的头尾架。
又如,也可由系统自动确定用于顶持所述加工件的头尾架。例如,可将所述最小顶持力和获取的所述加工件的重量和尺寸与各头尾架的额定最大顶持力、最大顶持重量和最大顶持尺寸按照设定要求进行匹配,并可将匹配成功的加工精度最高的头尾架确定为用于顶持所述加工件的头尾架。此时,可将各头尾架的相关信息,包括额定最大顶持力、最大顶持重量和最大顶持尺寸等信息存储到数据库中,这样需要时便可以从数据库中读取。
图4示出了一个例子中自动匹配头尾架的示意图。如图4所示,图4上方的表格示出了当前加工件的一些参数信息,包括:名称、直径、重量、转速、磨削力、结构、位置、最大顶持力、最小顶持力、文件名等。图4下方的表格示出了头架的一些参数信息,包括:名称、额定最大尺寸、额定最大重量、额定最大顶持力、定位、加工精度。图4中各个头架的加工精度按照从高到低的次序进行排列。通过自动匹配后,将不能使用的头架标亮显示,从而可使用的头架为名称为HM76-20-1的头架。
此外,计算头尾架变形量时,导入头尾架的CAD模型,通过有限元分析对其进行处理,得到其变形情况,由于头尾架的轴承孔的变形量可对应头尾架的加工精度。如果轴承孔变形,轴承将有偏差地旋转。因此,轴承孔的圆度变形量可以看作是轴承孔的变形 量。因此本步骤中,可基于给定的第二顶持力,对所述CAD模型中头尾架的轴承孔的圆度变形量进行计算,将计算得到的轴承孔的圆度变形量作为对应所述第二顶持力的头尾架变形量。
其中,第一顶持力和第二顶持力可以相同也可以不同。
步骤104,将所述加工件特性曲线和所述头尾架特性曲线中对应同一顶持力的加工件变形量和头尾架变形量相加作为系统变形量,得到表征顶持力和系统变形量之间线性关系的系统特性曲线。
图5示出了一个例子中加工件特性曲线51、头尾架特性曲线52和系统特性曲线53的示意图。图5中横坐标为顶持力F,纵坐标为系统变形量Df。
步骤105,将加工件所需的加工精度作为最大系统变形量代入所述系统特性曲线,得到对应的最大允许顶持力。
如图5所示,其中示出了所需加工精度Rp以及对应的最大允许顶持力Ma。
步骤106,在所述最小顶持力和所述最大顶持力之间确定出推荐选择的顶持力。
本步骤中,可以在最小顶持力Mi和最大顶持力Ma之间随机确定一个中间值作为推荐选择的顶持力RC,或者也可以在最小顶持力Mi的基础上增加一个经验值,得到推荐选择的顶持力,且该推荐选择的顶持力需小于最大允许顶持力Ma。之后可把该推荐选择的顶持力RC提供给用户。此外,还可将所述推荐的顶持力RC代入所述系统特性曲线,得到对应的推荐的系统变形量,将所述推荐的系统变形量作为推荐的加工精度Ep,并将推荐的加工精度Ep提供给用户。
进一步地,本实施例中,也可以进一步包括:将所述最小顶持力Mi代入所述系统特性曲线,得到对应的最小系统变形量,将所述最小系统变形量作为理想加工精度Ip。
进一步地,可生成一推荐报告,所述推荐报告中包括所需加工精度、最大顶持力、理想加工精度、最小顶持力、推荐的加工精度和推荐的顶持力等信息,并将该推荐报告提供给用户。
在一个例子中,可直接将图5所示的基于系统特性曲线标识有所需加工精度Rp、最大顶持力Ma、理想加工精度Ip、最小顶持力Mi、推荐的加工精度Ep和推荐的顶持力RC的图表作为推荐报告或作为推荐报告的一部分提供给用户。
以上对本发明实施例中的顶持力确定方法进行了详细描述,下面再对本发明实施例中的顶持力确定装置进行详细描述。本发明实施例中的顶持力确定装置可用于实施本发明实施例 中的顶持力确定方法,对于本发明装置实施例中未详细披露的细节可参加本发明方法实施例中的相应描述,此处不再一一赘述。
图6为本发明实施例中一种顶持力确定装置的示例性结构图。如图6所示,该系统可包括:加工件信息计算模块61、头尾架信息计算模块62和系统评估模块63。
其中,加工件信息计算模块61用于根据加工设备的加工施力、摩擦系数和加工件的几何信息,计算所需的最小顶持力;对所述加工件的CAD模型利用有限元分析进行处理,基于给定的第一顶持力,计算得到对应所述顶持力的加工件变形量,根据所述给定的第一顶持力和其对应的加工件变形量,得到表征顶持力和加工件变形量之间线性关系的加工件特性曲线。
在一个例子中,当加工设备为磨床,端区为顶针时,所述加工件的几何信息包括:所述加工件的顶持端与所述头尾架的顶针接触的锥面的顶面直径、底面直径、高和加工面的最大加工直径。加工件信息计算模块61可按照前述公式
计算所述最小顶持力。其中,
d
1为加工件顶持端与头尾架顶针接触的锥面的顶面直径;d
2为所述锥面的底面直径;d
c为所述锥面的高,也称中心距离;F
g为加工施力,如磨削力、车削力、拉削力、镗削力等;D
w为加工面的最大处理直径;s为摩擦系数。
头尾架信息计算模块62用于确定用于顶持所述加工件的头尾架,并对所确定的头尾架的CAD模型利用有限元分析进行处理,基于给定的第二顶持力,计算得到对应所述第二顶持力的头尾架变形量,根据所述给定的第二顶持力和其对应的头尾架变形量,得到表征顶持力和头尾架变形量之间线性关系的头尾架特性曲线。
在一个实施方式中,头尾架信息计算模块62可将所述最小顶持力和获取的所述加工件的重量和尺寸与各头尾架的额定最大顶持力、最大顶持重量和最大顶持尺寸进行匹配,将满足要求的加工精度最高的头尾架确定为用于顶持所述加工件的头尾架。此外,在计算头尾架变形量时,可基于给定的第二顶持力,对所述CAD模型中头尾架的轴承孔的圆度变形量进行计算,将计算得到的轴承孔的圆度变形量作为对应所述第二顶持力的头尾架变形量。
系统评估模块63用于将所述加工件特性曲线和所述头尾架特性曲线中对应同一顶 持力的加工件变形量和头尾架变形量相加作为系统变形量,得到表征顶持力和系统变形量之间线性关系的系统特性曲线;将加工件所需的加工精度作为最大系统变形量代入所述系统特性曲线,得到对应的最大顶持力,也即最大允许顶持力;在所述最小顶持力和所述最大顶持力之间确定出推荐选择的顶持力。
在一个实施方式中,系统评估模块63可进一步将所述推荐的顶持力代入所述系统特性曲线,得到对应的推荐的系统变形量,将所述推荐的系统变形量作为推荐的加工精度;将所述最小顶持力代入所述系统特性曲线,得到对应的最小系统变形量,将所述最小系统变形量作为理想加工精度。
在一个实施方式中,所述系统评估模块63进一步生成一推荐报告,所述推荐报告中包括所需加工精度、最大顶持力、理想加工精度、最小顶持力、推荐的加工精度和推荐的顶持力。此外,所述推荐报告中可进一步包括:系统特性曲线;所述所需加工精度、最大顶持力、理想加工精度、最小顶持力、推荐的加工精度和推荐的顶持力标注在所述系统特性曲线上。
上述顶持力确定装置可以作为一个插件集成到一个CAE软件中,比如NX(siemens)。该系统建立了加工件和头尾架的参数数据库,并且可以自动完成有限元分析和其他计算的全过程。上述顶持力确定方法不仅适用于磨削加工,也适用于车削、拉削、镗削等其它加工过程,并适用于大多数顶针结构。
图7为本发明实施例中又一种顶持力确定装置的结构示意图,该装置可用于实施图1中所示的方法,或实现图6中所示的设备。如图7所示,该系统可包括:至少一个存储器71、至少一个处理器72和至少一个显示器73。此外,还可以包括一些其它组件,例如通信端口等。这些组件通过总线74进行通信。
其中,至少一个存储器71用于存储计算机程序。在一个实施方式中,该计算机程序可以理解为包括图6所示的顶持力确定装置的各个模块。此外,至少一个存储器71还可存储操作系统等。操作系统包括但不限于:Android操作系统、Symbian操作系统、Windows操作系统、Linux操作系统等等。
至少一个显示器73用于显示推荐报告等。
至少一个处理器72用于调用至少一个存储器71中存储的计算机程序,执行本发明实施例中所述的顶持力确定方法。
具体地,至少一个处理器72用于调用至少一个存储器71中存储的计算机程序使所 述装置执行对应的操作。所述操作可包括:根据加工设备的加工施力、摩擦系数和加工件的几何信息,计算所需的最小顶持力;对所述加工件的CAD模型利用有限元分析进行处理,基于给定的第一顶持力,计算得到对应所述顶持力的加工件变形量,根据所述给定的第一顶持力和其对应的加工件变形量,得到表征顶持力和加工件变形量之间线性关系的加工件特性曲线;确定用于顶持所述加工件的头尾架,并对所确定的头尾架的CAD模型利用有限元分析进行处理,基于给定的第二顶持力,计算得到对应所述第二顶持力的头尾架变形量,根据所述给定的第二顶持力和其对应的头尾架变形量,得到表征顶持力和头尾架变形量之间线性关系的头尾架特性曲线;将所述加工件特性曲线和所述头尾架特性曲线中对应同一顶持力的加工件变形量和头尾架变形量相加作为系统变形量,得到表征顶持力和系统变形量之间线性关系的系统特性曲线;将加工件所需的加工精度作为最大系统变形量代入所述系统特性曲线,得到对应的最大允许顶持力;在所述最小顶持力和所述最大顶持力之间确定出推荐选择的顶持力。
在一个实施方式中,所述操作可进一步包括:将所述最小顶持力代入所述系统特性曲线,得到对应的最小系统变形量,将所述最小系统变形量作为理想加工精度;将所述推荐的顶持力代入所述系统特性装置,得到对应的推荐的系统变形量,将所述推荐的系统变形量作为推荐的加工精度。
在一个实施方式中,所述操作可进一步包括:生成一推荐报告,所述推荐报告中包括所需加工精度、最大顶持力、理想加工精度、最小顶持力、推荐的加工精度和推荐的顶持力。
在一个实施方式中,所述推荐报告中进一步包括:系统特性曲线;所述所需加工精度、最大顶持力、理想加工精度、最小顶持力、推荐的加工精度和推荐的顶持力标注在所述系统特性曲线所在的坐标上。
在一个实施方式中,所述加工件具有顶持端;所述头尾架上具有与所述顶持端接触的顶针;所述加工件的几何信息包括:所述顶持端与所述顶针接触的锥面的顶面直径、底面直径、高和加工面的最大加工直径。
在一个实施方式中,所述确定用于顶持所述加工件的头尾架包括:将所述最小顶持力和获取的所述加工件的重量和尺寸与各头尾架的额定最大顶持力、最大顶持重量和最大顶持尺寸进行匹配,将满足要求的加工精度最高的头尾架确定为用于顶持所述加工件的头尾架。
在一个实施方式中,所述对所确定的头尾架的CAD模型利用有限元分析进行处理, 基于给定的第二顶持力,计算得到对应所述第二顶持力的头尾架变形量包括:基于给定的第二顶持力,对所述CAD模型中头尾架的轴承孔的圆度变形量进行计算,将计算得到的轴承孔的圆度变形量作为对应所述第二顶持力的头尾架变形量。
处理器72可以为CPU,处理单元/模块,ASIC,逻辑模块或可编程门阵列等。其可通过所述通信端口进行数据的接收和发送。
需要说明的是,上述各流程和各结构图中不是所有的步骤和模块都是必须的,可以根据实际的需要忽略某些步骤或模块。各步骤的执行顺序不是固定的,可以根据需要进行调整。各模块的划分仅仅是为了便于描述采用的功能上的划分,实际实现时,一个模块可以分由多个模块实现,多个模块的功能也可以由同一个模块实现,这些模块可以位于同一个设备中,也可以位于不同的设备中。
可以理解,上述各实施方式中的硬件模块可以以机械方式或电子方式实现。例如,一个硬件模块可以包括专门设计的永久性电路或逻辑器件(如专用处理器,如FPGA或ASIC)用于完成特定的操作。硬件模块也可以包括由软件临时配置的可编程逻辑器件或电路(如包括通用处理器或其它可编程处理器)用于执行特定操作。至于具体采用机械方式,或是采用专用的永久性电路,或是采用临时配置的电路(如由软件进行配置)来实现硬件模块,可以根据成本和时间上的考虑来决定。
此外,本发明实施例中还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序能够被一处理器执行并实现本发明实施例中所述的顶持力确定方法。具体地,可以提供配有存储介质的系统或者装置,在该存储介质上存储着实现上述实施例中任一实施方式的功能的软件程序代码,且使该系统或者装置的计算机(或CPU或MPU)读出并执行存储在存储介质中的程序代码。此外,还可以通过基于程序代码的指令使计算机上操作的操作系统等来完成部分或者全部的实际操作。还可以将从存储介质读出的程序代码写到插入计算机内的扩展板中所设置的存储器中或者写到与计算机相连接的扩展单元中设置的存储器中,随后基于程序代码的指令使安装在扩展板或者扩展单元上的CPU等来执行部分和全部实际操作,从而实现上述实施方式中任一实施方式的功能。用于提供程序代码的存储介质实施方式包括软盘、硬盘、磁光盘、光盘(如CD-ROM、CD-R、CD-RW、DVD-ROM、DVD-RAM、DVD-RW、DVD+RW)、磁带、非易失性存储卡和ROM。可选择地,可以由通信网络从服务器计算机上下载程序代码。
从上述方案中可以看出,由于本发明实施例中利用CAE工具通过对加工件和头尾架的CAD模型进行有限元分析处理可得到给定顶持力下的系统变形量,从而得到表征顶持 力和系统变形量之间线性关系的系统特性曲线,由于系统变形量可作为加工件的加工精度,因此基于该系统特性曲线便可以计算对应各加工精度的顶持力以及对应各顶持力的加工精度,从而最终得到介于最小顶持力和最大顶持力之间的推荐顶持力,使得用户可以选择合适的顶持力。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (16)
- 一种顶持力确定方法,其特征在于,包括:根据加工设备的加工施力、摩擦系数和加工件的几何信息,计算所需的最小顶持力(101);对所述加工件的CAD模型利用有限元分析进行处理,基于给定的第一顶持力,计算得到对应所述顶持力的加工件变形量,根据所述给定的第一顶持力和其对应的加工件变形量,得到表征顶持力和加工件变形量之间线性关系的加工件特性曲线(102);确定用于顶持所述加工件的头尾架,并对所确定的头尾架的CAD模型利用有限元分析进行处理,基于给定的第二顶持力,计算得到对应所述第二顶持力的头尾架变形量,根据所述给定的第二顶持力和其对应的头尾架变形量,得到表征顶持力和头尾架变形量之间线性关系的头尾架特性曲线(103);将所述加工件特性曲线和所述头尾架特性曲线中对应同一顶持力的加工件变形量和头尾架变形量相加作为系统变形量,得到表征顶持力和系统变形量之间线性关系的系统特性曲线(104);将加工件所需的加工精度作为最大系统变形量代入所述系统特性曲线,得到对应的最大允许顶持力(105);在所述最小顶持力和所述最大顶持力之间确定出推荐选择的顶持力(106)。
- 根据权利要求1所述的顶持力确定方法,其特征在于,进一步包括:将所述最小顶持力代入所述系统特性曲线,得到对应的最小系统变形量,将所述最小系统变形量作为理想加工精度;将所述推荐的顶持力代入所述系统特性曲线,得到对应的推荐的系统变形量,将所述推荐的系统变形量作为推荐的加工精度。
- 根据权利要求2所述的顶持力确定方法,其特征在于,进一步包括:生成一推荐报告,所述推荐报告中包括所需加工精度、最大顶持力、理想加工精度、最小顶持力、推荐的加工精度和推荐的顶持力。
- 根据权利要求3所述的顶持力确定方法,其特征在于,所述推荐报告中进一步包括:系统特性曲线;所述所需加工精度、最大顶持力、理想加工精度、最小顶持力、推荐的加工精度和推荐的顶持力标注在所述系统特性曲线上。
- 根据权利要求1至4中任一项所述的顶持力确定方法,其特征在于,所述加工件具有顶持端;所述头尾架上具有与所述顶持端接触的顶针;所述加工件的几何信息包括: 所述顶持端与所述顶针接触的锥面的顶面直径、底面直径、高和加工面的最大加工直径。
- 根据权利要求1至4中任一项所述的顶持力确定方法,其特征在于,所述确定用于顶持所述加工件的头尾架包括:将所述最小顶持力和获取的所述加工件的重量和尺寸与各头尾架的额定最大顶持力、最大顶持重量和最大顶持尺寸进行匹配,将满足要求的加工精度最高的头尾架确定为用于顶持所述加工件的头尾架。
- 根据权利要求1至4中任一项所述的顶持力确定方法,其特征在于,所述对所确定的头尾架的CAD模型利用有限元分析进行处理,基于给定的第二顶持力,计算得到对应所述第二顶持力的头尾架变形量包括:基于给定的第二顶持力,对所述CAD模型中头尾架的轴承孔的圆度变形量进行计算,将计算得到的轴承孔的圆度变形量作为对应所述第二顶持力的头尾架变形量。
- 一种顶持力确定装置,其特征在于,包括:至少一个存储器(71)和至少一个处理器(72),其中:所述至少一个存储器(71)用于存储计算机程序;所述至少一个处理器(72)用于调用所述至少一个存储器(71)中存储的计算机程序使所述装置执行对应的操作,所述操作包括:根据加工设备的加工施力、摩擦系数和加工件的几何信息,计算所需的最小顶持力;对所述加工件的CAD模型利用有限元分析进行处理,基于给定的第一顶持力,计算得到对应所述顶持力的加工件变形量,根据所述给定的第一顶持力和其对应的加工件变形量,得到表征顶持力和加工件变形量之间线性关系的加工件特性曲线;确定用于顶持所述加工件的头尾架,并对所确定的头尾架的CAD模型利用有限元分析进行处理,基于给定的第二顶持力,计算得到对应所述第二顶持力的头尾架变形量,根据所述给定的第二顶持力和其对应的头尾架变形量,得到表征顶持力和头尾架变形量之间线性关系的头尾架特性曲线;将所述加工件特性曲线和所述头尾架特性曲线中对应同一顶持力的加工件变形量和头尾架变形量相加作为系统变形量,得到表征顶持力和系统变形量之间线性关系的系统特性曲线;将加工件所需的加工精度作为最大系统变形量代入所述系统特性曲线,得到对应的最大允许顶持力;在所述最小顶持力和所述最大顶持力之间确定出推荐选择的顶持力。
- 根据权利要求8所述的顶持力确定装置,其特征在于,所述操作进一步包括:将所述最小顶持力代入所述系统特性曲线,得到对应的最小系统变形量,将所述最小系统变形量作为理想加工精度;将所述推荐的顶持力代入所述系统特性装置,得到对应的推荐的系统变形量,将所述推荐的系统变形量作为推荐的加工精度。
- 根据权利要求9所述的顶持力确定装置,其特征在于,所述操作进一步包括:生成一推荐报告,所述推荐报告中包括所需加工精度、最大顶持力、理想加工精度、最小顶持力、推荐的加工精度和推荐的顶持力。
- 根据权利要求10所述的顶持力确定装置,其特征在于,所述推荐报告中进一步包括:系统特性曲线;所述所需加工精度、最大顶持力、理想加工精度、最小顶持力、推荐的加工精度和推荐的顶持力标注在所述系统特性曲线上。
- 根据权利要求8至11中任一项所述的顶持力确定装置,其特征在于,所述加工件具有顶持端;所述头尾架上具有与所述顶持端接触的顶针;所述加工件的几何信息包括:所述顶持端与所述顶针接触的锥面的顶面直径、底面直径、高和加工面的最大加工直径。
- 根据权利要求8至11中任一项所述的顶持力确定装置,其特征在于,所述确定用于顶持所述加工件的头尾架包括:将所述最小顶持力和获取的所述加工件的重量和尺寸与各头尾架的额定最大顶持力、最大顶持重量和最大顶持尺寸进行匹配,将满足要求的加工精度最高的头尾架确定为用于顶持所述加工件的头尾架。
- 根据权利要求8至11中任一项所述的顶持力确定方法,其特征在于,所述对所确定的头尾架的CAD模型利用有限元分析进行处理,基于给定的第二顶持力,计算得到对应所述第二顶持力的头尾架变形量包括:基于给定的第二顶持力,对所述CAD模型中头尾架的轴承孔的圆度变形量进行计算,将计算得到的轴承孔的圆度变形量作为对应所述第二顶持力的头尾架变形量。
- 一种顶持力确定装置,其特征在于,包括:加工件信息计算模块(61),用于根据加工设备的加工施力、摩擦系数和加工件的几何信息,计算所需的最小顶持力;对所述加工件的CAD模型利用有限元分析进行处理, 基于给定的第一顶持力,计算得到对应所述顶持力的加工件变形量,根据所述给定的第一顶持力和其对应的加工件变形量,得到表征顶持力和加工件变形量之间线性关系的加工件特性曲线;头尾架信息计算模块(62),用于确定用于顶持所述加工件的头尾架,并对所确定的头尾架的CAD模型利用有限元分析进行处理,基于给定的第二顶持力,计算得到对应所述第二顶持力的头尾架变形量,根据所述给定的第二顶持力和其对应的头尾架变形量,得到表征顶持力和头尾架变形量之间线性关系的头尾架特性曲线;和系统评估模块(63),用于将所述加工件特性曲线和所述头尾架特性曲线中对应同一顶持力的加工件变形量和头尾架变形量相加作为系统变形量,得到表征顶持力和系统变形量之间线性关系的系统特性曲线;将加工件所需的加工精度作为最大系统变形量代入所述系统特性曲线,得到对应的最大允许顶持力;在所述最小顶持力和所述最大顶持力之间确定出推荐选择的顶持力。
- 计算机可读存储介质,其上存储有计算机程序;其特征在于,所述计算机程序能够被一处理器执行并实现如权利要求1至7中任一项所述的顶持力确定方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20950878.7A EP4186620A1 (en) | 2020-08-31 | 2020-08-31 | Holding force determining method and apparatus, and storage medium |
CN202080103597.6A CN116096531B (zh) | 2020-08-31 | 2020-08-31 | 顶持力确定方法、装置及存储介质 |
PCT/CN2020/112524 WO2022041209A1 (zh) | 2020-08-31 | 2020-08-31 | 顶持力确定方法、装置及存储介质 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/112524 WO2022041209A1 (zh) | 2020-08-31 | 2020-08-31 | 顶持力确定方法、装置及存储介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022041209A1 true WO2022041209A1 (zh) | 2022-03-03 |
Family
ID=80354349
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/112524 WO2022041209A1 (zh) | 2020-08-31 | 2020-08-31 | 顶持力确定方法、装置及存储介质 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4186620A1 (zh) |
CN (1) | CN116096531B (zh) |
WO (1) | WO2022041209A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1747813A (zh) * | 2003-02-11 | 2006-03-15 | 贝利奥国际公司 | 包括夹紧研磨玻璃坯料的改进装置的眼镜透镜研磨设备 |
US20080042682A1 (en) * | 2006-06-29 | 2008-02-21 | Sadatsune Ammi | Method for detecting malfunction in clamping and machine tool |
CN102133651A (zh) * | 2011-04-14 | 2011-07-27 | 大连机床集团有限责任公司 | 可显示顶持力的尾座 |
CN105033288A (zh) * | 2015-08-12 | 2015-11-11 | 北京兴华机械厂 | 一种高精度顶持力可测的柔性顶尖 |
CN105562580A (zh) * | 2016-03-04 | 2016-05-11 | 西北工业大学 | 一种锥形壳体类结构件半自动电磁铆接系统 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9323869B1 (en) * | 2013-04-16 | 2016-04-26 | Msc.Software Corporation | Mesh-based shape optimization systems and methods |
CN103273387A (zh) * | 2013-06-18 | 2013-09-04 | 上海理工大学 | 基于刚度测量的外圆磨削工艺参数优化方法 |
DE102017205024B4 (de) * | 2017-03-24 | 2019-05-23 | Hainbuch Gmbh Spannende Technik | Spannkraftmessgeräte und dessen Module |
CN110598357A (zh) * | 2019-09-25 | 2019-12-20 | 华中科技大学 | 一种焊接接头应力变形仿真方法、装置、设备及存储介质 |
-
2020
- 2020-08-31 EP EP20950878.7A patent/EP4186620A1/en not_active Withdrawn
- 2020-08-31 CN CN202080103597.6A patent/CN116096531B/zh active Active
- 2020-08-31 WO PCT/CN2020/112524 patent/WO2022041209A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1747813A (zh) * | 2003-02-11 | 2006-03-15 | 贝利奥国际公司 | 包括夹紧研磨玻璃坯料的改进装置的眼镜透镜研磨设备 |
US20080042682A1 (en) * | 2006-06-29 | 2008-02-21 | Sadatsune Ammi | Method for detecting malfunction in clamping and machine tool |
CN102133651A (zh) * | 2011-04-14 | 2011-07-27 | 大连机床集团有限责任公司 | 可显示顶持力的尾座 |
CN105033288A (zh) * | 2015-08-12 | 2015-11-11 | 北京兴华机械厂 | 一种高精度顶持力可测的柔性顶尖 |
CN105562580A (zh) * | 2016-03-04 | 2016-05-11 | 西北工业大学 | 一种锥形壳体类结构件半自动电磁铆接系统 |
Also Published As
Publication number | Publication date |
---|---|
CN116096531A (zh) | 2023-05-09 |
EP4186620A1 (en) | 2023-05-31 |
CN116096531B (zh) | 2024-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220043421A1 (en) | Automatic Parameterisation of a Laser Cutting Method | |
JP4611873B2 (ja) | 許容誤差領域を用いる3次元測定データの検出方法 | |
JPWO2007020679A1 (ja) | 寸法公差算出装置,寸法公差算出方法,及び寸法公差算出プログラムを記録したコンピュータ読取可能な記録媒体 | |
EP1422491A2 (en) | Method, apparatus and program for setting a workpiece coordinate system origin in a surface property measuring machine | |
WO2022041209A1 (zh) | 顶持力确定方法、装置及存储介质 | |
WO2021005887A1 (ja) | 機械加工管理方法及び機械加工管理システム | |
CN116372668A (zh) | 一种工件加工精度检测修正方法、检测系统及电子设备 | |
US7912572B2 (en) | Calibration assembly for an inspection system | |
US10585419B1 (en) | Methods and devices for performing in-situ inspections during a computer assisted setup of a machine tool table | |
CN112414340A (zh) | 一种工件的三坐标测量方法、装置、设备及存储介质 | |
CN114227378B (zh) | 一种夹具状态的检测方法、装置、终端和存储介质 | |
WO2023216466A1 (zh) | 骨科手术机器人的末端工具误差检测方法和装置 | |
US8165845B1 (en) | Method and apparatus for statistical identification of devices based on parametric data | |
KR100264968B1 (ko) | 치공구와 가공부품 측정 장치 및 방법 | |
Strbac et al. | Analysis of Characteristics of Non-Commercial Software Systems for Assessing Flatness Error by Means of Minimum Zone Method. | |
CN112363944A (zh) | 一种用于多环境接口返回值对比的方法及设备 | |
CN115070509B (zh) | 刀具装夹状态检测方法、装置、电子设备及可读存储介质 | |
TW201516600A (zh) | 產品加工路線補償方法及系統 | |
US12038735B2 (en) | Manufacturing process qualification system and method | |
CN114611358B (zh) | 利用等效梁单元建模的阶梯转子动力学分析方法 | |
EP4213060A1 (en) | Component inspection system and method | |
CN112720074B (zh) | 数控机床上工件信息的处理方法及装置 | |
US20220107177A1 (en) | Error determination apparatus, error determination method, and storage medium | |
CN113901654A (zh) | 刀具夹持长度确定方法、装置、设备及存储介质 | |
CN118478255A (zh) | 立体尺寸确定方法、装置、介质及电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20950878 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2020950878 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2020950878 Country of ref document: EP Effective date: 20230224 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |