WO2022041153A1 - 一种硅光子波导起偏器、收发器光模块及光通信设备 - Google Patents

一种硅光子波导起偏器、收发器光模块及光通信设备 Download PDF

Info

Publication number
WO2022041153A1
WO2022041153A1 PCT/CN2020/112288 CN2020112288W WO2022041153A1 WO 2022041153 A1 WO2022041153 A1 WO 2022041153A1 CN 2020112288 W CN2020112288 W CN 2020112288W WO 2022041153 A1 WO2022041153 A1 WO 2022041153A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
silicon photonic
absorption
light
photonic waveguide
Prior art date
Application number
PCT/CN2020/112288
Other languages
English (en)
French (fr)
Inventor
张艳武
沈淼
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/112288 priority Critical patent/WO2022041153A1/zh
Priority to CN202080103457.9A priority patent/CN115956216A/zh
Publication of WO2022041153A1 publication Critical patent/WO2022041153A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/126Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind using polarisation effects

Definitions

  • the present application relates to the technical field of optical communication, and in particular, to a silicon photonic waveguide polarizer, a transceiver optical module and an optical communication device.
  • silicon photonics technology as a low-cost, high-speed optical communication technology based on silicon photonics, which uses laser beams instead of electronic signals to transmit data, is widely used in the fields of line side, client side and data center. is widely used.
  • the silicon photonic waveguide polarizer and the light receiving end device are integrated on one chip.
  • a voltage is applied to the light-emitting device of indium phosphide to generate a light source, and the light enters the silicon photonic waveguide polarizer, passes through other functional waveguide elements, and enters the light-receiving device.
  • the main function of the silicon photonic waveguide polarizer is to lose the unwanted polarized light, thereby increasing the proportion of the required polarized light and improving the signal-to-noise ratio of the functional waveguide components.
  • Embodiments of the present application provide a silicon photonic waveguide polarizer, a transceiver optical module, and an optical communication device, the main purpose of which is to provide a light coupling that can reduce the optical coupling between the TE0 mode and other modes, thereby reducing the TE0 mode Leakage and loss, and a silicon photonic waveguide polarizer capable of suppressing stray light.
  • the present application provides a silicon photonic waveguide polarizer, comprising:
  • a ridge portion formed on the surface of the flat plate portion, and the ridge portion extends along the optical waveguide direction;
  • the flat plate portion and the ridge portion are made of silicon (Si) material;
  • an absorption part is formed on at least one side of the flat plate part located on the ridge-shaped part, and the absorption part is made of metal silicide, germanium or germanium-silicon solid solution.
  • the silicon photonic waveguide polarizer provided by the embodiment of the present application has an absorption part made of metal silicide, germanium or germanium-silicon solid solution. Absorbers made of these materials can produce greater absorption for the TE higher-order modes other than the TE0 mode and the optical mode fields of all the TM modes. In this way, the loss and light leakage of the TE0 mode can be reduced, and the loss of the remaining modes except the TE0 mode can be increased, so as to reduce the optical coupling between the TE0 mode and other modes, and reduce the spectral jitter caused by the coupling between the TE0 mode and other modes ( ripple) to prevent stray light.
  • the metal silicide includes: cobalt silicide, nickel silicide, titanium silicide, and the like.
  • the absorption portion is integrally arranged along the optical waveguide direction. That is, the absorption portion is continuously arranged along the optical waveguide direction.
  • the absorption portion includes multiple segments, and the multiple segments of the absorption portion are arranged at intervals along the optical waveguide direction. It can be understood in this way that the absorption part extending along the optical waveguide is divided into multiple sections, and there is a gap between each adjacent two ends, so that the resistance value of the entire silicon photonic waveguide polarizer can be increased.
  • the absorption portion is formed on a surface of the flat plate portion.
  • the arrangement of the absorption part can reduce the difficulty of the manufacturing process and facilitate the implementation.
  • the silicon photonic waveguide polarizer further includes a boss portion, and the boss portion is formed on at least one side of the flat plate portion located on the ridge portion; the boss portion and The flat plate portion is made of the same material; the absorption portion is formed on the boss portion.
  • the absorption portion is formed on a surface of the boss portion away from the flat plate portion. That is, the absorbing portion is directly provided on the surface of the boss portion, and the manufacturing process is simple.
  • the absorption portion is formed on a side surface of the boss portion, and the side surface is a surface of the boss portion that is adjacent to the surface of the boss portion that is in close contact with the flat plate portion.
  • the absorption portion is formed on a surface and a side surface of the boss portion.
  • the absorption portion is formed on both sides of the flat plate portion located on opposite sides of the ridge portion.
  • the present application further provides a transceiver optical module, including:
  • the silicon photonic waveguide polarizer and the light receiving end device are both integrated on the chip, and the light output end of the silicon photonic waveguide polarizer is connected to the light receiving end device.
  • the chip of the transceiver optical module provided by the embodiment of the present application is integrated with the silicon photonic waveguide polarizer provided by the embodiment of the first aspect, because the silicon photonic waveguide polarizer includes metal silicide, germanium or germanium-silicon solid solution
  • the silicon photonic waveguide polarizer includes metal silicide, germanium or germanium-silicon solid solution
  • the obtained absorption part in this way, the light of the remaining modes except the TE0 mode can be absorbed by the absorption part, so as to reduce the coupling between the TE0 mode and other modes, and reduce the light leakage and loss of the TE0 mode , and ultimately improve the performance of the photonic chip structure.
  • the transceiver optical module further includes:
  • an optical fiber through which the light-emitting device is connected to the light incident end of the silicon photonic waveguide polarizer.
  • the light emitting device may also be integrated on the chip, or may be externally placed outside the chip to introduce the light source into the waveguide through end-face coupling or lens coupling.
  • the present application further provides an optical communication device, including: the transceiver optical module according to the second aspect or any implementation manner of the second aspect.
  • optical communication device provided by the embodiment of the present application and the transceiver optical module described in the above technical solution can solve the same technical problem and achieve the same expected effect.
  • FIG. 1 is a partial structural schematic diagram of a transceiver optical module according to an embodiment of the present application
  • FIG. 2 is a partial structural schematic diagram of a chip according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a silicon photonic waveguide polarizer according to an embodiment of the present application.
  • Fig. 4 is the A1 direction view of Fig. 3;
  • FIG. 5 is a schematic structural diagram of a silicon photonic waveguide polarizer according to an embodiment of the present application.
  • Fig. 6 is the A2 direction view of Fig. 5;
  • FIG. 7 is a schematic structural diagram of a silicon photonic waveguide polarizer according to an embodiment of the present application.
  • Fig. 8 is the A3 direction view of Fig. 7;
  • FIG. 9 is a schematic structural diagram of a silicon photonic waveguide polarizer according to an embodiment of the present application.
  • Fig. 10 is the A4 direction view of Fig. 9;
  • FIG. 11 is a schematic structural diagram of a silicon photonic waveguide polarizer according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a silicon photonic waveguide polarizer according to an embodiment of the present application.
  • TE mode called transverse electric mode (TE), which refers to the light mode in which the electric field direction is perpendicular to the propagation direction.
  • TM mode transverse magnetic mode (TM), which refers to the optical mode in which the direction of the magnetic field is perpendicular to the direction of propagation.
  • TE0 mode the fundamental mode in the TE mode.
  • TE higher-order mode is an optical mode in the TE mode other than the fundamental mode in the TE mode.
  • a transceiver optical module is provided, and photoelectric signal conversion is performed through the transceiver optical module to transmit data by using the optical signal.
  • the transmission speed will be significantly improved.
  • FIG. 1 it includes a chip 01 and a light-emitting device 02
  • FIG. 2 is a partial structural schematic diagram of the chip 01, wherein, on the above-mentioned chip 01, a silicon photonic waveguide polarizer 1 and a light-emitting device are integrated.
  • the receiving end device for example, a photodetector, a photoelectric modulator, a power divider, etc.
  • FIG. 2 the optical receiving end device is not shown.
  • the light input end of the silicon photonic waveguide polarizer 1 is coupled and connected to the optical fiber 04
  • the light output end of the silicon photonic waveguide polarizer 1 is coupled and connected to the light receiving end device.
  • the light emitted by the light-emitting device 02 is coupled to the silicon photonic waveguide polarizer 1 through the optical fiber 04, and the silicon photonic waveguide polarizer 1 will lose the unneeded TE high-order mode and TM mode polarized light, and retain the TE0 mode.
  • the light in the TE0 mode is transmitted to the optical receiving device, and the optical signal in the TE0 mode is photoelectrically converted by the optical receiving device, or the converted electrical signal is further processed.
  • the silicon photonic waveguide polarizer 1 is clad in a cladding layer 101, and the material of the cladding layer 101 may be silicon dioxide or silicon nitride.
  • the light emitting device 02 can also be integrated on the chip 01 . It can also be placed outside the chip 01, and the light of the light emitting device 02 can be guided into the waveguide through end face coupling or lens coupling.
  • the above-mentioned transceiver optical module can be applied in lidar sensors, and can also be applied in various silicon photonic chips such as artificial intelligence chips, various sensor chips, and optical computer chips.
  • the silicon photonic waveguide polarizer 1 includes a flat portion 11 and a ridge portion 12 .
  • the flat plate portion 11 and the ridge portion 12 are made of the same material, eg, silicon.
  • the ridge portion 12 is formed on the surface of the flat plate portion 11 , and as shown in FIG. 4 , the ridge portion extends in the optical waveguide direction P. As shown in FIG. In this way, a ridge-type optical waveguide is formed.
  • the region where the ridge portion 12 and the flat plate portion 11 are located directly below the ridge portion 12 is collectively referred to as a core region.
  • the thickness h1 of the ridge portion 12 and the thickness h3 of the flat portion 11 it is necessary to select the thickness h1 of the ridge portion 12 and the thickness h3 of the flat portion 11 in FIG. 3.
  • the thickness of the most commonly used ridge portion 12 is 220 nm
  • the thickness of the flat portion 11 is 150 nm, so that the TE0 mode width and The width of the ridge portion 12 is similar, but the width of the TE higher-order mode and the TM mode is similar to the width of the flat portion 11 .
  • an absorption part 13 is further included.
  • the absorption portion 13 is formed on at least one side of the ridge portion 12, and the absorption portion is made of metal silicide, germanium, or a silicon germanium solid solution.
  • germanium-silicon solid solution is a substitutional solid solution with infinite solubility formed by two elements, germanium and silicon. Also known as germanium silicon alloy.
  • the absorption part 13 is made of metal silicide, germanium or germanium-silicon solid solution, the absorption part made of these materials will have a large material absorption loss. Since the width of the TE0 mode is narrow and the absorption portion 13 cannot be contacted, the TE0 mode can transmit with low absorption.
  • the TE high-order modes such as the TE1 mode, the TE2 mode, and all the TM modes have very wide mode widths, and they touch the absorption portion 13, resulting in a large mode absorption coefficient.
  • the silicon photonic waveguide polarizer prevents the transmission of light in the TM mode and the light in the high-order TE mode, thereby reducing the optical coupling between the TE0 mode and other modes, and reducing the light leakage and loss of the TE0 mode.
  • the silicon photonic waveguide polarizer thus formed may be referred to as a TE0-pass polarizer.
  • the ridge portion 12 when the ridge portion 12 is formed, it is formed by an etching process. In this way, as shown in FIG. 3 , the side surface C of the ridge portion 12 may have greater roughness, and the side surface with greater roughness may be The light in the TE0 mode will be scattered. Although the light in the TE0 mode will be scattered, the scattered light can be absorbed by the absorption part 13 made of metal silicide, germanium or germanium-silicon solid solution to avoid the side surface with large roughness. It becomes the trigger factor to stimulate the generation of other modes, thereby avoiding the light loss phenomenon of the TE0 mode caused by the coupling of the TE0 mode with other modes, and preventing the generation of stray light to cause light pollution to the chip.
  • the metal silicide refers to a hard compound formed by transition metal and silicon.
  • the transition metal may be cobalt (Co), nickel (Ni), titanium (Ti), or the like.
  • the metal silicide formed may be cobalt silicide, nickel silicide, titanium silicide, or the like.
  • FIG. 4 and FIG. 6 show two different structures of the absorption part 13 .
  • the absorption part 13 is integrally arranged along the optical waveguide direction P.
  • the absorption portion 13 includes multiple stages, and the multiple stages of the absorption portion 13 are arranged along the optical waveguide direction P at intervals. That is to say, on the basis of the absorption part 13 in FIG. 4 , the absorption part 13 extending along the optical waveguide direction is divided into multiple sections, and there is a gap between each adjacent two ends.
  • the waveguide resistance value of the entire silicon photonic waveguide polarizer can be increased.
  • the waveguide resistance value of the silicon photonic waveguide polarizer is 125 ohm/mm (125 ohm/mm), however, when the structure of the absorption part 13 shown in FIG. ).
  • the silicon photonic waveguide polarizer involved in this application When the light input end of the silicon photonic waveguide polarizer involved in this application is connected to the light emitting device, and the light output end is connected to the light receiving end device, it is guaranteed to reduce the optical coupling between the TE0 mode and other modes, and reduce the TE0 mode. On the basis of light leakage and loss, and the ability to suppress stray light, it can also avoid leakage between the light-emitting device and the light-receiving device, improve power consumption and electrostatic discharge (Electro-Static discharge, ESD).
  • ESD electrostatic discharge
  • FIGS. 3 and 4 show a layout of the absorption portion 13 formed on the surface of the flat plate portion 11 .
  • the absorption part 13 is integrally arranged along the optical waveguide direction P.
  • the absorber 13 is made of metal silicide.
  • the width s1 of the ridge portion 12 may be 0.55 ⁇ m
  • the thickness h1 of the ridge portion 12 may be 0.07 ⁇ m
  • the width s2 of the absorbing portion 13 may be 2.0 ⁇ m ⁇ m
  • the thickness h2 of the absorption part 13 is 0.03 ⁇ m
  • the thickness h3 of the flat plate part 11 is 0.15 ⁇ m
  • the width of the flat plate part 11 is 8.05 ⁇ m
  • the side of the absorption part 13 close to the ridge part 12 to the side of the ridge part 12 is between The distance between them is 1.75 ⁇ m.
  • the refractive index at 1550 nm is 0.838+5.070 i
  • its refractive index at 1310nm is 0.856+4.553i
  • CoSi 2 absorbs light very strongly.
  • the ridge portion 12 and the absorption portion 13 have a large distance, so the absorption portion 13 does not affect the TE0 transmission loss.
  • the mode fields of the TM mode and the TE high-order mode span the entire area of the flat plate portion 11 , so the absorption portion 13 will greatly increase the absorption of light in these modes and increase the transmission loss.
  • Table 1 below is the simulation data when the silicon photonic waveguide polarizer shown in FIG. 3 is used.
  • Mode involved in this application refers to the mode of optical transmission, for example, the TE0 mode, the TM0 mode, and the like.
  • Neff refers to the optical effective index of a light mode.
  • Abs refers to the optical absorption in a certain light mode.
  • the Abs of light in TE0 mode is only 0.01dB/cm, but the Abs of light in TM0 mode, the Abs of light in TE1 mode, the Abs of light in TE2 mode, and the Abs of light in TE3 mode Abs of light and Abs of light in TE4 mode are larger. It can be seen from this that when the silicon photonic waveguide polarizer adopts the structure shown in Fig. 3, the Abs of the light in the TE0 mode can be achieved not more than 0.01dB/cm, and the Abs of the light in other modes is not less than 200dB/cm. The light in the TE high-order mode and the light in the TM mode cannot be transmitted, thereby increasing the proportion of TE0.
  • transitions such as cobalt (Co), nickel (Ni), or titanium (Ti) can be deposited in the region of the flat plate portion 11 that is 0.5 ⁇ m or more away from the ridge portion 12 Metals, these transition metals react with the silicon in the flat plate portion 11 to form the absorption portion 13 on the flat plate portion 11 that is made of metal silicide.
  • FIG. 5 shows another arrangement of the absorption portion 13 .
  • the surface of the flat plate portion 11 is formed with a boss portion 14 , and the absorption portion 13 is formed on the surface of the boss portion 14 away from the flat plate portion 11 .
  • the absorption part 13 is integrally arranged along the optical waveguide direction P.
  • the absorber 13 is made of metal silicide.
  • the width and thickness dimensions of the ridge portion 12, the width and thickness dimensions of the absorbing portion 13, and the width and thickness dimensions of the flat plate portion 11 The distance between the side surface of the absorption part 13 close to the ridge-shaped part 12 and the side surface of the ridge-shaped part 12 is consistent with the corresponding data in FIG. 3 , and will not be repeated here.
  • the typical width dimension of the boss portion 14 is 2.0 ⁇ m, and the thickness dimension is the same as the thickness dimension of the ridge portion 12 .
  • the size of the silicon photonic waveguide polarizer in FIG. 5 is selected from the above values, and the material of the flat plate portion 11 and the ridge portion 12 is silicon, and the material of the absorption portion 13 is CoSi 2 , the refractive index at 1550 nm is 0.838+5.070i, its refractive index at 1310nm is 0.856+4.553i, CoSi 2 absorbs light very strongly. Since the TE0 mode field is bound in the region of the ridge portion 12 and the region of the flat plate portion 11 directly below, the ridge portion 12 and the absorption portion 13 have a large distance, so the absorption portion 13 does not affect the TE0 transmission loss. The mode fields of the TM mode and the TE high-order mode span the entire area of the flat plate portion 11 and the area of the boss portion 14 , so the absorption portion 13 will greatly increase the absorption of light in these modes and increase the transmission loss.
  • Table 2 below is the simulation data when the silicon photonic waveguide polarizer shown in FIG. 5 is used.
  • the Abs of light in TE0 mode is only 0.01dB/cm, but the Abs of light in TM0 mode, the Abs of light in TE1 mode, the Abs of light in TE2 mode, the Abs of light in TE3 mode The Abs of the light and the light of the TE4 mode are relatively large.
  • the silicon photonic waveguide polarizer adopts the structure shown in Figure 5
  • the Abs of the light of the TE0 mode can be achieved not more than 0.01dB/cm, and the other The Abs of the light in the mode is not less than 200dB/cm, so the light in the TE high-order mode and the light in the TM mode cannot be transmitted, and the proportion of TE0 can be increased.
  • the Abs of light in the TM0 mode, TE1 mode, TE2 mode, TE3 mode, and TE4 mode can be further increased.
  • FIG. 6 shows another arrangement of the absorption portion 13 .
  • the surface of the flat plate portion 11 is formed with a boss portion 14 , and the absorption portion 13 is formed on the surface of the boss portion 14 away from the flat plate portion 11 .
  • the absorption part 13 includes multiple stages, and the multiple stages of absorption parts 13 are arranged at intervals along the optical waveguide direction P.
  • the absorber 13 is made of metal silicide.
  • the width and thickness of the ridge portion 12, the width and thickness of the absorbing portion 13, and the width and thickness of the flat portion 11 The distance from the side surface of the absorbing part 13 close to the ridge-shaped part 12 to the side surface of the ridge-shaped part 12 is consistent with the corresponding data in FIG. 3 above, and will not be repeated here.
  • the length t1 of each absorbing part is 36 ⁇ m
  • the distance t2 between two adjacent absorbing parts is 6 ⁇ m.
  • the Abs of light in TE0 mode is only 0.01dB/cm, but the Abs of light in TM0 mode, the Abs of light in TE1 mode, the Abs of light in TE2 mode, and the Abs of light in TE3 mode
  • the Abs of the light are all relatively large.
  • the silicon photonic waveguide polarizer adopts the structure shown in Figure 6, the Abs of the light in the TE0 mode can be realized to be no more than 0.01dB/cm, and the Abs of the light of other modes are relatively Therefore, the light in the TE high-order mode and the light in the TM mode cannot be transmitted, and the proportion of TE0 can be increased.
  • the resistance of the entire silicon photonic waveguide polarizer can also be increased. From 125 ohm/mm for the structure in FIG. 3 , it can be increased to 11.5 Mohm/mm in FIG. 6 .
  • FIGS. 7 and 8 show another arrangement of the absorption portion 13 formed on the surface of the flat plate portion 11 .
  • the absorption part 13 is integrally arranged along the optical waveguide direction P.
  • the absorber 13 is made of germanium material.
  • the width and thickness dimensions of the ridge portion 12 , and the width and thickness dimensions of the flat plate portion 11 , and the absorbing portion 13 close to the ridge portion 12 The distance between the side surface of the ridge portion 12 and the side surface of the ridge portion 12 is consistent with the corresponding data in FIG. 3 above, and will not be repeated here.
  • the width dimension of the absorption portion 13 is 2.0 ⁇ m
  • the thickness dimension is 0.1 ⁇ m to 2.0 ⁇ m.
  • the following table 4 uses the graph 7 and simulation data for the silicon photonic waveguide polarizer shown in Figure 8.
  • the absorption part 13 made of germanium can absorb the light of the TM0 mode, the TE1 mode, the TE2 mode, the TE3 mode and the TE4 mode, so that the Abs of the light in the TE0 mode is not greater than 0.01dB/cm, Abs of other modes of light are relatively large.
  • the absorber 13 made of germanium can be formed by epitaxy in the area of the flat plate 11 that is more than 0.5 ⁇ m away from the ridge 12 .
  • FIGS. 9 and 10 show another arrangement of the absorption part 13 .
  • the surface of the flat plate part 11 is formed with a boss part 14
  • the absorption part 13 is formed on the surface of the boss part 14 away from the flat plate part 11 .
  • the absorption part 13 includes multiple stages, and the multiple stages of absorption parts 13 are arranged at intervals along the optical waveguide direction P.
  • the absorption part 13 is made of germanium-silicon solid solution.
  • the width and thickness dimensions of the ridge portion 12, and the width and thickness dimensions of the flat plate portion 11, and the absorbing portion 13 near the ridge The distance between the side surface of the shaped portion 12 and the side surface of the ridge shaped portion 12 is consistent with the corresponding data in FIG. 3 above, and will not be repeated here.
  • the length t1 of each absorption part is 36 ⁇ m
  • the distance t2 between two adjacent absorption parts is 6 ⁇ m
  • the width dimension of the absorption part 13 is 2.0 ⁇ m
  • the thickness dimension is 0.1 ⁇ m to 2.0 ⁇ m
  • the width dimension of the boss part is 2.0 ⁇ m. It is 2.0um
  • the thickness dimension is the same as the thickness dimension of the ridge portion 12 .
  • the size of the silicon photonic waveguide polarizer in Fig. 9 and Fig. 10 is selected from the above values, and the material of the plate portion 11 and the ridge portion 12 is silicon, and the material of the absorption portion 13 is germanium-silicon solid solution, the following table 5 is Simulation data using the silicon photonic waveguide polarizer shown in Figures 9 and 10.
  • the absorption part 13 made of germanium-silicon solid solution can absorb the light of the TM0 mode, the TE1 mode, the TE2 mode, the TE3 mode and the TE4 mode, so that the Abs of the light in the TE0 mode can be absorbed. Not more than 0.01dB/cm, the Abs of other modes of light are relatively large.
  • the absorber 13 made of germanium-silicon solid solution can be prepared by epitaxy in the area of the flat plate 11 that is 0.5 ⁇ m or more away from the ridge 12 .
  • FIG. 11 shows another arrangement of the absorbing portion 13 .
  • a boss portion 14 is formed on the surface of the flat plate portion 11 , and the absorbing portion 13 is formed on the side surface of the boss portion 14 . 11 Close to the face adjacent to the face.
  • FIG. 12 shows another arrangement of the absorption portion 13 , a boss portion 14 is formed on the surface of the flat plate portion 11 , the absorption portion 13 is formed on the surface of the boss portion 14 away from the flat plate portion 11 , and is formed on the boss portion 14 on the side.
  • the absorption portion 13 may be arranged in one piece, or may be arranged in sections.
  • FIGS. 3 to 12 only show a partial arrangement form of the absorbing part 13 , and the absorbing part 13 may also exist in other forms.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本申请实施例提供一种硅光子波导起偏器、收发器光模块及光通信设备,涉及光通信技术领域,硅光子波导起偏器包括:平板部、脊型部和吸收部;脊型部形成在平板部的表面上,且脊型部沿光波导方向延伸;平板部和脊型部由硅材料制成;其中,平板部的位于脊型部的至少一侧形成有吸收部,吸收部由金属硅化物、锗或者锗硅固溶体制得。该硅光子波导起偏器可减少TE0模式和其他模式之间的光耦合、进而减小TE0模式的光泄漏和损耗,以及能够抑制杂散光。

Description

一种硅光子波导起偏器、收发器光模块及光通信设备 技术领域
本申请涉及光通信技术领域,尤其涉及一种硅光子波导起偏器、收发器光模块及光通信设备。
背景技术
随着光通讯数据流量日益增长,硅光子技术作为一种基于硅光子学的低成本、高速的,用激光束代替电子信号传输数据的光通信技术,在线路侧、客户侧和数据中心等领域被广泛应用。
在芯片结构中,是将硅光子波导起偏器和光收端器件集成在一个芯片上。给磷化铟的发光器件施加电压产生光源,光进入硅光子波导起偏器中,经过其他功能波导元件,进入光收端器件。硅光子波导起偏器的主要功能是将不需要的偏振光损耗掉,从而提高所需偏振光的占比,改善波导功能元件的信噪比。
在大部分的硅光子波导起偏器中,只需要承载TE0模式,不需要承载TE高阶模式,以及所有的TM模式。所以,人们越来越希望采用只支持TE0模式的硅光子波导起偏器,来减少激发TE高阶模式,或者TM模式,实现低损耗的光传输,降低杂散光对芯片结构的光污染。
发明内容
本申请的实施例提供一种硅光子波导起偏器、收发器光模块及光通信设备,主要目的是提供一种可减少TE0模式和其他模式之间的光耦合、进而减小TE0模式的光泄漏和损耗,以及能够抑制杂散光的硅光子波导起偏器。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,本申请提供了一种硅光子波导起偏器,包括:
平板部;
脊型部,形成在所述平板部的表面上,且所述脊型部沿光波导方向延伸;
所述平板部和所述脊型部由硅(Si)材料制成;
其中,所述平板部的位于所述脊型部的至少一侧形成有吸收部,所述吸收部由金属硅化物、锗或者锗硅固溶体制得。
本申请实施例提供的硅光子波导起偏器,由于具有由金属硅化物、锗或者锗硅固溶体制得的吸收部。利用这些材料制得的吸收部能够对除过TE0模式的TE高阶模式,以及所有的TM模式的光模场产生较大的吸收。这样的话,就可以减少TE0模式损耗和光泄漏,增大除过TE0模式之外的其余模式的损耗,以减少TE0模式和其他模式之间的光耦合,降低TE0模式和其他模式耦合造成光谱抖动(ripple),防止出现杂散光。
在第一方面可能的实现方式中,所述金属硅化物包括:硅化钴、硅化镍或者硅化钛等。
在第一方面可能的实现方式中,所述吸收部沿所述光波导方向呈一体布设。也就是说,吸收部是沿光波导方向连续布设的。
在第一方面可能的实现方式中,所述吸收部包括多段,多段所述吸收部沿所述光波导方向间隔布设。可以这样理解,沿光波导延伸的吸收部被分隔成为多段,每相邻两端之间具有间距,这样的话,可以增大整个硅光子波导起偏器的电阻值。
在第一方面可能的实现方式中,所述吸收部形成在所述平板部的表面上。在实现对除过TE0模式之外的其余模式的光进行吸收的前提下,这种吸收部的设置方式,可降低制造工艺难度,便于实施。
在第一方面可能的实现方式中,该硅光子波导起偏器还包括凸台部,凸台部形成在所述平板部的位于所述脊型部的至少一侧;所述凸台部和所述平板部由相同的材料制成;所述吸收部形成在所述凸台部上。通过在平板部的表面上形成凸台部,可进一步提高对TE0模式之外的其余模式的光的吸收程度,再与形成在凸台部上的吸收部相配合,会更加减少TE0模式损耗和光泄漏,增大除过TE0模式之外的其余模式的损耗,减少TE0模式和其他模式之间的光耦合。
在第一方面可能的实现方式中,所述吸收部形成在所述凸台部的远离所述平板部的表面上。也就是说,直接将吸收部设置在凸台部的表面上,制造工艺简单。
在第一方面可能的实现方式中,所述吸收部形成在所述凸台部的侧面上,该侧面是凸台部的与平板部紧贴面相邻的面。
在第一方面可能的实现方式中,所述吸收部形成在所述凸台部的表面上和侧面上。
在第一方面可能的实现方式中,所述平板部的位于所述脊型部的相对的两侧均形成有所述吸收部。
第二方面,本申请还提高了一种收发器光模块,包括:
芯片;
光收端器件;
上述第一方面或第一方面的任一实现方式中的硅光子波导起偏器;
其中,所述硅光子波导起偏器和所述光收端器件均集成在所述芯片上,且所述硅光子波导起偏器的出光端与所述光收端器件连接。
本申请实施例提供的收发器光模块的芯片上,集成有第一方面实施例提供的硅光子波导起偏器,由于该硅光子波导起偏器包含有由金属硅化物、锗或者锗硅固溶体制得的吸收部,这样一来,通过该吸收部就可以吸收除过TE0模式之外的其余模式的光,以减小TE0模式与其他模式之间进行耦合,降低TE0模式的光泄漏和损耗,最终提高该光子芯片结构的使用性能。
在第二方面可能的实现方式中,该收发器光模块还包括:
发光器件;
光纤,所述发光器件通过所述光纤与所述硅光子波导起偏器的入光端连接。
在第二方面可能的实现方式中,发光器件可以也集成在芯片上,也可以外置在芯片的外部通过端面耦合或者透镜耦合将光源导入波导。
第三方面,本申请还提高了一种光通信设备,包括:上述第二方面或第二方面的任一实现方式中的收发器光模块。
本申请实施例提供的光通信设备与上述技术方案所述的收发器光模块能够解决相同的技术问题,并达到相同的预期效果。
附图说明
图1为本申请实施例的收发器光模块的部分结构示意图;
图2为本申请实施例的芯片的部分结构示意图;
图3为本申请实施例的硅光子波导起偏器的结构示意图;
图4为图3的A1向视图;
图5为本申请实施例的硅光子波导起偏器的结构示意图;
图6为图5的A2向视图;
图7为本申请实施例的硅光子波导起偏器的结构示意图;
图8为图7的A3向视图;
图9为本申请实施例的硅光子波导起偏器的结构示意图;
图10为图9的A4向视图;
图11为本申请实施例的硅光子波导起偏器的结构示意图;
图12为本申请实施例的硅光子波导起偏器的结构示意图。
附图标记:
01-芯片;02-发光器件;03-光纤;1-硅光子波导起偏器;101-包层;11-平板部;12-脊型部;13-吸收部;14-凸台部;P-光波导方向。
具体实施方式
下述对本申请涉及的技术术语进行解释。
TE模式:叫做横电模(transverse electric mode,TE),指的是电场方向与传播方向垂直的光模式。
TM模式:叫做横磁模(transverse magnetic mode,TM),指的是磁场方向与传播方向垂直的光模式。
TE0模式:为TE模式中的基模模式。
TE高阶模式:为TE模式中的除过TE模式中的基模模式之外的光模式。
在光通信设备中,设置有收发器光模块,通过收发器光模块进行光电信号转换,以利用光信号传输数据,这样的话,会明显的提高传输速度。
在收发器光模块内,如图1所示,包含芯片01和发光器件02,图2是芯片01的部分结构示意图,其中,在上述的芯片01上,集成有硅光子波导起偏器1和光收端器件(比如,光电探测器、光电调制器、功分器等),在图2中,光收端器件未画出。硅光子波导起偏器1的入光端与光纤04耦合连接,硅光子波导起偏器1的出光端与光收端器件耦合连接。这样的话,发光器件02发出的光经过光纤04耦合至硅光子波导起偏器1,硅光子波导起偏器1将不需要的TE高阶模式和TM模式的偏振光损耗掉,保留TE0模式的光,TE0模式的光传输至光收端器件,通过光收端器件对TE0模式的光信号进行光电转换,或者进一步对转换后的电信号进行处理。
在芯片01中,硅光子波导起偏器1被包覆在包层101中,包层101的材料可以是二氧化硅,也可以是氮化硅。
在可选择的实施方式中,发光器件02也可以集成在芯片01上。也可以外置在芯片01的外部,并且可以通过端面耦合或者透镜耦合将发光器件02的光导入波导。
上述的该收发器光模块可以应用在激光雷达传感器中,也可以应用在人工智能芯 片,各种传感器芯片,光计算机芯片等各种硅光子芯片中。
以下对上述硅光子波导起偏器1的结构进行详细的说明。
如图3所示,该硅光子波导起偏器1包括:平板部11和脊型部12。平板部11和脊型部12由相同的材料制成,例如,利用硅制得。脊型部12形成在平板部11的表面上,且如图4所示,脊型部沿光波导方向P延伸。这样的话,就形成了脊型光波导。通常,脊型部12以及平板部11位于脊型部12正下方的区域,被合称为核心区域(core region)。
在具体实施时,需要选择图3中脊型部12厚度h1和平板部11厚度h3,例如最常用的脊型部12厚度为220nm,平板部11厚度为150nm,这样就可以实现TE0模式宽度和脊型部12宽度接近,但是TE高阶模式和TM模式宽度和平板部11宽度接近。
在本申请的硅光子波导起偏器1中,如图3,还包括吸收部13。吸收部13形成在脊型部12的至少一侧,且吸收部由金属硅化物、锗或者锗硅固溶体制得。
需要说明的是:锗硅固溶体是由锗和硅两种元素形成的溶解度无限的替位固溶体。又称锗硅合金。
由于吸收部13采用金属硅化物、锗或者锗硅固溶体制得,这些材料制得的吸收部会有很大的材料吸收损耗。由于TE0模式宽度窄,接触不到吸收部13,所以TE0模式可以低吸收传输。TE1模式,TE2模式等TE高阶模式,以及所有TM模式,模式宽度很宽,接触到了吸收部13,就造成了很大的模式吸收系数。进而,该硅光子波导起偏器使TM模式的光和TE高阶模式的光就无法传输,从而减少TE0模式和其他模式之间的光耦合,减小TE0模式的光泄漏和损耗。这样形成的硅光子波导起偏器可以被称为TE0-pass起偏器。
一般,在形成脊型部12时,是通过刻蚀工艺制得,这样一来,如图3,脊型部12的侧面C面可能会具有较大的粗糙度,具有较大粗糙度的侧面会使TE0模式的光发生散射,尽管TE0模式的光会进行发散,但是散射的光可以通过金属硅化物、锗或者锗硅固溶体制得的吸收部13吸收掉,避免具有较大粗糙度的侧面成为触发因子激发其他模式生成,进而避免TE0模式与其他模式耦合而造成TE0模式的光损耗现象,且防止产生杂散光,以对芯片造成光污染。
当吸收部13采用金属硅化物制得时,金属硅化物是指过渡金属与硅生成的硬质化合物。例如,过渡金属可以为钴(Co)、镍(Ni)或者钛(Ti)等。从而,形成的金属硅化物可以是硅化钴、硅化镍、硅化钛等。
图4和图6给出了吸收部13两种不同的结构,在图4中,吸收部13沿光波导方向P呈一体布设。在图6中,吸收部13包括多段,多段吸收部13沿光波导方向P间隔布设。也就是说,在图4的吸收部13的基础上,沿光波导方向延伸的吸收部13被分隔成多段,每相邻两端之间具有间距。
通过设置多段间隔布设的吸收部13,可以增大整个硅光子波导起偏器的波导电阻值,比如,采用图4的吸收部13的结构时,该硅光子波导起偏器的波导电阻值为125ohm/mm(125欧姆/毫米),但是,采用图6所示的吸收部13的结构时,该硅光子波导起偏器的波导电阻值可增大至11.5Mohm/mm(11.5兆欧姆/mm)。
当本申请涉及的硅光子波导起偏器的入光端与发光器件连接,出光端与光收端器件连接时,在保障可减少TE0模式和其他模式之间的光耦合、减小TE0模式的光泄漏和损耗,以及能够抑制杂散光的基础上,还可以避免发光器件与光收端器件之间的漏电,提高功耗以及静电释放(Electro-Static discharge,ESD)。
下述给出了吸收部13的多种布设方式,下面分别进行详细说明。
图3和图4是一种吸收部13的布设方式,该吸收部13形成在平板部11的表面上。且吸收部13沿光波导方向P呈一体布设。还有,吸收部13是由金属硅化物制得。
在该示例的图3结构中,在一些可选择的实施方式中,可以使脊型部12的宽度s1为0.55μm,脊型部12的厚度h1为0.07μm,吸收部13的宽度s2为2.0μm,吸收部13的厚度h2为0.03μm,平板部11的厚度h3为0.15μm,平板部11的宽度为8.05μm,吸收部13的靠近脊型部12的侧面至脊型部12的侧面之间的距离为1.75μm。当然,这只是给出了该实施例中的一种具体数据,其他数据也在本申请的保护范围之内。
当图3的硅光子波导起偏器的尺寸选择上述数值时,且平板部11和脊型部12的材料为硅,吸收部13的材料为CoSi 2时,在1550nm其折射率为0.838+5.070i,在1310nm其折射率为0.856+4.553i,CoSi 2对光的吸收非常强烈。由于TE0模场束缚在脊型部12区域,以及其正下方的平板部11区域,脊型部12和吸收部13具有很大的距离,所以吸收部13不会对TE0传输损耗造成影响。TM模式和TE高阶模式的模场横跨整个平板部11区域,所以吸收部13会大大增加这些模式的光的吸收,增加传输损耗。
下述表一是采用图3所示的硅光子波导起偏器时的仿真数据。
Mode Neff Abs(dB/cm))
TE0 2.702 0.01
TM0 1.859 2799
TE1 2.522 212
TE2 2.504 546
TE3 2.454 1181
TE4 2.399 2225
表一
需要解释的是:本申请涉及的Mode指的是光传输的模式,例如,TE0模式、TM0模式等。Neff指的是某一光模式下的光有效折射率(optical effective index)。Abs指的是某一光模式下的光吸收(optical absorption)。
由上述表一中的各数据得知:TE0模式的光的Abs仅为0.01dB/cm,但是,TM0模式的光的Abs,TE1模式的光的Abs,TE2模式的光的Abs,TE3模式的光的Abs,TE4模式的光的Abs均较大。由此得知,硅光子波导起偏器采用图3所示的结构时,可以实现TE0模式的光的Abs不大于0.01dB/cm,其他模式的光的Abs不小于200dB/cm,因此可以使TE高阶模式的光和TM模式的光无法进行传输,进而提高TE0的占比。
在制造图3所示的硅光子波导起偏器时,可以在平板部11的距离脊型部12的0.5μm以上的区域,沉积钴(Co)、镍(Ni)或者钛(Ti)等过渡金属,这些过渡金属 会与平板部11中的硅发生反应,以在平板部11上形成材料为金属硅化物的吸收部13。
图5是另一种吸收部13的布设方式,平板部11的表面上形成有凸台部14,吸收部13形成在凸台部14的远离平板部11的表面上。且吸收部13沿光波导方向P呈一体布设。还有,吸收部13是由金属硅化物制得。
在该示例的图5结构中,在一些可选择的实施方式中,脊型部12的宽度尺寸和厚度尺寸,吸收部13的宽度尺寸和厚度尺寸,以及平板部11的宽度尺寸和厚度尺寸,和吸收部13的靠近脊型部12的侧面至脊型部12的侧面之间的距离,和上述图3的相对应的各个数据一致,在此不再赘述。另外,凸台部14的典型宽度尺寸为2.0um,厚度尺寸和脊形部12的厚度尺寸一致。
同样的,当图5的硅光子波导起偏器的尺寸选择上述数值时,且平板部11和脊型部12的材料为硅,吸收部13的材料为CoSi 2时,在1550nm其折射率为0.838+5.070i,在1310nm其折射率为0.856+4.553i,CoSi 2对光的吸收非常强烈。由于TE0模场束缚在脊型部12区域,以及其正下方的平板部11区域,脊型部12和吸收部13具有很大的距离,所以吸收部13不会对TE0传输损耗造成影响。TM模式和TE高阶模式的模场横跨整个平板部11区域和凸台部14区域,所以吸收部13会大大增加这些模式的光的吸收,增加传输损耗。
下述表二是采用图5所示的硅光子波导起偏器时的仿真数据。
Mode Neff Abs(dB/cm))
TE0 2.702 0.01
TM0 1.859 1346
TE1 2.5374 11188
TE2 2.537 11275
TE3 2.5255 1910
TE4 2.5139 4061
表二
由上述表二中的各数据得知:TE0模式的光的Abs仅为0.01dB/cm,但是,TM0模式的光的Abs,TE1模式的光的Abs,TE2模式的光的Abs,TE3模式的光的Abs,TE4模式的光的Abs均较大,由此得知,硅光子波导起偏器采用图5所示的结构时,可以实现TE0模式的光的Abs不大于0.01dB/cm,其他模式的光的Abs不小于200dB/cm,因此可以使TE高阶模式的光和TM模式的光无法进行传输,提高TE0的占比。
另外,将表二和表一数据相比较,通过在平板部11的表面上形成凸台部14,可以进一步增加TM0模式、TE1模式、TE2模式、TE3模式和TE4模式的光的Abs。
图6是另一种吸收部13的布设方式,平板部11的表面上形成有凸台部14,吸收部13形成在凸台部14的远离平板部11的表面上。且吸收部13包括多段,多段吸收部13沿光波导方向P间隔布设。还有,吸收部13是由金属硅化物制得。
在该示例的图6结构中,在一些可选择的实施方式中,脊型部12的宽度尺寸和厚度尺寸,吸收部13的宽度尺寸和厚度尺寸,以及平板部11的宽度尺寸和厚度尺寸,和吸收部13的靠近脊型部12的侧面至脊型部12的侧面之间的距离,和上述图3的相 对应的各个数据一致,在此不再赘述。另外,每段吸收部的长度t1为36μm,相邻两段吸收部之间的间距t2为6μm。
同样的,当图6的硅光子波导起偏器的尺寸选择上述数值时,且平板部11和脊型部12的材料为硅,吸收部13的材料为CoSi 2时,下述表三是采用图6所示的硅光子波导起偏器时的仿真数据。
Mode Neff Abs(dB/cm))
TE0 2.702 0.01
TM0 1.859 2399
TE1 2.522 182
TE2 2.504 468
TE3 2.454 1012
表三
由上述表三中的各数据得知:TE0模式的光的Abs仅为0.01dB/cm,但是,TM0模式的光的Abs,TE1模式的光的Abs,TE2模式的光的Abs,TE3模式的光的Abs均较大,由此得知,硅光子波导起偏器采用图6所示的结构时,可以实现TE0模式的光的Abs不大于0.01dB/cm,其他模式的光的Abs都比较大,因此可以使TE高阶模式的光和TM模式的光无法进行传输,提高TE0的占比。另外,还可以增大整个硅光子波导起偏器的阻值。由图3中结构的125ohm/mm,可以增大到图6中的11.5Mohm/mm。
图7和图8是另一种吸收部13的布设方式,该吸收部13形成在平板部11的表面上。且吸收部13沿光波导方向P呈一体布设。还有,吸收部13是由锗材料制得。
在该示例的图7结构中,在一些可选择的实施方式中,脊型部12的宽度尺寸和厚度尺寸,以及平板部11的宽度尺寸和厚度尺寸,和吸收部13的靠近脊型部12的侧面至脊型部12的侧面之间的距离,和上述图3的相对应的各个数据一致,在此不再赘述。另外,吸收部13的宽度尺寸为2.0μm,厚度尺寸为0.1um至2.0um。
当图7和图8的硅光子波导起偏器的尺寸选择上述数值时,且平板部11和脊型部12的材料为硅,吸收部13的材料为锗时,下述表四是采用图7和图8所示的硅光子波导起偏器时的仿真数据。
Mode Neff Abs(dB/cm))
TE0 2.702 0.01
TM0 2.847 1666.6
TE1 2.522 66.138
TE2 2.507 148.1
TE3 2.465 277.1
TE4 2.426 463.5
表四
由上述表四中的各数据得知:采用锗制得的吸收部13可以对TM0模式、TE1模式、TE2模式、TE3模式和TE4模式的光进行吸收,以使TE0模式的光的Abs不大于 0.01dB/cm,其他模式的光的Abs都比较大。
在制造图7所示的硅光子波导起偏器时,可以在平板部11的距离脊型部12的0.5μm以上的区域,采用外延工艺法制得材料为锗的吸收部13。
图9和图10是另一种吸收部13的布设方式,平板部11的表面上形成有凸台部14,吸收部13形成在凸台部14的远离平板部11的表面上。且吸收部13包括多段,多段吸收部13沿光波导方向P间隔布设。还有,吸收部13是由锗硅固溶体制得。
在该示例的图9和图10结构中,在一些可选择的实施方式中,脊型部12的宽度尺寸和厚度尺寸,以及平板部11的宽度尺寸和厚度尺寸,和吸收部13的靠近脊型部12的侧面至脊型部12的侧面之间的距离,和上述图3的相对应的各个数据一致,在此不再赘述。另外,每段吸收部的长度t1为36μm,相邻两段吸收部之间的间距t2为6μm,吸收部13的宽度尺寸2.0μm和厚度尺寸为0.1um至2.0um,凸台部的宽度尺寸为2.0um,厚度尺寸和脊形部12的厚度尺寸一致。
当图9和图10的硅光子波导起偏器的尺寸选择上述数值时,且平板部11和脊型部12的材料为硅,吸收部13的材料为锗硅固溶体时,下述表五是采用图9和图10所示的硅光子波导起偏器时的仿真数据。
Mode Neff Abs(dB/cm))
TE0 2.702 0.01
TM0 2.523 67.26
TE1 2.509 168.7
TE2 2.475 406.3
TE3 2.451 607.3
TE4 2.425 565.1
表五
由上述表五中的各数据得知:采用锗硅固溶体制得的吸收部13可以对TM0模式、TE1模式、TE2模式、TE3模式和TE4模式的光进行吸收,以使TE0模式的光的Abs不大于0.01dB/cm,其他模式的光的Abs都比较大。
在制造图9所示的硅光子波导起偏器时,可以在平板部11的距离脊型部12的0.5μm以上的区域,采用外延工艺法制得材料为锗硅固溶体的吸收部13。
图11是另一种吸收部13的布设方式,平板部11的表面上形成有凸台部14,吸收部13形成在凸台部14的侧面上,该侧面是凸台部14的与平板部11紧贴面相邻的面。
图12是另一种吸收部13的布设方式,平板部11的表面上形成有凸台部14,吸收部13形成在凸台部14的远离平板部11的表面上,以及形成在凸台部14的侧面上。
在上述图11和图12所述的结构中,吸收部13可以呈一体的布设,也可以分段式布设。
上述的图3至图12仅给出了吸收部13的部分布设形式,吸收部13还可以以其他形式存在。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个 实施例或示例中以合适的方式结合。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (11)

  1. 一种硅光子波导起偏器,其特征在于,包括:
    平板部;
    脊型部,形成在所述平板部的表面上,且所述脊型部沿光波导方向延伸;
    所述平板部和所述脊型部由硅材料制成;
    其中,所述平板部的位于所述脊型部的至少一侧形成有吸收部,所述吸收部由金属硅化物、锗或者锗硅固溶体制得。
  2. 根据权利要求1所述的硅光子波导起偏器,其特征在于,所述吸收部沿所述光波导方向呈一体布设。
  3. 根据权利要求1所述的硅光子波导起偏器,其特征在于,所述吸收部包括多段,多段所述吸收部沿所述光波导方向间隔布设。
  4. 根据权利要求1-3中任一项所述的硅光子波导起偏器,其特征在于,所述吸收部形成在所述平板部的表面上。
  5. 根据权利要求1-3中任一项所述的硅光子波导起偏器,其特征在于,还包括:
    凸台部,形成在所述平板部的位于所述脊型部的至少一侧;
    所述凸台部的材料和所述平板部的材料相同;
    所述吸收部形成在所述凸台部上。
  6. 根据权利要求5所述的硅光子波导起偏器,其特征在于,所述吸收部形成在所述凸台部的远离所述平板部的表面上。
  7. 根据权利要求1-6中任一项所述的硅光子波导起偏器,其特征在于,所述平板部的位于所述脊型部的相对的两侧均形成有所述吸收部。
  8. 根据权利要求1-7中任一项所述的硅光子波导起偏器,其特征在于,所述金属硅化物包括:硅化钴、硅化镍或者硅化钛。
  9. 一种收发器光模块,其特征在于,包括:
    芯片;
    光收端器件;
    如权利要求1~8中任一项所述的硅光子波导起偏器;
    其中,所述硅光子波导起偏器和所述光收端器件均集成在所述芯片上,且所述硅光子波导起偏器的出光端与所述光收端器件连接。
  10. 根据权利要求9所述的收发器光模块,其特征在于,还包括:
    发光器件;
    光纤,所述发光器件通过所述光纤与所述硅光子波导起偏器的入光端连接。
  11. 一种光通信设备,其特征在于,包括:
    如权利要求9或10所述的收发器光模块。
PCT/CN2020/112288 2020-08-28 2020-08-28 一种硅光子波导起偏器、收发器光模块及光通信设备 WO2022041153A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/112288 WO2022041153A1 (zh) 2020-08-28 2020-08-28 一种硅光子波导起偏器、收发器光模块及光通信设备
CN202080103457.9A CN115956216A (zh) 2020-08-28 2020-08-28 一种硅光子波导起偏器、收发器光模块及光通信设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/112288 WO2022041153A1 (zh) 2020-08-28 2020-08-28 一种硅光子波导起偏器、收发器光模块及光通信设备

Publications (1)

Publication Number Publication Date
WO2022041153A1 true WO2022041153A1 (zh) 2022-03-03

Family

ID=80352479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112288 WO2022041153A1 (zh) 2020-08-28 2020-08-28 一种硅光子波导起偏器、收发器光模块及光通信设备

Country Status (2)

Country Link
CN (1) CN115956216A (zh)
WO (1) WO2022041153A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1278333A (zh) * 1997-08-30 2000-12-27 布克哈姆技术有限公司 集成的光学起偏器
US20110170822A1 (en) * 2008-11-03 2011-07-14 Ivan Avrutsky Integrated optical polarizer for silicon-on-insulator waveguides
JP2015232631A (ja) * 2014-06-10 2015-12-24 Tdk株式会社 光導波路型偏光子
CN106461871A (zh) * 2014-03-31 2017-02-22 华为技术有限公司 用于包括一系列弯曲的波导偏振器的装置与方法
CN106468835A (zh) * 2015-08-21 2017-03-01 Tdk株式会社 光波导元件和使用其的光调制器
CN107132616A (zh) * 2017-05-22 2017-09-05 浙江大学 一种基于复合波导的横向电场通过的偏振器
US20200057195A1 (en) * 2016-01-06 2020-02-20 Elenion Technologies, Llc Integrated on-chip polarizer
CN111458795A (zh) * 2020-05-18 2020-07-28 浙江大学 一种基于硅波导的全波段起偏器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1278333A (zh) * 1997-08-30 2000-12-27 布克哈姆技术有限公司 集成的光学起偏器
US20110170822A1 (en) * 2008-11-03 2011-07-14 Ivan Avrutsky Integrated optical polarizer for silicon-on-insulator waveguides
CN106461871A (zh) * 2014-03-31 2017-02-22 华为技术有限公司 用于包括一系列弯曲的波导偏振器的装置与方法
JP2015232631A (ja) * 2014-06-10 2015-12-24 Tdk株式会社 光導波路型偏光子
CN106468835A (zh) * 2015-08-21 2017-03-01 Tdk株式会社 光波导元件和使用其的光调制器
US20200057195A1 (en) * 2016-01-06 2020-02-20 Elenion Technologies, Llc Integrated on-chip polarizer
CN107132616A (zh) * 2017-05-22 2017-09-05 浙江大学 一种基于复合波导的横向电场通过的偏振器
CN111458795A (zh) * 2020-05-18 2020-07-28 浙江大学 一种基于硅波导的全波段起偏器

Also Published As

Publication number Publication date
CN115956216A8 (zh) 2023-05-26
CN115956216A (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
JP3054707B1 (ja) 光アイソレ―タ
JP3244116B2 (ja) 半導体レーザー
WO2012125368A1 (en) On-chip miniature optical isolator
JPH09269516A (ja) 導波路型光アイソレ−タおよびその製造方法
EP3001241A1 (en) Optoisolator
JP5975331B2 (ja) プラズモニック導波路を用いた光デバイス及び光アイソレーター
WO2015133093A1 (ja) 光導波路、それを用いた光部品および波長可変レーザ
JP5557253B2 (ja) 電界吸収型光変調器
CN110147023B (zh) 一种基于石墨烯和硅基纳米线的拉曼放大器及其制备方法
EP3540876A1 (en) Narrow line-width laser
WO2022041153A1 (zh) 一种硅光子波导起偏器、收发器光模块及光通信设备
WO2019159345A1 (ja) 半導体光集積デバイス
JP6005713B2 (ja) 光導波路素子、受光装置、光通信装置、光変調器、光共振器、及び光導波路素子の製造方法
US6646317B2 (en) High power photodiode
CN112433296A (zh) 一种波导耦合结构及光子集成系统
CN110989080A (zh) 一种基于反向耦合原理的光栅辅助型起偏器
JP3766637B2 (ja) 光結合素子及び光デバイス
WO2022012434A1 (zh) 一种高密度集成光波导
JP2007134401A (ja) 光ゲート・フィルタ、光集積回路、及びパルス・レーザ装置
WO2023103250A1 (zh) 一种工艺不敏感调制器
JPH08234062A (ja) 光結合デバイスおよび光結合方法
CN111999961A (zh) 一种基于纳米条波导耦合谐振腔的石墨烯逻辑异或门器件
Badr et al. All-silicon directional coupler electro-optic modulator utilizing transparent conducting oxides
CN111273385A (zh) 一种基于多波长超窄带共振的金属微纳光学器件
JP3084417B2 (ja) 光結合デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950823

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20950823

Country of ref document: EP

Kind code of ref document: A1