WO2022041021A1 - 一种光纤阵列单元与光通信设备 - Google Patents

一种光纤阵列单元与光通信设备 Download PDF

Info

Publication number
WO2022041021A1
WO2022041021A1 PCT/CN2020/111537 CN2020111537W WO2022041021A1 WO 2022041021 A1 WO2022041021 A1 WO 2022041021A1 CN 2020111537 W CN2020111537 W CN 2020111537W WO 2022041021 A1 WO2022041021 A1 WO 2022041021A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
optical
fiber array
isolation
fixing
Prior art date
Application number
PCT/CN2020/111537
Other languages
English (en)
French (fr)
Inventor
熊威
祝业盛
潘泽鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/111537 priority Critical patent/WO2022041021A1/zh
Priority to CN202080100934.6A priority patent/CN115668017A/zh
Publication of WO2022041021A1 publication Critical patent/WO2022041021A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the embodiments of the present application relate to the technical field of optical fiber communication, and in particular, to an optical fiber array unit and an optical communication device.
  • Optical fiber array is an array formed by installing a bundle of optical fibers or an optical fiber ribbon on a substrate at specified intervals.
  • the optical fiber array can be used to transmit information in optical communication.
  • the optical fiber array is arranged in the optical fiber array unit, and the optical fiber array unit is coupled with the optical chip to realize the transmission of information.
  • the optical fiber array unit in the traditional technical design, such as the technical solution disclosed in the patent CN201610196689.9, as shown in Figure 1, press the bare fiber of the optical fiber array into the V-shaped groove, and then cover it with a cover glass for fixing. . Then, the optical fiber array unit and the optical chip are coupled and bonded.
  • the coupling process is shown in Figure 2. In the traditional technology, the optical fiber array unit and the optical chip are bonded by a coupling matching liquid.
  • the prior art optical fiber array unit has at least the following problems: when the optical fiber array unit and the optical chip are coupled and bonded, the coupling matching liquid not only acts as the optical path glue, but also serves as the fixed glue for the bonding stability of the optical fiber array unit and the optical chip. , after the coupling matching liquid is cured, there is a risk of glue delamination, thereby affecting the performance and reliability of the device.
  • Embodiments of the present application provide an optical fiber array unit and an optical communication device, which aim to improve the coupling performance and bonding reliability of the optical fiber array unit and the optical chip.
  • an optical fiber array unit is provided.
  • the optical fiber array unit is used to connect with the optical chip, and includes an optical fiber array and a fixed structure.
  • One end of the optical fiber array is fixed in the fixed structure;
  • the side of the connection is divided into an optical fiber port area and a fixed connection area;
  • the exit of the optical fiber array on the fixed structure is an optical fiber port, and the optical fiber port is located in the optical fiber port area.
  • fixing one end of the optical fiber array in the fixed structure is beneficial to realize the stability of the optical fiber array and facilitate the coupling of the optical fiber core in the optical fiber array with the waveguide optical path in the optical chip.
  • the isolation belt divides the side connecting the fixed structure and the optical chip into the optical fiber optical port area and the fixed connection area which are isolated from each other.
  • the optical fiber optical port area and the fixed connection area The area is connected to the optical chip as two independent areas, which can be connected by two different glues, and the isolation tape can effectively block the fusion of the two glues, so that the glue in each independent area is not affected, and can be more Give full play to its performance and improve the coupling performance and connection reliability of the fiber array unit and the optical chip.
  • the optical fiber is coupled with the waveguide optical path in the optical chip through the optical fiber outlet, and the optical fiber optical port is arranged in the optical fiber optical port area, so that only the optical path glue can be used to realize the connection between the optical fiber array and the waveguide optical path in the optical chip, and it will not affect the solid state. If the optical fiber port is located in the optical fiber port area and the fixed area at the same time, it is necessary to use two kinds of glue in the optical fiber port area and/or the fixed area, which will easily cause the glue to merge and affect the bonding. performance.
  • the isolation belt can include one or more isolation grooves, and the isolation grooves can include linear isolation grooves and/or annular isolation grooves; area and fixed area.
  • the shape of the cross section of the isolation groove can be various shapes, for example, it can be triangular, rectangular, polygonal or semicircular.
  • the shape of the cross section does not affect the realization of the purpose of the present application, and the shape of the isolation groove may be set according to processing requirements or other requirements, which is not limited in the embodiment of the present application.
  • the cross section of the isolation groove is a regular triangle, a rectangle, a polygon or a semicircle, and the regular shape of the isolation groove is conducive to mass production and processing.
  • the shape of the cross-section of the isolation groove is an irregular pattern.
  • the shape of the cross section of the isolation groove is an irregular figure.
  • the irregular figure here refers to a figure that cannot be directly defined and named in mathematics, such as a closed figure formed by a curve and a straight line. The use of the isolating groove with this shape in cross section can improve the production efficiency when the production volume is low.
  • isolation grooves when there are two or more isolation grooves, the cross-sectional shapes of different isolation grooves may be the same or different.
  • the cross sections of the isolation grooves perpendicular to the extending direction of the isolation grooves are the same.
  • the same cross-sections on the isolation groove perpendicular to the extension direction of the isolation groove indicate that the isolation grooves are uniformly arranged, that is, the minimum distance between the optical fiber port area and the fixed area is the same.
  • the isolation effect of the glue closest to the contact area is the same, preventing the two glues from merging at the end with the smaller distance due to the distance difference; at the same time, in mass production, to produce uniform isolation grooves, only the corresponding molds need to be set. That is, the size of the corresponding isolation grooves on each optical fiber array unit can be achieved to be the same, which is beneficial to improve the production speed.
  • the width of the isolation groove is 250 ⁇ 50um, and the depth of the isolation groove is 100 ⁇ 50um.
  • the width of the isolation groove is set to 250 ⁇ 50um, and the depth of the isolation groove is set to 100 ⁇ 50um, which not only plays the role of isolating different glues in the optical fiber port area and the fixing area, but also provides the fiber Sufficient areas are reserved for the optical port area and the fixation area, so that enough glue can be applied to the optical fiber port area and the fixation area, so as to maintain reliable adhesion between the fixed structure and the optical chip.
  • the width and depth of the isolation groove may be adjusted according to specific application scenarios, usage of glue amount, or other factors related to the isolation groove, which are not specifically limited in the embodiments of the present application.
  • the isolation grooves are symmetrically arranged with respect to the center line of the side surface where the fixing structure is connected to the optical chip as the axis of symmetry.
  • the optical fiber port area inside the isolation groove and the fixing area outside the isolation groove are symmetrical, and the same dose of glue can be applied to the fixing area on the left and right sides to realize the bonding of the fixed structure and the optical chip. uniformity, thereby improving bond strength and bonding effect.
  • the fixing structure is provided with optical fiber holes, the number of the optical fiber holes matches the number of the optical fibers in the optical fiber array, and the optical fibers in the optical fiber array are fixed in the optical fiber holes by an adhesive.
  • the optical fiber array is placed by arranging the optical fiber hole, and the optical fiber is fixed in the optical fiber hole by the adhesive, which improves the stability of the optical fiber array when it is coupled with the waveguide optical path of the optical chip.
  • the fixing structure is an integrally formed structure.
  • the integral molding of the fixing structure is beneficial to improve the strength of the fixing structure, and at the same time, it avoids the error generated when the non-integrated fixing structure is installed and matched, and is beneficial to improve the precision of coupling with the optical chip.
  • an optical communication device including an optical chip and any of the above-mentioned optical fiber array units, and the optical fiber port area and the waveguide optical path optical port on the optical chip are connected by optical path glue , the area corresponding to the fixing area on the optical chip is connected with the fixing area by the fixing glue.
  • the parts corresponding to the optical fiber array unit and the optical chip are connected by two mutually isolated areas, so that the part where the optical fiber array unit and the optical chip are connected to each other form two independent connection layers.
  • the waveguide optical path optical ports on the chip are connected by optical path glue to form an optical path glue layer, and the area corresponding to the fixing area on the optical chip and the fixing area are connected by fixing glue to form a fixing glue layer.
  • the fixing adhesive layer has a good fixing effect and is used to achieve good bonding strength and bonding effect between the optical fiber array unit and the optical chip.
  • the optical path adhesive layer does not need to assume a fixed role, and mainly plays a communication role, which is used to achieve the matching of the refractive index between the optical fiber and the waveguide optical path, so that the device has better performance. Curing the optical path glue and the fixing glue in different areas can effectively prevent the fusion of the two glues, the optical path glue and the fixing glue, and improve the coupling efficiency and performance reliability of the optical fiber array unit and the optical chip.
  • the fixing glue is coated on the corner where the fixing structure is in contact with the optical chip.
  • the fixing adhesive layer is formed along the periphery of the contact surface between the fixing structure and the optical chip, that is, it is formed between the intersection line between the side of the optical chip in contact with the fixing structure and the side of the fixing structure that is connected to the surface. Fixed adhesive layer. In this way, it is convenient to apply the fixing glue, and at the same time, the connection between the fixing structure and the optical chip can be realized.
  • the optical communication device further includes a cover glass, and the fixed area on the fixed structure that is not in contact with the optical chip and the cover glass are connected by a fixing glue; the width of the cover glass is greater than or equal to the width of the fixed structure. .
  • the cover glass is connected to the part of the fixed structure that is not connected to the optical chip, so that the part of the fixed structure that is not connected to the optical chip can be all connected to the cover glass, which increases the contact area of the fixed structure. Make the connection of the fixed structure more stable.
  • the optical communication device further includes a cover glass, the upper surface of the cover glass is flush with the upper surface of the fixing structure, and the cover glass and the fixing structure are integrally formed.
  • the upper surfaces of the two are kept flush to achieve the flatness of the structure and avoid affecting the installation of other devices.
  • the integral molding of the cover glass and the fixed structure increases the contact area between the fixed structure and the optical chip, saves the trouble of bonding by glue, and improves the connection accuracy between the cover glass and the fixed structure.
  • FIG. 1 is a schematic diagram of an optical fiber array provided by the prior art
  • Fig. 2 is the schematic diagram that the optical fiber array provided by the prior art is coupled with the silicon photonic chip
  • FIG. 3 is a schematic diagram of an application scenario of coupling an optical fiber array unit and an optical chip proposed by an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of an optical fiber array unit proposed by an embodiment of the present application.
  • Fig. 5 is one of the left side views of the optical fiber array unit proposed by an embodiment of the present application.
  • FIG. 6 is the second left view of the optical fiber array unit proposed by an embodiment of the present application.
  • FIG. 7 is the third left view of the optical fiber array unit proposed by an embodiment of the present application.
  • FIG. 8 is the fourth left side view of the optical fiber array unit proposed by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the connection between an optical fiber array unit, an optical chip, and a cover glass according to an embodiment of the present application.
  • 1-fiber array unit 2-optical chip; 3-optical path glue; 4-fixed structure; 5-fiber array; 6-isolation slot; 61-linear isolation slot; 62-ring isolation slot; 7-fiber Optical port; 8-cover glass; 9-fixing glue.
  • FIG. 3 is a schematic diagram of an application scenario of coupling an optical fiber array unit and an optical chip proposed by an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of the optical fiber array unit proposed by an embodiment of the present application.
  • the optical fiber array unit is used to connect with the optical chip 2 to realize the transmission of information, including the optical fiber array 5 and the fixed structure 4, and one end of the optical fiber array 5 is fixed in the fixed structure 4; the fixed structure 4.
  • the side connected with the optical chip 2 is provided with an isolation belt, and the isolation belt divides the side of the fixed structure 4 connected with the optical chip 2 into an optical fiber optical port area and a fixed connection area; the exit of the optical fiber array 5 on the fixed structure 4 is an optical fiber.
  • the optical port, the optical fiber optical port 7 is located in the area of the optical fiber optical port.
  • fixing one end of the optical fiber array 5 in the fixing structure 4 is beneficial to realize the stability of the optical fiber array 5 and facilitate the coupling of the optical fiber core in the optical fiber array 5 with the waveguide optical path in the optical chip 2 .
  • the isolation belt divides the side connecting the fixed structure 4 with the optical chip 2 into the optical fiber port area and the fixed connection area which are isolated from each other.
  • the optical fiber port area And the fixing area is connected to the optical chip 2 as two independent areas, which can be connected by two different glues, and the isolation tape can effectively block the fusion of the two glues, so that the glue in each independent area is not affected. It can better exert its performance and improve the coupling performance and connection reliability of the optical fiber array unit 1 and the optical chip 2 .
  • the optical fiber is coupled with the waveguide optical path in the optical chip 2 through the optical fiber outlet, and the optical fiber optical port 7 is arranged in the optical fiber optical port area, so that only the optical path glue is used to realize the connection between the optical fiber array 5 and the waveguide optical path in the optical chip 2, and at the same time It will not affect the connection of the fixed connection area; if the optical fiber port 7 is located in the optical fiber optical port area and the fixed connection area at the same time, two glues need to be used in the optical fiber optical port area and/or the fixed connection area, and there is a risk of glue fusion , resulting in coupling displacement, reducing coupling efficiency and bonding strength, thus affecting the performance of the device; if the optical fiber port 7 is located in the optical fiber port area and the fixed area at the same time, but only one glue is used, the glue should not only play the role of The role of the optical path glue 3 also plays the role of the fixing glue 9, which is easy to cause the glue to be delaminated, which affects the transmission performance and the bonding
  • the optical path glue 3 in this embodiment refers to the glue used to match the refractive index of the optical fiber in the optical fiber array unit 1 and the waveguide optical path in the optical chip 2. Since the optical fiber and the waveguide optical path have a certain gap during coupling, in order to improve the Coupling rate, fill and apply optical path glue 3 in the gap to improve the matching rate of its refractive index; fixing glue 9 refers to the glue used to fill between the optical fiber array unit 1 and the optical chip 2 to improve the bonding strength of the two.
  • UV curing glue shadowless glue
  • the form of the isolation belt can take various forms, such as the form of the isolation groove 6 used in this embodiment, or on the premise that the coupling between the optical fiber array unit 1 and the optical chip 2 is not affected, the isolation belt can be in the form of a protrusion.
  • grooves corresponding to the protrusions can be set on the optical chip 2. If it is inconvenient to set grooves on the optical chip 2, but does not affect the coupling between the optical fiber array unit 1 and the optical chip 2, only the grooves can be set. Raised.
  • One or more isolation strips can be provided, and the isolation strip divides the side connecting the fixing structure 4 with the optical chip 2 into two mutually independent areas, so as to realize the independent connection of the two mutually independent areas with the optical chip 2 , and the coupling between the optical fiber array unit 1 and the optical chip 2 is mainly that the optical fiber of the optical fiber array unit 1 is coupled with the waveguide optical path in the optical chip 2 .
  • the isolation strip may include one or more isolation grooves 6 , and the isolation grooves 6 may include linear isolation grooves 61 and/or annular isolation grooves 62 ; the isolation grooves 6 connect the fixing structure 4 to the optical chip 2 .
  • the side of the connection is divided into a fiber optic port area and a fixed connection area that are isolated from each other.
  • the linear isolation groove 61 when the linear isolation groove 61 is used, no matter whether one linear isolation groove 61 or a plurality of linear isolation grooves 61 are used, as long as at least two ends of the linear isolation groove 61 intersect the edge of the fixing structure 4 , that is, Yes, in this way, the side connected with the fixed structure 4 and the optical chip 2 can be divided into the optical fiber optical port area and the fixed connection area which are isolated from each other; Similarly, the annular isolation groove 62 can be used to make the optical fiber on both sides of the annular isolation groove 62. The mouth area and the fixed area are completely isolated to prevent the glue used in different areas from merging, thereby affecting the performance of the bonding.
  • the isolation strips can be set in various forms, so as to divide the side connecting the fixing structure 4 and the optical chip 2 into two mutually independent regions.
  • the isolation strips in various set forms will be described in detail below.
  • two penetrating isolation grooves 6 are arranged along the same direction on the side of the fixing structure 4 connected to the optical chip 2 , two linear isolation grooves 61 are used, and the two penetrating linear isolation grooves 61 are two Both ends of the linear isolation grooves 61 intersect with the edge of the fixed structure 4, and the side connecting the fixed structure 4 and the optical chip 2 can be divided into three areas, and the area between the two linear isolation grooves 61 is the optical fiber port area, the area outside the two linear isolation grooves 61 is the fixed area, and the optical fiber port area is completely isolated from the fixed area by the two penetrating linear isolation grooves 61. In the subsequent bonding process, to prevent different Area of glue fusion.
  • the isolation belt may also be set as an annular isolation groove 62.
  • FIG. 5 is one of the left side views of the optical fiber array unit proposed in an embodiment of the present application.
  • An annular isolation groove 62 is set on the side of the fixing structure 4 connected to the optical chip 2, the area enclosed by the inner side of the annular isolation groove 62 is the optical fiber optical port area, the area outside the annular isolation groove 62 is the fixed connection area, and the optical fiber optical port 7 It is located in the optical fiber port area, and the optical fiber port area and the fixed connection area are also completely isolated.
  • the annular isolation groove 62 in this application is not limited to the circular isolation groove 6 or the elliptical isolation groove 6 , but includes various closed isolation grooves 6 , such as triangular isolation grooves, rectangular isolation grooves, polygonal isolation grooves or other shaped isolation grooves 6 .
  • FIG. 6 is the second left view of the optical fiber array unit proposed in an embodiment of the present application.
  • two annular isolation grooves 62 two independent areas are formed on the inner side of the two annular isolation grooves 62 respectively, and these two areas are used as the fixed area, and all areas except these two areas are used as the optical fiber port area, and the optical fiber port 7 Set in the fiber optic port area.
  • the optical fiber ports 7 can also be arranged in different independent areas.
  • the enclosed area is used as the optical fiber port area, the optical fiber ports 7 are scattered and arranged in two independent areas in the optical fiber port area, and the remaining areas are used as the fixed connection area.
  • the arrangement can be made according to the actual position of the waveguide optical path in the optical chip 2 and the optical fiber optical port 7 in the optical fiber array unit 1 .
  • the effect of disposing a plurality of annular isolation grooves 62 is similar to the effect in this embodiment, and can be increased or decreased according to the actual situation, which will not be repeated here.
  • FIG. 7 is the third left view of the optical fiber array unit proposed in an embodiment of the present application.
  • the isolation groove 62 and a linear isolation groove 61 both ends of the linear isolation groove 61 intersect with the edge of the fixed structure 4 (as shown in FIG. 7), and the inner sides of the annular isolation groove 62 and the linear isolation groove 61 are both An independent area is formed, these two areas are used as the fixed area, all areas except these two areas are used as the optical fiber port area, and the optical fiber port 7 is set in the optical fiber port area, that is, the optical fiber port area and Mutual isolation of fixed areas.
  • the annular isolation groove 62 or the linear isolation groove 61 can be added or deleted, or other forms of isolation belts can be added, and the effects and functions are similar to those described in this embodiment.
  • the isolation belt may also be formed by two isolation grooves 6 in different directions.
  • FIG. 8 is the fourth left view of the optical fiber array unit proposed in an embodiment of the present application, as shown in FIG. 8
  • two linear isolation grooves 61 in different directions are arranged on the side of the fixing structure 4 connected to the optical chip 2 , one end of the two linear isolation grooves 61 is connected to each other, and the other ends of the two linear isolation grooves 61 both extend To the boundary of the fixed structure 4, this side is divided into two mutually isolated areas, the area with the optical fiber port 7 is the optical fiber port area, and the other area is the fixed connection area, and all the optical fiber ports 7 are located in the area. within the same area.
  • both ends of the curved line-shaped isolation groove 61 are The same effect can also be achieved by intersecting the edge of the fixing structure 4 .
  • the isolation belt may also be formed by a plurality of linear isolation grooves 61.
  • FIG. 9 is the fifth left side view of the optical fiber array unit proposed in an embodiment of the present application, as shown in FIG.
  • six linear isolation grooves 61 are arranged on the side where the fixed structure 4 is connected to the optical chip 2, and the six linear isolation grooves 61 are distributed at the upper and lower ends.
  • the inner side of the linear isolation groove 61 forms an independent area, the area inside the linear isolation groove 61 is used as the fixed area, the area outside the linear isolation groove 61 is used as the optical fiber optical port area, and the optical fiber optical port 7 is arranged in the optical fiber optical port area. middle.
  • the isolation strip can also be formed by a plurality of other forms of isolation grooves 6, as long as the side surface connecting the fixing structure 4 and the optical chip 2 can be divided into two mutually independent areas, regarding the arrangement of the multiple isolation grooves 6 It is not repeated here.
  • the fiber array 5 may be composed of a single fiber (as shown in FIG. 8 ), or may be composed of two fibers (as shown in FIG. 9 ), three fibers (as shown in FIGS. 4 , 5 and 6 ). , 7) or other number of optical fibers, the optical fiber array 5 is used to couple with the waveguide optical path in the optical chip 2 to transmit information, so the number of optical fibers in the optical fiber array 5 can be based on the actual structure of the waveguide optical path in the optical chip 2 Determined to improve the coupling of the two.
  • the shape of the cross section of the isolation groove 6 may be various shapes, for example, a triangle, a rectangle, a polygon, or a semicircle.
  • the shape of the cross section does not affect the realization of the purpose of the present application, and the shape of the isolation groove may be set according to processing requirements or other requirements, which is not limited in the embodiment of the present application.
  • the cross section of the isolation groove 6 is set to be a regular triangle, rectangle, polygon or semi-circle.
  • the regular shape of the isolation groove 6 is beneficial to mass production and processing, and improves the efficiency of generating the isolation groove 6 .
  • the above-mentioned semicircle includes a narrow semicircle: a closed semicircle composed of a semicircle and a straight line, and can also be understood as a semicircle in a broad sense: a circular arc (or ellipse line) and a straight line. closed graphics.
  • the shape of the cross section of the isolation groove 6 may also be an irregular pattern.
  • the shape of the cross section of the isolation groove 6 is an irregular figure, and the irregular figure here refers to a figure that cannot be directly defined and named in mathematics, such as a closed figure formed by a curve and a straight line Or for a polygon with an interior angle greater than 180°, the isolation groove 6 with an irregular cross-section is used, which can improve the production efficiency when the production volume is low.
  • the isolation grooves 6 in the same optical fiber array unit 1 may be isolation grooves 6 of the same shape, or may be isolation grooves 6 of different shapes;
  • the shapes of the isolation grooves 6 in the optical fiber array unit 1 may be the same or different, as long as the isolation function is achieved, which brings great convenience to the production, even if the error in the production of the isolation grooves 6 is relatively small. It will not affect its effect.
  • the cross section of the isolation groove 6 refers to the cross section perpendicular to the extending direction of the isolation groove.
  • the cross sections of the isolation grooves 6 perpendicular to the extending direction of the isolation grooves 6 are the same.
  • the cross-section of the isolation groove 6 perpendicular to the extension direction of the isolation groove 6 is the same, indicating that the isolation grooves 6 are uniformly arranged, that is, the minimum distance between the optical fiber port area and the fixed area is the same, so that the The isolation effect of the glue in the area and the closest glue in the fixed area is the same, preventing the two glues from merging at the end with the smaller distance due to the distance difference; at the same time, in mass production, the production of uniform isolation groove 6 only needs to be set
  • Corresponding molds can realize that the corresponding isolation grooves 6 on each optical fiber array unit 1 have the same size, which is beneficial to improve the production speed.
  • the vertical in this embodiment is not a theoretical absolute vertical, and in actual production, a certain error is allowed.
  • the width of the isolation trench 6 is , and the depth of the isolation trench 6 is .
  • the width of the isolation groove 6 is set to 250 ⁇ 50um, and the depth of the isolation groove 6 is set to 100 ⁇ 50um, which not only plays a role in isolating different glues in the optical fiber port area and the fixing area, but also at the same time.
  • Sufficient area is reserved for the optical fiber port area and the fixing area, so that enough glue can be applied to the optical fiber port area and the fixing area, so as to maintain reliable adhesion between the fixing structure 4 and the optical chip 2 .
  • the width and depth of the isolation groove may be adjusted according to specific application scenarios, usage of glue amount, or other factors related to the isolation groove, which are not specifically limited in the embodiments of the present application.
  • the isolation groove 6 can also be set to be non-uniform, for example, a tapered design is adopted, or the two ends of the isolation groove 6 are larger, or the two ends of the isolation groove 6 are smaller and other non-uniform layout forms, which are not discussed here. List them one by one.
  • the isolation grooves 6 are symmetrically arranged with respect to the center line of the side surface where the fixing structure 4 is connected to the optical chip 2 as the axis of symmetry.
  • the optical fiber port area inside the isolation groove 6 and the fixing area outside the isolation groove 6 are symmetrical, and the same dose of glue can be applied to the fixing area on the left and right sides to realize the fixing structure 4 and the optical chip. 2 of the bonding uniformity, thereby improving the bonding strength and bonding effect.
  • the fixing structure 4 is provided with optical fiber holes, and the number of the optical fiber holes matches the number of optical fibers in the optical fiber array 5, and the optical fibers in the optical fiber array 5 are fixed in the optical fiber holes by adhesive.
  • the optical fiber array 5 is placed by arranging the optical fiber hole, and the optical fiber is fixed in the optical fiber hole by the adhesive, so as to realize the stability of the optical fiber array 5 when it is coupled with the waveguide optical path of the optical chip 2 .
  • the optical fiber array 5 can also be fixed in the form of a V-shaped groove.
  • a V-shaped groove matching the number of fibers in the optical fiber array 5 is provided on the fixing structure 4, and then the fibers are fixed in the V-shaped groove by adhesive. middle.
  • the fixing structure 4 is an integrally formed structure.
  • the integral molding of the fixing structure 4 is beneficial to improve the strength of the fixing structure 4 , and at the same time, it avoids the error generated when the non-integrated fixing structure 4 is installed and matched, and is beneficial to improve the coupling accuracy with the optical chip 2 .
  • the fixing structure 4 can also be formed by combining two or more structures, such as in the form of upper and lower cover plates, which are combined into the fixing structure 4 through connection, and the fixing structure 4 in this form is easy to disassemble.
  • FIG. 3 is a schematic diagram of an application scenario in which an optical fiber array unit and an optical chip 2 are coupled according to an embodiment of the present application.
  • the optical communication device includes an optical chip 2 and an optical fiber array unit provided in any of the above-mentioned embodiments.
  • the optical fiber port area and the waveguide optical path optical port on the optical chip 2 are connected by an optical path glue 3 .
  • the area on the chip 2 corresponding to the fixing area is connected with the fixing area by the fixing glue 9 .
  • the parts corresponding to the optical fiber array unit 1 and the optical chip 2 are connected by two mutually isolated areas, so that the parts of the optical fiber array unit 1 and the optical chip 2 that are connected to each other form two independent connection layers, and the optical fiber port area and the optical chip are connected.
  • the optical path optical ports of the waveguide on 2 are connected by the optical path glue 3 to form an optical path glue layer, and the area corresponding to the fixing area on the optical chip 2 is connected with the fixing area by the fixing glue 9 to form the fixing glue layer.
  • the fixing adhesive layer has a good fixing effect and is used to achieve good bonding strength and bonding effect between the optical fiber array unit 1 and the optical chip 2 .
  • the optical path adhesive layer does not need to assume a fixed role, and mainly plays a communication role, which is used to achieve the matching of the refractive index between the optical fiber and the waveguide optical path, so that the device has better performance.
  • Curing the optical path glue 3 and the fixing glue 9 in different areas can effectively prevent the fusion of the two glues of the optical path glue 3 and the fixing glue 9, and improve the coupling efficiency and performance reliability of the optical fiber array unit 1 and the optical chip 2.
  • the fixing glue is coated on the corner where the fixing structure is in contact with the optical chip.
  • the fixing adhesive layer may be formed between the fixing area and the area on the optical chip 2 corresponding to the fixing area, that is, the fixing adhesive layer is formed on the contact surface of the fixing structure 4 and the optical chip 2 .
  • the fixing adhesive layer can also be formed along the periphery of the contact surface of the fixing structure 4 and the optical chip 2 , that is, the surface of the optical chip 2 in contact with the fixing structure 4 and the surface of the fixing structure 4 are connected to the surface.
  • a fixed adhesive layer is formed at the intersection line of the side. In this way, it is convenient to apply the fixing glue 9, and at the same time, the connection between the fixing structure and the optical chip can be realized.
  • FIG. 10 is a schematic diagram of the connection between the optical fiber array unit, the optical chip and the cover glass proposed by an embodiment of the present application.
  • the optical communication device further includes a cover glass 8.
  • the fixing area on the fixing structure 4 that is not in contact with the optical chip 2 is connected with the cover glass 8 by the fixing glue 9 ; the width of the cover glass 8 is greater than or equal to the width of the fixing structure 4 .
  • the fixing glue 9 can be coated on the direct contact surface of the cover glass 8 and the fixing structure 4 for bonding, or the fixing glue 9 can be coated on the cover.
  • the intersection of the glass slide 8 and the fixing structure 4 is used to realize bonding.
  • the cover glass 8 is connected to the part of the fixed structure 4 that is not connected to the optical chip 2, so that the part of the fixed structure 4 that is not connected to the optical chip 2 can be all connected to the cover glass 8, increasing the The contact area of the fixing structure 4 is increased, so that the connection of the fixing structure 4 is more stable.
  • the optical communication device further includes a cover glass 8 .
  • the upper surface of the cover glass 8 is flush with the upper surface of the fixing structure 4 , and the cover glass 8 and the fixing structure 4 are integrally formed. Since the optical chip 2 is generally installed on the main board through the bottom, the cover glass 8 is generally installed on the upper end of the optical chip 2, and the cover glass 8 and the upper surface of the optical fiber array unit 1 are kept flush to realize the structural Flatness to avoid affecting the installation of other devices.
  • the integral molding of the cover glass 8 and the fixing structure 4 increases the contact area between the fixing structure 4 and the optical chip 2 , and at the same time saves the trouble of bonding by glue, and improves the gap between the cover glass 8 and the fixing structure 4
  • the cover glass 8 can play a certain auxiliary role, that is, to help the optical path optical port in the optical fiber array unit 1 and the waveguide optical path in the optical chip 2 alignment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

一种光纤阵列单元与光通信设备,具体涉及光纤通信技术领域。光纤阵列单元包括光纤阵列和固定结构,光纤阵列的一端固定于固定结构中;固定结构与光芯片连接的侧面设置有一条或多条隔离槽,隔离槽将固定结构与光芯片相连接的侧面分为相互独立的光纤光口区域和固接区域;光纤阵列在固定结构上的出口为光纤光口,光纤光口位于光纤光口区域内;光纤光口区域与光芯片上的波导光路光口之间通过光路胶连接,光芯片上与固接区域相对应的区域与固接区域通过固定胶连接。将光路胶和固定胶在不同的区域进行固化,可以有效地防止光路胶和固定胶两种胶水的融合,提高光纤阵列单元和光芯片的耦合效率和性能可靠性。

Description

一种光纤阵列单元与光通信设备 技术领域
本申请实施例涉及光纤通信技术领域,具体而言,涉及一种光纤阵列单元与光通信设备。
背景技术
光纤阵列是把一束光纤或一条光纤带按照规定间隔安装在基片上,所构成的阵列,光纤阵列可以用来在光通讯中传输信息。
在光纤通信中,光纤阵列设置于光纤阵列单元中,光纤阵列单元与光芯片耦合,实现信息的传输。传统技术设计中的光纤阵列单元,如专利CN201610196689.9中所公开的技术方案,如图1所示,将光纤阵列的裸纤压入V型槽中,再在上面盖上盖玻片进行固定。然后将光纤阵列单元和光芯片进行耦合和粘接,耦合过程如图2所示,在传统技术中,光纤阵列单元与光芯片之间采用耦合匹配液进行粘接。
发明人发现,现有技术的光纤阵列单元至少存在以下问题:在光纤阵列单元和光芯片耦合粘接时,耦合匹配液既作为光路胶水,同时也作为光纤阵列单元和光芯片粘接稳定性的固定胶水,在耦合匹配液固化后,存在胶水分层的风险,从而影响器件的性能和可靠性。
发明内容
本申请实施例提供一种光纤阵列单元与光通信设备,旨在提高光纤阵列单元和光芯片的耦合性能和粘接可靠性。
为达到上述目的,本申请实施例采用如下技术方案:
本申请实施例的一方面,提供一种光纤阵列单元。该光纤阵列单元用于与光芯片连接,包括光纤阵列和固定结构,光纤阵列的一端固定于固定结构中;固定结构与光芯片连接的侧面设置有隔离带,隔离带将固定结构与光芯片相连接的侧面分为光纤光口区域和固接区域;光纤阵列在固定结构上的出口为光纤光口,光纤光口位于光纤光口区域内。
在此情况下,将光纤阵列的一端固定于固定结构中有利于实现光纤阵列的稳定性,便于将光纤阵列中的光纤纤芯与光芯片中的波导光路进行耦合。在隔离带的作用下,隔离带将固定结构与光芯片连接的侧面分割为相互隔绝的光纤光口区域和固接区域,在光纤阵列单元与光芯片进行连接时,光纤光口区域和固接区域作为两个独立的区域分别与光芯片进行连接,可以采用两种不同的胶水进行连接,且隔离带可以有效地阻隔两种胶水进行融合,使得各独立区域内的胶水不受影响,可以更好地发挥其效能,提升光纤阵列单元和光芯片的耦合性能和连接可靠性。
光纤穿过光纤出口与光芯片中的波导光路进行耦合,将光纤光口设置在光纤光口区域内,便于只采用光路胶水实现光纤阵列与光芯片中的波导光路的连接,同时不会影响固接区域的连接;若光纤光口同时位于光纤光口区域和固接区域内,则需要在光纤光口区域和/或固接区域内使用两种胶水,容易导致胶水融合,从而影响粘接的性能。
可选地,隔离带可以包括一条或多条隔离槽,隔离槽可以包括线状隔离槽和/或环 形隔离槽;隔离槽将固定结构与光芯片相连接的侧面分为相互隔绝的光纤光口区域和固接区域。
在此情况下,采用线状隔离槽时,无论是采用一条线状隔离槽还是多条线状隔离槽,只要使得线状隔离槽至少有两端与固定结构的边缘相交即可,这样可以将固定结构与光芯片相连接的侧面分为相互隔绝的光纤光口区域和固接区域;同理,采用环形隔离槽,可以使环形隔离槽两侧的光纤光口区域和固接区域形成彻底隔离,防止不同区域使用的胶水产生融合,从而影响粘接的性能。
可选地,隔离槽的横截面的形状可以为多种形状,例如可以为三角形、矩形、多边形或者半圆形。横截面的形状不影响本申请目的的实现,可以根据加工需要或者其他需求设置隔离槽的形状,本申请实施例不做限定。在此情况下,隔离槽的横截面为规则的三角形、矩形、多边形或者半圆形,规则形状的隔离槽有利于进行批量的生产加工。
可选地,隔离槽的横截面的形状为不规则图形。在此情况下,隔离槽的横截面的形状为不规则的图形,此处的不规则图形是指数学中不能被直接定义、命名的图形,如由一条曲线和一条直线形成的闭合的图形,采用横截面为该种形状的隔离槽,在生产量较低时,可以提高生产效率。
需要说明的是,当隔离槽有两条或两条以上的情况下,不同隔离槽的横截面形状可以相同,也可以不同。
可选地,隔离槽上垂直于隔离槽延伸方向的横截面相同。在此情况下,隔离槽上垂直于隔离槽延伸方向的横截面相同表明隔离槽是均匀设置的,即光纤光口区域与固接区域的最小距离是相同的,实现对光纤光口区域和固接区域内相距最近的胶水的隔离效果一样,防止因为距离差而导致两种胶水在距离较小的一端融合;同时,在进行批量生产时,生产均匀的隔离槽只需设置好相应的模具,即可实现每个光纤阵列单元上对应的隔离槽大小一致,有利于提高生产速度。
可选的,隔离槽的宽度为250±50um,隔离槽的深度为100±50um。在此情况下,将隔离槽的宽度设置为250±50um,将隔离槽的深度设置为100±50um,既起到了对光纤光口区域和固接区域内不同胶水的隔离作用,同时又给光纤光口区域和固接区域留出了足够的面积,使得可以在光纤光口区域和固接区域涂抹足够的胶水,从而使得固定结构与光芯片之间保持可靠的粘接性。在实际应用中,隔离槽的宽度和深度可以根据具体的应用场景、胶量的使用情况或者其它与隔离槽相关的因素进行调整,本申请实施例不做具体限定。
可选地,隔离槽以固定结构与光芯片相连接的侧面的中线为对称轴对称设置。在此情况下,隔离槽内侧的光纤光口区域和隔离槽外侧的固接区域都是呈对称的,可以在左右两侧的固接区域涂抹相同剂量的胶水,实现固定结构和光芯片的粘接均匀性,从而提高粘接强度和粘接效果。
可选地,固定结构中设置有光纤孔,光纤孔的数量与光纤阵列中光纤的数量相匹配,光纤阵列中的光纤通过粘合剂固定于光纤孔中。在此情况下,通过设置光纤孔来放置光纤阵列,并通过粘合剂将光纤固定在光纤孔内,提高了光纤阵列在与光芯片的波导光路进行耦合时的稳定性。
可选地,固定结构为一体成型的结构。在此情况下,固定结构一体成型有利于提升固定结构的强度,同时避免了非一体成型的固定结构在安装配合时所产生的误差,有利于提高与光芯片耦合时的精度。
本申请实施例的另一方面,提供一种光通信设备,包括光芯片以及如上所述的任意一种光纤阵列单元,光纤光口区域与光芯片上的波导光路光口之间通过光路胶连接,光芯片上与固接区域相对应的区域与固接区域通过固定胶连接。
在此情况下,光纤阵列单元与光芯片相对应的部分通过两个相互隔离的区域相连接,使得光纤阵列单元与光芯片相互连接的部分形成两个独立的连接层,光纤光口区域与光芯片上的波导光路光口之间通过光路胶连接形成光路胶层,光芯片上与固接区域相对应的区域与固接区域通过固定胶连接形成固定胶层。固定胶层具有良好的固定作用,用于实现光纤阵列单元与光芯片之间良好的粘接强度和粘接效果。此时,光路胶层无需承担固定作用,主要起通信作用,用于实现光纤与波导光路之间折射率的匹配,使得器件具有更良好的性能。将光路胶和固定胶在不同的区域进行固化,可以有效地防止光路胶和固定胶两种胶水的融合,提高光纤阵列单元和光芯片的耦合效率和性能可靠性。
可选地,固定胶涂覆于固定结构与光芯片相接触的转角处。在此情况下,固定胶层是沿着固定结构与光芯片的接触面的四周形成,即在光芯片与固定结构相接触的一面和固定结构上与该面相连接的侧面的交接线之间形成固定胶层。这样方便涂覆固定胶,同时也能实现固定结构与光芯片之间的连接。
可选地,该光通信设备还包括盖玻片,固定结构上未与光芯片相接触的固接区域与盖玻片之间通过固定胶连接;盖玻片的宽度大于或等于固定结构的宽度。
在此情况下,盖玻片实现与固定结构上未与光芯片连接的部分连接,使得固定结构上未与光芯片连接的部分可以全部连接在盖玻片上,增大了固定结构的接触面积,使固定结构的连接更加稳定。
可选地,该光通信设备还包括盖玻片,盖玻片的上表面与固定结构的上表面平齐,盖玻片与固定结构一体成型。两者的上表面保持平齐,实现了结构的平整性,避免影响其他装置的安装。盖玻片与固定结构一体成型增大了固定结构与光芯片之间的接触面积,同时省去了通过胶水粘接的麻烦,提高了盖玻片与固定结构之间的连接精度。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术提供的光纤阵列的示意图;
图2是现有技术提供的光纤阵列与硅光芯片耦合完成的示意图;
图3是本申请一实施例提出的光纤阵列单元与光芯片耦合的应用场景示意图;
图4是本申请一实施例提出的光纤阵列单元的结构示意图;
图5是本申请一实施例提出的光纤阵列单元的左视图之一;
图6是本申请一实施例提出的光纤阵列单元的左视图之二;
图7是本申请一实施例提出的光纤阵列单元的左视图之三;
图8是本申请一实施例提出的光纤阵列单元的左视图之四;
图9是本申请一实施例提出的光纤阵列单元的左视图之五;
图10是本申请一实施例提出的光纤阵列单元、光芯片与盖玻片的连接示意图。
图中:1-光纤阵列单元;2-光芯片;3-光路胶;4-固定结构;5-光纤阵列;6-隔离槽;61-线状隔离槽;62-环形隔离槽;7-光纤光口;8-盖玻片;9-固定胶。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
参考图3、图4,图3是本申请一实施例提出的光纤阵列单元与光芯片耦合的应用场景示意图,图4是本申请一实施例提出的光纤阵列单元的结构示意图。如图3、图4所示,该光纤阵列单元用于与光芯片2连接,以实现信息的传输,包括光纤阵列5和固定结构4,光纤阵列5的一端固定于固定结构4中;固定结构4与光芯片2连接的侧面设置有隔离带,隔离带将固定结构4与光芯片2相连接的侧面分为光纤光口区域和固接区域;光纤阵列5在固定结构4上的出口为光纤光口,光纤光口7位于光纤光口区域内。
在此情况下,将光纤阵列5的一端固定于固定结构4中,有利于实现光纤阵列5的稳定性,便于将光纤阵列5中的光纤纤芯与光芯片2中的波导光路进行耦合。在隔离带的作用下,隔离带将固定结构4与光芯片2连接的侧面分割为相互隔绝的光纤光口区域和固接区域,在固定结构4与光芯片2进行连接时,光纤光口区域和固接区域作为两个独立的区域分别与光芯片2进行连接,可以采用两种不同的胶水进行连接,且隔离带可以有效地阻隔两种胶水进行融合,使得各独立区域内的胶水不受影响,可以更好地发挥其效能,提升光纤阵列单元1和光芯片2的耦合性能和连接可靠性。
光纤穿过光纤出口与光芯片2中的波导光路进行耦合,将光纤光口7设置在光纤光口区域内,便于只采用光路胶水实现光纤阵列5与光芯片2中的波导光路的连接,同时不会影响固接区域的连接;若光纤光口7同时位于光纤光口区域和固接区域内,则需要在光纤光口区域和/或固接区域内使用两种胶水,存在胶水融合的风险,导致耦合位移,降低耦合效率和粘接强度,从而影响器件的性能;若光纤光口7同时位于光纤光口区域和固接区域内,但只使用一种胶水,则该胶水既要起到光路胶3的作用,又要起到固定胶9的作用,这样容易导致胶水产生分层,影响传输性能和粘接效果。
本实施例中的光路胶3是指用于匹配光纤阵列单元1中光纤与光芯片2中波导光路的折射率的胶水,由于光纤与波导光路在耦合时具有一定的间隙,为了提高两者的耦合率,在其间隙处填涂光路胶3,提高其折射率的匹配率;固定胶9是指用于填涂在光纤阵列单元1和光芯片2之间以提高两者粘接强度的胶水,如紫外光固化胶(无影胶)。
隔离带的形式可以采用多种形式,如本实施例中所采用的隔离槽6的形式,或者在不影响光纤阵列单元1与光芯片2耦合的前提下,隔离带可以采用凸起的形式进行 隔离,相应地,可以在光芯片2上设置与凸起相对应的凹槽,若光芯片2上不便于设置凹槽,但又不影响光纤阵列单元1与光芯片2的耦合,可只设置凸起。
隔离带可以设置一条或者多条,隔离带将固定结构4与光芯片2相连接的侧面分为两个相互独立的区域即可,以实现两个相互独立的区域独立的与光芯片2进行连接,而光纤阵列单元1与光芯片2耦合主要是光纤阵列单元1的光纤与光芯片2中的波导光路进行耦合。
在本申请一实施例中,隔离带可以包括一条或多条隔离槽6,隔离槽6可以包括线状隔离槽61和/或环形隔离槽62;隔离槽6将固定结构4与光芯片2相连接的侧面分为相互隔绝的光纤光口区域和固接区域。
在此情况下,采用线状隔离槽61时,无论是采用一条线状隔离槽61还是多条线状隔离槽61,只要使得线状隔离槽61至少有两端与固定结构4的边缘相交即可,这样可以将固定结构4与光芯片2相连接的侧面分为相互隔绝的光纤光口区域和固接区域;同理,采用环形隔离槽62,可以使环形隔离槽62两侧的光纤光口区域和固接区域形成彻底隔离,防止不同区域使用的胶水产生融合,从而影响粘接的性能。
隔离带可以设置为各种各样的形式,以实现将固定结构4与光芯片2相连接的侧面分为两个相互独立的区域,下面将详细介绍各种设置形式的隔离带。
如图4所示,在固定结构4与光芯片2连接的侧面沿同一方向设置两条贯穿的隔离槽6,采用两条线状隔离槽61,两条贯穿的线状隔离槽61即两条线状隔离槽61的两端均与固定结构4的边缘相交,可以将固定结构4与光芯片2连接的侧面分为三个区域,两条线状隔离槽61之间的区域为光纤光口区域,两条线状隔离槽61外侧的区域均为固接区域,光纤光口区域通过两条贯穿的线状隔离槽61与固接区域形成彻底隔离,在后续的粘接过程中,防止不同区域的胶水融合。
在本申请另一实施例中,隔离带还可以设置为环形隔离槽62,参考图5,图5是本申请一实施例提出的光纤阵列单元的左视图之一,如图5所示,在固定结构4与光芯片2连接的侧面设置一条环形隔离槽62,环形隔离槽62的内侧所围成的区域为光纤光口区域,环形隔离槽62外侧的区域为固接区域,光纤光口7位于光纤光口区域内,光纤光口区域与固接区域也形成彻底隔离。
本申请中的环形隔离槽62不限于圆形隔离槽6或者椭圆形隔离槽6,包括各种封闭的隔离槽6,如三角形隔离槽、矩形隔离槽、多边形隔离槽或者其它形状的隔离槽6。
此外,也可以设置两个环形隔离槽62或多个环形隔离槽62,参考图6,图6是本申请一实施例提出的光纤阵列单元的左视图之二,如图6所示,设置两个环形隔离槽62,两个环形隔离槽62内侧分别形成两个独立的区域,将这两个区域作为固接区域,除这两个区域以外的所有区域作为光纤光口区域,光纤光口7设置在光纤光口区域中。当然,若根据实际情况,光纤光口7的位置较为分散,也可以将光纤光口7设置于不同的独立区域内,以图6中隔离槽6的设置情况为例,两个环形隔离槽62所围成的区域作为光纤光口区域,光纤光口7分散设置于光纤光口区域中的两个独立区域内,剩余的区域作为固接区域。在设置隔离槽6时,可以根据光芯片2中波导光路和光纤阵列单元1中光纤光口7的实际位置进行布置。设置多个环形隔离槽62的情况与本实施例中的效果相似,可根据实际情况进行增减,在此不作赘述。
此外,还可以设置一个环形隔离槽62和一个线状隔离槽61,参考图7,图7是本申请一实施例提出的光纤阵列单元的左视图之三,如图7所示,设置一个环形隔离槽62和一条线状隔离槽61,该条线状隔离槽61的两端均与固定结构4的边缘相交(如图7所示),环形隔离槽62和线状隔离槽61的内侧均形成一个独立的区域,将这两个区域作为固接区域,除这两个区域以外的所有区域作为光纤光口区域,光纤光口7设置在光纤光口区域中,即实现光纤光口区域与固接区域的相互隔离。在该实施例的基础上,可以对环形隔离槽62或线状隔离槽61进行增加或删减,或者增加其他形式的隔离带,其效果和作用与本实施例所述的相似。
在本申请另一实施例中,隔离带还可以由两条不同方向的隔离槽6形成,参考图8,图8是本申请一实施例提出的光纤阵列单元的左视图之四,如图8所示,在固定结构4与光芯片2连接的侧面设置两条不同方向的线状隔离槽61,两条线状隔离槽61的一端相互连通,两条线状隔离槽61的另一端均延伸到固定结构4的边界,将该侧分为两个相互隔离的区域,其中带有光纤光口7的区域为光纤光口区域,另一个区域为固接区域,所有的光纤光口7均位于同一个区域内。
此外,也可以设置为一条如图8中所示形状的L型隔离槽6,或者设置为一条类似于L型的曲线型线状隔离槽61,该曲线型线状隔离槽61的两端均与固定结构4的边缘相交,同样也可以实现相同的效果。
在本申请另一实施例中,隔离带还可以由多条线状隔离槽61形成,参考图9,图9是本申请一实施例提出的光纤阵列单元的左视图之五,如图9所示,在固定结构4与光芯片2连接的侧面设置六条线状隔离槽61,六条线状隔离槽61分布于上下两端,每一端的三条线状隔离槽61依次连通,每一端的三条线状隔离槽61的内侧形成一个独立的区域,将线状隔离槽61内侧的区域作为固接区域,线状隔离槽61外侧的区域作为光纤光口区域,光纤光口7设置在光纤光口区域中。
此外,隔离带还可以由多条其它形式的隔离槽6形成,只要能将固定结构4与光芯片2连接的侧面分为两个相互独立的区域即可,关于多条隔离槽6的布置形式在此不再赘述。
在本申请的一些实施例中,光纤阵列5可以由单根光纤组成(如图8所示),也可以由两根光纤(如图9所示)、三根光纤(如图4、5、6、7所示)或其它数量的光纤组成,光纤阵列5用于与光芯片2中的波导光路耦合,以传输信息,因此光纤阵列5中光纤的数量可根据光芯片2中波导光路的实际结构进行确定,以提高两者的耦合性。
在本申请一实施例中,隔离槽6的横截面的形状可以为多种形状,例如可以为三角形、矩形、多边形或者半圆形。横截面的形状不影响本申请目的的实现,可以根据加工需要或者其他需求设置隔离槽的形状,本申请实施例不做限定。将隔离槽6的横截面设置为规则的三角形、矩形、多边形或者半圆形,规则形状的隔离槽6有利于批量的生产加工,提高生成隔离槽6的效率。上述的半圆形包括狭义的半圆形:由一段半圆和一条直线所组成的封闭半圆,也可以理解为广义的半圆形:由一段圆弧线(或椭圆线)和一条直线所构成的封闭的图形。
在本申请的一些实施例中,隔离槽6的横截面的形状也可以为不规则图形。在此 情况下,隔离槽6的横截面的形状为不规则的图形,此处的不规则图形是指数学中不能被直接定义、命名的图形,如由一条曲线和一条直线形成的闭合的图形或者某一内角大于180°的多边形,采用横截面为不规则图形的隔离槽6,在生产量较低时,可以提高生产效率。
需要说明的是,当隔离槽6有两条或两条以上的情况下,同一光纤阵列单元1中的隔离槽6可以为相同形状的隔离槽6,也可以为不同形状的隔离槽6;不同光纤阵列单元1中的隔离槽6的形状可以是相同的,也可以是不同的,只需实现隔离的作用即可,这为生产时带来较大的便利,即使生产隔离槽6时误差较大也不会影响其作用。在本申请实施例中,隔离槽6的横截面是指的垂直于隔离槽延伸方向的横截面。
在本申请一实施例中,隔离槽6上垂直于隔离槽6延伸方向的横截面相同。在此情况下,隔离槽6上垂直于隔离槽6延伸方向的横截面相同表明隔离槽6是均匀设置的,即光纤光口区域与固接区域的最小距离是相同的,实现对光纤光口区域和固接区域内相距最近的胶水的隔离效果一样,防止因为距离差而导致两种胶水在距离较小的一端融合;同时,在进行批量生产时,生产均匀的隔离槽6只需设置好相应的模具,即可实现每个光纤阵列单元1上对应的隔离槽6大小一致,有利于提高生产速度。本实施例中的垂直非理论上绝对意义的垂直,在实际生产中,允许存在一定的误差。
在本申请一实施例中,隔离槽6的宽度为,隔离槽6的深度为。在此情况下,将隔离槽6的宽度设置为250±50um,将隔离槽6的深度设置为100±50um,既起到了对光纤光口区域和固接区域内不同胶水的隔离作用,同时又给光纤光口区域和固接区域留出了足够的面积,使得可以在光纤光口区域和固接区域涂抹足够的胶水,从而使得固定结构4与光芯片2之间保持可靠的粘接性。在实际应用中,隔离槽的宽度和深度可以根据具体的应用场景、胶量的使用情况或者其它与隔离槽相关的因素进行调整,本申请实施例不做具体限定。
此外,隔离槽6也可以设置为非均匀的,如采用渐缩式设计,或者隔离槽6的两端较大,或者隔离槽6的两端较小等其他非均匀的布置形式,在此不进行一一列举。
在本申请一实施例中,隔离槽6以固定结构4与光芯片2相连接的侧面的中线为对称轴对称设置。在此情况下,隔离槽6内侧的光纤光口区域和隔离槽6外侧的固接区域都是呈对称的,可以在左右两侧的固接区域涂抹相同剂量的胶水,实现固定结构4和光芯片2的粘接均匀性,从而提高粘接强度和粘接效果。
在本申请一实施例中,固定结构4中设置有光纤孔,光纤孔的数量与光纤阵列5中光纤的数量相匹配,光纤阵列5中的光纤通过粘合剂固定于光纤孔中。在此情况下,通过设置光纤孔来放置光纤阵列5,并通过粘合剂将光纤固定在光纤孔内,实现了光纤阵列5在与光芯片2的波导光路进行耦合时的稳定性。
此外,也可以采用V型槽的形式对光纤阵列5进行固定,如在固定结构4上开设与光纤阵列5中光纤数量相匹配的V型槽,然后通过粘合剂将光纤固定在V型槽中。
在本申请一实施例中,固定结构4为一体成型的结构。在此情况下,固定结构4一体成型有利于提升固定结构4的强度,同时避免了非一体成型的固定结构4在安装配合时所产生的误差,有利于提高与光芯片2耦合时的精度。
固定结构4也可以为两种或多种结构组合而成,如采取上、下盖板的形式,通过 连接组合成固定结构4,这种形式的固定结构4方便拆卸。
基于同一发明构思,本申请一实施例提供一种光通信设备。参考图3,图3是本申请一实施例提出的光纤阵列单元与光芯片2耦合的应用场景示意图。如图3所示,该光通信设备包括光芯片2以及上述任意一实施例所提供的光纤阵列单元,光纤光口区域与光芯片2上的波导光路光口之间通过光路胶3连接,光芯片2上与固接区域相对应的区域与固接区域通过固定胶9连接。
光纤阵列单元1与光芯片2相对应的部分通过两个相互隔离的区域相连接,使得光纤阵列单元1与光芯片2相互连接的部分形成两个独立的连接层,光纤光口区域与光芯片2上的波导光路光口之间通过光路胶3连接形成光路胶层,光芯片2上与固接区域相对应的区域与固接区域通过固定胶9连接形成固定胶层。固定胶层具有良好的固定作用,用于实现光纤阵列单元1与光芯片2之间良好的粘接强度和粘接效果。此时,光路胶层无需承担固定作用,主要起通信作用,用于实现光纤与波导光路之间折射率的匹配,使得器件具有更良好的性能。将光路胶3和固定胶9在不同的区域进行固化,可以有效地防止光路胶3和固定胶9两种胶水的融合,提高光纤阵列单元1和光芯片2的耦合效率和性能可靠性。
在上述实施例的基础上,固定胶涂覆于固定结构与光芯片相接触的转角处。
固定胶层可以是形成于固接区域和光芯片2上与固接区域相对应的区域之间,即固定胶层形成于固定结构4与光芯片2的接触面上。如图10所示,固定胶层也可以是沿着固定结构4与光芯片2的接触面的四周形成,即在光芯片2与固定结构4相接触的一面和固定结构4上与该面相连接的侧面的交接线处形成固定胶层。这样方便涂覆固定胶9,同时也能实现固定结构与光芯片之间的连接。
参考图10,图10是本申请一实施例提出的光纤阵列单元、光芯片与盖玻片的连接示意图,如图10所示,在本申请一实施例中,光通信设备还包括盖玻片8,固定结构4上未与光芯片2相接触的固接区域与盖玻片8通过固定胶9连接;盖玻片8的宽度大于或等于固定结构4的宽度。盖玻片8与固定结构4通过固定胶9连接时,可以将固定胶9涂覆在盖玻片8与固定结构4的直接接触面上进行粘接,也可以将固定胶9涂覆在盖玻片8与固定结构4的交接线处,以实现粘接。
在此情况下,盖玻片8实现与固定结构4上未与光芯片2连接的部分连接,使得固定结构4上未与光芯片2连接的部分可以全部连接在盖玻片8上,增大了固定结构4的接触面积,使固定结构4的连接更加稳定。
在本申请另一实施例中,光通信设备还包括盖玻片8,盖玻片8的上表面与固定结构4的上表面平齐,盖玻片8与固定结构4一体成型。由于光芯片2一般是通过底部安装于主板上,因此,盖玻片8一般是安装于光芯片2的上端,将盖玻片8和光纤阵列单元1的上表面保持平齐,实现了结构的平整性,避免影响其他装置的安装。将盖玻片8与固定结构4一体成型增大了固定结构4与光芯片2之间的接触面积,同时省去了通过胶水粘接的麻烦,提高了盖玻片8与固定结构4之间的连接精度;在将光纤阵列单元1与光芯片2耦合的过程中,盖玻片8可起到一定的辅助作用,即帮助光纤阵列单元1中的光路光口与光芯片2中的波导光路对准。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与 其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
尽管已描述了本申请实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请实施例范围的所有变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
以上对本申请所提供的一种光纤阵列单元与光通信设备,进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (13)

  1. 一种光纤阵列单元,用于与光芯片连接,其特征在于,包括光纤阵列和固定结构,所述光纤阵列的一端固定于所述固定结构中;所述固定结构与所述光芯片连接的侧面设置有隔离带,所述隔离带将所述固定结构与所述光芯片相连接的侧面分为光纤光口区域和固接区域;所述光纤阵列在所述固定结构上的出口为光纤光口,所述光纤光口位于所述光纤光口区域内。
  2. 根据权利要求1所述的光纤阵列单元,其特征在于,所述隔离带包括一条或多条隔离槽,所述隔离槽包括线状隔离槽和/或环形隔离槽,所述隔离槽将所述固定结构与所述光芯片相连接的侧面分为相互隔绝的光纤光口区域和固接区域。
  3. 根据权利要求2所述的光纤阵列单元,其特征在于,所述隔离槽的横截面的形状为三角形、矩形、多边形或者半圆形。
  4. 根据权利要求2所述的光纤阵列单元,其特征在于,所述隔离槽的横截面的形状为不规则图形。
  5. 根据权利要求2至4任意一项所述的光纤阵列单元,其特征在于,所述隔离槽上垂直于所述隔离槽延伸方向的横截面相同。
  6. 根据权利要求5所述的光纤阵列单元,其特征在于,所述隔离槽的宽度为250±50um,所述隔离槽的深度为100±50um。
  7. 根据权利要求3至6任意一项所述的光纤阵列单元,其特征在于,所述隔离槽以所述固定结构与所述光芯片相连接的侧面的中线为对称轴对称设置。
  8. 根据权利要求2所述的光纤阵列单元,其特征在于,所述固定结构中设置有光纤孔,所述光纤孔的数量与所述光纤阵列中光纤的数量相匹配,所述光纤阵列中的光纤通过粘合剂固定于所述光纤孔中。
  9. 根据权利要求2所述的光纤阵列单元,其特征在于,所述固定结构为一体成型的结构。
  10. 一种光通信设备,其特征在于,包括光芯片以及权利要求1至9中任意一项所述的光纤阵列单元,所述光纤光口区域与所述光芯片上的波导光路光口之间通过光路胶连接;所述光芯片上与所述固接区域相对应的区域与所述固接区域通过固定胶连接。
  11. 根据权利要求10所述的光通信设备,其特征在于,所述固定胶涂覆于所述固定结构与所述光芯片相接触的转角处。
  12. 根据权利要求10或11所述的光通信设备,其特征在于,还包括盖玻片,所述固定结构上未与所述光芯片相接触的所述固接区域与所述盖玻片之间通过固定胶连接;所述盖玻片的宽度大于或等于所述固定结构的宽度。
  13. 根据权利要求10或11所述的光通信设备,其特征在于,还包括盖玻片,所述盖玻片的上表面与所述固定结构的上表面平齐,所述盖玻片与所述固定结构一体成型。
PCT/CN2020/111537 2020-08-26 2020-08-26 一种光纤阵列单元与光通信设备 WO2022041021A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/111537 WO2022041021A1 (zh) 2020-08-26 2020-08-26 一种光纤阵列单元与光通信设备
CN202080100934.6A CN115668017A (zh) 2020-08-26 2020-08-26 一种光纤阵列单元与光通信设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/111537 WO2022041021A1 (zh) 2020-08-26 2020-08-26 一种光纤阵列单元与光通信设备

Publications (1)

Publication Number Publication Date
WO2022041021A1 true WO2022041021A1 (zh) 2022-03-03

Family

ID=80352316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111537 WO2022041021A1 (zh) 2020-08-26 2020-08-26 一种光纤阵列单元与光通信设备

Country Status (2)

Country Link
CN (1) CN115668017A (zh)
WO (1) WO2022041021A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030142946A1 (en) * 2001-11-13 2003-07-31 The Furukawa Electric Co. Ltd. Optical module
CN2927081Y (zh) * 2006-07-24 2007-07-25 深圳飞通光电子技术有限公司 平面光波导型光功率分束器
CN102466841A (zh) * 2010-11-04 2012-05-23 浙江彩虹鱼通讯技术有限公司 光学模组及安装方法、接口和光纤传输线、光纤传输装置
US20120141065A1 (en) * 2010-02-23 2012-06-07 Furukawa Electric Co., Ltd. Optical waveguide collimator and optical switching device
CN105717577A (zh) * 2016-03-31 2016-06-29 武汉光迅科技股份有限公司 一种用于光学耦合的光纤阵列制作方法及耦合方法、器件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030142946A1 (en) * 2001-11-13 2003-07-31 The Furukawa Electric Co. Ltd. Optical module
CN2927081Y (zh) * 2006-07-24 2007-07-25 深圳飞通光电子技术有限公司 平面光波导型光功率分束器
US20120141065A1 (en) * 2010-02-23 2012-06-07 Furukawa Electric Co., Ltd. Optical waveguide collimator and optical switching device
CN102466841A (zh) * 2010-11-04 2012-05-23 浙江彩虹鱼通讯技术有限公司 光学模组及安装方法、接口和光纤传输线、光纤传输装置
CN105717577A (zh) * 2016-03-31 2016-06-29 武汉光迅科技股份有限公司 一种用于光学耦合的光纤阵列制作方法及耦合方法、器件

Also Published As

Publication number Publication date
CN115668017A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
US8534927B1 (en) Flexible fiber to wafer interface
JP2006091878A (ja) アタッチメント型光カップラー装置
US10416393B2 (en) Connector for waveguide and alignment method
US10007073B2 (en) Optical component including a high-relative-refractive-index-index-difference optical fiber a single-mode optical fiber an optical device and a fixing member to fix a relative opsition
US10025040B2 (en) Connector for multilayered optical waveguide
WO2014034726A1 (ja) 光ファイバ結合部材及び光ファイバ結合部材の製造方法
CN112394446A (zh) 端面耦合器及其制作方法、端面耦合方法
CN111367014B (zh) 一种用于光互联的具有模斑转换功能的片上边缘耦合器
CN105683797A (zh) 柔性玻璃光波导结构
US4134640A (en) Output/input coupler for multi-mode glass fibers
JP4752092B2 (ja) 光導波路接続構造及び光素子実装構造
WO2022041021A1 (zh) 一种光纤阵列单元与光通信设备
US11333828B2 (en) Optical connection component
JP2002090565A (ja) 光導波路
JPH05181036A (ja) 光集積要素を有する光学装置及び製造方法
US11960121B2 (en) Optical connection structure
WO2023077364A1 (zh) 端面耦合器及光通信装置
JP7348550B2 (ja) 光回路モジュール
JPH08152538A (ja) 光導波路の結合構造
CN113376740B (zh) 分光/合光元件及光子器件
JP2005202329A (ja) 光ファイバーアレイおよびその製造方法
US20220413223A1 (en) Optical Fiber Array
WO2024033988A1 (ja) 光ファイバと光導波路との接続構造及び光導波路基板の製造方法
WO2023155638A1 (zh) 一种光器件、光模块及通信设备
CN117348155A (zh) 一种减少耦合损耗的硅光芯片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20950693

Country of ref document: EP

Kind code of ref document: A1