WO2022039562A1 - 발광 장치 - Google Patents

발광 장치 Download PDF

Info

Publication number
WO2022039562A1
WO2022039562A1 PCT/KR2021/011142 KR2021011142W WO2022039562A1 WO 2022039562 A1 WO2022039562 A1 WO 2022039562A1 KR 2021011142 W KR2021011142 W KR 2021011142W WO 2022039562 A1 WO2022039562 A1 WO 2022039562A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
light
wavelength
emitting diode
diode chip
Prior art date
Application number
PCT/KR2021/011142
Other languages
English (en)
French (fr)
Inventor
이정훈
Original Assignee
서울반도체주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울반도체주식회사 filed Critical 서울반도체주식회사
Publication of WO2022039562A1 publication Critical patent/WO2022039562A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultra-violet radiation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S4/00Lighting devices or systems using a string or strip of light sources
    • F21S4/20Lighting devices or systems using a string or strip of light sources with light sources held by or within elongate supports
    • F21S4/28Lighting devices or systems using a string or strip of light sources with light sources held by or within elongate supports rigid, e.g. LED bars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2103/00Elongate light sources, e.g. fluorescent tubes
    • F21Y2103/10Elongate light sources, e.g. fluorescent tubes comprising a linear array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • F21Y2113/13Combination of light sources of different colours comprising an assembly of point-like light sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present disclosure relates to a light emitting device, and more particularly, to a light emitting device that implements light having a spectrum similar to that of sunlight using a light emitting diode.
  • the human body has also been adapted to sunlight for a long time. Accordingly, the human circadian rhythm mainly changes according to the change of sunlight.
  • UVA ultraviolet
  • UVB ultraviolet
  • UVC ultraviolet
  • an indoor lighting device In modern society, most people do not do physical activity under sunlight, but mainly do activities indoors, such as at home or in an office. It is common to spend more time indoors in the middle of the day than doing physical activity in the sun.
  • an indoor lighting device generally exhibits a constant spectral power distribution, and the spectral power distribution of the indoor lighting device is different from the spectral power distribution of sunlight.
  • the spectral power distribution of the indoor lighting device is mainly white light by a combination of blue, green, and red, and does not show the spectral power distribution of sunlight over a wide wavelength including ultraviolet and infrared rays, and has peaks at specific wavelengths. Therefore, it is difficult to exhibit useful functions that can be obtained from sunlight using a general indoor lighting device.
  • the problem to be solved by the present invention is to overcome the problems of the conventional indoor lighting device and provide a light emitting device capable of emitting light of a spectral power distribution over a wider wavelength including ultraviolet and infrared rays, such as the spectral power distribution of sunlight. will be.
  • a light emitting device includes: a light emitting diode chip; and a wavelength conversion unit that converts the light emitted from the light emitting diode chip into light of a different wavelength, wherein the light emitted from the light emitting diode chip and the light converted by the wavelength conversion unit are mixed to realize white light,
  • the wavelength converter includes a plurality of fluorescent materials, and the plurality of fluorescent materials include a fluorescent material having a peak wavelength at a wavelength of 400 nm or less.
  • the wavelength converter may further include green and red fluorescent materials.
  • the wavelength converter may include a fluorescent material having a peak wavelength within a range of 300 nm to 380 nm.
  • the fluorescent material may include one of BaSi 2 O 5 :Pb 2+ , YPO 4 :Ce 3+ , YF 3 :Gd 3+ , and Pr 3+ .
  • the wavelength converter may include a fluorescent material having a peak wavelength within a range of 250 nm to 300 nm.
  • the fluorescent material may include LaPO 4 :Pr 3+ .
  • a light emitting device includes: a first light emitting unit including a first light emitting diode chip and a first wavelength converter; and a second light emitting unit including a second light emitting diode chip and a second wavelength conversion unit, wherein the first wavelength conversion unit converts the light emitted from the first light emitting diode chip into wavelength-converted fluorescent material.
  • the second wavelength conversion unit includes a fluorescent material that converts the wavelength of the light emitted from the second light emitting diode chip into light in the visible ray region.
  • the first wavelength converter may include at least one of BaSi 2 O 5 :Pb 2+ , YPO 4 :Ce 3+ , YF 3 :Gd 3+ , Pr 3+ , and LaPO 4 :Pr 3+ .
  • the first light emitting diode chip may include an ultraviolet light emitting diode chip.
  • the second light emitting diode chip may include a purple light emitting diode chip.
  • a light-emitting device capable of inducing a sterilization function and/or vitamin D synthesis by emitting light in the ultraviolet region, and accordingly, it is prevented in response to a serious infectious disease such as corona virus , disinfection, etc. can be performed to suppress the spread of the virus.
  • 1 is a graph showing a solar spectrum.
  • FIG. 2 is a graph showing an emission spectrum of a conventional light emitting device.
  • 3A is a schematic cross-sectional view for explaining a light emitting unit according to an embodiment of the present invention.
  • 3B is a schematic cross-sectional view for explaining a light emitting unit according to another embodiment of the present invention.
  • FIG. 4 is a schematic plan view for explaining a light emitting device according to an embodiment of the present invention.
  • FIG. 5 is a graph illustrating an emission spectrum of a light emitting device according to an embodiment of the present invention.
  • FIG. 6 is a graph showing an emission spectrum of a light emitting device according to another embodiment of the present invention.
  • the present invention relates to a light emitting device, comprising a light emitting diode chip and a wavelength converting unit for converting light emitted from the light emitting diode chip, wherein the wavelength converting unit emits light having a peak wavelength at a wavelength of 400 nm or less.
  • the range of the emission spectrum can be expanded from the visible light region to the ultraviolet region.
  • the light emitting device in the light emitting device according to embodiments of the present invention, one or more of BaSi 2 O 5 :Pb 2+ , YPO 4 :Ce 3+ , YF 3 :Gd 3+ , Pr 3+ phosphors are mixed.
  • the power distribution of the spectrum can be extended to the ultraviolet region. Accordingly, the light emitting device according to embodiments of the present invention may simultaneously exhibit functions such as sterilization or vitamin D synthesis induction along with a white light function.
  • the light emitting device can extend the power distribution of the spectrum to the UVC (Ultraviolet C) region by using the wavelength converter including the LaPO 4 :Pr 3+ phosphor. Accordingly, it is possible to provide a light emitting device in which a white light function and a sterilization function are further enhanced.
  • UVC Ultraviolet C
  • 1 is a graph showing a solar spectrum. 1 shows the solar spectrum at the top of the Earth's atmosphere and the solar spectrum at sea level. 2 is a graph showing the spectral power distribution of white light sources based on a conventional blue light emitting diode chip corresponding to several correlated color temperatures.
  • the solar spectrum shows a distinct difference in the wavelength range emitting light compared to the spectrum of a conventional white light source.
  • the conventional white light source mainly distributes light within the visible light range.
  • the light emitting unit includes a light emitting diode chip 23 and a wavelength converter 25 , and may include a housing 21 .
  • the housing 21 has leads for electrical connection and may have a cavity.
  • the light emitting diode chip 23 may be mounted in a cavity of the housing 21 to be electrically connected to leads.
  • the light emitting diode chip 23 may be a blue light emitting diode chip having a peak wavelength within 400 nm to 450 nm, or a light emitting diode chip emitting light having a shorter wavelength than that of the blue light emitting diode chip.
  • the light emitting diode chip 23 may be a purple light emitting diode chip or an ultraviolet light emitting diode chip.
  • the light emitting diode chip 23 may emit light having a peak wavelength within a range of 300 to 440 nm, specifically within a range of 380 to 440 nm, and more specifically within a range of 400 to 420 nm.
  • the light emitting diode chip 23 may further include an ultraviolet light emitting diode chip having a peak wavelength of 400 nm or less.
  • the light emitting diode chip may further include an IR RED chip.
  • the wavelength converter 25 may be disposed in the cavity of the housing 21 to cover the light emitting diode chip 23 .
  • the wavelength converter 25 converts the light emitted from the light emitting diode chip 23 into light of a different wavelength.
  • the wavelength converter 25 may include one or more types of phosphors.
  • a light emitting unit emitting light of a desired color temperature using the light emitting diode chip 23 and the wavelength conversion unit 25 may be provided.
  • the wavelength converter 25 may include, for example, a green phosphor, a yellow phosphor, or a red phosphor.
  • green or yellow phosphors examples include LuAG(Lu 3 (Al,Gd) 5 O 12 :Ce 3+ ), YAG(Y 3 (Al,Gd) 5 O 12 :Ce 3+ ), Ga-LuAG((Lu, Ga) 3 (Al,Gd) 5 O 12 :Ce 3+ ), Ga-YAG ((Ga,Y) 3 (Al,Gd) 5 O 12 :Ce 3+ ), LuYAG ((Lu,Y) 3 ( Al,Gd) 5 O 12 :Ce 3+ ), Ortho-Silicate ((Sr,Ba,Ca,Mg) 2 SiO 4 :Eu 2+ ), Oxynitride ((Ba,Sr,Ca)Si 2 O 2 N 2 :Eu 2+ ), or Thio Gallate (SrGa 2 S 4 :Eu 2+ ).
  • the green or yellow phosphor may include a material having a peak wavelength within a range of
  • red phosphor examples include a Nitride, Sulfide, Fluoride, or Oxynitride-based phosphor, and specifically, CASN (CaAlSiN 3 :Eu 2+ ), (Ba,Sr,Ca) 2 Si 5 N 8 :Eu 2+ , (Ca,Sr)S 2 :Eu 2+ ), or (Sr,Ca) 2 SiS 4 :Eu 2+ , or the like.
  • the red phosphor may include a material having a peak wavelength within a range of 600 to 700 nm.
  • the red phosphor is an Mn(IV)-activated luminescent material based on an oxidohalide host lattice and may include the following composition (I or II).
  • a 3 BF 2 [M 1- x T x O 2-2x F 4+2x ] can be realized by incorporating Mn(IV) ions into an oxidohalide host lattice of the general form as follows, to obtain a compound of :Mn(IV).
  • the compound of composition (I or II) has a maximum in the range between 610 and 640 nm, in particular between 620 and 635 nm.
  • the wavelength converter 25 may further include a blue phosphor.
  • the blue phosphor include BAM-based, Halo-Phosphate-based, or aluminate-based phosphors, for example, BaMgAl 10 O 17 :Mn 2+ , BaMgAl 12 O 19 :Mn 2+ or (Sr, Ca, Ba)PO 4 Cl:Eu 2+ may be included.
  • the blue phosphor may include, for example, a material having a peak wavelength within a range of 440 to 500 nm.
  • the wavelength converter 25 may also include an ultraviolet light emitting phosphor.
  • the ultraviolet light emitting phosphor may include a material emitting light having a peak wavelength within the ultraviolet wavelength range using light emitted from the light emitting diode chip 23 as an excitation source.
  • the ultraviolet light emitting phosphor may emit ultraviolet light in a specific wavelength band according to the type of material. Table 1 shows the types of ultraviolet light-emitting phosphors and their emission wavelengths.
  • the ultraviolet light emitting phosphor of Table 1 may use a visible light emitting diode or an ultraviolet light emitting diode as an excitation source, and may be used alone or in combination depending on the purpose.
  • the wavelength conversion unit 25 including a LaPO 4 :Pr 3+ phosphor in the visible light emitting phosphor may be used.
  • the sterilization effect by UVC wavelength can be achieved.
  • the sterilization effect can be obtained by destroying the DNA of the pathogen. 25) can be used.
  • the wavelength converter 25 including YF 3 :Gd 3+ , Pr 3+ , or YPO 3 :Ce 3+ phosphor
  • functional light that induces vitamin D synthesis may be realized. Therefore, it is possible to configure the wavelength conversion unit by mixing the ultraviolet phosphor according to the purpose.
  • the ultraviolet phosphor is not limited to the phosphors listed in Table 1, and may include any phosphor that converts light to a wavelength in the ultraviolet region using excitation light.
  • 3B is a schematic cross-sectional view for explaining a light emitting unit according to another embodiment of the present invention.
  • the light emitting unit according to an embodiment of the present invention is substantially similar to the light emitting unit described with reference to FIG. 3A , except that it further includes a molding part 27 .
  • the molding part 27 may be formed in the cavity of the housing 21 to cover the wavelength conversion part 25 .
  • the molding part 27 may be formed of a light-transmitting material, and may further include a light diffusing agent.
  • the molding unit 27 may be formed of a material having the same hardness as the wavelength converting unit 25 , or may be formed of a material having different hardness.
  • the hardness of the wavelength conversion unit 25 may be lower than that of the molding unit 27 .
  • the molding part 27 may prevent damage to the light emitting unit due to heat, moisture, or physical factors generated in the light emitting diode chip 23 .
  • the molding part 27 may include at least one phosphor.
  • the phosphor included in the molding part 27 is a phosphor that emits light having a shorter wavelength than the emission wavelength of the phosphor included in the wavelength converter 25 disposed under the molding part 27 , or is disposed in the wavelength converter 25 .
  • the phosphor may include a phosphor having low efficiency excited by light emitted by the phosphor.
  • the molding part 27 can improve the reliability of the light emitting unit by including a fluorescent material that is relatively vulnerable to heat.
  • FIG. 4 is a schematic plan view for explaining a light emitting device according to an embodiment of the present invention.
  • the light emitting device includes a plurality of light emitting units, and each of the plurality of light emitting units includes light emitting diode chips 23a and 23b.
  • the light emitting diode chips 23a and 23b may be of the same type of light emitting diode chips emitting light of similar peak wavelengths, or may be different types of light emitting diode chips emitting light of different peak wavelengths.
  • the first light emitting diode chip 23a of the first light emitting unit of FIG. 4 and the second light emitting diode chip 23b of the second light emitting unit may be light emitting diode chips having different center wavelengths.
  • the first light emitting diode chip 23a of the first light emitting unit may be a blue or purple light emitting diode chip, and the wavelength converter covering the first light emitting diode chip may include green and red fluorescent materials.
  • the wavelength converter 25 may further include an ultraviolet fluorescent material.
  • the second light emitting diode chip 23b of the second light emitting unit may be an ultraviolet light emitting diode chip having a central wavelength in a range of 400 nm or less, and the wavelength converter covering the second light emitting diode chip may include an ultraviolet fluorescent material. In addition, it may further include a blue, green, or red fluorescent material.
  • FIG. 5 is a graph illustrating spectral power distribution of a light emitting unit according to an embodiment of the present invention.
  • each of the light emitting units includes a blue light emitting diode chip or a light emitting diode chip having a shorter wavelength than that of the blue light emitting diode chip and a wavelength conversion unit, so that the average color rendering index is 95 or more.
  • the light emitting unit according to this embodiment lowers the intensity of the blue region compared to the conventional light emitting unit shown in FIG. 2 , so that the spectrum in the visible region shows a spectrum similar to sunlight.
  • the light emitting unit of the present invention uses one or a mixed wavelength converter among the phosphors of BaSi 2 O 5 :Pb 2+ , YPO 4 :Ce 3+ , YF 3 :Gd 3+ , Pr 3+ , It can be seen that the power distribution extends to the ultraviolet region. That is, the light emitting unit of the present invention can simultaneously implement functional light including sterilization or vitamin D synthesis induction in white light.
  • FIG. 6 is a graph showing an emission spectrum of a light emitting device according to another embodiment of the present invention.
  • the light emitting unit of FIG. 6 uses a wavelength converter including LaPO 4 :Pr 3+ phosphor, and it can be seen that the power distribution of the spectrum is extended to the UVC region. That is, the light emitting unit of the present invention can simultaneously implement functional light with enhanced sterilization function in white light.
  • the light emitting unit according to the embodiments according to the present invention can induce a sterilization function and vitamin D synthesis, it is easy to perform prevention and disinfection in response to a serious infectious disease such as corona virus, and the virus It can be used to suppress the spread of
  • Embodiments disclosed herein include a sterilization device. It should also be understood that these examples are merely exemplary and are not intended to limit the scope of the present disclosure.

Abstract

일 실시예에 따른 발광 장치는, 발광 다이오드 칩; 및 상기 발광 다이오드 칩으로부터 출사된 광을 다른 파장의 광으로 변환시키는 파장변환부를 포함하고, 상기 발광다이오드 칩으로부터 출사된 광 및 상기 파장변환부에 의해 파장 변환된 광이 혼합되어 백색광을 구현하며, 상기 파장변환부는 복수의 형광물질을 포함하고, 상기 복수의 형광물질은 400nm 이하의 파장에서 피크 파장을 갖는 형광물질을 포함한다.

Description

발광 장치
본 개시는 발광 장치에 관한 것으로, 더욱 상세하게는, 발광 다이오드를 이용하여 태양광 스펙트럼과 유사한 스펙트럼의 광을 구현하는 발광 장치에 관한 것이다.
대부분의 생명체는 태양광의 변화에 맞추어 활동하도록 적응되어 왔다. 인간의 몸 또한 오랜 기간 태양광에 적응되어 왔다. 이에 따라, 인간의 하루 주기 생체리듬(Circadian Rhythm)은 주로 태양광의 변화에 따라 변한다.
태양광은 사람 눈에 보이는 가시광선 이외에, 자외선(UVA, UVB, UVC) 및 적외선을 방출한다. 태양광으로부터 방출된 자외선의 대부분은 대기와 오존층에 흡수되고 약 1~3%의 자외선이 지표면에 도달한다. 태양광으로부터 방출된 자외선은 파장 대역에 따라 고유한 기능을 갖기 때문에 매우 다양한 용도로 활용된다. 특히, 병원균 살균 및 비타민 D 합성과 관련하여서는 자외선의 역할이 중요하다.
현대 사회에서는 대부분의 사람들이 태양광 아래에서 신체활동을 하는 것이 아니라 주로 집이나 사무실 등의 실내에서 활동을 한다. 한낮에도 실내에 머무르는 시간이 태양광 아래에서 신체 활동을 하는 시간보다 더 긴 것이 일반적이다. 그런데, 실내 조명 장치는 일반적으로 일정한 스펙트럼 파워 분포를 나타내는데, 실내 조명 장치의 스펙트럼 파워 분포는 태양광의 스펙트럼 파워 분포와 많은 차이가 있다. 실내 조명 장치의 스펙트럼 파워 분포는 주로 청색, 녹색 및 적색의 조합에 의한 백색광으로 자외선과 적외선을 포함한 넓은 파장에 걸친 태양광의 스펙트럼 파워 분포를 나타내지 못하며, 특정 파장들에서 피크들을 가진다. 때문에, 일반적인 실내 조명 장치를 이용하여 태양광으로부터 획득할 수 있는 유용한 기능을 발휘하기 어렵다.
본 발명이 해결하고자 하는 과제는 종래의 실내 조명 장치의 문제점을 극복하고 태양광의 스펙트럼 파워 분포와 같이 자외선과 적외선을 포함한 보다 넓은 파장에 걸친 스펙트럼 파워 분포의 광을 방출할 수 있는 발광 장치를 제공하는 것이다.
일 실시예에 따른 발광 장치는, 발광 다이오드 칩; 및 상기 발광 다이오드 칩으로부터 출사된 광을 다른 파장의 광으로 변환시키는 파장변환부를 포함하고, 상기 발광다이오드 칩으로부터 출사된 광 및 상기 파장변환부에 의해 파장 변환된 광이 혼합되어 백색광을 구현하며, 상기 파장변환부는 복수의 형광물질을 포함하고, 상기 복수의 형광물질은 400nm 이하의 파장에서 피크 파장을 갖는 형광물질을 포함한다.
상기 파장 변환기는 녹색 및 적색 형광 물질을 더 포함할 수 있다.
일 실시예에서, 상기 파장 변환기는 300nm 내지 380nm 범위 내에서 피크 파장을 갖는 형광물질을 포함할 수 있다. 상기 형광물질은 BaSi2O5:Pb2+, YPO4:Ce3+, YF3:Gd3+, Pr3+ 중 하나를 포함할 수 있다.
다른 실시예에 있어서, 상기 파장변환부는 250nm 내지 300nm 범위 내에서 피크 파장을 갖는 형광물질을 포함할 수 있다. 상기 형광물질은 LaPO4:Pr3+을 포함할 수 있다.
일 실시예에 따른 발광 장치는, 제1 발광 다이오드 칩 및 제1 파장변환부를 포함하는 제1 발광 유닛; 및 제2 발광 다이오드 칩 및 제2 파장변환부를 포함하는 제2 발광 유닛을 포함하고, 상기 제1 파장변환부는 상기 제1 발광 다이오드 칩에서 방출된 광을 자외선 영역의 광으로 파장 변환하는 형광물질을 포함하고, 상기 제2 파장변환부는 상기 제2 발광 다이오드 칩에서 방출된 광을 가시광선 영역의 광으로 파장변환하는 형광물질을 포함한다.
상기 제1 파장변환부는 BaSi2O5:Pb2+, YPO4:Ce3+, YF3:Gd3+, Pr3+, 및 LaPO4:Pr3+ 중 적어도 하나를 포함할 수 있다.
상기 제1 발광 다이오드 칩은 자외선 발광 다이오드 칩을 포함할 수 있다. 상기 제2 발광 다이오드 칩은 보라색 발광 다이오드 칩을 포함할 수 있다.
본 발명의 실시예들에 따르면, 자외선 영역의 광을 방출함으로써 살균 기능 및/또는 비타민 D 합성 유도가 가능한 발광 장치를 제공할 수 있으며, 이에 따라, 코로나 바이러스 등 전염성이 심각한 전염 질환에 대응하여 예방, 소독 등을 수행하여 바이러스의 확산을 억제할 수 있다.
도 1은 태양광 스펙트럼을 나타낸 그래프이다.
도 2는 종래의 발광 장치의 발광 스펙트럼을 나타낸 그래프이다.
도 3a는 본 발명의 일 실시예에 따른 발광 유닛을 설명하기 위한 개략적인 단면도이다.
도 3b는 본 발명의 또 다른 실시예에 따른 발광 유닛을 설명하기 위한 개략적인 단면도이다.
도 4는 본 발명의 일 실시예에 따른 발광 장치를 설명하기 위한 개략적인 평면도이다.
도 5는 본 발명의 일 실시예에 따른 발광 장치의 발광 스펙트럼을 나타낸 그래프이다.
도 6은 본 발명의 다른 실시예에 따른 발광 장치의 발광 스펙트럼을 나타낸 그래프이다.
이하, 첨부한 도면들을 참조하여 본 발명의 실시예들을 상세히 설명하기로 한다. 다음에 소개되는 실시예들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고, 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
본 발명은 발광 장치에 관한 것으로, 발광 다이오드 칩과 상기 발광 다이오드 칩으로부터 방출된 광을 변환시키는 파장변환부를 포함하고, 상기 파장변환부는 400nm 이하의 파장에서 피크 파장을 갖는 광을 방출하는 파장 변환 물질을 포함할 수 있다. 이에 따르면, 본 발명의 발광 장치는 발광 스펙트럼의 범위가 가시광선 영역으로부터 자외선 영역으로 확대될 수 있다.
또한, 본 발명의 실시예들에 따른 발광 장치는 BaSi2O5:Pb2+, YPO4:Ce3+, YF3:Gd3+, Pr3+의 형광체 중 1 종 또는 2 종 이상을 혼합한 파장변환부를 이용함으로써, 스펙트럼의 파워 분포를 자외선 영역까지 확장할 수 있다. 이에 따라, 본 발명의 실시예들에 따른 발광 장치는 백색 조명 기능과 함께 살균 또는 비타민 D 합성 유도 등의 기능을 동시에 발휘할 수 있다.
본 발명의 또 다른 실시예들에 따른 발광 장치는 LaPO4:Pr3+ 형광체가 포함된 파장변환부를 이용함으로써, 스펙트럼의 파워 분포를 UVC (Ultraviolet C) 영역까지 확장할 수 있다. 이에 따라, 백색 조명 기능과 함께 살균 기능이 더욱 강화된 발광 장치를 제공할 수 있다.
이하에서 도면을 참조하면 본 발명의 실시예들을 상세하게 설명한다.
도 1은 태양광 스펙트럼을 나타낸 그래프이다. 도 1은 지구 대기권의 최상부에서의 태양광 스펙트럼 및 해수면에서의 태양광 스펙트럼을 나타낸다. 도 2는 몇몇 상관 색 온도들에 대응하는 종래의 청색 발광 다이오드 칩을 기반으로 한 백색 광원들의 스펙트럼 파워 분포를 나타내는 그래프이다.
도 1과 도 2를 참조하면, 태양광 스펙트럼은 종래의 백색 광원의 스펙트럼과 대비하여 광을 방출하는 파장 범위에 있어 뚜렷한 차이를 나타낸다. 예컨대, 태양광 스펙트럼은 가시광 이하의 자외선 영역 및 가시광 이상의 적외선 영역에도 광이 분포하는 것을 알 수 있다. 반면에, 종래의 백색 광원은 주로 가시광 범위 내에서만 광이 분포한다.
도 3a는 본 발명의 일 실시예에 따른 발광 유닛을 설명하기 위한 개략적인 단면도이다. 도 3a를 참조하면, 발광 유닛은 발광 다이오드 칩(23) 및 파장변환부(25)를 포함하며, 하우징(21)을 포함할 수 있다. 하우징(21)은 전기적 연결을 위한 리드들을 가지며, 캐비티를 가질 수 있다.
발광다이오드 칩(23)은 하우징(21)의 캐비티 내에 실장되어 리드들에 전기적으로 연결될 수 있다. 발광 다이오드 칩(23)은 400nm내지 450nm내에서 피크 파장을 갖는 청색 발광 다이오드 칩, 또는 청색 발광 다이오드 칩에 비해 단파장의 광을 방출하는 발광다이오드 칩일 수 있다. 예컨태, 발광 다이오드 칩(23)은 보라색 발광 다이오드 칩 또는 자외선 발광 다이오드 칩일 수 있다. 특히, 발광 다이오드 칩(23)은 300 내지 440nm 범위 내, 구체적으로 380 내지 440nm 범위 내, 더 구체적으로 400 내지 420nm 범위 내의 피크 파장을 가지는 광을 방출할 수 있다. 또한, 발광 다이오드 칩(23)은 400nm 이하에서 피크 파장을 갖는 자외선 발광 다이오드 칩을 더 포함할 수 있다. 또한, 발광 다이오드 칩은 IR RED 칩을 더 포함할 수 있다.
파장변환부(25)는 발광 다이오드 칩(23)을 덮도록 하우징(21)의 캐비티 내에 배치될 수 있다. 파장변환부(25)는 발광 다이오드 칩(23)에서 방출된 광을 다른 파장의 광으로 변환한다.
파장변환부(25)는 한 종류 이상의 형광체를 포함할 수 있다. 발광 다이오드 칩(23)과 파장변환부(25)를 이용하여 원하는 색온도의 광을 방출하는 발광 유닛이 제공될 수 있다.
파장변환부(25)는 예를 들어 녹색 형광체, 황색 형광체 또는 적색 형광체를 포함할 수 있다.
녹색 또는 황색 형광체의 예로는 LuAG(Lu3(Al,Gd)5O12:Ce3+), YAG(Y3(Al,Gd)5O12:Ce3+), Ga-LuAG((Lu,Ga)3(Al,Gd)5O12:Ce3+), Ga-YAG ((Ga,Y)3(Al,Gd)5O12:Ce3+), LuYAG ((Lu,Y)3(Al,Gd)5O12:Ce3+), Ortho-Silicate ((Sr,Ba,Ca,Mg)2SiO4:Eu2+), Oxynitride ((Ba,Sr,Ca)Si2O2N2:Eu2+), 또는 Thio Gallate (SrGa2S4:Eu2+) 를 들 수 있다. 녹색 또는 황색 형광체는 500 내지 600nm 범위 내에 피크 파장을 가지는 물질을 포함 할 수 있다.
적색 형광체의 예로는 Nitride, Sulfide, Fluoride 또는 Oxynitride 계의 형광체를 들 수 있고, 구체적으로, CASN (CaAlSiN3:Eu2+), (Ba,Sr,Ca)2Si5N8:Eu2+, (Ca,Sr)S2:Eu2+), 또는 (Sr,Ca)2SiS4:Eu2+ 등을 들 수 있다. 적색 형광체는 600내지 700nm 범위 내에 피크 파장을 가지는 물질을 포함할 수 있다.
또한, 적색 형광체는 옥시도할라이드 (oxidohalide) 호스트 격자에 기초한 Mn(IV)-활성화 발광성 물질로 다음과 같은 조성(I 또는 II)을 포함할 수 있다.
조성(I)
(A4-aBa)m/2+n/2X2m[MX4O2]n (A = H 및/또는 D, 여기서 D 는 중수소이다; B = Li, Na, K, Rb, Cs, NH4, ND4 및/또는 NR4 여기서 R 은 알킬 또는 아릴 라디칼이다; X = F 및/또는 Cl; M = Cr, Mo, W 및/또는 Re; 0 ≤ a ≤ 4; 0 < m ≤ 10; 및 1 ≤ n ≤ 10).
조성(II)
A3BF2[M1-xTxO2-2xF4+2x] (A=Li, Na, K, Rb, Cs, Cu, Ag, Tl, NH4, 및/또는 NR4 여기서 R 은 알킬 또는 아릴 기이고, B는 H 및/또는 D이고, 여기서 D는 중수소이고, M은 Cr, Mo, W, Te 및/또는 Re이고, T는 Si, Ge, Sn, Ti, Pb, Ce, Zr 및/또는 Hf이고, 0≤x≤0.99)
구체적으로, 610 내지 640 nm 사이의 범위의 방출 최대값, 높은 양자 수율, 높은 연색성, 긴 수명 및 높은 색 온도 안정성을 갖는 적색-방출 발광 물질로 다음과 같은 일반적인 조성: (A4-aBa)m/2+n/2X2m[MX4O2]n:Mn(IV)의 화합물을 얻도록, Mn(IV) 이온을 다음과 같은 일반적인 형태의 옥시도할라이드 호스트 격자로 통합시킴으로써 구현될 수 있다.: (A4-aBa)m/2+n/2X2m[MX4O2]n (A = H 및/또는 D, 여기서 D 는 중수소이다; B = Li, Na, K, Rb, Cs, NH4, ND4 및/또는 NR4 여기서 R 은 알킬 또는 아릴 라디칼이다; X = F 및/또는 Cl; M = Cr, Mo, W 및/또는 Re; 0 ≤ a ≤ 4; 0 < m ≤ 10; 및 1 ≤ n ≤ 10).
또한, 610 내지 640 nm 사이의 범위의 방출 최대값, 높은 양자 수율, 높은 연색성, 긴 수명 및 높은 색 온도 안정성을 갖는 적색-방출 발광 물질로 다음과 같은 일반적인 조성: A3BF2[M1-xTxO2-2xF4+2x] :Mn(IV)의 화합물을 얻도록, Mn(IV) 이온을 다음과 같은 일반적인 형태의 옥시도할라이드 호스트 격자로 통합시킴으로써 구현될 수 있다. A3BF2[M1-xTxO2-2xF4+2x] (A=Li, Na, K, Rb, Cs, Cu, Ag, Tl, NH4, 및/또는 NR4 여기서 R 은 알킬 또는 아릴 기이고, B는 H 및/또는 D이고, 여기서 D는 중수소이고, M은 Cr, Mo, W, Te 및/또는 Re이고, T는 Si, Ge, Sn, Ti, Pb, Ce, Zr 및/또는 Hf이고, 0≤x≤0.99).
상기 조성(I 또는 II)의 화합물은 610 내지 640nm 사이, 특히 620 내지 635nm 사이의 범위에서 최대값을 갖는다.
파장변환부(25)는 청색 형광체를 더 포함할 수 있다. 청색 형광체의 예로는 BAM계, Halo-Phosphate계 또는 알루미네이트계의 형광체를 들 수 있으며, 예를 들어, BaMgAl10O17:Mn2+, BaMgAl12O19:Mn2+ 또는 (Sr,Ca,Ba)PO4Cl:Eu2+ 를 포함할 수 있다. 청색 형광체는 예를 들어 440 내지 500nm 범위 내에 피크 파장을 가지는 물질을 포함할 수 있다.
파장변환부(25)는 또한 자외선 발광 형광체를 포함할 수 있다. 자외선 발광 형광체는 발광 다이오드 칩(23)에서 방출된 광을 여기원으로 하여 자외선 파장 범위 내에 피크 파장을 가지는 광을 방출하는 물질을 포함할 수 있다. 자외선 발광 형광체는 물질의 종류에 따라 특정 파장대의 자외선을 발광할 수 있다. 표 1은 자외선 발광 형광체 종류 및 그에 따른 발광 파장을 나타낸 것이다.
형광물질 발광파장/nm
BaSi2O5:Pb2+ 350
LaPO4:Pr3+ 260
YPO4:Ce3+ 335
YF3:Gd3+, Pr3+ 311
표 1의 자외선 발광 형광체는 가시광 발광 다이오드 또는 자외선 발광 다이오드를 여기원으로 사용할 수 있으며, 목적에 따라 단독 또는 혼합하여 사용될 수 있다. 예를 들어, 살균 기능이 추가된 백색광을 구현할 경우, 가시광 발광 형광체에 LaPO4:Pr3+ 형광체가 포함된 파장변환부(25)를 사용할 수 있다. 이 경우, UVC 파장에 의한 살균 효과를 달성할 수 있다. UVC의 경우 병원균의 DNA를 파괴함으로써 살균 효과를 얻을 수 있는데 이와 다른 방법으로 살균 효과를 얻고자 할 경우에는 BaSi2O5:Pb2+ 또는 YPO4:Ce3+ 형광체가 포함된 파장변환부(25)를 사용할 수 있다.
YF3:Gd3+, Pr3+ 또는 YPO3:Ce3+ 형광체가 포함된 파장변환부(25)를 사용할 경우 비타민 D 합성을 유도하는 기능성 광을 구현할 수 있다. 따라서, 목적에 따라 자외선 형광체를 혼합하여 파장변환부를 구성할 수 있다.
자외선 형광체는 표 1에 열거된 형광체에 한정되지 않고, 여기광을 이용하여 자외선 영역의 파장으로 광을 변환시키는 모든 형광물질을 포함할 수 있다.
도 3b는 본 발명의 또 다른 실시예에 따른 발광 유닛을 설명하기 위한 개략적인 단면도이다.
도 3b를 참조하면, 본 발명의 일실시예에 따른 발광유닛은 도 3a를 참조하여 설명한 발광 유닛과 대체로 유사하나, 몰딩부(27)를 더 포함하는 것에 차이가 있다. 몰딩부(27)는 파장변환부(25)를 덮도록 하우징(21)의 캐비티에 형성될 수 있다. 몰딩부(27)는 광 투과성 재료로 형성될 수 있고, 광 확산제를 더 포함할 수 있다. 몰딩부(27)는 파장변환부(25)와 경도가 같은 물질로 형성될 수 있고, 이와 달리 서로 다른 경도를 가지는 물질로 형성될 수 있다. 파장변환부(25)의 경도는 몰딩부(27)의 경도보다 낮을 수 있다. 몰딩부(27)는 발광다이오드 칩(23)에서 발생하는 열, 습기 또는 물리적 요인에 의한 발광 유닛의 손상을 방지할 수 있다.
또한, 몰딩부(27)는 적어도 하나의 형광체를 포함할 수 있다. 몰딩부(27)에 포함되는 형광체는 몰딩부(27) 하부에 배치된 파장변환부(25)에 포함된 형광체의 방출 파장보다 단파장의 광을 배출하는 형광체이거나, 파장변환부(25)에 배치된 형광체가 방출하는 광에 의해 여기되는 효율이 낮은 형광체를 포함할 수 있다. 또한 몰딩부(27)는 상대적으로 열에 취약한 형광물질을 포함함으로써 발광유닛의 신뢰성을 향상시킬 수 있다.
앞서 설명한 바와 같이, 본 발명의 발광유닛을 이용하여 태양광과 유사한 스펙트럼의 광을 구현할 수 있다.
도 4는 본 발명의 일실시예를 따른 발광 장치를 설명하기 위한 개략적인 평면도이다.
도 4를 참조하면, 발광 장치는 복수의 발광유닛을 포함하며, 복수의 발광유닛은 각각 발광다이오드 칩(23a, 23b)을 포함한다. 발광 다이오드 칩(23a, 23b)은 서로 유사한 피크 파장의 광을 방출하는 동종의 발광다이오드 칩일 수 있으며, 또는 서로 다른 피크 파장의 광을 방출하는 서로 다른 종류의 발광다이오드 칩일 수 있다. 예를 들면, 도 4의 제1 발광 유닛의 제1 발광다이오드 칩(23a)과 제2 발광 유닛의 제2 발광다이오드 칩(23b)은 중심 파장이 서로 다른 발광다이오드 칩일 수 있다.
구체적으로, 제1 발광 유닛의 제1 발광다이오드 칩(23a)은 청색 또는 보라색 발광다이오드 칩일 수 있으며, 제1 발광 다이오드 칩을 덮는 파장변환부는 녹색 및 적색 형광물질을 포함할 수 있다. 또한 상기 파장 변환기(25)는 자외선 형광 물질을 더 포함할 수 있다. 제2 발광 유닛의 제2 발광다이오드 칩(23b)은 400nm이하의 범위에서 중심파장을 갖는 자외선 발광다이오드 칩일 수 있으며, 제2 발광다이오드 칩을 덮는 파장 변환기는 자외선 형광물질을 포함할 수 있다. 또한, 청색, 녹색, 또는 적색의 형광물질을 더 포함할 수 있다.
도 5는 본 발명의 일 실시예에 따른 발광 유닛의 스펙트럼 파워 분포를 나타내는 그래프이다.
도 5를 참조하면, 상관 색 온도 2700K에서 6500K의 발광 유닛의 스펙트럼 파워 분포가 개시된다. 각각의 발광 유닛들은 청색 발광 다오이드 칩 또는 청색 발광 다오드 칩보다 단파장인 발광 다이오드 칩과 파장변환부를 포함하여, 평균 연색 지수는 95 이상이다. 도 5에 도시되듯이, 본 실시예에 따른 발광 유닛은 도 2에 도시된 종래의 발광 유닛에 비해 청색 영역의 강도를 낮추어 가시광 영역에서의 스펙트럼이 태양광과 유사한 스펙트럼을 보여준다. 또한, 도 5의 발광 유닛은 BaSi2O5:Pb2+, YPO4:Ce3+, YF3:Gd3+, Pr3+ 의 형광체 중 1 종 또는 혼합한 파장변환부를 이용함으로써, 스펙트럼의 파워 분포가 자외선 영역까지 확장된 것을 알 수 있다. 즉, 본 발명의 발광 유닛은 백색 조명에 살균 또는 비타민 D 합성 유도 등을 포함한 기능성 광을 동시에 구현할 수 있다.
도 6은 본 발명의 다른 실시예에 따른 발광 장치의 발광 스펙트럼을 나타낸 그래프이다. 도 6의 발광 유닛은 LaPO4:Pr3+ 형광체가 포함된 파장변환부를 이용한 것으로, 스펙트럼의 파워 분포가 UVC 영역까지 확장된 것을 확인할 수 있다. 즉, 본 발명의 발광 유닛은 백색 조명에 살균 기능이 강화된 기능성 광을 동시에 구현할 수 있다.
위에서 개시된 바와 같이 본 발명에 따른 실시예들에 의한 발광 유닛은 살균 기능과 비타민 D 합성 유도가 가능하기 때문에, 코로나 바이러스 등 전염성이 심각한 전염 질환에 대응하여 예방, 소독 등을 수행하는데 용이하며, 바이러스의 확산을 억제하는데 사용될 수 있다.
이상에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자 또는 해당 기술 분야에 통상의 지식을 갖는 자라면, 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 또한, 본 발명의 다양한 양태들이 설명되었지만, 이러한 양태들은 반드시 조합하여 사용될 필요가 있는 것은 아니다. 따라서, 첨부된 특허청구범위는 여기서 도시되고 설명된 실시예들의 범위 내에서 모든 수정 및 변경을 포괄하도록 의도된다.
본 명세서에 개시된 실시예들은 살균 장치를 포함한다. 또한 이들 실시예들은 단지 예시적인 것이며, 본 개시의 범위를 제한하려는 것은 아님을 이해해야 한다.

Claims (10)

  1. 발광 다이오드 칩; 및
    상기 발광 다이오드 칩으로부터 출사된 광을 다른 파장의 광으로 변환시키는 파장변환부를 포함하고,
    상기 발광다이오드 칩으로부터 출사된 광 및 상기 파장변환부에 의해 파장 변환된 광이 혼합되어 백색광을 구현하며,
    상기 파장변환부는 복수의 형광물질을 포함하고,
    상기 복수의 형광물질은 400nm 이하의 파장에서 피크 파장을 갖는 형광물질을 포함하는 발광 장치.
  2. 청구항 1에 있어서,
    상기 파장 변환기는 녹색 및 적색 형광 물질을 더 포함하는 발광 장치.
  3. 청구항 1에 있어서,
    상기 파장 변환기는 300nm 내지 380nm 범위 내에서 피크 파장을 갖는 형광물질을 포함하는 발광장치.
  4. 청구항 3에 있어서,
    상기 형광물질은 BaSi2O5:Pb2+, YPO4:Ce3+, YF3:Gd3+, Pr3+ 중 하나를 포함하는 것을 특징으로 하는 발광 장치.
  5. 청구항 1에 있어서,
    상기 파장변환부는 250nm 내지 300nm 범위 내에서 피크 파장을 갖는 형광물질을 포함하는 발광 장치.
  6. 청구항 5에 있어서,
    상기 형광물질은 LaPO4:Pr3+을 포함하는 것을 특징으로 하는 발광 장치.
  7. 제1 발광 다이오드 칩 및 제1 파장변환부를 포함하는 제1 발광 유닛; 및
    제2 발광 다이오드 칩 및 제2 파장변환부를 포함하는 제2 발광 유닛을 포함하고,
    상기 제1 파장변환부는 상기 제1 발광 다이오드 칩에서 방출된 광을 자외선 영역의 광으로 파장 변환하는 형광물질을 포함하고,
    상기 제2 파장변환부는 상기 제2 발광 다이오드 칩에서 방출된 광을 가시광선 영역의 광으로 파장변환하는 형광물질을 포함하는 발광 장치.
  8. 청구항 7에 있어서,
    상기 제1 파장변환부는 BaSi2O5:Pb2+, YPO4:Ce3+, YF3:Gd3+, Pr3+, 및 LaPO4:Pr3+ 중 적어도 하나를 포함하는 발광 장치.
  9. 청구항 7에 있어서,
    상기 제1 발광 다이오드 칩은 자외선 발광 다이오드 칩을 포함하는 발광 장치.
  10. 청구항 7에 있어서,
    상기 제2 발광 다이오드 칩은 보라색 발광 다이오드 칩을 포함하는 발광 장치.
PCT/KR2021/011142 2020-08-21 2021-08-20 발광 장치 WO2022039562A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063068548P 2020-08-21 2020-08-21
US63/068,548 2020-08-21

Publications (1)

Publication Number Publication Date
WO2022039562A1 true WO2022039562A1 (ko) 2022-02-24

Family

ID=80323145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/011142 WO2022039562A1 (ko) 2020-08-21 2021-08-20 발광 장치

Country Status (1)

Country Link
WO (1) WO2022039562A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143993A (ja) * 2004-11-17 2006-06-08 General Electric Co <Ge> 照明用途向けの、酸化物ベースの蛍光体のナノ結晶性粉末の製造方法
JP2015025077A (ja) * 2013-07-26 2015-02-05 岩崎電気株式会社 蛍光体
KR20150109872A (ko) * 2014-03-21 2015-10-02 서울반도체 주식회사 자외선 발광 다이오드를 이용한 발광 소자 및 이를 포함하는 조명장치
KR101692404B1 (ko) * 2016-02-11 2017-01-04 주식회사 소프트에피 자외선 경화를 위한 반도체 발광소자
KR20190027328A (ko) * 2017-09-06 2019-03-14 지엘비텍 주식회사 D50, d65 고연색성 표준 led 발광 모듈 및 조명 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143993A (ja) * 2004-11-17 2006-06-08 General Electric Co <Ge> 照明用途向けの、酸化物ベースの蛍光体のナノ結晶性粉末の製造方法
JP2015025077A (ja) * 2013-07-26 2015-02-05 岩崎電気株式会社 蛍光体
KR20150109872A (ko) * 2014-03-21 2015-10-02 서울반도체 주식회사 자외선 발광 다이오드를 이용한 발광 소자 및 이를 포함하는 조명장치
KR101692404B1 (ko) * 2016-02-11 2017-01-04 주식회사 소프트에피 자외선 경화를 위한 반도체 발광소자
KR20190027328A (ko) * 2017-09-06 2019-03-14 지엘비텍 주식회사 D50, d65 고연색성 표준 led 발광 모듈 및 조명 장치

Similar Documents

Publication Publication Date Title
JP5419315B2 (ja) 光源として少なくとも1つのledを備えた照明ユニット
CN109417841B (zh) 用于led光转化的组合物
CN104011457B (zh) 白色光源以及包括所述白色光源的白色光源系统
US6252254B1 (en) Light emitting device with phosphor composition
CN112075127B (zh) 用于提供具有高显色性和生物效应的可调光的多通道系统
US7497973B2 (en) Red line emitting phosphor materials for use in LED applications
US20090008655A1 (en) White Light Source
JP2021520066A (ja) 微生物を不活性化するためのマルチ発光体
US20120161170A1 (en) Generation of radiation conducive to plant growth using a combination of leds and phosphors
CN108697533A (zh) 近视抑制物品用光源及近视抑制物品用光源的使用方法
CN109216526A (zh) 发光装置
CN103459915A (zh) 白光源以及包括所述白光源的白光源系统
CN102792473A (zh) 白色照明装置
EP3795886A1 (en) Light-emitting device
US20160043288A1 (en) Light-emitting diode module capable of reducing blue-light energy
CN110382664A (zh) 用于动态照明系统的发光体混合物
CN109599473A (zh) 发光装置
CN109301058A (zh) 一种荧光体混合物及其发光装置
CN107431112A (zh) 发光装置
CN109370593A (zh) 一种荧光体混合物及其发光装置
WO2022039562A1 (ko) 발광 장치
WO2021112554A1 (ko) 발광 소자 및 그것을 갖는 조명 기구
KR101059119B1 (ko) 고연색성의 백색 발광 다이오드
KR101072572B1 (ko) 고체 조명용 적색 형광체 및 그 제조방법
WO2024058548A1 (ko) 발광 소자 및 그것을 갖는 조명 기구

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21858649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21858649

Country of ref document: EP

Kind code of ref document: A1