WO2022037632A1 - 用于混合动力车辆的电池能量管理方法及装置、机器可读存储介质 - Google Patents

用于混合动力车辆的电池能量管理方法及装置、机器可读存储介质 Download PDF

Info

Publication number
WO2022037632A1
WO2022037632A1 PCT/CN2021/113461 CN2021113461W WO2022037632A1 WO 2022037632 A1 WO2022037632 A1 WO 2022037632A1 CN 2021113461 W CN2021113461 W CN 2021113461W WO 2022037632 A1 WO2022037632 A1 WO 2022037632A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
value
vehicle
remaining
remaining power
Prior art date
Application number
PCT/CN2021/113461
Other languages
English (en)
French (fr)
Inventor
胡志敏
刘宝
侯文涛
仝磊光
郭贵贤
郑飞
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Priority to US18/013,362 priority Critical patent/US20230303056A1/en
Priority to EP21857724.5A priority patent/EP4155144A4/en
Publication of WO2022037632A1 publication Critical patent/WO2022037632A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/54Energy consumption estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/10Historical data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/24Energy storage means
    • B60W2710/242Energy storage means for electrical energy
    • B60W2710/244Charge state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to the technical field of vehicles, and in particular, to a battery energy management method and device for a hybrid vehicle.
  • a power consumption mode there are two management modes for battery energy in a battery energy management strategy of a hybrid electric vehicle, namely: a power consumption mode and a power retention mode.
  • the power consumption mode When the remaining battery power is high, the power consumption mode is adopted. In the power consumption mode, the power in the battery is consumed as much as possible to reduce vehicle emissions and improve fuel economy.
  • the vehicle When the remaining power of the battery drops to a threshold, the vehicle starts to execute the power retention mode, and controls the remaining power of the battery to maintain within a certain range.
  • the above-mentioned threshold of remaining battery power in the battery energy management strategy is an empirical value, and for the same type of vehicle, the threshold is fixed.
  • the fixed threshold cannot accurately meet the needs of each user.
  • the present invention aims to provide a battery energy management method and device for a hybrid vehicle, which is used to solve the problem that the remaining battery power threshold value of switching from the power consumption mode to the power retention mode is a fixed value. Manage technical issues that cannot be accurately tailored to each user's needs.
  • a battery energy management method for a hybrid vehicle comprising: obtaining a historical cut-off residual power value and a historical maximum power demand for a vehicle use cycle, wherein, after charging is completed, Recharging is one cycle of vehicle use; predicting the next cut-off residual power value according to the historical cut-off residual power value; predicting the next switching from power consumption mode to power retention mode according to the historical maximum power demand The lower limit of the power threshold; the larger one of the predicted next cut-off remaining power value and the lower limit of the remaining power threshold is determined as the next switch from the power consumption mode to the power retention mode and sending the determined remaining power threshold for the next switch from the power consumption mode to the power retention mode to the hybrid vehicle.
  • the acquiring the historically cut-off remaining power value for the vehicle use cycle includes: performing the following steps for each vehicle use cycle: acquiring the remaining power value when the charging is performed again; judging the remaining power value when the charging is performed again. Whether the power value is less than a first preset value, where the first preset value is the remaining power threshold for switching from the power consumption mode to the power retention mode in the current vehicle cycle and the remaining power threshold in the power retention mode. The sum of the maximum floating amount of power; in the case that the remaining power value when recharging is not less than the first preset value, the remaining power value when recharging is used as the cut-off remaining power value ; and in the case that the remaining power value when recharging is less than the first preset value, calculate the cut-off remaining amount according to the power value of the power system doing external work after the engine is started in the current vehicle cycle power value.
  • the calculating the cut-off remaining power value according to the power value of the power system doing external work after the engine is started in the current vehicle cycle includes:
  • the cut-off remaining power value is calculated according to the following formula:
  • P1 is the power value of the power system doing external work after the engine is started in the current vehicle cycle
  • t is the time
  • P is the power value of the power system doing external work at time t
  • P ICE is the engine consumption at time t.
  • the power value of , n is the speed of the transmitter at time t
  • T is the output torque of the engine at time t
  • P motor is the power consumption value of the motor at time t
  • U is the voltage across the motor at time t
  • I is the current of the motor at time t
  • SOC C is the cut-off remaining power value
  • SOC T is the remaining power threshold for switching from the power consumption mode to the power retention mode in the current vehicle cycle
  • E battery is the battery pack total energy that can be stored.
  • the calculating the cut-off residual power value according to the power value of the external power performed by the power system after the engine is started in the current vehicle cycle further includes: combining the calculated cut-off residual power value with a second preset power value. The larger of the values is set as the final cut-off remaining power value.
  • the predicting the next cut-off residual power value according to the historical cut-off residual power value includes: predicting the next cut-off residual power value according to the following formula:
  • SOC C-new is the next cut-off residual power value
  • m is the number of selected historical cut-off residual power values
  • i is the number
  • SOC Ci is the historical cut-off residual power for the latest i-th vehicle cycle value
  • the predicting, according to the historical maximum power demand, the lower limit value of the remaining power threshold for the next switch from the power consumption mode to the power retention mode includes: using the historical maximum power demand to predict the next maximum power demand; and determining the lower limit of the remaining power threshold according to the next maximum power demand, the corresponding relationship between the lower limit of the remaining power threshold and the power demand.
  • using the historical maximum power demand to predict the next maximum power demand includes:
  • P Avg is the next maximum power demand
  • q is the number of selected historical maximum power demands
  • j is the serial number
  • P reqj is the historical maximum power demand for the most recent j-th vehicle cycle
  • the correspondence between the lower limit value of the remaining power threshold and the power demand includes: a corresponding curve between the lower limit value of the remaining power threshold and the power demand stored in the server in advance, or the lower limit of the remaining power threshold.
  • the historical maximum power demand of the vehicle cycle is obtained in the following manner:
  • the corresponding relationship between the power demand and the opening degree of the accelerator pedal is stored in advance;
  • the corresponding power demand is obtained according to the current accelerator pedal opening and the corresponding relationship between the pre-stored power demand and the accelerator pedal opening, and the maximum power demand in the vehicle use cycle is determined.
  • the present invention also provides a battery energy management method for a hybrid vehicle, wherein the battery energy management method for a hybrid vehicle includes: receiving a lower voltage determined by a server according to the above-mentioned battery energy management method for a hybrid vehicle. a remaining power threshold for switching from a power consumption mode to a power retention mode at one time; and controlling the switching from the power consumption mode to the power retention mode based on the remaining power threshold.
  • the present invention also provides a battery energy management device for a hybrid vehicle
  • the battery energy management device for a hybrid vehicle includes: an acquisition module for acquiring a historical cut-off remaining power value for a vehicle use cycle and historical maximum power demand, wherein, from the completion of charging to recharging is one cycle of vehicle use; the first prediction module is used to predict the next cut-off residual power value according to the historical cut-off residual power value; the second A prediction module, for predicting the lower limit value of the remaining power threshold value of the next switch from the power consumption mode to the power retention mode according to the historical maximum power demand; a determination module for comparing the predicted next cut-off remaining power value and all determining the larger one of the lower limit values of the remaining power threshold as the remaining power threshold for switching from the power consumption mode to the power retention mode next time; and a sending module, configured to send the determined next time from the power consumption A remaining charge threshold for mode switching to the charge retention mode is sent to the hybrid vehicle.
  • the present invention also provides a battery energy management device for a hybrid vehicle
  • the battery energy management device for a hybrid vehicle includes: a receiving module for receiving the battery energy of the hybrid vehicle from the server according to the above a remaining power threshold value for the next switch from the power consumption mode to the power retention mode determined by the management method; and a control module for controlling the switching from the power consumption mode to the power retention mode based on the remaining power threshold switch.
  • the battery energy management method and device for a hybrid vehicle according to the present invention have the following advantages:
  • the remaining power threshold can be dynamically changed according to the user's historical usage data, so that the battery energy management of the hybrid vehicle will also be more in line with the user's needs.
  • the receiving module includes a vehicle networking module, which is placed in the vehicle of the hybrid vehicle, and the server communicates with the hybrid vehicle through the vehicle networking module.
  • the IoV module includes a data routing function and a data storage function, the data routing function is used for converting between in-vehicle communication and remote communication protocols; the data storage function is used for The vehicle operation data is stored during communication.
  • the present invention also provides a machine-readable storage medium, where instructions are stored on the machine-readable storage medium, which can execute any one of the above-mentioned methods for battery energy management of a hybrid vehicle.
  • the machine-readable storage medium of the present invention includes the above-mentioned battery energy management method for a hybrid vehicle, so the machine-readable storage medium also has the above-mentioned technical effects of the machine-readable storage medium.
  • FIG. 1 shows a schematic flowchart of a battery energy management method for a hybrid vehicle according to an embodiment of the present invention
  • Figure 2 shows a schematic diagram of the corresponding curve of power demand and accelerator pedal opening
  • Fig. 3 shows the schematic diagram of the corresponding curve of the lower limit value of the remaining power threshold value and the power demand
  • FIG. 4 shows a schematic flowchart of a battery energy management method for a hybrid vehicle according to another embodiment of the present invention
  • FIG. 5 shows a structural block diagram of a battery energy management device for a hybrid vehicle according to an embodiment of the present invention.
  • FIG. 6 shows a structural block diagram of a battery energy management device for a hybrid vehicle according to another embodiment of the present invention.
  • the remaining battery power threshold for switching from power consumption mode to power retention mode set in the vehicle is an important parameter for mode switching. If the battery remaining power threshold is set relatively high, the vehicle will not be able to make good use of the battery energy to drive the vehicle. Because in this case, the battery retention mode is used for a long time, the engine working time is relatively long, the fuel consumption is increased, and the emission performance is deteriorated. If the remaining battery power threshold is set low, the power performance in the battery retention mode will be poor. Therefore, when the user needs a large power, the engine and the motor need to be output together, and the lower the battery power, the lower the discharge power, and the power of the motor will become weaker, so the power of the vehicle will become worse.
  • the threshold value of the remaining battery power for switching from the power consumption mode to the power retention mode is an empirical value, and for the same type of vehicle, the threshold value is fixed.
  • the fixed threshold cannot accurately meet the needs of each user. For example, assuming that the pure electric range of a hybrid vehicle is 50 kilometers, and the user's commute to get off work is 40 kilometers, then after a full charge every day, 80% of the battery can meet the user's commuting needs.
  • the battery remaining power threshold for switching from power consumption mode to power retention mode in the power management strategy is defined as 25%, the user will start the engine on the way off work.
  • the present invention proposes a battery energy management method and device for a hybrid vehicle, so that the remaining battery power threshold can be dynamically changed according to different historical usage data of users.
  • FIG. 1 shows a schematic flowchart of a battery energy management method for a hybrid vehicle according to an embodiment of the present invention.
  • the present invention provides a battery energy management method for a hybrid vehicle, which can be executed by a server.
  • the server can communicate with the vehicle networking module of the hybrid vehicle, obtain data of the hybrid vehicle through the vehicle networking module, and can also send data to the hybrid vehicle through the vehicle networking module.
  • the method may include steps S110 to S140.
  • step S110 the historical cut-off remaining power value and the historical maximum power demand for the vehicle use cycle are obtained.
  • the cut-off remaining power value is the theoretical remaining power value of the battery under the condition that the battery is charged by the engine after the vehicle cycle ends.
  • the server can extract the remaining power value SOC C when charging is performed again at the end of the current vehicle use cycle from the data transmitted by the vehicle networking module.
  • the remaining power value when charging is performed again is not less than the first preset value, it means that the battery energy that has been used in the vehicle cycle is used as power, and the engine is not started. In this case, the remaining power value when charging is performed again may be used as the cut-off remaining power value SOC C .
  • the cut-off remaining power value SOC C needs to be calculated according to the vehicle operation and data, and specifically needs to be calculated according to the power value of the external power of the power system after the engine is started.
  • the power value P1 of the power system to do external work after the engine is started includes the power value P ICE consumed by the engine at time t and the power value P motor consumed by the motor at time t.
  • P ICE and P motor can be calculated according to the following formulae.
  • the cut-off remaining power value SOC C can be calculated according to the power value P1 of the external work done by the power system after the engine is started at any time t. Specifically, it can be calculated according to the following formula:
  • SOC T is the remaining power threshold for switching from the power consumption mode to the power retention mode in the current vehicle cycle
  • E battery is the total energy that the battery pack can store.
  • the value calculated by formula (4) can be used as the final cut-off remaining power value.
  • the value of SOC C calculated according to formula (4) may be very small, and may even be lower than 0.
  • the second preset value may be obtained by calibration.
  • the second preset value may be set to 15%, but it is understood that 15% is only used for example, not for limitation. Therefore, in this embodiment, the larger one of the cut-off remaining power value calculated according to the formula (4) and the second preset value can be used as the final cut-off remaining power value.
  • the power requirement is related to the opening of the accelerator pedal.
  • the corresponding relationship between the power demand and the opening degree of the accelerator pedal can be obtained by testing in advance.
  • the server may pre-store the correspondence between the power demand and the opening degree of the accelerator pedal.
  • the corresponding relationship for example, may be a corresponding curve between power demand and accelerator pedal opening, as shown in Figure 2, or may be a corresponding table between power demand and accelerator pedal opening, or may also be power demand and acceleration.
  • a function of the pedal opening may be a corresponding curve between power demand and accelerator pedal opening, as shown in Figure 2, or may be a corresponding table between power demand and accelerator pedal opening, or may also be power demand and acceleration.
  • the vehicle can transmit the opening degree of the accelerator pedal to the server in real time.
  • the server obtains the corresponding power demand according to the accelerator pedal opening, and determines the maximum power demand in the vehicle use cycle.
  • step S120 the next cut-off residual power value is predicted according to the historical cut-off residual power value.
  • the weighted average method can be used to predict the next cut-off remaining power value according to the following formula:
  • SOC C-new is the next cut-off residual power value
  • m is the number of selected historical cut-off residual power values
  • i is the serial number
  • SOC Ci is the historical cut-off residual power for the latest i-th vehicle cycle value
  • the size of k i can be selected as any value that satisfies the condition.
  • the selected historical cut-off remaining power value may be the value for the most recent m vehicle cycles.
  • SOC C-new k 1 SOC C1 +k 2 SOC C2 +k 3 SOC C3 +k 4 SOC C4 +k 5 SOC C5 +k 6 SOC C6 (5)
  • k 1 +k 2 +k 3 +k 4 +k 5 +k 6 1
  • k 1 >k 2 >k 3 >k 4 >k 5 >k 6 The sizes of k 1 to k 6 may be selected as any values satisfying the aforementioned two conditions.
  • step S130 the lower limit value of the remaining power threshold value of the next switching from the power consumption mode to the power retention mode is predicted according to the historical maximum power demand.
  • next maximum power demand may be predicted by first using the historical maximum power demand.
  • next maximum power demand can be predicted using a weighted average according to the following formula:
  • P Avg is the next maximum power demand
  • q is the number of selected historical maximum power demands
  • j is the serial number
  • P reqj is the historical maximum power demand for the most recent j-th vehicle cycle
  • the selected historical maximum power demand may be the value for the last q vehicle cycles.
  • P Avg w 1 Preq1 +w 2 Preq2 +w 3 Preq3 +w 4 Preq4 +w 5 Preq5 +w 6 Preq6
  • w 1 +w 2 +w 3 +w 4 +w 5 +w 6 1
  • the sizes of w 1 to w 6 may be selected as any values satisfying the aforementioned two conditions.
  • the remaining power for the next switching from the power consumption mode to the power retention mode can be determined according to the next maximum power demand, the corresponding relationship between the lower limit value of the remaining power threshold and the power demand The lower limit value SOC Tmin of the threshold value.
  • the corresponding relationship between the lower limit value of the remaining power threshold and the power demand can be obtained by pre-testing.
  • the server may pre-store the corresponding relationship between the lower limit value of the remaining power threshold and the power demand.
  • the corresponding relationship for example, may be the corresponding curve between the lower limit value of the remaining power threshold and the power demand, as shown in Figure 3, or it may be a correspondence table between the lower limit value of the remaining power threshold and the power demand, or it may be The lower limit of the remaining battery threshold as a function of the power demand.
  • step S140 the larger one of the predicted next cut-off remaining power value and the lower limit value of the remaining power threshold value is determined as the remaining power for the next switch from the power consumption mode to the power retention mode threshold.
  • SOC T max(SOC C-new , SOC Tmin ), where SOC T is the remaining power threshold for the next switching from the power consumption mode to the power retention mode.
  • step S150 the determined remaining power threshold for switching from the power consumption mode to the power retention mode next time is sent to the hybrid vehicle.
  • the vehicle After the vehicle receives the remaining power threshold, it can control the next switch from the power consumption mode to the power retention mode according to the threshold.
  • the remaining power threshold can be dynamically changed according to different historical usage data of the user, and the battery energy management of the hybrid vehicle will be more suitable for the user's needs.
  • FIG. 4 shows a schematic flowchart of a battery energy management method for a hybrid vehicle according to another embodiment of the present invention.
  • an embodiment of the present invention further provides a battery energy management method for a hybrid vehicle, the method can be executed by the hybrid vehicle, and the hybrid vehicle and the server can communicate through a vehicle networking module.
  • the method may include steps S410 to S420.
  • step S410 the remaining power threshold for the next switch from the power consumption mode to the power retention mode determined by the server is received.
  • the server may send the threshold to the vehicle networking module of the hybrid vehicle.
  • the IoV module can send the remaining power threshold to the vehicle controller.
  • step S420 switching from the power consumption mode to the power retention mode is controlled based on the remaining power threshold.
  • the vehicle controller can monitor the remaining power of the battery in real time, and control the hybrid vehicle to switch from the power consumption mode to the power retention mode when the remaining power reaches the remaining power threshold.
  • the remaining power threshold can be dynamically changed according to different historical usage data of the user, and the battery energy management of the hybrid vehicle will be more suitable for the user's needs.
  • FIG. 5 shows a structural block diagram of a battery energy management device for a hybrid vehicle according to an embodiment of the present invention. As shown in FIG. 5 , an embodiment of the present invention further provides a battery energy management device for a hybrid vehicle, which can be used in a server.
  • the device includes: an acquisition module 510, configured to acquire the historical remaining power value and the historical maximum power demand for the vehicle use cycle, wherein, from the completion of charging to the recharging of the vehicle is one vehicle use cycle; the first prediction module 520 , for predicting the next cut-off residual power value according to the historical cut-off residual power value; the second prediction module 530 , for predicting the remaining power threshold value of the next switch from the power consumption mode to the power retention mode according to the historical maximum power demand The lower limit value of and a sending module 550, configured to send the determined remaining power threshold of the next switching from the power consumption mode to the power retention mode to the hybrid vehicle.
  • an acquisition module 510 configured to acquire the historical remaining power value and the historical maximum power demand for the vehicle use cycle, wherein, from the completion of charging to the recharging of the vehicle is one vehicle use cycle
  • the first prediction module 520 for predicting the next cut-off residual power value according to the historical cut-off residual power value
  • the second prediction module 530 for predicting the remaining power threshold value
  • the remaining power threshold can be dynamically changed according to the user's historical usage data, and the battery energy management of the hybrid vehicle will also be more in line with the user's needs.
  • FIG. 6 shows a structural block diagram of a battery energy management device for a hybrid vehicle according to another embodiment of the present invention.
  • an embodiment of the present invention also provides a battery energy management device for a hybrid vehicle, and the device can be used for a hybrid vehicle.
  • the apparatus includes: a receiving module 610, configured to receive the remaining power threshold value determined by the server to switch from the power consumption mode to the power retention mode next time; and a control module 620, configured to control the battery from the power consumption mode based on the remaining power threshold value. Switching from the power consumption mode to the power retention mode.
  • the remaining power threshold can be dynamically changed according to the user's historical usage data, and the battery energy management of the hybrid vehicle will also be more in line with the user's needs.
  • the server of the present invention and the hybrid vehicle can communicate with the vehicle networking module provided on the hybrid vehicle.
  • the server can specifically perform data analysis, data cleaning, data storage, data operation, and data conversion.
  • the data uploaded from the hybrid vehicle to the cloud platform needs to be converted into a form that can be calculated. This process is data analysis.
  • Hybrid vehicles will continue to upload data to the server when they are in the wake-up state.
  • actions for non-driving and charging purposes such as opening and closing the car door and remotely querying vehicle conditions, will also wake up the vehicle, so hybrid vehicles will upload a lot of invalid data. Therefore, it is necessary to clean the data to remove invalid data.
  • only the data related to the analysis of the user's driving and charging habits can be retained.
  • the server can uniformly store the sorted data into the database, and the database is arranged based on time for calling the data in each time period.
  • the method described in the present invention may be a specific process for performing data operations. Before sending the operation result to the hybrid vehicle, the operation result may be converted into a CAN message and sent to the hybrid vehicle.
  • the car networking module is placed in the car and wirelessly connected to the server through a network connection protocol.
  • the IoV module can perform two functions of data routing and data storage. When performing data routing functions, the IoV module can convert between in-vehicle communication and remote communication protocols. Because vehicles are often parked in locations with poor signal such as underground parking garages, communication between the vehicle and the server may be disrupted.
  • a storage module is added to the Internet of Vehicles module to store vehicle operation data when it cannot communicate with the server, and package and upload the whole after reconnecting.
  • the charger of the vehicle can send whether the current vehicle is in the charging state to the server through the vehicle networking module.
  • the battery management system can send the actual remaining power value to the server through the car networking module.
  • the transmitter can send to the server whether it is currently running and the speed and torque through the car networking module.
  • the motor can send the voltage value and current value to the server through the car networking module.
  • the vehicle controller can receive the remaining power threshold value of the next time from the power consumption mode to the power retention mode sent by the server through the vehicle networking module, and control the switching from the power consumption mode to the power consumption mode based on the remaining power threshold value. Switching the battery hold mode.
  • the present invention also provides a machine-readable storage medium, on which instructions are stored, the instructions enable a machine to execute the battery for a hybrid vehicle according to any embodiment of the present invention energy management methods.
  • the machine-readable storage medium includes but is not limited to phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), only Read-Only Memory (ROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Flash Memory (Flash Memory) or other memory technologies, Compact Disc Read-Only Memory (CD-ROM), Digital Versatile Disc (DVD) ) or other optical storage, magnetic cassette tapes, magnetic tape disk storage or other magnetic storage devices and various other media that can store program code.
  • PRAM phase change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random access memory
  • ROM Read-Only Memory
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • Flash Memory Flash Memory
  • CD-ROM Compact Disc

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Human Computer Interaction (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种用于混合动力车辆的电池能量管理方法及装置、机器可读存储介质,方法包括:获取针对用车循环的历史截止剩余电量值和历史最大功率需求;根据历史截止剩余电量值预测下一次的截止剩余电量值;根据历史最大功率需求预测下一次从电量消耗模式切换为电量保持模式的剩余电量阈值的下限值;将预测的下一次的截止剩余电量值和剩余电量阈值的下限值中较大者确定为下一次从电量消耗模式切换为电量保持模式的剩余电量阈值;以及将确定的下一次从电量消耗模式切换为电量保持模式的剩余电量阈值发送至混合动力车辆。

Description

用于混合动力车辆的电池能量管理方法及装置、机器可读存储介质
本申请要求2020年08月19日提交中国专利局、申请号为202010837547.2、发明名称为“用于混合动力车辆的电池能量管理方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及车辆技术领域,特别涉及一种用于混合动力车辆的电池能量管理方法及装置。
背景技术
混合动力车辆中存在多种动力源,因此涉及到如何更好的协调多种动力源的工作状态。
目前,混合动力车辆的电池能量管理策略中对于电池能量存在两种管理模式,分别为:电量消耗模式和电量保持模式。电池剩余电量较高时采用电量消耗模式,在电量消耗模式下,尽可能消耗电池中的电能以降低整车排放以及提高燃油经济性。当电池剩余电量降低到一阈值时,车辆开始执行电量保持模式,控制电池剩余电量维持在一定范围内。
相关技术中,电池能量管理策略中的上述电池剩余电量阈值为经验值,针对同一类型的车辆,该阈值是固定不变的。然而由于用户的使用习惯存在差异性,固定的阈值无法准确的贴合每个用户的需求。
发明内容
有鉴于此,本发明旨在提出一种用于混合动力车辆的电池能量管理方法及装置,用于解决从电量消耗模式切换为电量保持模式的剩余电量阈值为固定值的情况下,电池能量的管理无法准确的贴合每个用户的需求的技术问题。
为达到上述目的,本发明的技术方案是这样实现的:
一种用于混合动力车辆的电池能量管理方法,所述用于混合动力车辆的电池能量管理方法包括:获取针对用车循环的历史截止剩余电量值和历 史最大功率需求,其中,从充电完成后到再次进行充电为一个所述用车循环;根据所述历史截止剩余电量值预测下一次的截止剩余电量值;根据所述历史最大功率需求预测下一次从电量消耗模式切换为电量保持模式的剩余电量阈值的下限值;将预测的所述下一次的截止剩余电量值和所述剩余电量阈值的下限值中较大者确定为下一次从所述电量消耗模式切换为所述电量保持模式的剩余电量阈值;以及将确定的下一次从所述电量消耗模式切换为所述电量保持模式的剩余电量阈值发送至所述混合动力车辆。
可选的,所述获取针对用车循环的历史截止剩余电量值包括:针对每一用车循环执行以下步骤:获取所述再次进行充电时的剩余电量值;判断所述再次进行充电时的剩余电量值是否小于第一预设值,其中所述第一预设值为当前用车循环中从所述电量消耗模式切换为所述电量保持模式的剩余电量阈值与在所述电量保持模式中剩余电量的最大上浮量之和;在所述再次进行充电时的剩余电量值不小于所述第一预设值的情况下,将所述再次进行充电时的剩余电量值作为所述截止剩余电量值;以及在所述再次进行充电时的剩余电量值小于所述第一预设值的情况下,根据所述当前用车循环中在发动机启动后动力系统对外做功的功率值来计算所述截止剩余电量值。
可选的,所述根据所述当前用车循环中在发动机启动后动力系统对外做功的功率值来计算所述截止剩余电量值包括:
根据以下公式计算所述当前用车循环中在发动机启动后动力系统对外做功的功率值:
P1=∫Pdt,
其中,
Figure PCTCN2021113461-appb-000001
根据以下公式计算所述截止剩余电量值:
Figure PCTCN2021113461-appb-000002
其中,P1为所述当前用车循环中在发动机启动后动力系统对外做功的功率值,t为时间,P为在时间t处动力系统对外做功的功率值,P ICE为在时间t处发动机消耗的功率值,n为在时间t处发送机转速,T为在时间t处发动机输出扭矩,P motor为在时间t处电机消耗的动率值,U为在时间t处电机两端电压,I为在时间t处电机的电流,SOC C为所述截止剩余电量值,SOC T为当前用车循环中从所述电量消耗模式切换为所述电量保持模式的剩余电量阈值,E battery为电池包所能存储的总能量。
可选的,所述根据所述当前用车循环中在发动机启动后动力系统对外做功的功率值来计算所述截止剩余电量值还包括:将计算出的所述截止剩余电量值和第二预设值中较大者作为最终的所述截止剩余电量值。
可选的,所述根据所述历史截止剩余电量值预测下一次的截止剩余电量值包括:根据以下公式预测所述下一次的截止剩余电量值:
Figure PCTCN2021113461-appb-000003
其中,
Figure PCTCN2021113461-appb-000004
其中,SOC C-new为所述下一次的截止剩余电量值,m为选取的历史截 止剩余电量值的数量,i为编号,SOC Ci为针对最近的第i次用车循环的历史截止剩余电量值,k i表示SOC Ci对应的权值,其中,从i=1到i=m,k i的值依次减小。
可选的,所述根据所述历史最大功率需求预测下一次从电量消耗模式切换为电量保持模式的剩余电量阈值的下限值包括:使用所述历史最大功率需求预测下一次的最大功率需求;以及根据所述下一次的最大功率需求、剩余电量阈值的下限值与功率需求的对应关系,确定所述剩余电量阈值的下限值。
可选的,使用所述历史最大功率需求预测下一次的最大功率需求包括:
根据以下公式计算所述下一次的最大功率需求:
Figure PCTCN2021113461-appb-000005
其中,
Figure PCTCN2021113461-appb-000006
其中,P Avg为所述下一次的最大功率需求,q为选取的历史最大功率需求的数量,j为编号,P reqj为针对最近的第j次用车循环的历史最大功率需求,w j为P reqj对应的权值,其中,从j=1到j=m,w j的值依次减小。
可选的,所述剩余电量阈值的下限值与功率需求的对应关系包括:预先存储于服务器的所述剩余电量阈值的下限值与功率需求的对应曲线,或者所述剩余电量阈值的下限值与功率需求的对应表,或者所述剩余电量阈值的下限值与功率需求的函数关系。
可选的,所述车循环的历史最大功率需求通过以下方式获取:
预先存储功率需求与加速踏板的开度的对应关系;
在每一用车循环中,根据当前加速踏板开度及所述预先存储功率需求与加速踏板的开度的对应关系获取对应的功率需求,并确定出该用车循环中最大功率需求。
相应的,本发明还提供一种用于混合动力车辆的电池能量管理方法,所述用于混合动力车辆的电池能量管理方法包括:接收服务器根据上述的混合动力车辆的电池能量管理方法确定的下一次从电量消耗模式切换为电量保持模式的剩余电量阈值;以及基于所述剩余电量阈值控制从所述电量消耗模式到所述电量保持模式的切换。
相应的,本发明还提供一种用于混合动力车辆的电池能量管理装置,所述用于混合动力车辆的电池能量管理装置包括:获取模块,用于获取针对用车循环的历史截止剩余电量值和历史最大功率需求,其中,从充电完成后到再次进行充电为一个所述用车循环;第一预测模块,用于根据所述历史截止剩余电量值预测下一次的截止剩余电量值;第二预测模块,根据所述历史最大功率需求预测下一次从电量消耗模式切换为电量保持模式的剩余电量阈值的下限值;确定模块,用于将预测的所述下一次的截止剩余电量值和所述剩余电量阈值的下限值中较大者确定为下一次从所述电量消耗模式切换为所述电量保持模式的剩余电量阈值;以及发送模块,用于将确定的下一次从所述电量消耗模式切换为所述电量保持模式的剩余电量阈值发送至所述混合动力车辆。
相应的,本发明还提供一种用于混合动力车辆的电池能量管理装置,所述用于混合动力车辆的电池能量管理装置包括:接收模块,用于接收服务器根据上述的混合动力车辆的电池能量管理方法确定的下一次从所述电量消耗模式切换为所述电量保持模式的剩余电量阈值;以及控制模块,用于基于所述剩余电量阈值控制从所述电量消耗模式到所述电量保持模式的切换。
相对于现有技术,本发明所述的用于混合动力车辆的电池能量管理方法及装置具有以下优势:
获取用户的用车循环的历史截止剩余电量值和历史最大功率需求,基于历史截止剩余电量值和历史最大功率需求确定出下一次从电量消耗模式切换为电量保持模式的剩余电量阈值。基于此,剩余电量阈值能够根据用 户历史使用数据的不同而被动态改变,从而混合动力车辆对电池能量的管理也将更贴合用户需求。
可选的,所述接收模块包括车联网模块,放置在混合动力车辆的车内,所述服务器与混合动力车辆通过所述车联网模块进行通信。
可选的,所述车联网模块包括数据路由功能和数据存储功能,所述数据路由功能用于进行车内通信与远程通信协议之间的转换;所述数据存储功能,用于在无法与服务器通信的时候存储车辆运行数据。
此外,本发明还提供了一种机器可读存储介质,所述机器可读存储介质上存储有指令,能够执行上述任一项所述的混合动力车辆的电池能量管理方法。
本发明的机器可读存储介质包括上述混合动力车辆的电池能量管理方法,故机器可读存储介质也具有机器可读存储介质的上述技术效果。
本发明的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施方式及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了本发明实施方式所述的用于混合动力车辆的电池能量管理方法的流程示意图;
图2示出了功率需求与加速踏板的开度的对应曲线的示意图;
图3示出了剩余电量阈值的下限值与功率需求的对应曲线的示意图;
图4示出了本发明另一实施方式所述的用于混合动力车辆的电池能量管理方法的流程示意图;
图5示出了本发明实施方式所述的用于混合动力车辆的电池能量管理装置的结构框图;以及
图6示出了本发明另一实施方式所述的用于混合动力车辆的电池能量管理装置的结构框图。
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施方式及实施方式中的特征可以相互组合。
下面将参考附图并结合实施方式来详细说明本发明。
车辆中设置的从电量消耗模式切换为电量保持模式的电池剩余电量阈值,是模式切换的一个重要参数。如果电池剩余电量阈值设置的比较高,则车辆将不能很好的利用电池能量驱动车辆。因为这种情况下电量保持模式使用时间比较长,发动机工作时间相对较长,油耗增加,排放性变差。如果电池剩余电量阈值设置的比较低,电量保持模式下的动力性将会变差。因此,用户需求较大的动力时需要发动机与电机一起输出,而电池的电量越低,其放电功率也越低,电机的动力便会变弱,所以车辆动力性就会变差。
相关技术中,从电量消耗模式切换为电量保持模式的电池剩余电量阈值为经验值,针对同一类型的车辆,该阈值是固定不变的。然而由于用户的使用习惯存在差异性,固定的阈值无法准确的贴合每个用户的需求。举例而言,假设混合动力车辆的纯电续航为50公里,用户上下班的路程为40公里,那么每日充满电后,80%的电量即可满足用户的通勤需求。但是,如果电能量管理策略中的从电量消耗模式切换为电量保持模式的电池剩余电量阈值定义为25%,那么用户在下班途中发动机将会启动。显然,这增加了用户的用车费用,因为用油的费用要比用电费用大的多。基于此,本发明提出一种用于混合动力车辆的电池能量管理方法及装置,使得电池剩余电量阈值能够依据用户历史使用数据的不同而动态改变。
图1示出了本发明实施方式所述的用于混合动力车辆的电池能量管理方法的流程示意图。如图1所示,本发明提供一种用于混合动力车辆的电池能量管理方法,该方法可以由服务器执行。服务器可以与混合动力车辆的车联网模块进行通信,通过车联网模块获得混合动力车辆的数据,也可以通过车联网模块向混合动力车辆发送数据。所述方法可以包括步骤S110至步骤S140。
在步骤S110,获取针对用车循环的历史截止剩余电量值和历史最大功率需求。
本发明中,从充电完成后到再次进行充电为一个用车循环。
下面首先介绍如何获取针对用车循环的历史截止剩余电量值SOC C。本发明中,截止剩余电量值,为用车循环结束后,不考虑发动机为电池充电的情况下理论的电池剩余电量值。
针对任意用车循环,服务器可以从车联网模块传送的数据中提取当前用车循环结束时再次进行充电时的剩余电量值SOC C
判断所述再次进行充电时的剩余电量值是否小于第一预设值。所述第一预设值为当前用车循环中从所述电量消耗模式切换为所述电量保持模式的剩余电量阈值SOC T与在所述电量保持模式中剩余电量的最大上浮量SOC S之和,即:第一预设值=SOC T+SOC S
若再次进行充电时的剩余电量值不小于第一预设值,则说明用车循环中一直使用的电池能量作为动力,而发动机并未启动。这种情况下,可以将再次进行充电时的剩余电量值作为所述截止剩余电量值SOC C
若再次进行充电时的剩余电量值小于第一预设值,则说明用车循环中发动机已经启动。这种情况下,需要根据车辆运行和数据来计算截止剩余电量值SOC C,具体需要根据发动机启动后动力系统对外做功的功率值来计算截止剩余电量值。
任意时间t处,在发动机启动后动力系统对外做功的功率值P1包括在时间t处发动机消耗的功率值P ICE和在时间t处电机消耗的动率值P motor
可以根据以下公式来计算P ICE和P motor
Figure PCTCN2021113461-appb-000007
P motor=UI        (2)
则,P=P ICE+P motor       (3)
然后可以根据任意时间t处,在发动机启动后动力系统对外做功的功率值P1来计算截止剩余电量值SOC C,具体可以根据以下公式计算:
Figure PCTCN2021113461-appb-000008
其中,SOC T为当前用车循环中从所述电量消耗模式切换为所述电量保持模式的剩余电量阈值,E battery为电池包所能存储的总能量。
在一实施例中,若再次进行充电时的剩余电量值小于第一预设值,可以使用公式(4)所计算的值作为最终的截止剩余电量值。
在另一实施例中,当车辆长时间运行在电量保持模式的情况下,根据公式(4)所计算的SOC C的值会非常小,甚至有可能低于0。而实际使用过程中会保证电池包不低于第二预设值,以免影响车辆正常使用。所述第二预设值可以通过标定的方式获得,例如,所述第二预设值可以设置为15%,但是可以理解,15%仅用于举例,而不用于限制。从而,在该实施例中可以使用根据公式(4)计算出的截止剩余电量值和第二预设值中较大者作为最终的所述截止剩余电量值。
接下来介绍,针对用车循环的历史最大功率需求的获取。功率需求与加速踏板的开度有关。对于每辆车,功率需求与加速踏板的开度的对应关系可以预先测试获得。服务器可以对功率需求与加速踏板的开度的对应关系进行预先存储。所述对应关系,例如可以是功率需求与加速踏板的开度的对应曲线,如图2所示,或者也可以是功率需求与加速踏板的开度的对应表,或者也可以是功率需求与加速踏板的开度的函数关系。
车辆可以将加速踏板的开度实时传递给服务器。在每一用车循环中,服务器根据加速踏板开度获取对应的功率需求,并确定出该用车循环中最大功率需求。
在步骤S120,根据所述历史截止剩余电量值预测下一次的截止剩余电量值。
具体的,可以使用加权平均的方式根据以下公式来预测下一次的截止剩余电量值:
Figure PCTCN2021113461-appb-000009
其中,
Figure PCTCN2021113461-appb-000010
其中,SOC C-new为所述下一次的截止剩余电量值,m为选取的历史截止剩余电量值的数量,i为编号,SOC Ci为针对最近的第i次用车循环的历史截止剩余电量值,k i表示SOC Ci对应的权值,其中,从i=1到i=m,k i的值依次减小。k i的大小可以选取为满足条件的任意值。选取的历史截止剩余电量值可以为针对最近m次用车循环的值。
选取的历史截止剩余电量值的数量的值可以根据实际需要设置为任意合适的值,以m=6为例,则下一次的截止剩余电量值可以预测为:
SOC C-new=k 1SOC C1+k 2SOC C2+k 3SOC C3+k 4SOC C4+k 5SOC C5+k 6SOC C6     (5)
其中,k 1+k 2+k 3+k 4+k 5+k 6=1,且k 1>k 2>k 3>k 4>k 5>k 6。k 1至k 6的大小可以选取为满足前述两个条件的任意值。
本发明中,m=6仅用于举例,而不用于限制。m可以根据需要设置为任意合适的值。
在步骤S130,根据所述历史最大功率需求预测下一次从电量消耗模式 切换为电量保持模式的剩余电量阈值的下限值。
具体的,可以首先使用历史最大功率需求预测下一次的最大功率需求。
可以使用加权平均的方式根据以下公式预测下一次的最大功率需求:
Figure PCTCN2021113461-appb-000011
其中,
Figure PCTCN2021113461-appb-000012
其中,P Avg为所述下一次的最大功率需求,q为选取的历史最大功率需求的数量,j为编号,P reqj为针对最近的第j次用车循环的历史最大功率需求,w j为P reqj对应的权值,其中,从j=j到j=m,w j的值依次减小。选取的历史最大功率需求可以为针对最近q次用车循环的值。
选取的历史最大功率需求的数量可以根据需要设置为任意合适的值,以q=6为例,则下一次的最大功率需求可以预测为:
P Avg=w 1P req1+w 2P req2+w 3P req3+w 4P req4+w 5P req5+w 6P req6
                  (7)
其中,w 1+w 2+w 3+w 4+w 5+w 6=1,w 1>w 2>w 3>w 4>w 5>w 6。w 1至w 6的大小可以选取为满足前述两个条件的任意值。
预测出下一次的最大功率需求之后,可以根据下一次的最大功率需求、剩余电量阈值的下限值与功率需求的对应关系,确定下一次从电量消耗模式切换为电量保持模式的所述剩余电量阈值的下限值SOC Tmin
对于每辆车,剩余电量阈值的下限值与功率需求的对应关系可以预先测试获得。服务器可以剩余电量阈值的下限值与功率需求的对应关系进行预先存储。所述对应关系,例如可以是剩余电量阈值的下限值与功率需求的对应曲线,如图3所示,或者也可以是剩余电量阈值的下限值与功率需求的对应表,或者也可以是剩余电量阈值的下限值与功率需求的函数关系。
在步骤S140,将预测的所述下一次的截止剩余电量值和所述剩余电量阈值的下限值中较大者确定为下一次从所述电量消耗模式切换为所述电量保持模式的剩余电量阈值。
即,SOC T=max(SOC C-new,SOC Tmin),其中SOC T为下一次从所述电量消耗模式切换为所述电量保持模式的剩余电量阈值。
在步骤S150,将确定的下一次从所述电量消耗模式切换为所述电量保持模式的剩余电量阈值发送至所述混合动力车辆。
车辆接收到剩余电量阈值后,可以根据该阈值来控制下一次从电量消耗模式到电量保持模式的切换。通过本发明提供的用于混合动力车辆的电池能量管理方法,剩余电量阈值能够根据用户历史使用数据的不同而被动态改变,混合动力车辆对电池能量的管理也将更贴合用户需求。
图4示出了本发明另一实施方式所述的用于混合动力车辆的电池能量管理方法的流程示意图。如图4所示,本发明实施方式还提供一种用于混合动力车辆的电池能量管理方法,该方法可以由混合动力车辆执行,混合动力车辆与服务器可以通过车联网模块进行通信。所述方法可以包括步骤S410至步骤S420。
在步骤S410,接收服务器确定的下一次从电量消耗模式切换为电量保持模式的剩余电量阈值。
服务器确定出下一次从所述电量消耗模式切换为所述电量保持模式的剩余电量阈值之后,可以发送给混合动力车辆的车联网模块。车联网模块可以将该剩余电量阈值发送给整车控制器。
在步骤S420,基于所述剩余电量阈值控制从所述电量消耗模式到所述电量保持模式的切换。
整车控制器可以实时监控电池的剩余电量,在剩余电量达到剩余电量阈值的情况下,控制混合动力车辆从电量消耗模式切换为电量保持模式。 通过本发明提供的用于混合动力车辆的电池能量管理方法,剩余电量阈值能够根据用户历史使用数据的不同而被动态改变,混合动力车辆对电池能量的管理也将更贴合用户需求。
图5示出了本发明实施方式所述的用于混合动力车辆的电池能量管理装置的结构框图。如图5所示,本发明实施方式还提供一种用于混合动力车辆的电池能量管理装置,所述装置可以用于服务器。所述装置包括:获取模块510,用于获取针对用车循环的历史截止剩余电量值和历史最大功率需求,其中,从充电完成后到再次进行充电为一个所述用车循环;第一预测模块520,用于根据所述历史截止剩余电量值预测下一次的截止剩余电量值;第二预测模块530,根据所述历史最大功率需求预测下一次从电量消耗模式切换为电量保持模式的剩余电量阈值的下限值;确定模块540,用于将预测的所述下一次的截止剩余电量值和所述剩余电量阈值的下限值中较大者确定为下一次从所述电量消耗模式切换为所述电量保持模式的剩余电量阈值;以及发送模块550,用于将确定的下一次从所述电量消耗模式切换为所述电量保持模式的剩余电量阈值发送至所述混合动力车辆。
获取用户的用车循环的历史截止剩余电量值和历史最大功率需求,基于历史截止剩余电量值和历史最大功率需求确定出下一次从电量消耗模式切换为电量保持模式的剩余电量阈值。基于此,剩余电量阈值能够根据用户历史使用数据的不同而被动态改变,混合动力车辆对电池能量的管理也将更贴合用户需求。
本发明提供的用于混合动力车辆的电池能量管理装置的具体工作原理及益处上述本发明提供的由服务器执行的用于混合动力车辆的电池能量管理方法的具体工作原理及益处相同,这里将不再赘述。
图6示出了本发明另一实施方式所述的用于混合动力车辆的电池能量管理装置的结构框图。如图6所示,本发明实施方式还提供一种用于混合动力车辆的电池能量管理装置,所述装置可以用于混合动力车辆。所述装置包括:接收模块610,用于接收服务器确定的下一次从所述电量消耗模式切换为所述电量保持模式的剩余电量阈值;以及控制模块620,用于基于所述剩余电量阈值控制从所述电量消耗模式到所述电量保持模式的切换。
获取用户的用车循环的历史截止剩余电量值和历史最大功率需求,基于历史截止剩余电量值和历史最大功率需求确定出下一次从电量消耗模式切换为电量保持模式的剩余电量阈值。基于此,剩余电量阈值能够根据用户历史使用数据的不同而被动态改变,混合动力车辆对电池能量的管理也将更贴合用户需求。
本发明提供的用于混合动力车辆的电池能量管理装置的具体工作原理及益处上述本发明提供的由混合动力车辆执行的用于混合动力车辆的电池能量管理方法的具体工作原理及益处相同,这里将不再赘述。
本发明所述的服务器与混合动力车辆可以通过设置于混合动力车辆上的车联网模块进行通信。
服务器具体可以执行数据解析、数据清洗、数据存储、数据运算、数据转换。从混合动力车辆上传至云平台的数据需要转化为可以进行运算的形式,此过程为数据解析。混合动力车辆在唤醒状态下会持续向服务器上传数据,在平常用车时,比如开关车门、远程查询车况等非驾驶、充电目的的动作也会唤醒车辆,所以混合动力车辆会上传许多无效的数据,因此需要对数据进行清洗,去掉无效数据,例如,在执行本发明所述的方法时可以仅保留与分析用户驾驶、充电习惯相关的数据。服务器可以将整理好的数据统一存储至数据库,数据库中以时间为排列依据,以供调用各时间段内的数据。本发明所述的方法可以为执行数据运算的具体过程。在将运算结果发送至混合动力车辆之前,可以将运算结果转换为CAN报文的形式发送至混合动力车辆。
车联网模块放置在车内,通过网络连接协议与服务器进行无线连接。车联网模块可以执行数据路由和数据存储两个功能。执行数据路由功能时,车联网模块可以进行车内通信与远程通信协议之间的转换。由于车辆经常停放在地下停车库等信号不良的位置,所以车辆与服务器之间的通信可能会发生中断。车联网模块中加入存储模块,在无法与服务器通信的时候存储车辆运行数据,待重新连接后整体打包上传。
车辆的充电机可以通过车联网模块向服务器发送当前车辆是否处于充电状态。电池管理系统可以通过车联网模块向服务器发送实际的剩余电量值。发送机可以通过车联网模块向服务器发送当前是出否处于运行状态以 及转速扭矩。电机可以通过车联网模块向服务器发送电压值和电流值。整车控制器可以通过车联网模块接收服务器发送的下一次从所述电量消耗模式切换为所述电量保持模式的剩余电量阈值,并基于所述剩余电量阈值控制从所述电量消耗模式到所述电量保持模式的切换。
相应的,本发明还提供一种机器可读存储介质,所述机器可读存储介质上存储有指令,所述指令使得机器能够执行根据本发明任意实施方式所述的用于混合动力车辆的电池能量管理方法。其中,所述机器可读存储介质包括但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体(Flash Memory)或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁盘存储或其他磁性存储设备等各种可以存储程序代码的介质。
以上所述仅为本发明的较佳实施方式而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (15)

  1. 一种用于混合动力车辆的电池能量管理方法,其特征在于,所述用于混合动力车辆的电池能量管理方法包括:
    获取针对用车循环的历史截止剩余电量值和历史最大功率需求,其中,从充电完成后到再次进行充电为一个所述用车循环;
    根据所述历史截止剩余电量值预测下一次的截止剩余电量值;
    根据所述历史最大功率需求预测下一次从电量消耗模式切换为电量保持模式的剩余电量阈值的下限值;
    将预测的所述下一次的截止剩余电量值和所述剩余电量阈值的下限值中较大者确定为下一次从所述电量消耗模式切换为所述电量保持模式的剩余电量阈值;以及
    将确定的下一次从所述电量消耗模式切换为所述电量保持模式的剩余电量阈值发送至所述混合动力车辆。
  2. 根据权利要求1所述的用于混合动力车辆的电池能量管理方法,其特征在于,所述获取针对用车循环的历史截止剩余电量值包括:针对每一用车循环执行以下步骤:
    获取所述再次进行充电时的剩余电量值;
    判断所述再次进行充电时的剩余电量值是否小于第一预设值,其中所述第一预设值为当前用车循环中从所述电量消耗模式切换为所述电量保持模式的剩余电量阈值与在所述电量保持模式中剩余电量的最大上浮量之和;
    在所述再次进行充电时的剩余电量值不小于所述第一预设值的情况下,将所述再次进行充电时的剩余电量值作为所述截止剩余电量值;以及
    在所述再次进行充电时的剩余电量值小于所述第一预设值的情况下,根据所述当前用车循环中在发动机启动后动力系统对外做功的功率值来计算所述截止剩余电量值。
  3. 根据权利要求2所述的用于混合动力车辆的电池能量管理方法,其 特征在于,所述根据所述当前用车循环中在发动机启动后动力系统对外做功的功率值来计算所述截止剩余电量值包括:
    根据以下公式计算所述当前用车循环中在发动机启动后动力系统对外做功的功率值:
    P1=∫Pdt,
    其中,
    P=P ICE+P motor
    Figure PCTCN2021113461-appb-100001
    P motor=UI;
    根据以下公式计算所述截止剩余电量值:
    Figure PCTCN2021113461-appb-100002
    其中,P1为所述当前用车循环中在发动机启动后动力系统对外做功的功率值,t为时间,P为在时间t处动力系统对外做功的功率值,P ICE为在时间t处发动机消耗的功率值,n为在时间t处发送机转速,T为在时间t处发动机输出扭矩,P motor为在时间t处电机消耗的动率值,U为在时间t处电机两端电压,I为在时间t处电机的电流,SOC C为所述截止剩余电量值,SOC T为当前用车循环中从所述电量消耗模式切换为所述电量保持模式的剩余电量阈值,E battery为电池包所能存储的总能量。
  4. 根据权利要求3所述的用于混合动力车辆的电池能量管理方法,其特征在于,所述根据所述当前用车循环中在发动机启动后动力系统对外做功的功率值来计算所述截止剩余电量值还包括:
    将计算出的所述截止剩余电量值和第二预设值中较大者作为最终的所述截止剩余电量值。
  5. 根据权利要求1至4中任一项所述的用于混合动力车辆的电池能量 管理方法,其特征在于,所述根据所述历史截止剩余电量值预测下一次的截止剩余电量值包括:
    根据以下公式预测所述下一次的截止剩余电量值:
    Figure PCTCN2021113461-appb-100003
    其中,
    Figure PCTCN2021113461-appb-100004
    其中,SOC C-new为所述下一次的截止剩余电量值,m为选取的历史截止剩余电量值的数量,i为编号,SOC Ci为针对最近的第i次用车循环的历史截止剩余电量值,k i表示SOC Ci对应的权值,其中,从i=1到i=m,k i的值依次减小。
  6. 根据权利要求1所述的用于混合动力车辆的电池能量管理方法,其特征在于,所述根据所述历史最大功率需求预测下一次从电量消耗模式切换为电量保持模式的剩余电量阈值的下限值包括:
    使用所述历史最大功率需求预测下一次的最大功率需求;以及
    根据所述下一次的最大功率需求、剩余电量阈值的下限值与功率需求的对应关系,确定所述剩余电量阈值的下限值。
  7. 根据权利要求6所述的用于混合动力车辆的电池能量管理方法,其特征在于,使用所述历史最大功率需求预测下一次的最大功率需求包括:
    根据以下公式计算所述下一次的最大功率需求:
    Figure PCTCN2021113461-appb-100005
    其中,
    Figure PCTCN2021113461-appb-100006
    其中,P Avg为所述下一次的最大功率需求,q为选取的历史最大功率需求的数量,j为编号,P reqj为针对最近的第j次用车循环的历史最大功率 需求,w j为P reqj对应的权值,其中,从j=1到j=m,w j的值依次减小。
  8. 根据权利要求6或7所述的用于混合动力车辆的电池能量管理方法,其特征在于,所述剩余电量阈值的下限值与功率需求的对应关系包括:预先存储于服务器的所述剩余电量阈值的下限值与功率需求的对应曲线,或者所述剩余电量阈值的下限值与功率需求的对应表,或者所述剩余电量阈值的下限值与功率需求的函数关系。
  9. 根据权利要求1至4、6、7任一项所述的用于混合动力车辆的电池能量管理方法,其特征在于,所述车循环的历史最大功率需求通过以下方式获取:
    预先存储功率需求与加速踏板的开度的对应关系;
    在每一用车循环中,根据当前加速踏板开度及所述预先存储功率需求与加速踏板的开度的对应关系获取对应的功率需求,并确定出该用车循环中最大功率需求。
  10. 一种用于混合动力车辆的电池能量管理方法,其特征在于,所述用于混合动力车辆的电池能量管理方法包括:
    接收服务器根据权利要求1至9中任一项所述的混合动力车辆的电池能量管理方法确定的下一次从电量消耗模式切换为电量保持模式的剩余电量阈值;以及
    基于所述剩余电量阈值控制从所述电量消耗模式到所述电量保持模式的切换。
  11. 一种用于混合动力车辆的电池能量管理装置,其特征在于,所述用于混合动力车辆的电池能量管理装置包括:
    获取模块,用于获取针对用车循环的历史截止剩余电量值和历史最大功率需求,其中,从充电完成后到再次进行充电为一个所述用车循环;
    第一预测模块,用于根据所述历史截止剩余电量值预测下一次的截止剩余电量值;
    第二预测模块,根据所述历史最大功率需求预测下一次从电量消耗模式切换为电量保持模式的剩余电量阈值的下限值;
    确定模块,用于将预测的所述下一次的截止剩余电量值和所述剩余电 量阈值的下限值中较大者确定为下一次从所述电量消耗模式切换为所述电量保持模式的剩余电量阈值;以及
    发送模块,用于将确定的下一次从所述电量消耗模式切换为所述电量保持模式的剩余电量阈值发送至所述混合动力车辆。
  12. 一种用于混合动力车辆的电池能量管理装置,其特征在于,所述用于混合动力车辆的电池能量管理装置包括:
    接收模块,用于接收服务器根据权利要求1至9中任一项所述的混合动力车辆的电池能量管理方法确定的下一次从所述电量消耗模式切换为所述电量保持模式的剩余电量阈值;以及
    控制模块,用于基于所述剩余电量阈值控制从所述电量消耗模式到所述电量保持模式的切换。
  13. 根据权利要求12所述的用于混合动力车辆的电池能量管理装置,其特征在于,所述接收模块包括车联网模块,放置在混合动力车辆的车内,所述服务器与混合动力车辆通过所述车联网模块进行通信。
  14. 根据权利要求13所述的用于混合动力车辆的电池能量管理装置,其特征在于,所述车联网模块包括数据路由功能和数据存储功能,所述数据路由功能用于进行车内通信与远程通信协议之间的转换;所述数据存储功能,用于在无法与服务器通信的时候存储车辆运行数据。
  15. 一种机器可读存储介质,其特征在于,所述机器可读存储介质上存储有指令,能够执行权利要求1至9中任一项所述的混合动力车辆的电池能量管理方法。
PCT/CN2021/113461 2020-08-19 2021-08-19 用于混合动力车辆的电池能量管理方法及装置、机器可读存储介质 WO2022037632A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/013,362 US20230303056A1 (en) 2020-08-19 2021-08-19 Battery Energy Management Method and Device for Hybrid Vehicle, and Machine-Readable Storage Medium
EP21857724.5A EP4155144A4 (en) 2020-08-19 2021-08-19 METHOD AND DEVICE FOR MANAGING BATTERY ENERGY FOR HYBRID VEHICLE, AND MACHINE-READABLE STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010837547.2A CN113173152B (zh) 2020-08-19 2020-08-19 用于混合动力车辆的电池能量管理方法及装置
CN202010837547.2 2020-08-19

Publications (1)

Publication Number Publication Date
WO2022037632A1 true WO2022037632A1 (zh) 2022-02-24

Family

ID=76921431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113461 WO2022037632A1 (zh) 2020-08-19 2021-08-19 用于混合动力车辆的电池能量管理方法及装置、机器可读存储介质

Country Status (4)

Country Link
US (1) US20230303056A1 (zh)
EP (1) EP4155144A4 (zh)
CN (1) CN113173152B (zh)
WO (1) WO2022037632A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113173152B (zh) * 2020-08-19 2022-04-12 长城汽车股份有限公司 用于混合动力车辆的电池能量管理方法及装置
JP7198851B2 (ja) * 2021-03-11 2023-01-04 本田技研工業株式会社 電動移動体の充電制御方法及び電動移動体
CN114312327B (zh) * 2021-12-31 2024-08-27 上海洛轲智能科技有限公司 动力电池soc平衡点的设置方法、车辆、介质及程序产品
CN114597992A (zh) * 2022-02-23 2022-06-07 深圳市道通合创新能源有限公司 一种充电截止电量的获取和设置方法、充电管理系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010023739A (ja) * 2008-07-23 2010-02-04 Toyota Motor Corp ハイブリッド車及びハイブリッド車の制御方法
US20120256588A1 (en) * 2011-04-07 2012-10-11 Honda Motor Co., Ltd Electric vehicle charge control system
KR101601222B1 (ko) * 2014-09-05 2016-03-21 현대자동차주식회사 플러그인 하이브리드 자동차의 잔여주행거리 산출 장치 및 방법
CN108556839A (zh) * 2018-03-30 2018-09-21 吉利汽车研究院(宁波)有限公司 一种混合动力车辆的能量管理方法及系统
CN111123110A (zh) * 2019-12-20 2020-05-08 北京经纬恒润科技有限公司 计算电池剩余放电能量的方法以及装置
CN113173152A (zh) * 2020-08-19 2021-07-27 长城汽车股份有限公司 用于混合动力车辆的电池能量管理方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5418785B2 (ja) * 2010-06-03 2014-02-19 三菱自動車工業株式会社 ハイブリッド車両の蓄電制御装置
FR2968107A1 (fr) * 2010-11-25 2012-06-01 Denso Corp Dispositif d'estimation du besoin en electricite d'un vehicule , dispositif de traitement de donnees electriques et systeme de recharge
JP6361299B2 (ja) * 2014-06-09 2018-07-25 トヨタ自動車株式会社 ハイブリッド車両
JP6156419B2 (ja) * 2015-03-19 2017-07-05 トヨタ自動車株式会社 車両
CN110550018B (zh) * 2019-09-05 2021-06-08 武汉理工大学 一种增程式混合动力汽车的能量管理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010023739A (ja) * 2008-07-23 2010-02-04 Toyota Motor Corp ハイブリッド車及びハイブリッド車の制御方法
US20120256588A1 (en) * 2011-04-07 2012-10-11 Honda Motor Co., Ltd Electric vehicle charge control system
KR101601222B1 (ko) * 2014-09-05 2016-03-21 현대자동차주식회사 플러그인 하이브리드 자동차의 잔여주행거리 산출 장치 및 방법
CN108556839A (zh) * 2018-03-30 2018-09-21 吉利汽车研究院(宁波)有限公司 一种混合动力车辆的能量管理方法及系统
CN111123110A (zh) * 2019-12-20 2020-05-08 北京经纬恒润科技有限公司 计算电池剩余放电能量的方法以及装置
CN113173152A (zh) * 2020-08-19 2021-07-27 长城汽车股份有限公司 用于混合动力车辆的电池能量管理方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4155144A4

Also Published As

Publication number Publication date
EP4155144A1 (en) 2023-03-29
CN113173152A (zh) 2021-07-27
CN113173152B (zh) 2022-04-12
EP4155144A4 (en) 2023-11-22
US20230303056A1 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
WO2022037632A1 (zh) 用于混合动力车辆的电池能量管理方法及装置、机器可读存储介质
US10189362B2 (en) Vehicle charging station having degraded energy storage units for charging an incoming vehicle and methods thereof
RU2403663C2 (ru) Способ и устройство для управления зарядкой и разрядкой устройства аккумулирования энергии
CN110435429B (zh) 一种融合能耗预测的双电机电动汽车续航里程估计方法
US8473114B2 (en) Method of monitoring vehicle batteries
US9643512B2 (en) Vehicle battery charge preparation for post-drive cycle power generation
US8406948B2 (en) Plug-in hybrid electric vehicle and method of control for providing distance to empty and equivalent trip fuel economy information
CN110957544B (zh) 锂离子电池的控制装置、锂离子电池的控制方法及存储介质
JP5356439B2 (ja) 充電制御装置および充電制御方法
CN109760549A (zh) 用于电池组的最大电流计算和功率预测
JP2018181334A (ja) 電気自動車のための充電スケジュールを作成するシステム及び方法
CN113997805B (zh) 一种新能源汽车的充电控制方法、系统、车载终端及介质
JP2011176909A (ja) 車両状態監視サーバおよび車両状態監視システム
US11271418B2 (en) Charging method that reduces aging of electrical energy store of a vehicle
CN113733981A (zh) 动力电池的充电控制方法、装置、介质及电子设备
JP6269097B2 (ja) 電気自動車制御システム
US20230235719A1 (en) Power Distribution Management Method and Device for Hybrid Vehicle
CN107891864B (zh) 并联混合动力系统的等效油电折算系数获取方法及装置
US11180051B2 (en) Display apparatus and vehicle including the same
CN110535196B (zh) 在换电设施中执行的充电方法、充电设备、以及远端服务器
US20230001822A1 (en) Systems and methods for predictive energy management for high-voltage and low-voltage rechargeable energy storage systems of vehicles
JP2018023243A (ja) 電動車両
KR20150049860A (ko) 차량용 배터리의 가용 용량 연산 방법 및 컴퓨터 판독 가능한 기록 매체
KR102030239B1 (ko) 태양전지 발전량 예측을 통한 차량 배터리 관리 방법
WO2022088052A1 (zh) 充放电管理方法和充放电管理装置、充放电管理控制器以及充放电管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857724

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021857724

Country of ref document: EP

Effective date: 20221223

NENP Non-entry into the national phase

Ref country code: DE