WO2022037185A1 - 驱动组件、马达及终端 - Google Patents

驱动组件、马达及终端 Download PDF

Info

Publication number
WO2022037185A1
WO2022037185A1 PCT/CN2021/098248 CN2021098248W WO2022037185A1 WO 2022037185 A1 WO2022037185 A1 WO 2022037185A1 CN 2021098248 W CN2021098248 W CN 2021098248W WO 2022037185 A1 WO2022037185 A1 WO 2022037185A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
along
drive assembly
pushing
excitation
Prior art date
Application number
PCT/CN2021/098248
Other languages
English (en)
French (fr)
Inventor
邢增平
王俊
郭利德
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2023511986A priority Critical patent/JP2023538907A/ja
Priority to EP21857284.0A priority patent/EP4184781A4/en
Publication of WO2022037185A1 publication Critical patent/WO2022037185A1/zh
Priority to US18/169,919 priority patent/US20230198430A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/103Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors by pressing one or more vibrators against the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • H02N2/002Driving devices, e.g. vibrators using only longitudinal or radial modes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/005Mechanical details, e.g. housings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/06Drive circuits; Control arrangements or methods
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods

Definitions

  • the present application relates to the technical field of electronic products, and in particular, to a drive assembly, a motor and a terminal.
  • Piezoelectric motor (often working in the ultrasonic frequency band, also often referred to as ultrasonic motor, Ultrasonic Motor, USM for short), the isomorphic piezoelectric unit drives the resonator to vibrate, so that certain positions of the resonator form an elliptical motion in a certain direction, thereby The follower that drives the contact moves.
  • dual drives are often used to form vibrations of corresponding frequencies to form elliptical motion.
  • the low-voltage drive that is often required for miniaturization requires a high electromechanical coupling coefficient of the motor, which makes a slight deviation of the frequency from resonance sharply degrading performance, increasing the difficulty of dual-drive degeneracy.
  • the purpose of the present application is to provide a drive assembly, a motor and a terminal.
  • the drive assembly can have better movement stability in different modes, and improve the movement accuracy. Extended service life.
  • the application provides a drive assembly, the drive assembly includes a driving member and a driven member, the driving member is used to drive the driven member to move, and the driving member includes:
  • the vibration part is connected with the vibration excitation part
  • the first fixing part is connected with the vibrating part, and along the first direction L, the vibrating part is located between the excitation part and the first fixing part;
  • the pushing part is connected with the vibrating part and the driven member
  • the vibration excitation part can vibrate, and the vibration excitation part can drive the vibration part to act, and under the restriction of the first fixing part, the vibration part can at least along the first direction L and the second direction W vibrating, so that the pushing part pushes the follower to move in the first direction L;
  • the first fixing part is used to limit the moving distance of the pushing part in the first direction L and the second direction W by the vibrating part.
  • the first fixed part is provided to limit the vibration part between the excitation part and the first fixed part, so that the excitation part can be set at the corresponding frequency.
  • the excitation part can generate corresponding vibration, and the vibration can be transmitted to the vibration part, and in the first direction L, due to the setting of the first fixing part and the vibration of the excitation part in the direction of the vibration part, the vibration can be transmitted to the vibration part.
  • the vibrating part can at least vibrate in the first direction L and the second direction W.
  • the phase difference of the vibration in the first direction L and the second direction W can drive the vibration in the set frequency mode.
  • the pushing part on the upper part moves in the corresponding direction, and under the restriction of the first fixing part, the moving distance of the pushing part along the first direction L and the second direction W is limited, so that the pushing part can form a corresponding elliptical motion trajectory,
  • the push part can abut with the follower and apply pressure to the follower, and the follower in contact with the corresponding position can be pushed by the push part under pressure, and can perform linear motion or rotation . It avoids the problem of poor stability in the active part that drives the driven part to move in a small space in the miniaturized motor, reduces the loss of the active part and improves the service life.
  • the vibration part can be deformed
  • the vibration of the vibration excitation part can make the vibration part deform at least along the first direction L and the second direction W, and the pushing part is arranged in the vibration part to be able to deform.
  • the deformation of the vibrating part can generate an elliptical motion trajectory at the position where the pushing part is arranged in the vibrating part, and the stability is better.
  • the vibrating portion is an annular structural member, so that the vibrating portion can be deformed
  • the first fixing portion and the vibration exciting portion are disposed opposite to both sides of the annular structural member, and the annular structural member has an inner wall;
  • the vibration excitation part vibrates, along the first direction L, the distance between the inner walls increases, the distance between the inner walls along the second direction W decreases, and the pushing part is arranged at a distance between the inner walls. a reduced position; or,
  • the distance between the inner walls decreases, the distance between the inner walls increases along the second direction W, and the pushing portion is disposed at a position where the distance between the inner walls can be increased.
  • the structure can be deformed under the action of external force, and along the first direction L, under the restriction of the corresponding fixing part, the vibration of the exciting part can make the annular structure stretch or compress Under the action of the stress, the distance between the inner walls of the annular structure increases or decreases, and the annular structure is deformed by extrusion (or stretching) due to the stress in the first direction L. According to the force The transmission will produce expansion (or extrusion) deformation along the second direction W, so as to realize the relatively stable elliptical motion trajectory required for the vibrating part to generate, so that the pushing part forms a stable elliptical motion trajectory.
  • the pushing parts are symmetrically arranged on both sides of the annular structure, and the distance between the inner walls of the pushing parts disposed in the annular structure is the longest. far location.
  • the pushing portion provided on the annular structural member forms an elliptical motion trajectory in order to enable it to move in at least the first direction L and the second direction W, and at the same time, the annular structural member will not interfere with the driven member during the deformation process.
  • the use effect of the pusher is affected, so the pusher can be arranged at the farthest position between the inner walls, so as to ensure the stability of the pusher to push the follower to move, and to improve the movement accuracy.
  • the vibrating portion is an elastic member, and the vibrating portion can be elastically deformed at least along the first direction L and the second direction W;
  • the pushing parts are arranged at both ends of the elastic member in the direction of elastic deformation.
  • the elastic member when vibrating, the elastic member expands (or shrinks) and deforms in a direction other than the first direction L, which is the second direction W. Under the combination of the two deformations, the vibration can be There is a phase difference between the first direction L and the second direction W in the vibration part, so that the corresponding elliptical motion can be formed, and the pushing part arranged at the end of the vibrating part can form a regular elliptical motion trajectory to drive the follower to move and improve the The stability of the movement of the follower is improved.
  • the vibrating part includes two or more connecting rods, at least two adjacent connecting rods are connected to form connecting ends, and there is a third connecting rod between the connected connecting rods.
  • the first included angle can be increased or decreased, so that the vibration part can be deformed
  • the pushing portion is disposed near the connecting end.
  • the connecting rod when the exciting part vibrates, under the restriction of the corresponding fixing part, the vibration of the exciting part can act on the vibrating part, and the connecting rod is subjected to the stress of extrusion or stretching to make the first included angle
  • the connecting rod is also in the second direction W.
  • Corresponding motion will be generated, so that the connecting rod forms a phase difference in the first direction L and the second direction W, so that it can at least partially realize an elliptical motion trajectory, improve the stability of the movement of the pusher, and form an elliptical motion trajectory. precision.
  • the two connecting rods are respectively connected to the vibration excitation part and the first fixing part;
  • the pushing portion is connected to the connecting end.
  • the V-shaped structure is matched with the connecting rod, and its own structure has a certain stability and strength.
  • the controllability of driving the pushing part to perform the corresponding elliptical motion is strong, which improves the drive and follower.
  • the stability of the movement of the piece is improved.
  • the cross-sectional area of the connecting rod gradually increases.
  • the two outermost connecting rods are respectively connected to the vibration excitation part and the first fixing part;
  • the pushing part is connected to the connecting rod in the middle.
  • the setting method of the connecting rod connecting the pushing part to the middle position can improve the stability and reliability of the connection between the pushing part and the connecting rod, so that it is not easily damaged when the driven part is pushed to move, and the use of the pushing part is improved. life.
  • connecting rods there are four or more connecting rods, and a plurality of the connecting rods are connected end to end to form a closed polygonal structure;
  • the vibration excitation part and the first fixing part are respectively connected to the connecting end, and along the second direction, the pushing part is connected to the connecting end;
  • the vibration excitation portion and the first fixing portion are respectively connected to the connecting rod, and along the second direction W, the pushing portion is connected to the connecting rod.
  • the polygonal closed connection method has good structural stability and high strength, and when the pusher pushes the follower to move, the elliptical motion trajectory will not be offset due to poor stability, and the movement of the follower will be reduced. stability.
  • a plurality of the connecting rods are integrally formed.
  • the vibration can be better converted into the required elliptical motion trajectory.
  • the pushing portion is a protruding structure extending from the vibrating portion, and the protruding structure can push the follower to reciprocate along the first direction L.
  • the protruding structure at least partially protrudes from the vibrating part, so that the pushing part is more convenient to cooperate with the follower, so as to avoid the deformation of the vibrating part and cause other parts of the vibrating part to interact with the follower.
  • Contact which affects the stability of the movement of the follower driven by the push part, and destroys the elliptical motion trajectory of the push part.
  • the active member further includes a second fixing portion, for enabling the vibration generated by the vibration excitation portion to act on the vibration portion;
  • the second fixing portion is connected to the side of the excitation portion away from the vibration portion, and the distance between the first fixing portion and the second fixing portion is fixed.
  • the second fixing part when the two are fixedly connected to the motor, the connected excitation part and the vibration part are limited between the two, and when the vibration excitation part is vibrated, the second fixing part is Under the limit of the vibration part, it can only move in the direction of the vibration part, and at this time, under the limit of the first fixed part, the positions where the vibration part is connected with the excitation part and the first fixed part are affected by at least the first direction L
  • deformation at least along the second direction W can be generated, so that at least part of the vibration part (the position where the pushing part is arranged) forms an ellipse sports.
  • the vibration exciting part includes:
  • the body is used to connect the vibration part
  • the driving part is connected with the main body, and is used for driving the main body to vibrate in a single phase;
  • the driving member has a preset vibration frequency, and under the action of the preset vibration frequency, the vibration of the body can make the vibration part vibrate at least along the first direction L and the second direction W.
  • Single-phase driving can be realized, so that the vibration excitation part can realize the vibration of the corresponding frequency (resonator), thereby reducing the occupied space in the matching of the driving structure through a simple driving method.
  • the driving member is connected to at least one side of the body.
  • the main body which can be driven by the driving member to be connected, has a better vibration effect.
  • the driver includes:
  • the deformation part is connected with the main body, and the deformation part can be deformed when energized;
  • an energization part the energization part is connected to the deformation part, and the electricity generated by the energization part can be conducted to the deformation part;
  • the energization part can generate an electric field of the preset frequency, and the deformation part deforms under the action of the electric field to drive the body to vibrate.
  • the driving part convert the electrical energy into vibration in the required frequency mode, and drive the connected body to generate corresponding vibration to stretch or compress, thereby driving the connected vibration part to deform in tension or compression along the first direction.
  • the body, the vibrating part and the first fixing part are integrally formed.
  • the structural stability of each part of the connection can be better, and the effect of vibration transmission can be better at the same time.
  • the present application further provides a motor, the motor includes a drive assembly, and the drive assembly is the drive assembly described in any one of the above.
  • the motor has the same advantages as the drive assembly and will not be described in detail here.
  • the present application also provides a terminal including a motor, where the motor is the motor described above.
  • the terminal has the same advantages as the drive assembly and will not be described in detail here.
  • FIG. 1 is a front view of a drive assembly provided by an embodiment of the present application, wherein the direction indicated by arrow L is the first direction, and the direction indicated by arrow W is the second direction;
  • FIG. 2 is a front view of a driving member provided by an embodiment of the present application, wherein the direction indicated by arrow L is the first direction, and the direction indicated by arrow W is the second direction;
  • Fig. 3 is a kind of top view in Fig. 2;
  • Fig. 4 is another top view in Fig. 2;
  • FIG. 5 is a simple structural schematic diagram of the connection of each part in an active element provided by an embodiment of the present application, wherein the direction indicated by arrow L is the first direction, and the direction indicated by arrow W is the second direction;
  • FIG. 6 is a simple structural schematic diagram of the connection of each part in another driving element provided by the embodiment of the present application, wherein the direction indicated by arrow L is the first direction, and the direction indicated by arrow W is the second direction;
  • FIG. 7 is a simple structural schematic diagram of the connection of each part in another driving element provided by the embodiment of the present application, wherein the direction indicated by the arrow L is the first direction, and the direction indicated by the arrow W is the second direction;
  • FIG. 8 is a simple structural schematic diagram of the connection of each part in still another active element provided by the embodiment of the present application, wherein the direction indicated by arrow L is the first direction, and the direction indicated by arrow W is the second direction;
  • FIG. 9 is a simple structural schematic diagram of the first type of vibration part structural cooperation provided by the embodiment of the application, wherein the direction indicated by arrow L is the first direction, and the direction indicated by arrow W is the second direction;
  • FIG. 10 is a simple structural schematic diagram of the second type of vibration part structural cooperation provided by the embodiment of the application, wherein the direction indicated by arrow L is the first direction, and the direction indicated by arrow W is the second direction;
  • FIG. 11 is a simple structural schematic diagram of a third type of vibration part structural cooperation provided by the embodiment of the application, wherein the direction indicated by arrow L is the first direction, and the direction indicated by arrow W is the second direction;
  • FIG. 12 is a simple structural schematic diagram of providing a fourth type of vibration part structural cooperation according to an embodiment of the application.
  • FIG. 13 is a simple structural schematic diagram of the connection of each part of the drive member removed in FIG. 11;
  • Fig. 15 is a simple structural schematic diagram of another vibration excitation part in Fig. 13;
  • 16 is a schematic diagram of a simple structure of an active element provided by an embodiment of the present application.
  • 17 is a simple structural schematic diagram of the sixth kind of vibration part structural cooperation provided by the embodiment of the application.
  • FIG. 18 is a simple structural schematic diagram of the seventh type of vibration part structural cooperation provided by the embodiment of the application.
  • FIG. 19 is a front view of another active element provided by an embodiment of the application.
  • FIG. 20 is an attached view of another active member provided by an embodiment of the present application.
  • An embodiment of the present application provides a terminal, the terminal is provided with a motor, and the terminal may be an electronic product such as a mobile phone and a camera, which is not specifically limited herein.
  • the motor installed in the terminal with the thinning of electronic products such as mobile phones, due to the reduction of the internal space, the space occupied by the motor used in it to drive the movement of the corresponding components will also be reduced, so it will be It is necessary to reduce the overall space occupied by the motor to achieve miniaturization of the motor. In order to reduce the size of the motor as much as possible and achieve miniaturization, as a driving component of a relatively important part of the motor, the miniaturization of the structural coordination of this part has an important impact on the design of the overall thinning of the motor.
  • the drive assembly provided by the drive assembly includes a driving member and a driven member 6, and the driving member is used to drive the driven member 6 to move. It is provided that the vibration of the resonator is driven by the piezoelectric unit, so that a certain (some) position of the resonator forms an elliptical rotation in a certain direction, thereby driving the movement of the follower 6 in contact with the position.
  • the active part includes an excitation part 2 , a vibration part 4 , a first fixed part 5 and a push part 3 , the vibration part 4 is connected with the excitation part 2 , and the first fixed part 5 is connected with The vibration part 4 is connected, and the vibration part 4 is located between the excitation part 2 and the first fixed part 5 along the first direction L; the pushing part 3 is connected with the vibration part 4 and the follower 6; the vibration part 2 can vibrate, and the excitation part
  • the part 2 can drive the vibrating part 4 to act, and under the restriction of the first fixing part 5, the vibrating part 4 can vibrate at least along the first direction L and the second direction W, so that the pushing part 3 pushes the follower 6 along the first direction.
  • the first fixing part 5 is used to limit the moving distance of the pushing part 3 in the first direction L and the second direction W through the vibrating part 4 .
  • the excitation part 2 can make the excitation part 2 in the corresponding frequency mode set.
  • Corresponding vibration is generated, and the vibration can be transmitted to the vibration part 4, and in the first direction L, due to the arrangement of the first fixing part 5 and the vibration of the excitation part 2 in the direction of the vibration part 4, the vibration part 4 can be made to vibrate.
  • the pushing portion 3 moves in a corresponding direction, and under the restriction of the first fixing portion 5, the moving distance of the pushing portion 3 along the first direction L and the second direction W is limited, so that the pushing portion 3 can form a corresponding elliptical motion Track, when the pusher 3 moves in an elliptical motion track, the pusher 3 can abut against the follower 6 and apply pressure to the follower 6, and the follower 6 in contact at the corresponding position can be pushed by the pusher 3 when pressed , you can perform linear motion or rotation.
  • the excitation part 2 generates corresponding vibration in the frequency mode.
  • the excitation part 2 acts on the vibration part 4 with the deformation generated by the vibration, and in the process of vibration, the vibration in the first direction L is generated.
  • the deformation of the excitation part 2 causes the vibration part 4 to be squeezed or stretched by the stress in the first direction L, and the vibration part 4 is squeezed or stretched by the first direction L.
  • the vibrating part 4 and the first fixing part 5 can be arranged so that the vibrating part 4 can generate a stable elliptical motion, and the corresponding follower 6 can be driven to move, so as to avoid the driving in a small space in the miniaturized motor.
  • the problem of poor stability in the active part moved by the driven part 6 reduces the loss of the active part and improves the service life.
  • the arc of the elliptical motion trajectory is relatively gentle, and the required
  • the distance that drives the follower 6 to move is also a relatively small distance, so in the elliptical motion of the pusher 3, the movement in the second direction W is mainly used to achieve abutment with the follower 6, and to provide a pressing force to the follower 6. pressure, so that the push part 3 can drive the follower 6 to move or rotate along the first direction L more stably.
  • the frequency modes there can be many kinds in the excitation unit 2, and the frequency modes are different by the frequency of the electric drive, and in the single-phase drive , under different frequency modes, the elliptical motion of the upper and lower ends of the vibrating part 4 is clockwise and counterclockwise, so that the follower can be pushed to move in the positive or negative direction, thereby realizing single-phase drive bidirectional motion.
  • the change of the frequency mode can at least affect the vibration direction and vibration amplitude of the vibration excitation part 2, and finally change the elliptical motion trajectory of the local position in the vibration part 4 (the position where the push part 3 is set), thereby realizing the control and coordination of the follower.
  • the angle between the set first direction L and the second direction W will also be different, as long as the final The vibration of the vibrating part 4 can push the follower 6 to perform a corresponding movement, which is not specifically limited here.
  • the vibrating part 4 in order to enable the vibrating part 4 to drive the pushing part 3 to generate a relatively stable direction (clockwise or counterclockwise) in a corresponding frequency mode under the restriction of the first fixing part 5 and the exciting part 2 elliptical trajectory, and can stably push the follower 6 to do the corresponding movement.
  • the vibrating portion 4 can be deformed; under the restriction of the first fixing portion 5 , the vibrating portion 4 generates stress and deforms, so that the vibrating portion 4 can be deformed at least along the second direction W, and the vibration excitation portion 2 is deformed.
  • the vibration can make the vibration part 4 deformable in at least the first direction L and the second direction W, and the pushing part 3 is provided in the position where the vibration part 4 can be deformed in the first direction L and the second direction W.
  • the excitation part 2 applies a pulling force or a pressing force to the vibrating part 4.
  • the vibration part 4 can expand or contract along the first direction L through its own deformation, and under the deformation in this direction, it can drive the vibration part 4 to deform at least along the second direction W, through two directions
  • the corresponding displacement transformation capability can be achieved by the deformation movement of the vibration part 4, so that the vibration part 4 can be moved at least partially along the corresponding elliptical trajectory, so that the pushing part 3 can be arranged in the position where the elliptical movement trajectory can be generated in the vibration part 4.
  • This form of deformation through the vibrating portion 4 enables the vibrating portion 4 to generate the required elliptical motion trajectory under the vibration of the corresponding frequency mode within the smallest space range, and then drives the pushing portion 3 that also produces the elliptical motion trajectory.
  • the vibration part 4 is driven to produce tensile or extrusion deformation along the first direction L, and the vibration part 4 is placed in the first fixed part.
  • the corresponding elliptical motion can be better formed through its deformation, so that the pushing part 3 can generate the movement along the first direction L and the second direction W.
  • the pushing part 3 forms an elliptical motion.
  • the active part further includes a second fixing part 1 for enabling the vibration generated by the excitation part 2 to act on the vibration part 4; along the first direction L, the second fixing part 1 is connected to the excitation part 2 away from the vibration part 4 The distance between the first fixing part 5 and the second fixing part 1 is fixed.
  • the vibration part 4 under the limit of the second fixed part 1, it can only act on the vibration part 4, and at this time, under the limit of the first fixed part 5, the vibration part 4 is connected with the excitation part 2 and the first fixed part 5 respectively
  • the position of the vibration part 4 is subjected to at least the compressive or tensile stress from the first direction L, so that the vibration part 4 is compressively or tensilely deformed.
  • the phase difference generated by the deformation of the vibrating part 4 in the first direction L and the second direction W makes the end of the vibrating part 4 - the pushing part 3 form an elliptical motion.
  • the pushing part 3 can move along an elliptical trajectory to drive the corresponding follower 6 to move and/or rotate in the structural cooperation, the following
  • the motion of the follower 6 is taken as an example for description, and it will not be emphasized separately in the following, in order to facilitate the adjustment of the elliptical trajectory of different frequency modes, so as to adjust adaptively according to the demand.
  • the elliptical motion trajectory formed by the pushing part 3, according to the difference of the phase difference generated by the deformation of the vibrating part 4 in the first direction L and the second direction W, the moving distance of the pushing part 3 along the first direction L and the second direction W is also different.
  • the vibration excitation part 2 vibrates
  • the deformation caused by the vibration of the vibration part 4 enables it to have the displacement transformation ability in the first direction L and the second direction W, so as to drive the connected pushing part 3 to generate the final elliptical motion trajectory , to push the follower 6 to do the corresponding movement.
  • the strength and direction of the elliptical motion of the pusher 3 can be determined by observing the motion direction and speed of the follower 6.
  • the elliptical motion of the pusher 3 in different frequency modes is often is different, so through observation, we can obtain the modal frequency corresponding to the movement direction of the follower 6, and when we need to move the follower 6 in a specific direction, we only need to generate vibration of the corresponding frequency in the excitation part 2.
  • the corresponding frequency mode is excited, so that the pushing part 3 is excited to push the follower 6 to move in a specific direction.
  • the provided pushing part 3 can prevent the vibrating part 4 from having too much surface contact with the follower 6 , which may damage the vibrating part 4 due to excessive frictional force.
  • a corresponding position can be selected to connect the push portion 3 according to the specific structural cooperation of the vibrating portion 4 and the displacement change of the vibration in the vibrating portion 4,
  • the pushing part 3 can push the follower 6 to move, the deformation of the vibrating part 4 will not be related to the follower.
  • the movement of the follower 6 is affected by the direct contact between the components 6, and the position of the pushing part 3 will be adjusted according to the specific structure of the vibrating part 4, which is not specifically limited here.
  • the pusher 3 set its purpose is to be able to push the follower 6 to move, so its number and the orientation of the vibrating part 4 need to be adjusted according to the number and position of the follower 6.
  • the push portion 3 provided may be a protruding structure or a columnar structure provided on the vibrating portion 4 extending along the second direction W, and can push the follower 6 to reciprocate along the first direction L.
  • the specific structure of the pusher 3 and its specific extension direction can also be adjusted according to the position of the follower 6 to be in point contact or surface contact with the matched follower 6, so as to pass the elliptical trajectory.
  • the push portion 3 is generally anti-wear treatment or coated with a wear-resistant layer to prevent it from being easily worn when pushing the follower 6 to move, resulting in a decrease in motor performance (such as driving force, etc.).
  • the pushing part 3 has a relatively stable elliptical motion trajectory
  • the vibrating part 4 provided can have a variety of matching forms, as follows:
  • the vibrating part 4 can be an elastic member 42 with deformability; when the vibration exciting part 2 vibrates, under the restriction of the first fixing part 5, the elastic member 42 can at least It shrinks or expands and deforms along the first direction L, and drives the elastic member 42 to deform at least along the second direction W.
  • the pushing portion 3 is disposed at both ends of the elastic deformation direction (ie, the second direction W) of the elastic member 42 .
  • the vibrating part 4 As an elastic member 42 that can produce elastic deformation by itself, under the vibration of the exciting part 2 and the restriction of the displacement of the first fixing part 5 and the second fixing part 1, along the first direction L, the vibrating part 4 is subjected to the stress of extrusion or stretching, so that the elastic member 42 itself shrinks or expands and deforms.
  • the provided elastic member 42 due to its own characteristics, after being deformed by being squeezed or stretched in the first direction L, it is more likely to produce elastic deformation perpendicular to the first direction L, so it can be
  • the second direction W is set to be perpendicular to the first direction L
  • the pushing part 3 is set at the edge position of the vibration part 4 that deforms the most along the second direction W, so as to avoid the deformation of other parts of the vibration part 4 due to excessive deformation. It is so large that it exceeds the pusher 3 to come into contact with the follower 6 and interfere with the movement of the follower 6 .
  • the vibrating part 4 can also be set as an annular structural member 43, and the annular structural member 43 can be deformed in its structure under the action of external force.
  • the first fixing part 5 and the excitation part 2 are arranged opposite to each other (that is, the first fixing part 5 and the excitation part 2 are in the same straight line along the first direction L, and there is no height difference between the two in the second direction W) at
  • the annular structural member 43 has inner walls 431; when the excitation part 2 vibrates, the distance between the inner walls 431 increases along the first direction L, and the distance between the inner walls 431 along the second direction W increases with The distance between the inner walls 431 along the first direction L increases and decreases, and the pushing portion 3 is disposed at a position where the distance between the inner walls 431 can be reduced, or, the distance between the inner walls 431 along the second direction W increases with the distance between the inner walls 431 along the first direction W.
  • the distance in the direction L decreases and increases, and the pusher 3 is provided at a position where the distance between the inner walls 431 can be increased.
  • the middle part Due to the annular structure provided by the annular structure member 43, the middle part is a hollow structure.
  • the vibration excitation part 2 transmits the vibration of the corresponding frequency, in the first direction L, the vibration excitation part 2 will vibrate through the connection position. It is transmitted to the annular structure, and under the restriction of the connected first fixed part 5 and the second fixed part 1, the annular structure is deformed by the stress of stretching or extrusion, so that the first fixed part is connected in the annular structure respectively.
  • the two connection positions of the part 5 and the excitation part 2 generate a movement of approaching or moving away from each other.
  • the vibration of the excitation portion 2 can cause the annular structure to generate tensile or compressive stress, and under the action of the stress, the distance between the inner walls 431 of the annular structure increases. or decrease, and its increasing and decreasing motion law and motion amplitude are determined according to the vibration of the excitation part 2 .
  • the annular structural member 43 is deformed by extrusion (or stretching) due to the stress in the first direction L, and may be deformed by expansion (or extrusion) in the second direction W according to the transmission of the force.
  • the distance between the inner walls 431 of the annular structure will decrease with the increase of the distance between the inner walls 431 in the first direction L, or decrease and increase, thereby driving the setting in the corresponding position.
  • the pushing part 3 produces an elliptical motion.
  • the pushing portion 3 is arranged at the edge position of the annular structure close to the corresponding follower 6, and, along the second direction W, the pushing portion 3 is symmetrically arranged on both sides of the annular structure 43, and the pushing portion 3
  • the inner walls 431 in the annular structure 43 are arranged at the position where the distance is the furthest, so as to prevent other parts of the annular structure from affecting the movement of the pusher 3 to push the follower 6 during deformation.
  • the vibrating part 4 provided may also include connecting rods 41 .
  • There are two or more connecting rods 41 and at least two adjacent connecting rods 41 are connected and connected to each other.
  • a connecting end is formed, and the connected connecting rods have a first included angle; when the vibration excitation part 2 vibrates, the first included angle can be increased or decreased, so that the vibration part 4 can be deformed; the pushing part 3 is arranged close to The location of the connection end.
  • the connecting rods 41 Through the arrangement of the connecting rods 41, the corresponding vibration parts 4 are formed in combination.
  • the connecting rods 41 along the first direction L, the ends of the two outermost connecting rods 41 are respectively connected to the vibration excitation parts.
  • the other end of the excitation part 2 is connected to the second fixed part 1, and the vibration of the excitation part 2 can act on the vibration part 4 under the limit of the two fixed parts, and the connecting rod 41 Under the stress of extrusion or tension, the first included angle changes correspondingly to increase or decrease.
  • the connecting rod 41 connects the vibration excitation part 2 and the first fixed part respectively.
  • the two ends of 5 are approaching or moving away from each other, and the connecting rod 41 will also move correspondingly in the second direction W, so that the connecting rod 41 forms a phase difference in the first direction L and the second direction W, so that it can at least partially achieve The trajectory of the ellipse.
  • the set second direction W can be appropriately adjusted according to the position and direction of the set first included angle, which is not specifically limited here.
  • the pushing portion 3 disposed on the connecting rod 41 since the first angle of the connecting rod 41 is greatly affected by the deformation during the corresponding movement of the connecting rod 41 with the frequency of vibration, in order to avoid the connecting rod 41 It deforms and makes direct contact with the follower 6 , so the pushing part 3 can be arranged at a position close to the first included angle.
  • the structure of the provided connecting rod 41 is matched to form the corresponding vibration part 4, which can make the structural stability of the vibration part 4 better.
  • the vibration part 4 When the vibration excitation part 2 transmits the vibration of the corresponding frequency, the vibration part 4 can be better Vibration is absorbed, and the stability of frequency control is better.
  • the vibration of the corresponding frequency acts on the vibrating part 4, and the connecting rod 41 has strong controllability when the corresponding deformation is generated with the vibration, and can be adjusted according to the required direction and amplitude. Carry out the corresponding motion to form the required elliptical motion trajectory.
  • the connecting rod 41 is not easy to generate out-of-plane deviation of the elliptical motion trajectory, so that the pusher 3 connected to it can stably drive the follower 6 to move.
  • the connecting rods 41 can be combined to form different structures, which may specifically include but are not limited to the following:
  • the connecting rods 41 there may be two connecting rods 41 , and the connecting rods 41 are connected to form a V-shaped 411 structure to form a first included angle;
  • the vibrating part 2 and the first fixing part 5, the pushing part 3 is connected to the connecting end, when the exciting part 2 vibrates, the first included angle can be increased or decreased under the action of the pulling force or the pressing force on the vibrating part 4 .
  • the pushing part 3 can be arranged at the end of the sharp corner (ie the connecting end) of the V-shaped 411 structure, and the pushing part 3 is oriented to correspond to the follower In the direction of 6, the connection end of the V-shaped 411 can also be a protruding structure in the direction of the follower 6, so as to facilitate the driving of the follower 6.
  • the V-shaped 411 has certain stability and strength. When the first angle changes due to the pressure, the pushing part can be driven to perform the corresponding elliptical motion. The controllability is strong, and the stability of the movement of the driven follower 6 is improved.
  • a relatively stable elliptical motion trajectory can be generated to make the follower 6 move.
  • the connecting rod 41 can be configured to have a non-uniform cross-sectional structure, for example, along the axial direction of the connecting rod 41 and the direction away from the connecting end, the cross-sectional area of the connecting rod 41 gradually increases.
  • the structural stability when connecting the excitation part 2 and the first fixed part 5 is better, and the vibration from the excitation part 2 can be better transmitted without affecting the
  • the movement of the follower 6 can be controlled at a lower frequency, and the use effect of the drive assembly can be improved.
  • FIG. 17 there may be three connecting rods 41 , and the connecting rods 41 are sequentially connected to form an unclosed structure, which can form two first included angles; the two connecting rods 41 on the outermost side are respectively The excitation part 2 and the first fixing part 5 are connected.
  • the first included angle can be increased or decreased, and the push part 3 is connected to the connecting rod 41 located in the middle.
  • the connecting rods 41 by connecting at least three connecting rods 41 in sequence, a first included angle is formed between adjacent connecting rods 41 .
  • connecting the pushing portion 3 to the connecting rod 41 in the middle position can improve the stability and firmness of the connection between the pushing portion 3 and the connecting rod 41, so that it can push the follower 6 to move. It is not easy to be damaged, and the service life of the push part 3 is improved.
  • the number of connecting rods 41 may be four or more, and a plurality of connecting rods 41 are connected end to end to form a closed polygonal structure, and adjacent connecting rods 41 form a first included angle;
  • the exciting part 2 and the first fixing part 5 are respectively connected to the connecting end, and along the second direction W, the pushing part 3 is connected to the connecting end; or, along the first direction L, the exciting part 2 and the first
  • the fixing parts 5 are respectively connected to the connecting rods 41 , and along the second direction W, the pushing parts 3 are connected to the connecting rods 41 .
  • the polygonal structure connects the excitation part 2 and the first fixing part 5 respectively.
  • the stability of the structure of the vibrating portion 4 can be improved by forming the polygonal structure with the stable structure.
  • the pusher 3 pushes the follower 6 to move, the elliptical motion trajectory will not be offset due to poor stability, thereby reducing the movement stability of the follower 6 .
  • the lengths between the connecting rods 41 may be the same or different.
  • the first included angle is not The included angle is zero, and the included angle can satisfy the vibration of different frequencies, and the range within which the first included angle can be changed under the required elliptical motion trajectory is formed, which is not specifically limited here.
  • the set first included angle according to the specific structure of the connection rod 41, in order to ensure the structural stability of the vibration part 4 under different structures, the set first included angle can pass a lower frequency. In order to realize the adjustment of the first included angle to reduce energy consumption, the preferred range of the first included angle will also be different for the vibrating parts 4 with different structures, which are not specifically limited here.
  • the change of the first included angle can be made smoother, so as to save energy. Therefore, in the matching structure of this rotating connection, it is necessary to make the connection between the connecting rods 41 have a certain stability, and not deform at will, so the rotating connection can be set. It is a structure that is more stable and less prone to excessive rotational deformation.
  • the driving range of the driven member 6 is not large, so that the connecting rod 41 and the first vibration part 4 are connected to the elliptical motion track formed by the deformation of the vibration part 4.
  • the variation range of the included angle is relatively small, so the plurality of connecting rods 41 can be set as integrally formed metal parts.
  • the connecting rods 41 made of metal have a certain deformability, so the elastic deformation of the corresponding metal parts can meet the requirements.
  • connection between the second fixed part 1 , the excitation part 2 , the vibration part 4 and the first fixed part 5 can be connected by a complete contact connection, or by multiple connections.
  • the connection form of the point, the connecting rod 44 (as shown in FIG. 18 ), or other forms that can realize the connection, are not specifically limited here.
  • a combination of the corresponding number and matching position can be made according to the number and position of the set follower 6 to meet the Driving of the follower 6 under different miniaturization conditions. As shown in FIG.
  • the above-mentioned different forms of vibration parts 4 can be arranged on the upper and lower sides of the follower 6, the first fixed The parts 5 are respectively fixed on the upper and lower sides (or the first fixing part 5 is fixedly connected to two vibration parts 4 at the same time, as shown in Figure 13 and Figure 14 ) to connect different vibration parts 4, and in order to enable the upper and lower vibration parts 4 forms a mirrored elliptical motion trajectory to drive the follower 6 to move, so the two vibration parts 4 can be connected to the same vibration excitation part 2 to drive the follower 6 in the middle position.
  • two or more sets of active parts formed by the second fixed part 1 , the excitation part 2 , the vibration part 4 and the first fixed part 5 can also be connected to form a new active part.
  • the vibrating part 2 and the pushing part 3 are connected between the two sets of connected second fixed parts 1, the vibrating part 4 and the first fixed part 5 (as shown in Figure 17).
  • the pushing portion 5 can be directly made of a whole piece of wear-resistant material instead of the method of coating, which also enhances the anti-wear ability of this embodiment.
  • the present application also provides a specific implementation manner, as shown in FIG. 3 and FIG. 4 , for the set vibration excitation part 2, in order to enable it to realize single-phase driving, so that the vibration excitation part 2 can achieve the corresponding frequency (resonator) vibration, thereby reducing the space occupied in the matching of the driving structure by a simple driving method.
  • the excitation part 2 includes a main body 21 and a driving part, and the main body 21 is used to connect the vibration part 4; the driving part is connected to the main body 21 for single-phase
  • the drive body 21 is driven to vibrate; the drive member has a preset vibration frequency, and under the action of the preset vibration frequency, the vibration of the body 21 can make the vibration part 4 vibrate at least along the first direction L and the second direction W.
  • the preset vibration frequency is the frequency that can realize the elliptical motion trajectory of the required part (the position where the pushing part 3 is set) after the experiment with the cooperation of the excitation part 2, the vibration part 4 and the first fixing part 5 of the corresponding structure.
  • Frequency mode the preset vibration frequency will be different according to the actual situation and the needs of different follower 6 coordination and movement, as long as the pusher 3 can achieve the required elliptical motion trajectory, in This is not specifically limited.
  • the provided driving member is a power provider for driving the main body 21 to vibrate according to the required frequency mode.
  • the driving member is connected to at least one side of the body 21 .
  • the vibration can be transmitted to the main body 21 to the maximum extent by gluing or other fixed connection methods of direct contact and cooperation, and the structural stability of the connection between the two is good. During the vibration process, it is not easy to cause the driving member to fall off from the main body 21 .
  • the main body 21 can be set as a structure in the form of a middle hollow, and the driving member is arranged in the hollow structure (as shown in FIG. 1 ), which can be extended or not. It can be seen that this matching form improves the stability of the vibration when the vibration is transmitted to the main body 21 and ensures a better vibration effect. It should be emphasized here that the specific structure of the main body 21 can be set to a variety of different structures according to requirements, as shown in FIG. 5 , FIG. 6 , FIG. 7 and FIG. The combination of multiple line structures, etc., is not specifically limited here.
  • each part can be on the same plane, as shown in FIG. 11 , that is, the vibrating part has a first angle
  • the connecting rod 41 and the pushing part 3 extend in the plane toward the follower 6 which is at least partially located in the plane, so that the part of the vibration part 4 in contact with the follower 6 forms a corresponding elliptical motion in the plane , and drive the follower 6 to reciprocate.
  • the vibrating part 4 for the specific structural cooperation of the vibrating part 4 and the pushing part 3 and the connection with the main body 21 and the fixing part, etc., according to the positional layout of the follower 6 in the driving assembly, and the trajectory of the required elliptical motion, the vibrating part 4.
  • Different vibration amplitudes, vibration directions, etc. can be adjusted adaptively, which is not specifically limited here.
  • the driving member includes a deformation portion 22 and an electrification portion 23.
  • the deformation portion 22 is connected to the body 21, and the two can be connected by adhesive.
  • the deformation part 22 can be energized to produce deformation;
  • the energization part 23 is connected with the deformation part 22, and the electricity generated by the energization part 23 can be conducted to the deformation part 22; wherein, the energization part 23 can generate a frequency electric field after being energized, and the deformation part 22 is in the Under the action of the electric field, the body 21 is deformed to drive the body 21 to vibrate at a preset vibration frequency (that is, the deformation generated by the deformation portion 22 can drive the body 21 to generate corresponding deformation motion), so that the body 21 shrinks or expands along the first direction L.
  • a preset vibration frequency that is, the deformation generated by the deformation portion 22 can drive the body 21 to generate corresponding deformation motion
  • the deforming part 22 provided by the passing through can generate different degrees of deformation according to the electrical frequency of the energizing part 23 , so as to form a corresponding vibration to the connected body 21 .
  • the provided deformation portion 22 is made of an electro-deformable material, such as piezoelectric, magnetostrictive, shape memory alloy, etc., which is not specifically limited herein.
  • an energizing portion 23 is provided, and the energizing portion 23 can be electrically connected by connecting a power source.
  • the energizing part 23 and the deforming part 22 can be composed of one or more piezoelectric sheets. Electrodes are respectively connected to the two outermost surfaces of the piezoelectric sheets, and the electrodes are connected to the two ends of the drive.
  • the driving mode can be sine wave, square wave, triangular wave, trapezoidal wave, etc., which is not limited, and sine wave is preferred.
  • sine wave is preferred.
  • the specific structure of the electrode connection drive such as single-end drive or double-end drive, the specific structure will be adjusted according to different situations, which is not specifically limited here.
  • the vibrating part 4 when the vibrating part 4 is set to be able to deform through the cooperation of the structure.
  • the vibration part 4 is set as a structure such as a metal sheet or a metal rod, and when it is connected with the main body 21, the first fixing part 5 and the second fixing part 1, in order to make the structure have better stability, it is not easy to be damaged, All its parts are set as metal parts, and each part is integrally formed.
  • the various metal parts in the above can be directly connected, and can also be connected by other structures such as the connecting rod 44.
  • the connecting rod 44 When connected by a connecting piece similar to the connecting rod 44, the excitation part 2, the vibration part 4, the connection rigidity between the first fixed parts 5, when the vibration excitation part 2 transmits vibration, under the cooperation of this structure, compared with the larger rigidity produced by the direct contact with the larger surface connection, the effect of vibration transmission can be improved. better.

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

本申请涉及电子产品技术领域,尤其涉及一种驱动组件、马达及终端,该驱动组件包括主动件和从动件,主动件包括激振部、振动部、第一固定部和推动部;振动部与激振部连接;第一固定部与振动部连接,沿第一方向L,振动部位于激振部和第一固定部之间;推动部与振动部和从动件连接;激振部能够振动,且激振部能够带动振动部动作,且在第一固定部的限制下,振动部至少能够沿第一方向L和第二方向W振动;其中,第一固定部用于通过振动部限制推动部在第一方向L和第二方向W的移动距离。利用本申请提供的驱动组件、马达及终端,在能够使马达微型化的基础上,驱动时,能够使驱动组件在不同模态下运动的稳定性更好,提高运动的精度,延长使用寿命。

Description

驱动组件、马达及终端
本申请要求于2020年08月17日提交中国专利局、申请号为202010827864.6、发明名称为“驱动组件、马达及终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子产品技术领域,尤其涉及一种驱动组件、马达及终端。
背景技术
压电马达(常工作于超声波频段,也常称作超声波马达,Ultrasonic Motor,简称USM),同构压电单元驱动谐振子振动,从而使得谐振子的某些位置形成一定方向的椭圆运动,从而驱动接触的从动件运动。此种类型的压电马达中,往往采用双驱动而形成相应频率的振动,而形成椭圆运动。但随着对马达需求的微型化,微型化往往需要的低压驱动会要求马达高的机电耦合系数,这使得频率稍微偏离谐振就会使性能急剧下降,增加了双驱动简并的困难程度。因此,产生了单驱就能够实现双向运动控制的马达需求,而此种马达,由于微型化的设计,内部空间较小,用于驱动从动件运动的振动部会设置成相应的摆臂,通过频率的变化而使摆臂做相应运动,而此种摆臂结构稳定性较差,且在带动从动件运动时,驱动效果较差,可能存在一定的偏差,并且容易造成摆臂的损坏。
申请内容
本申请的目的在于提供了一种驱动组件、马达及终端,在能够使马达微型化的基础上,驱动时,能够使驱动组件在不同模态下运动的稳定性更好,提高运动的精度,延长使用寿命。
本申请提供了一种驱动组件,所述驱动组件包括主动件和从动件,所述主动件用于驱动所述从动件运动,所述主动件包括:
激振部;
振动部,所述振动部与所述激振部连接;
第一固定部,所述第一固定部与所述振动部连接,沿第一方向L,所述振动部位于所述激振部和所述第一固定部之间;
推动部,所述推动部与所述振动部和所述从动件连接;
所述激振部能够振动,且所述激振部能够带动所述振动部动作,且在所述第一固定部的限制下,所述振动部至少能够沿第一方向L和第二方向W振动,以使所述推动部推动所述从动件沿第一方向L运动;
其中,所述第一固定部用于通过所述振动部限制所述推动部在第一方向L和第二 方向W的移动距离。
在单相驱动的驱动组件中,由于马达微型化的需求,驱动组件内部的空间较小,各个零部件之间的配合较为紧密,为了能够在有限的空间且在不同的频率模态下能够满足从动件的运动需求,提高运动的精度和稳定性,通过设置的第一固定部,将振动部限制于激振部和第一固定部之间,而使激振部在设置的相应的频率模态下能够使激振部产生相应的振动,且该振动能够传递至振动部,而在第一方向L中,由于第一固定部的设置,且激振部向振动部方向的振动,能够使振动部产生应力,能够使振动部至少产生第一方向L和第二方向W的振动,在设置的频率模态下,第一方向L和第二方向W振动的相位差能够带动设置于其上的推动部产生相应方向的移动,并在第一固定部的限制下,推动部沿第一方向L和第二方向W的移动距离被限制,从而能够使推动部形成相应的椭圆运动轨迹,推动部在以椭圆运动轨迹运动时,推动部能够与从动件抵接并向从动件施加压力,在相应位置接触的从动件受压能够被推动部推动,即可进行直线运动或转动。避免在微型化的马达中较小的空间下而使带动从动件运动的主动件中稳定性较差的问题,降低主动件的损耗,提高使用寿命。
一种可能的设计中,所述振动部能够变形;
在所述第一固定部的限制下,所述激振部的振动能够使所述振动部至少能够沿第一方向L和第二方向W变形,所述推动部设置于所述振动部中能够沿第一方向L和第二方向W变形的位置。
在第一固定部的限制下,通过振动部的变形即可使振动部中设置推动部的位置产生椭圆运动轨迹,稳定性更好。
一种可能的设计中,所述振动部为环形结构件,以使所述振动部能够变形;
沿第一方向L,所述第一固定部和所述激振部相对设置于所述环形结构件的两侧,所述环形结构件具有内壁;
所述激振部振动时,沿第一方向L,所述内壁之间的距离增大,所述内壁沿第二方向W的距离减小,所述推动部设置于所述内壁之间距离能够减小的位置;或者,
沿第一方向L,所述内壁之间的距离减小,所述内壁沿第二方向W的距离增大,所述推动部设置于所述内壁之间距离能够增大的位置。
通过设置的环形结构件,利用其在外力的作用下其结构能够产生变形的特点,沿第一方向L,在相应固定部的限制下,激振部的振动能够使环形结构产生拉伸或压缩的应力,在应力的作用下,环形结构的内壁之间的距离增大或减小,环形结构件在由于受到第一方向L的应力而产生挤压(或拉伸)的变形,根据力的传递,会产生沿第二方向W的扩张(或挤压)的变形,实现振动部产生所需的较为稳定的椭圆运动轨迹,从而使推动部形成稳定的椭圆运动轨迹。
一种可能的设计中,沿第二方向W,所述推动部对称布置于所述环形结构件的两侧,且所述推动部设置于所述环形结构件中的所述内壁之间距离最远的位置。
在环形结构件上设置的推动部,为了能够使其至少产生沿第一方向L和第二方向W的移动而形成椭圆运动轨迹,同时,环形结构件在变形过程中不会与从动件抵接而影响推动件的使用效果,故可以将推动部设置于内壁之间距离最远的位置,而保证推动部推动从动件运动的稳定性,提高运动精度。
一种可能的设计中,所述振动部为弹性件,所述振动部至少能够沿第一方向L和第二方向W弹性变形;
所述推动部设置于所述弹性件弹性变形方向的两端。
根据弹性件自身的特性,在振动时,弹性件或沿除第一方向L以外的其他方向产生扩张(或收缩)变形,即为第二方向W,在两者形变的组合下,能够使振动部存在第一方向L和第二方向W相位差,即可形成相应的椭圆运动,而设置于振动部端部的推动部即可形成规律运动的椭圆运动轨迹,以带动从动件运动,提高了从动件运动的稳定性。
一种可能的设计中,所述振动部包括两个或两个以上的连接杆,至少两个相邻的所述连接杆连接并形成连接端,且连接后的所述连接杆之间具有第一夹角;
所述激振部振动时,所述第一夹角能够增大或减小,以使所述振动部能够变形;
所述推动部设置于靠近所述连接端的位置。
通过此种连接杆的设置,激振部振动时,在相应固定部的限制下,能够使激振部的振动作用于振动部,连接杆受到挤压或拉伸的应力而使第一夹角产生相应的增大或减小的变化,在第一夹角产生变化的同时,由于连接杆分别连接激振部和第一固定部的两端点相互靠近或远离,连接杆在第二方向W也会产生相应的运动,从而使连接杆在第一方向L和第二方向W形成相位差,以使其至少部分能够实现椭圆的运动轨迹,提高推动部运动的稳定性,和形成椭圆运动轨迹的精度。
一种可能的设计中,所述连接杆为两个,所述连接杆之间连接成V字型结构,形成所述第一夹角;
两个所述连接杆分别连接所述激振部和所述第一固定部;
所述推动部连接于所述连接端。
V型结构的连接杆配合,其自身结构具有一定的稳定性和强度,在其受压而使第一夹角变化时,带动推动部做相应椭圆运动的可控性较强,提高带动从动件运动的稳定性。
一种可能的设计中,沿所述连接杆的轴向、远离所述连接端的方向,所述连接杆的截面积逐渐增大。
以通过横截面渐变的形式,而使其在连接激振部和第一固定部时的结构稳定性更好,能够更好的传递来自激振部的振动,且不会影响第一夹角的增大或减小,通过较低的频率即可实现控制从动件的运动,提高驱动组件的使用效果。
一种可能的设计中,所述连接杆为三个,且所述连接杆顺序连接形成未封闭结构;
位于最外侧的两个所述连接杆分别连接所述激振部和所述第一固定部;
所述推动部连接于位于中间的所述连接杆。
将推动部连接于中间位置的连接杆的设置方式,能够提高推动部与连接杆之间连接的稳定性和牢靠性,以使其在推动从动件运动时,不易损坏,提高推动部的使用寿命。
一种可能的设计中,所述连接杆为四个或四个以上,多个所述连接杆首尾相连,形成封闭的多边形结构;
沿第一方向L,所述激振部和所述第一固定部分别连接于所述连接端,且沿第二 方向,所述推动部连接于所述连接端;或者,
沿第一方向L,所述激振部和所述第一固定部分别连接于所述连接杆,且沿第二方向W,所述推动部连接于所述连接杆。
多边形的闭合式连接方式,结构稳定性较好,强度较高,而推动部推动从动件运动时,不会由于稳定性不好而使椭圆运动轨迹发生偏移,而降低从动件的运动稳定性。
一种可能的设计中,多个所述连接杆一体成型。
在满足振动部结构稳定性的同时,能够更好的使振动转换成所需的椭圆运动轨迹。
一种可能的设计中,沿第二方向W,所述推动部为从所述振动部伸出的凸起结构,所述凸起结构能够推动所述从动件沿第一方向L往复运动。
通过设置的沿第二方向W,至少部分伸出振动部的凸起结构的设置,而使推动部更便于与从动件配合,避免振动部的变形而导致振动部的其他部分与从动件接触,进行影响推动部带动从动件运动的稳定性,破坏推动部的椭圆运动轨迹。
一种可能的设计中,所述主动件还包括第二固定部,用于使所述激振部产生的振动能够作用于所述振动部;
沿第一方向L,所述第二固定部连接于所述激振部远离所述振动部的一侧,所述第一固定部和所述第二固定部之间的距离固定。
通过第一固定部和第二固定部的设置,两者固定连接于马达的情况下,将连接的激振部和振动部限制在两者之间,使激振部振动时,在第二固定部的限位下,只能向振动部的方向运动,而此时在第一固定部的限位下,振动部分别与激振部和第一固定部连接的位置至少受到来自第一方向L的压缩或拉伸的应力,而使振动部变形,同时根据振动部的结构的设置,能够产生至少沿第二方向W的变形,从而使振动部的至少部分(推动部设置的位置)形成椭圆运动。
一种可能的设计中,所述激振部包括:
本体,所述本体用于连接所述振动部;
驱动件,所述驱动件与所述本体连接,用于单相驱动所述本体振动;
所述驱动件具有预设振动频率,在所述预设振动频率的作用下,所述本体的振动能够使所述振动部至少沿第一方向L和第二方向W振动。
能够实现单相驱动,以使激振部实现相应频率(谐振子)的振动,从而通过简单的驱动方式而降低驱动结构配合中的占用空间。
一种可能的设计中,沿第二方向W,所述驱动件连接于所述本体的至少一侧。
能够使驱动件带动连接的本体具有较好的振动效果。
一种可能的设计中,所述驱动件包括:
变形部,所述变形部与所述本体连接,所述变形部通电能够产生变形;
通电部,所述通电部与所述变形部连接,所述通电部产生的电能够传导至所述变形部;
其中,所述通电部能够产生所述预设频率的电场,所述变形部在所述电场的作用下变形而带动所述本体产生振动。
能够使驱动件将电能转换成所需的频率模态下的振动,而带动连接的本体产生相 应的振动而拉伸或压缩,从而带动连接的振动部沿第一方向做拉伸或压缩的变形。
一种可能的设计中,所述本体、所述振动部和所述第一固定部一体成型。能够使连接的各部分结构稳定性更好,同时能够使振动传递的效果更好。
本申请还提供了一种马达,所述马达包括驱动组件,所述驱动组件为上述中任一项所述的驱动组件。该马达与驱动组件所具有的优势相同,在此不做具体说明。
本申请还提供了一种终端,包括马达,所述马达为上述中所述的马达。该终端与驱动组件所具有的优势相同,在此不做具体说明。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本申请。
附图说明
图1为本申请实施例提供的一种驱动组件主视图,其中箭头L所指方向为第一方向,箭头W所指方向为第二方向;
图2为本申请实施例提供的一种主动件的主视图,其中箭头L所指方向为第一方向,箭头W所指方向为第二方向;
图3为图2中的一种俯视图;
图4为图2中的另一种俯视图;
图5为本申请实施例提供的一种主动件中各部分连接的简单结构示意图,其中箭头L所指方向为第一方向,箭头W所指方向为第二方向;
图6为本申请实施例提供的另一种主动件中各部分连接的简单结构示意图,其中箭头L所指方向为第一方向,箭头W所指方向为第二方向;
图7为本申请实施例提供的又一种主动件中各部分连接的简单结构示意图,其中箭头L所指方向为第一方向,箭头W所指方向为第二方向;
图8为本申请实施例提供的再一种主动件中各部分连接的简单结构示意图,其中箭头L所指方向为第一方向,箭头W所指方向为第二方向;
图9为本申请实施例提供的第一种振动部结构配合的简单结构示意图,其中箭头L所指方向为第一方向,箭头W所指方向为第二方向;
图10为本申请实施例提供的第二种振动部结构配合的简单结构示意图,其中箭头L所指方向为第一方向,箭头W所指方向为第二方向;
图11为本申请实施例提供的第三种振动部结构配合的简单结构示意图,其中箭头L所指方向为第一方向,箭头W所指方向为第二方向;
图12为本申请实施例提供第四种振动部结构配合的简单结构示意图;
图13为图11中除去驱动件的各部分连接的简单结构示意图;
图14为本申请实施例提供的第五种振动部结构配合的简单结构示意图;
图15为图13中另一种激振部的简单结构示意图;
图16为本申请实施例提供的一种主动件简单结构示意图;
图17为本申请实施例提供的第六种振动部结构配合的简单结构示意图;
图18为本申请实施例提供的第七种振动部结构配合的简单结构示意图;
图19为本申请实施例提供的另一种主动件的主视图;
图20为本申请实施例提供的另一种主动件的附视图。
附图标记:
1-第二固定部;2-激振部;21-本体;22-变形部;23-通电部;3-推动部;4-振动部;41-连接杆;411-V字型;42-弹性件;43-环形结构件;431-内壁;44-连杆;5-第一固定部;6-从动件。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
具体实施方式
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在
限制本申请。在本申请实施例中所使用的单数形式的“一种”、“所述”和“该”也旨
在包括多数形式,除非上下文清楚地表示其他含义。
本申请一实施例提供了一种终端,该终端内设有马达,该终端可以为手机、相机等电子产品,在此不做具体限定。而对于设置于终端内的马达,随着如手机等电子产品的轻薄化,由于内部空间的缩小,对于其内使用的用于驱动相应部件运动的马达,所占用的空间也会降低,所以会需要马达整体占用空间降低,做到马达的微型化。而为了能够尽量减小马达的体积,而做到微型化,作为马达中较为重要部分的驱动组件,该部分结构配合的微型化对马达整体的轻薄化的设计具有重要影响。因此,将驱动组件最大限度的做到小型化可以作为马达微型化的一种设计思路,而其设置的驱动组件,包括主动件和从动件6,主动件用于驱动从动件6运动,其设置的通过压电单元驱动谐振子的振动,从而使得谐振子的某个(些)位置形成一定方向的椭圆旋转,从而驱动与该位置接触的从动件6运动的配合形式,在一定程度上能够降低了驱动组件工作时所占用的空间,而在此种压电马达中,主动件使配合的从动件6做直线的运动还是转动,需要根据设置的驱动部的驱动来实现,由于马达内部结构的复杂性,微型化往往需要的低压驱动会要求马达高的机电耦合系数,这使得频率稍微偏离谐振就会使性能急剧下降,增加了多相驱动时频率简并的困难程度。为了能够在满足微型化的设计的同时,能够使驱动的频率稳定性更好,故而采用单相驱动。
而在单相驱动的驱动组件中,由于马达微型化的需求,驱动组件内部的空间较小,各个零部件之间的配合较为紧密,为了能够在有限的空间且在不同的频率模态下能够满足从动件6的运动需求,提高运动的精度和稳定性。如图1、图2和图11所示,主动件包括激振部2、振动部4、第一固定部5和推动部3,振动部4与激振部2连接,第一固定部5与振动部4连接,沿第一方向L振动部4位于激振部2和第一固定部5之间;推动部3与振动部4和从动件6连接激振部2能够振动,且激振部2能够带动振动部4动作,且在第一固定部5的限制下,振动部4至少能够沿第一方向L和第二方向W振动,以使推动部3推动从动件6沿第一方向L运动;其中,第一固定部5用于通过振动部4限制推动部3在第一方向L和第二方向W的移动距离。以通过设 置的第一固定部5,将振动部4限制于激振部2和第一固定部5之间,而使激振部2在设置的相应的频率模态下能够使激振部2产生相应的振动,且该振动能够传递至振动部4,而在第一方向L中,由于第一固定部5的设置,且激振部2向振动部4方向的振动,能够使振动部4产生应力,能够使振动部4至少产生第一方向L和第二方向W的振动,在设置的频率模态下,第一方向L和第二方向W振动的相位差能够带动设置于其上的推动部3产生相应方向的移动,并在第一固定部5的限制下,推动部3沿第一方向L和第二方向W的移动距离被限制,从而能够使推动部3形成相应的椭圆运动轨迹,推动部3在以椭圆运动轨迹运动时,推动部3能够与从动件6抵接并向从动件6施加压力,在相应位置接触的从动件6受压能够被推动部3推动,即可进行直线运动或转动。简单的可以理解为,通过设置的激振部2,根据主动件与从动件6配合时,需要使从动件6产生相应的直线运动或转动等的需求,调节至相应的频率模态,而使激振部2在该频率模态下产生相应的振动,在振动的过程中,由于会产生第一方向L的振动,激振部2将振动产生的变形作用于振动部4,且在第一固定部5的位置的限制下,激振部2的变形使振动部4沿第一方向L受到应力作用的挤压或拉伸,而使振动部4在受到第一方向L挤压或拉伸的同时能够沿第二方向W运动,在第一方向L和第二方向W运动的结合下,从而产生振动部4相应的位置的椭圆运动,即可带动在该位置接触配合的从动件6产生相应的运动。从而通过设置的振动部4和第一固定部5,能够使振动部4产生稳定的椭圆运动,而带动相应的从动件6运动,避免在微型化的马达中较小的空间下而使带动从动件6运动的主动件中稳定性较差的问题,降低主动件的损耗,提高使用寿命。
其中,通过限制推动部3在第一方向L和第二方向W的移动距离而形成的椭圆运动轨迹的结构配合中,由于属于微型化的马达,其椭圆运动轨迹的弧度较为平缓,且所需要带动从动件6运动的距离也为较小的距离,所以推动部3椭圆的运动中,第二方向W的运动主要用于实现与从动件6抵顶,并向从动件6提供挤压力,而使推动部3能够更稳定的带动从动件6沿第一方向L移动或转动。
在此需要强调的是,对于提及到的频率模态,在激振部2中可以存在多种,该频率模态通过电驱动时的频率的不同而有所不同,而在单相驱动时,不同频率模态下振动部4上下端部的椭圆运动具有顺时针也有逆时针,从而能够推动从动件正向或负向运动,从而实现单相驱动双向运动。频率模态的改变至少能够影响激振部2振动的方向和振动的幅度,而最终改变振动部4中局部位置(设置推动部3的位置)的椭圆运动轨迹,进而实现控制配合的从动件6能够沿直线往复运动和/或转动。所以对于设置的马达,其需要根据实际的使用情况,进行调节相应的频率模态,以使从动件6能够实现相应距离的直线往复运动,和/或,从动件6相对主动件的转动,在此不做具体限定。并且,对于上述中提及到的第一方向L和第二方向W,两个方向之间至少具有非零夹角,且第二方向W根据振动部4设置的具体结构的不同,以及第一方向L产生的振动而对振动部4的第二方向W上的结构变化等的不同,所设置的第一方向L和第二方向W之间的夹角也会有所不同,只要能够使最终振动部4的振动能够推动从动件6进行相应的运动即可,在此不做具体限定。
具体的,为了使设置的振动部4能够在第一固定部5和激振部2的限制下,能够 在相应的频率模态下带动推动部3产生方向(顺时针或逆时针)较稳定的椭圆轨迹,且能够稳定的推动从动件6做相应的运动。如图2所示,振动部4能够变形;在第一固定部5的限制下,振动部4产生应力而发生变形,并使振动部4至少能够沿第二方向W变形,激振部2的振动能够使振动部4至少能够沿第一方向L和第二方向W变形,推动部3设置于振动部4中能够沿第一方向L和第二方向W变形的位置。以通过将振动部4设置为能够变形的部件,以使其在第一固定部5的限制下,在第一方向L有限的空间内,激振部2向振动部4施加拉力或挤压力,而振动部4通过自身的变形而使其能够沿第一方向L产生扩张或收缩的变形,且在该方向的变形下,能够带动振动部4至少沿第二方向W变形,通过两个方向的变形运动而实现相应的位移变换能力,从而实现振动部4至少部分沿相应的椭圆轨迹运动,从而在振动部4中能够产生椭圆运动轨迹的位置设置推动部3。此种通过振动部4变形的形式,以在最小的空间范围内,实现振动部4在受相应频率模态的振动而产生所需的椭圆运动轨迹,进而带动同样产生椭圆运动轨迹的推动部3推动从动件6运动。此种结构配合简单,在第一固定部5的限制下,通过振动部4的变形即可使振动部4中设置推动部3的位置产生椭圆运动轨迹,稳定性更好。
另外,为了能够使振动从激振部2能够更好的传递至振动部4,而带动振动部4沿第一方向L产生拉伸或挤压的变形,而使振动部4在第一固定部5的限制下和激振部2对振动部4的相应作用力下,能够更好的通过其变形而形成相应的椭圆运动,从而使推动部3能够产生沿第一方向L和第二方向W的移动,且由于在相应方向移动距离的限制,从而使推动部3形成椭圆运动。另外,主动件还包括第二固定部1,用于使激振部2产生的振动能够作用于振动部4;沿第一方向L,第二固定部1连接于激振部2远离振动部4的一侧,第一固定部5和第二固定部1之间的距离固定。通过第一固定部5和第二固定部1的设置,两者固定连接于马达的情况下,将连接的激振部2和振动部4限制在两者之间,使激振部2振动时,在第二固定部1的限位下,只能作用于振动部4,而此时在第一固定部5的限位下,振动部4分别与激振部2和第一固定部5连接的位置至少受到来自第一方向L的压缩或拉伸的应力,而使振动部4压缩或拉伸变形,同时根据振动部4的结构的设置,能够产生至少沿第二方向W的变形,通过振动部4在第一方向L和第二方向W变形产生的相位差,从而使振动部4的端部-推动部3形成椭圆运动。
更为具体的,如图2和图11所示,对于振动部4的端部-推动部3能够沿椭圆轨迹运动,以带动相应的从动件6运动和/或转动的结构配合中,以下以从动件6的运动为例进行说明,后面不再单独强调,为了能够便于不同频率模态的椭圆轨迹的调节,以根据需求适应性调整,。其中,推动部3形成的椭圆运动轨迹,根据振动部4在第一方向L和第二方向W变形产生的相位差的不同,推动部3沿第一方向L和第二方向W的移动距离也会有所不同,从而形成不同的椭圆运动轨迹。具体的,在激振部2振动时,振动部4的振动而产生的变形使其具有第一方向L和第二方向W的位移变换能力,以带动连接的推动部3产生最终的椭圆运动轨迹,以推动从动件6做相应的运动。而在该过程中,调频率模态后,通过观察从动件6的运动方向和速度即可判断出推动部3的椭圆运动强度和方向,不同的频率模态下推动部3的椭圆运动往往是不 同的,所以通过观察,我们获得从动件6运动方向对应的模态频率,而当我们需要对从动件6按特定方向运动时,只需激振部2产生相应频率的振动即可激发起相应的频率模态,从而激发推动部3推动从动件6按特定的方向运动。并且,设置的推动部3能够避免振动部4与从动件6产生过多的表面接触,由于摩擦力过大而损坏振动部4。在此需要强调的是,对于设置的推动部3在振动部4中的具体位置,可以根据振动部4的具体结构配合和振动部4中振动的位移变化选择相应的位置连接该推动部3,以使推动部3能够更好的将振动部4的振动形成稳定的椭圆运动轨迹的同时,能够使推动部3在推动从动件6运动的过程中,振动部4的变形不会与从动件6产生直接接触而影响从动件6的运动,推动部3的位置根据设置的振动部4的具体结构的不同会有相应的调整,在此不做具体限定。
可选的,对于设置的推动部3,其目的在于能够推动从动件6运动,所以其个数和设置于振动部4的方位等需要根据从动件6的个数、位置做相应的调整,在此不做具体限定。并且,对于设置的推动部3,可以为设置于振动部4沿第二方向W伸出的凸起结构,或者柱状结构,而能够推动从动件6沿第一方向L往复运动。或者,推动部3的具体结构以及其具体延伸的方向,也可以根据设置的从动件6的位置做相应的调整,以与配合的从动件6点接触或面接触,从而通过椭圆轨迹的运动而推动从动件6做相应的运动或转动,在此不做具体限定。而设置的推动部3,一般会对其进行抗磨处理或镀耐磨层,以避免其在推动从动件6运动时,容易产生磨损而造成马达性能(如驱动力等)的下降。
而对于设置的振动部4,为了能够使其在激振部2的作用下以及相应的第一固定部5和第二固定部1的限位下,具有相应方向的位移变换能力,以使连接的推动部3具有较为稳定的椭圆运动轨迹,设置的振动部4可以具有多种配合形式,具体如下:
一种实施例中,如图9所示,对于设置的振动部4可以为具有变形能力的弹性件42;激振部2振动时,在第一固定部5的限制下,弹性件42至少能够沿第一方向L收缩或扩张变形,且带动弹性件42至少能够沿第二方向W变形,推动部3设置于弹性件42弹性变形方向(即第二方向W)的两端。以将振动部4设置为自身能够产生弹性变形的弹性件42,在激振部2的振动作用下和第一固定部5、第二固定部1位移的限制,沿第一方向L,振动部4受到挤压或拉伸的应力,从而使弹性件42自身收缩或扩张变形。同时,在该方向的弹性件42的收缩(或扩张)变形下,由于弹性件42自身的特性,势必会沿除第一方向L以外的其他方向产生扩张(或收缩)变形,即为第二方向W,在两者形变的组合下,能够使振动部4存在第一方向L和第二方向W相位差,即可形成相应的椭圆运动,而设置于振动部4端部的推动部3即可形成规律运动的椭圆运动轨迹,以带动从动件6运动,提高了从动件6运动的稳定性。
可选的,对于设置的弹性件42,由于其自身的特性,在受到第一方向L的挤压或拉伸而变形后,其更容易产生沿垂直于第一方向L的弹性变形,故可以将第二方向W设置为垂直于第一方向L的方向,而将推动部3设置于沿第二方向W变形最大的振动部4的边缘位置,以避免振动部4变形时其他部位由于变形过大而超过推动部3而与从动件6接触,而干扰从动件6的运动。
在另一种实施例中,如图10所示,对于设置的振动部4,也可以设置为环形结构 件43,该环形结构件43在外力的作用下其结构能够产生变形,具体的,沿第一方向L,第一固定部5和激振部2相对设置(即沿第一方向L第一固定部5和激振部2处于同一直线,两者在第二方向W没有高度差)于环形结构件43的两侧,环形结构件43具有内壁431;激振部2振动时,沿第一方向L,内壁431之间的距离增大,且内壁431沿第二方向W的距离随着内壁431沿第一方向L的距离的增大而减小,推动部3设置于内壁431之间距离能够减小的位置,或者,内壁431沿第二方向W的距离随着内壁431沿第一方向L的距离的减小而增大,推动部3设置于内壁431之间距离能够增大的位置。通过设置的环形结构件43,由于其设置的环形结构,而使中间部分为中空结构,在激振部2传递相应频率的振动时,在第一方向L,激振部2通过连接位置将振动传递至该环形结构,且在连接的第一固定部5和第二固定部1的限制下,环形结构受到拉伸或挤压的应力作用而产生变形,以使环形结构中分别连接第一固定部5和激振部2的两个连接位置产生相互靠近或远离的运动。即沿第一方向L,在相应固定部的限制下,激振部2的振动能够使环形结构产生拉伸或压缩的应力,在应力的作用下,环形结构的内壁431之间的距离增大或减小,且其增大、减小运动规律和运动幅度,根据激振部2的振动来决定。并且,该环形结构件43在由于受到第一方向L的应力而产生挤压(或拉伸)的变形,根据力的传递,会产生沿第二方向W的扩张(或挤压)的变形。即至少沿第二方向W,环形结构的内壁431之间的距离会随着第一方向L内壁431之间的距离的增大而减小,或者减小而增大,从而带动在相应位置设置的推动部3产生椭圆运动。在此基础上,将推动部3设置于靠近相应从动件6的环形结构的边缘位置,并且,沿第二方向W,推动部3对称布置于环形结构件43的两侧,且推动部3设置于环形结构件43中的内壁431之间距离最远的位置,以避免环形结构其他部分在变形时影响推动部3推动从动件6的运动。
在又一种实施例中,如图5所示,对于设置的振动部4,也可以包括连接杆41,连接杆41为两个或两个以上,至少两个相邻的连接杆41连接并形成连接端,且连接后的连接杆之间具有第一夹角;激振部2振动时,第一夹角能够增大或减小,以使振动部4能够变形;推动部3设置于靠近连接端的位置。通过连接杆41的结构配合的设置,而组合形成相应的振动部4,通过此种连接杆41的设置,沿第一方向L,位于最外侧的两个连接杆41端部分别连接激振部2和第一固定部5,激振部2的另一端连接第二固定部1,通过在两个固定部的限位下,能够使激振部2的振动作用于振动部4,连接杆41受到挤压或拉伸的应力而使第一夹角产生相应的增大或减小的变化,在第一夹角产生变化的同时,由于连接杆41分别连接激振部2和第一固定部5的两端点相互靠近或远离,连接杆41在第二方向W也会产生相应的运动,从而使连接杆41在第一方向L和第二方向W形成相位差,以使其至少部分能够实现椭圆的运动轨迹。而在该结构配合中,对于设置的第二方向W,可以根据设置的第一夹角的位置和方向做适当调整,在此不做具体限定。并且,对于设置于连接杆41的推动部3,由于在连接杆41随振动的频率做相应的运动过程中,受变形影响较大的连接杆41第一夹角的位置,为了避免连接杆41变形而与从动件6产生直接的接触,故可以将推动部3设置于靠近第一夹角的位置。同时,对于设置的连接杆41结构的配合以形成相应的振动部4,能够使振动部4的结构稳定性更好,在激振部2传递相应频率的振动时,振 动部4能够更好的吸收振动,而使频率控制的稳定性更好。并且,在该连接杆41的结构配合中,相应频率的振动在作用于振动部4,连接杆41在随振动而产生相应的变形时,可控性较强,能够根据所需的方向和幅度进行相应的运动,而形成所需的椭圆运动轨迹。且在该轨迹的运动中,由于需要带动配合的从动件6做相应的运动,连接杆41的结构由于自身结构的强度和第一固定部5和第二固定部1的限制下,连接杆41不易产生椭圆运动轨迹的面外偏移,从而使其上连接的推动部3能够稳定的带动从动件6运动。
而在该实施例中,对于设置的连接杆41的结构配合中,在微型化的马达中的有限空间下,根据设置的从动件6相对主动件能够放置的位置,以及从动件6的运动方式、运动幅度等不同的需求,连接杆41可以组合形成不同的结构,具体可以包括但并不限于以下及几种:
可选的,如图11所示,设置的连接杆41可以为两个,连接杆41之间连接成V字型411结构,形成第一夹角;两个连接杆41的两端分别连接激振部2和第一固定部5,推动部3连接于连接端,激振部2振动时,在对振动部4产生的拉力或挤压力作用下,第一夹角能够增大或减小。在此种结构配合的连接杆41形成的振动部4中,推动部3可以设置于V字型411结构的尖角的端部(即连接端),且推动部3的朝向为对应从动件6的方向,V字型411的连接端朝向也可以为向从动件6的方向的凸出结构,从而便于实现对从动件6的驱动。而在此种V字型411的结构中,V字型411的设置由于自身具有一定的稳定性和强度,在其受压而使第一夹角变化时,带动推动部做相应椭圆运动的可控性较强,提高带动从动件6运动的稳定性。
具体的,在该结构配合中,为了能够使配合的连接杆41的结构稳定性较好,且在受到相应的频率振动下,能够产生较为稳定的椭圆运动轨迹,以使从动件6运动。在不改变连接杆41的数量和连接方向的条件下,为了能够提高连接杆41的稳定性,使连接杆41受到拉力或挤压力时,连接杆41相应方向的运动稳定性更好,故可以将连接杆41设置为非等横截面的结构,如,沿连接杆41的轴向、远离连接端的方向,连接杆41的截面积逐渐增大。以通过此种横截面渐变的形式,而使其在连接激振部2和第一固定部5时的结构稳定性更好,能够更好的传递来自激振部2的振动,且不会影响第一夹角的增大或减小,通过较低的频率即可实现控制从动件6的运动,提高驱动组件的使用效果。
或者,如图17所示,设置的连接杆41可以为三个,且连接杆41之间顺序连接形成未封闭结构,能够形成两个第一夹角;位于最外侧的两个连接杆41分别连接激振部2和第一固定部5,激振部2振动时,第一夹角能够增大或减小,推动部3连接于位于中间的连接杆41。在该连接杆41的结构配合中,通过将至少三个连接杆41顺序连接,且没相邻的连接杆41之间形成第一夹角。以通过此种结构的设计,将推动部3连接于中间位置的连接杆41,能够提高推动部3与连接杆41之间连接的稳定性和牢靠性,以使其在推动从动件6运动时,不易损坏,提高推动部3的使用寿命。
又或者,如图18所示,设置的连接杆41可以为四个或四个以上,多个连接杆41首尾相连,形成封闭的多边形结构,相邻连接杆41形成第一夹角;沿第一方向L,激振部2和第一固定部5分别连接于连接端,且沿第二方向W,推动部3连接于连接端; 或者,沿第一方向L,激振部2和第一固定部5分别连接于连接杆41,且沿第二方向W,推动部3连接于连接杆41。多边形结构分别连接激振部2和第一固定部5。以通过此种形成稳定结构的多边形结构件,而提高振动部4结构的稳定性。而推动部3推动从动件6运动时,不会由于稳定性不好而使椭圆运动轨迹发生偏移,而降低从动件6的运动稳定性。
其中,无论连接杆41采用上述中的哪种结构配合形式,各连接杆41之间的长度可以相同,也可以不同,对于设置于连接杆41的第一夹角,该第一夹角为非零夹角,且该夹角能够满足不同频率振动时,而形成所需的椭圆运动轨迹下,第一夹角能够变化的范围,在此不做具体限定。并且,对于设置的第一夹角,根据连接杆41配合的具体结构,为了在不同结构下能够使设置的第一夹角保证振动部4结构稳定性的同时,能够通过较低的频率即可实现第一夹角的调整,以降低能耗,对于设置的不同结构的振动部4,其优选的第一夹角的范围也会有所不同,在此不做具体的限定。
可选的,对于设置的连接杆41结构,为了能够使设置的连接杆41之间的配合结构在将连接杆41之间连接时,能够使第一夹角的变化更为顺畅,以节约能耗,多个连接杆之间转动连接,而在此转动连接的配合结构中,由于还需要使连接杆41杆之间连接后具有一定的稳定性,而不致随意变形,故可以将转动连接设置为稳定性较为牢靠且不易产生过大转动变形的结构。或者,由于在微型化的马达中,主动件驱动从动件6运动的幅度不大,而使设置的振动部4在通过其产生的变形而形成的椭圆运动轨迹时,连接杆41以及第一夹角的变化范围比较小,所以多个连接杆41可以设置为一体成型的金属件,采用金属的连接杆41具有一定的形变能力,所以其相应的金属件产生的弹性变形能够满足需求。
在此需要强调的是,对于设置的第二固定部1、激振部2、振动部4和第一固定部5之间的连接,可以通过完全接触式的连接方式,也可以通过多个连接点、连杆44(如图18所示)连接的形式,或者其他能够实现连接的形式,在此不做具体限定。并且,对于设置的第二固定部1、激振部2、振动部4和第一固定部5可以根据设置的从动件6的个数和位置做相应的数量和配合位置的组合,以满足不同微型化的条件下对从动件6的驱动。如图15所示,当内部的空间以及从动件6的位置等限制,从动件6不能够设置于主动件的上下两侧或套接于外侧,只有在中间位置留有从动件6的位置,为了能够在该空间下满足对从动件6实现稳定且高精度的运动的控制,故可以将上述中不同形式的振动部4设置于从动件6的上下两侧,第一固定部5分别固定于上下两侧(或者第一固定部5同时固定连接两个振动部4,如图13和图14所示)以连接不同的振动部4,而为了能够使上下两个振动部4形成镜像的椭圆运动轨迹而带动从动件6运动,故两个振动部4可以连接相同的激振部2,以实现对中间位置的从动件6的驱动。另外,也可以将两组或两组以上第二固定部1、激振部2、振动部4和第一固定部5形成的主动件连接后组成新的主动件,此种配合结构中,激振部2和推动部3连接在两组连接的第二固定部1、振动部4和第一固定部5之间(如图17所示),采用此种的结构配合,在振动部4、固定部等所形成的平面中,相应的部件产生向该平面外的弯曲时,会使其与推动部3和激振部2形成强烈的切应力,该切应力会迫使其回到原本的平面来,限制住了面外的摆动。此外由于设计的对称性,这种形 式的面外模态也不太容易被激发。而且推动部5可以直接选用整块的耐磨材料而不是镀膜的方法,也增强了该实施例的抗磨损能力。
本申请还提供了一种具体实施方式,如图3和图4所述,对于设置的激振部2,为了能够使其实现单相驱动,以使激振部2实现相应频率(谐振子)的振动,从而通过简单的驱动方式而降低驱动结构配合中的占用空间,激振部2包括本体21和驱动件,本体21用于连接振动部4;驱动件与本体21连接,用于单相驱动本体21振动;驱动件具有预设振动频率,在预设振动频率的作用下,本体21的振动能够使振动部4至少沿第一方向L和第二方向W振动。其中,预设振动频率即为经过实验后在相应结构的激振部2、振动部4、第一固定部5配合下,能够实现所需部位(设置推动部3的位置)的椭圆运动轨迹的频率模态,该预设振动频率根据实际情况的不同和不同的从动件6配合以及运动的需求,而会有所不同,只要能够使推动部3实现所需的椭圆运动轨迹即可,在此不做具体限定。
具体的,对于设置的驱动件,为用于驱动本体21能够按照所需的频率模态做相应振动的动力提供者,为了能够使驱动件使连接的本体21具有较好的振动效果,沿第二方向W,驱动件连接于本体21的至少一侧。以使驱动件将振动的能量直接转化传递至本体21,通过胶粘或其他直接接触配合的固定连接方式,能够最大限度的将振动传递至本体21,且两者连接的结构稳定性较好,在振动的过程中,不易造成驱动件从本体21脱落。并且,为了能够使传递至本体21的振动损失更低,本体21可以设置为中间镂空形式的结构,驱动件设置于该镂空结构之内(如图1所示),可以伸出也可以不伸出,此种配合形式提高了将振动传递至本体21时振动的稳定性,保证较好的振动效果。在此需要强调的是,对于本体21的具体结构,根据需求可以设置为多种不同的结构,如图5、图6、图7和图8所示,如镂空型、整体的板型结构或多个线条结构的组合等,在此不做具体限定。
可选的,对于连接的第一固定部5、本体21、振动部4和第二固定部1,各个部分可以处于同一平面,如图11所示,即振动部中采用的具有第一夹角的连接杆41、推动部3,均在该平面中向至少部分位于该平面的从动件6方向延伸,以使振动部4与从动件6接触的部分在该平面中形成相应的椭圆运动,而带动从动件6往复运动。或者,如图19和图20所示,对于设置的振动部4以及连接于其上的推动部3,也可以在该平面内连接相应的第一固定部5和本体21后,通过至少部分的变形而向该平面以外的方向延伸,而使推动部3与其他平面中的从动件6抵接,即振动部4和/或推动部3产生局部向该平面外的凸起而使至少部分不与本体21、固定部等不共面。所以,对于设置的振动部4、推动部3的具体结构配合以及与本体21、固定部等的连接,根据从动件6在驱动组件中的位置布局,以及所需椭圆运动的轨迹、振动部4的振动幅度、振动方向等的不同,可以做适应性调整,在此不做具体限定。
更为具体的,为了能够使驱动件将电能转换成所需的频率模态下的振动,驱动件包括变形部22和通电部23,变形部22与本体21连接,两者可以通过胶粘的形式连接,变形部22通电能够产生变形;通电部23与变形部22连接,通电部23产生的电能够传导至变形部22;其中,通电部23通电后能够产生频率的电场,变形部22在电场的作用下变形,以带动本体21以预设振动频率振动(即变形部22产生的变形能够 带动本体21产生相应的变形运动),从而使本体21产生沿第一方向L的收缩或扩张变形,且在相应固定部的限制下,形成向振动部4施加的往复运动的拉力或挤压力,以使振动部4产生第一方向L和第二方向W的振动。以通过设置的变形部22能够根据通电部23的电频率产生不同程度的变形,从而对连接的本体21形成相应的振动。而设置的变形部22为电致变形材料,如压电、磁致伸缩、形状记忆合金等构成,在此不做具体限定。而为了能够使其通电即可变形,设置有通电部23,通电部23连接电源即可实现电连接。
而对于设置的通电部23和变形部22,如图3所示,可以为一个或多个组成的压电片,在压电片最外侧的两表面分别连接有电极,电极接驱动两端,其驱动方式可以是正弦波、方波、三角波、梯形波等,不做限定,优选正弦波。而对于电极连接驱动的具体结构的配合,如为单端驱动还是双端驱动,其具体结构根据不同的情况会做相应的调整,在此不做具体限定。
可选的,如图12和图13所示,对于设置的第二固定部1、本体21、振动部4和第一固定部5,当振动部4设置为能够通过结构的配合而产生变形的环形结构件43或连接杆41(如图6和图11所示)的结构时,为了能够使其具有较好的变形效果,其变形属于微小变形,且能够将振动的力较完整的传递,故振动部4设置为金属片或金属杆等结构,且在将其与本体21、第一固定部5、第二固定部1连接时,为了能够使结构具有较好的稳定性,不易损坏,其各个部分均设置为金属件,且各个部件一体成型。
其中,上述中各个金属件之间可以直接连接,也可以通过其他如连杆44的结构连接,在通过类似于连杆44的连接件连接时,能够减小激振部2、振动部4、第一固定部5之间的连接刚度,在激振部2传递振动时,此种结构配合下,与直接接触的较大面接连接的产生的较大的刚度相比,能够使振动传动的效果更好。
但是其需要指出的是,本专利申请文件的一部分包含受著作权保护的内容。除了对专利局的专利文件或记录的专利文档内容制作副本以外,著作权人保留著作权。

Claims (19)

  1. 一种驱动组件,所述驱动组件包括主动件和从动件(6),所述主动件用于驱动所述从动件(6)运动,其特征在于,所述主动件包括:
    激振部(2);
    振动部(4),所述振动部(4)与所述激振部(2)连接;
    第一固定部(5),所述第一固定部(5)与所述振动部(4)连接,沿第一方向L,所述振动部(4)位于所述激振部(2)和所述第一固定部(5)之间;
    推动部(3),所述推动部(3)与所述振动部(4)和所述从动件(6)连接;
    所述激振部(2)能够振动,且所述激振部(2)能够带动所述振动部(4)动作,且在所述第一固定部(5)的限制下,所述振动部(4)至少能够沿第一方向L和第二方向W振动,以使所述推动部(3)推动所述从动件(6)沿第一方向L运动;
    其中,所述第一固定部(5)用于通过所述振动部(4)限制所述推动部(3)在第一方向L和第二方向W的移动距离。
  2. 根据权利要求1所述的驱动组件,其特征在于,所述振动部(4)能够变形;
    在所述第一固定部(5)的限制下,所述激振部(2)的振动能够使所述振动部(4)至少能够沿第一方向L和第二方向W变形,所述推动部(3)设置于所述振动部(4)中能够沿第一方向L和第二方向W变形的位置。
  3. 根据权利要求2所述的驱动组件,其特征在于,所述振动部(4)为环形结构件(43),以使所述振动部(4)能够变形;
    沿第一方向L,所述第一固定部(5)和所述激振部(2)相对设置于所述环形结构件(43)的两侧,所述环形结构件(43)具有内壁(431);
    所述激振部(2)振动时,沿第一方向L,所述内壁(431)之间的距离增大,所述内壁(431)沿第二方向W的距离减小,所述推动部(3)设置于所述内壁(431)之间距离能够减小的位置;或者,
    沿第一方向L,所述内壁(431)之间的距离减小,所述内壁(431)沿第二方向W的距离增大,所述推动部(3)设置于所述内壁(431)之间距离能够增大的位置。
  4. 根据权利要求3所述的驱动组件,其特征在于,沿第二方向W,所述推动部(3)对称布置于所述环形结构件(43)的两侧,且所述推动部(3)设置于所述环形结构件(43)中的所述内壁(431)之间距离最远的位置。
  5. 根据权利要求2所述的驱动组件,其特征在于,所述振动部(4)为弹性件(42),所述振动部(4)至少能够沿第一方向L和第二方向W弹性变形;
    所述推动部(3)设置于所述弹性件(42)弹性变形方向的两端。
  6. 根据权利要求2所述的驱动组件,其特征在于,所述振动部(4)包括两个或两个以上的连接杆(41),至少两个相邻的所述连接杆(41)连接并形成连接端,且连接后的所述连接杆之间具有第一夹角;
    所述激振部(2)振动时,所述第一夹角能够增大或减小,以使所述振动部(4) 能够变形;
    所述推动部(3)设置于靠近所述连接端的位置。
  7. 根据权利要求6所述的驱动组件,其特征在于,所述连接杆(41)为两个,所述连接杆(41)之间连接成V字型(411)结构,形成所述第一夹角;
    两个所述连接杆(41)分别连接所述激振部(2)和所述第一固定部(5);
    所述推动部(3)连接于所述连接端。
  8. 根据权利要求7所述的驱动组件,其特征在于,沿所述连接杆(41)的轴向、远离所述连接端的方向,所述连接杆(41)的截面积逐渐增大。
  9. 根据权利要求6所述的驱动组件,其特征在于,所述连接杆(41)为三个,且所述连接杆(41)顺序连接形成未封闭结构;
    位于最外侧的两个所述连接杆(41)分别连接所述激振部(2)和所述第一固定部(5);
    所述推动部(3)连接于位于中间的所述连接杆(41)。
  10. 根据权利要求6所述的驱动组件,其特征在于,所述连接杆(41)为四个或四个以上,多个所述连接杆(41)首尾相连,形成封闭的多边形结构;
    沿第一方向L,所述激振部(2)和所述第一固定部(5)分别连接于所述连接端,且沿第二方向,所述推动部(3)连接于所述连接端;或者,
    沿第一方向L,所述激振部(2)和所述第一固定部(5)分别连接于所述连接杆(41),且沿第二方向W,所述推动部(3)连接于所述连接杆(41)。
  11. 根据权利要求6-10中任一项所述的驱动组件,其特征在于,多个所述连接杆(41)一体成型。
  12. 根据权利要求1-10中任一项所述的驱动组件,其特征在于,沿第二方向W,所述推动部(3)为从所述振动部(4)伸出的凸起结构,所述凸起结构能够推动所述从动件(6)沿第一方向L往复运动。
  13. 根据权利要求1-10中任一项所述的驱动组件,其特征在于,所述主动件还包括第二固定部(1),用于使所述激振部(2)产生的振动能够作用于所述振动部(4);
    沿第一方向L,所述第二固定部(1)连接于所述激振部(2)远离所述振动部(4)的一侧,所述第一固定部(5)和所述第二固定部(1)之间的距离固定。
  14. 根据权利要求1-10中任一项所述的驱动组件,其特征在于,所述激振部(2)包括:
    本体(21),所述本体(21)用于连接所述振动部(4);
    驱动件,所述驱动件与所述本体(21)连接,用于单相驱动所述本体(21)振动;
    所述驱动件具有预设振动频率,在所述预设振动频率的作用下,所述本体(21)的振动能够使所述振动部(4)至少沿第一方向L和第二方向W振动。
  15. 根据权利要求14所述的驱动组件,其特征在于,沿第二方向W,所述驱动件连接于所述本体(21)的至少一侧。
  16. 根据权利要求14所述的驱动组件,其特征在于,所述驱动件包括:
    变形部(22),所述变形部(22)与所述本体(21)连接,所述变形部(22)通电能够产生变形;
    通电部(23),所述通电部(23)与所述变形部(22)连接,所述通电部(23)产生的电能够传导至所述变形部(22);
    其中,所述通电部(23)能够产生所述预设频率的电场,所述变形部(22)在所述电场的作用下变形而带动所述本体产生振动。
  17. 根据权利要求15所述的驱动组件,其特征在于,所述本体(21)、所述振动部(4)和所述第一固定部(5)一体成型。
  18. 一种马达,其特征在于,所述马达包括驱动组件,所述驱动组件为权利要求1-17中任一项所述的驱动组件。
  19. 一种终端,其特征在于,包括马达,所述马达为权利要求18中所述的马达。
PCT/CN2021/098248 2020-08-17 2021-06-04 驱动组件、马达及终端 WO2022037185A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023511986A JP2023538907A (ja) 2020-08-17 2021-06-04 駆動アセンブリ、モータ、および端末
EP21857284.0A EP4184781A4 (en) 2020-08-17 2021-06-04 DRIVE ASSEMBLY, MOTOR AND TERMINAL
US18/169,919 US20230198430A1 (en) 2020-08-17 2023-02-16 Drive assembly, motor, and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010827864.6A CN114079401A (zh) 2020-08-17 2020-08-17 驱动组件、马达及终端
CN202010827864.6 2020-08-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/169,919 Continuation US20230198430A1 (en) 2020-08-17 2023-02-16 Drive assembly, motor, and terminal

Publications (1)

Publication Number Publication Date
WO2022037185A1 true WO2022037185A1 (zh) 2022-02-24

Family

ID=80281102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098248 WO2022037185A1 (zh) 2020-08-17 2021-06-04 驱动组件、马达及终端

Country Status (5)

Country Link
US (1) US20230198430A1 (zh)
EP (1) EP4184781A4 (zh)
JP (1) JP2023538907A (zh)
CN (1) CN114079401A (zh)
WO (1) WO2022037185A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114979909B (zh) * 2022-05-31 2023-04-25 歌尔股份有限公司 驱动激励装置和电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108780838A (zh) * 2016-03-15 2018-11-09 物理仪器(Pi)两合有限公司 压电驱动器
JP2020025421A (ja) * 2018-08-08 2020-02-13 マブチモーター株式会社 パワーウインド用モータユニット
CN110880885A (zh) * 2019-05-18 2020-03-13 浙江师范大学 一种涡激振动俘能器
CN110914785A (zh) * 2017-07-26 2020-03-24 Tdk电子股份有限公司 提供触觉反馈的装置和具有该装置的器件

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2709213B1 (fr) * 1993-08-18 1995-10-27 Figest Bv Moteur électrique à éléments vibrants et coupleur élastique.
US9312790B2 (en) * 2013-09-13 2016-04-12 Physik Instrumente (Pi) Gmbh & Co. Kg Compact versatile stick-slip piezoelectric motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108780838A (zh) * 2016-03-15 2018-11-09 物理仪器(Pi)两合有限公司 压电驱动器
CN110914785A (zh) * 2017-07-26 2020-03-24 Tdk电子股份有限公司 提供触觉反馈的装置和具有该装置的器件
JP2020025421A (ja) * 2018-08-08 2020-02-13 マブチモーター株式会社 パワーウインド用モータユニット
CN110880885A (zh) * 2019-05-18 2020-03-13 浙江师范大学 一种涡激振动俘能器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4184781A4

Also Published As

Publication number Publication date
JP2023538907A (ja) 2023-09-12
US20230198430A1 (en) 2023-06-22
EP4184781A4 (en) 2024-01-24
EP4184781A1 (en) 2023-05-24
CN114079401A (zh) 2022-02-22

Similar Documents

Publication Publication Date Title
EP2036139B1 (en) Wide frequency range electromechanical actuator
JP5979817B2 (ja) 振動波駆動装置
US20180108830A1 (en) Vibration actuator and method for manufacturing the same
US20050073219A1 (en) Flat resonating electromechanical drive unit
WO2022037185A1 (zh) 驱动组件、马达及终端
JP4452275B2 (ja) 圧電電気機械式駆動装置
KR101601871B1 (ko) 변위 부재, 구동 부재, 액츄에이터 및 구동 장치
WO2014008394A1 (en) Piezoelectric linear motor
KR101225008B1 (ko) 초음파모터의 압전진동자
JP5776269B2 (ja) 圧電アクチュエーター、ロボット及びロボットハンド
JP2004304963A (ja) 圧電アクチュエータ
JP2574577B2 (ja) リニア型アクチュエータ
EP2290720B1 (en) Ultrasonic motor
CN109951105A (zh) 一种超声波电机驱动装置及其直线超声波电机
JP6107894B2 (ja) 圧電アクチュエーター、ロボット及びロボットハンド
US20130101145A1 (en) Transducer module
CN114244181B (zh) 一种高功率密度压电驱动器及压电马达
CN209642570U (zh) 一种超声波电机驱动装置及其直线超声波电机
WO2014172833A1 (zh) 压电驱动器及压电马达
JP2874174B2 (ja) 超音波振動子及び超音波モータ
JP4631124B2 (ja) 圧電アクチュエータ、時計および機器
JPH05111268A (ja) 圧電アクチユエータ
TWI462461B (zh) Stator and the use of the stator of the ultrasonic motor
JP3892183B2 (ja) 圧電アクチュエータ
JPH03253266A (ja) 圧電モータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857284

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023511986

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021857284

Country of ref document: EP

Effective date: 20230217

NENP Non-entry into the national phase

Ref country code: DE